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ABSTRACT 
 

This master thesis is about the implementation of a reconfigurable FPGA based Logic-Debugger, the 
AID – Advanced Inverter Debugger and was provided by the Technical University of Graz and 
accomplished in cooperation with AVL List GmbH. For FPGA based development, debugging of internal 
signals is necessary to detect errors and to visualize signals. Xilinx Vivado already offers an Integrated 
Logic Analyzer (ILA) to debug the signals of the design. Every time the input signals are changed, the 
whole workflow (synthesis, placement, routing and the generation of the bit stream) must be done again. 
This costs time and resources.  

Therefore, it is better to use a custom Debug-Core, like the Advanced Inverter Debugger. The AID has 
300 possible signal inputs. It can dynamically select 4 signals out of them for the debugging process. 
The debugging process is controlled by a user-interface at a workstation. The adjusted debugging 
parameters, like sample rate, number of samples, trigger settings and signal selection, are sent from 
the workstation to the Debug-Core on the FPGA. The communication is done with UDP/IP. The Debug-
Core starts the debugging process with the adjusted parameters. The sampled signal data is sent from 
the FPGA to the workstation and monitored with the user-interface. Optional, the signal data can be 
logged in csv files.  

The functionality of the AID was tested with the Zynq Development Board and a custom Controller Board 
developed by FH Kapfenberg and AVL List GmbH. Different kinds of inverters and controllers are 
running on the Controller Board, which are needed for test benches in the automotive industry. 

In the future the AID should be used for FPGA based development and for error analysis for different 
kinds of inverters. 
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ABSTRACT 
 

Diese Masterarbeit beschäftigt sich mit der Implementierung eines FPGA basierten Debuggers, dem 
AID – Advanced Inverter Debugger und wurde von der Technischen Universität Graz angeboten und in 
Kooperation mit der AVL List GmbH durchgeführt. Für die Entwicklung mit FPGAs ist es wesentlich, die 
internen Signale zu betrachten um Fehler zu erkennen und Signale darstellen zu können. Xilinx Vivado 
verfügt über einen Integrated Logic Analyzer (ILA), um Signale aus dem Design aufzuzeichnen. 
Allerdings muss jedes Mal, wenn sich die Eingangssignale vom ILA-Core ändern, der gesamte 
Arbeitsprozess (Synthese, Platzierung, Verkabelung und die Generierung des Bitstreams) neu 
durchlaufen werden, was in Folge viel Zeit und Ressourcen in Anspruch nimmt.  

Um dies zu vermeiden, ist es sinnvoller einen eigenen Debug-Core zu entwickeln, den Advanced 
Inverter Debugger. Der AID besitzt 300 mögliche Eingangssignale. Aus diesen können jeweils 4 Signale 
dynamisch ausgewählt und aufgezeichnet werden. Auf einem Computer kann der Debugging-Prozess 
mit Hilfe einer Benutzeroberfläche gesteuert werden. Die Parameter Abtastrate, Anzahl der 
Abtastpunkte, Triggereinstellung und Signalauswahl werden für die Aufzeichnung in der 
Benutzeroberfläche eingestellt und an den FPGA gesendet. Die Kommunikation erfolgt mit UDP/IP. Der 
Debug-Core verarbeitet die eingestellten Parameter und startet den Debugging-Prozess. Die 
abgetasteten Signalwerte werden vom FPGA zurück an den Computer gesendet und mit der 
Benutzeroberfläche grafisch dargestellt. Die Signalwerte können optional in csv Dateien gespeichert 
und wieder angezeigt werden. 

Die Funktionalität wurde mit dem Zynq Development Board und einem, von der FH Kapfenberg und 
AVL List GmbH entwickelten, Controller Board getestet. Auf diesem Controller Board laufen diverse 
Umrichter, die für Testeinrichtungen in der Automobilindustrie verwendet werden. 

In der Zukunft soll der AID für die Entwicklung mit FPGAs und zur Fehlererkennung von verschiedenen 
Umrichtern eingesetzt werden. 
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1 INTRODUCTION 
 

This master thesis is about the implementation of an FPGA based Logic-Debugger in cooperation with 
AVL List GmbH1, which can monitor internals signals of the FPGA design.  

AVL List GmbH is a company in the automotive industry. Their main focus is the development of drive 
systems like engines, powertrains, batteries and the associated software, test benches for engines, 
vehicles and their components and simulations for engines and vehicle development.  

For the development of FPGA based products, debugging of internal signals is necessary to detect 
errors or to visualize signals of the FPGA design. Xilinx Vivado2 already offers an Integrated Logic 
Analyzer (ILA) to debug signals of the design. Every time, the input signals of the ILA-Core change, the 
whole workflow (synthesis, placement, routing and generation of the bit stream) must be done again. 
This costs time and resources. 

To avoid this waste of resources, it is better to use a custom Debug-Core, like the AID – Advanced 
Inverter Debugger. The AID has 300 possible signal inputs. It can dynamically select 4 signals out of 
them for the debugging process. The debugging process is controlled by a user-interface at a 
workstation. The adjusted debugging parameters are sent from the workstation to the Debug-Core on 
the FPGA. The communication is done with UDP/IP. The Debug-Core starts the debugging process with 
the adjusted parameters. The sampled signal data is sent from the FPGA to the workstation and 
monitored with the user-interface. Optional, the signal data can be logged in csv files.  

The AID should be used for debugging different kinds of inverters in the automotive industry. These 
inverters are used to convert voltages and currents from AC to three-phase and vice versa. They also 
provide several functionalities like PWM, PLL, voltage and current control etc. for test benches to power 
synchronous and asynchronous engines.  

First, there is a little overview about different concepts to implement this Debug-Core. These concepts 
have different advantages and disadvantages. A comparison was made, which concept is better and 
also feasible with the existing tools. 

Second, there is an overview of the whole system and how the different parts interact with each other. 
The main parts are the Debug-Core on the FPGA and the user-interface for the workstation.  

After the short overview, the different parts of the Debug-Core and the user-interface are explained in 
detail and how they were implemented. These parts were simulated and tested to check if they work 
properly. 

After the simulations of the different parts, the whole system was combined and tested on the Zynq 
Development Board3 and on the Controller Board. The Controller Board is a custom PCB for test 
benches and was developed by FH Kapfenberg4 and AVL List GmbH.  

  

                                                      

1 AVL List GmbH is a company in the automotive industry, which develops drive systems, simulations 
and test benches, www.avl.com 
2 Xilinx Vivado is a development tool for FPGA based development, 
https://www.xilinx.com/products/design-tools/vivado.html 
3 The ZedBoard is a development kit, http://zedboard.org/product/zedboard 
4 FH Kapfenberg is a college, www.fh-joanneum.at/hochschule/standorte/kapfenberg/ 
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2 MOTIVATION 
 

The motivation behind this thesis is to develop an FPGA based Logic-Debugger, which can debug 
internal signals of the FPGA design during runtime. A user-interface controls the Debug-Core and 
displays the sampled signal data on a workstation. 

AVL List GmbH is a company in the automotive industry and develops drive systems like engines, 
powertrains, batteries and the associated software, test benches for engines, vehicles and their 
components and simulations for engines and vehicle development.  

For some products, like test benches, FPGA based inverters and controllers are required. These 
inverters and controllers provide several functionalities like PWM, PLL, voltage and current control etc. 
to power synchronous and asynchronous engines. Currently, Zynq-7000 Kintex®-7 FPGAs5 are used 
for the development. To verify the correct work of the inverters and controllers, debugging is necessary. 

Currently, the Xilinx Integrated Logic Analyzer (ILA) is used to debug internal signals of the FPGA design. 
Every time, the input signals of the ILA-Core change, the whole workflow (synthesis, placement, routing 
and generation of the bit stream) must be done again. This costs time and resources. 

To avoid this waste of resources it is better to use a custom Debug-Core, the Advanced Inverter 
Debugger (AID). The AID has 300 possible signal inputs. 4 of these 300 signals can be dynamically 
selected for the debugging process. The debugging process is controlled by a user-interface on a 
workstation. The adjusted parameters like sample rate, number of samples, trigger settings and signal 
selection are sent to the Debug-Core on the FPGA. The communication is done with UDP/IP. The 
Debug-Core starts the debugging process with the adjusted parameters and sends the sampled signal 
data back to the workstation. The signal data is displayed with the user-interface and optional logged 
into csv files. The logged data can also be displayed with the user-interface. 

  

                                                      

5 Zynq-7000 Kintex®-7, https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html 
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2.1 GOALS 
 

To control the Debug-Core, a LabVIEW6 user-interface should be realized. The communication between 
the LabVIEW user-interface and the FPGA should be done with UDP/IP. During the development this 
goal was changed to a C# user-interface, because C# is more flexible with file operations than LabVIEW.  

 

The requirements for the Debug-Core are: 

 Selection of 4 signals out of 300 input signals. The AID should contain 300 possible input signals, 
each 32 bit. 4 signals of these 300 signals should be selectable for the debugging process. To 
observe the behavior of the inverters and controllers, internal signals of the FPGA design must 
be connected to the AID IP-Core. The 300 input signals are necessary to be flexible in the 
selection of the signals for the debugging process.  

 Adjustable number of sample points. The number of samples applies to all 4 selected signals 
and the AID should stop the debugging process when the adjusted number of samples is 
reached. The sample number is between 1024 and 999424. There should be the possibility to 
sample longer, but in this case, the debugging process must be stopped with the user-interface. 

 Adjustable sampling rate. The sampling rate applies to all 4 selected signals and determines, 
how fast the sampling is done. The lowest sample frequency should be 1 kHz and the maximum 
sample frequency should be 1 MHz. The maximum sample frequency is determined by the 
operating frequency of the different controllers. 

 There should be different trigger types, like post- and pre-triggers with the functionality to check, 
if the signal value is above, lower, or equal to the adjusted trigger value of the user-interface. 
The trigger option should be available for only one signal. 

 Adjustable trigger value. The trigger value should be set in the user-interface. It should be an 
integer value, because most of the internal signals of the controllers are integer signals. 

 There should be different package types for the UDP/IP connection. The package types 
determine how to handle the data from the UDP packages. To control the Debug-Core with the 
user-interface, configuration data is used with the package types to start and stop the debugging 
process and to get the AID version number. The Debug-Core sends data packages to the user-
interface with the sampled signal data or the AID version number. 

 The resource usage on the FPGA should be as low as possible. 
 The controller must work independently from the Debug-Core. 
 The Debug-Core is not allowed to influence the controller. 
 The Debug-Core should be controlled from a workstation with a user-interface.  
 The user-interface should monitor the signal data. Optional, data logging in csv files should be 

possible.  

 

The implementation should be done with MATLAB7 Simulink8 and later with Xilinx Vivado. The user-
interface should be designed with NI LabVIEW. An analysis for the data transmission should be made 
and the internal routing of the AID should be analyzed. 

 

  

                                                      

6 LabVIEW is a graphical development tool, https://www.ni.com/de-at/shop/labview.html 
7 MATLAB is a development tool, https://de.mathworks.com/products/matlab.html 
8 Simulink is a toolbox for MATLAB, https://de.mathworks.com/products/simulink.html 
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3 CONCEPT OF THE DEBUG-CORE 
 

Currently for debugging signals in the FPGA design, the Xilinx Integrated Logic Analyzer (ILA) is used. 
This works fine, but every time when new signals are routed into the ILA core, the whole design flow, 
with synthesis, placement, routing and generation of the bit stream has to be done again. Furthermore, 
the ILA core needs a number of sample points for the debugging process. Every time the number of 
sample points change, the work flow must be done again. Due to the slow data transmission with JTAG, 
the signal data is stored on the FPGA and sent via the JTAG interface to the workstation. To avoid a 
repetition of the design flow, when changes are made, more signals are into the ILA core, although 
some of these signals are never used for debugging. This also leads to more resource usage on the 
FPGA to save the signal data for the JTAG transmission. 

Figure 1 shows the current status how a controller is debugged by using the ILA core and the JTAG 
interface. Here, internal signals of a controller are debugged to verify the correct work. The controller 
will be used for test benches in the automotive industry. The JTAG interface is connected to a 
workstation with Xilinx Vivado to monitor the debugged signals. The Controller is set up with parameters 
from another workstation with a LabVIEW user-interface. The communication between the Controller IP 
core and the LabVIEW user-interface is done with TCP/IP and with the ARM-Processor of the ZedBoard. 
The ARM-Processor receives the incoming TCP/IP packages and forwards them with the AXI4-Lite bus 
to the Controller IP core on the FPGA. The Controller sends the controller information back to the ARM-
Processor, which builds a TCP/IP package and sends it to the workstation with the user-interface. 

 

FIGURE 1: XILINX ILA CORE WITH JTAG COMMUNICATION 

 

The ZedBoard is used for the FPGA based development. It is a complete development kit with a Xilinx 
Zynq®-7000 All Programmable SoC. Several interfaces, like UART, JTAG, HDMI, VGA, Audio I/O, 
Ethernet etc. are supported and can be used for different kinds of applications. The Zynq®-7000 SoC 
is structured into the Processor Subsystem, which contains the clock, reset, DDR3 RAM and Multiplexed 
I/O (MIO), like SD Card, Gb Ethernet, USB UART, LED, switches and other I/O interfaces. The second 
part is the Programmable Logic (PL), which can be configured. The PL can access interfaces like, XADC, 
clock, LEDs, switches, JTAG etc.9. The ZedBoard also includes a Xilinx Vivado® Design Edition license 
voucher, which is locked to Zynq-7Z020. 

                                                      

9 ZedBoard, http://zedboard.org/product/zedboard 
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Currently, a controller for voltage and current control, which was develop by AVL List GmbH, is running 
on the FPGA of the ZedBoard. This controller is controlled by a LabVIEW user application. The 
communication is done with TCP/IP and with the ARM-Processor. A TCP/IP echo server is running on 
the Processing System (PS) [1], which handles the communication by using the integrated Ethernet 
interface of the ARM-Processor.  

The ARM-Processor is the heart of the Processing System, which also includes on-chip memory, 
external memory interfaces and a lot of I/O peripherals. The PS offers the whole functionality of the 
ARM-Processer. It is possible to enable different functionalities with driver files10. These driver files, like 
a TCP/IP echo server, are executed on the ARM-Processer.  

The PS receives the configuration data from the user-interface and forwards it via AXI-Lite [2] bus to the 
Controller IP core. The Controller sends the status data back to the workstation. 

 

The concept of the Advanced Inverter Debugger (AID) is, to implement an FPGA based Debug-Core, 
which can select signals for the debugging process during runtime. This Debug-Core should be able to 
select 4 signals out of 300 possible input signals. To control the debugging process, a user-interface is 
necessary. All of the important control information can be set in the user-interface. Important parameters 
are the number of samples, sampling rate, trigger type, trigger value and the selection of the 4 signals 
for the debugging process. The parameters will be sent as control information to the FPGA. The Debug-
Core will set up the debugging process with the control information and sends the signal data to the 
workstation. The communication between the user-interface and the FPGA is done with UDP/IP. 

This connection can be implemented in different ways. There are two approaches how to send and 
receive the data between the FPGA and the user-interface: 

In the first approach a similar design was chosen. The communication is also done with the Processing 
System of the ARM-Processor. The communication can either be TCP/IP (Figure 2) or UDP/IP (Figure 
3). In both cases, the implementation for the FPGA is the same. Due to faster possible data rates (MAC 
interface supports 1GBit/s) and since data packet loss is acceptable, UDP/IP is for streaming data to 
the workstation more suitable. To use the PS, driver files are necessary to enable different functionalities 
for the communication. The ARM-Processor will execute these driver files, which sets up a UDP echo 
server to establish a connection between the workstation and the PS. After receiving the control 
information, the PS will write the control data into the RAM. Via the GPIO port, the PL can be enabled 
to read the data with the AXI DataMover [3] from the RAM. The Debug-Core extracts the different 
parameters out of the AXIS [2] data stream to start the debugging process with the chosen parameters. 
The sampled signal data is written with the AXI DataMover into the RAM. Each time, a certain number 
of samples was written into the RAM, an interrupt is raised. This number can be adjusted in the PS. The 
PS reads out the signal data and sends it to the workstation. The AID user-interface will handle the 
received data for monitoring and optional for logging the data into a csv file. 

