Philipp Ferner

Clock synchronization for a real-time
communication using Ethernet

Master’s Thesis

Graz University of Technology

Institute of Automation and Control
Head: Univ.-Prof. Dipl.-Ing. Dr.techn. Martin Horn

Supervisor: Univ.-Prof. Dipl.-Ing. Dr.techn. Daniel Watzenig

Graz, September 2019

TU

Grazm



Statutory Declaration

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly marked
all material which has been quoted either literally or by content from the
used sources.

Graz,

Date Signature

Eidesstattliche Erklirung!

Ich erkldre an Eides statt, dass ich die vorliegende Arbeit selbststandig
verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und
die den benutzten Quellen wortlich und inhaltlich entnommenen Stellen als
solche kenntlich gemacht habe.

Graz, am

Datum Unterschrift

"Beschluss der Curricula-Kommission fiir Bachelor-, Master- und Diplomstudien vom
10.11.2008; Genehmigung des Senates am 1.12.2008



Abstract

Computer simulation are a well-known tool for verification and testing in
vehicle design. With increasing complexity of vehicles, computer simulation
got more sophisticated as well. One solution to cope with this problem
is to distribute the task into various subsystems and nodes. This is called
co-simulation. The overall simulation model is split into certain components
and sub-models. Each of these components simulate their own tasks but
may depend on each other. While this can greatly reduce the complexity of
the simulation, new challenges arise in the field of communication.

Various Co-Simulation solutions define interfaces and procedure to cope
with these new problems. One of the main players in this field is DCP? from
the Modelica Association Project. It is designed for real-time and non-real-time
operations. One of these challenges is clock synchronization. However, the
current DCP specification does not handle clock synchronization natively
but relies on an external mechanism.

This work evaluates the need of clock synchronization for DCP. Thus, the
impact of clock divergence is analyzed. Furthermore, the consequences to
the simulation result given unsynchronized nodes is evaluated as well. A
clock synchronization mechanism compatible with the current DCP draft
should be suggested and implemented. Given the flexibility of DCP, a
software-based approach is used. PTP is a well-known and widely adapted
clock synchronization method satisfying our criteria. The suggested changes
are added to the reference DCP implementation DCPLib3.

The implementation is tested in a simple simulation composed of two DCP
slaves, one DCP master and an external environment simulation. It is used
to collect the required data and verify the changes. The test environment

https:/ /dcp-standard.org
3https://github.com /modelica/DCPLib



features a simple Lane Keep Assist System (LKAS) based on a controller
of the “Stanford Racing Team”. Multiple test runs has been conducted to
compare simulation results with synchronized and unsynchronized nodes.
Various degrees of clock drifting have been measured as well. The simulation
is kept as simple as possible but is especially tailored to emphasize errors
caused by clocks losing synchronization.

Acknowledgement

I specially want to thank Virtual Vehicle as well as their employees. Virtual
Vehicle offered me all the help and tools needed to accomplish this work.
This help also includes various hints and suggestions from countless people
of the company. Among them I particularly want to give thanks to my
supervisor Dipl.-Ing. Martin Krammer. He was a driving force behind
of specification of DCP. His knowledge and input around the topic Co-
Simulation and scientific writing was always appreciated.

In this context, i also want to highlight the Modelica Association. They are
the holding company of DCP and FMI. The work is based on an preview
implementation of DCP provided by Modelica.

Finally I also want to thank the Institute of Automation and Control at
the Graz University of Technology. They helped during the development
of the sample controller and provided crucial information. With thanks to
Univ.-Prof. Dipl.-Ing. Dr.techn. Daniel Watzenig the communication between
the IRT and the Virtual Vehicle worked flawless.



Zusammenfassung

Computer Simulationen sind wesentlich fiir die Planung und das Testen von
Fahrzeugen. Um mit der steigenden Komplexitdt von Fahrzeugen mithalten
zu konnen, haben sich auch Simulation Tools weiterentwickelt. Eine dieser
Weiterentwicklungen versucht die Komplexitdt der Simulation auf mehrere
und einfachere Komponenten zu verteilen. Dies nennt sich “Co-Simulation”.
Jede dieser Komponenten simuliert nur einen kleinen Teil, welche jedoch
untereinander abhédngig sind. Erst durch das Zusammenfiihren ergibt sich
ein fertiges Resultat. Wahrend sich die Simulation dadurch vereinfacht,
entstehen neue Herausforderungen im Bereich der Dateniibertragung.

Dazu werden von eigenen Co-Simulation Protokollen Modelle, Abldufe und
notwendige Schnittstellen definiert. Ein Vorreiter in diesem Bereich ist das
DCP Protokoll4, von der Modelica Association. DCP wird fiir den Echtzeit
und Nicht-Echtzeit Betrieb entwickelt. Eine dieser Herausforderungen ist
auch die Zeitsynchronisation. Die aktuelle Spezifikation von DCP definiert
dazu keinen Mechanismus, sondern verweist auf eine externe Losung.

Diese Arbeit untersucht die Notwendigkeit der Zeitsynchronisation fiir
DCP. Dazu wird der Einfluss vom “Clock Drift” analysiert. In weiterer
Folge wird der Unterschied zwischen Simulationen mit aktiver und inak-
tiver Zeitsynchronisation gemessen und ausgewertet. Weiters wird eine
Synchronisationsmethode implementiert, welche mit der aktuellen DCP
Spezifikation kompatibel ist. Aufgrund der hohen Flexibilitat von DCP wird
dazu eine softwarebasierende Losung verwendet. PTP ist ein weit verbre-
iteter Standard, welcher die notwendigen Kriterien erfiillt. Die praktische
Umsetzung basiert auf der DCP Referenzimplementierung DCPIib>.

+https:/ /dcp-standard.org
Shttps://github.com /modelica/DCPLib



Zum Testen der Implementierung wird eine einfache Simulation verwen-
det. Die Simulation besteht aus zwei DCP Slaves, einen DCP Master sowie
einer externen Umgebungssimulation. Es wird ein Lane Keep Assist System
(LKAS) auf Basis eines Reglers vom “Stanford Racing Team” simuliert. Dabei
wurde die Simulation so gestaltet, dass Auswirkungen aufgrund fehlen-
der Zeitsynchronisation besonders sichtbar sind. Es wurden verschiedene
Messungen durchgefiihrt um Ergebnisse mit aktiver und inaktiver Zeitsyn-
chronisation zu vergleichen.

Vi



Contents

Abstract

1

Introduction

1.1 Motivation . . . ... ...
1.2 Problem Description . ... ...
1.3 Objectives . .. ... .......

Related Work

2.1 Definitions . . . . ... ... ...
2.1.1 Clock offset . . ... ...
2.1.2 Clock skew and clock drift
2.1.3 Clock skew (circuit) . . .
2.1.4 Network latency/delay .
2.1.5 Real-time .........

2.2 Open System Interconnection (OSI) . . ... ..........

2.2.1 7 Layers of the OSI model
2.3 Clock synchronization . ... ..

2.3.1  Network Time Protocol (NTP) . ... ... ... ....
2.3.2 Precision Time Protocol (PTP) . . ... ... ... ...

2.4 Ethernet ... ...........

2.4.1  User Datagram Protocol (UDP) . . . . .. ... ... ..

2.4.2 Nondeterministic behavior

Method
3.1  Overview of Co-Simulation . . .

of Ethernet . . .. ... ..

3.2 Distributed Co-Simulation Protocol (DCP) . .. ... ... ..

3.2.1  Multichannel support . .
3.2.2 Master-slave architecture
3.2.3 Protocol Data Unit (PDU)

vii



Contents

3.2.4 Operation and state machine . . . . . ... ... ....
3.2.5 Heartbeat mechanism . . ... ... ...........
3.3 Clock synchronization for DCP . . . .. ... ... .......
3.3.1 PTPoverDCP. ... ... ... ... ... ... .....
33.2 NewPDUtypes ... ...................

4 Implementation
4.1 Implementation environment . . . . .. ... ... ... ...
4.2 AdditionstoDCP . . . . ... ... ... oL
4.2.1  Additional synchronization PDUs . . . . .. ... ...
4.2.2 Important DCP states for synchronization . ... ...
4.2.3 Synchronization trigger interval . . . ... ... .. ..
4.2.4 Integration of PTP in DCP master . . . ... ... ...
4.2.5 Integration of PTP in DCP Slave . . . .. ... .. ...
4.3 POSIX timestamping APT . . . ... ...............
4.3.1 Enabling timestamping API. . . ... ... .......
4.3.2 Retrieving timestamps . . . ... ... .. ... ... ..
4.4 ASIO modifications . . . . .. ... ... oL
4.4.1 Enabling timestamping APT. . . . .. ... .......
4.4.2 Retrieving timestamps . . . . . ... ... ... ... ..
5 Test Environment
5.1 SimulationLayout. . . ... ... ...... .. ... ......
5.2 Used hardware . .. ... .....................
5.3 Simulation properties. . . . . ... ... Lo oL
53.1 Virtualroad . .. ... ... ... ... ... ..
53.2 Controller . . .. ... ... ... ... ...
54 Testresults . . . .. ... ... ...
5.4.1 Effects of over-/undersampling . .. ... .......
5.4.2 Propagationoferror . . ... ... ... ... ......
6 Conclusion and Outlook
6.1 Conclusion . . . . ... ... ..
6.2 Outlook. ... ... ... ... ... . .
Bibliography

viii



List of Figures

59

Clock Offset . . . ... ... . ... 5
Clock Skew . . ... ... .. ... ... . 6
Clock Skew (Circuit) . . . .. ... ... ... ... .. ... 7
Network delay and latency . . . ... .............. 7
System separation of OSI Layers . . . ... ........... 9
Layers of the OSIModel . . . . . ... ... ... ....... 10
NTP Stratas with decreasing accuracy . . . ... ... ... .. 11
Round-trip-time used in NTP . . . . ... .. ... .. ..... 12
Synchronization process of PTP . . . . .. .. ... .. ..... 15
DCP master-slave ethernet architecture . . ... ... ... .. 23
DCP State machine . . . . ... ....... ... ....... 28
DCP Heartbeat functionality . . .. ... .. ... ....... 31
PTP Messages . . . . ... ... ... ... ... ......... 32
Comparison of step and synchronize interval . . . . .. .. .. 44
Timeline of receiving messages . . . . ... ........... 51
Timeline for sending messages. . . . . ... ... ... ..... 54
Block Diagram of the test environment . ... .. ... . ... 62
Aerial perspective of the virtualroad. . . . ... ... .. ... 63
Kinematic model of a automotive. . . .. ... ... ... ... 64
Clock difference over time . . . . .. .. ... ... ....... 66
Picture of the simulation rendering . . . . . .. ... ... ... 68
Steering angle during a simulationrun. . . . . ... ... ... 68
Difference of steering angles between tworuns. . . . . .. .. 69
Comparison of an ideal clock and a skewed clock . . .. ... 70
Overlay reference run and steering angle difference . . . . . . 72

5.10 Overlay reference run and steering angle difference 3000 steps 73






List of Tables

2.1
2.2

2.3

3.1
3.2
33
3-4
35

5.1
5.2

Important NTP Fields . . ... .................. 13
Important PTP Fields . . . . ... ................. 16
UDPHeader . . . ... ..... ... ... ... . ...... 18
PDU groups with data fields . . ... ... ... ........ 25
PTP messages encapsulated in DCP PDUs . . . ... ... .. 34
Possible values for sync_op field . ... ... ... ....... 34
Suggested PDUs encapsulating PTP . . . . ... ... .. ... 35
Modified INF_sync PDU . . . . ... ... .. ... . ...... 36
Steering angle difference between testruns. . . . . . ... . .. 71

Steering angle difference between test runs with limited drift. 73

Xi






List of Listings

4.17

4.19
4.20

4.21
4.22

Masters sync invocation . . . .. ... ... ... . L. 40
SendingsyncPDUs . . . .. .................... 41
Master receive syncresponse . . . . . .. ... ... ... ... 41
Slave receive synccommand . . . . . ... 42
Offset applied to correct slavesclock . . . . .. ... ... ... 44
Signature of POSIX function ioctl . . . . ... ... ... ... 45
Enable hardware timestamping . . . . .. ... ... ... ... 46
Signature of POSIX function setsockopt . .. ...... ... 47
Prepare kernel to collect timestamps in kernel space . . . . . 47
Signature of POSIX functions recvand send . . ... ... .. 48
Signature of POSIX function recvmsg . . . .. ... ... ... 49
Control Message Header object and interface . . . . . . . . .. 49
Retrieval of the socket time for incomming data . . . . . .. .. 50
Retrieval of the socket time for outgoing data . . . . .. .. .. 52
ASIOs interface for ioctrl access. . . . .. ... ... ..... 55
Invocation of ASIOs wrapper for POSIXs Input/Output con-

trol function . . . ... ... .. 56
ASIOs interface to set socket options . . . . ... ... .. ... 56
Invocation of ASIOs wrapper to set socket options. . . . . . . 56

Signature of internal ASIO wrapper functions to receive data 57
Updated signature of internal ASIO wrapper functions to

receivedata . . . ... o oo oo 57
Signature of ASIOs receive function . ... ... ... ..... 58
Retreive timestamp info using new ASIO interface. . . . . . . 58

xiii






List of Acronyms

DCP Distributed Co-Simulation Protocol
CSMA-CD Carrier Sense Multiple Access — Collision Detection
FMI Functional Mock-up Interface

HiL Hardware in the Loop

LKAS Lane Keep Assist System

NTP Network Time Protocol

OSI Open System Interconnection
OWD One-way-delay

RTT Round-trip-time

PDU Protocol Data Unit

PTP Precision Time Protocol

TCP Transmission Control Protocol

UDP User Datagram Protocol

XV






1 Introduction

1.1 Motivation

For vehicle design and development, computer simulation plays a major role.
It helps to speed up the process, as well as identify flaws as soon as possible.
Simulations are used at the earliest state of the development process till
the product launch. However a modern vehicle composes of multiple ECUs
and components so that a single simulation module cannot project the
real world accurately. Hence, the various components are designed and
tested using their own simulation model. These models are focusing on
their own tasks and problems which needs to be solved. That is to say on
their specific domain. Multiple software emerged to handle the various use
cases, however they tend to work poorly outside their domain. In addition,
nowadays vehicle are even more complex and many components started
to influence and interact with each other. Thus, the challenges to simulate
specific components and behaviors increases as well. For example, we cannot
rely on a “steering while breaking” simulation without considering an ABS
module.

One solution to cope with these problems is to distribute the simulation to
multiple but connected devices. Each device works independent of another,
but share the same environment and the same simulation state. This is called
Co-Simulation. This allows the simulation model to focus on its actual task
and domain, as well as consider others models. While this greatly enhances
the overall simulation result and model new challenges rises.

For one there is need for standardization of protocols and interfaces. This is
required, so that each model can exchange data with each other. Next, some
kind of master to control and observe the simulation is needed. Finally, the
master and the underlying infrastructure needs to handle the data exchange



1 Introduction

and time synchronization. It needs to be guaranteed, that the all nodes
share the same information and are in the same simulation step. One such
standard is DCP. It defines Protocol Data Unit (PDU) for communication
using various channels like Ethernet or CAN. These PDUs allows the master
to control its slaves, as well as enables a defined communication between
the slaves to exchange simulation data.

