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Abstract

Every year, the number of devices that are connected to the Internet rises significantly,
especially in the so-called Internet of Things- and Smart Home sector. Most of those
devices have some kind of sensor embedded and applications range from environmental
monitoring, over healthcare, to industrial applications. This thesis presents multiple con-
cepts that exploit unsecured embedded sensors to build covert channels. These concepts
range from very simple ideas, such as abusing unused sensor register to transfer data, to
more complex covert channels that are often hard to distinguish from normal user behavior
and therefore much harder to detect. To emphasize the significance of the issue, further-
more, two additional approaches are introduced that exploit the sensor stack of Android, a
very common operating system for modern smartphones. For each covert channel concept
various countermeasures are introduced and discussed. For the evaluation, the proposed
concepts are implemented using a modular testbed application, which is extendable to dif-
ferent sensor- and interface hardware. As these channels are very prone to user-generated
noise, a request-response packet system is used to combat the errors resulting from the
noise. The evaluation shows that all of the proposed approaches are able to successfully
establish a covert channel between two isolated processes. While simple channels reach
a throughput of 4,8kbit/s, the more complex designs are only able to transmit data at a
rate of up to 20bit/s. Because no assumptions about the target platforms are made for
the design concepts, these covert channels can pose a security risk for any sensor-equipped
device.
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Kurzfassung

Jedes Jahr steigt die Zahl der Geräte, die an das Internet angeschlossen sind deutlich
an. Insbesondere im so genannten Internet der Dinge und im Bereich Smart Home ist
ein solcher Anstieg zu beobachten. Die meisten dieser Geräte haben eine Art einge-
betteten Sensor und die Anwendungen reichen von der Umweltüberwachung über das
Gesundheitswesen bis hin zu industriellen Anwendungen. In dieser Arbeit werden mehrere
Konzepte vorgestellt, die ungesicherte eingebettete Sensoren zum Aufbau verdeckter Kanäle
nutzen. Diese Konzepte reichen von sehr einfachen Ideen, wie dem Missbrauch ungenutzter
Sensorregister zur Datenübertragung, bis hin zu komplexeren verdeckten Kanälen, die oft
schwer vom normalen Nutzerverhalten zu unterscheiden und daher viel schwieriger zu
erkennen sind. Um die Bedeutung des Themas zu unterstreichen, werden darüber hinaus
zwei weitere Ansätze vorgestellt, die den Sensor-Stack von Android, einem weit verbre-
iteten Betriebssystem für moderne Smartphones, ausnutzen. Für jedes Konzept werden
verschiedene Gegenmaßnahmen vorgestellt und diskutiert. Für die Auswertung werden
die vorgeschlagenen Konzepte mit Hilfe einer modularen Testbed-Applikation umgesetzt,
die auf unterschiedliche Sensor- und Schnittstellen-Hardware erweiterbar ist. Da diese
Kanäle sehr anfällig für benutzergeneriertes ”Rauschen” sind, wird ein Request-Response-
Paket-System zur Bekämpfung der aus dem ”Rauschen” resultierenden Fehler eingesetzt.
Die Evaluation zeigt, dass alle vorgeschlagenen Ansätze erfolgreich in der Lage sind,
einen verdeckten Kanal zwischen zwei isolierten Prozessen aufzubauen. Während ein-
fache Kanäle einen Durchsatz von 4,8kbit/s erreichen, können die komplexeren Designs
nur Daten mit einer Rate von bis zu 20bit/s übertragen. Da bei den Designkonzepten keine
Annahmen über die Zielplattformen getroffen werden, können diese verdeckten Kanäle ein
Sicherheitsrisiko für jedes mit Sensoren ausgestattete Gerät darstellen.
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Chapter 1

Introduction

Every year, the number of devices that are connected to the Internet rises significantly.
Especially the number of Internet of Things (IoT)- and Smart Home devices started to grow
recently. Most of those devices have some kind of sensor embedded and applications for
enterprise IoT range from environmental monitoring [53], over healthcare [42] to industrial
applications [7]. On the consumer side, smartphones and wearables are very common items
and include a wide range of different sensors, such as accelerometers and ambient light
sensors. The later is often used to automatically adjust the screen brightness, based on
the ambient light level, while accelerometers are needed to recognize motion and wake up
the device. In Figure 1.1, a forecast is given with multiple categories.

Figure 1.1: Number of devices connected to the Internet [49]
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Sensors are observing the physical properties of their environment. As such properties
are often private, i.e., health care data [62] or industrial espionage [48], there are some
major privacy concerns. If an attacker is able to access such private data, the victim can
be harmed in a personal or financial manner. For companies, it can result in significant
damage to their reputation if any customer data is leaked. Therefore, it is considered
a high priority to keep the private data safe and secure. Another important aspect is
the trustworthiness of data [55]. Using false data injection attacks, attackers are able to
manipulate cyber-physical systems by tampering with the sensor-data [34]. If the targeted
systems are medical devices, such attacks could possibly threaten human lives [11]. To
counteract such attacks, modern mobile operating systems are using a permission system
to secure sensors interfaces. Unfortunately, these systems are often too coarse or do not
apply to all sensors and therefore also present security issues [53]. These problems with
the permission system are mostly associated with privacy concerns, but can also be used
to build so-called covert channels, which are the main topic of this thesis.

1.1 Problem Statement

The confinement problem is a well-known topic. It describes the problem of preventing an
entity (physical or software) from leaking any kind of confidential information. To achieve
this goal, the entities are put into isolation. For software isolation, the most common ways
are either Virtual Machines (VMs) or so-called Sandboxes. VMs simulate hardware such
that the isolated program can perform like on a physical system, but without being able to
break out of the VM. Furthermore, a program is not able to distinguish between a physical
and a simulated system. Nevertheless, there still exists the problem of shared resources
like CPU, memory, sensors, etc. Some of the related work covered in Chapter 2, shows
that it is still possible to leak data across Virtual Machines. The other common technique
to confine a program is sandboxing. A sandbox creates a controlled environment in which
the program is executed. One of the most prominent examples is Google Android, which
implements an ”Application Sandbox” [22] into the kernel and uses a permission system
to control all of the interactions with elements outside of the sandbox.

Side Channels. A side channel is considered information, which is leaked intentional
or unintentional by an entity while performing operations and can be observed by oth-
ers. For example, if a program is executing multiple calculations with different processing
complexities, based on the CPU usage, other programs may be able to distinguish be-
tween the different calculations. Some effects are even observable from outside, such as
timing, power consumption, or electromagnetic emanation [32, 37, 39]. For intentional
side channels, also called active side channels, the attacker requires physical access to the
device [17]. These channels can be used to encode data which can be observed by another
process, effectively building a communication channel or so-called covert channel.

Covert Channels. In 1973, Butler W. Lampson defined covert channels as channels,
which are not intended for information transfer at all [35]. These channels are built using
side-channel information that is observable by at least one of the applications and can
be manipulated by the other application. Covert channels can be used by two isolated
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processes, which are normally prohibited to interact with each other, to communicate. A
basic graphical representation of a covert channel is given in Figure 1.2.

Figure 1.2: Basic concept of a covert channel

For all covert channel concepts presented in this thesis, the system model shown in Figure
1.3 applies. It is comprised of two processes which are both isolated. Direct communica-
tion between isolated processes is prohibited by a strict permission model. Both processes
require access to the same sensor as part of their normal tasks. This sensor is therefore
considered a shared resource that can be used to build a covert channel if not secured
correctly. The model assumes that one of the processes (sender) is in possession of confi-
dential information and the attacker wants to transmit this information to another process
(receiver). Using its ability to control the behavior of the sensor, the sender encodes this
information into a side channel. The receiver is able to observe the encoded information
by monitoring the sensor.

Figure 1.3: Simple system model with two processes in isolation using a sensor as to build
a covert channel
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1.2 Thesis Contributions

In this thesis, five covert channel concepts are presented. The first three exploit the
unsecured registers of an embedded sensor. The channels allow different data rates with
a trade-off in the likelihood of being detected. For each of the channels, countermeasures
are proposed which have to be either implemented in hardware or software. To allow the
evaluation of the covert channels on different sensors, a modular application was developed.
This test application can be extended to support other sensors, hardware interfaces, and
attacks. The application also integrates a packet system, which is used to control the data
flow and enables error correction. To show the viability of covert channels on modern
operating systems, two additional concepts are introduced that exploit the android sensor
stack. These concepts are evaluated using both, the Android simulator and a real-world
device. The results are compared with the other covert channel designs.
This master thesis was part of the IoSense project. 1

1.3 Thesis Structure

This thesis is structured into five chapters. In Chapter 2, related work is presented, which
is split into four sections, each covering a different side-channel category: cache-, memory-,
network-, and sensor-based. For each section, a few selected publications are explained
to give some insight into other popular covert channel ideas and designs. Following up,
in Chapter 3, the side-channel concepts developed during this thesis are introduced and
explained in more detail. The designs are split into two major categories: direct-access
and managed-access. For each category, some relevant platforms and operating systems
are discussed first, followed by the covert channel concepts in increasing complexity, in-
cluding initialization and synchronization. For each design, ideas for countermeasures are
presented as well. These designs are implemented using a layered abstraction approach
that is discussed in more detail in Chapter 4. Using this implementation, the designs are
evaluated in terms of throughput. Finally, in Chapter 5, a conclusion is given followed by
an outlook and ideas for future work.

1The IoSense project has received funding from the Electronic Component Systems for European Lead-
ership Joint Undertaking under grant agreement No 692480. This Joint Undertaking receives support from
the European Unions Horizon 2020 research and innovation programme and Germany, Netherlands, Spain,
Austria, Belgium, Slovakia.



Chapter 2

Related Work

This chapter introduces some important publications of multiple closely related fields.
These range from very fast side-channel attacks that target the cache or memory of a
device, covered in Section 2.1 and Section 2.2, to considerably slower attacks on sensor-
systems, covered in Section 2.4. In Section 2.3 network-based side-channels are discussed,
which can be a big threat in typical IoT applications.

2.1 Cache Side-Channel Attacks

In modern processor architectures different levels of caches are used to achieve a good
balance between speed and cost. The cost rises exponentially in regards to throughput,
therefore the usage of the highest-speed cache is kept to a minimum. The cache hierarchy
of a modern Intel CPU is shown in Figure 2.1. The CPU consists of four cores, of which
each has a separate L1 and L2 cache. The L3 cache is shared between all cores and also
know as Last-Level-Cache (LLC).

Figure 2.1: Simplified view of a modern CPU architecture.

As most systems cannot be influenced in a way that programs run on a specific core, the
attacker tries to focus its exploits on the LLC which can be accessed from all cores. In
modern Intel systems, the LLC is an inclusive cache, which means it contains copies of the

15
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data stored in all L1 and L2 caches. If some of the data is removed from the LLC cache
it gets also removed from the corresponding L1 and L2 cache.

Another important concept that enables the cache attacks is page sharing. This technique
is implemented in modern operating systems to reduce the memory footprint of running
processes. For example, if multiple processes use the same shared library, the operating
system keeps only one instance of this library in memory and shares the corresponding
pages with all processes. There is also a more aggressive approach of page sharing called
memory de-duplication which is implemented in widely used hypervisors like VMware ESX
[57]. If this form of page sharing is enabled, the system tries to find pages in memory that
contain the exact same content. All but one of those pages get evicted and all references
are updated to use the single remaining instance. This comes with security issues as a
malicious process can alter the shared pages. To circumvent this, shared pages are mapped
as copy-on-write. If a process tries to modify the contents of the page, a copy of the page
is created and mapped to this process instead of the shared page. That process introduces
a delay which can be exploited by the following attacks.

Prime+Probe: The Prime+Probe attack [63] was proposed in 2005 and is one of the
first sophisticated cache side-channel attacks. The goal was to learn about the memory
access patterns of another process and therefore to be able to perform a full key extraction
during or after an encryption.

(a) (b)

Figure 2.2: Schematics of cache states for the Prime+Probe attack

To perform the attack, first a contiguous byte array A is allocated by the attacker. Then,
for each encryption of a plaintext p the attacker performs the following steps:

• (prime) Read at least one value from each memory block in A. This fills the cache
with the attacker’s data. See Figure 2.2a

• Trigger an encryption of p, which will cause some eviction of the attacker’s memory
blocks. See Figure 2.2b
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• (probe) Read data from array A to check which cache sets were evicted by the
victim. If a cache set was accessed during the encryption, it will contain the victim’s
data. Therefore the read action of the attacker will take more time as the attacker’s
data has to be loaded into the cache again. This timing difference is monitored and
evaluated.

Flush+Reload: The Flush+Reload attack [61] is an extension of the Gullasch et al.
attack [24], that allows cross-core and even cross-VM attacks by focusing the LLC. The
second advantage in contrast to prior methods is the high fidelity and the resistance to
false positives. This is very important, as a low-resolution attack is not able to provide
the fine granularity that is required for tasks like cryptanalysis. This attack is a variant
of the Prime+Probe attack described in the previous paragraph. Like Prime+Probe it
consists of three phases per attack cycle:

• Flush the monitored cache lines to prepare the attack.

• Trigger an encryption of p, which will cause the victim to reload some of the previ-
ously evicted data back into the cache.

• Read the cache lines to check which cache lines were reloaded by the victim. If
a cache set was accessed during the encryption, it will contain the victim’s data.
Therefore the read action of the attacker will take less time as the requested data
is already in the cache. See Figure 2.3b Otherwise, the data has to be loaded into
the cache which takes more time. This timing difference is monitored and evaluated.
See Figure 2.3b

(a)

(b)

(c)

Figure 2.3: Timing diagram for the Flush+Reload attack

As pictured in Figure 2.3c, the reload time does not depend on the number of memory
accesses. This means, an attacker is only able to tell if the cache line was read by one of



CHAPTER 2. RELATED WORK 18

the victims, but not how often it was read. With this approach, the authors were able to
successfully reveal 90% of the victim’s key bits during a cross-VM attack. If both processes
run on the same core it is even possible to recover the whole key by observing two or more
signatures.

Flush+Flush: The Flush+Flush attack [23] exploits the same properties as the previ-
ously introduced Flush+Reload attack. In contrast to Flush+Reload, Flush+Flush only
uses the clflush command and exploits the difference in execution times between data that
is present in the cache and data that is not. Further, the authors implemented a moni-
toring tool using performance counters, that monitors cache references and cache misses
of the LLC. This tool was able to detect other existing attacks as shown in Table 2.1.
When an attack is mounted using Flush+Reload or Prime+Probe, the number of cache
references and most important the number of cache misses skyrockets.