                                                      

10 Processing System see Chapter 4.2 Processing System 



  
 
 

6 
 

 

FIGURE 2: COMMUNICATION WITH THE PROCESSING SYSTEM AND TCP/IP 

 

FIGURE 3: COMMUNICATION WITH THE PROCESSING SYSTEM AND UDP/IP 

 

The second approach is, to avoid the Processing System for the communication. To do that, the AXI-
Ethernet [4] IP core from Xilinx is used, as shown in Figure 4. This core converts the AXIS data stream 
into data for the Ethernet transeiver, which builds and sends the UDP/IP package to the workstation. To 
use the AXI-Ethernet core, a licence for the Xilinx TEMAC [5] (Tri-Mode Ethernet MAC) core is 
necessary. Due to the missing licence this approach was not possible. 
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FIGURE 4: COMMUNICATION WITH THE AXI-ETHERNET IP CORE 

 

Therefore, the decision was made to implement the communcation with the PS of the ARM-Processor 
and a UDP/IP echo server. Currently, the Controller IP core communicates with the Controller LabVIEW 
user-interface via the ARM-Processor and TCP/IP. Therefore, the driver files must be extended to 
include the UDP/IP communication between the Debug-Core and the Debug-Core user-interface. 
Furthermore, the PS has to enable the read operation from the RAM (PL side) to start the debugging 
process with the adjusted debugging parameters and a interrupt handler is necessary when the sampled 
signal data is written into the RAM and ready to be sent to the user-interface.  

Maybe in the future, the AXI-Ethernet module will be used to avoid the communication via the ARM-
Processor and the PS. The Processing System is slowly and when the Controller IP core is 
communicating a lot with the Controller user-interface, the Processor utilization increases. This can lead 
to performance problems of the Controller and the Debug-Core.  

 

4 DEBUG-CORE ON THE FPGA 
 

4.1 STRUCTURE OF THE DEBUG-CORE ON THE FPGA 
 

The Debug Core on the FPGA is structured into different submodules, shown in Figure 5. These 
modules together provide the functionality on the FPGA. 
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FIGURE 5: DEBUG-CORE STRUCTURE ON THE FPGA 

 

To start the debugging process, the Processing System waits for the arrival of the control information 
from the user-interface. The PS writes the received data into the RAM and it accesses the AXI_GPIO 
ports to activate the data transfer from the RAM to the AXI DataMover. The AXI DataMover routes the 
control data through the MM2S-DataMover-Interface11 to the UNPKG-Module12 of the AID. The MM2S-
Datamover-Interface block is an interface, which gives the AXI DataMover the control information for 
the read operation. Furthermore, it checks if the transfer from the RAM was successful. The UNPKG-
Module checks, if the package type is for starting the Debug-Core or for resetting it. It also splits the 
AXIS data stream into the different parameters, which are needed to control the Debug-Core Module. 
The Debug-Core Module itself is the part, which handles the sampling rate, the numbers of samples, 
and waits for the right trigger event. It starts the debugging process and returns the sampled data. The 
PKG-Samples module13 converts the sampled data to an AXIS data stream and sends it with the help 
of the DatamoveCTL block to the AXI DataMover. The AXI DataMover writes the sampled signal data 
into the RAM. The PS reads the data from the RAM and sends it to the workstation, where the user-
interface can monitor the signal data. 

 

                                                      

11 MM2S-DataMover-Interface stands for Memory Mapped to Stream DataMover Interface, see 
chapter 4.4 
12 UNPKG-Module stands for Unpackage Module, see chapter 4.7 
13 PKG-Samples Module stands for Package Samples Module, see chapter 4.8 
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FIGURE 6: INTERNAL STRUCTURE OF THE AID IP CORE 
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Figure 6 shows an overview of the AID IP core with all the sub modules. The S2MM-Datamover-
Interface14 and the MM2S-Datamover-Interface provide the interfaces to control the AXI DataMover with 
commands from the DatamoveCTL module15. The DatamoveCTL module counts the samples, which 
are written into the RAM. If the number is reached, which was set by the PS at the initialization, an 
interrupt occurs and the PS handles the interrupt with the corresponding interrupt handler and reads out 
the sampled data from the RAM, builds and sends the UDP package to the workstation. Currently, 32 
samples are collected in the RAM for the UDP transmission. One sample corresponds to one data 
package with the package type, sample number and the 4 signal values, each 32 bit long16. 32 of these 
data packages are put together to build the UDP payload. Therefore, the UDP package payload is 768 
bytes.  

 

4.2 IP CORE PROCESSING SYSTEM 
 

The Processing System [1] (PS) offers the whole functionality of the ARM-Processor. Some of the 
functionalities are interfaces to peripherals, interfaces to memory, clocks, high performance ports and 
DMA, shown in Figure 7. Functionalities can be activated to use them in the design. The AID requires a 
proper PS-PL (Processing System to Programmable Logic), DDR, clock and interrupt configuration.  

 

FIGURE 7: BLOCK DESIGN OF THE ZYNQ PROCESSING SYSTEM 

 

                                                      

14 S2MM-DataMover-Interface stands for Stream to Memory Mapped DataMover Interface 
15 See chapter 4.6, IP core DataMoveCTL 
16 See chapter 11, UDP connection 
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The Processing System provides the clocks for the different modules of the Debug-Core. In this design, 
the PL Fabric clocks with 100 MHz and 1 MHz are used, shown in Figure 8. The Debug-Core, UNPKG 
and PKG Samples modules use the 1 MHz clock. This is also the maximum sampling frequency for the 
debugging process. The UNPKG and PKG Samples modules additionally use the 100 MHz clock for the 
AXI-Stream transfers. This frequency is necessary to split the configuration data into the different 
parameters for the debugging process and to build the AXIS data stream to save the sampled signal 
data into the RAM. The different AXI modules use the 100 MHz clock. 

 

FIGURE 8: CLOCK SETTINGS OF THE ZYNQ PROCESSING SYSTEM 

 

To access the Programmable Logic (PL) from the PS, AXI_GPIO [6] ports are used. Therefore, the AXI 
GP master interface must be enabled in the PS-PL section. Figure 9 shows the M_AXI_GP0 output port. 
With the AXI GP master interface, the AXI to GPIO blocks can be addressed and the signals can be set 
with the driver software. Parameters of the AID, like memory addresses, data length and number of 
samples for the UDP package are set with this interface. Also, the start command to read the control 
information from the RAM is done with an AXI_GPIO port. 

To access the DDR RAM from the PL, the AXI High Performance Slave port (S_AXI_HP0) must be 
activated. This is done in the DDR section. With the S_AXI_HP0 port, data can be transferred between 
the AXI DataMover and the RAM. The control information is read from the RAM and the sampled signal 
data are written into the RAM.  

To signal the PS that data is available, an interrupt is raised. To use the interrupts, Fabric Interrupts are 
activated. The interrupt is set by the DataMoveCTL block and is routed into the interrupt interface, 
IRQ_F2P, of the PS, shown in Figure 9.  

The first interrupt (mm2s_finished_intr) is set, when the command data was successfully transferred 
from the RAM to the AXI DataMover. The interrupt handler resets the signal, which enabled the read 
operation. At that point, no read operations are necessary. The signal to start the read operation will be 
set again, when the PS received new control information from the user-interface.  

The second interrupt (s2mm_finished_intr) is set, when the number of samples for the UDP package is 
reached and all the data is successfully written into the RAM. The interrupt handler of the 
s2mm_finished_intr is called. The PS reads the signal data from the RAM and sends it with a UDP 
package to the workstation. 
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FIGURE 9: ZYNQ PROCESSING SYSTEM 

 

Two Fabric clocks are used with 100 MHz and 1 MHz. The PS also offers a reset. This reset is active 
low. To use this reset, a Processor System Reset [7] block is used (Figure 10). It uses the clock and the 
FCLK_RESET0_N signal to generate the peripheral reset signal, which is also active low. For both 
clocks, Processor System Reset modules are used. 

 

FIGURE 10: PROCESSOR SYSTEM RESET BLOCK 

 

FIGURE 11: ZYNQ PROCESSING SYSTEM I/O PERIPHERALS 

 

To use the integrated Ethernet interface of the ARM, the Ethernet I/O peripheral must be activated. Also 
the UART1 is activated to debug some signals from the design (ILA core with JTAG), to verify the correct 
work of the Debug-Core. USB0 is activated but not used. Figure 11 shows the activated communication 
interfaces. 
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4.3 IP CORE AXI-DATAMOVER 
 

The AXI DataMover [3] is an IP-core provided by Xilinx. It is able to write and read AXIS [2] data streams 
to and from the RAM via the AXI4 interface. Commands are sent to the AXIS command slave interfaces 
of the IP-core to initialize the transfers. For writing data into the RAM, the Stream to Memory Mapped 
(S2MM) ports are used and to read data from the RAM, the Memory Mapped to Stream (MM2S) ports 
are used. The command data contains information like start memory address, bytes to transfer and other 
information. After the data transfer, status information is returned with the STS Master interfaces and 
with error signals. The AXI DataMover block requires clock and reset signals. All of the AXI4 interfaces 
use the 100 MHz PL Fabric Clock of the Processing System and the associated resetn signal. The error 
signals are not used for further processing but the status stream is used for checking if the data transfer 
was successful. The AXI DataMover block is shown in Figure 12. 

 

FIGURE 12: AXI DATAMOVER WITH INPUTS AND OUTPUTS 

 

4.3.1 STREAM TO MEMORY MAPPED 
 

To write data streams into the RAM, the Stream to Memory Mapped (S2MM) ports are used. There is 
an interface for S2MM command information (S_AXIS_S2MM_CMD), which contains the bytes to 
transfer (BTT), the type of AXI4 access, the start memory address, DRE Stream Alignment and 
Realignment, End of Frame and Command TAGs.  

To start the transfer, the PKG_Samples block sets the initTF signal. The DataMoveCTL block 
immediately sends the transfer settings to the S2MM_DataMover_Interface, which builds the command 
data stream to initialize the data transfer into the RAM. Then, the AXIS data stream is sent to the 
S_AXIS_S2MM interface of the AXI DataMover and furthermore with the AXI bus to the AXI High 
Performance Slave interface of the Processing System (S_AXI_HP0). The data is forwarded into the 
DDR RAM. After the data transfer, a status is returned via the M_AXIS_S2MM_STS interface. If the 
transfer was successful, the status value is 0x80 and the DataMoveCTL block sets the interrupt or 
increases the internal sample counter for further transfers. 
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4.3.2 MEMORY MAPPED TO STREAM 
 

To read data streams from the RAM, the Memory Mapped to Stream (MM2S) ports are used. There is 
an interface for MM2S command information (S_AXIS_MM2S_CMD), which contains the bytes to 
transfer (BTT), the type of AXI4 access, the start memory address, DRE Stream Alignment and 
Realignment, End of Frame and Command TAGs. 

To start the transfer, the Processing System sets the mm2s_startTF signal of the DataMoveCTL block. 
This initializes the read operation with the proper settings for the AXI DataMover. Then, the data stream 
is read from the RAM with the AXI High Performance Port. The M_AXI_MM2S interface of the AXI 
DataMover receives the data, forwards it via the M_AXIS_MM2S interface to the user logic. After the 
data transfer, a status is returned via the M_AXIS_MM2S_STS interface. If the transfer was successful, 
the status value is 0x80 and the DataMoveCTL block sets the mm2s_finished_intr interrupt. The interrupt 
handler resets the mm2s_startTF signal. It will be set again with the PS, when new command information 
should be read from the RAM. 

 

4.3.3 COMMAND INFORMATION FOR MM2S AND S2MM TRANSFERS 
 

For the AID, the type of AXI4 access is set to 1 (INCR) and there is no use of Stream Alignment and 
Realignment. INCR automatically increases the memory address with the bytes to transfer. This setting 
is used for S2MM and MM2S transfers. The start memory address can be set with GPIO ports from the 
Processing System or with a generic in the DataMoveCTL block. The DataMoveCTL block also sets the 
BTT (Bytes to transfer) field for the command and sends this information to the DataMover_Interfaces 
to build the command data stream. 

 

4.3.4 AXI DATAMOVER IP SETTINGS 
 

The AXI DataMover can access the RAM with write and read operations. It can be configured for the 
appropriate use with its IP settings, as shown in Figure 13. The most important settings are, to enable 
MM2S and S2MM transfer, Memory Map Data Width, Stream Data Width, Maximum Burst Size and the 
Width of the BTT (Bytes to transfer) field.  

Both transfer directions are enabled, both data width are set to 32 bits, maximum burst size is set to 16 
and the BTT width is set to 23. The chosen settings for the AXI DataMover handle the data transfer 
between the AID and the RAM.  
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FIGURE 13: AXI DATAMOVER IP SETTINGS 

 

4.4 IP CORE MM2S_DATAMOVER_INTERFACE 
 

This IP core was provided by my college Stephan Hochmüller from AVL List GmbH. It connects the AXI 
DataMover with the DataMoveCTL block. The DataMoveCTL block sets the BTT (Bytes to Transfer), 
the Addr (memory address) and the initTf (initialize transfer) to send the command data with the 
m_axis_mm2s_c17 interface to the AXI DataMover, which starts the read operation with the adjusted 
settings, from the RAM. The control data for the debugging process are routed from the AXI DataMover 
via the AXIS-interfaces s_axis_mm2s_d18 and m_axis_umm2s_d19 to the user logic (UNPKGModule). 
With the AXIS interface s_axis_mm2s_s20, the transfer status stream is decoded to a Status signal, 
which is processed by the DataMoveCTL block. The status signal gives information about the read 
operation from the RAM. The IP core is shown in Figure 14. An overview of the inputs and outputs of 
this IP core is shown in Table 6 and Table 7 in the Appendix. The data width of the AXIS interface and 
the BTT can be changed in the property window of the IP core. 

                                                      

17 M_axis_mm2s_c stands for Master AXIS Memory Mapped to Stream Command interface 
18 S_axis_mm2s_d stands for Slave AXIS Memory Mapped to Stream Data interface 
19 M_axis_umm2s_d stands for Master AXIS User Memory Mapped to Stream Data interface 
20 S_axis_mm2s_s stands for Slave AXIS Memory Mapped to Stream Status interface 
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FIGURE 14: MM2S_DATAMOVER_INTERFACE IP CORE WITH INPUTS AND OUTPUTS 

 

4.5 IP CORE S2MM_DATAMOVER_INTERFACE 
 

This IP core was provided by my college Stephan Hochmüller from AVL List GmbH. It connects the AXI 
DataMover with the DataMoveCTL block. The DataMoveCTL block sets the BTT, Addr and initTf to send 
the command data with the m_axis_S2MM_C21 interface to the AXI DataMover, which starts the write 
operation with the adjusted settings, into the RAM. The signal data is routed from the PKG Samples 
block via the interfaces s_axis_uS2MM 22  and m_axis_S2MM 23  to the AXI DataMover. The AXI 
DataMover returns the transfer status stream to the s_axis_S2MM_S24 interface, which is decoded into 
a Status signal. The information of the Status signal is processed by the DataMoveCTL block. The IP 
core is shown in Figure 15. The data width of the AXIS interface and the BTT can be changed in the 
property window of the IP core. An overview of the inputs and outputs of this IP core is shown in Table 
8 and Table 9 in the Appendix. 

 

FIGURE 15: S2MM_DATAMOVER_INTERFACE INPUTS AND OUTPUTS 

 

  

                                                      

21 M_axis_S2MM_C stands for Master AXIS Stream to Memory Mapped Command Interface 
22 S_axis_uS2MM stands for Slave AXIS User Stream to Memory Mapped Interface 
23 M_axis_S2MM stands for Master AXIS Stream to Memory Mapped Interface 
24 S_axis_S2MM_S stands for Slave AXIS Stream to Memory Mapped Interface 
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4.6 IP CORE DATAMOVECTL 
 

The DataMoveCTL IP core coordinates the data transfer between the AXI DataMover and the user logic. 
It was developed by me during the implementation of the Debug-Core. There are input ports to set up 
the data transfer in S2MM and MM2S direction. The DataMoveCTL block is shown in Figure 16. An 
overview of the inputs and outputs of this IP core is shown in Table 10 and Table 11 in the Appendix. 

 

FIGURE 16: DATAMOVECTL WITH INPUTS AND OUTPUTS 

 

The DataMoveCTL block contains different IP settings. The width of the memory addresses and of the 
Bytes to transfer is always set in the IP Settings. The address width is set to 32 bits and BTT is set to 
23 bits. The other options can either be set with the IP Settings or with AXI GPIO [6] ports from the 
Processing System. Currently, the control with the Processing System (C_PS_CONTROL) is active and 
the memory addresses and the C_NUMBER_PKG is defined with the PS and the GPIO ports. The 
C_NUMBER_PKG defines, how many data packages are collected for the UDP payload, currently it is 
set to 32 packages. An overview of the IP settings is shown in Table 12 in the Appendix.  