1.2 Problem Description

For time synchronization the current DCP draft does not specify or sug-
gest anything. Currently, it only states that the operator must guarantee
synchronized nodes if such a behavior is needed. One example where syn-
chronization would be required is a feedback control loop split on two
devices. This is especially important in an real-time environment like a HiL
scenario. Another challenging aspect of clock synchronization in terms of
DCP is that the simulation steps do not need to be fixed for each participant.
Depending on the used channel various solutions are applicable. In a field-
bus environment a clock signal can be transmitted on the channel itself e.g.
by using the Manchester-Code. Alternatively, a higher level protocol can be
implemented to adjust the clocks accordingly. In this case one challenging
issue is that clocks have a natural skew. This causes synchronized nodes to
shift apart and gradually desynchronize again. Hence, the implementation
has to observe and adjust the device clocks if necessary. In addition, another
major problem is the (nondeterministic) delay emerging from the OS sched-
uler resulting into wrong timestamps at application layer. Consequently, we
have to observe the node’s master-clock as near as possible to the hardware.
As a result, a device driver may be required to accurately monitor the node’s
time.

1.3 Objectives

The basic task is to find applicable solutions of time synchronization meth-
ods and provide integration hints for DCP. As reference, a Ethernet UDP



1.3 Objectives

environment is assumed. The use-case is implemented using this DCP
communication channel.

The first clock issue we face with DCP is the start criteria. It denotes the
start of the simulation based on a timestamp. If the system fails to be
synchronized it the system may not even start properly and in worst case
may even invoke the error handling procedure. This should be avoided by
implementing some time synchronization mechanism.

Based on the use-case scenario, the impact of clock drift should also be
evaluated. First and foremost the drift itself may have an impact on a
simulation. In this context it is important to find out how clock drift alters
the simulation. It may be possible to completely forfeit an interference of
clock drift if the simulation follows some basic guidelines. Alternatively it is
also possible that the simulation results always differs if the nodes are not
clock synchronized. Furthermore, a rough estimation of clock drift over time
should be measured. It is important to know how much the clock changes
over time.

Last but not least a suitable method to synchronization two or more nodes
should be analyzed, suggested and implemented. Currently, there are var-
ious options available beginning with a special hardware design via a
dedicated synchronization connection to software based approaches. Due to
the flexibility and cost efficiency of software based implementations is fa-
vored. It goes without saying that this implementation has to be compatible
with the current DCP draft. Therefore the implementation has to follow the
DCP standard and its design philosophy.






2 Related Work

2.1 Definitions

2.1.1 Clock offset

This work references RFC-2330 [1] to define various clock issues. The offset
is specified as the time difference of two nodes at a moment in time. This is
often described as the clock model[2, 3].

Tj(t) == ajt + b; (2.1)
Consequently, the offset is relative to an given reference clock which is
denoted as 7;. The offset can be minimized with various synchronization

protocols like NTP. The offset itself can be harmful or a challenge in case
the system is time dependent or time triggered.

0.0 ns 100.0 ns

1 2 3

ok 1| L | | | | |
a2 ] LT LTI 11T

Figure 2.1: clk_2 is offset to clk_1 by half a tick




2 Related Work

2.1.2 Clock skew and clock drift

Complying to RFC-2330 we define the clock skew as the first derivative of the
clock offset over time. This is the difference of the clock frequency between
nodes. The clock skew is a result of physical limitations and will cause the
clock drift, which in turn is the second derivative of the offset over time. As
the name already suggests, clock drift causes the clock to desynchronize
gradually. Accumulating these minor errors results into increasing offset.
The only real way to avoid this, would be the use of a single master clock
for all nodes. Alternatively, the clock needs to be synchronized regularly.

0.0 ns 100.0 ns 200.0 ns

clk_1: 3 Ticks |

clk_2: 4 Ticks r

Figure 2.2: clk_2 oscillates faster than clk_1

2.1.3 Clock skew (circuit)

Unlike the clock skew defined in RFC-2330, this clock skew is based on the
clock signal rather the device time. It describes the delay of the clock edge
and the bound data signal. The clock skew is influenced by two factors:
a random (Jitter) and a linear factor. The linear drift is caused from the
frequency difference between the communicating devices. The jitter defines
the random component of the clock skew. The jitter is a natural occurrence
and cannot be eliminated fully.



2.1 Definitions

0.0 ns 100.0 ns 200.0 ns

clk _|1—|_‘2_,_—I3—|_
data / \ /_

Figure 2.3: Signal responses slowly/delayed to the rising clock edge

2.1.4 Network latency/delay

The network latency is the required time to send and receive data to and
from a node. This is also called the Round-trip-time (RTT). On the other
hand the network delay measures only the travel-time of a signal in one
direction — also called One-way-delay (OWD). Many algorithms estimate the
RTT only knowing the network delay. In an optimal case, the OWD equals
g [4]. Besides physical restrictions, low latency can also be caused by the
remote node for various reasons. For example the request is considered as
low priority at the receiver.

Receiver Sender

Response

|\
|
K
|
‘“\

|
|
|
|
|
|
|
|
|
|
|
|
|
|

]

Figure 2.4: RTT and OVD of a Request/Response



2 Related Work

2.1.5 Real-time

We call a system real-time capable, if it can guarantee that the response to a
request happens at an exactly specified time. Furthermore, this definition is
divided into “soft” and “hard” real-time. In a soft real-time environment
minor violations of the deadline are permitted [5]. In a hard real-time
environment deadlines must be adhered or cause a fatal error.

2.2 Open System Interconnection (OSl)

Since the specification of the Open System Interconnection model[6], it plays
a major role in all fields of information and communications technology. It is
designed as a standard “open” to all systems and allow integration as wide
as possible. This is achieved by splitting each architecture into layers which
are vertically stacked; see Figure 2.5. Each layer should add additional logic
to the task and thus helps in splitting the overall problems into smaller
pieces. Furthermore, it helps on organizing and structuring the design as
each layer works independently. That is to say, a layer defines services
and functionality by utilizing services of its lower layer and providing its
own service to its upper layer. The boundaries of the layers are carefully
selected based on historical practice or were the interactions across bound-
aries/layers is minimal. Next, the service of a layer usually combines similar
functionality. Following these rules, the boundaries are often a logical result.
As a consequence, changes to the software can be applied throughout the
system. This is true as long it stays compatible with its neighboring layers.
For example, we can run a Co-Simulation on an network based on Ethernet
and UDP/IP on the other hand a UDP/IP frame may also be sent using
the EtherCAT fieldbus. In both cases a UDP datagram in an IP network
is used, but the actual physical connection differs. Furthermore, OSI also
defines that each object at a given layer needs to be uniquely identifiable. To
allow correspondence between the upper/lower layer a mapping function
(or table) is used. As a consequence, a new connection at a at any given
layer requires an established connection at the lower layer.



2.2 Open System Interconnection (OSI)

[

‘ Network ‘ ‘ Network ‘
T T

‘ Network ‘ ‘ Network ‘
| T
‘ Data Link ‘ ‘ Data Link ‘

ransport

‘ Data Link ‘ ‘ Data Link ‘
| T

Physical H Physical ‘

‘ Physical H Physical

Figure 2.5: Connection of multiple systems with different layers through the OSI layer.
2.2.1 7 Layers of the OSI model

Nowadays the OSI model is well-known for its seven layers depicted in
Figure 2.6. The layers are from lowest to highest: Physical, Data Link,
Network, Transport, Session, Presentation and Application. The physical
layer was chosen for obvious reasons to allow different types of connection.
Therefore the next layer — called Data Link layer — should handle the different
channels and provide a universal interface for layer 3. The Data Link layer
handles error detection or recovery as well as collision handling. In addition,
the Data Link layer provides the first addresses for nodes in the network and
its data structure is usually called “Frames”. Taking the modern internet as
example, the layer 2 is usually Ethernet using the MAC addresses to identify
nodes in the network. The used physical layer is typically 10GBASE-T.

The next step in the OSI layered model is to allow communication outside
the nodes network. That is to say, the Network layer provides functionality
to connect multiple networks. It provides a set of functions to support
routing across systems. A system may also be only a intermediate node
which is only forwarding data to the next system. The data structure in
this layer are called “Packets” and again all nodes across the connected
network must uniquely identifiable by an given address. In case of the
modern internet, IPv4 and IPv6 are the protocols operating on layer 3. For
the mapping between the two addresses, a table is used. In case of IPv6
it may be possible to derive the layer 2 address from the IPv6 address,



2 Related Work

Application

Presentation

Session
Transport Segments
Network Packets
Data Link Frames
Physical Bits

Figure 2.6: The seven layers of the OSI model and how data is represented at each layer.

depending on its configuration.

Finally, the Transport layer handles connection functionality which is only
required on an end-to-end basis. Thus, it is the first layer not aware of the
intermediate nodes. For the upper layers it provides simple functionality
to send or receive data from another system. It relies on the lower layers
to find a path or physical connection between the nodes. The well known
protocols TCP and UDP are layer 4 implementations. For example TCP
ensures that a connection to a destination is established and messages can
be exchanged.

Beginning with layer 5 the Session layer is the first application aware layer.
It handles the so called session administration service and session dialogue
service. The former one is used to bind or unbind two presentation entities
(layer 6). Whereas the other one handles data exchange between the upper
layer and the transportation layer. This functionality is usually part of the
operating system which provides APIs for communications (sockets).

Last but not least, the Presentation and Application layers are both part of
the executable and thus can freely be tailored to the application. The Pre-

10



2.3 Clock synchronization

sentation layer describes the basic structure of the data so it is interpretable
for the last layer independent of the environment. As such it has to align
the correct byte-order or encrypt/decrypt data if applicable. Finally the
Application layer is the highest layer of the architecture. It implements the
actual logic and processes the shared information. That is to say the layers
one to six are only supporting the Application layer.

2.3 Clock synchronization

2.3.1 NTP

The most basic time synchronization protocol is NTP, specified in RFC-
9505 [7]. NTP is hierarchically organized into four stratums. The higher the
stratum, the more accurate the time source is. Figure 2.7 shows a possible
NTP topology.

Stratum 0

Stratum 1

Stratum 2

Stratum 3

Figure 2.7: NTP is organized into four clock stratas — with decreasing accuracy

Each child polls the NTP server to synchronize its time to its parent time.
The NTP server responses to this request with two timestamps 1, and 73. &

11



2 Related Work

is defined as the reception time of the slave’s message. 73 on the other hand
is the time when the master sends its response. The invoker is in possession
of 71, the time the procedure was invoked and 74, the time the response
from the master was received. Furthermore, the timestamps taken at the
master were sent to the slave. Using these four values, the offset ® can be
calculated using equation 2.2, the RTT ¢ using equation 2.3.

(—1)+ (13— 14)

Q= 5

(2.2)

d=(u—n)+(B—n) (2-3)
This procedure of NTP frame exchange is depicted in Figure 2.8. This

T1 E\d
L/

T4

Figure 2.8: Offset and round-trip-time can be calculated using the given timestamps.
approach assumes symmetrical network delay[8]. In a small environment

or within the same LAN this is usually applicable. However even in LANs
a symmetrical delay cannot be guaranteed. Furthermore, with increasing

12



2.3 Clock synchronization

Field | Bytes Description
Version | 1 NTP Version
Strat | 1 Stratum ID (0-15)
Poll ‘ 1 Poll Interval

Reference Timestamp | Seconds & Fraction

Originate Timestamp | Seconds & Fraction

8
8

Receive Timestamp \ 8 Seconds & Fraction
8

Transmit Timestamp | Seconds & Fraction

Table 2.1: Important NTP Fields

network connectivity this almost impossible to maintain. In the case sym-

metrical network delay cannot be achieved, the clock offset will slightly be
biased.

Frame

A frame is 48 bytes long. NTP operates at the Application layer utilizing
UDP for transportation. The important fields are shown in Table 2.1. Each
timestamp can be stored in the frame. The timestamps are 8 Bytes long and
store the passed seconds as well as the fraction of a second. Unlike Unix
timestamps, these timestamps starts at 1. January 1900.

Summary

The accuracy of NTP greatly depends on various influential factors. The
most impact is the accuracy of the first stratum (clock source), followed by
the network delays and numbers of stratums. In modern systems with a
high accurate clock source and a reliable fast network the accuracy of 1ms
can be achieved [9]. Furthermore, the stratum depth needs to be taken into
account. Each stratum increases overhead and errors. In addition, various
solutions were discussed to improve the accuracy. Nowadays these solutions

13



2 Related Work

are essential parts of a state of the art (NTPv4) implementation as described
in RFC-5905. This involves clock updates in a phase-locked-loop (PLL) or
frequency-locked-loop (FLL) design.

2.3.2 PTP

PTP is specified in IEEE-1588 [10] and it aims to provide a more accurate
clock/time synchronization than NTP. Analysis proved that PTP is able to
compensate differences up to 20ons[11]. Unlike NTP, PTP is not organized
in stratums as each stratum decreases the accuracy. PTP is designed as a
master-slave architecture. Consequently, the nodes try to synchronize to the
reference clock directly. The reference clock is usually called “grandmaster”,
while each node is dubbed slave. Grandmaster clocks are usually specially
designed network components. Either a high accurate clock is used or
depend on GPS signal. Furthermore, their PHY units are designed to support
PTP natively without introducing software overhead[12].

In addition, to omitting the stratum architecture, PTP also increases the
accuracy by using a slightly more complex algorithm. The algorithm to
calculate the clock difference comprises four timestamps and three to four
network messages depending on the implementation. These messages are:

Sync

Follow Up
Delay Request
Delay Response

In contrast to NTP, the synchronization procedure is not triggered by the
slaves but rather by the grandmaster. It sends its timestamp to the slave
with the first (Sync) message and captures the sent time 7;. Similar to the
master, the slave captures 7, upon receiving the Sync message. In the best
case, these timestamps are measured at the PHY unit, but at least in the
network driver. The next two messages (Delay Request and Delay Response)
are similar to NTP. These messages are used to retrieve the network delay.
The slave sends a message to the master and captures 73 as the timestamp
when the message was sent. Likewise, the master retrieves 74 upon reception
of the slave’s message. This timestamp is capsulated in the final message

14



2.3 Clock synchronization

(Delay Response) and sent to the slave. Like NTP, this algorithm assumes
a symmetrical network delay. Using the four timestamps, the slave can
calculate the offset ©® and the the more accurate RTT 6.

(u—m)— (- 1)

o= > (2.4)
O=(n—7)—90
_ (h—1) + (13— 1) (2.5)
2

The synchronization procedure is depicted in Figure 2.9.

1
. |
u i Sync i
i \N'
' I
e I T2
H Follow Up: T1. H
L T
1 1
| |
| |
! |
i Delay Request i T3
— |
T4 |
T L o= ((Ta- T1)-(T3 - T2))/2
! Delay Response: T4 ! i
L o _0=(T2-T)-d
|

Figure 2.9: Synchronization process of PTP

Frame

A PTP frame is 44 bytes long. All four PTP message relay on the same
structure. PTP can be operated at the Network Layer or encapsencapsulated
uled inside a UDP package. The first one is possible due to the fact that
PTP is designed to run only inside the local network. This enables (special)

15



2 Related Work

Field | Bytes Description

Length | 2 Bytes of the message

Flags | 2 Bitmask of various options
Correction |8

Clock Identity | 8  Identity of the master clock
Sequence | 2 Running number

Control | 1 Message type

Origin Timestamp (s) \ 4 Unix time in seconds
Origin Timestamp (ns) | 6  Nanoseconds offset

Table 2.2: Important PTP Fields

hardware to directly inject the appropriate timestamp into the frame. Table-
2.2 shows important fields of the PTP message. The timestamp itself is 10
bytes long. Like NTP, the timestamp has a seconds and a fraction field, with
6 bytes reserved for the seconds and the remaining 4 bytes for the fraction.
PTP uses the UNIX time to encode its timestamp. Consequently, it counts
the seconds starting at o1—01-1970. The fraction field is populated as an
offset to the full second with nanosecond precision. As such the fraction
tield can vary the timestamp up to 2 seconds in both directions.