Technique Cache references Cache misses Execution (s) Stealthy

Flush+Reload 1000 ∗ 106 16284602 215 No
Prime+Probe 4222 ∗ 106 294897508 235 No
Flush+Flush 768 ∗ 106 1741 163 Yes

Table 2.1: Comparison of the performance counters when performing 256 million encryp-
tions with different cache attacks

Jidong Xiao et al [60] investigated the implications of memory deduplication which was
already explained in the beginning of this Section. Using memory deduplication, hypervi-
sors try to merge identical pages into one single page to increase memory efficiency. This
comes with drawbacks in security as it creates a ”shared medium” between multiple dif-
ferent processes or even different virtual machines. The goal of the authors was to design,
implement and evaluate a cross-VM covert channel that is resilient to noise and ensures
a high bit rate. As mentioned in Section , when a process performs a write operation on
a shared page, the hypervisor first creates a copy of the original page and redirects the
write operation to this new page. While this ensures that other processes that currently
use the shared page are not affected, it introduces a short delay. This delay is used to
build the covert channel. In the first step, both the sender and the receiver open the same
file. This file is loaded into memory and the sender changes some parts based on a ”pro-
tocol”. Some parts of the file are still the same for both processes, so the hypervisor uses
memory deduplication. Now, the receiver overwrites the whole file and therefore forces
the hypervisor to perform copy-on-write operations on shared pages. The whole process
is monitored by the receiver, which is now able to identify based on timing which pages
the sender had accessed before. The whole procedure is visualized in Figure 2.4.
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Figure 2.4: Memory covert channel overview

One of the biggest problems cache side-channels are facing is the aggressive noise in-
troduced by other processes, the operating systems and hypervisors. Therefore, it was
assumed that the noise effectively prevents attackers from using cache side-channels as
functional covert channels. The research work ”Hello from the Other Side: SSH over Ro-
bust Cache Covert Channels in the Cloud” [41] tackles that assumption and introduces
the concept of error-correcting codes to cache based side-channels. They implement a
packet system using a request-response architecture. Request packets only contain the id
of the requested data packet. This means, the packet is really small and an algorithm with
error-correction can be used. As these error-correcting codes (ECC) need to encode the
input, which results in an exponential message length of m = 2k for the Hadamard code for
example, they would introduce too much overhead for the data packets. Error-detecting
codes (EDC), like Berger codes, calculate a checksum that is appended on the end of a
packet. This adds a much lower overhead resulting in a logarithmic message length of
m = k+ log(k+ 1). Table 2.2 shows the size difference of Hadamard and Berger codes for
different input lengths.

Input length Hadamard (ECC) Berger (EDC)

1 2 2
2 4 3
5 32 6
10 1024 12
20 1048576 22

Table 2.2: Comparison of the size differences between Hadamard and Berger codes
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The packet system, ECC and EDC codes are described in more detail in Section 3.3.
Because they still experienced some errors, in addition to the EDC and ECC in their
physical layer, the authors also introduced a data-link layer. This layer contains another
error-correcting code. To achieve fast encoding and decoding speeds, Reed-Solomon codes
(RS codes) with a 10% error-correction were chosen. This resulted in a channel with an
achievable 0.00% error rate. For their experiments Maurice et.al implemented an SSH
channel over the proposed covert channel 2.5. Other state-of-the-art channels are not able
to provide the reliability required for TCP, as it expects the physical layer to transmit
the data without errors. They tested the stability of the channel during different server
loads and found that the connection was unstable only in high load scenarios. This shows
that, given the correct implementation, covert-channels can be a real threat in cloud
environments.

Figure 2.5: TCP connection over a cache based covert channel
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2.2 Memory Side-Channel Attacks

Memory side-channel attacks follow a very similar pattern like the cache side-channel
attacks discussed in Section 2.1. Instead of L1, L2 or the last-level cache, memory side-
channel attacks target either the DRAM directly or files and variables present in the
DRAM or saved to the hard drive disks (HDD) of a system. In general, these channels
are much slower because the physical hardware has a much lower throughput. Current
generation DRAM delivers raw speeds of up to 25GB/s whereas last-level-caches are able
do achieve 150+GB/s. Conventional HDDs are even slower, reaching 100MB/s. Looking
at the system model shown in Figure 2.6, it can be seen that memory is the next layer on
top of the CPU. The memory is shared between multiple CPUs in dual-socket systems,
which enables cross-CPU attacks. Modern Servers often use such a dual CPU design
because of the space restrictions in datacenters. An attack that is able to establish a side-
channel across different CPUs is therefore a realistic threat for modern cloud applications.

Figure 2.6: System model including main memory

Gruss et al. [43] presented methods to reverse engineer the memory address mapping of
DRAM in regards to DRAM channels, ranks and banks. Using the gained knowledge, they
introduce an attack that exploits the shared DRAM row buffer. The DRAM row buffer
is one of the core elements in the storage organization. Other elements from high- level
to low-level are: channel, DIMM, rank, chip, bank, row, column, and memory cell. The
channels are the physical links between the memory controller and the DIMM modules.
Multiple channels can be accessed in parallel, which speeds up the data transmission. Dual
Inline Memory Modules (DIMMs) are the actual physical PCB modules that contain the
DRAM chips on both sides. These chips are grouped into ranks, where each side of the
DIMM represents a single rank. Each of the ranks consists of 8 banks (16 for DDR4)
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which are also used in parallel for a significant speed increase on a memory level. Finally
the banks consist of memory cells which are grouped into rows and columns. To further
speed up multiple accesses to the same memory location, the memory modules contain
row buffers that act as a cache within the DRAM. Figure 2.7 shows the location of the
row buffer in the organization hierarchy. It sits directly between the individual banks
and the memory bus. The access times vary between ∼20ns for cached rows, ∼40ns for
empty row buffer access and ∼60ns for conflicts. A conflict happens when a row other
than the cached row is accessed. The row buffer has to close the active row and activate
the requested row. This procedure introduces the ∼40ns delay.

Figure 2.7: Simple view of the organization of DRAM

To be able to exploit the DRAM row buffer and build a covert channel, the attacker has to
know the memory address mapping function. This function varies between different mem-
ory types and systems, so the authors introduced a fully automatic reverse engineering
method. First a list of address pairs that use the same bank must be determined. This
is done by accessing two addresses in an alternating fashion and measuring the access
time. If the time is significantly higher, the addresses belong to the same bank but not the
same row, as the delay comes from the row conflicts. With the known address pairs, the
addressing functions can be reconstructed. Depending on the page size, either all partial
functions up to a20 for 2MB pages or up to a30 for 1GB pages can be recovered. Bits
above a30 or below a5 can be ignored as they are not used for bank addressing. With a
brute-force approach, the authors generated all possible linear functions for the remaining
bits. These functions are then tested and filtered using the list of address pairs. Only if
both addresses of a pair result in the same bank, the function is added to a list of possi-
ble addressing functions. The resulting list can then be used in the next step to build a
cross-CPU covert channel.
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Figure 2.8: Covert channel using DRAM row buffer

Using the method described in the previous paragraph, the attacker determines possible
addressing functions. Then, starting with the shortest function, he searches for address
pairs that share the same bank but not the row. Receiver and sender choose rows based
on these addresses, which is illustrated in Figure 2.8. The receiver accesses its memory
locations periodically and measures the access time. If the sender also reads or writes to
its memory, the next time the receiver tries to access it, the access time will be significantly
greater because of the row conflict. The authors determined that multiple (CPU, channel,
DIMM, rank, bank) tuples can be used in parallel but this will introduce noise and is only
applicable to a certain point.
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2.3 Network Side-Channel Attacks

This section will cover multiple different approaches to network side-channel attacks. In
contrast to the previous side-channels, with network-based attacks it is possible to build
covert channels between multiple independent entities. This is especially critical in mod-
ern industrial Internet of things applications that rely heavily on network structures (mesh
networks, etc.). Because the network medium is significantly slower than DRAM or cache
memory, the resulting side- and covert channels are also much slower. The extended sys-
tem model is visualized in Figure 2.9. To keep it simple, some details shown in Figure 2.1
and 2.6 were omitted.

Figure 2.9: Covert channel using DRAM row buffer

In 1987 C. Gray Girling [18] investigated local area networks (LANs) and their vulner-
ability to covert channels. The author describes three different approaches: using the
address field, the length of a data block and the time between successive transmissions.
These are concepts defined on an abstract level that are independent from the network
protocol. For example, if the attacker is able to send messages to 16 different addresses,
he could encode 4 bits of information by sending a message to a specific address. The
receiver monitors the network and keeps track of the addresses, the sender used. Another
method proposed by Girling exploits the dynamic length of a data block. In most network
protocols, the data block length has to be specified by the sender to tell the receiver how
many bytes of data should be parsed. This can be used to encode data directly into the
block length. For example, the commonly used IP header, see Figure 2.10, defines a 16 bit
”Total Length” field, which according to the RCF791 specification is ”the length of the
datagram, measured in octets, including internet header and data.” [25].
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Figure 2.10: IP header format with additional options, padding and data sections

The third attack targets the time between successive transmissions. If a process is able to
monitor the timestamps of packets, it can also calculate the difference between transmis-
sions. The sender encodes data by using different delays for successive send operations.
These delays are known by the receiving process. Because networks can introduce signifi-
cant delays, it is important to define an appropriate distance between timing thresholds.
All of these approaches can be assigned into one of two major groups, the covert stor-
age channels and the covert timing channels. Covert storage channels use some form of
shared memory to transfer data between the sender and receiver, whereas covert timing
channels try to hide time modulated data in existing procedures. Since the original paper
was released, many other researchers introduced different covert channel ideas related to
concepts of Girling. Ahsan et al. [1] use a stego algorithm framework to inject data into
TCP/IP packets which are transferred between two communicating parties. To improve
the security of the channel in some versions, they also proposed the usage of a shared
symmetric secret key during the encoding and decoding, such that no other entities are
able to detect the plaintext information. The first convert channel design introduced by
Ahsan et al. is based on the manipulation of the IP header fields. As shown in Figure
2.10, the IP header consists of many different fields and some of them can be redundant
based on the application. For example, the flags field consists of three bits, representing
”Reserved”, ”Don’t Fragment” (DF), and ”More Fragments” (MF), which are all related
to packet fragmentation. According to the specification [25], the DF flag is used to sig-
nal that the packet should not be fragmented, so it just gets dropped if it is too large.
Under normal circumstances (e.g. the packet size is smaller than the MTU) this flag will
always be ignored, so it is a perfect candidate to embed one bit of information. The sec-
ond approach introduced by Ahsan et al. uses part of the 16-bit identification field, also
shown in Figure 2.10. This field is used by the receiver to identify related packages when
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assembling fragments. It is important that no two messages share the same identification
value, therefore so-called ”toral automorphism systems” are employed. These systems
generate statistically unrelated families of sorted sequences from a key k and dimension
N . For each symbol different unique sequences can be selected from the sorted sequences
to scramble the encoded input. This ensures a high resistance to statistical cryptanalysis.
A simple block diagram of this procedure is visualized in Figure 2.11. In addition to these
two methods, the authors show that it is also possible to apply the toral automorphism
systems to the packet sorting in the IPSec protocol.

Figure 2.11: Block diagram for the proposed covert channel

The ideas, discussed in the previous paragraph can also be applied to different types of
protocols and networks. For example, Lilia Frikha et al. [16] introduce two covert channel
designs that use fields in the 802.11 Header to secretly transmit data between different
parties in wireless local area networks. The first design is based on the sequence control
field, which is very similar to the identifier field in the IP header. The second design is
based on the IV field, which consists of a 3byte Initial Vector, a 6bit Pad, and a 2bit
Key ID. Because the Initial Vector is chosen randomly for normal transmissions, network
sniffers will mostly ignore changes to this field.
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2.4 Sensor Side-Channel Attacks

In this section, sensor side-channel attacks that target wireless sensor networks and mobile
devices are discussed in more detail. The first part covers attacks on various layers of a
WSN as shown by Jaydip Sen [51]. After that, multiple publications introducing side-
channels for smartphones are presented.

2.4.1 Wireless Sensor Networks

A Wireless Sensor Network (WSN) is a network of a large number of nodes, that are
used to measure physical properties. This data gets sent to a central entity that stores it
for further processing. In most cases, the sensor nodes have no access to a main power
connection and therefore have to rely on a dedicated battery and energy harvesting tech-
niques. Further, they are restricted in terms of memory and processing power, which
limits the available security algorithms. Other problems arise because of the unreliable
communication induced through connectionless protocols and the unattended operation
of the sensor nodes. This opens the nodes up to denial of service attacks and physical
tampering. While low-level attacks only try to prevent communication between nodes by
Jamming, Collision, Exhaustion or Unfairness [51], on higher levels (network and routing)
attackers are also able to influence routing.

Network Attacks Defence

Physical Jamming Spread-spectrum, priority messages,
lower duty cycle, region mapping

Tampering Tamper-proofing, hiding

Link Collision Error-correcting code
Exhaustion Rate limitation
Unfairness Small frames

Network Spoofed, Egress filtering, authentication, monitoring
and Selective forwarding Redundancy, probing
routing Sinkhole Authentication, monitoring, redundancy

Sybil Authentication, probing
Wormholes Authentication
Hello flood Authentication
Acknowledgement spoofing Authentication

Transport Flooding Client puzzles
Desynchronization Authentication

Table 2.3: Sensor network layers, attacks and defences [58]

With mechanisms like Sinkholes and Wormholes, the attacker reroutes all traffic through
a compromised node. This allows him to either save and analyze the data or advanced
techniques like Spoofing, Replay attacks or Selective Forwarding [31]. Table 2.3 shows
an overview of attacks and defenses for different layers in a WSN. Most of the higher
level attacks can be prevented by adding some form of authentication. This is not trivial,
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because WSNs lack memory and processing power and are restricted in energy. Manik Lal
Das [10] presented a two-factor user authentication protocol, that is efficient for WSNs
and provides strong authentication and a method for establishing the session key. This
protocol is divided into two phases, a registration phase and an authentication phase.
During the registration phase, new nodes are registered at the gateway using an id and
password combination. The gateway creates a personalized smart card which is given to
the user. Upon further communication the user has to provide his smart card and the
id and password combination. Each request is verified by the gateway and sent to the
sensor node, which then responds with the data. This approach will prevent spoofing and
replay attacks, but cannot prevent other attacks like sinkhole, wormhole, etc. Because
most attacks target different parts of the system and protocols, it is hard to design an
all-purpose countermeasure.

2.4.2 Smartphones

The important role modern smartphones play in everyday life, led to an increase in research
effort to find and mitigate side- and covert-channels. There are two main competitors when
it comes to smartphone operating systems: Android with a market share of 73.92% and
iOS with 25.19% (Figure 2.12). Because of this, most research work is related to these
two operating systems. As shown by many different research groups, there exist a large
number of vulnerabilities, which even led to attacks that are able to guess PINs with
an accuracy of 73% [52]. Existing publications can be split into two major groups, one
targeting side-channels which enable communication between processes on a single device,
and the other focusing on inter-device covert channels. There is also a special version of
Android for Internet of Things applications, Android Things [21].

Figure 2.12: Market Share of mobile Operating Systems [54]
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Because most of this operating system is equal to a standard version of Android, devices
running Android Things are also vulnerable to the attacks discussed in this section. Fur-
ther, the IoT version integrates a Peripheral I/O API which gives users direct access to
the serial communication buses. This opens up possibilities for attacks directly on the
sensor level. To prevent abuse and leakage of user data, Android implements a permission
system. For example, if an application wants to access global storage (photos, videos,
etc.) or the camera, it has to request a permission. In older Android versions, permissions
had to be defined when installing a new application, even if they are never used. Newer
versions (6.0+) are able to request runtime permissions on accessing the protected resource.