 

4.6.1 INITIALIZE MM2S TRANSFER 
 

To initialize the transfer from the RAM to the user logic to start the whole debugging process, the MM2S 
ports have to be addressed. Therefore, the start memory address (MM2S_MEM_ADDR) and the data 
length in bytes (mm2s_data_length) have to be set either with the Processing System or in the IP 
settings. The MM2S transfer is initialized by the PS. The PS sets the AXI_GPIO port, which is connected 
to the mm2s_startTF input. When the mm2s_startTF signal is set, the DataMoveCTL block sends the 
proper command information via the signals mm2s_BTT, mm2s_Addr and mm2s_initTF to the 
MM2S_DataMover_Interface. The MM2S_DataMover_Interface builds the command data and sends it 
to the AXI DataMover. The AXI DataMover starts the reading operation. When the data was transferred, 
the MM2S_DataMover_Interface gets the status stream back, decodes it into the Status signal and 
sends the status to the DataMoveCTL mm2s_Status input. If the transfer was successful, the status 
value is 0x80 and the interrupt (mm2s_finished_intr) for the MM2S transfer is set. The Processing 
System catches and handles the interrupt. The PS resets the mm2s_startTF signal to stop further 
transfers. When the PS receives data from the user-interface, the UDP data is stored in the RAM and 
the mm2s_startTF signal is set again, to start the next read operation. 
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4.6.2 INITIALIZE S2MM TRANSFER 
 

To initialize the data transfer from the user logic (PKG_Samples) to the RAM, the S2MM ports have to 
be addressed. The PKG_Samples block generates the s2mm_startTF signal. The s2mm_data_length 
is the length of the data in Bytes, which will be written into the RAM. Both S2MM memory addresses 
and the number of samples can be set either with the port signals or in the IP Settings. To enable the 
use of the port signals, C_PS_CONTROL has to be enabled. This allows setting up the DataMoveCTL 
block with the Processing System and the AXI GPIO ports.  

One of the two S2MM start memory addresses is used to write the signal data into the RAM. The 
C_NUMBER_PKG/s2mm_number_pkg defines the number of samples, which are stored into the RAM 
until the s2mm_finished_intr is set. After each data transfer from the AXI DataMover to the RAM, the 
S2MM_DataMover_Interface receives the status stream and returns the Status to the DataMoveCTL 
block. If the transfer was successful, the Status value is 0x80 and the internal counter increases. When 
the C_NUMBER_PKG/ s2mm_number_pkg is reached, the interrupt signal (s2mm_finished_intr) is set. 
The Processing System handles the interrupt, reads the stored data from the RAM, and builds the UDP 
package. The package is transmitted via the integrated Ethernet interface of the ARM-Processor to the 
workstation. In addition, the S2MM memory address are changed from S2MM_MEM_ADDR to 
S2MM_MEM_ADDR2, when the internal sample counter reached the value of 
C_NUMBER_PKG/s2mm_number_pkg. 

This mechanism avoids concurrent read and write operations to and from the RAM. During the reading 
process of the Processing System, the signal data is written into the RAM with the second memory 
address. If the C_NUMBER_PKG/s2mm_number_pkg is reached again, the memory address is 
changed back to S2MM_MEM_ADDR. The memory address switch is shown in Figure 17 

 

FIGURE 17: DATAMOVECTL MEMORY ADDRESS SWITCHING 
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Figure 18 shows the simulation of the DataMoveCTL block during the MM2S transfer. The MM2S start 
memory address was set via the GPIO port and the Processing System. The C_PS_CONTROL is 
enabled (red), therefore the corresponding values from the input ports are used (orange) to set up the 
transfer from the RAM. With the mm2s_initTF signal (green at 1, 330 ns) the transfer from the RAM is 
initialized. When the transfer is successful, the value of the mm2s_Status signal is 0x80 (violet) and the 
finish interrupt is set (blue). This is shown at 1,399.000 ns. 

 

FIGURE 18: SIMULATION OF DATAMOVECTL DURING THE MM2S DATA TRANSFER 

 

Figure 19 shows the simulation of the DataMoveCTL block after a successful S2MM data transfer. At 
11,190.000 ns, the data transfer was successful, the transfer status is 0x80 (violet). The signal data 
were correctly written to the memory address 0x01A102E8 of the RAM. The interrupt is set (blue) 
because the number of collected samples for the UDP payload is reached. The internal sample counter 
is reset (red) and the memory address switch is done (orange). The new memory address is set to 
0x01A20000. During the next write operations, the PS is able to read the previous signal data from the 
RAM without a conflict. 

 

FIGURE 19: SIMULATION OF DATAMOVECTL AFTER A SUCCESSFUL S2MM DATA TRANSFER 
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Figure 20 shows also shows the simulation of DataMoveCTL with a successful S2MM data transfer. At 
10,500 ns, the status signals a successful transfer with the value 0x80 (violet). No interrupt is set. The 
number of the collected samples for the UDP payload is not reached and the internal counter (red) is 
increased. Also the memory address s_2mm_Addr (orange) is updated. At 11,190.000 ns, the memory 
address switch (orange) is shown. The collected number of samples for the UDP payload is reached 
and the memory address is switched to S2MM_MEM_ADDR2 (orange). After the memory switch, the 
sample collection starts again. 

 

FIGURE 20: SIMULATION OF DATAMOVECTL WITH S2MM TRANSFER AND INTERRUPT 

 

4.7 IP CORE UNPKGMODULE 
 

The UNPKGModule decodes the AXIS data stream, which is sent from the AXI DataMover via the 
MM2S_DataMover_Interface to the UNPKGModule. This module was developed by me during the 
implementation of the Debug-Core. The tready signal of the AXIS slave interface (S_AXI4S) is always 
high (ready to receive data). The com_PS_en (communication Processing System enable) enables the 
communication with the PS. The outgoing signals are necessary for the debugging process with the 
different settings like commands25 (CMD), numbers of samples, sample rate, trigger type, trigger value 
and the chosen signals to debug. The signals pkg_ctl (Package control) and start_1MHz were used for 
debugging. The module is shown in Figure 21. An overview of the inputs and outputs of this IP core is 
shown in Table 13 and Table 14 in the Appendix. 

                                                      

25 Commands, see chapter 11 UDP connection 
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FIGURE 21: UNPKGMODULE WITH INPUTS AND OUTPUTS 

 

4.7.1 INTERNAL STRUCTURE OF THE UNPKGMODULE IP CORE 
 

Figure 22 shows the overview of the UNPKGModule. It is structured into the blocks 
UNPKG_UDP_CTL_Unit, UNPKG_UDP_DATA and UNPKG_UDP_Start. All three block together 
provide the functionality to map the AXIS data stream to the different control signals for the debugging 
process. The UNPKG_UCP_CTL block contains a state machine, which activates the different enable 
signals. The UNPKG_UCP_Data block uses the enable signals to route the incoming data to the 
corresponding output signals. The UNPKG_UDP_Start block, creates with the S_AXI4S_tlast signal, 
the 1 MHz start signal. The tlast signal of the AXIS data stream signals the end of the data transfer. It is 
set for only one clock cycle (100 MHz). 

 

FIGURE 22: INTERNAL STRUCTURE OF THE UNPKGMODULE IP CORE 
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Figure 23 shows the simulation of the decoding process of the AXIS data stream. The AXIS data 
(orange) is mapped to the corresponding output signals (blue and violet). The AXIS data stream is sent 
with a frequency of 100 MHz (5,100 ns). Therefore, the data is converted into the 1 MHz clock domain 
for further use. At 6,000 ns, all values are assigned to the output signals. The start signal is generated 
(red). Also the CMD signal is assigned with the correct values depending on the control information from 
the user-interface. Here, the package type26 was start debugging. Therefore, the start debugging bit is 
set of the CMD signal. After one clock cycle, this start bit is reset to 0 (at 7 ns), to avoid a restart of the 
debugging process. The com_PS_en signal enables the module for the communication with the ARM-
Processor and the integrated Ethernet interface.  

 

FIGURE 23: SIMULATION OF THE UNPKGMODULE PROCESSING THE AXIS DATA STREAM 

 

4.7.2 UNPKG_UDP_CTL_UNIT BLOCK 
 

This block counts the incoming data words of the AXIS data stream. The AXIS interface transfers 4 
Bytes each clock cycle until the transfer is finished. Due to the AXIS transfer, the operating frequency 
of this block is 100 MHz. Depending on the counter, the enable signals are set to start the data mapping. 
The module is shown in Figure 24. A state machine is working inside this block. The state machine 
switches into the read data state (RD_DATA), when the tvalid signal of the AXIS interface is set (the 
tvalid signal starts the data transfer) In the read state, the internal counter is increased every clock cycle 
of the transfer, which enables the corresponding enable signals. With the tlast signal of the AXIS 
interface, the transfer is over and the state machine switches back into the IDLE state. The state 
machine is shown in Figure 25. The outputs of this block are the different enable signals to map the 
received AXIS data stream to the corresponding debugging parameters. It is also possible, that more 
than one debugging parameter is mapped by an enable signal, like the en_SR_CMD_TT signal. This 
signal enables the mapping of the sample rate, the CMD Byte and the trigger type. The tready signal for 
the AXIS interface is constantly set, which means the UNPKGModule is always ready to receive data. 
This block is designed, that only the configuration data (start debugging, stop debugging) from the user-
interface is processed. The configuration data are always the same length. If wrong data is transmitted, 

                                                      

26 Package Type, see chapter 11.1 Package Type Numbers 
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the Debug-Core is not able to start or reset the debugging process. An overview of the inputs and outputs 
of this IP core is shown in Table 15 and Table 16 in the Appendix. 

 

FIGURE 24: UNPKG_UDP_CTL_UNIT BLOCK 

 

FIGURE 25: UNPKG_CTL_UNIT STATE MACHINE 

 

Figure 26 shows the simulation of the state machine. Due to the set tready signal (orange), the AXIS 
interface is always ready to receive data. When the transfer starts, the tvalid signal gets set (orange at 
30,430 ns). At this point, the state machine switches from the IDLA state into the RD_DATA state. At 
this point, the first 4 Bytes are transmitted with the AXIS interface. Therefore, the first enable signal is 
set, which is en_NumOfSamples (Number of Samples). The AXIS transfer is still active, as long as tvalid 
and tready is set. At each further clock cycle and ongoing data transfer, the internal counter increases 
and sets the other enable signal, en_SR_CMD_TT (sample rate, CMD, trigger type at 30,44 ns), 
en_TV_Sig1 (trigger value, signal 1 at 30,45 ns), en_Sig2_Sig3 (signal 2, signal 3 at 30,46 ns) and 
en_Sig4 (signal 4 at 30, 47 ns). The previous signals are reset again. The enable signal are marked 
blue. When the tlast signal is set, which means the data transfer is finished, the state machine switches 
back into the IDLE state (red at 30,47 ns). 
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FIGURE 26: SIMULATION OF THE STATE MACHINE OF THE UNPKG_CTL_UNIT BLOCK 

 

4.7.3 UNPKG_UDP_DATA BLOCK 
 

The UNPKG_UDP_Data block maps with help of the enable signals the data from the AXIS data stream 
to the right output signals. The AXIS data stream contains the information to start the debugging process 
with the adjusted parameters or reset the Debug-Core (stop debugging). This block also uses the 100 
MHz clock due to the AXIS interface. The module is shown in Figure 27. The input signal en_pkg_ctl 
and the output signal pkg_ctl are not used. An overview of the inputs and outputs of this IP core is shown 
in Table 17 and Table 18 in the Appendix. 

 

FIGURE 27: UNPKG_UDP_DATA BLOCK 

 

Figure 28 shows the processing of the AXIS data stream. Due to the different enable signals, the values 
of AXIS data stream can be assigned to the different output signals. In one clock cycle the AXIS interface 
transfers 4 Bytes. At 5,090 ns, the en_NumOfSamples (green) is set, but no values are assigned to any 
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output signal. That is because, the first 2 Bytes is the package type27 value and the value for the number 
of samples is a 32 bit value. Therefore, the NumOfSamples signal is assigned with a value, when the 
next 4 Bytes are received. This happens at 5,1 ns. The other 2 Bytes are assigned to the SampleRate 
signal (orange). At 5,11 ns, the en_TV_Sig1 signal enables the assignment for the CMD Byte, the trigger 
type and the trigger value (blue). At 5,12 ns, the values for the signals Signal1 and Signal2 are assigned 
and at the end the last two signals (violet) are set with their values. The assignments of all signals are 
delayed by one clock cycle. 

 

FIGURE 28: UNPKG_UCP_DATA SIMULATION OF PROCESSING THE AXIS DATA STREAM 

 

4.7.4 UNPKG_UDP_START_PULS BLOCK 
 

The UNPKG_UDP_Start_PULS block generates the 1 MHz start pulse to initialize the debugging 
process. The 1 MHz and 100 MHz clocks are used for this block. For this, the tlast signal of the AXIS 
interface is used. The tlast signal has a clock frequency of 100 MHz and with the detection of the falling 
and rising edge of the 1 MHz clock, the 1 MHz start pulse is created. Also the CMD_Reset signal is 
created this way, depending on the incoming package type28. Package type 0 (start debugging package) 
generates the start signal and package type 3 (stop debugging/reset) generates the reset/stop signal. 
The block is shown in Figure 29. An overview of the inputs and outputs of this IP core is shown in Table 
19 and Table 20 in the Appendix. 

                                                      

27 Package type of the UDP payload, see chapter 11.1 Package Type Numbers 
28 Package type, see chapter 11.1 Package Type Numbers 
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FIGURE 29: UNPKG_UDP_START_PULS BLOCK 

 

Figure 30 shows the simulation of the UNPKG_UDP_Start_Puls block at the generation of the 1 MHz 
start signal. The input is the start_100MHz signal (blue), which is the tlast signal of the AXIS interface. 
This signal is only set for a 100 MHz clock cycle, when the AXIS data transfer is finished.  

At 15,265 ns, the rising edge of the start_100MHz signal is detected and the s_puls signal (orange) is 
set. Due to the enabled s_puls signal, the signals start_1MHz (red) and s_en_fedge29 (green) are set at 
16,000 ns.  

Due to the high s_en_fedge signal at the falling edge of the 1 MHz clock, the signal s_falling_edge is 
set (violet at 16,500 ns). This signal is sampled by the 100 MHz clock and when it is set, the s_puls 
signal is reset to 0. Due to the reset of s_puls, the s_en_fedge signal is reset at 17,000 ns. At this point 
the start_1MHz signal is also reset, which generated the 1 MHz start pulse to start or stop the debugging 
process. The s_falling_edge signal is reset at 17,500 ns, due to the disabled s_en_fedge signal.  

 

FIGURE 30: SIMULATION OF THE UNPKG_UDP_START_PULS BLOCK TO CREATE THE 1 MHZ START PULSE 

 

4.8 IP CORE PKG_SAMPLES 
 

The PKG_Samples block generates an AXIS data stream for the transfer into the RAM. The data stream 
contains the package type, the sample number and the four signal values. Each of these signals and 
the send_enable signal are routed from the DebugCoreModule block to the PKG_Samples block. To 
build the data stream, the send_enable signal has to be set. To build the AXIS data stream, the signals 
are converted from the 1 MHz clock domain into the 100 MHz clock domain. The frame size determines 

                                                      

29 S_en_fedge stands for signal enable falling edge 
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the length of the AXIS data stream. The initTF 30  signal initializes the data transfer with the AXI 
DataMover into the RAM. Figure 31 shows the PKG_Samples block. The signal framesize defines the 
length of the AXIS data stream. The signal package_type is set to 1, which is defined as data package 
with the sampled signal data (Signal0, Signal1, Signal2 and Signal3) and the sample number 
(number_of_samples). The send_enable signal enables the build of the AXIS data stream. The AXIS 
data width can be adjusted in the IP settings. Currently the width is set to 32 bits. An overview of the 
inputs and outputs of this IP core is shown in Table 21 and Table 22 in the Appendix. 

To lower the longest path in the design, pipeline stages were added between the DebugCoreModule 
and the PKG_Samples block. The pipeline stages are simple Flip-Flops to save the signal values. The 
pipeline stages are necessary to fulfill the timing constrains, which were generated from the FPGA 
design. 

 

FIGURE 31: PKG_SAMPLES BLOCK WITH INPUTS AND OUTPUTS 

 

Figure 32 shows the conversion of the 1 MHz send_enable signal (orange) to the 100 MHz initTF signal 
(red). The 100 MHz clock samples the 1 MHz clock and detects the rising edge of the 1 MHz clock. 
When send_enable is set and the rising edge was detected, the rising_1MHz signal is set. It gets delayed 
by one 100 MHz clock cycle (rising_1MHz_1). Both rising_1MHz signals (blue) generate the initTF signal 
for the 100 MHz clock cycle (20.000 ns). The falling edge of the 1 MHz clock resets the signals to detect 
the next rising edge. 

This procedure makes it possible to convert the 1 MHz signal to a 100 MHz signal with the highest 
sample rate (1 MHz) and with lower sample rates. The send_enable signal is set with the sampling 
frequency. At the highest sample rate, the send_enable signal is constantly set to high, shown in Figure 
32. At each rising edge of the 1 MHz clock, the initTF signal is generated. The send_enable signal is set 
with the sampling frequency. 