Comparison of NTP and PTP

Both implementations try to achieve the same goal, which is clock syn-
chronization. However they vastly differ in their priorities. While NTP is
designed with scalability in mind, PTP focuses on accuracy. Thus PTP lacks
any scalability related features. It can only synchronize against a single-
grandmaster clock within the same network. In this context NTP is vastly
more flexible. With the stratum design it is hierarchically organized and can
support more clients. Only a handful NTP servers in Stratum 1 synchronize
against the high accurate reference clock. It goes without saying that each
additional stratum decreases the precision. In this respect, each PTP grand-

16



2.4 Ethernet

master requires a reference clock. From an economic point of view, this has
to be considered. NTP synchronization is by far cheaper than PTP. The next
main difference between these two protocols is their integration within the
OSI layers. While both protocol can be encapsulated in UDP packages, PTP
can be operated at the Network-Layer. Thus (software-) overhead and poten-
tial delays can be avoided. This also allows PTP to operate more closely at
the hardware. Some hardware — especially grandmaster components — even
support PTP natively.

2.4 Ethernet

Ethernet — specified in the IEEE-802 family [13] — is well adopted across
devices. Thus, its compatibility and simplicity offers a great alternative to
tieldbus systems. Hence, its usage is a valid use-case in an automation or
simulation environment. Recent trends show that ethernet is on the rise[14,
15]. However, unlike many fieldbus systems, ethernet was not designed
with real-time communication in mind. As a result, the ethernet-based
protocols like IP and TCP or UDP are not real-time capable as well. The
main disadvantageous property of ethernet is its non-deterministic behavior
caused by its collision handling system CSMA-CD and interface design.

2.4.1 UDP

UDP - specified as RFC-768[16] — is the preferred protocol to use in a real-
time ethernet network[17]. In contrast to Transmission Control Protocol
(TCP) it sends only independent packets. As such it does not suffer from
indeterminable delay. However, this comes at the cost of missing various
properties like ordering and linking related data. Furthermore, UDP cannot
guarantee the delivery of the packet which conflicts with the definition of
deterministic[18]. Nevertheless, it is the only protocol which can comply
to a strict deadline. By design UDP is rather simple. Its 16 bit header is
shown in Table 2.3. Considering the header data, the payload of UDP is
limited between one byte and 65.507 bytes. The upper size is determined
by the underlying IP protocol, which limits the payload of a IP packet to

17



2 Related Work

Field | source_port destination_port length CRC

Bytes | 2 2 2 2

Table 2.3: UDP Header with Size in Bytes

64k. A UDP header is concluded with an optional CRC field of two bytes.
Both PTP and NTP are used on top of UDP. Although PTP can also be
implemented at MAC layer using its own frame. Nevertheless, both of the
solutions are practicable and do not suffer any obvious disadvantages nor
advantages.

2.4.2 Nondeterministic behavior of Ethernet

As any physical channel is a shared resource and can only be used by one
participant for writing at the same time, a mechanism to avoid collisions is
required. For ethernet, Carrier Sense Multiple Access — Collision Detection
(CSMA-CD) is used. As the name already suggests, CSMA-CD can be
broken down into two operation modes. To begin with, the Carrier-Sense
Multiple-Access part monitors the channel for an active transmission. As
long as the channel is occupied, CSMA will not allow sending data from its
own interface. Once CSMA detects no activity on the channel a transmission
is allowed. Next, the Collision-Detections plays a major role in terms of
predictability. With a growing number of participants, the probability of
devices trying to send at the same time increases. Once such a case occurs,
interfaces react by jamming the channel for an random time. In terms of
deterministic, especially the CD part is problematic. The issue lies with
the jamming time, which — by design — cannot be estimated. Next the
system does not consider the urgency of messages after the jamming ends.
Hence, a low priority message may be transmitted instead of a important
one. Summing up, Ethernet is designed to be non deterministic in order
to handle shared access to the network. It goes without saying that this
violates with real-time constraints. This also has a negative impact on clock
synchronization methods relaying on RTT and network delays. This is true
for all software based solutions.

18



2.4 Ethernet

Besides a random jamming due to collisions, a message may also be low
prioritized and may be delayed indefinably. That is to say, it is possible
that a message may starve and miss its deadline. This behavior is strongly
influenced by the used network scheduler of the used network devices/-
drivers and the workload of the used interface. Various propositions exists
to handle these issues on different layers of the OSI model. These solutions
are basically categorized in two basic groups. On one hand the MAC (2nd
OSI layer) can be modified to achieve a more deterministic behavior. This
can be achieved in software, by adapting the operating system or the device
driver. However for strict tolerance applications a modification of the used
hardware is needed. On the other hand higher-level control implementations
can reduce the probability of a collision happening significantly. That is to
say, all nodes agree on a protocol which controls the nodes I/O operations
to avoid collisions. Practical implementations are token-ring or time multi-
plexing [19, 20]. For these to work probably, accurate clock synchronization
is essential.

19






3 Method

3.1 Overview of Co-Simulation

In modern day vehicle development is getting more difficult each day. With
increasing requirements in the many different fields the complexity of a
state of the art vehicle has skyrocketed. Nowadays it is required to reduce
the consumption and satisfy tight CO,/NOy limits, while providing more
comfort and security to the driver and passengers. Furthermore, a clear
trend towards automated driving can be observed. Many parts in vehicle
development need to comply to strict regulations.

This caused, that even the development of a single system is a challenging
task itself. As a result many components are developed on its own and
provide a set of interfaces to work with each other. The system needs to
be thoroughly tested without relaying on other components to be present.
This however opposes to the fact, that each system in a car needs to interact
with each other to work properly. For example, a Lane Keep Assist Sys-
tem (LKAS) relays on multiple sensors data and indirectly controls the car.
Given certain circumstances this in turn may affect an Electronic Stability
Control (ESP) system. Thus almost all components are developed in a simu-
lation environment. It is essential for modern verification and testing. With
increasing possibilities and knowledge in ICT a trend to distribute the simu-
lation has begun. Such an environment is called Co-simulation. The term
describes combining various tools and models into a single environment.
In a co-simulation environment a distinction between Software and Hard-
ware models is not required. In other words, it also allows interconnecting
software and hardware likewise. Thus, it is possible to connect a system
in development to an actual prepared car[21, 22, 22]. One of the pioneers
in this field is the Functional Mock-up Interface (FMI)[23]. It describes a

21



3 Method

interface over which a set of models called Functional Mock-up Unit (FMU)
communicate.

3.2 DCP

DCP provides standard definition for models and interfaces to run a dis-
tributed co-simulation. It follows the design principles of FMI. In addition
to FMI, DCP is designed with real-time support in mind. This is especially
important for Hardware in the Loop (HiL) simulations. Like many other
protocols, classification of DCP into the OSI model[6] is only vaguely pos-
sible. To begin with DCP runs at application layer and has access to the
data. Furthermore, it defines their own messages — named PDU — whose
properties span across multiple OSI layers. With the definition of a custom
message type, the criteria for presentation layer is met. Next, the DCP and
PDU design allows to setup multiple co-simulation scenarios and thus clas-
sify for a application at the session layer. Additionally, DCP also defines
transportation layer properties like sequence numbering although a separate
transportation protocol like UDP or TCP is used[24, 25]. The most important
key features are described in the following subsections[26].

3.2.1 Multichannel support

DCP is designed to support multiple communication channels and can
easily integrate new ones. For the moment the most prominent ones are
CAN and Ethernet via UDP/IP. Both protocols play a major role in modern
industrial applications. In automotive engineering CAN is still de facto
standard. In simulation CAN and RJ-45 belong to the most common in-
terfaces. While Ethernet is not designed with the safety features of CAN
in mind, it still offers a fast and reliable connection suited for most sim-
ulations during the development phase. Research showed that Ethernet
is on the rise across many industrial fields[14]. Its support also opens up
the possibility to incorporate consumer graded hardware. This poses an
enormous economy advantage by decreasing computer costs and speed up
development time. In the long run proper Ethernet support may also enable

22



3.2 DCP

true distributed co-simulation by utilizing TCP. This would open many
possibilities like running a simulation distributed over multiple subsidiaries
or even across countries. It goes without saying that TCP support faces
multiple challenges.In addition to wired communication, a wireless one is a
viable option as well. For industrial application, Bluetooth has shown some
promise for possible adoption. Thus, in the current DCP draft a Bluetooth
driver is specified as well.

3.2.2 Master-slave architecture

A DCP environment is based on the master-slave architecture. Each model
inside a simulation is addressed by its unique identifier. While the ID zero
is reserved for the DCP master, any other value is assigned to the DCP
slaves. The DCP master is responsible for this task and must guarantee the
uniqueness of IDs. The master slave communication is used the exchange

e g Ethernet
// Switch
/ A
!
| AR v v
DCP DCP DCP
Slave 1 Slave 2 Slave 3
R .

Figure 3.1: DCP on top of ethernet star topology. The dotted lines indicate the PDU com-
munications.

23



3 Method

configuration data and commands. Thus, the master is responsible to con-
tigure the slaves correctly, start and stop the simulation and handle errors if
any occurs. With a heartbeat mechanism the master is also able to monitor
the status of any slaves. If a slave diverges from the expected state the master
will raise an error and thus stopping the simulation. However, there is also
a slave to slave communication. It is used for simulation data, mainly for
performance reasons. The data cannot be routed over the master as it would
be too much of a bottleneck. The possibilities of message exchange within a
DCP environment is shown in Figure 3.1. Note that the actual connection
between the nodes depends on the used communication channel. In the
depicted figure, a Ethernet connection is assumed. Thus, the messages are
actually routed via a switch to either the master or a slave. In an possible
CAN environment, all nodes would share the same bus. Obviously the same
channel would also be shared if a wireless connection is used.

3.2.3 Protocol Data Unit (PDU)

In DCP exchanges messages are called PDU. All PDUs are fixed in size
either by the specification or in some rare cases configured before the
simulation starts. Once the simulation starts the PDU sizes need to be fixed
and known for all nodes. Thus, the implementation can always allocate the
exact amount of memory. The PDUs are categorized into three categories
and six groups. Each PDU has its own ID. Depending on its group the ID is
within a set range. The range of each PDU group is listed in Table 3.1. In
order to acknowledge or reject a PDU, each message provides a sequence
id. The subsequent ACK/NACK sets its response sequence id to the given
sequence id.

Starting from the bottom, the Data (DAT) PDU group is used to exchange
simulation data between the DCP slaves. Simulation data is stored inside
DCP variables. Variables are addressable by using a variable specific iden-
tifier. The ID is usually based upon a counting sequence. Variables can
be distinguished between input and output variables. Each variable has a
datatype assigned to it and thus vary in size. The DAT PDUs operates similar
to a streaming buffer. They are exchanged between the slaves after each sim-
ulation step. Depending on the variable type, data is either send or received.

24



3.2 DCP

5 =il &)
o \ ! a
< gt o = O
> 2§ 8 5 g E
a g, g & g8 T
2 2 a & a2 =
CFG_* | 0x20-0x2F vy y f/c
STC_x | 0x01-0x1F vy y f
INF_x | 0x80-0x8F vy y f
RSP _* | 0xBO-0xDF y ¥ f
NTF_* | 0xEO-O0xEF y f/c
DAT_* | 0xFO-OxFF 'y f/c

Table 3.1: PDU groups with data fields. Legend: y: Field is set. f: Field depends on a specific
PDU. c: Field is configured by the DCP master.

Its fields are listed in the basic overview in Table 3.1. The fields required
node addressing comprises ID, pdu_seq-id and a param_id or data_id. It is
possible to store multiple variables inside a single DAT PDU. Thus, the actual
size of payload is not fixed in the specification but is configured by the
master. Obviously it is not possible to combine input and output variables in
the same PDU. The variables are access by an offset to the payload buffer.

Next, DCP also provides Notification (NTF) PDUs. Currently, two of them
are defined in this group. Their basic structure is shown Figure 3.1. The IDs
of NTF PDUs are within the range of oxEo and oxEF. NTF_state_change is as
simple as possible. Its payload only stores the State ID. More information
on the DCP state-machine is described in the Sub-Section 3.2.4. On the
other hand the NTF_log is used to log information and data. Due to possible
variable values this PDU is variable sized. In DCP each log message is
predefined. They are configured similar to formatted printing. A format
string with embedded variables is defined. In NTF_log, the variables must
be ordered accordingly to the format string.

Any other PDUs groups are listed in the Control category. It composes of
Response (RSP), Information (INF), State-Change (STC) and Configuration
(CFG) messages. These are used for communication between DCP master

25



3 Method

and DCP slaves. A RSP obviously sends a response back to the DCP master.
In order to link the request with an response, the response sequence id
(rsp_seq-id) field is set according to the requesting sequence id (pdu_seq_-
id). As a response is tied to its request, the RSP PDUs are explained in the
following sections together with their requests. If no data was requested,
but a command was send instead, the RSP PDUs are also used to acknowl-
edge or reject the command. This is done by sending a RSP_ack or RSP_nack.
Depending on the configuration and implementation an error may be raised
consecutively. “Not Acknowledge” PDUs also contain an error_code field,
providing additional information why the message was rejected. DCP de-
tines a list of error codes, in which a error code is assigned to an Mnemonic
and a description.

INF messages are used to request information from the DCP slaves. Nat-
urally, the DCP slave answers the request with a RSP PDU. In the current
draft, three properties — encoded in three PDUs are supported. To begin
with the DCP master can retrieve the current state of a DCP slave using
the INF_state PDU. The state machine itself is described in more detail in
the next sub section. Next, the master can also request the last set error of
a slave. As already described, a list of error codes is defined by DCP. In
case of an error its ID is reported back to the master. Finally, the INF_log
can be used to retrieve something else? The slaves response (RSP) PDUs are:
RSP_state_ack, RSP_error_ack and RSP_log_ack.

In addition to requesting information, the master also controls the slaves
and the simulation. On one hand, the master configures the slaves utiliz-
ing the CFG PDUs, on the other hand it also controls the state machine by
sending STC PDUs. For each state change, an individual STC PDU is defined.
These PDUs effectively commands a slave to switch to the given state. Some
State-Change-PDUs carry additional information like start time (STC_run)
or step count (STC_do_step) in case of non-real-time simulation. A slave ac-
knowledges a state change with RSP_state_ack. It can also reject the change
with RSP_nack. This could occur in various situations. For example,an error
was raised or the slave could not complete its task of the previously state. If
the master violates the state-machine, the slave must reject the change as
well.

Finally the CFG group is used to configure a slave. A slave can vastly config-

26



3.2 DCP

ured, starting from time resolution (CFG_set_time_res), to custom logging
formats (CFG_set_logging). Obviously to achieve great flexibility, it is also
essential that the system can define its input and output signals at run-
time.

3.2.4 Operation and state machine

As already mentioned, the life-cycle of a DCP environment is defined by a
state-machine. Although it is controlled by the DCP master, each DCP slave
has to verify the state validity. Any instance in the simulation must raise an
error, in case the state-machine is violated. The state-machine is depicted in
Figure 3.2. A slave changes state either by receiving any of the STC PDUs,
or on its own e.g. once it completes its task for the state. In this case, the
slave notifies the master by sending a NTF_state_change PDU.

The entry point of the state machine is the ALIVE state. Once a DCP slave is
powered up, it will automatically start in this state. During ALIVE, the slave
simply waits till it is registered by receiving a STC_register from a DCP
master. A slave can enter the ALIVE state again only if it is deregistered by
the same DCP master (STC_deregister). Once deregistered the slave forgets
any configuration and is reset to its initial state.