Adrienne Porter Felt et. al [13] performed two user studies questioning participants if
they pay attention to the permissions of applications during installation and if users are
able to correctly define some permissions by name. They confirmed that only 17% of
the participants read the permissions and only 3% could correctly identify the scope of
permissions like READ CONTACTS and READ PHONE STATE which was already pre-
dicted by other researchers. The second big problem is, that some sensors can be accessed
without any permissions, as they do not provide any confidential data under normal cir-
cumstances. Researchers have abused this in multiple instances. Raphael Spreitzer [52]
has shown that it is possible to classify a PIN from only the light level measured during
input. For each button click, the light level changes slightly based on the digit entered. If
a PIN is entered multiple times, a recurring pattern can be observed as shown in Figure
2.13.

Figure 2.13: Ambient light level during PIN entry

To be able to classify patterns, first a training phase is needed. For this, the author
suggests a simple application, where users have to solve mathematical puzzles and enter
the result in the same way they would enter a pin. After enough samples are gathered,
a second phase, the exploitation phase starts. In this phase, the user is referred to the
target application, where he enters his secret pin. The measurements of the ambient light
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sensor are then used to deduce the entered pin by using machine learning algorithms. This
method is able to recover 65% within 5 guesses. There are also other approaches that use
different sensors, like accelerometer, gyroscope, camera, and microphone, which are able
to achieve 43% - 50% recovery rate [2, 12].



Chapter 3

Covert Channels Design

This chapter introduces the different attacks developed throughout this thesis. The first
part will cover the very basic attacks, performed with direct hardware access. After that,
a more sophisticated attack, designed to perform on a widely used mobile platform, is
described in more detail and potential countermeasures are discussed for each attack. To
decrease the influence of noise and therefore also decrease the error probability, a packet
system is introduced in Section 3.3. This includes features, such as a request-response
protocol, error correction, error detection, and dynamic packet length.

3.1 Direct-Access Sensors

For this thesis, the sensor access type is an important aspect as it defines the available
interactions. In this section, different platforms and attack designs are covered that rely
on direct access to the sensor interfaces. This could be either direct access to the hardware
interface, e.g. Inter-Integrated Circuit (I2C), or via a device driver that allows users to
fully control all aspects of the sensor. The more sophisticated attacks need less permissions
than the very basic ones.

3.1.1 Platforms

Two different platforms were chosen for the design, implementation, and evaluation of
the covert channels. The first one is a very simple sensor node manufactured by Texas
Instruments. Such nodes are commonly used in wireless sensor networks because of their
connectivity and low power requirements. A variety of operating systems is available,
which are mostly open-source projects. Section 3.1.1.1 covers some of the more popular
operating systems for sensor nodes in more detail. For the second platform, a basic Linux
environment was chosen, as this is the most common system used for edge nodes or sensor
nodes that require more processing power than typical wireless sensor nodes.

3.1.1.1 Texas Instruments

Texas Instruments [26] is a large manufacturer of embedded processors and integrated
circuit products for power management and signal chain processing (example: sensors for
pressure, temperature, humidity, etc.). In terms of processing power and operating system

31
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features, this platform is the most basic one of the three platforms discussed throughout
this thesis.

The operating system is a critical point in this thesis as it handles the access to hard-
ware buses and therefore sensors, process scheduling and multithreading. The latter is
specially important for smaller microcontroller systems because of their limited process-
ing power. These systems do not always support multithreading because of the overhead
it entails and the relevant platforms mostly consist of only one processor core. Systems
that only support one process are not in the scope of this thesis. Some of the more known
systems, which support multiple processes, include:

• Contiki

• FreeRTOS

• Zephyr

• TI-RTOS

Contiki: Contiki [8] is an open-source operating system designed for Internet of Things
applications. It requires very little memory, making it a good choice for many low-cost
devices. As the CC2650 SensorTag is one of the officially supported hardware platforms,
drivers for the sensors listed in Table 4.2 already exist. These drivers provide basic func-
tionality to enable and configure a sensor, to wait for a result ready flag and to read the
result and the status registers. This limits the design of the covert channel as a process is
not able to read and write the same register. Furthermore, it is also not able to distinguish
between individual bits of the result ready information for hybrid sensors1. To get full
access to the sensors, either a custom driver or a direct implementation of the I2C protocol
inside the process is required.

FreeRTOS: FreeRTOS [38] is developed by Real Time Engineers Ltd. in a partnership
with multiple large companies like ARM, Infineon, Microchip, NXP, Texas Instruments
and others. It is distributed under an MIT open-source license and the stewardship of
Amazon. Amazon Web Services provides multiple Software as a Service (SaaS) that
integrate FreeRTOS into the Amazon cloud. The FreeRTOS kernel is built to support a
wide variety of different platforms and is able to fit on very small systems because of a very
small compiled binary image (6Kb). There exists also a commercial option, OpenRTOS,
which is compatible with the base version but adds warranty and legal protection. For
applications with higher security requirements, like industrial, medical, and automotive,
there exists a special version called SafeRTOS. The CC2650 SensorTag is not supported
directly, but its microprocessor, the MSP430, is supported. There exists some information
about porting the FreeRTOS kernel to the CC2650 SensorTag, but this is out of scope for
this thesis.

1sensors with more than one internal sensors
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Zephyr: Like the other RTOS systems, the Zephyr OS [64] is based on a small kernel
that is designed to be able to run on memory-constrained platforms. It is open-source
and supported by companies such as Intel, Nordic Semiconductor, and NXP. The official
repository supports more than 200 different hardware platforms, including the CC2650
SensorTag.

TI-RTOS: TI-RTOS [29] is a real time operating system developed by Texas Instru-
ments specifically for their own microcontroller product line. It bundles multiple compo-
nents into a downloadable package, including:

• SYS/BIOS: A scalable real-time kernel

• Drivers: Generall drivers, supporting all available platforms

• NDK: Network Developer’s Kit

• UIA: Unified Instrumentation Architecture

• XDCtools: Configuration tools

• Device specific libraries

TI-RTOS also includes some examples, which were used in the evaluation part of this
thesis. A graphical representation of the TI-RTOS core structure can be seen in Figure
3.1. Important parts of this structure are the real-time kernel, because it handles the multi-
threading, and the drivers as they handle the sensor communication. The modules only
include basic functionality, such as an I2C bus implementation, but no specific drivers for
external components, like sensors. Thus, if a user wants to interact with sensors connected
to the I2C bus, either a custom driver library has to be implemented or the I2C bus needs
to be directly accessed in the program code.

Scheduling: The scheduling is handled by Texas Instruments’ real-time kernel. In a
typical application there are three types of threads supported by the scheduler:

• Interrupt Service Routines (ISRs): High priority hardware- and software-
interrupts

• Tasks: User applications are implemented as tasks.

• Idle: The idle thread is executed when no other tasks or ISRs are ready.

These thread types are listed in descending priority. Additionally, tasks have their own
priority, which is used to determine the order, tasks should be executed in. There are two
types of scheduling:

• Preemptive Scheduling: Tasks can be preempted by calling sleep() or when a
higher priority task gets ready to execute.

• Time-sliced Scheduling: Every thread gets the same amount of time to run.
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Figure 3.1: TI-RTOS: graphical overview

If all tasks in a system have the same priority, the scheduler will rotate through them in
the same order. An example of preemptive scheduling is visualized in Figure 3.2. The ISR
preempts all other tasks, but has a very short execution time. Task A is a high priority
task, that runs before all other tasks. Task B and task C have the same priority, so the
scheduler alternates between them.

Figure 3.2: TI-RTOS: scheduling example

This alternation is very helpful for building channels between two processes as it can be
used as a synchronization mechanism.
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3.1.1.2 Linux

Besides the already covered operating systems especially designed for sensor nodes, Linux
is the most used platform for wireless sensor networks. It is frequently used for developing
lower-level software, which often requires some form of sensor access. In the mobile sector,
Android is the most used operating system and is based on the Linux kernel. Therefore,
Linux is a very good pick for implementing and testing covert channels.

In Linux, there are two major ways an application can access hardware interfaces: device
drivers and dev-mappings. Device drivers are either bundled with the installed distribu-
tion or have to be provided by the manufacturer. For example, the Raspberry Pi uses
Raspbian, a Linux distribution which is a custom version of Debian. To access a sensor
over the integrated I2C bus, first the corresponding driver has to be enabled. The bundled
driver maps the I2C interface to a file descriptor in the /dev directory. This file descriptor
can then be accessed using the file open function in C++. For more restricted distribu-
tions, a custom device driver may exist that abstracts the hardware interfaces and only
allows access to certain parts. Another important aspect is multi-threading. In contrast to
previously covered operating systems, Linux implements real multithreading and multiple
processes can and will be executed in parallel. Therefore the sending and receiving process
need to implement a synchronization mechanism.
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3.1.2 Attack Design

3.1.2.1 Unused Register Attack

In this section an attack is introduced, which exploits unused registers of a sensor to
transmit data between two processes. The general idea is shown in Figure 3.3. Most of the
current sensors contain internal registers that serve different purposes. Some registers are
used to save result readings, others are used to configure the behavior of the sensor. While
the result and status registers are most certainly read-only registers, the configuration
registers are read- and write-able. To be able to make slight adjustments, the configuration
register needs to be read first. Then, the desired bits are changed and the whole byte is
sent back to the sensor. For example, when a user wants to change the measurement
speed, he can read the configuration register and change the relevant bits to fit his needs.
This is done via bit masking using and (&) and or (|) operations. If done correctly,
other bits are unaffected by these actions. After the modification, the user sends the new
configuration back to the sensor. There is also a third type of sensor register, which is
defined as ”reserved”. These registers can also be used to transmit data, but depending
on implementation of the sensors, this could affect its functionality. In general, datasheets
advise against changing of such reserved registers.

Figure 3.3: Schematic overview: sender and receiver communicating over unused register

A good example is the LPS25H[46] sensor manufactured by STMicroelectronics. This
sensor is an absolute piezoresistive pressure sensor that has an included threshold interrupt
feature. The user is able to configure the sensor to output a signal on an interrupt pin, if
the measured pressure exceeds a defined threshold. Therefore, the respective flag in the
configuration register must be set to enable threshold interrupts. Afterwards, the 8-bit
registers ”THS P H” and ”THS P L” are used to define the upper and lower part of the
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7 6 5 4 3 2 1 0

THS15 THS14 THS13 THS12 THS11 THS10 THS9 THS8

R/W R/W R/W R/W R/W R/W R/W R/W

7 6 5 4 3 2 1 0

THS7 THS6 THS5 THS4 THS3 THS2 THS1 THS0

R/W R/W R/W R/W R/W R/W R/W R/W

Table 3.1: THS P H and THS P L: threshold pressure registers

7 6 5 4 3 2 1 0

PD ODR2 ODR1 ODR0 DIFF EN BDU RESET AZ SIM

R/W R/W R/W R/W R/W R/W R/W R/W

Table 3.2: CTRL REG1: Control register 1

threshold. The threshold registers are shown in Table 3.1 and the relevant configuration
registers are shown in Table 3.2. If the DIFF EN flag in the CTRL REG1 register is
false, all interrupts are disabled. Therefore, the THS P H and THS P L registers are not
used by the current application, but are still read- and write-able. An adversary is able to
exploit that, by using these registers as a covert channel between two (isolated) processes.
To establish a communication, one process acts as the sender and the other process acts
as the receiver. The threat model for this example was introduced in Section 1.1.

Initialization: For the initialization of the covert channel, the sender first has to write
a specified codeword to the register, e.g. 01010101. Afterwards, the sender has to wait
until the receiver ”acknowledges” the initialization by sending an inverted synchronization
bit, e.g. the Most Significant Bit (MSB), to the register (11010101 ). This completes the
initialization step and the sender can now start the data transmission. If, at any time
during the process, an unexpected value is read from the register, it has to be checked if the
interrupt mechanism was activated. In that case, no more write actions should occur until
the interrupt mechanism is deactivated again. This decreases the detectability of the covert
channel. After the mechanism is deactivated by the user that has previously activated it,
the transmission can either be resumed or restarted, depending on the preferred strategy.

Synchronization: Depending on the type of scheduling, the sender and receiver pro-
cesses might have to implement a synchronization mechanism. Without this mechanism,
two types of errors can occur: deletion- and insertion-errors. The first type, deletion-
errors, can appear, if the sender is scheduled more frequently than the receiver. In this
case, the sender will overwrite the transmitted data in the register before the receiver
was able to read it. Because the receiver has no way to detect this error, it will read the
new data and append it to the already received data, causing corruption. The other type
of errors, insertion-errors, occur when the receiver is scheduled more frequently than the
sender. The receiver will keep reading data from the sensors register, interpreting it as
new data, independently of two consecutive data fragments containing the different data
or not. This leads to duplicate data fragments, which also cause data corruption. In very
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simple operating systems with pseudo-multi-threading, like Texas Instruments’ TI-RTOS,
threads get scheduled in the same order every time, so no additional synchronization is
necessary (see Section 3.1.1.1 for more information about the TI-RTOS scheduling). For
more complex operating systems, like Raspbian, that actually support real multithread-
ing, synchronization is very important to prevent said errors.

For this attack, a simple synchronization algorithm, that is easy to implement, is cho-
sen: The first bit of the exploited register(s) is used as a synchronization bit. This comes
with a trade-off. Because there are only n− 1 bits left for data, the data rate will be a bit
lower, compared to a transmission without synchronization. An example structure, for an
8bit register, is illustrated in Figure 3.4. This example is also used for the evaluation in
Section 4.3.

Figure 3.4: Register structure, for the 8bit THS P L register with synchronization bit

Before writing new data to the register(s), the synchronization bit is read. To guarantee
changes in the register, detectable by the opposite process, the synchronization bit is
inverted. Then n− 1 bits of data get appended to the inverted synchronization bit. After
that, the sending process is ready to write the new data block to the register(s). If the
receiver wants to send an acknowledgment (ack), it also inverts the synchronization bit,
but the appended data is irrelevant and left unchanged.
This procedure is illustrated in Figure 3.5 and explained step by step in the following part:

• The sender writes 0110010 to the register with the synchronization bit set to 0 :
00110010

• The receiver reads the data from the register, inverts the synchronization bit (0 →
1 ) and sends it back to the sensor as an acknowledgment: 10110010

• Until the changed synchronization bit is detected, the sender keeps reading the target
register.

• The sender writes the next data fragment 1110001 to the register, again with an
inverted synchronization bit (1 → 0 ): 01110001

• The receiver waits for the change and reads the new data fragment.

• After the acknowledgment, the next cycle starts and is repeated until the transmis-
sion is complete
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Figure 3.5: Synchronization procedure between sender and receiver to initialize a new
channel

Countermeasures: There exist many feasible countermeasures against this attack, that
are easy to implement. One possible approach would be, to change the threshold registers
to write-only. The only drawback is, that the user has to keep track of the threshold values
in the application instead of reading it from the sensor before any modification. Another
approach, which has to be implemented on the sensor-side, is to set all unused registers
to read-only mode by default. Only if such a register is enabled, it is set to read/write
mode. For example on the LPS25H, the threshold registers should only be interactive if
the corresponding DIFF EN flag in the CTRL REG1 register is set. Figure 3.6 shows a
diagram of the threshold logic of the LPS25H sensor.