                                                      

30 Init_TF stands for initialize transfer 
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FIGURE 32: SIMULATION OF THE PKG_SAMPLES BLOCK TO GENERATE THE 100 MHZ INITTF SIGNAL 

 

Figure 33 shows the packaged AXIS data stream (red). The data is sent with the AXIS master interface 
(red) to the S2MM_DataMover_Interface and forwarded to the AXI DataMover to write the data into the 
RAM. The initTF signal is generated from the send_enable signal (violet) and is set one clock cycle 
before the AXIS data transfer starts. The initTF signal is routed to the DataMoveCTL block, which 
initializes with the S2MM_DataMover_Interface the data transfer to the AXI DataMover and into the 
RAM. The data transfer starts at 2,020 ns. The last data word of the AXIS data stream is determined 
with the tlast signal (2,070 ns). 

The created AXIS data stream contains the package type (1 for data package), the sample number 
(timestamp) and the 4 values of the selected signals for the debugging process (all orange).  

 

FIGURE 33: SIMULATION OF BUILDING THE AXIS DATA STREAM WITH THE PKG_SAMPLES BLOCK 

 

4.9 IP CORE DEBUGCOREMODULE 
 

The DebugCoreModule was designed by me with MATLAB Simulink and provides the whole sampling 
functionality of the Advanced Inverter Debugger. The MATLAB model was converted to vhd files, which 
were included into a new Vivado project. Figure 34 shows the DebugCoreModule IP core. Most of the 
inputs are from the UNPKGModule to set up the debugging process. The Input_Signals is an interface 
with 300 signals, each 32 bits. 4 signals out of these 300 signals can be selected for the debugging 
process. The signal clk_1MHz_enable enables the module. All control signals, like c_NumOfSamples, 
c_SampleRate, c_CMD, c_TriggerTyp, c_TriggerValue, c_Signal0, c_Signal1, c_Signal2 and c_Signal3, 
are used to set up the debugging process with the adjusted parameters. The value of c_NumOfSamples 
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determines how long the Debug-Core is sampling. The value of c_SampleRate determines the sampling 
frequency. The value of c_CMD determines whether the debugging process is started or stopped/reset. 
It also determines whether a trigger is active. The value of c_TriggerType determines which trigger is 
active. The value of c_TriggerValue is the trigger value. The values of c_Signal0, c_Signal1, c_Signal2 
and c_Signal3 determines the signals, which are selected for the debugging process. The signals 
debugged_Sig0, debugged_Sig1, debugged_Sig2 and debugged_Sig3 are the signals with the sampled 
values. They are used to build the data package. The signal debugged_NoS contains the sample 
number and is also used to build the data package. The sample number works as time stamp. The 
out_start_pkg1MHz signal enables the PKG_Samples block to build the AXIS data stream and start the 
AXIS data transfer into the RAM. The Resetn_1MHz signal is used to reset the DataMoveCTL block. All 
other signals were used for debugging and are not used anymore. An overview of the inputs and outputs 
of this IP core is shown in Table 23 and Table 24 in the Appendix. 

 

FIGURE 34: DEBUGCOREMODULE WITH INPUTS AND OUTPUTS 

 

The DebugCoreModule is structured into several submodules shown in Figure 36. 

The submodule Split_CMD_Bits splits the 8-Bit command signal into the different 1-bit signals. These 
signals are CMD_StartSampling, which start the debugging process, CMD_Reset, which stops/resets 
the debugging process, CMD_trigger, which enables the trigger and CMD_PreTrigger, which enables 
the Pre-Trigger31. The post-trigger32 is active, when the trigger is enabled and the CMD_PreTrigger is 
not set. 

The submodule Start_Control starts the sampling process. It also resets the sampling process. 

The submodule Trigger_Control handles the whole triggering. It checks which trigger was selected and 
when to start the sampling depending on the present trigger settings.  

The submodule Sample_Rate_Counter handles the sampling rate. Depending on the selected sample 
rate, the internal counter is changed to achieve the proper sample rate. 

                                                      

31 Pre-Trigger, see chapter 4.12 Submodule Trigger_Control 
32 Post-Trigger, see chapter 4.12 Submodule Trigger_Control 



  
 
 

30 
 

The submodule Send_Control handles the sampling until the number of samples is reached or a reset 
occurs. It also resets the submodules, Sample_Rate_Counter, Start_Control and RingBuffer, when the 
adjusted number of samples is reached. 

The submodule RingBuffer saves 100 signal values before the trigger event happens (Pre-Trigger). 
When the post-trigger is active, the signals are only routed through this block.  

The submodule Signal_Selection contains the 300 to 1 multiplexer. There are 4 of these submodules in 
use due to the possibility to select 4 different signals for the debugging process. These 4 
Signal_Selection blocks use most of the resources on the FPGA, which are used for the Advanced 
Inverter Debugger.  

 

Figure 35 shows the simulation of the DebugCoreModule with an active post-trigger. The post trigger is 
the trigger that immediately activates the debugging process, when the trigger condition is met. The 
orange marked signals are the control signals, to set up the debugging process. At 2 us, all signals are 
updated to the values from the AXIS data stream. The c_CMD signal33 has the value 0xA0, which sets 
up the debugging process with an active post-trigger. One clock cycle later at 3 us, the start debugging 
bit is reset again. The debugging process starts, when the value of the trigger signal (signal0) is less 
than the trigger value. The trigger value is 0. At 9 us, the trigger signal (debugged_Sig0, red) switches 
to the value -1, which activates the trigger. At this point, the sample counter (debugged_NoS, blue) 
starts increasing and also the signal to enable the AXIS data transfer is set (out_start_Pkg1MHz, violet). 
The selected signals for the debugging process are, signal0, which changes its value each clock cycle, 
signal2, signal3 and signal5, which are constants with the values 2, 3 and 5.  

 

FIGURE 35: SIMULATION OF THE DEBUGCOREMODULE BLOCK WITH AN ACTIVE POST-TRIGGER 

 

 

                                                      

33 CMD signal, see chapter 4.10 Submodule Split_CMD_Bits 
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FIGURE 36: DEBUGCOREMODULE BLOCK OVERVIEW IN MATLAB SIMULINK WITH SUBMODULES 

 

 



  
 
 

32 
 

Figure 37 shows the simulation of the DebugCoreModule with an active pre-trigger. With the pre-trigger, 
up to 100 signal values of the 4 selected signals can be stored in ring buffers, before the trigger is 
activated. When no trigger occurs, the ring buffer overflows (cyclic overwrite). At 2 us, all signals are 
updated to the values from the AXIS data stream. The c_CMD signal has the value 0xB0, which sets up 
the debugging process with an active pre-trigger. At this point, the WriteRAM_Enable signal (blue) is 
set, which enables the write operation for the ring buffer. The selected signal values are written into the 
ring buffer. The selected signals are signal0 (also trigger signal), signal2, signal3 and signal5 (all marked 
blue). At 9 us, the trigger signal value is less than the trigger value, the trigger event occurs and the 
db_triggered signal (violet) is set. Due to the read operations from the ring buffers, the 
out_start_pkg1MHz signal (red) is set 2 clock cycles delayed, which initializes the AXIS data transfer. 
Also at 11 us, the sample number (debugged_NoS) increases and the signal values are read from the 
ring buffer (green). The read values start with 2, 3, 4 and 5 from the debugged_Sig0. The other 3 
debugged signals (green) are constants with the values 2,3 and 5. 

 

FIGURE 37: SIMULATION OF THE DEBUGCOREMODULE BLOCK WITH AN ACTIVE PRE-TRIGGER 

 

4.10 SUBMODULE SPLIT_CMD_BITS 
 

The submodule Split_CMD_Bits splits the 8-bit command signal into 1 bit signals. The block is shown 
in Figure 38. An overview of the inputs and outputs of this block is shown in Table 25 and Table 26 in 
the Appendix. 

The CMD_In signal is shown in Figure 39. The 4 LSB are not accessed and can be used to extend the 
AID in the future. The start bit, CMD_StartSampling, is used to initialize the debugging process with a 1 
MHz pulse. The reset bit, CMD_Reset, is used to stop the debugging process. The trigger bit, 
CMD_Trigger, enables the post-trigger. The pre-trigger is enabled, when both, the trigger and the Pre-
Tr (CMD_PreTrigger) bits are set. When the start and reset bits are set during an unexpected error case, 
the reset signal is prioritized. 
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FIGURE 38: SPLIT_CMD_BITS BLOCK WITH INPUTS AND OUTPUTS 

 

 

FIGURE 39: COMMAND BYTE WITH BIT DESCRIPTION 

 

4.11 SUBMODULE START_CONTROL 
 

The Start_Control block gets the 1 MHz CMD_StartSampling pulse from the Split_CMD_Bits block to 
generate a constant CMD_Start signal. This signal is set until a reset occurs. This reset can be the 
internal one, when the number of samples is reached or the CMD_Reset from the user-interface. When 
both input signals are set, the CMD_Start signal is not set and the debugging process is not started. 
Figure 40 shows the Start_Control block. An overview of the inputs and outputs of this block is shown 
in Table 27 and Table 28 in the Appendix. 

 

FIGURE 40: START_CONTROL BLOCK WITH INPUTS AND OUTPUTS 

 

The Figures 41 and 42 show the simulation of the start and reset of the debugging process. To start the 
debugging process, the CMD_StartSampling signal sets the CMD_Start signal. It is constant high until 
a reset occurs. The reset can either be a stop debugging command (CMD_Reset) or an internal reset 
when the number of samples is reached to stop the sampling process. The CMD_start signal is set at 2 
us in Figure 41 and is reset at 1,037 us in Figure 42, when the reset_1 signal is set. 
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FIGURE 41: START_CONTROL SIMULATION OF THE CMD_START SIGNAL 

 

 

FIGURE 42: START_CONTROL SIMULATION OF THE CMD_START SIGNAL RESET 

 

Figure 43 shows the simulation of the Start_Control block, when the signals to start and stop the 
debugging process are set at the same time. At 2 us, the signals CMD_StartSampling and reset_1 are 
set. The reset gets prioritized and the debugging process is reset. Due to the start and stop/reset 
package types, this case should not happen. 

 

FIGURE 43: START_CONTROL SIMULATION WHEN BOTH INPUT SIGNALS ARE SET 

 

4.12 SUBMODULE TRIGGER_CONTROL 
 

The submodule Trigger_Control handles the trigger process. The submodule is shown in Figure 44. The 
internal structure is shown in Figure 45. Depending on the command signal, Pre- or Post-Trigger or even 
none trigger is selected. Depending on the TriggerType and the TriggerValue, the trigger point is 
changed. There are 3 Post-Triggers and 3 Pre-Triggers available. The signal and the trigger value are 
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converted into int32 signals. This makes a comparison possible, to check for the different trigger events. 
The trigger event can happen when the signal value is higher, lower or equal to the trigger value. Figure 
46 shows an overview of the Trigger Selection block. If CMD_Trigger is low, no trigger is active and the 
Start_Sampling signal is set immediately. The Trigger_Control block handles only Post-Triggers. The 
Pre-Trigger is handled in combination with the RingBuffer block. The CMD_PreTrigger signal enables 
in combination with the Enable_NoSCounter signal the write operations into the ring buffer. A maximum 
of 100 data points can be stored (with cyclic overwrite) before the trigger event starts reading those 
values (enabled by Start_Sampling) to build the AXIS data stream. An overview of the inputs and outputs 
of this block is shown in Table 29 and Table 30 in the Appendix. 

 

FIGURE 44: TRIGGER_CONTROL WITH INPUTS AND OUTPUTS 

 

 

FIGURE 45: INTERNAL STRUCTURE OF THE TRIGGER_CONRTOL MODULE 
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FIGURE 46: INTERNAL STRUCTURE OF THE TRIGGER_SELECTION MODULE 

 

4.12.1 TRIGGER TYPE DESCRIPTION 
 

The functionality of the Pre- and Post-Trigger of the Trigger_Control block is the same. The Post-Trigger 
is handled with this module but the Pre-Trigger is handled in combination with the ring buffer. The 
CMD_PreTrigger enables with the Enable_NoSCounter signal the write operations into the ring buffer. 
When the trigger event happens, the read operations start. The Trigger_Control block handles the 
different trigger types, like higher, less, or equal to a value, shown in Table 1. Each of this options can 
be selected for the Post- and Pre-Trigger. 

 

TABLE 1: TRIGGER TYPE DESCRIPTION 

Trigger TriggerType 
Value 

Description 

Signal value is higher 
than the trigger value 

0 The trigger activates the sampling, when the signal value is 
higher than the trigger value. If the Pre-Trigger is active, the 
read operations from the ring buffer is also enabled. 

Signal value is lower 
than the trigger value 

1 The trigger activates the sampling, when the signal value is 
lower than the trigger value. If the Pre-Trigger is active, the 
read operations from the ring buffer is also enabled. 

Signal value is equal to 
the trigger value 

2 The trigger activates the sampling when the signal value is 
equal to the trigger value. If the Pre-Trigger is active, the read 
operations from the ring buffer is also enabled. 
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4.12.2 FUNCTIONALITY OF THE TRIGGER 
 

Figure 47 gives an overview of the trigger process. The signal, which is used for the trigger, is compared 
with the trigger value. This is done with the operating frequency of the AID, 1MHz. When the selected 
sample rate is 1 MHz, the trigger event starts the sampling process immediately. Figure 47 shows the 
trigger process with a lower sampling rate. Here, the signal value crosses the trigger value shortly after 
the sample point. The sampling process starts with the next sample point. The same principle is also 
used for the other trigger types. 

 

FIGURE 47: TRIGGER FUNCTIONALITY 

 

Figure 48 shows the simulation of the trigger process. The signal value (Signal_rsvd, red) changes every 
clock cycle and can be a positive or negative integer. At 2 us, the trigger is enabled with the command 
signals CMD_Start and CMD_Trigger and set up with the trigger type and the trigger value (marked 
orange). The trigger value is set to 0 and the trigger type is set to 1, which means the trigger event 
happens, if the signal value is below the trigger value. At 9 us, the signal S_LoV_triggered (lower than 
value) is enabled. Also the other signals, S_UpV_triggered (above value) and S_EqT_triggered (equal 
to) can be enabled at this point. With the trigger type, the correct trigger event is selected and the 
Start_Sampling signal (blue) is set. 

 

FIGURE 48: TRIGGER_CONTROL SIMULATION WITH SIGNAL VALUE LOWER THAN TRIGGER VALUE 
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Figure 49 shows the simulation when no trigger is active. The CMD_Trigger signal (blue) is not set and 
therefore no trigger is active. The CMD_Start signal sets the Start_Sampling signal (red) to start the 
debugging process immediately. 

 

FIGURE 49: TRIGGER_CONTROL SIMULATION WHEN NO TRIGGER IS ACTIVE 

 

4.13 SUBMODULE SEND_CONTROL 
 

The submodule Send_Control handles the sampling process. It counts the numbers of samples and if 
the adjusted NumberOfSamples is reached, the internal Reset is set. This Reset resets the 
Send_Control block, the Trigger_Control block, the Sample_Rate_Counter block, the RingBuffer and 
the internal sample counter of the Send_Control block. The internal sample counter increases when the 
Start_Sampling signal from the Trigger_Control block and the Enable_NoSCounter from the 
Sample_Rate_Counter are set. The counter increments, when both signals are set. This is necessary 
due to different sample rates. Figure 50 shows the Send_Control block. Figure 51 gives a more detailed 
overview of this block. The Sample_Counter is the timestamp for the sampled signal values. With the 
Sampling signal, the data transfer into the RAM is initialized and when the Pre-Trigger is active, the read 
operation from the ring buffer is initialized with the data transfer into the RAM. The Reset_Counter signal 
resets the counter, when the stop debugging command is sent from the user-interface. An overview of 
the inputs and outputs of this block is shown in Table 31 and Table 32 in the Appendix. 

 

FIGURE 50: SEND_CONTROL WITH INPUTS AND OUTPUTS 
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FIGURE 51: SEND_CONTROL MODULE OVERVIEW 

 

The Send_Control block gets the selected number of samples, which can be between 1024 and 999424. 
The sample counter is compared to the selected number of samples after each increase. The Reset 
signal is set, when the counter value is higher. It resets the internal sample counter and the other 
submodules. It is also possible to select 0 numbers of samples, which means the sampling process runs 
to infinity until the CMD_Reset stops it. It also resets the sample counter and the other submodules. The 
CMD_Reset is done with the user-interface. 

 

Figure 52 shows the simulation of the Send_Control block. The selected sampling frequency is 250 kHz. 
Therefore, the sample counter increases with each fourth clock cycle. When the sample counter reaches 
the number of samples (blue), which is 1024, then the counter is reset and the other submodules are 
also reset. 