Once a DCP master has taken ownership of a DCP slave, it is in the Con-
figuration state and can be configured using the CFG PDUs. The received
commands must be applied before switching to the CONFIGURED state. Any
configuration command must be accepted using RSP_ack or rejected using
RSP_nack. The master shall decide how to proceeded if a configuration is
rejected. The master could try again using a different setup or abort the
process. In order to organize the configuration process, a two “state-pairs”
are between CONFIGURATION and CONFIGURED.

To begin with, the first configuration states are PREPARING and PREPARED.
During PREPARING the slave shall setup its input/output interfaces. The
applicable interface is decided by the master using CFG_source network -
information. Once the interfaces are prepared, the slave will signal a state
change to PREPARED using SIG_prepared. Next, the master will switch to
the second pair named CONFIGURING and CONFIGURED. This is achieved by

27



3 Method

entryPoint  exitPoint
exit [SIG_exit]

entry
exit [SIG_exit]

deregister
[STC_deregister]

register
[STC_register]
error [SIG_error]

4 cepsuperstaten N

Normal Operation

deregister [STC_deregister]

prepare [STC_prepare]

4 «dcpSuperState» N\

Stoppable

prepared [SIG_prepared]

configure [STC_configure]

configured
[SIG_configured]

«dcpStaten
COMPUTING

«depstaten
COMPUTED

do_step
[STC_do_step]

synchronize [STC_run]

«dcpState»
SENDING_D

G

stop [SIG_stop] stop [STC_stop]
reset

[STC_reset]

stopped

deregister [SIG_stopped]

\__ [S7cderegister

Figure 3.2: DCP State machine with superstates Error, Stoppable and NonRealTime[26].

28



3.2 DCP

sending the STC_configure PDU. These states are mainly designed to es-
tablish a connection if a connection based interface is used. In addition, a
start condition is independent on simulation values is distributed. Once the
slave is aware of the starting condition and if required has established the
connections, it signals the CONFIGURED state. It is expected that the slave is
now aware of how to start the simulation. At this time synchronization is
expected.

Upon completing the configuration procedure, the slave must initialize
its simulation values. That is to say, the input variables are set to initial
values and the first output variables are computed. These steps are executed
during the INITIALIZING state and must be concluded before INITIALIZED.
The slave signals once INITIALIZED shall be entered. It is expected that the
input is constant during this state and a valid output can be calculated.
The initializing phase is completed with SENDING_I state, during which the
computed outputs are exchanged. Next the slave will switch to CONFIGURED
state again and may rerun the initializing phase indefinitely until it starts
the simulation by sending STC_run.

The real-time simulation starts once the slave time equals the time stored
in the STC_run PDU. However, as some models may require some windup
time, the first few simulation steps are executed during the Synchronizing
and Synchronized states. The actual RUN state is triggered by sending a
second STC_run PDU once every slave is synchronized and in the corre-
sponding state. Note that this SYNCHRONIZATION has nothing to do with time
synchronization, but rather with model synchronization.

Alternatively, the simulation can also be executed in non-real-time mode. In
this case a small state-machine consisting of the states COMPUTING, COMPUTED
and SENDING.D is executed. It goes without saying that COMPUTING is used to
compute the task and the slave switches to COMPUTED once it has completed.
The simulation data is exchanged in the SENDING.D state. These states are
iterated til a exit condition is met.

During RUNNING (super-) state, the simulation is halted by sending a STC_-
stop message. The slave will enter the STOPPING state and wind down
the simulation. Upon finishing the cleanup procedure the slave switches
to STOPPED. Here the slave waits for further commands. It may return to
CONFIGURATION state or the master may deregister it.

29



3 Method

If an error occurs during any state, the master or the slave can enter ER-
RORHANDLING. The slave will stay in this state until the error is resolved or the
slave disconnects. Once the error is resolved, the master can deregister the
slave or try to reconfigure it again. In this case it enters the CONFIGURATION
state again.

3.2.5 Heartbeat mechanism

Another import aspect of DCP is the ability to monitor the availability of
the complete system. While it is only natural, that the DCP master keeps
track of the DCP slaves condition, in DCP the DCP slaves also monitor if
the DCP master is still functional. This is implementation by a heartbeat
mechanism. Based on the configuration, the master requests the slave’s state
utilizing the INF_state PDU in a periodic manner. The slave must respond
with an RSP_state PDU. If either the master or the slave did not receive
the expected message within a certain time spawn, the node assumes that
the communication partner has died and will thus enter the ERRORHANDLING
state. It goes without saying that the time spawn is slightly larger than
the expected period in order to compensate slight delays. The heartbeat
mechanism and its time values is depicted in Figure 3.3.

3.3 Clock synchronization for DCP

Various time synchronization mechanism were presented in the related
work chapter, see Section 2.3. However, mainly for flexibility and scalability
the synchronization method should be software based. This effectively
rules out every implementation except the NTP and PTP approach. Yet,
these two protocols vastly differ in their philosophy. While PTP is designed
with precision and high accuracy in mind, NTP tries to satisfy a massive
amount of clients. The key difference between NTP and PTP is explained
in Section 2.3 as well. In terms of DCP and its goal to support real-time
simulation only PTP is a viable option.

30



3.3 Clock synchronization for DCP

e S S — : — — —
\
I_ : INF_state- :
Interval | —
ti :‘P/RSP_state_ack :
T ! Max Interval
B e | tli_max
| INF_stat

/

Response
tr

INF_state

i

RSP_state_ack

t_r_max

Figure 3.3: DCP Heartbeat functionality

31



3 Method

3.3.1 PTP over DCP

PTP was already explained in the Section 2.3 of the related work chapter. The
basic procedure of a PTP synchronization process is depicted in Figure 3.4.
For PTP, four messages and timestamps are required to calculate the clock
difference between two nodes. As these timestamps are not collected at the
same node, some of them need to be exchanged. Obviously, as clocks are
completely accurate this process needs to be performed in a set interval.

|
|

i RSP_state_ack-
}‘/op =DelayReq
|

! 0= ((T4- T1)~(T3 - T2))/2

O=(T2-T1)-d

Figure 3.4: PTP Messages

It goes without saying that the simulation can only be started if all nodes
are synced. If the DCP slaves are not synched correctly, they may start with
their simulation steps too early or too late. Consequently, we have to trigger
the synchronization before we are in the “run” superstate and guarantee
that the simulation start time is equal to all nodes. Once the simulation
started, we need to cope with the drift of the clock. As already mentioned,
this is handled by periodically performing the synchronization steps. Thus,
DCP also has to run its synchronization procedure in a defined interval. To
support a wide range of possibilities, a numerator and denominator similar
to the heartbeat interval is added to the slave configuration. The DCP master
then shall trigger synchronization every W% seconds. While there is
no right value for the interval and its range is quite large, it should be
within a safe margin. Due to the fact, that at least four additional PDUs

32



3.3 Clock synchronization for DCP

needs to be sent, the underlying bus may get congested if the interval is set
to short. On the other hand a very large interval may not be sufficient to
counter the drift. In PTPd — a implementation for Unix OS — the smallest
(and default) interval is set to one second. With DCP it would be possible to
lower this value, but it is not suggested. The upper value greatly depends
on the accuracy of the node’s clock. The higher the accuracy is, the less
offset correction is needed. In doubt a interval around one or two seconds
does not harm the system. Detailed results on how clock differences inclines
over time are shown in the result section of Chapter 5.

3.3.2 New PDU types

For time synchronization the most important fields are timestamps. The
current specification already provides a 64 bit time field, though it is de-
signed to store a UNIX timestamp. However, for the synchronization to
work a more accurate timestamp is required. The proposed value would
also be a 64bit field named time_us, capable of storing time in microseconds
resolution. Given the Equation 3.1 the possible time spawn is more than
sufficient.

2%%us ~ 584942years (3.1)

To synchronize nodes, four new PDUs are required. They are depicted in
Table 3.2. The basic procedure follows the PTP steps explained above on
a regular interval besides the existing heartbeat monitoring. The heart-
beat mechanism is not modified and not removed. It is still valid, as the
synchronization may not be used as a heartbeat signal due to its different
interval.

As three of the four newly defined PDUs share the same payload, they can
easily be merged into a single PDU. The only exception PDU is the response
PDU as its sender/receiver field is swapped. It goes without saying, that we
still need to distinguish between the current PTP mode. The easiest way to
achieve this, is by adding a field sync_op storing the current operation. The
field is based on the smallest available type, a uint8. The possible values
for this field are listed in Table 3.3.

33



3 Method

T O
o '5'-( .5'-‘ L o 3
s 4 L35
INF_sync ‘ 0x83 'y y
INF_follow | ox84 'y y ¥
INF_delay | ox85 'y y
RSP_delay | oxBs y y y

Table 3.2: PTP messages encapsulated in DCP PDUs

Operation | value

Notify | oxo0

0X01

Sync

Follow-Up | oxoz2

Delay-Req | oxo4

Delay-Rsp | oxo8

Table 3.3: The field sync_op with its possible values to distinguish between PTP operations

34



3.3 Clock synchronization for DCP

T 3
3 § 8 588 ¢
INF_sync | ox83 y y vy ¥y
RSP_sync | oxBs5 y y y y

Table 3.4: Suggested PDUs INF_sync and RSP_sync encapsulating PTP

Summing up, the newly created PDUs INF_sync and RSP_sync stores the
mode in the sync_op field and the time in microseconds in the time ms field.
The new types and PDUs are depicted in the Table 3.4.

Unlike ordinary PTP, the sync_op field also reserves space for Notify. This
can be used to incorporate the heartbeat mechanism. A value in the first
bit indicates the synchronization mechanism. It is expected that the system
handles it according to PTP. On the other hand, an empty value for the
sync_op field simply implements an echo request. The slave shall response
with the current time. In the interval of the heartbeat mechanism, a INF_sync
with an empty sync_op is sent. Failing to receive such PDU, the slave can
detect an faulty master and enter the ERRORHANDLING state. On the other
hand, if the slave fails to response in time, the master can raise the error.
Thus, a fully operational heartbeat mechanism can be included. In addition
to this, each synchronization interval two INF_sync PDUs with an set value
of Sync and Follow-Up for sync_op are sent. In this case, the slave must
perform the PTP implementation and correct the clock difference.

Alternatively to adding new PDUs, an existing PDU can be expanded upon
to support time synchronization. As DCP already implements one periodic
action, namely the heartbeat mechanism, it is natural that the PDU used for
this process would be adapted. In the heartbeat mechanism, the INF_state
and RSP_sync PDUs are used. In order to support time synchronization,
these messages would need to carry an additional timestamp and a flag
showing which operation currently is performed. Thus, the resulting INF_-
state PDU would also contain the previously described fiels from the
INF sync PDU. The changes are the following: Add a new fields sync_op

35



3 Method

T O
.,—1‘ '!—“
o o = o, wun
) el
T o hi8:77
a, ,g 3 & g = S
2 a & a 8 v B
INF_state | ox80 vy y v Yy VY
RSP_state | oxB2 y vy y vV

Table 3.5: Modified INF_sync PDU

and time_us. The possible values for sync_op are listed in Table 3.3. In order
not to break the heartbeat mechanism the sync_op field needs a “NO-OP”
mode allowing the slave to simply report its current state. This would be the
“empty” Sync value. On the other hand, if sync_op is set to any value, the
PTP sync operation should be executed. As PTP also includes requesting
a timestamp from the master during the synchronization operation, the

RSP_state PDU needs to be updated as well.

36



4 Implementation

4.1 Implementation environment

This chapter describes necessary changes to an DCP implementation in
order to add time/clock synchronization support. It follows up to the
suggested modifications of Chapter 3. To begin with, some clarifications.
Firstly the test application is based on the reference DCP implementation
on GitHub®. It uses standalone ASIO? for its network interface. Thus, the
used programming language is C++. All used libraries are “header only”.
While that implies that no compiled library is used, it also results into long
compile times. Nevertheless, it also ensures great flexibility and platform
independent support. It can basically run on every platform with an modern
C++ compiler. Next, it is worth to point out, that the changes are only
implemented to work with an Linux based operating system. Mainly due
to the fact that Windows provides no PTP interface or any other native
workaround. Furthermore, given the nature of the Windows operating
system and its lack of real-time support, such a highly precise clock would
not have the desired effect anyways[27]. Although Linux is also no RTOS, it
can achieve notable results especially when applying the real-time patch.
In addition, in embedded systems Linux is the unrivaled operating system.
Finally, in this implementation the DCP master is assumed as the PTP grand
master clock. In the current draft a pure DCP slave which can act as a pure
grand master clock is not realizable.

Thttps:/ / github.com/modelica/DCPLib
2https:/ /think-async.com/Asio/

37



4 Implementation

4.2 Additions to DCP

In the previous chapter, three possible PDU modifications were presented.
The last solution would alter the INF_state PDU and expand it with times-
tamps and other fields. However these fields have nothing to do with
reporting the state of a DCP slave as the name would suggest. The resulting
PDU would be some kind of monolithic message. Thus, it is deemed unfit-
ted for the modifications. As a consequence two or more PDUs need to be
added. Due to the fact, that DCP only reserves one byte as PDU type, the
maximum amount of possible PDUs is rather limited to 256. Thus, this im-
plementations favors the second approach over the first one and introduces
a two new PDUs.

4.2.1 Additional synchronization PDUs

These PDUs are named INF_sync and RSP_sync. Their IDs follow the basic
DCP scheme and is 0x83 for INF_sync and oxB5 for RSP_sync. Given only
two PDUs for four different PTP messages, a special field is used to distin-
guish between them. This field is called sync_op and is based on an uint8.
It's reserved values are depicted in Table 3.3 from the previous chapter. Note
that PTP only requires four types to distinguish between each operation.
However, in order to possibly integrate the heartbeat mechanism, the fifth
value Notify was added. In terms of resources it has no impact but may be
useful in the future. The second field of the synchronization PDU payload is
essential for a working clock synchronization. It stores a adequate accurate
timestamp. In terms of accuracy, the existing DCP field to store date/-
times is based on UNIX timestamps and thus has a resolution of seconds.
This is not sufficient. For satisfactory clock synchronization, the timestamp
need to be at least in microseconds or even nanoseconds. POSIX defines
two structs (timeval and timespec) capable of holding times in such high
resolution[28]. Nevertheless, analysis of Linux real-time capabilities showed
that context switches delays around 50us|29, 30]. Consequently, microsec-
onds is deemed suitable for the DCP use. Although the POSIX definition
implements timeval by combining a counter for seconds and milliseconds
each, in DCP a single 64 bit sized integer is used. Given Equation 3.1 the

38



4.2 Additions to DCP

timestamp will not run out of values any time soon. The following Equa-
tion 4.1 and 4.2 can be used to convert between the POSIX timespec and
the DCP time_us.

time_us = tv_sec - 10° + tv_nsec - 103 (4.1)
) tv_sec = time_us - 107°
timespec = . 6 (4.2)
tv_nsec = time_us mod 10

The resulting PDU (Figure 3.4) is also shown in Section 3.3.2.

4.2.2 Important DCP states for synchronization

It goes without saying that the clocks needs to be synchronized once the
simulation starts. However, DCP is not as simple as start, synchronize and
run the simulation. Between starting the DCP slave and beginning of the
simulation various states are in between. To sum up roughly, the following
tasks need to be performed until the slave is ready. Firstly the slaves must
setup its network interfaces (PREPARING) and configure itself according to
the received Configuration PDUs from the master (CONFIGURING). Next, all
simulation data and variables (input/output) are initialized (INITIALIZING).
Finally, the simulation is winded up in the RUN superstate. The RUN super-
state is entered via the SYNCHRONIZING state using the STC_run PDU. Note
that this does not synchronize the clock, but rather the simulation. Once
the simulation is synchronized, the slave signals the SYNCHRONIZED state,
which in turn will eventually trigger the second STC_run PDU causing the
simulation to start. Now the slaves are effectively in the RUNNING state. As
the STC_run PDU carries a timestamp when the simulation should begin, it
is important that the difference is already known at that point. Consequently,
the initial synchronization muss happen before entering the RUN superstate.
Furthermore, once the clocks are synchronized the clock difference must
be kept at a minimum. The only fitting place for clock synchronization is
the CONFIGURING state. Thus, initial clock correction is triggered together
with the STC_configure PDU. Once this process has completed, the regular
interval for synchronization is started. Thus, the INF_sync PDU is valid for
all states following the CONFIGURING state.