There are also methods, that can be implemented on the driver-side. For example, by
restricting the access to the I2C bus, the users could be forced to use a special driver that
only allows certain actions such as reading a status flag or the result registers. This would
prevent any read access to the configuration registers, which will therefore also prevent
the proposed attack. Looking at available LPS25H drivers, some are implemented in a
way, that prevents this attack entirely, while others are very basic and can be exploited.
For example, the official SenseHat driver [45] is written in python and uses the RTIMULib
C++ driver [44] for sensor interactions. In the RTIMU library, there are no functions
available that allow a user to read or write to one of the threshold registers. Therefore, if
this driver is the only way to interact with the sensor, the attack described in this section
is not possible. Another example, a javascript driver [6] developed by Thomas Byrne,
implements functions for reading and writing most of the available registers. This makes
it possible for an adversary to perform the exploit on the unused registers of the sensor.
Because these drivers are userspace drivers, they do not prevent an attack from directly
accessing the I2C bus.
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Figure 3.6: LPS25H Thresshold Logic

3.1.2.2 Bit Manipulation Attack

This section describes the second attack, which tries to find single bits in configuration
registers, that will not impact the behavior of the sensor in a meaningful way. It is very
similar to the first attack, but will also work in an environment that is a bit more restrictive.
For example, if a sensor implements a simple countermeasure to the first attack and block
read- and write-access to unused sensor registers, this attack will still work. There are
different kinds of bits that are good candidates for small manipulations. A conceptual
illustration is shown in Figure 3.7.

As mentioned in the last section, sensors often have some registers that are marked as
”reserved” in the datasheet. These registers should not be changed, because it could
impact the behavior of the sensors in a negative way. This also applies to reserved bits.
Another candidate for manipulation are settings that have multiple states with the same
sensor behavior. An example is the mode of the OPT3001 ambient light sensor [28].
Because there are three different modes, this setting uses two bits. These bits provide four
states, but only three are actually used and the last one is a duplicate of state 3 (see Table
3.3).

Mode M[0] M[1]

Shutdown (default) 0 0
Single-shot 0 1

Continuous conversion 1 0
Continuous conversion 1 1

Table 3.3: OPT3001 operational modes

If an attacker switches between state 3 and 4, the sensor behavior does not change and
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Figure 3.7: Schematic overview: sender and receiver communicating over one threshold
bit

potential users are not disturbed. With only one bit, the synchronization method used in
the previous attack, does not work and another method has to be used. This is described
in more detail in Section 3.1.2.2. Instead of exploiting the mode bits in the configuration
register to transmit information, the least significant bit in the high- or low-limit registers
can be modified. This has very little impact on the reported value:

rfull = 40.95 lux

rlsb = 0.01 lux

plsb =
rlsb
rfull

∗ 100 =
0.01

40.95
∗ 100

= 0.0244%

Depending on the actual use case, a threshold change of ∼ 0.02% for the light level should
be neglectable. To make use of the synchronization method introduced in the last chapter,
at least two bits are necessary, where one bit is used for synchronization and the other for
actual data. These can either be from the same register or from two different registers.
If two bits of the threshold register are used, the change increases to a maximum of
∼ 0.07%. Alternatively both threshold registers can be used to keep the influence on the
sensor behavior at a minimum.

Initialization: The covert channel is initialized by the sender. A bit is flipped each
cycle to signal the availability of data. After a specified amount of bits was flipped,
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the sender waits for the receiver to respond. If the receiver is not available, the sender
starts the flipping procedure over again. The receiver monitors the bit and waits until
the flipping of the bit has stopped. Then the receiver starts by requesting the first data
packet. The sender should recognize the request, but some of the starting bits may have
been missed because of various delays. From this point onwards, the standard packet
procedures explained in Section 3.3 are used to determine the start of a request. The
receiver keeps requesting the same packet until the sender is able to decode the request
and starts the transmission of the payload.

Synchronization: If the attack is able to exploit two or more bits, at least one data bit
and one synchronization bit, the synchronization method introduced in Section 3.1.2.1 can
be used. In this case, instead of the register size, n equals the number of available bits. It
also has to be specified which bit is used as the synchronization bit. In cases where only
one bit is available, a different synchronization method has to be used. One such method
is only available for operating systems where the scheduler works in a deterministic way,
like TI-RTOS. As stated in Section 3.1.1, tasks with the same priority are scheduled using
a round-robin approach. Therefore, each time a task executes, it can be certain that all
other tasks where executed in between. The sender is now able to transmit n bits per cycle
as long as it is ensured that each operation is atomic. This is important because as soon
as the sender yields or enters a blocked state, the receiving process will be scheduled and
will try to read the transmitted bits, which may be incomplete. If possible it is advised to
use the first approach as it works independently of the used operating system.

Countermeasures: Looking at the countermeasures introduced in Section 3.1.2.1, not
all of them will work on this attack. The first proposal was to change some registers to
write-only. If the attacker chooses some threshold bits for example, this approach will
prevent him from reading those bits and therefore prevent the covert channel, like in the
last attack. But for the bit manipulation attack, the attack could also choose to use
some bits in a configuration register that needs to be read- and write-able. For example,
if the configuration register contains status bits, the users must be able to read those
bits to determine if the sensor readings are ready. A slightly adapted version of this
countermeasure could prevent both attacks by setting individual bits to be either read or
writeable, but not both. This could be implemented using bitmasks on the sensor side.
The second approach, proposed in Section 3.1.2.1, is to lock registers, that are currently
not used. This comes with the same drawbacks as the first countermeasure: depending on
the register bits chosen by the adversary, it would not have any impact. On the driver-
side, restrictions could be implemented to prevent attackers from reading and writing to
the same bits. For example, status bits could be only readable, while configuration bits
are write-only. This would prevent both attacks.

3.1.2.3 Read Only Attack

In this section, the third attack is introduced. This attack is designed to emulate normal
user behavior as close as possible, to avoid detection and to decrease the number of feasible
countermeasures. The drawback for this attack is the lower data rate compared to the
previous attacks, which is shown in detail in Section 4.3.
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There exist many sensors that have multiple internal ”sub-sensors”, in order to sense
different physical properties. A good example is the LPS25H pressure sensor from ST
[46]. This sensor provides two different sensor readings: a pressure and a temperature
reading. Each of those readings is linked to an individual status bit in the status register.
For sensors with only one internal ”sub-sensor”, the status bit is reset after a user reads the
status register. In case of multiple ”sub-sensors”, the status bits are only reset when a user
reads the corresponding result register. The LPS25H datasheet notes this as ”P DA is set
to 1 whenever a new pressure sample is available. P DA is cleared when PRESS OUT H
(2Ah) register is read.” [46]. This behaviour allows an attacker to detect when and which
result registers are read by polling the status register. The resulting information can be
used to build a covert-channel. A schematic overview of this idea is given in Figure 3.8.
Because the attack relies only on polling of the status register to check the status flags and
reading of the result registers, it is very hard to distinguish from normal user activities.
In addition, compared to the previous attacks, no write operations are required.

Figure 3.8: Proposed ”read only” covert channel

A key element of this attack is the encoding of data using only read operations. This
thesis proposes two ways to achieve this encoding. Either by converting the data to time
encoded information or directly encode the information in the status flags. In both cases,
the processes first need to wait for the sensor to finish one measuring cycle. After that,
the information is encoded using read operations on the result register with or without
delays. For example, the first version would encode a logical 0 as a 0ms delay and a logical
1 as a 5ms delay. Using this type of encoding, the throughput is limited by the bus speed
and the sensor speed. The LPS25H sensor has a maximum sensing frequency of

fsens = 25Hz
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which results in a new sensor reading every

tsens =
1

fsens
= 40ms.

As shown in Section A.1, one read operation using a 400kHz I2C bus takes about

tread = 0.1ms.

So overall, the duration of one cycle should be around

tcycle = (40 + x ∗ 0.1)ms

where x is the number of queued I2C read operations. With one active user process, one
sender process, and one receiver process, there can be at most 3 queued operations at the
same time. The theoretical maximum cycle time is

xmax = 3

tcycle, max = (40 + xmax ∗ 0.1)

= 40.3ms.

The throughput depends on the chosen delay ∆ which is added after each cylce. The
theoretical maximum throughput is

∆ = xmax ∗ 0.1 = 0.3

t0 = tcycle, min = 40.1ms

t1 = t0 + ∆ = 40.4ms

tmean =
t0 + t1

2
= 40.25ms

throughput =
1000

tmean
= 24.8bps

but it would also be very susceptible to timing delays. A much more conservative ∆ of
5ms would yield a throughput of 23.5bps and give enough room for the compensation of
timing errors. Table 3.4 lists different ∆ and the achievable throughput for the LPS25H
in 25Hz mode.

∆ Throughput Efficiency

0.1 24.8 100
1 24.6 98.9
2 24.3 97.7
5 23.5 94.2
10 22.2 89.0
20 20.0 80.1

Table 3.4: Theoretical throughput for different delta values
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The other version of this attack encodes the information directly into the status bits. This
can be achieved in two ways, as shown in Table 3.5. In the case of the LPS25H, using
the 1-bit variant, a bit is transmitted by either reading the pressure result register or the
temperature result register. For example, reading the pressure result register could be
interpreted as 0 and reading the temperature result register as 1. The 2-bit variant can
encode multiple states into one operation, but using the state 11 (results ready, no result
register read) to encode data, some special synchronization is necessary. This thesis will,
therefore, focus on the 1-bit variant and all of the following sections will only refer to this
variant.

P DA T DA 1-bit encoding 2-bit encoding

0 0 error 00
0 1 0 01
1 0 1 10
1 1 ready 11 or ready

Table 3.5: Information encoded into status bits

Initialization: The initialization is based on the packet system introduced in Section
3.3. The receiver tries to requests packets until the sender starts responding, while the
sender waits until it receives a valid request. This method ensures the correct communica-
tion setup. To reduce stress on the sensor, the receiver delays its requests by a significant
amount of time in relation to sensor and bus speeds (� 40ms). An example procedure is
shown in Figure 3.9.

Synchronization: As mentioned in the previous subsection, this attack encodes infor-
mation by reading result registers, which in turn resets their respective status flags. These
changes are then observed by the receiving process. Because it is not possible to force the
sensor to set these flags, it is required to wait for a full measurement cycle, before new
information can be encoded. This is used as a simple synchronization mechanism. As
soon as both status flags are set, the sender and receiver know that one cycle is completed
and new data can be encoded. One such cycle is shown in Figure 3.10. Note that ”write
data” stands for ”encodes one bit, by resetting one status flag”.
In the first step, the sender reads the pressure result register to reset its status flag.
The receiver detects the change, reads the status register and decodes the information.
Afterwards, both receiver and sender poll the sensors status register, waiting for the mea-
surement cycle to finish. As soon as both status flags are set to 1, the sender encodes
new information, by reading one of the two result registers and the cycle is complete.
It is important to note, as it is not known which process runs first, the sender needs to
ensure, the receiver also recognized the completed measurement before new information
is written. Otherwise the receiver would not detect or dismiss new information as errors.
To ensure that both parties know that the sensor is ready, the sender waits half a cycle
before writing new data. If the receiver still misses one bit, the packet system introduced
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Figure 3.9: Initialization procedure for the read-only method

Figure 3.10: One read cycle

in Section 3.3 and the error detection codes introduced in Section 3.3.2 will take care of
it.
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Packet Synchronization: A second mechanism is needed to detect data packet borders
to avoid shifting. This is achieved by inserting an additional delay of the same size as the
sensor measurement time. When the receiver detects this longer delay, it knows that this
marks the end of a packet, and therefore also the start of a new data packet, and adjusts
accordingly. In case of an error induced timeout or multiple timeouts, the connection is
reset and the receiver tries to request the first data packet again.

Countermeasures: To prevent the proposed covert channel, the direct access to the
hardware interface has to be abstracted by providing a custom device driver. This driver
has to limit the ability of users to read status flags. One way would be to provide users
with getters for both sensor values and return a value on each call independent of if a new
value is available or not. If the measured value is fluctuating a lot, the users may still be
able to determine if a new value or a stale value was returned by comparing sequential
return values.
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3.2 Managed-Access Sensors

This section covers attacks on platforms that implement a managed access to sensors.
For these platforms, the accessible information of a specific sensor highly depends on
the implementation. Some platforms may allow users to read and write registers using
provided methods, while others implement a strict abstraction that only allows users to
subscribe to sensor events. In these cases, users have no means to access registers directly.
In Section 3.2.1, the Google Android platform is introduced and important aspects like
the permission system and the sensor stack are covered in some detail. Afterwards, in
Sections 3.2.2 and 3.2.3, two state-of-the-art attacks are proposed that bypass security
features and enable covert channels between applications.

3.2.1 Platform - Google Android

In this section, all relevant parts of the Google Android ecosystem are introduced. First,
the sensor stack is discussed in more detail as it is responsible for handling the user-sensor
interaction. Then, a short overview of Androids’ permission system is given, which is
intended to protect users from malicious applications.

Figure 3.11: Layers of the Android sensor stack and their respective owners [20]

The biggest difference to the previously discussed attacks, is the introduction of the Sensor
Stack, shown in Figure 3.11. This stack prevents users from accessing the sensor interfaces
directly. It consists of six layers underneath the application where each layer has its own
purpose and owner. The lower layers have to be supplied by the hardware manufacturer
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and contain the sensors itself, the Sensor Hub, the Drivers, and part of the Hardware
Abstraction Layer (HAL). Because the main System on Chip (SoC) requires a considerable
amount of power, manufacturers can include an optional sensors hub, which is either
integrated or a separate hardware that is able to perform some low-level calculations
while the main SoC is suspended. The sensor hub should use as little power as possible
to enable low power applications. Another usage scenario for the sensor hub is Sensor
Fusion. Often, sensor readings can be enhanced by adding information from other types
of sensors. As an example of an integrated sensing hub: Qualcomm recently announced
a new Version of its Sensing Hub for the Snapdragon 865 5G mobile platform which
features low power AI functionality for sensors [47]. The next layer contains the drivers
which directly communicate with the underlying hardware. These drivers are developed
by the sensor chip manufacturers. This layer can also be integrated into the HAL, which
is maintained by the system integrator. Both of these layers build the connection between
the Android framework and the sensor hardware. The interface for the HAL is defined by
Android and implemented by the hardware manufacturers, as shown in Figure 3.11. In the
framework layer, the implementation switches from low-level C/C++ to Java, to provide
the functions used by the SDK. Up until this point, all layers are only capable of serving a
single application. The framework handles the multiplexing to allow multiple applications
access to sensors at the same time. It is also responsible for enabling/disabling sensors
and sensor configurations such as the sampling frequency. However, the multiplexing
introduces some side-effects. When multiple applications request readings from the same
sensor, the framework will set the sensor speed to the higher one of the two sampling rates.
This means, that both applications will receive the events at the faster speed. As discussed
in Section 3.2, this can be exploited to build a covert channel. The last layer defines the
Sensors SDK API, which is the programming interface that application developers use.
The SDK implements functions to register and unregister callbacks for available sensors.
The user supplies a minimum update frequency and the SDK and underlying layers handle
the rest.