 

FIGURE 52: SEND_CONTROL SIMULATION WITH A SAMPLE RATE OF 250 KHZ 

 

Figure 53 shows the simulation of the Send_Control block when the adjusted number of samples is 
reached. The sample frequency is 1 MHz, therefore the Sampling signal (orange) is constantly set and 
the sample counter (red) is increased with each clock cycle. The number of samples (blue) is set to 
1024 and at 1,048 ns, the sample counter reaches 1024 samples. Therefore, the sample counter is 
reset. The reset is also used, to reset the other submodules with the signal Reset_1.  
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FIGURE 53: SEND_CONTROL SIMULATION WHEN THE NUMBER OF SAMPLES IS REACHED 

 

4.14 SUBMODULE SAMPLE_RATE_COUNTER 
 

The submodule Sample_Rate_Counter handles the sample frequency. The value of the SampleRate 
signal determines the sample frequency. It is the compare value to the internal counter. The 
start_counter signal enables the counting process to determine the sample frequency. Each time, the 
counter reaches the value of the SampleRate signal, the counter is reset and the Enable_NoSCounter 
is set. The Reset_Counter signal resets the Sample_Rate_Counter block. The block is shown in Figure 
54. The internal structure of the Sample_Rate_Counter block is shown in Figure 55. An overview of the 
inputs and outputs of this block is shown in Table 33 and Table 34 in the Appendix. 

 

FIGURE 54: SAMPLE_RATE_COUNTER WITH INPUTS AND OUTPUTS 

 

FIGURE 55: INTERNAL STRUCTURE OF THE SAMPLE_RATE_COUNTER MODULE 

Table 2 shows the different sample frequencies, which can be selected with the user-interface. The 
selectable sample frequencies are between 1 kHz and 1 MHz. To start the debugging process with the 
selected frequency, the internal counter must be compared to the sample rate value. This value is 
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calculated with the maximum frequency (1 MHz) and the selected sample frequency, shown in Equation 
1. When the sample frequency is set to 1 MHz, the internal counter is reset each clock cycle. Also the 
Enable_NoSCounter signal is set each clock cycle. If other frequencies are selected, the internal counter 
increases with a frequency of 1 MHz until the sample rate value is reached and enables the 
Enable_NoSCounter signal. The counter is reset again and starts increasing until the start_counter 
signal is reset.  

𝑆𝑎𝑚𝑝𝑙𝑒𝑅𝑎𝑡𝑒 [𝑣𝑎𝑙𝑢𝑒] =  
𝑚𝑎𝑥𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦[𝐻𝑧]

𝑆𝑎𝑚𝑝𝑙𝑒𝑅𝑎𝑡𝑒𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 [𝐻𝑧]
 

 

TABLE 2: SELECTABLE SAMPLE FREQUENCIES FOR THE DEBUGGING PROCESS 

 

 

4.15 SUBMODULE RINGBUFFER 
 

The Submodule RingBuffer handles the Pre-Trigger setting. The module is shown in Figure 56. When 
the Pre-Trigger is set, 100 signal values can be saved into Block-RAMs before the actual trigger event 
happens. This gives more information about the behavior of the signals before an event was received. 
As BRAMs, Simple Dual Port RAMs of the MATLAB Simulink library are used.  

The WriteRAM_Enable signal enables the RingBuffer to write the signal values into the BRAMs. The 
RingBuffer will cyclic overwrite after 100 entries. When the trigger event occurs, the entries are read 
from the BRAMs. If the Pre-Trigger is disabled, the signal data is routed through the RingBuffer module. 
Otherwise the signal data from the RingBuffer is used. 

The Sampling signal sets the Send_Enable signal. It also activates the read operation by increasing the 
read address for the BRAMs. When the Pre-Trigger is active, the Send_Enable signal is delayed by 2 
clock cycles due to the write and read operations of the BRAMs. A more detailed overview of the 
RingBuffer module is shown in Figure 57. 

SampleRate Sample Frequency 
[value] [kHz] 
1 1000 
2 500 
4 250 
5 200 
8 125 
10 100 
16 62.5 
20 50 
25 40 
32 31.25 
40 25 
50 20 
64 15.625 
80 12.5 
100 10 
125 8 
160 6.25 
200 5 
250 4 
320 3.125 
400 2.5 
500 2 
625 1.6 
800 1.25 
1000 1 
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The Reset signal resets the internal counters. The write and read counter are used as memory 
addresses for the BRAMs. An overview of the inputs and outputs of this block is shown in Table 35 and 
Table 36 in the Appendix. 

The whole RingBuffer submodule is structured into the submodules RingBufferCTL and RingBufferSig. 
The RingBufferCTL contains the counters to address the memory. The RingBufferSig contains the 
BRAM blocks and the logic to select the right signal data for the output ports. 

 

FIGURE 56: RINGBUFFER WITH INPUTS AND OUTPUTS 

 

FIGURE 57: INTERNAL STRUCTURE OF THE RINGBUFFER MODULE 

 

The submodule RingBufferCTL contains the counters for the write and read operations. The 
ReadRAM_Enable signal increments the read counter and the WriteRAM_Enable signal increments the 
write counter. When they reach the value 102, they overflow and start from 0 again. The counter values 
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are used as BRAM addresses (rd_addr and wr_addr). When the trigger event occurs at the first sample, 
a write and read operation of the BRAMs are necessary. To avoid concurrent access, the read address 
is delayed by 1 clock cycle. This makes sure, that the signal data is written into the BRAMs before they 
are read. When the trigger event occurs, the ReadRAM_Enable signal is set and the read counter starts 
to increase. The read counter moves always with the same gap to the write counter. Figure 58 shows 
the internal structure of the RingBufferCTL module. An overview of the inputs and outputs of this block 
is shown in Table 37 and Table 38 in the Appendix. 

 

FIGURE 58: INTERNAL STRUCTURE OF THE RINGBUFFERCTL MODULE 

 

The submodule RingBufferSig checks if the Pre-Trigger is active and which data will be routed to the 
output ports. If the Pre-Trigger is active, the saved signal values from the BRAMs are selected, otherwise 
the 4 signals are directly routed through the RingBufferSig block. The read and write address for the 
BRAMs are controlled with the RingBufferCTL block. With the WriteRAM_Enable signal, new values are 
written into the BRAMs and the previous values are read. Due to this behavior of the Simple Dual Block 
RAM, there is no need for an extra read signal. Every debugging signal has its own ring buffer, shown 
in Figure 59. An overview of the inputs and outputs of this block is shown in Table 39 and Table 40 in 
the Appendix. 
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FIGURE 59: INTERNAL STRUCTURE OF THE RINGBUFFERSIG MODULE 

 

Figure 60 shows the read and write pointer to address the BRAMs of the ring buffer. When the 
CMD_Start signal is set, the sample rate counter starts to work (0). The write address increases with 
each enable signal from the sample rate counter block (2). This is only done, when the pre-trigger is 
enabled. For every sample point, the data is written into the BRAMs, until the pre-trigger event occurs. 
If there is no trigger event, the read address starts incrementing, when the write address reaches 99 (3). 
The read pointer follows the write pointer with a constant delay of a 100 entries (4). After reaching the 
value 102, the address starts from 0 again and the saved values will be overwritten.  

Figure 61 shows the read and write pointer to address the BRAMs of the ring buffer, when the pre-trigger 
event occurs. First, both counters start at 0 (1). Then, the write address increases and the sample points 
are written into the BRAMs (2). When the write pointer reaches 9, the trigger event occurs and the saved 
samples are read from the read pointer location. The read pointer increases and follows the write pointer 
with a constant delay (3 and 4). 
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FIGURE 60: RING BUFFER WITH READ AND WRITE POINTER MOVEMENT WHEN NO TRIGGER EVENT OCCURS 

 

 

FIGURE 61: RING BUFFER WITH READ AND WRITE POINTER MOVEMENT WHEN A TRIGGER EVENT OCCURS 

 

The Figure 62 shows the simulation of the RingBuffer block with an active Pre-Trigger. At 2 us, the 
signals WriteRAM_Enable and PreTrigger_Enabled (both orange) are set and the write operations start. 
The signal data is written into the BRAMs. The write address (Wr_Addr) begins at 0 and increases with 
the sample frequency, which is 1 MHz. At 6 us, the trigger event occurs, when the value of the signal 
Sig_In (red) is above 5 (trigger value) and the Sampling signal (violet) is set. This activates the read 
operations from the BRAMs with a delay of 1 clock cycle. At 8 us, the read operation is finished and the 
read values are routed to the output signals. The signal Sig_Out (red) has the value 2, which was written 
into the BRAMs at the first write operation. The read address (Rd_Addr) increments and the 
Send_Enable signal is set (both marked blue) to build the AXIS data stream. The read counter follows 
the write counter with a constant delay, depending on the trigger event. 
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FIGURE 62: SIMULATION OF THE RINGBUFFER MODULE WITH AN ACTIVE PRE-TRIGGER 

 

Figure 63 shows the simulation of the RingBuffer block, when a post-trigger is active. The 
PreTrigger_Enabled signal is 0 and therefore no addresses are incremented. The BRAMs are not used. 
At 6 us, the trigger event happens (Sig_In value is above 5) and the Sampling signal is set. Due to the 
active post-trigger, the Send_Enable signal is set immediately to build the AXIS data stream. 

 

FIGURE 63: SIMULATION OF THE RINGBUFFER MODULE WITH AN ACTIVE POST-TRIGGER 
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4.16 SUBMODULE SIGNALSELECTION 
 

The submodule SignalSelection is a 300 to 1 multiplexer. It selects 1 signal out of 300 input signals. The 
signal selection is done with the signal Signal_Sel. The value of this signal routes the selected signal to 
the output port. To address the 300 signals correctly, the DebugCoreModule has its own interface for 
the 300 input signals. This interface is called Input_Signals and is used by integrating the 
DebugCoreModule into the Xilinx Vivado Design. It contains all 300 input signals with 32 bit, each. The 
SignalSelection block is shown in Figure 64. The Advanced Inverter Debugger has 4 SignalSelection 
blocks, one block for each signal to debug. An overview of the inputs and outputs of this block is shown 
in Table 41 and Table 42 in the Appendix. 

 

FIGURE 64: SIGNAL_SELECTION WITH INPUTS AND OUTPUTS 

 

To avoid, that the 300 to 1 multiplexer is synthesized with the internal multiplexers of the FPGA, the idea 
was to build this big multiplexer with lookup tables. The SignalSelection block is structured into 
submodules. The 300 input signals are separated into 3 times 100 signals (Figure 65) and these 100 
signals are again separated into 10 times 10 signals (Figure 66). The 10 signals are controlled by the 
SignalEnableTen block (Figure 67). It depends, which signal is selected (Figure 68) and the 
SignalEnableTen block enables the corresponding SignalSelectTen block and routes the selected signal 
to the output. When the enable signal is disabled, the output signal is set to 0 (Figure 69). All of the 
outputs are combined with bitwise OR operations to get the chosen signal. Due to this process, the 300 
to 1 multiplexer is synthesized with lookup tables in the FPGA. This is also shown in the Utilization report 
of the design that no internal Mul7 and Mul8 are used. 

 

FIGURE 65: SIGNALSELECTION WITH 300 SIGNALS SEPARATED IN 3 TIMES 100 SIGNALS 
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FIGURE 66: SIGNALSELECTION WITH 100 SIGNALS SEPARATED INTO 10 TIMES 10 SIGNALS 

 

FIGURE 67: SIGNALSELECTION WITH AN ENABLE CONTROL AND 10 SIGNAL SELECTION BLOCKS 
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FIGURE 68: SIGNALSELECTION WITH THE CONTROL SIGNAL 

 

FIGURE 69: SIGNALSELECTION TO ENABLE THE SELECTED SIGNAL FOR THE DEBUGGING PROCESS 

 

 

4.17 PIPELINES AND CLOCK DOMAIN CORSSING  
 

The Pipeline IP cores are simple registers to reduce the longest path in the FPGA design. This is 
important to fulfill the timing constrains. The timing constrains were generated from the design. The 
pipeline block is shown in Figure 70. The signal width can be chosen in the IP settings of the block. This 
block is used for signals between the UNPKGModule and the DebugCoreModule. Pipelines are also 
used between the DebugCoreModule and the PKG_Samples block. An overview of the inputs and 
outputs of the Pipeline block is shown in Table 43 and Table 44 in the Appendix.  

The pipeline block was modified with an input interface with 300 and 40 signals. These pipelines 
(Pipeline40 and Pipeline300) are used as input interfaces for the packaged AID4034 and AID30035. Each 
input signal of the interfaces are 32 bits and can’t be changed. An overview of the inputs and outputs of 
the Pipeline300 IP core is shown in Table 45 and Table 46 in the Appendix.  

 

FIGURE 70: PIPELINE WITH INPUTS AND OUTPUTS 

  

                                                      

34 AID40, Advanced Inverter Debugger IP core with 40 input signals 
35 AID300, Advanced Inverter Debugger IP core with 300 input signals 
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The ClkDomainCrossing block converts a signal from one clock domain to another clock domain. This 
block is used to convert the 1 MHz out_start_pkg1MHz signal from the DebugCoreModule to the 100 
MHz send_enable signal for the PKG_Samples block. The block is shown in Figure 71. The width of the 
input and output signal can be set in the IP settings. An overview of the inputs and outputs of the 
ClockDomainCrossing IP core is shown in Table 47 and Table 48 in the Appendix. 

 

FIGURE 71: CLKDOMAINCROSSING IP CORE WITH INPUTS AND OUTPUTS 

 

Figure 72 shows the structure of the clock domain crossing in general. The first Flip-Flop is used to 
synchronize the input signal to the rising edge of clk1. Then, the second Flip-Flop is used to synchronize 
the signal B to clk2. It is still possible, that the output C is metastable due to a violation of the setup or 
hold time. To avoid this, another Flip-Flop is added, to get valid data after the third Flip-Flop. 

 

FIGURE 72: FUNCTIONALITY OF THE CLOCK DOMAIN CROSSING 

 

Figure 73 shows the clock domain crossing simulation from the 1 MHz clock domain to the 100 MHz 
clock domain. It also shows the Flip-Flop stages for the clock domain crossing. At the rising edge of the 
1 MHz clock, the stage1 is set to the in_signal_1MHz. At the rising edge of the 100 MHz clock, stage2 
takes over the value of stage1. By the next rising edge, stage3 takes over the value of stage2. At 2,020 
us, the signal out_signal_100MHz (red) is set to the value of stage3. 
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FIGURE 73: SIMULATION OF THE CLOCK DOMAIN CROSSING 

 

4.18 SIGNAL GENERATOR IP CORE SIG_GEN300 
 

The Sig_Gen300 module generates the test signals for the practical tests of the Advanced Inverter 
Debugger. It generates 300 signals. Each signal is 32 bits. The first 20 signals are generated as counters. 
The first counter starts counting from a negative value and counts upwards until the maximum is reached 
and starts at the minimum again. The starting points of all counters are -40, -30, -20, -10, 0, 10, 20, 30, 
40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140 and 150. Each counter increases the value by 1. Every 
counter has a different counting speed. The first one counts with 1 MHz, the second counter needs 2 
clock cycles, the third counter needs 3 clock cycles … and the last counter needs 20 clock cycles to 
increase the counter value by 1. The maximum value is 50 higher than the starting point. When the 
maximum is reached, the counters start from the starting values again. The other 280 signals are just 
constants with the values 20 – 299. These values were chosen to test the signal selection. The 
Sig_Gen300 block is shown in Figure 74. The output signals are combined to an interface with the name 
Gen_Signals, which stands for generated signals. An overview of the inputs and outputs of the 
Sig_Gen300 IP core is shown in Table 49 and Table 50 in the Appendix. This signal generator is also 
available with 40 signals with the name Signal40Generator. The 40 signals contains 20 counters and 
20 constant signals (values 20-39).  

 

FIGURE 74: SIG_GEN300 INPUTS AND OUTPUTS 

 

The Figure 75 shows the generation of the test signals for the Debug-Core. The first 20 signals are 
counters, which start at different values and increase with a different rate. At the signal 20, the signal 
values are constant with the signal value of the signal index. 
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FIGURE 75: SIMULATION OF THE SIG_GEN300 IP CORE TO GENERATE THE 300 TEST SIGNALS 

 

4.19 PACKAGED ADVANCED INVERTER DEBUGGER IP CORE 
 

The packaged AID IP core combines the UNPKGModule, DebugCoreModule, DataMoveCTL, 
PKG_Samples, Pipelines and ClockDomainCrossing blocks to one IP core. The AID IP core is available 
with 40 and 300 input signals. The input signals are combined to an interface.  

For the AID IP core with 300 input signals, the interface name is Input_Signals. This interface was 
created by me and is also used for the Sig_Gen300 IP core. For this interface, the Input_Signals.xml 
and the Input_Signals_rtl.xml files are used. The packaged AID IP core with 300 input signals is named 
AID300 and is used to test it on the ZedBoard.  

For the AID IP core with 40 input signals, the interface name is debugSig. This interface was created by 
Stephan Hochmüller and is already used in the design on the Controller Board. For this interface, the 
debugSig.xml and the debugSig_rtl.xml files are needed. The packaged IP core with 40 input signals is 
named AID and is used to test it on the Controller Board.  