39



4 Implementation

4.2.3 Synchronization trigger interval

As already described, clock differences occur not only during startup, but
also after time due to inaccuracies of clocks. This can be compensated
by regularly updating one clock. In this solution the DCP master node is
assigned as the grand-master role. Thus, all slaves have to update their clocks
to match the simulation time of the DCP master. Thus, the DCP master has
to invoke the synchronization procedure in a set interval. Current the DCP
master already performs a similar operation by sending (and watching) the
heartbeat PDUs INF_state. The interval for the heartbeat is configured by
setting a numerator and a denominator. The fraction describes the interval
in seconds. Its default value is one second. The expected interval time for
the synchronization method is about the same. However, as each simulation
environment differs and has various demands on the accuracy or stability
a independent interval is used. Similar to the heartbeat mechanism the
interval for clock synchronization also is defined as a fraction.

4.2.4 Integration of PTP in DCP master

In PTP, the PTP master triggers the synchronization mechanism. Thus, the
DCP master must perform these tasks. It is already stated, that correction is
triggered during the CONFIGURING state. Starting from this point, after each
passed interval as well. In order to begin the sequence, the DCP master
must send an “empty” INF_sync PDU with sync_op set to Sync, followed
by a second INF_sync PDU. This time the sync_op is set to Follow-Up. The
timestamp time_ns must be set tot the “socket time” of the first message.
That is to say, by sending the first INF_sync a timestamp is captured and sent
to the DCP slave in the so called Follow-Up message. Given the following
Listing 4.1, the internal DcpPduSync (and its derived) objects can store the
socket time. This is either the time, the message was sent or received.
Looking at the function call in Listing 4.2, this time is passed back and
forwarded to the second INF_sync PDU.

void INF_sync(const uint8_t dcpld,
const DcpSyncOp syncOp, const timespec& time,
timespec& socket_time)

40



4.2 Additions to DCP

DcpPduSync pdu = { dcpld, getNextSeqNum (dcpld),
syncOp, time };
driver.send (pdu);

socket_time.tv_sec = pdu.socket_time_.tv_sec;
socket_time.tv_nsec = pdu.socket_time_.tv_nsec;

}

Listing 4.1: Masters INF_sync implementation. Socket Time is retrieved from the PDU object

timespec time = {o, o};
INF_sync(get_id (), DcpSyncOp::SYNC, time, time);
INF_sync(get_id (), DcpSyncOp ::FOLLOWUP, time, time);

Listing 4.2: Sending INF_sync PDUs where the socket time is forwarded to the second
message

In addition to sending INF_sync PDUs of type Sync and Follow-Up, the DCP
master must also respond to the RSP_sync message from the DCP slave.
Looking at the Listing 4.2 showing the response handler to the RSP_sync
PDU with sync_op equals Delay-Req it shows that the DCP master simply
sends the retrieved socket time back to the DCP slave.

DcpPduSyncAck sync = static_cast <DcpPduSyncAcké&>(msg);
if (static_cast <DcpSyncOp>(sync.getSyncOp ()) ==
DcpSyncOp : : DELAY REQ)
{
DcpPduSync syncRsp = { sync.getSender (),
sync. getRespSeqld () , DcpSyncOp :: DELAY RSP,
sync.socket_time_ };
driver.send (syncRsp);

}

Listing 4.3: Master receives a sync response and retrieves socket time from PDU object.

This concludes the basic changes to the DCP master implementation. The
offset calculation is implemented in the DCP slave, where the clock is
adjusted as well.

41



4 Implementation
4.2.5 Integration of PTP in DCP Slave

Unlike the PTP master, the PTP slave does not initialize the synchroniza-
tion. The PTP slaves must correct their clock difference to the PTP master.
Thus, the same applies to the DCP slave. To do that, they must collect all
four timestamps. The formula to correct the clock difference @ is listed in
Equation 2.5. The timestamps are numerated 7.

e 71: Send time of the Sync message. This timestamp is received from
the master as payload of the Follow-Up message.

e T»: Receive time of the Sync message. This timestamp is collected from
the slave as soon as possible.

e 73: Send time of the Delay-Req message. This timestamp is collected at
the slave once the message is sent to the master.

o 74: Receive time of the Delay-Req message. This timestamp is retrieved
at the master and sent to the slave by utilizing the Delay-Rsp message.

Once the INF_sync PDU with sync_op equals Delay-Req is received, the
difference can be calculated. The DCP slaves logic retrieve logic is depicted
in the following Listing 4.4. Note that the DcpPdu and its derived objects are
shared between the DCP master’s and DCP slave’s source code. Thus, the
socket time is stored in these objects. Again, the socket time represents the
time, the PDU was either sent or received.

DcpPduSync& sync = static_cast <DcpPduSync&>(msg);
case DcpSyncOp::SYNC: {
syncReceived = sync.socket_time_;
break;
}
case DcpSyncOp :: FOLLOW_UP: {
syncSend = sync.getTimespec();

DcpPduSyncAck syncAck = { sync.getReceiver (),
sync. getPduSeqld () , DcpSyncOp :: DELAY REQ, {o, o} };
driver.send (syncAck);
delayReqSend = syncAck.socket_time_;
break;

42



4.2 Additions to DCP

case DcpSyncOp :: DELAY RSP: {
delayReqReceived = sync.getTimespec();

// calculate Offset:

std :: chrono :: microseconds t1, tz2, t3, t4, newOffset;
t1 = DcpPduSync:: fromTimespec(syncSend);

t2 = DcpPduSync:: fromTimespec(syncReceived );

t3 DcpPduSync :: fromTimespec (delayReqSend );

t4 = DcpPduSync:: fromTimespec(delayReqReceived);

newOffset = (t2 — t1 — tg4 + t3) / 2;
dSyncOffset = syncOffset — newOffset;
syncOffset = newOffset;

break;

}

Listing 4.4: Slave handles INF_sync reception and retrieves all required timestamps to
calculate the clock difference newOffset.

Rapid changes to the clock may result into loosing synchronization between
the DCP slaves and the global simulation clock. This would have caused
the opposite effect of what the solution tries to solve. Thus, the calculated
difference is gradually applied to the DCP slaves clock. It is worth to
mention, that PTP even enforces such behavior. That is to say, the DCP
slave tries to approximate the DCP master’s clock by small changes. This is
achieved, by splitting the total difference over the expected steps during the
next synchronization interval. The actual correction per step 6 is calculated
using Equation 4.3.

0 Q)
© numeratorsync numeratorseep
denominatorsyy. / denominatorse (4 3)
Q)

intervalsyy. /intervalsee

In this oversimplified depiction, the synchronization interval is defined
to be 10 times the step interval. Thus, the clock difference per step 6 =
1%. The resulting value is added to the Next Communication timestamp,

43



4 Implementation

syncIntervaln T syncnterval n+1

EEEEEN EEEEEERAS
time
[steps]

Figure 4.1: Comparison of step and synchronize interval

which denotes the start time of the next simulation step. See Listing 4.5 for
implementation of Equation 4.3.

int64_t steplnterval = (int64_t) (
(double) numerator / (double) denominator x
(double)steps * 1000000.0);
nextCommunication += steplnterval;

if (CapabilityFlags.canHandleTimeOffset) {
int64_t synclnterval = (int64_t) (
(double) syncNumerator / (double) syncDenominator
* 1000000.0);
nextCommunication —= dSyncOffset /
(syncInterval / steplnterval);

Listing 4.5: Offset is applied gradually after each simulation step.

4.3 POSIX timestamping API

In the previous section, the term “socket time” was mentioned a few times.
The socket time describes the time when the message is as close as possible to
the physical unit. This way the captured timestamp does not include various
unpredictable software overhead. This overhead is caused for example by

44



4.3 POSIX timestamping API

program code, locking mechanism and message queues. Especially due to
the semaphores and mutexes and given the fact that neither Windows nor
Linux is an real-time operating system this overhead is unpredictable. As
a consequence timestamps taken at the program logic suffer uncertainties
and thus inaccurate correction values. In optimal case it is the exact time,
the message was received or sent. In reality, however this is impossible to
achieve. The highest accuracy is realizable using special hardware. This
comes at a price, as PTP enabled hardware is not cheap. In addition to that,
there is also a practical software based solution. It requires PTP enabled
drivers and support from the operating system.

Linux is designed after the principle Everything is a file. The API provides a
simple functions for each files. These are for example open, close, read and
write only to name a few. The file for network operations is called sockets.
Sockets are quite complex structures. Thus, they also come with a lot of
additional functionality and configurations. Sockets can be broken down
into different API levels, each describing an layer in the OSI model. The next
sections describe which options need to be enabled to enable timestamping
support.

Nowadays almost any networking driver comes with PTP support enabled.
In terms of operating system, only POSIX compatible systems offer an inter-
tface. The “timestamping” interface3 offers userspace access to these times-
tamps. The accuracy of this interface depends on the available resources.
It will utilize the hardware if possible or fallback to the software based
approach. If neither the hardware nor the driver based implementation is
available, the interface is disabled.

4.3.1 Enabling timestamping API

In order to utilize the timestamps, they must be enabled. In Linux the syscall
ioctl14 is used to manipulate device parameters[28].

int ioctl(int fd, unsigned long request, ...);

3https:/ /www.kernel.org/doc/Documentation/networking / timestamping.txt
+http:/ /pubs.opengroup.org/onlinepubs/9699919799/functions/ioctl. html

45



4 Implementation

Listing 4.6: Signature of POSIX function ioctl

Using this syscall on the physical network device like “eth0” the socket
timestamping can be enabled. As many Linux based syscalls, ioctl takes a
open file descriptor as its first argument. The second argument represents
a request code, individual for each device group. It defines which device
parameter should accessed, weather the access is read or write and how
large the provided buffer must be. A pointer to this buffer is the third
argument passed to ioctl. The buffer must meet the conditions defined
to the request code. Usually a struct is defined alongside which can be
used. This ensures that the access is readable and that enough memory is
available. Should the syscall fail, the return value will be -1 and the global
errno is set appropriate. Summing up, the kernel interface to manipulate
device parameters is quite flexible.

It is also worth to mention, that ioctl usually requires the binary to be
executed with higher privileges. Failing to do so will abort the function call
with the following error message: “Operation not permitted”. Depending
on the application use-case this may be a massive issue.

The request code to enable hardware timestamping is SIOCSHWTSTAMP. It
expects a struct of type ifreq. In order to work, two fields of the ifreq
struct must be set. ifr name should store the network device name and
ifr_data should point to an valid hwstamp_config object. The hwstamp_-
config object contains additional data required to modify the hardware
timestamping. Setting tx_type and rx_filter can be used to enable or
disable the feature for any communication direction. Listing 4.7 shows how
hardware timestamping is enabled.

ifreq device();
hwtstamp_config hwconfig ();

strcpy (device.ifr name, “etho”);

device.ifr_data = &hwconfig;

hwconfig. tx_type = HWISTAMP.TXON; // ..._OFF;
hwconfig. rx_filter = HWISTAMP FILTER ALL; // ... NONE;

46



4.3 POSIX timestamping API

int err = ioctl (socketFd, SIOCSHWISTAMP, &device);

Listing 4.7: Enable hardware timestamping using ioctl

Besides enabling hardware timestamping, the Kernel must also be notified.
Otherwise it will discard the timestamp and not forward it to the userspace.
However sockets are a bit more complex. On one side, they communicate
with the application via an APIL On the other side, sockets simply hand over
byte streams to the network device. Recalling the OSI model, many layers
are in between.Sockets also handles various networking protocol features
like checksums, retransmissions (in case of streaming sockets), and many
more. Similar to devices, sockets can be manipulated by utilizing a syscall.
For sockets this function is setsockopt®[28].

int setsockopt(int sockfd, int level,
int optname, const void xoptval, socklen_t optlen);

Listing 4.8: Signature of POSIX function setsockopt

Again a file descriptor is used to select the correct object. The level param-
eter, is used to define at which implementation level the changes should be
applied. As described above, operations of a socket can span over multiple
OSI layers. Using this function it is possible to configure properties of layer
4 (TCP, UDP) and layer 3 (IPv4, IPv6). In addition, various API level changes
can be applied, by passing the SOL_SOCKET constant. The remaining three
parameters are similar to ioctl. optname is similar to the request code. opt-
val and optlen are simple pointers to an valid object. Unlike ioctl the size
of the object is passed as well. Again the object type is linked to its object
code. However, for socket manipulations, most objects are simple integers.
Thus, using bitwise or it is possible to set multiple options using only one
function call. Like many other Linux syscall functions, the return value
indicates success or failure. In the case of an error, the global errno field
is set appropriate. For timestamping support, options for SO_TIMESTAMPING
must be set. SO_-TIMESTAMPING is located at the API level. See the Listing 4.9
for implementation details.

int options = SOF.TIMESTAMPING RAW HARDWARE
| SOF.TIMESTAMPING_TX HARDWARE

Shttp:/ /pubs.opengroup.org/onlinepubs/9699919799/functions/setsockopt.html

47



4 Implementation

| SOF_TIMESTAMPING RX HARDWARE;
int err = setsockopt(socketFd, SOLSOCKET,
SO_TIMESTAMPING, &options, sizeof(options));

Listing 4.9: Prepare kernel to collect timestamps for receiving and sending datagrams.

This concludes the prerequisites to retrieve socket timestamps. The passed
arguments vary depending on the used hardware. The code in Listing 4.9
assume that PTP hardware is available. If this is not the case, some of
functionality may not work. This is especially true for the ioctl configura-
tions. Although hardware timestamping may not be available in this case,
the operating system and the socket may be configured to use software
timestamping. It goes without saying that this is less accurate, but still
achieves better results than pure userspace implementations. The constants
SOF_TIMESTAMPING_(TX/RX) _SOFTWARE should be used in this case. Anyways,
a successful setsockopt function call is required for socket timestamping
to work.