Permission System: To protect the user from malicious activities, Android implements
a strict permission system [19]. The goal of this system is that ”no app, by default,
has permission to perform any operations that would adversely impact other apps, the
operating system, or the user”. If an app wants to perform any secured action, it has to
state the required permission in its manifest file. Android defines two types of permissions:

• normal: low-risk permissions in regards to privacy or device operation

• dangerous: higher risk permissions, that could affect privacy or device operation

Normal permissions are automatically granted by the system and only used to inform the
user about certain interactions with elements outside of the app’s sandbox. In contrast,
dangerous permissions require an explicit agreement from the user. This agreement is
either accepted on install (install-time requests), where a list of required permissions is
shown to the user and has to be accepted to continue the installation. Another method,
which is available since Android 6.0, are runtime requests. Instead of requiring the user to
accept all permissions on install, the individual permissions are requested during runtime
when the application tries to perform an action that requires a permission. In this case,
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a popup is displayed which states the permission name and has to be either accepted
or denied by the user. If the user denies, the action cannot be performed, which may
restrict certain features of the application. Otherwise the permission setting is saved and
no further popups are displayed.

3.2.2 Interval Attack

The first attack, introduced in this section is based on the intervals between sensor events.
As explained in the previous section, Android implements a sensor stack with many dif-
ferent layers to abstract access to sensors. There are some sensors, that require additional
permissions, for example the GPS sensor, while others don’t require any permission at all.
If an application subscribes to a sensor, the framework layer of the sensor hub configures
the underlying hardware to report values at the desired rate. Besides a callback function
and a reference to a sensor object, the sensor API only requires the sampling period in µs
as an additional parameter:

public boolean r e g i s t e r L i s t e n e r ( SensorEventLi s tener l i s t e n e r ,
Sensor sensor ,
int samplingPeriodUs )

After subscribing, the framework calls the listeners’ onSensorChanged function each time
a new value is available, using the configured sampling period as a maximum. The only
parameter is a SensorEvent which includes the requested value(s), a timestamp and other
information as shown in Table 3.6. Because it is the timestamp at which the event hap-
pened and not when it is received by the application, it directly corresponds to the sensing
interval. To visualize the difference between the measurements timestamp, and the ap-
plications’ timestamp at which the event was received, a simple testing application was
developed. The results are shown in Figure 3.12. While the CPU is idle, both timings
seem very similar for a sampling interval of 65ms. But as soon as the CPU usage gets
higher, the variance between application timestamps spikes, which can be seen in Figure
3.12b and 3.12c, while the sensor timestamps stay consistent.

Data type Field name Description

int accuracy The accuracy of this event.
Sensor sensor The sensor that generated this event.
long timestamp The time in nanosecond at which the event happened.
final float[] values The length and contents of the values array depends

on which sensor type is being monitored.

Table 3.6: SensorEvent fields [20]

This renders the application timestamp unusable for the side-channel attack described
in this section. Another problem occurs when a higher sampling frequency is used. As
shown in Figure 3.13, for a sampling frequency of 10ms, the application timestamp is very
inaccurate and varies between 10ms and 40ms, while sensor timestamps stay consistent at
10ms and are therefore the preferred choice.
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(a) Idle (b) Medium (c) High

Figure 3.12: Timing differences between application and sensor for different CPU usages

As previously explained, sensors are a shared medium that is abstracted by the Sensor
Stack. On modern mobile operating systems multiple processes can be subscribed to a
single sensor at the same time by using the provided subscription functions and callbacks.
Each subscription is active until it is either canceled by calling an unsubscribe function
or when the process is terminated. For normal user applications, the Android developer
guide advises to cancel all subscriptions on pause and subscribe again if the application is
continued [20]. This ensures that the sensors do not keep on measuring while the applica-
tion is not used (e.g., in the background), which would cause a significant battery drain.
For some services it is necessary to keep monitoring while in the background. Therefore,
Android does not automatically unregister subscriptions. In regards to the samplingPerio-
dUs parameter, the developer guide states: ”The delay that you specify is only a suggested
delay. The Android system and other applications can alter this delay. As a best practice,
you should specify the largest delay that you can because the system typically uses a
smaller delay than the one you specify (that is, you should choose the slowest sampling
rate that still meets the needs of your application).” This does already hint at the core of
the problem: other Android applications are able to alter the delay at which the sensor
events are sent to all subscribed applications. An adversary can use this to his advantage
by integrating a covert-channel in two applications and transmitting data between them
without the user’s permission. For example, one application could be a simple offline
password safe which does not need any internet connectivity. If the application wanted
to secretly send passwords to a remote location, it would require two permissions: ”an-
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Figure 3.13: Timestamp variation for small intervals

droid.permission.INTERNET” and ”android.permission.ACCESS NETWORK STATE”.
As mentioned in Section 3.2.1, Android shows a list of required permissions before in-
stalling an application from the app store. If the internet permission is on the list of
required permissions from an offline password manager it would be obvious that some-
thing is not quite right. On the other hand, if the application would be a weather app
instead of an offline password manager, the internet permission would justified because
the weather data will be downloaded from remote locations. Under normal circumstances
applications run in a sandbox environment where it is not possible to access information
about other applications. Therefore, applications cannot exchange information without
requesting specific permission to do so. If the adversary is able to control both apps and
include a covert channel, he will be able to use that channel to build up a communication
between the applications without the need for extra permissions. This undermines the
security- and sandbox-system provided by the operating system.

To maximize the throughput of the channel, the smallest possible intervals are chosen.
These depend on multiple factors. First there are physical limits, like reporting intervals
and maximum reporting speed, which are specified by the hardware sensor. Further, the
specific driver implementation supplied by the manufacturer matters, as it is responsi-
ble to provide the upper layers with information about the sensor hardware capabilities.
Besides using the smallest intervals, it is also important to test the stability of these in-
tervals and adjust the difference and thresholds accordingly. Otherwise the entities could
have problems distinguishing between real data and noise. In Section 4.3, this technique
is evaluated using both the Android Emulator on Windows and a physical Android device.
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Because the thresholds of the sensors are global and can only be pulled below the current
threshold, it is important that the current threshold is not equal to the minimum threshold
of the particular sensor. During testing, some applications were found (mostly browsers)
that use the maximum reporting frequency regardless. When such an app is running,
the sensor events are always reported at the fastest possible speed and the frequency can
not be altered until the application is closed and the reporting speed is lowered. This
effectively disables the covert channel and no more transmissions are possible using the
proposed method. Therefore, a new method is introduced in the next section.

3.2.3 Subscription Attack

The subscription attack exploits abnormal events that occur when an application sub-
scribes to a sensor. Like the first attack, this attack targets sensors that can be used
without special permissions. As mentioned in the last section, all applications subscribed
to a specific sensor receive the update events at the same interval. This interval is the
minimum of all subscription intervals. If one of the applications already uses the lowest
possible interval, no further changes are possible until this application removes its listener.
A typical application that shows this behavior, are browsers. Chrome, Firefox, Opera, and
the Android browser all subscribe at the maximum possible frequency. This was discov-
ered because one idea was to build a covert channel between an Android application and
a web application. This would enable new powerful ways for the attacker to gain access
to secret data. For example, a password safe could implement a link to the FAQ page
which opens a browser and redirects to the attacker’s server. While the user is reading,
the Android application starts transmitting all stored passwords over the covert channel
to a JavaScript application running in the background of the FAQ page. Through experi-
mentation, it was discovered that the sensor framework generates event outliers each time
a new subscription occurs. In a low noise environment, with low system load and little to
no sensor usage, these outliers can be detected by another application. Using a time-based
encoding scheme, the sender can encode data. This data can be decoded by a receiver
application. The design of the covert channel is visualized in Figure 3.14. Because a low
noise environment is hard to achieve in a real-world scenario, this covert channel design
was not developed beyond the initial design. A small proof of concept application using
the initial design was implemented, which is covered in Section 4.3.

Figure 3.14: Covert channel design based on subscriptions
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3.3 Packet System

This section introduces several concepts, that are applicable to all previously mentioned
attacks. These concepts include error detection codes, that are used to detect single or
multiple bit-flip errors in the payload. Further, error correction codes are introduced that
support some amount of error recovery in addition to error detection. To be able to con-
trol and manage the flow of data, a simple packet-based system is designed. This system
includes different packet types, packet ordering, and different types of error detection.
For noisy channels, two mechanisms get introduced, which increase the versatility of the
attacks: templating and adaptive packet size.

Based on [41], a packet-based system was designed that handles transmission errors, re-
transmission and other tasks in regards to data flow. This system follows a simple request-
response principle. Before the transmission starts, the sender keeps listening for incoming
requests. The structure of such a request is shown in Figure 3.15. To keep things compact,
the request only contains the Hadamard encoded sequence number, which is explained in
more detail in Section 3.3.2. In [5], it is shown that for a k ≤ 7 the Hadamard error
correction codes are optimal. With this fact in mind and the exponential encoded size of
2k, it was decided to only use two bits for the sequence number. Because this number
is only used to differentiate between the newest and the last few packets, such a short
sequence number is sufficient.

Figure 3.15: Structure of a request packet (REQ)

Figure 3.16: Structure of a response packet (RES)

Upon receiving a valid request, the sender starts the transmission of the associated data
packet. These response packets have a different structure as request packets, shown in
Figure 3.16. The first bit determines the type of the packet. In its current version, there
are two supported types: data(0) and commands(1). Depending on the chosen type, the
next section contains ether arbitrary data or one of the reserved commands. All available
commands are listed in Table 3.7. The SQN field contains the current sequence number,
which is incremented with each packet, regardless of data or command type. To provide a
mechanism that is able to detect corrupted packets, an error detection code is appended
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to the end, which is the only feasible option. Error correction codes would cause too much
overhead, because of the large packet size and their 2k relation.

Code Command

00 Increment packet size
01 Decrement packet size
10 Stop transmission
11 Reverse data direction

Table 3.7: Available commands

3.3.1 Error Detection Codes

Error Detection Codes are used to detect errors in a payload, that can result from a noisy
channel. The covert channels discussed in this thesis use a shared medium, e.g., the I2C
bus and every user interaction with that medium has a high chance to cause bit errors
during a transmission. Therefore, the channels are treated as noisy channels.

Parity Bit: One of the most basic error detection systems is a parity bit. The parity
bit gets added at the end of the payload. If the number of payload bits set to true is even,
the parity bit is set to false, otherwise it is set to true. This results in a data packet with
an even number of set bits. If the receiver gets a packet with an odd number of set bits, he
knows that at least one bit-flip has occurred and the packet is corrupted. This approach
is very simple, but it comes with a drawback: it is only able to detect an odd number of
bit-flips. This is demonstrated in the following example:

(1) Alice wants to send 1001 to Bob.

(2) Alice counts the bits set to true: 1 + 0 + 0 + 1 = 2.

(3) She adds a parity bit which is set to false, to ensure that the resulting packet has
an even parity.

(4) This packet, 10010, is then sent to Bob.

(5a) Even number of bit-flips: Bob receives 11110. He calculates the parity 1+1+1+1+0(
mod 2) = 0”. Because the parity is even, Bob thinks the packet data is correct and
accepts the packet.

(5b) Odd number of bit-flips: Bob receives 11111, which equals three bit-flips, the calcu-
lated parity is 1+1+1+1+1( mod 2) = 1, which is correctly detected as corrupted
data.

In the context of this thesis’ channels, depending on the transmission time, multiple user
interferences can occur which would result in multiple bit-flips. Therefore, the parity bits
do not provide an adequate countermeasure and another method needs to be used. A good
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example are Berger Codes, which are discussed in the next paragraph. For very short data
transmissions, error correction codes are also feasible. These are discussed in in Section
3.3.2.

Berger Code: Berger Code [3] is an error detection code, introduced by J.M. Berger in
1982. Depending on the type of covert channel used, most errors are so-called unidirec-
tional errors. Unidirectional errors are errors where bit-flips only occur in one direction,
meaning only zeros flip to ones or only ones flip to zeros. Some covert channels in the
thesis can only be influenced in one direction and are reset on a timer, which is a typical
asymmetric channel that is susceptible to unidirectional errors. For these types of errors,
Berger Codes have been proven optimal by C.V. Freiman [15].
Berger Codes are often used because of the simple principle and implementation. It gets
computed by summing up all of the zeros of a payload. This means, that for a payload
with size n the error detection code has a size of k = log(n+ 1). Another reason to choose
Berger Code is its straight forward implementation.

In general, there are three error cases to be considered:

(1) Error in the data section

(2) Error in the error detection code section

(3) Error in both, the data and the check section

For (1), the number of zeros changes and the error detection code does not match this
change which is detected by the receiver by calculating the Berger Code from the received
data and comparing it to the received Berger Code. If an error is introduced in the error
detection code section, case (2), the same statement holds true: the error detection code
does not match the data which can be detected by the receiver in the same way as in the
first case. For the third case, the unidirectional error property is important. If only one
type of bit-flip can occur, either the number of zeros decreases or increases in both the
data and the error detection code. Because the Berger Code counts zeros, it is indirectly
proportional to the data. A proportional change to both parts will therefore invalidate
the error detection code in every possible case.

3.3.2 Error Correction Codes

In addition to error detection, Error Correction Codes (ECC) are also able to recover
mutated information, but are much more sophisticated than the simple error detection
codes. The size overhead, caused by the encoding, is also much higher. Figure 3.17
shows a size comparison between an error detection and an error correction code. This
is of course only an example and overhead sizes vary greatly between different codes.
Because of the higher overhead, error correction codes are only used on small data request
packets. More details about the packet system can be found in Section 3.3. The following
paragraphs introduce two error correction codes, a very simple repetition code and the
more sophisticated Hadamard encoding.
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Figure 3.17: Code size comparison between Berger and Hadamard codes

Repetition Code: A repetition code is a very simple way to achieve error correction.
Instead of sending the data directly over the channel, each bit is sent a specified number
of times. The receiver is then able to detect the received bit using a majority vote. If most
repetition bits received are false, the data bit is also assumed to be false and vice versa. A
few simple encoding/decoding examples using a (3,1) repetition code are shown in Table
3.8. (3,1) means that a single data bit is represented by three repetition bits. The first
row represents a transmission without any interference, so no errors are present. In the
second row some bit-flips occurred, resulting in 010 and 001 instead of 000. Because only
one bit-flip occurred per data bit, the receiver is able to decode the data correctly. In the
last row, multiple bit-flips have occurred for the third data bit. In this case, the receiver
interprets 001 as a 0 data bit. For Z2, odd repetition codes are proven optimal [40].

Data Repetition Code Received Data

0 0 0 000 000 000 000 000 000 0 0 0
0 1 0 000 111 000 010 111 001 0 1 0
1 0 1 111 000 111 110 100 001 1 0 0

Table 3.8: Example encodings/decodings of a (3,1) repetition code.

Hadamard Code: The Hadamard code [59], also called Walsh-Hadamard or Walsh
code, is a more sophisticated error correction code. It is based on the Hadamard matrices
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and identifies as a [2k, k, 2k−1]2-code, where k is the message length, 2k is the block length
and 2k−1 is the distance. There exist multiple different ways to construct a Hadamard
code: using inner products, a generator matrix or general Hadamard matrices.