To use the interfaces, the files must be copied into the IP repository, the interface names have to be 
selected under the point User. The Figure 76 shows both interfaces. The left interface (debug_Sig) is 
for 40 input signals and the interface, Input_Signals, is for 300 input signals. After selecting the right 
interface, the signals must be mapped. The mapping sets the physical connections, how the single 
signals are connected when the interface is used. The packaged AID IP core is shown in Figure 77. 
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FIGURE 76: AID INTERFACES FOR 40 AND 300 INPUT SIGNALS 

 

FIGURE 77: AID IP CORE WITH THE INPUTS AND OUTPUTS 

 

The AID IP core uses both clocks, 1 MHz and 100 MHz, to work properly. The mm2s_startTF signal 
initiates the MM2S data transfer by sending the AXIS command data stream to the AXI DataMover. The 
command data is built with the start memory address and the data length. After sending the AXIS 
command data stream, the AXI DataMover reads the user data at the MM2S_MEM_ADDR from the 
RAM and sends it to the s_axis_mm2s_d interface of the AID module. The status of the transfer is sent 
to the s_axis_mm2s_s interface. If the MM2S transfer was successful, the mm2s_finished_intr occurs. 

The user data contains the control information to start the debugging process with the chosen debugging 
settings. When the AID Module starts working, it sends the AXIS command data stream to the AXI 
DataMover with the m_axis_S2MM_C interface. Furthermore, the signal samples are packaged together 
to an AXIS data stream. This data stream is sent with the m_axis_S2MM interface to the AXI DataMover 
to write the data into the RAM. The AXI DataMover returns the transfer status to the s_axis_S2MM_S 
interface. If the S2MM transfer was successful, the internal counter increases, until the 
s2mm_number_pkg is reached. The s2mm_number_pkg is the number of signal samples, which are 
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collected for the UDP package and stored in the RAM, until the s2mm_finished_intr occurs. The 
Processing System handles the interrupts with the interrupt handlers. 

To reduce the longest path, pipelines are used between the UNPKGModule and the DebugCoreModule. 
They are also used for the Input_Signals interface and between the DebugCoreModule and the 
PKG_Samples block. Pipelines are also used for the input signal interface. For the AID with 300 signals, 
the Pipeline300 is used and for the AID with 40 signals, the Pipeline40 is used. Figure 78 shows the 
structure of the whole AID IP core. An overview of the inputs and outputs of the AID IP core is shown in 
Table 51 and Table 52 in the Appendix. 

 

The AID with 40 signals was tested on the ZedBoard and on the Controller Board with a Zynq 7000 
xc7z100ffg900-2 FPGA. This FPGA is placed on a Trenz Board Zynq-7000 TE0782_100_2L SPRT 
PCB: REV02 on the Controller Board. The test results are discussed under the section testing the AID 
IP-Core in chapter 13 and chapter 14. 

The AID with 300 signals was tested on the ZedBoard. The test results are discussed under the section 
testing the AID IP-Core in chapter 13 and chapter 14. 
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FIGURE 78: STRUCTURE OF THE PACKAGED AID IP CORE 
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5 COMPARISON OF THE AID40 AND AID300 
RESOURCE UTILIZATION 

 

In this section, the 2 AID IP cores are compared. The main focus is the FPGA resource utilization. Due 
to the 300 input signals, the AID30036 needs a lot more resources on the FPGA than the AID4037. The 
300 to 1 multiplexers of the signal selection blocks are the biggest parts. The smaller the number of the 
input signals, the lower is the resource usage on the FPGA. The first idea was, to debug 4 signals out 
300 possible input signals, 32 bit each. Due to the already high FPGA utilization of the Controller Board 
with the inverter software, the input signals were reduced to 40.  

Table 7 shows the FPGA utilization of the AID40 and AID300 on the ZedBoard. The AID40 needs 2055 
of the available Slice LUTs, 1420 of the available Slice Registers, 755 of the available Slices, 2055 of 
the available LUT as Logic, 257 of the available LUT Flip Flop Pairs, 2 of the available Block RAM Tiles 
and 1 DSP, which is 0.455% of the available DSPs. The AID300 needs 5616 of the available Slice LUTs, 
2500 of the available Slice Registers, 1730 of the available Slices, 5616 of the available LUT as Logic, 
257 of the available LUT Flip Flop Pairs, 2 of the Block RAM Tiles and 1 of the available DSPs.  

TABLE 3: COMPARISON OF THE FPGA RESOURCE UTILIZATION 

Resource Available on FPGA 
(ZedBoard) 

AID40 used 
Resources 

AID300 used 
Resources 

Slice LUT 53200 2055 5616 
Slice Register 106400 1420 2500 
Slice 13300 755 1730 
LUT as Logic 53200 2055 5616 
LUT Flip Flop Pairs 53200 257 257 
Block RAM Tile 140 2 2 
DSP 220 1 1 

 

Table 8 shows the FPGA utilization of the AID40 and AID300 on the ZedBoard. In this table percentages 
are used. The values show how many of the total resources were used. The biggest differences of the 
AID40 and AID300 are at the Slice LUT, Slices and LUT as Logic. The AID300 uses 10,56% of the Slice 
LUT compared to the AID40 with 3,86%, 13,01% of the Slices compared to 5,68% and 10,56% of the 
LUT as Logic compared to 3,86%. These significant differences are mainly caused by the 300 to 1 
multiplexer and the pipeline stage for the 300 input signal interface. 

TABLE 4: COMPARISON OF THE FPGA RESOURCE UTILIZATION IN PERCENT 

Resource Resources on FPGA 
(ZedBoard) 

AID40 used 
Resources 

AID300 used 
Resources 

Slice LUT 53200 3.86% 10.56% 
Slice Register 106400 1.33% 2.35% 
Slice 13300 5.68% 13.01% 
LUT as Logic 53200 3.86% 10.56% 
LUT Flip Flop Pairs 53200 0.48% 0.48% 
Block RAM Tile 140 1.43% 1.43% 
DSP 220 0.455% 0.455% 

 

 

 

                                                      

36 AID300, Advanced Inverter Debugger IP core with 300 input signals 
37 AID40, Advanced Inverter Debugger IP core with 40 input signals 
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In both FPGA designs, the timing constraints [8] are fulfilled as shown in the Figures 79 and 80. 

As long as the Worst Negative Slack (WNS) is positive, the path passes. If it is negative the path fails. 
The Total Negative Slack (TNS) is the sum of the negative slack in the design. If it is positive, then there 
is negative slack in the design. If it is 0, the timing is met. The TNS cannot be negative. The design 
passes the Worst Hold Slack (WHS), when it is positive. That means, there is no WHS in the design. If 
it is negative, the design fails. The Total Hold Slack (THS) is the sum of the WHS. If it is 0, the design 
passes, otherwise it fails. The Worst Pulse Width Slack (WPWS) checks if the periods of each clock pin 
is ok. If the value is positive, the design passes. If it is negative, the design fails. The Total Pulse Width 
Negative Slack (TPWS) is the sum of the WPWS. If it is 0, the design passes, otherwise it fails. The 
value cannot be negative. 

In both Figures, the timing constrains are fulfilled. The WNS, WHS and WPWS are positive and the TNS, 
THS and TPWS are 0. This means the design passes the timing constrains. 

 

FIGURE 79: AID40 TIMING SUMMARY 

 

FIGURE 80: AID300 TIMING SUMMARY 

 

Figure 81 shows the routing of the DebugCoreModule with 40 input signals. The white parts mark the 
used resources for the DebugCoreModule. The light blue areas mark the used resources of the whole 
AID with 40 input signals.  

Figure 82 shows the routing of the DebugCoreModule with 300 input signals. The white parts mark the 
used resources for the DebugCoreModule. The light blue areas mark the used resources of the whole 
AID with 300 input signals. The areas for the AID300 and the DebugCoreModule are mainly bigger due 
to the 300 to 1 multiplexer and the Pipeline300 IP core. 
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FIGURE 81: ROUTING OF THE DEBUGCOREMODULE WITH 40 SIGNALS ON THE ZEDBOARD 

 

FIGURE 82: ROUTING OF THE DEBUGCOREMODULE WITH 300 SIGNALS ON THE ZEDBOARD 

 

The Figures 83 and 84 show the power consumption of the FPGA designs with the AID40 and AID300. 
The power consumption is very similar. The PS needs in both designs 1.533W and is the biggest 
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consumer. All other parts are nearly the same. The BRAMs are a little bit different with 0.002W (AID40) 
and 0.013W (AID300).The clocks need a little bit more power, 0.032W with AID300 compared to 0.022W 
with AID40. The overall power consumption is with the AID300 higher than with AID40, 1.596W 
compared to 1.573W. 

 

FIGURE 83: POWER CONSUMPTION OF THE AID40 

 

FIGURE 84: POWER CONSUMPTION OF THE AID300 

 

6 DRIVER FILES FOR THE ZEDBOARD 
 

After successfully running the synthesis, implementation and generation of the bit stream, the hardware 
with the bit stream was exported. Then, the Xilinx SDK (Xilinx Software Development Kit) can be used 
to write the driver files for the Processing System.  

After starting the Xilinx SDK, the files for the hardware platform were automatically generated. A board 
support package was necessary. In the board support package settings, the lwip141 library was added 
to use the lwIP TCP/IP Stack (light weight TCP/IP Stack). The board support package settings are 
shown in Figure 85. The xilffs library was also added, but it is not used for the AID. 

After creating the hardware platform files and the board support package an echo server application 
project was created. This project uses the hardware platform files. The echo server is used for the 
UDP/IP connection. The Program of the echo server was modified by adding an interrupt system, a logic 
control class and the class for the UDP connection.  
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FIGURE 85: BOARD SUPPORT PACKAGE WITH LWIP141 LIBRARY 

 

6.1 INTERRUPT_SYSTEM CLASS 
 

The interrupt system class initializes the interrupt system and handles the different interrupts. It connects 
the interrupt controller to the interrupt handlers and maps the interrupts to the CPU. After that, the 
interrupts are enabled. 

There are two different interrupts to handle, the MM2S_finished_intr and the S2MM_finished_intr. Each 
interrupt is handled with a different interrupt handler.  

When an UDP package arrives, the Processing System checks if the package type is Start, Reset or 
GetVersion. If the packagetype is GetVersion, the PS sends the version number back to the user-
interface. If the package type is Start or Reset, the control data is stored in the RAM and the AXI_GPIO 
[6] port for reading out the data of the RAM (mm2s_startTF) is set. This initializes the MM2S data transfer. 
After successfully reading out the data from the RAM with the AXI DataMover, the mm2s_finished_intr 
occurs. The interrupt controller handles the interrupt and the MM2S_Datamover_InterruptHandler is 
called. This handler resets the mm2s_startTF back to 0. 

When the Debug-Core was started, the signal data are written into the RAM. When the number of 
samples for the UDP package is reached, the s2mm_finished_intr occurs. The interrupt controller calls 
the S2MM_Datamover_InterruptHandler, which reads the signal data out of the RAM, builds the UDP 
package and sends it to the user-interface. 

 

6.2 LOGIC_CONTROL CLASS 
 

The logic_control class is used to control the AXI_GPIO ports. The AXI_GPIO ports are directly 
connected to the Advanced Inverter Debugger IP core in the FPGA design. They are used to set the 
memory addresses, the data length of the S2MM/MM2S data transfer, the number of samples for the 
UDP package and to initialize the MM2S data transfer. The memory addresses of each AXI_GPIO port 
is used to set the different control signals.  

Figure 86 shows the AXI_GPIO memory addresses in the Address Editor of Xilinx Vivado. 
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FIGURE 86: AXI_GPIO MEMORY ADDRESSES 

 

To access an AXI_GPIO port, a memory address is necessary. The memory addresses are mapped 
with the Address Editor to the different IP cores. With the Xilinx SDK, values can be assigned to the 
AXI_GPIO ports to use this values in the user logic. This is done with the following code:  

 Xil_Out32(GPIO_S2MM_NUMBER_PKG, sample_pkg_number); 

Xil_Out32 is the function to access the memory with a 32-bit value. GPIO_S2MM_NUMBER_PKG is 
the memory address of the AXI_GPIO port, which is used to set the number of samples for the UDP 
package. The sample_pkg_number is the actual value. All of the AXI_GPIO ports are access in this way. 

 

6.3 UPD_CON CLASS 
 

The udp_con class handles the initialization of the UDP connection. It creates a new UDP connection 
and binds the listening port to the IP address. 

The class also handles incoming UDP packages (control information for the AID). These data is received, 
ordered and written into the RAM. Functions from the LogicControl class are used to access the 
AXI_GPIO ports. After that, the MM2S data transfer is enabled. This class also handles the send process. 
Therefore, the UDP package is built with the signal data and sent to the user-interface. The following 
code shows the configuration of the AID, when a UDP package arrives: 

 

 /* 
  * Set Properties for the MM2S transfer of the AXI DataMover 
  * set mm2s memory address 
  * set data length, which will be written from RAM 
  */ 
 SetMM2SAddress(MM2S_BASEADDR); 
 SetMM2SDataLength(EthBytesReceived); 
 
 // config S2MM Transfer 
 SetS2MMAddress(S2MM_BASEADDR); 
 SetS2MMAddress2(S2MM_BASEADDR2); 
 // set S2MM address to the first one 
 S2MMaddr1_active = 1; 
 // Length depends on package_type                  
 SetS2MMDataLength(READ_LEN); 
 // Set number of samples for the UDP package 
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 S2MMSetNumberOfPkgCollection(NUMBER_OF_PACKAGES); 
  
 // enable transfer (will cause the mm2s_intr, when the transfer was successful) 
 EnableMM2STransfer(); 

 

6.4 MAIN CLASS 
 

The main function, starts the program. It was automatically created with the lwIP echo server application 
project. It initializes the lwIP stack with the MAC and IP addresses and adds the network interface to the 
network interface list. After that, the MM2S transfer is disabled and the interrupt system is initialized. 
The initialization of the interrupt system is shown in the following code: 

 // disable mm2s transfer, should be activated when udp data is coming 
 DisableMM2STransfer(); 
 
 // init interrupt system 
 int Status = InitInterruptSystem(DEVICE_ID); 
 if (Status != XST_SUCCESS){ 
  xil_printf("error: init interrupt system failed.\n\r"); 
  return XST_FAILURE; 
 } 
 else 
  xil_printf("init interrupt system done.\n\r"); 

After successfully initializing the interrupt system, a new DHCP server is created for the network 
interface by using the lwIP stack. The IP and MAC addresses are mapped to the server. 

Then, the memory addresses are assigned. One is used for the MM2S transfer and two are used for the 
S2MM transfers with the switched buffer. After that, the UDP connection is initialized. This is shown in 
the following code: 

 

 // define memory location for buffer 
 DMA_MM2S_Buffer = (u8*) MM2S_BASEADDR; 
 S2MMaddr1_active = 1; 
 DMA_S2MM_Buffer32 = (u32*) S2MM_BASEADDR; 
 DMA_S2MM_Buffer232 = (u32*) S2MM_BASEADDR2; 
 
 // Start udp 
 InitUDP(); 
 
 // receive and process packets 
 while (1) { 
 
  xemacif_input(echo_netif); 
 } 

After initializing the UDP connection with the adjusted ports, the DHCP server works as an echo server. 
The echo server constantly runs in a while loop and when a UDP package arrives the udp_recv_data 
function is called to process the incoming data. 

The main.h file is used, to include all the different header files for the program. It also contains the 
constant definitions, like memory addresses, port numbers, interrupt ids, and other important variables 
for the correct work of the program. The different parameters, which are used for the constant definitions 
are mostly used from the xparameters.h file. The Xilinx SDK automatically generates the xparameters.h 
file from the exported FPGA design. The following code shows the definitions. 
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// Device ID and interrupt 
#define DEVICE_ID    XPAR_SCUGIC_0_DEVICE_ID 
#define INTC    XScuGic 
#define INTC_HANDLER  XScuGic_InterruptHandler 
#define S2MM_INTR XPAR_FABRIC_DATAMOVECTLV3_0_S2MM_FINISHED_INTR_INTR 
#define MM2S_INTR XPAR_FABRIC_DATAMOVECTLV3_0_MM2S_FINISHED_INTR_INTR 
// RAM memory addresses 
#define MM2S_BASEADDR  (XPAR_PS7_DDR_0_S_AXI_BASEADDR + 0x00020000) 
#define MM2S_HIGHADDR  (XPAR_PS7_DDR_0_S_AXI_BASEADDR + 0x0003FFFF) 
#define S2MM_BASEADDR  (XPAR_PS7_DDR_0_S_AXI_BASEADDR + 0x00040000) 
#define S2MM_HIGHADDR  (XPAR_PS7_DDR_0_S_AXI_BASEADDR + 0x0005FFFF) 
#define S2MM_BASEADDR2  (XPAR_PS7_DDR_0_S_AXI_BASEADDR + 0x00060000) 
#define S2MM_HIGHADDR2  (XPAR_PS7_DDR_0_S_AXI_BASEADDR + 0x0007FFFF) 
#define UDP_DATA_BASEADDR (XPAR_PS7_DDR_0_S_AXI_BASEADDR + 0x00080000) 
#define UDP_DATA_HIGHADDR (XPAR_PS7_DDR_0_S_AXI_BASEADDR + 0x0009FFFF) 
// GPIO memory addresses 
#define GPIO_MM2S_ADDR   XPAR_AXI_GPIO_0_BASEADDR 
#define GPIO_S2MM_ADDR   XPAR_AXI_GPIO_1_BASEADDR 
#define GPIO_MM2S_EN_ADDR  XPAR_AXI_GPIO_2_BASEADDR 
#define GPIO_MM2S_LEN_ADDR  XPAR_AXI_GPIO_3_BASEADDR 
#define GPIO_S2MM_LEN_ADDR  XPAR_AXI_GPIO_4_BASEADDR 
#define GPIO_S2MM_NUMBER_PKG XPAR_AXI_GPIO_5_BASEADDR 
#define GPIO_S2MM_ADDR2   XPAR_AXI_GPIO_6_BASEADDR 
// Define ports and IP 
#define TR_UDP_PORT 63999 
#define RV_UDP_PORT 64000 
#define MACADDR { 0x00, 0x0a, 0x35, 0x00, 0x01, 0x02 } 

 

7 DRIVER FILES FOR THE CONTROLLER BOARD 
 

The Controller Board is the target hardware from AVL List GmbH with an ARM Zynq-7000 Kintex-7 
FPGA (xc7z100ffg900). The AID will be used to debug inverters and controllers, which will run on this 
FPGA.  