4.3.2 Retrieving timestamps

Once at least the SO_TIMESTAMPING for the given socket is enabled, times-
tamps can be retrieved. The interface works independent on the used
timestamping mode. That is to say, hardware support is beneficial but not
strictly required. Timestamps are retrieved using the sockets read function.
Sockets use functions of the family recv® to receive data and send? to send
data. As a socket can be broken down to a file, these functions are basically
wrappers around read and write[28].

ssize_t recv(int sockfd, void xbuf, size_t len,
int flags);

ssize_t send(int sockfd, const void xbuf, size_t len,
int flags);

Listing 4.10: Signature of POSIX functions recv and send

®http:/ /pubs.opengroup.org/onlinepubs/ 9699919799/ functions /recv.html
7pubs.opengroup.org/onlinepubs/9699919799/functions/send.html

48



4.3 POSIX timestamping API

The recv functions are used to load the received data from the socket into
the userspace application. If not defined otherwise, these functions usually
block the execution and wait until data is available. Their return value
indicates the number of received bytes. If an error was raised the return
value is -1 and errno is set. In addition, some of them also support access
to ancillary data. Internally Ancillary data are described as control messages.
They are not part of the actual payload but include additional metadata and
information over all socket levels. If enabled, timestamp information is stored
as a control message at level SOL_SOCKET. Given a separate buffer in addition
to the payload buffer the kernel will store the metadata automatically upon
reception. Control message can be retrieved utilizing the recvmsg function.
Naturally, this is a derived form of recv. This function must be used in
conjunction with the msghdr struct. In order to minimize arguments and
improve code readability, many parameters are combined in this struct.
Using msghdr, buffers for payload, remote endpoint names and control
messages can be passed.

ssize_t recvmsg(int sockfd, struct msghdr smsg,
int flags);

Listing 4.11: Signature of POSIX function recvmsg

While endpoint information and payloads can easily be retrieved directly
or using vectored-1/08, the control message buffer can store several control
messages. Multiple ancillary data are stored successively in the control message
buffer. In order to access a single message, the cmsg C-Macros as well as
the cmsghdr struct should be used. The macros define a simple interface
allowing to iterate over the control message buffer. See Listing 4.12 for the
interface and members of the control headers.

struct cmsghdrx CMSGFIRSTHDR(struct msghdr+x msgh);
struct cmsghdrx CMSGNXTHDR(struct msghdrx msgh,
struct cmsghdr* cmsg);

unsigned charx CMSGDATA(struct cmsghdr+ cmsg);

struct cmsghdr {

8pubs.opengroup.org/onlinepubs /9699919799 /functions/readv.html

49



4 Implementation

size_t cmsg_len; // Data byte count
int cmsg_level; // Originating protocol
int cmsg_type; // Protocol—specific type
/% followed by
* unsigned char cmsg_datal[];
*/

b

Listing 4.12: Interface and object definition of the Control Message Header

Ancillary data is categorized into API levels (cmsg_level) of the socket,
depending on their origin. As sockets span multiple layer of the OSI model,
ancillary data from multiple protocols can be retrieved. In addition to API
level, the messages can be distinguished by the cmsg_type field. Multiple
values are defined, and they describe the size and the memory layout of the
data buffer. The buffer itself is accesses as an unsigned char pointer using
the CMSG_DATA macro. Typically, it must be casted to the expected type. As
the data is stores successively in the buffer, the length of the control message
is important.

For timestamp information, the API level is SOL_SOCKET and the type is
SO_TIMESTAMPING. Obviously this is equivalent to the parameters passed to
setsockopt. The data is of type struct timespec and thus has a resolution
of nanoseconds. The Listing 4.13 below shows how the socket time can be
extracted from the control message.

msghdr msg () ; // Msg Header Struct
char control[128]; // CtrlHeader buffer

// Set msg fields accordingly

/]

// Pass control header buffer

msg. msg_control = control;

msg. msg_controllen = sizeof(control);
int bytes = recvimsg(socketFd , &msg, 0);

for (cmsghdr+x cmsg = CMSGFIRSTHDR(&msg ) ;
cmsg; cmsg = CMSGNXTHDR(&msg, cmsg))

50



4.3 POSIX timestamping API

{
if (cmsg—>cmsg_level == SOL.SOCKET &&

cmsg—>cmsg_type == SO_TIMESTAMPING)
{

}
}

Listing 4.13: Extraction of the collected timestamp from the control message headers from
incoming data.

timespecx* timestamp = (timespec*) CMSGDATA(cmsg);

The timeflow for receiving messages and retrieving the payload as well as
the control message data to the userspace is depicted in Figure 4.2. It shows
the sequence of important events and at which protection level they are
executed. Upon reception of a message, the timestamp is captured and the

Poll Socket Parse Control Message

(CMSG)
Space I T

= timespec* t =

% irecvmsg CMSG_DATA (cmsg)

i Buffer

5 -Datagram >
% CMSG time

Space Receive
Datagram

Figure 4.2: Timeline of receiving messages.

data is processed. The payload itself is pushed into the kernel internal I/O
Queue. This queue is consumed by the recvmsg function in the userspace via
a syscall. Together with the payload, the timestamp is queried as well. The
extraction of the timestamp from the control message buffer is performed in

51



4 Implementation

the userspace. This image also shows the importance of socket time and how
early it can be captured. Using a timestamp when the payload is available
at the userspace would also imply a huge overhead. The overhead is caused
by internal task and I/O queueing, possible polling interval as well as more
computation time. In total this overhead would be unpredictable and thus
introduce errors.

In contract to receiving, retrieving timestamps using write syscalls (or their
socket counterparts) is not possible. The send function does not provide the
possibility to return data back to the callee. This is true for timestamps or
any other control message data. In addition errors raised in lower layers
(socket levels) cannot be reported in detail. In order to cope with this
problem, these errors are stored in a special queue called MSG_ERRQUEUE. As
this queue is essentially the same as any other kernel queue, recv can be
used to load data from it by setting flag to MSG_ERRQUEUE. Consequently,
it is also possible to load ancillary data from it using recvmsg. Once data
is loaded from this queue, it can be parsed similar to data received via
transmission. The loaded payload is the data which caused the error and the
control message buffer contains ancillary data including detail information
on the error. For the control message containing the error, the level and type
is set accordingly. If enabled, timestamp information is also stored in the
ancillary data. Summing up, in order to retrieve the ancillary data, the
MSG_ERRQUEUE must be queried after sending the payload. This is also true,
if no error occurred. That is to say, the MSG_ERRQUEUE is used as a feedback
queue in any case despite the name error in it. Unfortunately in some cases
polling is required, as sending data could take some time. As a result the
MSG_ERRQUEUE cannot be filled. Alternatvely, send could be used in blocking
mode, this guarantees that the transmission has completed upon function
return.

In order to load the “send” timestamp, the message must simply be trans-
mitted using the function send. After this call is completed, a consequent
call of recvmsg with flag &= MSG_ERRQUEUE is required. Unlike during the
receiving operation, the payload is not important while sending. Thus, the
payload vector can be NULL. Only the msg_control field must point to a valid
buffer. Parsing the content of this buffer is identical to receiving payload.
The important code lines are in Listing 4.14.

52



4.3 POSIX timestamping API

msghdr msg ();
char control[128];
const charx buffer = “Sample”;

int bytes = send(socketFd, buffer, strlen(buffer));

// Set msg fields accordingly

msg. msg_control = control;

msg. msg_controllen = sizeof(control);

bytes = recvmsg(socketFd , &msg, MSGERRQUEUE);

for (cmsghdrx cmsg = CMSG_FIRSTHDR(&msg ) ;
cmsg; cmsg = CMSGNXTHDR(&msg, cmsg))
{

if (cmsg—>cmsg_level == SOLSOCKET &&
cmsg—>cmsg_type == SO_-TIMESTAMPING)
{

}
}

Listing 4.14: Extraction of the collected timestamp from the control message headers in
case of sending data.

timespecx* timestamp = (timespecx*) CMSGDATA(cmsg);

As the implementation, the timeflow for sending data and retrieving the
send timestamp is a bit more complex. The timeflow is shown in Figure 4.3.
Again it shows the succession of important events and in which protection
level they take place. Data is sent using the send syscall. In kernel mode, the
payload is pushed into the I/O queue where it resides until it is scheduled
for send. The socket time is captured shortly after sending. The timestamp
is stored in the control message alongside varios other ancillary data. If an
error occurred, it is also stored as an ancillary data. The ancillary data
is then stored in the error queue, where it can be queried using recvmsg.
Finally, the extraction of the timestamp from the control message buffer can
be performed in the userspace. Like its receive counterpart, this image
also shows the importance of capturing the timestamp in the kernel (or
hardware). Many operations with unpredictable execution time are carried

53



4 Implementation

Send Parse Control Message
User (CMSG)
Space \|/Datagram \|/CMSG T
b timespec* t =
ssendmsg o srovmsg CMSG_DATA (cmsg)
a
=
2 >
Datagram & time
’?

Kernel

Space

Send
Datagram

Figure 4.3: Timeline for sending messages.

out in the userspace as well as in the kernelspace.

4.4 ASIO modifications

The modelica reference implementation relies upon ASIO for platform inde-
pendent socket access. The latest version of ASIO does not support socket
timestamping. Thus, some changes were applied to the ASIO source so
that the DCP library can utilize it. Although ASIO is platform independent,
socket timestamping is only available on POSIX based systems. Conse-
quently, the changes were only applied to the POSIX subsystem, while
the interfaces were adjusted globaly to ensure a successful build. For the
winsocket subsystem the interface changes are simply ignored.

4.4.1 Enabling timestamping API

ASIO provides wrapper methods for ioctl and setsockopt. These wrappers
are io_control and set_option of ASIOs basic_socket class. Consequently,

54



4.4 ASIO modifications

enabling the SO_TIMESTAMPING feature is possible without changing any
ASIO sourcefiles.

To begin with, ioctl is quite flexible. Consequently, ASIOs wrapper needs
to be flexible as well. The POSIX function supports arbitrary objects passed
depending on the passed request code. In order not to limit the functionality,
ASIOs io_control method takes an object which implements the IoCon-
trolCommand interface. An optional second parameter is a C++ error object
std: :error_code. ASIO automatically parses the errno if required.

template <typename IoControlCommand>
void basic_socket::io_control(
IoControlCommand& command, asio::error_code& ec);

class IoControlCommand
{
public:

int name() const:

void set(bool value);

bool get() const;

ioctl_arg_typex data();

const ioctl_arg_typex data() const;

Listing 4.15: ASIOs interface for ioctrl access.

Each method is linked to a parameter of ioctl. The name method repre-
sents the request code. The passed object pointer is retrieved using the data
methods. A typical implementation holds the object internally. This also
ensures that the object gets properly cleaned by relying on RAIL The inter-
nal state should be modifiable using the set method. The ASIOs interface
to call ioctrl is in Listing 4.15 and Listing 4.16 shows how to invoke the
function.

For timestamping the request code — method name — is SIOCSHWTSTAMP. The
internal object must be struct ifreq and struct hwtstamp_config. Using
set, hwtstamp_config’s tx_type and rx_filter is modified.

55



4 Implementation

std :: error_code err;
io_hwstamp_command command;
socket—io_control (command, err);

Listing 4.16: ASIOs wrapper of ioctrl invoked to enable hardware timestamping.

Next the socket must be configured to support timestamping. As already
described, the basic_socket class provides a set_option method. While in
theory the POSIX function setsockopt is as flexible as ioctl, it only uses
integers as objects. Thus the wrapper is drastically simpler and does not
require custom objects.

template <typename SettableSocketOption>
void basic_socket::set_option(const
SettableSocketOption& option, asio::error_code& ec);

Listing 4.17: ASIOs interface to set socket options

ASIO provides a few predefined template classes which can be used in
conjunction to this method. These classes are defined in the socket_option
namespace. Their interface is similar to the one for io_control, having
methods for level, name and data. Socket level and request code are passed
at compile time as template parameters. Their value can simply be assigned
using an overloaded operator. For error handling, an optional second pa-
rameter may be used. In case, ASIO parses the errno value and assigns it to
an standard C++ error object.

In terms of timestamping support, the socket_option::integer class is
used. The level is SOL_SOCKET, with request code SO_TIMESTAMPING. The values
are simply assigned. The flags are designed so that bitwise or operations
can combine multiple values. Listing 4.18 shows how SO_TIMESTAMPING can
be enabled using ASIOs interface.

std :: error_code err;
asio:: detail :: socket_option
:rinteger <SOL.SOCKET, SO_TIMESTAMPING>
timeStampFlags;
timeStampFlags = SOF.TIMESTAMPING RAW HARDWARE
| SOF_TIMESTAMPING.TX HARDWARE

56



4.4 ASIO modifications

| SOF_TIMESTAMPING_RX_ HARDWARE;
socket—>set_option (timeStampFlags, err);

Listing 4.18: Enable SO_TIMESTAMPING using ASIOs wrapper functions.

4.4.2 Retrieving timestamps

Unfortunately ASIO does not retrieve the control message headers. Although
it uses recvmsg internally, it omits the buffer for the ancillary data. Conse-
quently, ASIO must be modified from the lowest function back to the library
interface, without breaking existing code or interfaces. The POSIX functions
are accessed using wrapper functions defined in asio: :detail: :socket_-
ops namespace. There is a wrapper for each function of the recv family.

signed_size_type recvmsg(
socket_type s, bufx bufs, size_t count,
int in_flags, int& out_flags,
asio ::error_code& ec);

Listing 4.19: Signature of internal ASIO wrapper functions to receive data

To load ancillary data using this wrapper, the signature must be changed.
Buffers for control message data must be added. See Listing 4.19 and List-
ing 4.20 for the old and updated signature.

signed_size_type recvmsg(
socket_type s, bufx bufs, size_t count,
int in_flags, int& out_flags,
void* control, size_t controllen,
asio ::error_code& ec);

Listing 4.20: Updated signature of internal ASIO wrapper functions to receive data

The implementation checks whether the passed arguments are valid and
forwards them to the syscall. The windows implementation simply ignores
the parameters. These wrapper functions are access through varios other
implementation functions. The first class accessing these wrapper functions
is reactive_socket_service. As the name already suggests it is a base class

57



4 Implementation

for ASIO sockets. The relevant functions take an endpoint pointer, a buffer
and flags.

template <typename MutableBufferSequence>
size_t receive_from (implementation_type& impl,
const MutableBufferSequence& buffers,
endpoint_type& sender_endpoint,
socket_base:: message_flags flags,
asio :: error_code& ec);

Listing 4.21: Signature of ASIOs receive function

The ASIO endpoint is a class storing varios information on the connection.
Most noteable it is used to store the remote’s IP address and port. It is
expanded to support storage for the control messages as well. A class —
control_header — to encapsulate the raw buffer and provide some helper
functions around the C-Macros is used. The endpoint class offers and API
to control a private instance of the control_header class. Using this API the
buffer size can be set and thus enabling the mechanism. Once the socket
consumes the endpoint, it will also check for a valid control message buffer. If
this is the case, it will also be used during the recvmsg call. Upon reception
the endpoint control message buffer can be queried.

lastAccess.control_size (128);
socket—async_receive_from (
asio :: buffer (data + 4, maxLength),
lastAccess,
std :: bind(&Socket :: handle_receive , this,
std :: placeholders:: _1,
std :: placeholders:: _2));

void handle_receive(const std::error_.code &error,
std::size_t bytes_transferred)
{

DcpPdu xpdu = makeDcpPdu(data, bytes_transferred);
for (control_header& chdr : lastAccess.control())

{
DcpPduSync &sync = static_cast <DcpPduSync &>(dcp);

if (chdr.level() == SOL SOCKET &

58



4.4 ASIO modifications

chdr.type() == SO.TIMESTAMPING)

sync.socket_time_ = xchdr.data<timespecx* >();

}
}
}

Listing 4.22: Memory for control buffer is allocated and evaluated upon data reception.

The snippet in Listing 4.22 allocates 128 bytes for the control message buffer
and starts an async receive. That is to say, the execution continues and once
data is received, the given callback function handle_receive is triggered. In
this function, the ancillary data can be retrieved from the endpoint. Like the
POSIX implementation in Listing 4.13, the control message headers are iterated
until the correct data is found. It is identified by SOL_SOCKET as level /name
and SO_TIMESTAMPING as request code/type.

This concludes all necessary changes to implement PTP support for DCP.
ASIO was slightly modified to add support for ancillary data. With these
changes DCP is able to retrieve timestamps which are captured shortly after
reception and before sending. This greatly enhances the accuracy of the
clock difference. Finally, DCP was modified to apply the calculated clock
difference by adapting the real-time step size.

59






5 Test Environment

5.1 Simulation Layout

In order to verify a working implementation of node synchronization, a test
environment is required. It goes without saying that this setup should prac-
tically utilize DCP, synchronize clocks and execute a Co-Simulation in (soft-)
real-time mode. In the previous chapter, DCPLib from modelicas Github®
page was expanded upon clock synchronization support. Consequently,
this modified version is also used for the test bench setup. Naturally, the
modified ASIO is also used.