A Hadamard matrix is defined as a square matrix H of order n, with entries ±1, such that

HHT = nIn

is satisfied, where In is the unit matrix of order n. An important property of these matrices
is the ability to create a new Hadamard matrix by calculating the tensor product of two
Hadamard matrices with order equal to the product of the order of the factors. This
means, that matrix X = ||xij || and Y = ||yij || with orders l and k, result in a matrix
Z = ||xijY || with order lk. Some examples of Hadamard matrices:

H1 =
[
1
]

H2 =

[
1 1
1 −1

]

H4 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


Hadamard codes are then constructed by using H4m and H ′4m = −H4m matrices and
replacing all −1 entries with 0s. For example:

H4 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1



H̃4 =


1 1 1 1
1 0 1 0
1 1 0 0
1 0 0 1



H̃ ′4 =


0 0 0 0
0 1 0 1
0 0 1 1
0 1 1 0


This results in the code:

C4 = 1111, 1010, 1100, 1001, 0000, 0101, 0011, 0110
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The decoding is then performed the following way:

1. Change the received word back into the ±1 form (change 0s to −1s) w.

2. Compute s = wH4m

3a. If w is equal to a codeword, the transmission was successful and the syndrome s will
be either ±4mek, where ek is the kth row of the n× n identity matrix In.

3b. Otherwise, s 6= ±4mek. If the number of errors is below n − 1, the position of the
entry in s̃ = wH̃t

4m with the largest absolute value will equal the correct row number
in H4m or H ′4m.

3c. If the number of errors is bigger than n− 1, decoding is not possible.

For this thesis, the actual implementation is done via lookup tables, as shown in Section
4.1. To keep the overhead at a minimum, a very small Hadamard matrix is chosen.
Further, only the error detection part is used. This means, that a simple comparison of
the received word to the codewords in the lookup table is sufficient. The implementation
of this design is much easier to accomplish for very small data types.

3.3.3 Adaptive Packet Size

In general there are two types of interferences when communicating over a covert channel:
temporary and permanent. A user accessing the sensor to get the latest temperature value
on-demand, would be a simple temporary interference that could lead to the corruption
of a single packet. This case is already handled by the protocol using retransmissions. In
the case of a temperature logger that accesses the sensor every second for example, the
system may be unable to recover by using retransmissions. Figure 3.18 illustrates this
case. In the first row, the user accesses are shown as yellow segments. The length of the
payload causes the user interference to hit every packet at least once, which can result in
a lot of corrupted packets and therefore, retransmissions. The response for packet 1 has
to be retransmitted at least two times which results in an overhead of 200% or more. This
overhead would be tolerated, because scaling also causes some amount of overhead, but
in the worst-case scenario, the communication would not be possible at all.

Figure 3.18: Packet size is too big, which causes many retransmissions.

To accommodate for this special case, an extension to the packet system was developed:
”Adaptive Packet Size”. This extension allows the sender to reduce the packet size if
multiple retransmissions are encountered. The exact number of retransmissions before
scaling can be configured based on the environment (see 4.1 for more details).
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Figure 3.19: Packet size is too big, so the sender starts to scale down.

Figure 3.20: Packet size is too small, so the sender starts to scale up.



Chapter 4

Implementation

This chapter covers all the implementational details. As the attacks are highly dependent
on the platform and the sensor access type, individual implementations are needed. In
Section 4.2 two hardware platforms that were used for the implementation are described
in more detail. After the initial tests, the focus was shifted to a Linux based platform, as
there would be too many variables otherwise. Besides the platform, there are also a lot of
different interfaces and sensor types which each need a separate implementation for every
attack. To combat this complexity, a modular testbed application was developed which
is introduced in Section 4.1. In the end, an evaluation is given in Section 4.3 including
additional features such as the packet system introduced in Section 3.3.

4.1 Testbed

As mentioned, the complexity of testing multiple different attacks on multiple different
sensors with multiple different interfaces increases the complexity of the testing system. To
lower said complexity and introduce some flexibility, a layer-based abstraction approach
was used to implement the testbed. In the upcoming Sections 4.1.2 to 4.1.5 all of the
individual abstraction layers are described in more detail. The current section tries to
give a general overview of the testbed implementation and also introduces all of the tools,
that were used during development.

CLion: CLion is a cross-platform Integrated Development Environment (IDE) made
by JetBrains [30]. It is very similar to the popular Intellij IDEA, but instead of Java
it is targeted to C/C++ development. This IDE was chosen because of the powerful
code completion features and its high reliability. The first idea was to develop directly
on the target platform, a Raspberry Pi 3B+. This was until a big drawback of such a
powerful IDE comes into play, the very high memory consumption of 1-2GB. Because the
Pi 3B+ only comes with 1GB of main memory, the IDE slows down significantly at some
points. One other problem is the resource consumption at compile-time, which is nearly
impossible to run beside the already high resource consumption of the IDE. To prevent
these problems, a different approach was chosen, namely cross-compilation. Using this
method, only the compiled application is transferred to the Raspberry, which means all of
the heavy lifting is done by an external system. This approach is explained in more detail

61
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in the next paragraph. A screenshot of the CLion IDE is shown in Figure 4.1.

Figure 4.1: Jetbrains CLion IDE

Cross-compilation: As mentioned in the last paragraph, the Raspberry Pi 3B+ lacks
resources to run the IDE and compile the code, which means an alternative solution is
required. Therefore, all resource-intensive tasks are moved to an external pc, where all
of the development work is done. Because a Macbook Pro running OSX was used during
this thesis, the following details are in regards to this system. Figure 4.2 gives an overview
of the cross-compilation procedure. There are two entities involved, the development pc
and the Raspberry Pi 3B+. The development and cross-compilation is done on the pc
side. For the cross-compilation step, a tool suite called croostool-NG [9] is used with the
following GNU tools:

• GNU make

• GNU Compiler Collection (gcc)

• GNU C Library (glibc)

• GNU Binutils

The resulting Cmake file contains all of the required instructions to generate the correct
make file using the armv8-rpi3-linux-gnueabihf environment. A simple make command
compiles the source code into a ready to use binary file for the Raspberry Pi. This binary
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is then copied to the Pi 3 via FTP. Filezilla [33] is used as the FTP client for this step.
As CLion also supports FTP, it could be used instead, but this was not tested.

Figure 4.2: Cross-compilation procedure

4.1.1 Architecture Overview

To combat the high complexity the arises from multiple target sensors, different attacks
and interfaces which should all be able to be mixed and matched as needed, a ”covert
channel testbed” was designed and implemented. To maximize flexibility, a modular, layer-
based approach was chosen. All in all the testbed application consists of four layers which
each abstract a different part of the system. Figure 4.3 shows a graphical overview of this
layered architecture. Starting from the bottom, the first layer is the Hardware Abstraction
Layer (HAL). In this layer, all of the low-level interface actions are implemented. This
can be an I2C or SPI interface for example. These two bus types are very common and
therefore most sensors and host platforms support them. The goal of this layer is to
provide basic read and write functionality to the upper layers independent of the actual
interface. More details about the structure of the modules in this layer can be found
in Section 4.1.2. Next up is the Sensor Abstraction Layer (SAL). This layer consists of
modules that contain all of the implementations specific to particular sensors. Because
attacks are highly dependent on the used sensor, this layer has a relatively tight coupling
with the Attack Abstraction Layer. The Sensor Abstraction Layer tries to encapsulate
implementation specifics and provides a set of standardized functions and address maps
which are used by the upper layers. Again, more details in regards to this layer and its
modules can be found in Section 4.1.3.
The next layer, the Attack Abstraction Layer (AAL), contains modules that implement
the attacks designed in Section 3.1. For the covert channel, this is the last layer needed
for its core functionality, which is the transmission of data. The Attack Abstraction Layer
provides functions to send and receive single bits or bytes over the channel. By using the



CHAPTER 4. IMPLEMENTATION 64

Figure 4.3: The testbed consists of four layers that abstract various parts of the system.

provided functions, the underlying attack does not matter. This core package has some
drawbacks. Typically, covert channels are quite noisy, so a lot of errors occur which renders
the channel unusable for data transmission in most cases. There is also no flow control,
therefore the entities are required to either purely act as a sender or receiver and the flow
can not be reversed. To combat these drawbacks, a fourth layer is introduced, the Packet
Layer (PaL). The design principles of this layer are described in Section 3.3. In short, this
layer implements a packet system that is based on a request-response protocol. It also
contains modules for error correction and error detection to detect errors introduced by
noise. These errors are then handled by the protocol via retransmissions. Because sensors
are often accessed in a fixed time interval, the Packet Layer implements a module that is
able to dynamically change the size of the packets such that they are able to fit in between
sensor accesses. This method was introduced in Section 3.3.3. The last element of the
stack is the Testbed Controller. This module interacts with all four layers and is used to
select a specific profile, consisting of an interface type (HAL), a sensor type (SAL), an
attack-type (AAL), and additional configuration for the packet system for example. The
controller is also responsible for the definition of the sender and receiver process and the
initial synchronization.
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4.1.2 Hardware Abstraction Layer

The Hardware Abstraction Layer (HAL) is the bottom layer of the stack. It is the closest
to the hardware interface out of all layers. From a top-down perspective, it should provide
functions that allow very basic read and write actions via a universal access using the
underlying hardware interface. A header file is used to define the interface which has
to be implemented by each module in the HAL. This interface defines the following two
functions:

virtual int read ( byte t slaveAddr , by te t regAddr ,
unsigned int l ength , by te t ∗data ) = 0 ;

virtual int wr i t e ( byt e t slaveAddr , by te t regAddr ,
unsigned int l ength , by te t ∗data ) = 0 ;

Both of these functions require the same parameters, the address of the target sensor
slaveAddr, the address of the target register regAddr, the length of the data which should
read or written and a pointer to the memory containing either the input data for a write
operation or enough empty space to receive the data from a read operation. A basic
overview is given in Figure 4.4

Figure 4.4: Hardware abstraction layer.

Currently, the only supported hardware interface is I2C. More information about the
I2C internals and definitions are described in Appendix A.1. This section, only covers
implementational details regarding the testbed. Besides the two basic functions read and
write, the HAL also needs to implement all of the initialization required for the different
hardware interfaces in the respective constructors. In the case of the I2C interface, this is
just a simple open() call with the path to the desired file descriptor and a flag to define
read and/or write access. This is possible because Linux implements a kernel module that
maps the I2C interface to a file that is accessible in the user-space and therefore can be
used by applications. In other cases, there might exist a kernel driver implementation
that handles all calls to the I2C interface. This driver implementation can work in a very
similar way as the dev interface by providing basic read and write functionality. As a
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more universal approach the dev interface method was chosen for this thesis. The driver
approach could be subject to future work. After a handle to the I2C interface is acquired,
read and write operations are performed using the ioctl [36] import. As defined by the I2C
interface, first a message is sent containing the desired operation and the target register
address. Afterwards, depending on the operation, data can be received or written. For
the messages the structure i2c msg was used which is provided by the Linux I2C header
files. Each i2c msg contains the target address, some flags (operation type, etc.), the data
length, and the data itself. To transfer the data from the input or to the output buffer
a simple memcpy operation is used. This makes sure that only the specified amount of
bytes are transmitted. All of the messages are then collected into a i2c rdwr ioctl data
array, which is passed into the ioctl call alongside the interface handle and the I2C RDRW
flag to specify a read/write operation. Additionally, to prevent larger data, the maximum
thresholds MAX READ LEN and MAX WRITE LEN can be defined in the header file.
In Figure 4.5 the I2C interface mapping from hardware to the user space is shown in a
more visual way.

Figure 4.5: The testbed consists of four layers that abstract various parts of the system.
[4]
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4.1.3 Sensor Abstraction Layer

The Sensor Abstraction Layer (SAL) is used to abstract all of the functions specific to a
sensor and has to provide standardized functions that are used by the AAL for example.
Like for the other layers, a base header file is available, that defines all of the functions
that need to be implemented for each sensor module. If a sensor is not able to fulfill the
requirements for the implementation of one of the functions, it should return a null value
instead. The following functions are available:

virtual int i sEnabled ( ) = 0 ;

virtual int enable ( ) = 0 ;

virtual int d i s a b l e ( ) = 0 ;

These functions are used to enable or disable a sensor. The operation mode has to be
defined globally. For all of the attacks introduced in this thesis, the same operational
mode is sufficient. This mode is defined as continuous and maximum reporting speed.
If new attack designs need special modes, an extension could be implemented that lets
users define the mode when enabling a sensor for example. This is subject to future
work. Further, there are some functions, that return register addresses based on a specific
property:

virtual std : : vector<int> getUnusedRegis ters ( ) = 0 ;

virtual std : : vector<int> g e t S e t t i n g R e g i s t e r s ( ) = 0 ;

virtual std : : vector<bool> getResu l tF lags ( ) = 0 ;

virtual std : : vector<int> g e t R e s u l t R e g i s t e r s ( ) = 0 ;

Some of these functions are very simple and just return the address of the requested register
in regards to the specific sensor. Others need to implements some logic to determine the
state of registers. For example, the getUnusedRegisters functions need to check the current
settings of the sensor to determine which registers are in use. In the case of the LPS25H
sensor, both the CTRL 1 register and the CTRL 3 register need to be checked if the
threshold is enabled and also the reporting is enabled. If only one or none of these flags
are set, the THS P H and THS P L register are ”unused”. Additionally, there are some
functions that return more information about the sensor which is needed for some attacks:

virtual int getSensorCount ( ) = 0 ;

virtual int getCycleTime ( ) = 0 ;

The last two functions are used to read and write whole registers. They are very similar
to the read and write functions of the HAL, but do not need any information about the
hardware interface, as this is handled by the HAL:

virtual int r eadReg i s t e r ( int r eg i s t e rAddre s s , int s i z e ,
by t e t &data ) = 0 ;

virtual int w r i t e R e g i s t e r ( int r eg i s t e rAddre s s , int s i z e ,
by t e t &data ) = 0 ;
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4.1.4 Attack Abstraction Layer

The Attack Abstraction Layer contains the main implementations for the attacks that
where introduced in Section 3.1. Like with the previous layers, there is a base definition
class that specifies all of the functions that need to be implemented. For each attack, a
separate file is available such that implementations do not overlap. The classes need to
be initialized using two parameters EDC and sensor. Sensor is an instance of the target
sensors abstraction and EDC is an instance of the chosen error detection code. This is
important because some size calculations are performed during data transmissions. There
are two main functions related to sending and receiving data:

virtual int send ( Packet packet ) = 0 ;

virtual int r e c e i v e ( Packet &packet , int s ca l e , bool reRece ive ) = 0 ;

These functions are used to send and receive packets over the covert channel. The packet
parameter is a reference to the input or output data. Because the receiving entity needs to
calculate the expected size of the data packet, it requires a scale parameter. After setting
the correct payload size, the size of the error detection code is calculated and added.
In hindsight, it would probably be better to handle these kinds of calculations, that are
related to the packet, in the respective layer. This would loosen the bond between the
packet and the attack layer which is desirable. To be able to distinguish between original
messages and resent messages, a reReceive flag can be set. The next two functions are
used to control the flow:

virtual int r eque s t ( by te t req ) = 0 ;

virtual int waitForRequest ( byt e t &sqnHad , bool reRece ive ,
bool i n i t i a l ) = 0 ;

Before each transmission, the sender calls the waitForRequest function and waits for in-
coming data requests. This function has a built-in timeout. If the receiver does not
request a new packet for a specified amount of time, the sender starts a retransmission of
the previous packet. To disable this timeout for the initial request, which could take a lot
longer than normal, the function uses the initial flag. On the other end, the receiver calls
the request function with a request packet number, to request a packet from the sender.
The theory for this system is explained in more detail in Section 3.3. Besides these core
functions, there are also some helper functions, that provide different timing methods:

virtual int wait ( int c y c l e s ) = 0 ;

void waitS ( int s ec ) ;

void waitMs ( long ms ) ;

The later two, waitS and waitMs, are static functions which are the based on real-time.
They are mostly used for timeouts and small time shifts during transmissions. The wait
function is used to initiate a wait for a specified number of cycles. The cycle time has to be
defined by the sensor hardware and attack-type. For example, for the attack introduced in
Section 3.1.2.3, on cycle is based on the time, the sensor needs for a full measuring cycle.
This depends on the configured reporting interval and the limits of the hardware.
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4.1.5 Packet Layer

In this section, the implementation of the packet layer is described in more detail. This
layer consists of multiple modules which can be categorized into three parts: the error
detection code (EDC) and correction (ECC), the packet structure, and the packet manager.
In Figure 4.6, the data flow for the sending entity is shown. First, the packet factory is
used to generate packets from the input data. These packets are then sent using the packet
manager. The testbed acts as the controlling entity.