To use the AID on the Controller Board, the AID, the AXI_GPIOs and the AXI DataMover IP cores were 
added to the existing Controller Board FPGA design. The added IP cores are shown in Figure 87. 
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FIGURE 87: CONTROLLER BOARD WITH THE AID IP CORE 

 

The AXI_GPIO memory addresses are different to the memory addresses of the ZedBoard design. 
Therefore, the driver files in the Xilinx SDK were modified and updated to the new values. The Address 
Editor is shown in Figure 88.  

 

FIGURE 88: ADDRESS EDITOR OF THE CONTROLLER BOARD 
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After successfully running the synthesis, implementation and generation of the bit stream, the hardware 
with the bit stream was exported. To start the Xilinx SDK the TCL script build_swProj.tcl was used. This 
TCL script automatically generates the software project with all the included files in the Xilinx SDK from 
the Controller Board FPGA design. 

In the application project tcp_ecat_server, a new folder with the name AID was added. In this AID folder 
all the necessary files were added to include the AID into the project. 

The added files are: 

 aid_intr_system.c 
 aid_intr_system.h 
 aid_settings.h 
 logic_control.c 
 logic_control.h 
 udp_con.c 
 udp_con.h 

The board support package was also generated with the TCL script automatically. In case, the board 
support package is deleted, a new one with the included libraries lwip141 and xilffs has to be created. 
The lwip141 library is used for the lwIP TCP/IP Stack (light weight TCP/IP Stack) and the xilffs library is 
the Generic FAT File System library. Both libraries are used in the Controller Board project. 

To include the AID files (from the ZedBoard) into the project with the Controller Board, little modifications 
were necessary. The modifications were, changing the name of the interrupt_system class to 
aid_intr_system class to avoid confusion with already existing similar classes and to change the main.h 
to aid_settings.h. 

In the class aid_intr_system, a new function AIDConnect_InterruptHandler was added, which connects 
the AID interrupt handlers to the existing interrupt system of the design. 

In the class udp_con the function InitUDP was renamed to InitAID, which initializes the UDP connection 
for the AID. 

 

7.1 AID_INTR_SYSTEM CLASS 
 

The class for the AID interrupt system handles the initialization of the interrupt system. It connects the 
interrupt controller to the interrupt handlers and maps the interrupts to the CPU. After that, the interrupts 
are enabled. 

There are two different interrupts to handle, the MM2S_finished_intr and the S2MM_finished_intr. Each 
interrupt is handled with different interrupt handlers.  

When an UDP package arrives, the Processing System checks if the package type is Start, Reset or 
GetVersion. If the package type is GetVersion, the PS sends the version number back to the user-
interface. If the package type is Start or Reset, the control data are written into the RAM and the 
AXI_GPIO port for reading out the data of the RAM (mm2s_startTF) is set. This initializes the MM2S 
data transfer. After successfully reading out the data from the RAM with the AXI DataMover, the 
mm2s_finished_intr occurs. The interrupt controller handles the interrupt and the 
MM2S_Datamover_InterruptHandler is called, which resets the mm2s_startTF signal back to 0. 

When the Debug-Core was started, the signal data is written into the RAM. After the number of samples 
for the UDP package is reached, the s2mm_finished_intr occurs. The interrupt controller calls the 
S2MM_Datamover_InterruptHandler, which reads the stored signal data out of the RAM, builds the UDP 
package and sends it to the user-interface. 

Already existing project files initializes the interrupt system. Therefore, the InitInterruptSystem function 
from the AID_IntR_System class is not used. To connect the interrupt ids of the AID with the interrupt 
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system of the project, a new function was added. The AIDConnect_InterruptHandler function connects 
the existing interrupt controller with the interrupt ids and the interrupt handlers of the AID. Then, the AID 
is initialized with the function InitAID. 

 

7.2 LOGIC_CONTROL CLASS 
 

The logic_control class is used to control the AXI_GPIO ports. The AXI_GPIO ports are directly 
connected to the Advanced Inverter Debugger IP core in the FPGA design. They are used to set the 
memory addresses, the data length of the S2MM/MM2S data transfer, the number of samples for the 
UDP package and to initialize the MM2S data transfer. The memory addresses of each AXI_GPIO port 
is used to set the different control signals.  

To access an AXI_GPIO port, a memory address is necessary. The memory addresses are mapped 
with the Address Editor to the different IP cores. With the Xilinx SDK, values can be assigned to the 
AXI_GPIO ports to use this values in the user logic. This is done with the following code:  

 Xil_Out32(GPIO_S2MM_NUMBER_PKG, sample_pkg_number); 

Xil_Out32 is the function to access the memory with a 32-bit value. GPIO_S2MM_NUMBER_PKG is 
the memory address of the AXI_GPIO port, which is used to set the number of samples for the UDP 
package. The sample_pkg_number is the actual value. All of the AXI_GPIO ports are access in this way. 

 

7.3 UPD_CON CLASS 
 

The udp_con class handles the initialization of the UDP connection. It creates a new UDP connection 
and binds the ports to the IP address. 

The class also handles incoming UDP packages (control information for the AID). These data is ordered 
and written into the RAM. Functions from the logic_control class are used to access the AXI_GPIO ports 
to set up the AID IP core. After that, the MM2S data transfer is enabled to start the data transfer from 
the RAM to the user logic. Depending on the command information the debugging process is started or 
stopped. The following code shows, how the AID IP core is set up. 

 /* 
  * Set Properties for the MM2S transfer of the AXI DataMover 
  * set mm2s memory address 
  * set data length, which will be written from RAM 
  */ 
 SetMM2SAddress(MM2S_BASEADDR); 
 SetMM2SDataLength(EthBytesReceived); 
  
 // config S2MM Transfer 
 SetS2MMAddress(S2MM_BASEADDR); 
 SetS2MMAddress2(S2MM_BASEADDR2); 
 // set S2MM address to the first one 
 S2MMaddr1_active = 1; 
 // Length depends on package_type                  
 SetS2MMDataLength(READ_LEN); 
 // Set number of packages for the UDP package 
 S2MMSetNumberOfPkgCollection(NUMBER_OF_PACKAGES); 
  
 // enable transfer (will cause the mm2s_intr, when the transfer was successful) 
 EnableMM2STransfer(); 
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With the InitAID function, the UDP connection is initialized for the AID. The InitAID function creates a 
new UDP connection and bind the ports to the IP address. It also starts the UDP connection with the 
function StartUDP. With the DC_EN variable, the AID can be disabled. The InitAID function is called in 
the main.h. The following code shows, how the AID is initialized. 

 #if DC_EN 
  // init AID 
  print("Init AID UDP connection\n\r"); 
  AIDConnect_InterruptHandler(&InterruptController, CPU_ID); 
  InitAID(); 
  
 #endif 
 

To receive UDP packages, a while loop in the main function checks, if UDP packages arrive. The 
incoming control information is used to set up the debugging process. The following code shows, how 
the UDP packages are received. 

 // in while loop 
 #if DC_EN 
 // enable AID debugger 
  // receive udp data 
  xemacif_input(echo_netif); 
 
 #endif 
 

To send UDP packages, the SendDebuggedData32 function is used. This function is called in the 
S2MM_Datamover_InterruptHandler. The signal data is read from the RAM, the UDP payload is built 
and the UDP package is sent to the user-interface.  

 

7.4 MAIN CLASS 
 

The main function, starts the program. It initializes the lwIP stack with the MAC and IP addresses and 
adds the network interface to the network interface list. It also instantiates the interrupt system and 
enables the interrupts.  

A new DHCP server is created for the network interface by using the lwIP stack. The IP and MAC 
addresses are mapped to the server.  

With the InitAID function, the UDP connection of the AID is initialized. The InitAID function creates a 
new UDP connection and binds the ports to the IP address. With the DC_EN variable, the AID can be 
disabled. The following code shows, how the interrupts of the AID are connected to the interrupt system 
and how the AID is initialized. 

 #if DC_EN 
  // init AID and connect interrupts  
  AIDConnect_InterruptHandler(&InterruptController, CPU_ID); 
  InitAID(); 
  
 #endif 

In the main function, EtherCat and other IP cores are set up for communication or I/O services. A while 
loop handles the communication with EtherCat, TCP and furthermore the new initialized UDP connection 
for the AID. To receive UDP packages, the while loop checks if UDP packages arrive. With incoming 
control information from the user-interface, the Processing System [1] starts or resets the Debug-Core. 
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The request for the version number is handled directly from the Processing System. The following code 
shows how UDP packages are received. 

 // in while loop 
 #if DC_EN 
 // enable AID debugger 
  // receive udp data 
  xemacif_input(echo_netif); 
  
 #endif 

 

 

7.5 AID_SETTINGS 
 

The aid_settings.h file is used, to include all the different header files for the AID into the application. It 
also contains the constant definitions like memory addresses, port numbers, interrupt ids, and other 
important variables for the correct work of the program. The different parameters, which are used as 
defines are mostly used from the xparameters.h file. The xparameters.h file is automatically generated 
by the Xilinx SDK. Some defines are shown below. 

 

// Device ID and interrupt 
#define DEVICE_ID    XPAR_SCUGIC_0_DEVICE_ID 
#define CPU_ID    XPAR_CPU_ID 
#define S2MM_INTR   XPAR_FABRIC_AID_0_S2MM_FINISHED_INTR_INTR 
#define MM2S_INTR   XPAR_FABRIC_AID_0_MM2S_FINISHED_INTR_INTR 
// RAM memory addresses 
#define MM2S_BASEADDR  (XPAR_PS7_DDR_0_S_AXI_BASEADDR + 0x00020000) 
#define MM2S_HIGHADDR  (XPAR_PS7_DDR_0_S_AXI_BASEADDR + 0x0003FFFF) 
#define S2MM_BASEADDR  (XPAR_PS7_DDR_0_S_AXI_BASEADDR + 0x00040000) 
#define S2MM_HIGHADDR  (XPAR_PS7_DDR_0_S_AXI_BASEADDR + 0x0005FFFF) 
#define S2MM_BASEADDR2  (XPAR_PS7_DDR_0_S_AXI_BASEADDR + 0x00060000) 
#define S2MM_HIGHADDR2  (XPAR_PS7_DDR_0_S_AXI_BASEADDR + 0x0007FFFF) 
#define UDP_DATA_BASEADDR (XPAR_PS7_DDR_0_S_AXI_BASEADDR + 0x00080000) 
#define UDP_DATA_HIGHADDR (XPAR_PS7_DDR_0_S_AXI_BASEADDR + 0x0009FFFF) 
 

// GPIO memory addresses 
#define GPIO_MM2S_ADDR   XPAR_AXI_GPIO_7_BASEADDR 
#define GPIO_S2MM_ADDR   XPAR_AXI_GPIO_3_BASEADDR 
#define GPIO_MM2S_EN_ADDR  XPAR_AXI_GPIO_2_BASEADDR 
#define GPIO_MM2S_LEN_ADDR  XPAR_AXI_GPIO_1_BASEADDR 
#define GPIO_S2MM_LEN_ADDR  XPAR_AXI_GPIO_5_BASEADDR 
#define GPIO_S2MM_NUMBER_PKG XPAR_AXI_GPIO_6_BASEADDR 
#define GPIO_S2MM_ADDR2   XPAR_AXI_GPIO_4_BASEADDR 
// Define port to listen on 
#define TR_UDP_PORT 63999 
#define RV_UDP_PORT 64000 
#define MACADDR { 0x00, 0x0a, 0x35, 0x00, 0x01, 0x02 } 
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With help of the aid_settings.h, the UDP echo server can be modified. It is possible to disable the 
checksum. This increases the performance of the Processing System. The code is shown below. 

/* 
 * increase speed of udp 
 * 1. remove section in code for tcp/ip 
 * 2. manually assigning MAC and IP -> not 15-20 sec bootup for DHCP 
 * 3. reduce overhead for checksum 
 * 4. reduce overhead for checksum 
 * 5. reduce overhead for checksum 
 */ 
#undef LWIP_TCP 
#undef LWIP_DHCP  
//#undef CHECKSUM_CHECK_UDP 
//#undef LWIP_CHECKSUM_ON_COPY 
//#undef CHECKSUM_GEN_UDP 
 

8 SIGNAL CONFIGURATION FILE GENERATOR 
 

The signal configuration file generator generates the signal configuration file and was developed with 
C# and Microsoft Visual Studio. As mentioned in the section Packaged AID, the AID uses an interface 
to route the signals for the debugging process into the IP core. This interface name and the vhd file of 
the FPGA design with the included AID are used to generate the signal configuration file. This file maps 
the signal names to the input ports of the AID. The output file is a csv file, which is used for the user-
interface of the AID. The signal configuration file generator is shown in Figure 89. 

 

FIGURE 89: SIGNAL CONFIGURATION FILE GENERATOR 

 

The vhd file of the FPGA design is selected with the Select Design File button. Then, the interface name 
of the AID is entered. The interface name of the AID40 and the AID300 is different. Therefore, it is 
important to enter the correct interface name, otherwise the mapping from the signal names to the input 
ports will not work. An output file is selected with the Select Signal Configuration File button. With the 
Generate Signal Configuration File button, the signal names are mapped to the AID input ports and 
saved in the output csv file. 
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Figure 90 shows a part of the vhd file with the FPGA design for the Controller Board. This part shows 
the port mapping of the AID IP core. The interface of the AID is called Input_Signals and the input ports 
are named sig0 to sig39 (AID with 40 signals). The signals, which should be debugged are from the 
interface Isabella_genhdl_wrapper_DC_0_DebugSig. These signals are from a black box, which 
contains custom inverters to test the AID. These inverters generate different sinus signals.  

 

FIGURE 90: VHD FILE WITH THE FPGA DESIGN OF THE CONTROLLER BOARD 

 

Figure 91 shows the generated signal configuration file with the input ports mapped to the signal names. 
This file is used to load the signal names into the AID user-interface. It is also possible to use this file 
generator for other IP cores, when the interface is known. 
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FIGURE 91: GENERATED SIGNAL CONFIGURATION FILE FOR THE CONTROLLER BOARD 

 

To create the Signal Configuration File Generator, different classes were used: 

 The class Program.cs instantiates the Signal Configuration File Generator window and runs it. 
 The class Form1.cs is the main window for the Signal Configuration File Generator. It contains 

the buttons and other elements. It instantiates the UIHandler.  
 The class UIHandler.cs handles the inputs of the user-interface and checks them for validity. It 

also reads the vhd file and generates the csv file. 
 The class SignalEntry is used for mapping the signal names to the input ports. Therefore, it 

contains only two member variables, the signal name and the index. 
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9 LABVIEW USER-INTERFACE 
 

9.1 GUI 
 

The LabVIEW user-interface controls the Advanced Inverter Debugger on the FPGA. It sends the control 
information to the FPGA and receives the signal data. The user-interface is shown in Figure 92.  

 

FIGURE 92: LABVIEW USER-INTERFACE TO CONTROL THE AID 

 

The IP address and the port numbers are used to set up the UDP connection between the user-interface 
and the FPGA. The default IP address is 192.168.1.10, which was adjusted at the target HW. The default 
input port is 63999 and the default output port is 64000.  

The signal configuration file is used to load the signal names of the FPGA design into the LabVIEW 
user-interface. The AID is available with 40 and 300 input signals. Therefore, the signal configuration 
files are different for both versions. After the signal configuration file is loaded, the signal selection menus 
are updated to the signal names. This provides a better overview of the connected signals and makes 
the interpretation of the debugged results easier. 