The main demonstrator should simulate a Lane Keep Assist System (LKAS)
for a simple vehicle on the road. In a simulation, the system handles the
steering of a car and tries to keep it on the center lane. It goes without
saying, that the simulation should be build in a distributed manner. The
demonstrator comprise of a sensor model, a controller model and an envi-
ronment simulation, each on an individual node. In addition, a DCP master
is required to control the demonstrator.

The LKAS system is implemented in the DCP scope, distributed on two
slaves. It is implemented as an closed loop controller and calculates the
steering angle of the car based on various input values. The model is based on
the simple kinematic model of an automobile[31]. One slave — the controller
module — handles the calculation of the parameters. The second slave acts
as a bridge between the DCP scope and the environment simulation. It
“simulates” the sensor input and thus is named sensor module.

Finally, the environment simulation runs outside of the DCP scope. It com-
municates through the sensor module with DCP. The environment simulation

Thttps:/ / github.com/modelica/DCPLib

61



5 Test Environment

DCP
Scope

™\

RSP_SYNC INF_SYNC RSP_SYNC

[ \
/ DATA \‘ DCP Slave 2

Environment |~ " 5o DCP Slave 1. 7 F00
simulation Sensor Controller

— delta —] Model delta Model

Figure 5.1: Block Diagram of the test environment

is basically a CarMaker/Simulink® project. Once started, it runs the simula-
tion in constant loop until a stop criteria is met. This could be a time limit
or a distance.

5.2 Used hardware

The DCP nodes are running on three identical BeagleBone Black3. The
boards a powered by an AM3358 Cortex-A8 CPU at 1GHz from Texas
Instruments. They can support any Linux 32 bit ARM support. In this exam-
ple, the OS was Debian Linux. Obviously they are connected via Ethernet
to each other. Thus the simulation uses UDP/IPv4 as its communication
channel. The used Ethernet driver supports PTP natively.

The environment simulation runs on a standard PC, connected to the same
network as the DCP nodes. For the communication between the sensor model
and the environment a UDP connection was used as well. This connection is
independent to the DCP communication.

*https:/ /ipg-automotive.com/de/produkte-services/simulation-
software/carmaker/
3https:/ /beagleboard.org/black

62



5.3 Simulation properties

5.3 Simulation properties

To begin with, the environment was designed to be as constant as possible.
The LKAS - which is simulated in the DCP scope — runs on a simple
passenger car with a constant speed of 50 km/h. The DCP scope runs in
real-time mode with a step size of 2oms.

5.3.1 Virtual road

The virtual road is based on a lemniscate shape. A lemniscate is not to
complicated and thus keeps the simulation simple. It also offers every
possible steering direction. The track has two straights combined with one
right and one left turn. The straight parts between the two turns also helps
the system to stabilize. The total length of one lap at the center line is one
kilometer. The car started at the intersection of the lemniscate, and at the
center of the road. This ensures that the simulation is not falsified during
the initialization phase, in which the car accelerates to the target speed. The
shape of the virtual road is captured in Figure 5.2.

Figure 5.2: Aerial perspective of the virtual road.

63



5 Test Environment

5.3.2 Controller

The controller is solely implemented in the DCP scope. It is an “Stanley”
controller of the Stanford Racing Team. They participated with this con-
troller at the “DARPA Grand Challenge” in 2005[31]. They provided both a
longitudinal and a lateral controller. The longitudinal controller is responsi-
ble for the vehicles speed. To simplify this model, the longitudinal controller
is omitted. The speed is fixed to 50 km/h. The lateral controller handles the
steering of the vehicle. It is based on the kinematic equation of motion. The
basic formula for the steering angle 6(t) is described in Equation 5.1.

k-e(t)
ksoft + U(t)

+ ki yaw + (rei(£) — 7(£)) (5.1)

O(t) = ¢(t) — Pss(t) + arctan

Figure 5.3: Kinematic model of a automotive as defined in[31].

the “cross track error” e(t) basically describes the distance between the
car and the road. It is defined as the shortest distance between the cars
current position and the nearest point on the road’s trajectory. Given this
point on the trajectory, the yaw angle psi(t) is calculated. The yaw angle is
the deviation angle between the road’s trajectory and the vehicle’s heading.
Finally, the yaw rate is denoted as r(f). The yaw rate is defined as the

64



5.3 Simulation properties

angular velocity of the rotation. Meaning it is the first derivative of the
yaw angle. In addition to the cars yaw rate, the controller also relies on
the yaw rate of the deviation angle (¢). This yaw rate r4,; is described in
Equation 5.2.

v(t)sin(ip(t))

Py (5.2)

rtrj —

The basic reference for the controller is the yaw angle 1(t). It is slightly
offset by ¢5s(f) which depends on the yaw rate of the trajectory and the
vehicle’s velocity v(t). It basically improves stability in case the car is exactly
following the trajectory. In this case the error is zero but the required steering
angle is not. Thus a set value of zero would introduce a slight oscillating
behavior. The arctan function is used to correct an existing error. It depends
on the “cross track error” e(t) and the vehicle’s velocity v(t). With increasing
error, the controller will turn towards the road more aggressively. This is
essentially the proportional part of the controller and is fine tuned by setting
the constant k and kg, ¢;. The later one helps to limit sensitivity during low
speed sections and avoid a division by zero.

The controller so far only calculates the steering angle 6. However, with
increasing vehicle speed the impact of sideway velocity increases as well.
Consequently, the output of the controller — the steering angle — may not
reflect the actual movements of the car. In order to correct the resulting
offset, a damping effect on the yaw rate is introduced to the equation. It
corrects the difference between the cars yaw rate r(f) and the yaw rate of
the trajectory ry,j. Using kya the impact of this part is fine-tuned. Finally,
to compensate time delays due to latency and resulting overshoots and
possible instability the steering angle is measured and normalized. The
current steering angle is compared to the retrieved value from the previous
step.

The actual equation used in the DARPA Challenge also considers the (physi-
cal) limit of the steering angle. It limits the calculated value to the appropriate
min/max values. However, as the test vehicle in this simulation starts exactly
at the center of the road it must not find the road and perform an u-turn.
Furthermore, the road is designed to ensure that the trajectory stays within
the cars limitations. Consequently, it will never saturate the steering angle.

65



5 Test Environment

As the model has no longitudinal controller, it cannot control the vehicles
speed. Consequently, it cannot handle tighter corners as they require re-
duced speed in order to traverse them. As a result, the possible angle of
a turn is further limited, but sufficient for the clock synchronization test
model.

5.4 Test results

Firstly the effect of clock skew was measured. This was accomplished by
two nodes exchanging the PTP messages. However, the calculated offset
was not applied but stored in a list. As a consequence the clock difference
was saved over time and is visualized in Figure 5.4. The test was conducted
over nearly seven minutes. During that period, the calculation of the clock
difference was performed every five seconds. In total 76 calculations were
recorded. A clear incline of the clock difference can be seen. Although, some

3 2000
Ry

o 5 1500
o Q

Ec.é o 1000
S £ 500
£ & 0
i

2 -500

01 02 03 04 05 06
Time [min]

Figure 5.4: Measured Clock difference over time

outliers show that the difference is not only increasing but also decreasing.
However these changes are only for a short period of time. In a global
context, the difference is increasing in a more or less linear fashion. It is
worth to mention, that the difference can be negative as well. This is seen
at the beginning of the recording. This simply indicates that the one node
surpassed the other node in time. For example, after startup node A was

66



5.4 Test results

ahead of B, however B’s clock runs faster so that it will eventually catch up to
A and pass it. The system started at 1) = —154us and ended at 175 = 1839us.
That is to say, the clocks drifted apart a total of 1993us during the measure
time of 380 seconds. The following values can be estimated: After one hour,
the clock difference is already 18881us ~ 18ms. After a whole day, the
difference is approximately 453145us ~ 0.45s. It is important to mention,
that these values are greatly device dependent. Values can be vastly different
even if another device of the same product is used. In practice this is no
issue, as the clock synchronization is performed regularly.

Combining this values with the real-time step size, the impact on the system
can be estimated as well. The clock-difference should never exceed half of
the step size, otherwise it will result into oversampling (negative clock skew)
or undersampling (positive clock skew) of variables[32]. This behavior was
analyzed using the following tests. These tests were conducted using two
simulation runs. The first run acted as a reference. It’s synchronization
properties were enabled. On the other hand, the next run had no sort of
synchronization. To see the oversampling effect more clearly, some test cases
run with various forms of artificial clock drift. That is to say, the clock at the
controller model was actively disturbed. All measures were taken at the sensor
model. Consequently, this node was synchronized to the DCP master all the
time. This guarantees the equal amount of samples independent of the test
run and its artificial clock.

The tests were conducted in the environment described above. The car
started the center of the road during a straight part. It accelerated to 50
km/h and kept that speed. At each test run, the simulation lasted 120
seconds. During that time, the car drove about 1.7 km, depending on the
stability of the steering. During each simulation step, the deviation distance o
was retrieved and a matching steering angle 6 was calculated. The following
Figure 5.6 shows the steering angle of the reference run. The steering angle
matches a sine wave due to the roads shape. During a single lap, the car has
to turn left & > 0, orientate itself and finally, turn right § < 0. The measured
value is in radiant. For comparison, at highest point the steering wheel was
turned 0.616rad = 35° to the left. The only point where the car was steering
straightforwards was around 60 seconds, exact the time the car passes the
intersection at the center.

67



5 Test Environment

Figure 5.5: Picture of the simulation render comparing the shaded reference car and a test
run car with artificial drift of sms.

Steering angle[rad]

0 20 40 60 80 100 120 140

Steps

Figure 5.6: Steering angle during a simulation run.

68



5.4 Test results

Comparing the reference output to test runs with artificial clock drift a differ-
ence per step can be calculated. This is visually represented in Figure 5.7.
Various information can be derived from this picture. To begin with, the

0.003 T T T I I I
0.0025 . Diff —— _|
0.002 | S
0.0015 S ]
0.001
0.0005
0
-0.0005 i S
-0.001 | l l I i i
0 20 40 60 80 100 120 140

Steering angle[rad]

Time[s]

Figure 5.7: Difference of steering angle between reference run and run width artificial clock
drift

difference is only detected when the car is in a turn. More precisely, the
error even increases towards the turn apex and reduces subsequently. Next,
the deviation seems to oscillate between positive and negative values. This
indicates that the car is slightly oscillating. In other words, the controller is
aggressively correcting the measured deviation. This behavior is caused by
the difference in sampling due to the lack of time synchronization.

5.4.1 Effects of over-/undersampling

The main difference can be observed when the car approaches a turn until
the apex. During this period the controller should increase the steering angle.
It also must counter the sideways velocity, which is at its greatest once the
car passes the apex. In order to counter to sideway velocity, the controller
applies a negative dampening based on the vehicles yaw rate. The yaw rate
is the first derivative of the yaw angle and thus is slightly time dependent.

69



5 Test Environment

The difference of the ideal clock and the artificially created skew clock is

120 |
Ideal Clock

100 Skewed Clock - - - : : :
80 | . . . - - -

60 : o g ’:" : ]
40 : : P : : ]
20 DT T : : ]

0 z | | | | |
0 20 40 60 80 100 120

Actual Time [s]

Refference Time [s]

Figure 5.8: Comparison of an ideal clock and a skewed clock

shown in Figure 5.8. Over time the gab increases, which is only natural, as
the skewed clock runs slightly faster each step. The ideal clock represents
the DCP master. Yet, the controller is quite flexible and counters the timing
issues. Nevertheless, sideway velocities depends on the vehicles speed. A
higher speed may have more impact on the simulation result. Furthermore
it is not guaranteed that controllers can correct themselves. It is possible
that the slight error will have more impact later in the simulation and thus
propagate. If the error exceed safety margins it may destabilize the controller.
On one hand the steering controller may react aggressively if the error is
overestimated. On the other hand underestimating the error, will cause the
car to adjust its steering angle only slightly. In any case, the deviation distance
will eventually be worsened. This will amplify the problem even more. In
general the Table 5.1 indicates that with increasing oversampling the overall
accuracy decreases. High values for the mean error key figures - MAE and
RMSD - point out that the system is incorrect over long runs. These key
tigures incline with the applied offset. Next, the impact of offset can also be
derived using the highest observed error for each test run. The max error is
stated together with the simulation time when it occurred. By increasing the
offset, the highest error is observed earlier. Exception to this are the highest

70



5.4 Test results

Offset | max error  MAE RMSD

100US \0.507 (87s) 0.048 0.076

1 000US \0.427 (8os) 0.049 0.076

5 000US \0.564 (26s) 0.064 0.090

7 000US \0.571 (258) 0.074 0.100

10 000US \ 2.544 (89s) 0.386 0.557

20 ooous | 8.763 (64s) 2.876  3.441

Table 5.1: Steering angle difference (error) between test runs. Max error indicates the highest
difference which occurred. Further key figures are Mean absolute error (MAE) and
Root-mean-squared-deviation (RMSD).

offsets of 10 ooous and 20 ooous. This is caused by an unstable controller as
its mean errors are extremely high. These test runs already exceed the error
of the first test run (100us — max(e) = 0.507) after 23 seconds (10 ooous)
or 5 seconds (20 ooous) respectively. Past this point, the steering angle of
these test runs starts to oscillate. Thus the max error and the mean errors
are high. On the other hand, below half of the step size, the error is steadily
increasing, but the controller is able to correct itself. Consequently, the mean
values stay below or around o.1 error. The road layout helps the controller
to recenter the car during the straight sections. This is visually represented
in Figure 5.9. The difference between the steering angle increases during
turns, while it stabilize during the straight sections.

5.4.2 Propagation of error

The second statement was that previously introduced error is propagated
through the whole simulation. This is a well-known issue with computer
simulation in general[33, 34]. Typically, these issues arise of insufficient
knowledge of the model itself, e.g. weather prediction. Yet the effect is the
same, independent how the (first) error was introduced.

To test this, the clock drift was only simulated through the first part of the
simulation. After a set time, the clocks stayed synchronized til the end of the
simulation. It is expected that an error will still be traceable after enabling

71



5 Test Environment

1 ' : | | |
Sync
Difference -------

Steering angle
difference [rad]
o

0 1000 2000 3000 4000 5000 6000
Steps

Figure 5.9: Overlay of reference test run and the difference of the steering angle between
reference and 1 ooous offset test runs

synchronization. Reason for that is, that the car exited the previous turn at a
complete different position or time than the reference car. As a consequence
the car entered the second turn at a different position/angle as well. Thus
the controller reacts from a completely new situation. It is only natural that
the result will differ from the reference controller.

During the first half of the total 6 ooo steps, the clock was artificially
drifted by a sms. After 3 0oo steps, this intervention was stopped and the
clocks were synchronized. Consequently, no new error should be introduced.
However as expected, the calculated steering angle still differed from the
reference values during the second turn. Figure 5.10 shows the result of
this test run. This is investigated by comparing the various error key
figures between the test run above and the ordinary s5ms drift test run. The
calculated errors are listed in Table 5.2. The values are split between the
overall simulation, the first and the second half of the simulation period.
In total, the test run with restored synchronization achieved minimal less
average error. On one hand, the average error during the first 3 ooo steps
is equal. On the other hand, it declined between 3 0oo and 6 ooo steps
once the synchronization was restored. Contrary to this the other test run
showed, that the mean average error (MAE) is fairly balanced between the

72



5.4 Test results

Steering angle
difference [rad]
o

T T
: Sync
Difference

0 1000 2000 3000

Steps

4000

5000

6000

Figure 5.10: Overlay of reference test run and the difference of the steering angle between
reference and offset test runs. After 3000 steps, the clocks stayed synchronized.