Figure 4.6: Module interactions in the packet layer for the sender.

Both EDC and ECC base classes are very similar. The main difference is, that EDC can
not be decoded. As shown in Section 3.3.1, the EDC is calculated from the payload and
appended to the end of the message. On receiving, the EDC is calculated again from the
received payload and compared to the original EDC. If they are the same, the transmission
was successful. So, for the EDC only one core function is needed:

virtual int generate ( std : : vector<b i t t> input ,
std : : vector<b i t t> &output ) = 0 ;

In contrast, the ECC is generated by encoding the payload, which results in a completely
new message instead of appending the code. Upon receiving an ECC, it has to be decoded.
Therefore, two core functions are required:
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virtual int encode ( byte t ∗ input , s i z e t length , by te t ∗output ) = 0 ;

virtual int decode ( byte t ∗ input , s i z e t length , by te t ∗output ) = 0 ;

For convenience, each ECC and EDC module has to implement a check function, that can
be used to automate the validation process. The EDC version requires both, the received
payload and the received EDC:

virtual int check ( std : : vector<b i t t> input ,
std : : vector<b i t t> edc in ) = 0 ;

The ECC version only requires the received payload. If it is able to decode the input to a
valid message, the payload is valid:

virtual int check ( byte t ∗ input , s i z e t l ength ) = 0 ;

To be able to reserve the correct amount of memory for a packet, the framework needs
to be able to calculate the size of the EDC and ECC. Therefore, each module has to
implement the following function:

virtual int ca lcOutputS ize (unsigned int inputLength ) = 0 ;

Currently there is one implementation for each type of code. For the EDC, a Berger Code
is used. The theory of this code is introduced in Section 3.3.1. This code is really simple
to implement in C++. The main loop is implemented in one line using shift operations:

for ( int i = 0 ; i < c h e c k b i t s ; i++) {
output . push back ( ( b i t t ) ( ( count & (1 << i ) ) >> i ) ) ;

}

where count is the number of 1s in the binary representation of the input and check bits
is the number of output bits. The check function calculates the EDC again and compares
it to the received EDC. If no EDC is required, there is also a class called NoEDC, which
can be used to disable this module completely.

For the ECC, an Implementation of the Hadamard Code is used. Because this code
is only used for very small payloads, e.g. the packet number, a static implementation is
sufficient. For this, a set of lookup arrays are defined in the header file:

by t e t H2 [ 2 ] = {0b00 , 0b01 } ;
by t e t H4 [ 4 ] = {0b0000 , 0b0011 , 0b0101 , 0b0110 } ;
by t e t H8 [ 8 ] = {0 b00000000 , 0b00001111 , 0b00110011 , 0b00111100 ,

0b01010101 , 0b01011010 , 0b01100110 , 0b01101001 } ;

So, the supported input sizes are 1, 2 and 3 bit which result in a 2, 4, or 8-bit code. The
encoding is a simple masking of the input, to prevent inputs that are to big, followed by
a lookup. For the decoding, based on the input size, a lookup table is selected. Then,
the hamming weight between the input and each of the entries in the lookup table is
calculated. The entry with the lowest hamming weight distance is selected as the decoded
counterpart. If the distance value is too big, too many errors were introduced and the
received code cannot be decoded.
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The next (pseudo) module in the packet layer is the definition of the packet itself. The
structure of a packet was introduced in Section 3.3. To recap, the packet system is built
upon a request-response protocol. There exist two different types of response packets:
data and commands. The packet class defines some type constants:

stat ic const int TYPE DATA = 0 ;
stat ic const int TYPE CMD = 1 ;

stat ic const int CMD UP = 0 ;
stat ic const int CMDDOWN = 1 ;
stat ic const int CMD STOP = 2 ;
stat ic const int CMD REV = 3 ;

These constants are used during initialization of the packet. For each of the packet types, a
separate constructor can be used by either using an array of data or an command constant:

Packet ( std : : vector<b i t t> data , int sqn , std : : shared ptr<EDC> edc ) ;

Packet ( int cmd , int sqn , std : : shared ptr<EDC> edc ) ;

A sequence number is assigned to each packet, which is used to define the order of packets.
Because this number is encoded using error correction codes, it is required to be as small
as possible. In the current design a maximum of 3 bit is supported. Therefore the number
can not be used as a unique identifier. If an array of data is provided to the constructor,
it will create a data packet using that data as the payload. The EDC is calculated auto-
matically. The data can be arbitrarily long, but it is advised to keep it at a sensible size,
as bigger packets increase the probability of collisions and other errors. For command
packets, one of the available command constants needs to be set as a parameter. These
commands are used to initiate the dynamic packet scaling, introduced in Section 3.3.3 and
for flow control (stop and reverse).

Another method that can be used to create data packets, is to first create an empty
packet using the simple packet constructor

Packet ( std : : shared ptr<EDC> edc ) ;

followed by calling

void f romBits ( std : : vector<b i t t> input , int s c a l e ) ;

to generate all packet fields from an input bit array. This is used, when receiving data, as
this data is normally a bit array containing the entire packet. There is also a function to
convert a packet to such a bit array:

void t oB i t s ( std : : vector<b i t t> &output ) ;

All other functions are either simple getter and setter or are used to perform various checks
for elements, like packet type, correct sequence number, packet validity, etc. Internally,
the packet holds all content parts in separate arrays:

s td : : vector<b i t t> d a t a b i t s ;
s td : : vector<b i t t> s q n b i t s ;
s td : : vector<b i t t> e d c b i t s ;
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Because most of the time, the data should be sent in multiple packets, a packet factory
class was implemented. Using this class, all of the data can be passed in the constructor

PacketFactory (unsigned char ∗ data in , s i z e t length ,
std : : shared ptr<EDC> edc ) ;

and is stored internally. If more data needs to added, it can be appended afterwards
using the appendData function. Now, all of the packets can be generated using the factory
methods

int getNextPacket ( int sqn , Packet &r e t ) ;

int getCommandPacket ( int cmd , int sqn , Packet &r e t ) ;

The factory only generates new packets as they are requested and stores the rest of the
data in a raw format. It also keeps track of which data was already sent and what data
is up next. This is important, because the size of the packets can be changed on the fly
using the scaleUp and scaleDown commands.

The last module in the packet layer is the packet manager. This module manages the
scaling and all of the checks for the packets and implements functions that are used to
unpack payloads. It uses the packet factory to generate new packets as they are required
and sends and receives them using the functions provided by the attack layer. Most of its
functions are just used as a proxy for lower-level functions, like waitForRequest, request,
send and receive.

To manage all of the settings and modules in the different layers, the testbed class is
introduced. In this class each selectable module is assigned a constant:

stat ic const int ECCHADAMARD = 1 ;

stat ic const int EDC NOEDC = 0 ;
stat ic const int EDC BERGER = 1 ;

stat ic const int HAL I2C = 0 ;
stat ic const int HAL SPI = 1 ;

stat ic const int SENSOR LPS25H = 0 ;
stat ic const int SENSOR HTS221 = 1 ;

stat ic const int ATTACK UNUSEDREG = 0 ;
stat ic const int ATTACK TOGGLESET = 1 ;
stat ic const int ATTACK READFLAGS = 2 ;

For each of the different settings, a getter and setter is defined. Additionally, this class
implements the runTest function:

int runTest ( bool send ) ;

that is used to initiate a test. It expects a flag that toggles send/receive. For the test,
different states are defined for both the sender and receiver. Figure 4.8 shows all of the
states in a graph, for better visualization.
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Figure 4.7: State diagram for the sender.

Figure 4.8: State diagram for the receiver.
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4.2 Hardware

4.2.1 Texas Instruments

There are several hardware products from Texas Instruments that are relevant for this
thesis. Because of there wide usage and actual availability, the products listed in Table
4.1 were chosen as good candidates for further evaluation.

Product Number Product Name

MSP430FR5969 LaunchPad Development Kit

BOOSTXL-SENSORS Sensors BoosterPack

TIDC-CC2650STK-SENSORTAG
SimpleLinkTM multi-standard CC2650

SensorTagTM kit reference design

CC-DEVPACK-DEBUG SimpleLink SensorTag Debugger DevPack

Table 4.1: Selected products from TI

4.2.1.1 MSP430 LaunchPad and Sensors BoosterPack

The MSP430 Launchpad was the first product that was taken into consideration, because
it is relatively cheap and is often used in a wide variety of applications. For this thesis, the
main requirement for the development platform was the compatibility with many different
sensors. Like most microcontrollers, the MSP430 has built-in hardware support for I2C
and SPI buses. These buses are the de facto standard when it comes to sensor interfaces,
so this platform is compatible with most available sensors.

Figure 4.9: MSP430 dev board
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Name Manufacturer ”Hybrid” Type(s)

OPT3001 TI N Ambient light
TMP007 TI N Infrared temperature
BMI160 Bosch Y Accelerometer, gyroscope
BMM150 Bosch N Magnetometer
BME280 Bosch Y Pressure, Ambient temperature, humidity

Table 4.2: TI BoosterPack extension board and its application

For the software development, TI offers a specialized integrated development environment
(IDE) called Code Composer Studio [27]. This IDE includes a resource explorer, where
users can search and download examples, templates, and documentation for TI prod-
ucts. To simplify application development involving sensors, Texas Instruments offers
the so-called ”Sensors BoosterPack” (see Table 4.1). This product is a small extension
board containing 5 different sensors shown in Table 4.2. It is designed to connect with
TI’s Launchpads without modifications via the two 20pin headers. Although most of the
sensors support I2C and SPI interfaces, the extension board only connects to their I2C
interfaces. Therefore the SPI bus cannot be used. The extension board and its application
can be seen in Figure 4.10.

Other pins connected are:

• 3.3v power rail

• 5v power rail

• Ground

• Accelerometer interrupt

• Magnetometer interrupt

• Gyroscope interrupt

• Infrared temperature interrupt

• Ambient light interrupt

After some experimentation, it was not possible to compile RTOS for the MSP430 devel-
opment board due to compilation errors. To save time, it was decided to move on, to the
very similar but more recent CC2650 SensorTag. Most of the information discussed in this
subsection also applies to the next subsection and vice versa. So, if the compilation would
be successful, the introduced covert channel should also work on the MSP430 development
board.

4.2.1.2 CC2650 SensorTag

The CC2650 SensorTag is another product from Texas Instruments. This tiny device is
designed for Internet of Things applications and therefore comes with Bluetooth low energy
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(a) TI Sensors BoosterPack

(b) Sensors BoosterPack installed on
MSP430 Launchpad

Figure 4.10: Available sensors on the TI BoosterPack extension board

Name Manufacturer ”Hybrid” Type(s)

OPT3001 TI N Ambient light
HDC1000YPA TI Y humidity, temperature

MPU-9250 TI Y Accelerometer, gyroscope
BME280 Bosch Y Pressure, Ambient temperature, humidity

SPH0641LU4H Knowles N Microphone

Table 4.3: Available sensors on the CC2650 SensorTag

and 10 different sensors. Some sensors are exactly the same as on the Sensors BoosterPack,
for example the ambient light sensor OPT3001 and the environmental sensor BME280.
Table 4.3 lists all available sensors.

4.2.2 Raspberry Pi

The Raspberry Pi is one of the most famous single-board computers. It is available in
different versions, ranging from the Zero with a very small profile to the most common
standard ”Pi Model B”. For each Generation, a smaller incremental update is released,
which can be identified by the ”+” suffix. For this thesis, the Raspberry Pi 3B+ was cho-
sen, as is was widely available and the actual computing power and memory are sufficient.
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Figure 4.11: Raspberry Pi 3B+ [59]

This model comes with the following core specifications:

• Broadcom BCM2837B0, Cortex-A53 (ARMv8) 64-bit SoC @ 1.4GHz

• 1GB LPDDR2 SDRAM

• 2.4GHz and 5GHz IEEE 802.11.b/g/n/ac wireless LAN

• Extended 40-pin GPIO header

• 4 USB 2.0 ports

• 5V/2.5A DC power input

For the operating system, Raspbian was chosen because it is a Debian version specially
developed for the Raspberry, which ensures high compatibility. The installation is straight
forward using the provided ”NOOBS” installer [14].

To be able to test the developed code efficiently, a ”Sense HAT” add-on board [45] was
used. This board incorporates multiple different sensors that are already connected to an
I2C interface. Additional to the hardware sensors listed in Table 4.4, a LED Matrix, a
Joystick, and a small 32kbit EEPROM are included.

Figure 4.12: Raspberry Sense HAT [59]
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Name Manufacturer ”Hybrid” Type(s)

HTS221 STMicroelectronics Y Humidity, Temperature
LPS25H STMicroelectronics N Barometric Pressure

LSM9DS1 STMicroelectronics Y Accelerometer, Gyroscope, Magnetometer

Table 4.4: Hardware sensors on the Raspberry Sense HAT

To attach the board to the Raspberry, it simply has to be connected to the 40-pin GPIO
header. All of the pins are predefined so no additional setup steps are needed. One thing to
note, the Raspberry Pi 3B+ implements two I2C interfaces and before the sensors can be
accessed, the correct interface has to be selected. The developers provide a python library
which implements most of the sensor functionality, but does not allow direct access to the
sensor. As mentioned in the theory discussions, it is good practice to restrict access, but
there are cases where a user needs more control over the settings of a sensor for example.
In these cases, the library may be too restrictive and other access methods can be used,
like the dev interface provided by Linux. For the upcoming evaluations, the covert channel
entities use the dev interface, while the entities simulating users use the python library.
This is the simplest way to allow quick changes to the user behavior, while still being able
to control the channel with precision from the sender and receiver side. Figure 4.13 shows
an overview of the test setup.

Figure 4.13: Raspberry Pi Testsetup
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4.3 Evaluation

In this section, different aspects of the covert channel designs, introduced in Chapter 3, are
evaluated. For the Raspberry Pi platform, the testbed developed during this thesis is used.
More information about the implementation of this testbed can be found in Section 4.1.
The evaluation on the CC2650 SensorTag and the Android smartphone required separate
implementations, as the programming language or environment is vastly different from a
standard Linux C++ environment. All three systems were evaluated in terms of covert
channel throughput, which is shown in detail in Section 4.3.1. To show the purpose of the
adaptive packet size, the error code detection and correction, all of these systems were
evaluated using the testbed implementation. The results are shown in Section 4.3.2 and
4.3.3.

4.3.1 Throughput

The throughput is an important property of a (covert) channel. It not only can be used
to calculate how long it will take to send a payload over the channel from the sender to
the receiver, but also can be used to estimate the viability of the covert channel. If the
throughput is very low, and the sender and/or receiver applications can only run for a
short amount of time before being terminated, it is nearly impossible to send a meaningful
amount of data over the channel.

For this evaluation, a payload with a known size was sent over the covert channel. The
time from which the data transmission was started until it was fully received by the re-
ceiver was measured and is shown in Table 4.5. It is obvious, that the first two covert
channel designs are way faster as they are only limited by the bus speed. Another simple
observation is that the unused register attack is approximately seven times faster as the
configuration bits attack as seven payload bits per transaction can be transmitted instead
of just one.

Payload size Channel Type Time (min:sec)

4kb Unused Register 0:14
4kb Configuration Bits 1:36
4kb Triggering Sensors 52:49

Table 4.5: Results for the transmission times using the Raspberry Pi 3B+

In Figure 4.14, a comparison between different platforms is shown for all three attack
types. The third attack was only implemented using the testbed, therefore no values for
the CC2650 SensorTag are available. For the Android part, aa OnePlus 5 was used to
perform some throughput evaluations, which are not as accurate as the others. The 30bit/s
are a rough estimate. There is a notable difference between the CC2650 and the Pi. This
is, because of the synchronization needed for Linux systems. As TI-RTOS implements
a predictive scheduler, the two processes that communicate over the covert channel are
automatically in sync. This results in a throughput roughly two times of the Pi.
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Figure 4.14: Throughput comparison between different platforms [56]

The throughput graph uses a logarithmic scale because of the big differences between the
different attack methods. While the unused register attack is able to reach up to 2448bit/s,
the configuration bits attack reaches about a seventh, or 366bit/s. The triggering sensors
attack is by far the slowest with a throughput of 20bit/s. This value highly depends on
the speed of the sensor, as only one bit can be sent per measurement cycle.

4.3.2 Adaptive Packet Size

To be able to respond to errors introduced by concurrent user accesses, the packet size
was designed to be adaptive. For the evaluation, a payload with a fixed size was trans-
mitted using different packet sizes. Because user access times are related to the number of
retransmissions, the test was performed using different time values ranging from 1s to 20s.
The packet sizes 11, 20, 37 and 70bit were chosen because of the Berger error detection
code size thresholds shown in Table 4.6. The results show a steady downward trend for the
transfer time when the packet size is increased. The drawback is visible in the 1s access
time bars in Figure 4.16. The time values increase significantly for packets of 37bits and
above. Even bigger packets with 70+bits, have trouble sending even a single packet which
leads to a much higher retransmission count and thus, transfer time.

EDC size Payload size (max) Packet size (max)

3bit 5bit 11bit
4bit 13bit 20bit
5bit 29bit 37bit
6bit 61bit 70bit

Table 4.6: Resulting maximum packet sizes based on berger code size
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Figure 4.15: Transfer time differences for various packet sizes and user access timings [56]

For the evaluation of the dynamic packet size, three tests were performed. Two of the
tests used a static packet size of 37bit and 11bit and the third test used a dynamic size.
30 seconds into each test, a user starts polling the sensor in a 1-second interval. As
shown in Figure 4.16, the 37bit static test failed to transmit any data, as soon as the user
starts polling. The 11bit static struggles a bit, but is able to continue the transmission.
Because an 11bit packet contains only 5bit of data, approximately 55% are overhead in
contrast to 22% for the 37bit packet. Therefore, the smaller packets need to transfer
more, which slows down the transmission. The dynamic packet approach combines the
best of both approaches, i.e., the higher throughput of larger packets and the ability of
smaller packets to transmit data when a lot of noise is generated by the user. When the
user starts polling after 30 seconds, the test-bed recognizes the failed transmissions and
starts to scale down the packet size. After 60 seconds, the packets are small enough to be
successfully transmitted again.

Figure 4.16: Comparison between static and dynamic packets sizes with noise [56]
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4.3.3 Error Correction & Error Detection

In Section 3.3.2 and 3.3.1 error correction and error detection were introduced to the
packet system. The codes are used to detect errors, which are then handled by the packet
systems retransmissions. If too many retransmission occurs, the transmission is aborted,
as the channel is too noisy to transmit data reliably. For the evaluation, a small 32x32
image was transmitted over a covert channel. The original image is shown in Figure 4.17a.
Noise is generated using two users who access the sensor at random times. Both the
error detection and the error correction are disabled, which means bit-flips in the payload
are not detected. If a bit-flip occurs in the part where the sequence number is stored, the
packet system still performs a retransmission because of the out of order sequence number.
Figure 4.17c shows the difference between the input and the output image. A lot of pixel
errors were introduced by the user interferences, but the image is still recognizable.

(a) Original image
(b) Image after
transmission

(c) Pixel errors

Figure 4.17: Errors resulting in a transmission without EDC and ECC enabled [56]

For command packets on the other hand, the problems are a lot more noticeable. Because
command packets are not sent often and are very short in relative, the error count is a
lot lower as for data packets. The problem arises if a bit-flip occurs in the command part
of the command packet, which leads to misinterpretation by the receiver. As both parties
need to keep track of the packet scale independently, these scales have to be in sync for
any communication to be possible. If the command is misinterpreted by the receiver, the
scaling will drift and is no longer in sync. Currently there is no algorithm implemented
to detect scale drifts, so if this is the case, the communication is not possible anymore.

4.3.4 Managed-Access

The following part outlines the evaluation for both Android-based covert channels, which
were introduced in Section 3.2. Two separate applications were developed, one receiver
and one sender. Upon start, the receiver registers a callback for a sensor event using a
very high interval time. This ensures that other applications are able to lower the interval
time when registering for the same sensor event. The sender implements a simple UI with
one button. When the button is pressed, the sender starts the transmission of the payload
using the specified covert channel. Each time the callback of the receiver is called, both
the sensor event timestamp and the current system time are logged. The log is saved to
the device and later transferred to a computer for post-processing. As already mentioned
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in the design section, the system timestamp can only be used as an internal reference value
as it is highly fluctuating based on system load.

Figure 4.18: Android test setup

In post-processing, the interval between the timestamps is calculated. The respective
graph can be seen in Figure 4.19. For this test, an interval value of 20ms is used to
transmit a 0 bit and a value of 40ms is used for a 1 bit. The transmission is only slightly
susceptible to system load as the sensor timestamps are used instead of the system time.
These sensor timestamps are generated when the result is read from the sensor by the
sensor stacks’ C++ implementation, which runs in near real-time.
In the center of the graph in Figure 4.19, after the transmission of the second 1 bit, a slight
interference is visible. If these interferences disturb the decoding process, multiple adjust-
ments are possible. For example, the distance between the intervals could be increased to
generate a more aggressive pattern (5ms and 100ms). Another parameter that could be
changed is the number of events per payload bit, which would increase the possibility for
the channel to stabilize between interval changes.

While performing the evaluation of the first covert channel design, it was discovered that
all (or most) browsers immediately subscribe to sensor events using the fastest possible
reporting speed. This renders the previous channel infeasible, as no further changes are
possible until the browser is closed. After some experimentation, a workaround was found
which ended in the second covert channel design, introduced in Section 3.2. Figure 4.20
shows the transmission of another test payload using the new design. The blue line rep-
resents the interval timings logged by the receiver each time the callback is called. The



CHAPTER 4. IMPLEMENTATION 84

Figure 4.19: Received transmission of a test patter over the covert channel [56]

red dots are timestamps logged by the sender, each time it registers a new listener for
the sensor events. It can be seen that both logs correlate and each time a new listener is
registered, an anomaly in the intervals can be detected. Using different delays between
subscriptions, data can be encoded, e.g., 10 intervals for a 0 bit and 50 intervals for a 1 bit.
This channel design highly depends on the used hardware, is very unstable and therefore
only presented as a concept.

Figure 4.20: Correlation between sensor reading frequency and registering a sensor event
listener [56]
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Conclusion and Future Work

In this chapter, first a summary of the contributions is given in Section 5.1, followed by a
few selected topics that are subject to future work in Section 5.2.

5.1 Conclusion

This thesis introduced some new designs for sensor-based covert channels, ranging from
simple attacks targeting sensor registers to more sophisticated attacks, that are able to
abuse even abstracted architectures like Androids’ sensor stack. One of the biggest prob-
lems in designing covert channels is the high susceptibility to noise. In the case of sensor-
based covert channels, each user access introduces noise which has to be detected to miti-
gate errors. Therefore, a packet system was introduced which includes a request-response
protocol for packet transmission. Each packet integrates either an error correction- or an
error detection code, depending on the payload size. The implemented request-response
protocol ensures the correct order of the packets and using this method, data can be trans-
mitted even over noisy channels. A testbed was designed and implemented that follows a
layered abstraction architecture. Each of the four layers abstracts one part of the system:
the hardware interface, the sensor, the attack implementation, and the communication
flow. This enables the possibility for unified testing of an attack on different target sen-
sors. The layers consist of separate modules, which are interchangeable and extendable.
A management class is used to configure the selected modules for each layer. Using the
testbed, it was shown that a covert channel between two processes can be successfully
established using the proposed methods. The data rate ranged from 4,8kbit/s to 20bit/s
depending on the complexity of the design. Besides a throughput comparison between
the designs, also two different platforms were evaluated. A Raspberry Pi 3B+ running
a Linux distribution was used as a baseline and for tests on a low power platform, the
CC2650 SensorTag was used. The evaluation concluded that very simple designs are able
to run at nearly the data rate limit of the hardware interface, while more sophisticated
and less obvious attacks come with a much lower throughput.

85
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5.2 Future Work

In this section, some of the ideas for future work are explained.

Porting to other RTOSs: For evaluation purposes, the CC2650 SensorTag running
the Texas Instruments TI-RTOS was used. As explained in Section 3.1.1.1, there are a few
other popular operating systems available that support the CC2650. As these operating
systems can be vastly different in relevant parts of the implementation such as scheduling,
hardware abstraction, etc., it would be interesting to test the proposed covered channel
designs on these operating systems.

Support for additional Hardware Interfaces: For the most part of this thesis, only
I2C was considered. As nearly every sensor supports both I2C and SPI, the next logical
step would be to implement the SPI specification to be able to compare it to I2C in terms of
throughput and viability. Further, there are other systems such as CAN bus or Ethernet-
based access, that add an additional layer which would be interesting to investigate. CAN
bus systems are often used in vehicles, which would make a good target.

Support for additional Error-Detection- And Error-Correction-Codes: Besides
the already considered algorithms, there are many more additional error-detection- and
error-correction-codes which are more efficient in terms of generated overhead. As they
are way more sophisticated, the implementation of those codes is also a lot more work.
For this thesis it was important to just implement a rudimentary version of each code to
be able to evaluate the channel designs reliably. In the future it will be interesting to
compare the efficiency of the implementation to other codes, like turbo-codes for example.

Templating implementation: Most accesses to sensors are either very sporadic or
follow a specific pattern. For example a process might poll a temperature sensor once
a day or it might request new accelerometer readings every 10ms. By listening to the
usage of the sensor the attacker might be able to recognize the pattern. This enables new
methods for packet scaling and timeouts.

iOS Devices: Apples’ iOS is the mobile operating system with the second-highest mar-
ket share worldwide, at around 28.8%. It is very different from Android and it would be
interesting to research how sensors are handled on iOS. There are some points, that make
the development for iOS more complicated than for Android. Apple decided to keep iOS
development exclusive to its own ecosystem, therefore a computer running macOS and
Xcode is needed. This is why the focus of this thesis was on Android and iOS will be
subject to future work.
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A.1 I2C

I2C was developed by NXP Semiconductors in 1982 [50]. Nowadays, it is the de facto
standard for communication between ICs. The bus consists of only two wires and a
very simple circuit which is important for the integration in small low power hardware,
such as sensors. One of the two wires is used as a serial clock line (SCL) while the
other wire, the serial data line (SDA), is used to transmit data. For each bus multiple
devices can be connected which are enumerated using software-defined addresses. The bus
communication follows a master/slave principle. A basic example is shown in Figure A.1
where a Raspberry Pi (master) can access multiple different sensors (slaves).

Figure A.1: Example I2C setup
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To increase compatability, the I2C standard defines different bidirectional modes that
determine the maximum throughput:

• Standard-mode: up to 100kbit/s

• Fast-mode: up to 400kbit/s

• Fast-mode Plus: up to 1Mbit/s

• High-speed mode: up to 3.4Mbit/s

The specification also defines multi-master support, which is not relevant in this thesis as
its focus is inter-process side channels, which does not entail inter-device side channels.
All of the communications have to be initiated by the master, while the slaves should
only send a response when the master request data from them. At the beginning of each
transaction, the master sends a START condition which is defined by a HIGH to LOW
transition on the SDA line while SCL is HIGH. Then, data is sent by using either a HIGH
or LOW state on the SDA line while the SCL is HIGH. It is important, that transitions
on the SDA line are only allowed while the SCL is LOW. Otherwise, the data is invalid.
For each clock cycle one bit of data can be transferred. At the end of a transaction the
master sends a STOP condition to signal the bus availability. This is very important for
multi-master setups. In Figure A.2 two example transfers, including the START and END
conditions, are shown.

Figure A.2: I2C START and STOP conditions [50]

After every byte the receiver has to send an acknowledge (ACK) to let the sender know
if the transmission was successful. This is defined as follows: ”The transmitter releases the
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SDA line during the acknowledge clock pulse so the receiver can pull the SDA line LOW
and it remains stable LOW during the HIGH period of this clock pulse.” If the SDA line
stays HIGH it will be interpreted as a not acknowledge (NACK), which leads to either a
restart of the transaction or it is aborted by the master.

For the transmission, there are three defined data transfer formats. Figure A.3a shows the
structure of a write transaction. First, the master initiates the transmission by sending
a START condition followed by the slave address and the read-write flag set to 0. After
the ACK is received the master starts sending bytes of data which each has to be ac-
knowledged by the receiver. After the last byte is sent successfully, the master terminates
the connection by sending a STOP condition. The read transaction is very similar and is
shown in Figure A.3b. Instead of 0, the read-write flag is set to 1 and after the ACK, the
slave starts sending bytes until the request is fulfilled. The third data transfer format is a
combination of read and write.

(a) Write transaction

(b) Read transaction

Figure A.3: Structure of an I2C transaction [50]

Because most slaves have multiple data registers that can be accessed, the read-only
transfer is rarely used. Instead the combined format is used to first send the register
address in write mode followed by receiving the requested data in read mode. Some
examples for the LPS25H are shown in Table A.1 to A.4, where the slave address is
shortened to SAD and the register address is shortened to SUB. The other abbreviations
are defined in Figure A.3a.
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Master S SAD W SUB DATA P

Slave A A A

Table A.1: Transfer when master is writing one byte to slave [46]

Master S SAD W SUB DATA DATA P

Slave A A A A

Table A.2: Transfer when master is writing multiple bytes to slave [46]

Master S SAD W SUB S SAD R NA P

Slave A A A DATA

Table A.3: Transfer when master is receiving (reading) one byte of data from slave [46]

Master S SAD W SUB S SAD R A NA P

Slave A A A DATA DATA

Table A.4: Transfer when master is receiving (reading) multiple bytes of data from slave
[46]
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