Drift 5ms for 6 ooo steps

Steps | max error  MAE RMSD
0-6000 \ 0.564 (26s) 0.064 0.090
0-3000 \ 0.564 (26s) 0.064 0.088
3000-6000 \ 0.480 (78s) 0.065 0.092
Drift sms for 3 0oo steps
0-6000 \ 0.560 (26s) 0.058 0.079
0-3000 \ 0.560 (26s) 0.064 0.084
3000-6000 \ 0.352 (92s) 0.051 0.074

Table 5.2: Comparison of test runs with clock drift 5ms over whole simulation and only

half of the simulation.

73



5 Test Environment

tirst and the second half. The RMSD even inclines. This behavior is expected
as the error during the first half contributes to the upcoming simulation
result. Consequently, the error introduced during the first 3 ooo steps were
traceable during the complete simulation. Surprisingly, the error declined
once the synchronization was enabled again. This is due to the fact, that the
main task of the controller is error minimization. Eventually it will follow
the same line as the reference car again. Only the time offset caused by
driving a longer distance during unstable operation cannot be corrected.
Thus a constant error in the difference calculation will always be present.

74



6 Conclusion and QOutlook

6.1 Conclusion

The effects of diverging clock difference due to drift is analyzed. It is worth
to mention, that clock difference itself is no issue, as long as the step size can
be guaranteed. Obviously this is only true as long as the system operates
with no absolute clock, but in relation to the step size. In case absolute
times are used, the difference must be corrected. Otherwise, the nodes
will wait differently long. Yet this issue can easily be resolved and usually
must happen only once. On the other hand the system starts to fail, if the
simulation step size can no longer be guaranteed. The probability that this is
poses an issue increases with reduction of step size and worsening of clock
drift. That is to say, if the clock drift alters the difference more than half of
the defined step size, sampling points will be missed. Consequently, the
simulation is over- or undersampling. The amount of clock drift depends
on the quality of the used hardware and may even vary between devices
of the same product. The measurements taken for the test setup used two
BeagleBones. A drift of approximately 2ms over the measure time of 360
seconds were recorded. In order to counter the clock drift, the DCP library
was adapted.

The DCP changes are based on PTP, a clock synchronization algorithm. It
utilizes Linux Kernel APIs to achieve a highly accurate correction rate in
sub microseconds[11]. As clock drifts over time, the correction is executed
at a set interval. Naturally the interval depends on the used hardware. For
the test runs a interval of 5 seconds was used.

A test environment based on a carmaker simulation is used to collect
various data and verify the implemented PTP algorithm. The simulation
was split into three simulation nodes and kept as simple as possible. A

75



6 Conclusion and Outlook

discrete controller based on the kinematic model of automotive was used
to control a cars steering angle. Over- and undersampling of the simulation
was tested, by operating the controller at various alternating sampling rates.
Depending on the impact, the controller acts sensitive to these changes. As a
consequence, the output differed from the reference car. In addition to that,
the error is propagated through the simulation. An error will always affect
the upcoming calculations, independent how the error was introduced in
the first place. Earlier an error happens, the more uncertainty is introduced
to the final result.

The test case emphasizes these issues individually. That is to say, the effects
on the simulation greatly depends on used model as well. The controller is
sensitive to deviations of the sampling rate. A different solution or problem
may not be affected at all. Once introduced, the controller calculates a
wrong value for the steering angle. This in turn will propagate through the
simulation. Yet if the steering controller works correctly, it is able to revise
the error. The road layout of a lemniscate helps the controller in this task.
The road allows indefinite runs and provides two straight sections allowing
the car to approximate the reference car lap by lap. Only this in conjunction
with a closed loop controller was able to reduce the error, in a different
application the error may be constant or even increase further.

6.2 Qutlook

The existing implementation only works in the local network and can only
utilize UDP. These limitations are inherited from the Kernel API and PTP.
PTP is designed to work only within the same network. Furthermore, the
timestamping API supports only UDP. A streaming protocol like TCP is
currently not supported.

However, for future applications Co-Simulation environments may span
multiple companies and should work across the globe. This implies that the
simulation runs on multiple networks as well. Currently, only non-real-time
operation is supported in this scenario. Obviously the synchronization task
for such an environment is challenging. The Round-trip-time (RTT) cannot
be assumed as symmetric anymore. Furthermore, reliability is much more

76



6.2 QOutlook

an issue than in local networks. While package drops are less likely to
occur, packet ordering poses a massive problem[18]. In this context, wireless
connection are also vulnerable. Especially in an Hardware in the Loop (HiL)
setup with an physical moving object a wireless network is the only way
the object can be interconnected. Due to the low reliability it is uncertain if
the PTP algorithm is working as indented. It may even be possible that the
simulation is harmed by adjusting the clock wrongly.

Besides UDP no other communication channel is supported by the imple-
mentation suggested in this work. The current DCP draft defines interfaces
for CAN, TCP and Bluetooth as well. While CAN theoretically can syn-
chronize the clock utilizing the bus, the other two interfaces must relay
on external synchronization methods. Another limitation of the current
implementation is, that only the DCP master is used as the clock reference.
Minor improvements can be achieved by integrating a dedicated PTP grand
master into the simulation network. This way all DCP nodes, including the
DCP master, synchronize against the reference clock.

Summing up, with the current PTP integration into DCP, the clocks can
be corrected to avoid clock differences. However, as long as the step-size
can be adhered and no absolute time is required during the simulation,
no issues will arise. Currently the implementation only supports UDP due
to API limitations, but can be expanded upon in the future. In this case
changes to the kernel and drivers may be required. Alternatively to PTP a
hardware based approach may be viable in the future. Ethernet gains much
attraction in the fields of industry. With Synchronous Ethernet (SyncE) a
promising standard is in development allowing clock synchronization at a
hardware level[35]. It utilizes ethernet’s physical connection for the clock
signal. Naturally special hardware is required. However, unlike the current
industrial ethernet standards, SyncE is intended to work with the standard

topology.

7






Bibliography

[1]

[2]

(3]

[4]

[5]

[6]

[7]

8]

V Paxon, G Almes, ] Mahdavi, and M Mathis. Framework for IP
Performance Metrics. 1998.

Nikolaos M. Freris, Scott R. Graham, and P. R. Kumar. Fundamental
Limits on Synchronizing Clocks Over Networks. IEEE Transactions on
Automatic Control, 56(6):1352—-1364, jun 2011.

Martin Levesque and David Tipper. A Survey of Clock Synchroniza-
tion Over Packet-Switched Networks. IEEE Communications Surveys &
Tutorials, 18(4):2926—2947, 2016.

Abdelrahman Abdou, Ashraf Matrawy, and Paul C. Van Oorschot.
Accurate one-way delay estimation with reduced client trustworthiness.
IEEE Communications Letters, 19(5):735-738, 2015.

Peter Danielis, Jan Skodzik, Vlado Altmann, Eike Bjoern Schweissguth,
Frank Golatowski, Dirk Timmermann, and Joerg Schacht. Survey on
real-time communication via ethernet in industrial automation envi-
ronments. In 19th IEEE International Conference on Emerging Technologies
and Factory Automation, ETFA 2014, pages 1-8. IEEE, sep 2014.

Hubert Zimmermann. OSI reference model-The ISO model of architec-
ture for open systems interconnection. IEEE Transactions on communica-
tions, 28(4):425—432, 1980.

David Mills, U Delaware, J] Martin, Burbank J, and W Kasch. RFC
Standard for NTP. Technical report, 2010.

T. Gotoh, K. Imamura, and A. Kaneko. Improvement of NTP time
offset under the asymmetric network with double packets method. In
Conference Digest Conference on Precision Electromagnetic Measurements,

pages 448-449. IEEE.

79



Bibliography

[9]

[10]

[11]

[13]

[14]
[15]

[16]

[17]

[18]

80

D.L. Mills. Improved algorithms for synchronizing computer network
clocks. IEEE/ACM Transactions on Networking, 3(3):245-254, jun 1995.

IEEE Standard for a Precision Clock Synchronization Protocol for Net-
worked Measurement and Control Systems. Technical Report July,
IEEE, 2008.

Zhaoqging Liu, Dongxing Zhao, Min Huang, Yigang Zhang, and
A Scheme Selection. A universal method for implementing IEEE 1588
with the 1000M ethernet interface. In leee Autotestcon, pages 1—7. IEEE,
sep 2016.

Igor Freire, Ilan Sousa, Aldebaro Klautau, Igor Almeida, Chenguang
Lu, and Miguel Berg. Analysis and evaluation of end-to-end PTP
synchronization for ethernet-based fronthaul. 2016 IEEE Global Commu-
nications Conference, GLOBECOM 2016 - Proceedings, 2016.

IEEE Standard for Ethernet. IEEE Std 802.3-2015 (Revision of IEEE Std
802.3-2012), pages 1—4017, 2016.

Pbsi. Ethernet adoption in process automation to double by 2016.

Peter C Evans and Marco Annunziata. Industrial Internet: Pushing the
Boundaries of Minds and Machines. General Electric, page 37, jun 2012.

] Postel. RFC Standard for UDP. 198o.

Guangjin Pan and Hanhan Xue. Real time analysis of current transport
protocols in high loss networks. In Proceedings of 2011 International
Conference on Computer Science and Network Technology, pages 2743—2746.
IEEE, dec 2011.

Suk Kim Chin and R. Braun. A survey of UDP packet loss characteris-
tics. In Conference Record of Thirty-Fifth Asilomar Conference on Signals,
Systems and Computers (Cat.No.o1CH37256), pages 200—204 vol.1. IEEE,
2001.

Raimundo Viegas, Ricardo Valentim, Daniel Texeira, and Luiz Guedes.
Analysis of Protocols to Ethernet Automation Networks. In 2006 SICE-
ICASE International Joint Conference, pages 4981—4985. IEEE, 2006.



[20]

[21]

[22]

[25]

[26]

Bibliography

Abhay K. Parekh and Robert G. Gallager. A Generalized Processor
Sharing Approach to Flow Control in Integrated Services Networks:
The Single-Node Case. IEEE/ACM Transactions on Networking, 1(3):344—

357, 1993.

Peter Baumann, Martin Krammer, Mario Driussi, Lars Mikelsons, Josef
Zehetner, Werner Mair, and Dieter Schramm. Using the Distributed Co-
Simulation Protocol for a Mixed Real-Virtual Prototype. In 2019 IEEE
International Conference on Mechatronics (ICM), pages 440-445. IEEE, mar
2019.

Martin Krammer, Nadja Marko, and Martin Benedikt. Interfacing Real-
Time Systems for Advanced Co-Simulation - The ACOSAR Approach.
In Catherine Dubois, Francesco Parisi-Presicce, Dimitris Kolovos, and
Nicholas Matragkas, editors, STAF 2016 Doctoral Symposium and Projects
Showcase, pages 32-39, Vienna, Austria, 2016. Dubois, Catherine Parisi-
Presicce, Francesco Kolovos, Dimitris Matragkas, Nicholas.

Modelisar Consortium and “"FMI” Modelica Association Project. Func-
tional Mock-up Interface for Model Exchange and Co-Simulation, Ver-
sion 2.0, 2014.

Martin Krammer, Martin Benedikt, Torsten Blochwitz, Khaled Alekeish,
Nicolas Amringer, Christian Kater, Stefan Materne, Roberto Ruvalcaba,
Klaus Schuch, Josef Zehetner, Micha Damm-Norwig, Viktor Schreiber,
Natarajan Nagarajan, Isidro Corral, Tommy Sparber, Serge Klein, and
Jakob Andert. The Distributed Co-Simulation Protocol for the Integra-
tion of Real-Time Systems and Simulation Environments. In Proceedings
of the 5oth Computer Simulation Conference. Society for Modeling and
Simulation International (SCS), 2018.

Martin Krammer, Klaus Schuch, Christian Kater, Khaled Alekeish,
Torsten Blochwitz, Stefan Materne, Andreas Soppa, and Martin
Benedikt. Standardized Integration of Real-Time and Non-Real-Time
Systems: The Distributed Co-Simulation Protocol. In Proceedings of
the 13th International Modelica Conference, Regensburg, Germany, March
4-6, 2019, volume 157, pages 8796, Regensburg, Germany, feb 2019.
Modelica Association.

DCP Specification Document, Version 1.0. Linkoping, Sweden, 2019.

81



Bibliography

[27] Lifang Wang, Xing She Zhou, Ze Jun Jiang, and Aihua Zhang. A
Real-Time Process Scheduling Policy in Windows. In 2012 International
Conference on Computer Science and Service System, pages 22—24. IEEE,
aug 2012.

[28] IEEE Standard for Information Technology—Portable Operating System
Interface (POSIX(R)) Base Specifications, Issue 7. Society, (Jan):1—3951,
2018.

[29] Zhang Yanyan and Ran Xiangjin. Analysis of Linux Kernel’s Real-Time
Performance. In 2018 International Conference on Smart Grid and Electrical
Automation (ICSGEA), pages 191-194. IEEE, jun 2018.

[30] Jianfeng He, Yufeng Li, Wei Zhang, Fang Fang, and Hongkun Xu.
Real-Time Optimization and Application of the Embedded ARM-Linux
Scheduling Policy. In 2011 International Conference of Information Tech-
nology, Computer Engineering and Management Sciences, pages 134—138.
IEEE, sep 2011.

[31] Gabriel M. Hoffmann, Claire ]J. Tomlin, Michael Montemerlo, and
Sebastian Thrun. Autonomous Automobile Trajectory Tracking for Off-
Road Driving: Controller Design, Experimental Validation and Racing.
In 2007 American Control Conference, pages 2296—2301. IEEE, jul 2007.

[32] H. Nyquist. Certain Topics in Telegraph Transmission Theory. Transac-
tions of the American Institute of Electrical Engineers, 47(2):617-644, apr
1928.

[33] William L Oberkampf, Sharon M DeLand, Brian M Rutherford, Kath-
leen V Diegert, and Kenneth F Alvin. Error and uncertainty in modeling
and simulation. Reliability Engineering & System Safety, 75(3):333—357,
2002.

[34] Barry Croke. Representing uncertainty in objective functions: extension
to include the influence of serial correlation. 2009.

[35] ITU-T. Timing characteristics of a synchronous Ethernet equipment
slave clock. page 44, 2018.

82



	Abstract
	Introduction
	Motivation
	Problem Description
	Objectives

	Related Work
	Definitions
	Clock offset
	Clock skew and clock drift
	Clock skew (circuit)
	Network latency/delay
	Real-time

	Open System Interconnection (OSI)
	7 Layers of the OSI model

	Clock synchronization
	NTP
	PTP

	Ethernet
	UDP
	Nondeterministic behavior of Ethernet


	Method
	Overview of Co-Simulation
	DCP
	Multichannel support
	Master-slave architecture
	Protocol Data Unit (PDU)
	Operation and state machine
	Heartbeat mechanism

	Clock synchronization for DCP
	PTP over DCP
	New PDU types


	Implementation
	Implementation environment
	Additions to DCP
	Additional synchronization PDUs
	Important DCP states for synchronization
	Synchronization trigger interval
	Integration of PTP in DCP master
	Integration of PTP in DCP Slave

	POSIX timestamping API
	Enabling timestamping API
	Retrieving timestamps

	ASIO modifications
	Enabling timestamping API
	Retrieving timestamps


	Test Environment
	Simulation Layout
	Used hardware
	Simulation properties
	Virtual road
	Controller

	Test results
	Effects of over-/undersampling
	Propagation of error


	Conclusion and Outlook
	Conclusion
	Outlook

	Bibliography