The number of samples defines how long the AID samples, transmits and monitors the data. The number 
of samples is a multiple of 1024. The minimum number is 1024 and the maximum is 999424 samples. 
The Advanced Inverter Debugger automatically stops the debugging process, when the number of 
samples matches the adjusted number of samples from the user interface. When the AID is running in 
this mode, it is called normal mode. The second mode is the infinity mode. The AID is running as long 
as the stop debugging button is pressed. The stop debugging button transmits the Reset UDP package 



  
 
 

73 
 

(package type 3) to the FPGA. After receiving the stop information, the AID on the FPGA is reset. To 
enable the infinity mode, the number of samples has to be set to 0. 

The sample frequency for the debugging process is determined by the sample rate menu. It was created 
with a Menu Ring. The advantage of this element is, that it is easy to handle and can be extended with 
more elements very easily.  

The trigger is set up with the trigger settings. The Trigger button enables the trigger and by switching 
the shift button, the trigger can be switched between pre- and post-trigger. With the Trigger Type 
selection and the trigger value, the trigger event can be defined. The trigger signal determines the signal, 
which is used for the trigger. If the trigger is enabled, the selected signal is automatically updated in the 
signal selection menu of the first chart. 

To log the received signal data, data logging can be enabled with the Log Data button. A csv file must 
be selected with the file path selection, File Path – Debug-Data. After starting the debugging process, 
the received signal data is written into the selected csv file and also monitored in the charts. This file 
path is also used to load the logged data. To load the saved data, the Monitoring Options has to be 
changed to logged data. After setting the right file path (csv file) and the monitoring options, the button 
Load Debug Data must be pressed. The button initializes the read process from the csv file into the 
LabVIEW application. When loading data from files into the LabVIEW application, it is important to set 
the corresponding signal configuration file. By setting the wrong signal configuration file, it can be, that 
the application can’t find the signal name entries and the signal names are not updated correctly in the 
signal selection menus. However, the signal values are displayed in the charts. 

To monitor the signal data, 4 charts are used. Each chart has its own signal selection menu to select 
the debugging signal for the chart. The first signal selection menu is disabled, when the trigger is active. 
In this case, the trigger signal menu is used as signal selection for chart 1. 

To get a better overview of the monitored data, the x-axis can be changed. This is possible by pressing 
the button Enable x-scale. This enables the fields for setting the start and the end point on the x-axis. 
The Clear Chart button resets the history of the chart. There is also a Clear All Charts button, which 
resets the history of all charts. 

To start the debugging process, the Start Debugging button has to be pressed. The user-interface sends 
the control information for starting the AID to the FPGA. 

To stop the debugging process, the Stop Debugging button has to be pressed. The user-interface sends 
the control information for stopping/resetting the AID to the FPGA. 

To get the version number, the Get Version button has to be pressed. The user-interface sends the 
control information (package type 5) to the FPGA, which returns the version number (package type 6). 
The received UDP package with the version number is not processed with LabVIEW. It appeared that 
the processing structure slowed down the receiving while loop and performance problems occurred. 
Therefore, this part was removed in the final version to gain more performance. 

The close the LabVIEW-application, the Exit Program button has to be pressed. 

If there is something not clear, how the AID is controlled by the LabVIEW user-interface, the Help button 
can be pressed. Under the different sections, the whole flow to set up a correct debugging process is 
explained step by step. 

 

9.2 LABVIEW FUNCTIONS 
 

There are several LabVIEW functions, which provide the functionality of the user-interface. Most 
functions run in separate while loops. To increase the performance, some while loops use a Wait(ms) 
function to reduce the number of executions. The free execution time is used for other while loops, like 
the receiving while loop, to process the incoming UDP data. 
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Figure 93 shows the while loop, to load the signal configuration data into the trigger and signal selection 
menus of the user-interface. First, the signal configuration file has to be selected. The while loop opens 
the file and reads line by line from the file. Each selection menu is filled with the read signal names. This 
while loop is processed every 50ms to increase the performance for other while loops. 

 

FIGURE 93: LOAD SIGNAL CONFIGURATION FILE 

 

Figure 94 shows the while loop to process the x-axis scale, when it is enabled. Each chart has its own 
button to enable the x-axis scale.  

When the x-axis scale is enabled, two new input fields appear, the x-min input field and the x-max input 
field. The x-min input field defines the minimum value of the x-axis and the x-max input field defines the 
maximum value of the x-axis. With this functionality, a scalability in the x-axis direction was implemented 
to get a better overview of each chart.  

If the minimum value is greater or equal to the maximum value, the maximum value is automatically 
increased by 100. 

When the x-axis scale is disabled, the input field for the minimum x-axis and the maximum x-axis are 
invisible. When the number of samples is 0, which means the AID is running in infinity mode, the 
maximum value of the x-axis is incremented (Figure 94, Chart1). If a finite number of samples is selected 
in the menu, the maximum value of the x-axis is set to the selected number of samples (Figure 94, 
Chart3). 
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FIGURE 94: CHART X-AXIS SCALE 

 

Figure 95 shows the while loop for resetting the charts. There is a Clear All Charts button, which resets 
the history of all signal charts. With the Clear Signal Chart buttons, every signal chart can be reset 
separately. The execution of this while loops is also slowed down by 50ms. 
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FIGURE 95: CLEAR SIGNAL CHARTS 

 

Figure 96 shows the trigger event to close the user-interface. By pressing the Exit Program button, the 
trigger event occurs and the user-interface is closed. 

 

 

FIGURE 96: GUI EXIT 

 

Figure 97 shows the while loop to load the debugged data from the log file. The log file is selected with 
the File Path – Debug-Data. After selecting the file, the monitoring options must be changed to logged 
data. To read the data from the file, the Load Debug Data button must be pressed. Then, the signal 
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charts are filled with the data and the trigger and signal selection menus are updated to the signal names, 
which were debugged in the log file. It is important, that the same signal configuration file is used, which 
was used to log the data, otherwise the signals can’t be updated in the signal selection menus. However, 
the signal values are displayed. 

 

FIGURE 97: LOAD DEBUGGED DATA 

 

Figure 98 shows the while loop for sending the command information to the FPGA. Before the command 
data is sent, the adjusted parameters are saved into the header csv file. There are 2 files which are 
generated with the LabVIEW user-interface when data logging is enabled. The normal data file and the 
header file. Due to complications with writing these data into one file, 2 separate files are created. In the 
header file, the debugging information is stored. The debugging information contains, time and date 
when the debugging started, sample rate, number of samples, trigger options, trigger value and the 
debugged signal names. 

In the data file all of the received data is stored. This data contains the sample number and the values 
of the debugged signals. The execution of the while loop is also slowed down by 50ms. 
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FIGURE 98: WRITE HEADER 

 

Figure 99 shows the case, when the Start Debugging button is pressed. When data logging is active, 
the header file is created and after that, the state of the state machine changes to Start Debugging. 
When data logging is not active, the state machine goes right into the Start Debugging state, without 
creating the header file. 

In this state, the UDP connection is established to send the control information to the Debug-Core. After 
sending the control information, the connection is closed again. The state machine switches into the 
Sending 0 and into the init state. 

 

FIGURE 99: START DEBUGGING COMMAND 

 

Figure 100 shows the Reset state. After pressing the Stop Debugging button, the state machine switches 
into the Reset state. The Reset state establishes an UDP connection to send the Reset command 
information to the Debug-Core. After sending the information, the state changes to Reset 0. In the Reset 
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0 state, the Reset command is sent again, to increase the possibility that the Debug-Core receives the 
reset command. Then, the state machine switches into the init state. 

 

 

FIGURE 100: RESET COMMAND 

 

Figure 101 shows the state Get Version. The state machine jumps into this state, when the Get Version 
button is pressed. An UDP connection is established and the GetVersion command information is sent 
to the Debug-Core. Due to performance issues, the receive part for the version number was removed. 
To receive the version number, the package type was compared to the version acknowledge package. 
If the package type was correct, the output field for the version number was updated with the received 
value. Due to this comparison, the performance dropped and this part was removed.  

 

 

FIGURE 101: GET VERSION NUMBER  
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The Figures 102-104 show parts of the receiving process. The while loop contains elements for receiving 
and processing the UDP data. 

First, the UDP connection on the receiver side is created. At that point, the file for the debugging process 
is opened to write the data into the file. Opening the file at this point saves time, because inside the 
while loop, the data only needs to be written into the file. Otherwise, the csv write function could be used, 
but that would slow down the performance. The received data is read from the UDP Receive block. 

The data processing part splits the received data into the sample number and signal values. The signal 
values are added to arrays and displayed in the signal charts. Furthermore, the signal values and the 
number of samples are prepared for the csv file. When data logging is active, the prepared data is written 
into the log file. 

 

FIGURE 102: UDP RECEIVE 

 

FIGURE 103: UDP DATA PROCESSING 
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FIGURE 104: LOG DATA 

 

9.3 PERFORMANCE OF THE LABVIEW USER-INTERFACE 
 

The LabVIEW user-interface performance is bad. It works for low sample frequencies but at high sample 
frequencies the incoming UDP data are not processed very quickly. This causes data loss in the graphs 
and in the log files.  

When the AID is debugging with a sample rate of 1 MHz, the receive buffer is full after a short time and 
LabVIEW cannot process the incoming UDP data as fast as they arrive. The receive buffer of the 
workstation is full and it overflows. Samples get lost and in the worst case, several thousand samples 
are lost. This leads to gaps in the graphs and in the log files. With lower sample rates, the performance 
becomes better. 

The performance can be increased, when data logging is disabled. File operations are very slow and by 
disabling them, the operations inside the receiving and data processing while loop can be processed 
faster. This leads to a small increase of the performance but it is still not good enough to process bigger 
sample numbers with higher sample rates.  

Another problem is checking the received package type. There are different packages, which are sent 
to the user-interface. The data package and the version number package. Both have a different package 
type. By checking the received package type, the performance gets even worse than with enabled data 
logging. Due to this behavior, the package check was removed in the final version of the LabVIEW user-
interface. 

There is a LabVIEW version available, which supports real-time operations and event triggered while 
loops, which executes with a frequency of 1 MHz, but a real-time operating system is necessary. 
Notebooks, which will be used for debugging do not have a real-time operating system. Therefore, this 
option is not feasible. 

To increase the performance, parallelism is used. This was done by using different functions in multiple 
while loops. Functions can be entries or changes from the user-interface or data processing. These 
while loops work parallel to each other. The idea was, to slow down different while loops, with a Wait(ms) 
statement to increase the execution time of the while loops, which must run faster. Every function, which 
works with updates from the user-interface, was slowed down by 50ms. This effected the overall 
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performance with higher sample rates. The sample rates of 500 kHz and 250 kHz perform better. 
However, there is still a loss of data. 

Handling the files is also difficult. There is a function to write to csv files, but this function performs every 
time an open file, write to file, and close file operation. This slows down the performance. This problem 
was reduced, by using an open file operation at the beginning of the receiving process. The data is 
logged with a write to file function. During the whole data logging process, the file stays open.  

The problem with this solution is, that changing the filename, closing the file and other file dependent 
operations are difficult to do, when the file is still open. The csv file can only hold 1048576 [9] lines to 
open it in Microsoft Excel. It was not possible to change the file during the receiving process. Therefore, 
it is recommended to use the LabVIEW user-interface not in infinity mode. 

Without the Wait statements in the while loops, the first data loss appears after nearly 2800 samples 
(87 UDP packages), at a sample rate of 1MHz. 

Due to the parallelization of the while loops and slowing down the execution of some while loops, the 
performance was increased. 

The user-interface was tested with the AID300 IP core and the ZedBoard. The test signals were 
generated by the SigGen_300 IP core. Figure 105 and Figure 106 show a debugging test with 7168 
samples and a sample rate of 1 MHz. In Figure 105, the signals are monitored and there is no sample 
missing. However, when data logging is active, the performance drops due to the file operations and 
data loss occurs. This is shown in Figure 106. 

 

FIGURE 105: DEBUGGING TEST WITH 7168 SAMPLES AND A SAMPLE RATE OF 1 MHZ 
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FIGURE 106: DEBUGGING TEST WITH 7168 SAMPLES AND A SAMPLE RATE OF 1 MHZ AND DATA LOGGING 

 

Figure 107 shows the debugging process of 14336 samples with a sample rate of 500 kHz and data 
logging. Before reaching the final samples, glitches in the signal charts appear. These glitches are 
caused by the fast incoming UDP packages and the slow data processing. The receive buffer gets full 
and samples get lost. Not even with the modifications 14336 samples can be debugged correctly with a 
sample rate of 500 kHz when data logging is active. 

 

FIGURE 107: DEBUGGING TEST WITH 14336 SAMPLES AND A SAMPLE RATE OF 500 KHZ AND DATA LOGGING 
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Figure 108 shows a debugging test with the same settings but without data logging. It is possible to 
debug 14336 samples with a sample frequency of 500 kHz. 

 

FIGURE 108: DEBUGGING TEST WITH 14336 SAMPLES AND A SAMPLE RATE OF 500 KHZ 

 

Figure 109 shows the debugging process of 21504 samples with a sample rate of 250 kHz. There is no 
sample missing. 

 

FIGURE 109: DEBUGGING TEST WITH 21504 SAMPLES AND A SAMPLE RATE OF 250 KHZ  
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Figure 110 shows the debugging process with the same settings but with data logging. It is still possible 
to debug 21504 samples with a sample rate of 250 kHz and log the data. 

With lower sample rates, a higher number of samples can be adjusted for the debugging process. 

It is still possible to debug 500736 samples with a sample rate of 250 kHz and enabled data logging. 
This is show in Figure 111.  

 

FIGURE 110: DEBUGGING TEST WITH 21504 SAMPLES AND A SAMPLE RATE OF 250 KHZ AND DATA LOGGING 

 

FIGURE 111: DEBUGGING TEST WITH 500736 SAMPLES AND A SAMPLE RATE OF 250 KHZ AND DATA LOGGING 
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Figure 112 shows the debugging process with infinity mode. The debugging is as long active, until the 
stop button is pressed. It is theoretical possible to debug as long as possible. In practice, it is different, 
due to the limitations explained before. After approximately 800000 received samples, the glitches occur. 
The data processing is too slow, the receive buffer overflows and data is lost.  

 

FIGURE 112: DEBUGGING TEST WITH INFINITY MODE WITH A SAMPLE RATE OF 250KHZ AND DATA LOGGING 

 

10 C# USER-INTERFACE 
 

To solve some problems with the LabVIEW user-interface, a new user-interface with C# and Microsoft 
Visual Studio38 was developed. Visual Studio provides all the necessary libraries for this application. To 
create a user-interface, which looks like the LabVIEW user-interface, a C# Form application was created. 
The C# user-interface is better than the LabVIEW user-interface in several points: 

 It was possible to include the version number into the GUI. 
 Data logging in infinity mode can be done. The C# application automatically creates a new csv 

file with the appendix *-partxx.csv. 
 The performance is better than the LabVIEW user-interface, due to multi-threading. 
 It is possible to show the working status of the application. 
 The zoom in the graphs is better handled. 

 

 

  

                                                      

38 Microsoft Visual Studio, https://visualstudio.microsoft.com/ 
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10.1 GUI 
 

The C# user-interface controls the Advanced Inverter Debugger on the FPGA. After the adjustments for 
the desired debugging process, the C# application transmits the control information via a UDP 
connection to the target hardware and the FPGA. The application is called AID-UI, Advanced Inverter 
Debugger User-Interface and is shown in Figure 113.  

 

FIGURE 113: AID C# USER-INTERFACE 

 

The C# user-interface is structured into different sections, like loading the signal configuration file, 
settings for the UDP connection, sampling settings, trigger settings, settings for data logging and the 
charts for monitoring the debugged data. 

With the Select Signal Config File button, a file selection menu pops up to select the signal configuration 
file. The application checks if the file is a csv file and reads the data from the file. The trigger and signal 
selection combo boxes are updated with the signal names. If the file is no csv file, a pop-up window with 
the corresponding error message occurs. 

When the AID-UI application is started, it tries to load a default signal configuration file. This default 
configuration file with the name, SignalConfigurationFile.csv, must be located in the directory, where the 
AID_UI.exe file is located. The trigger and signal selection combo boxes are automatically filled with the 
signal names of the default signal configuration file. 

This feature is only working, if the file name and the file location is correct, otherwise the trigger and 
signal selection combo boxes stay empty and the signal configuration file must be selected with the 
Select Signal Config File button. 

For the UDP connection between the C# user-interface and the FPGA, UDP connection settings are 
necessary. The settings contain the board IP address of the target HW, where the FPGA with the AID 
IP core is located and the port numbers for incoming and outgoing UDP packages. At the application 
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start, the default values are loaded. The default IP address is 192.168.1.10 (which is also adjusted at 
the target HW). The default input port is 63999 and the default output port is 64000.  

The values can be changed in the user-interface. The IP address and the port numbers are checked for 
valid input, when the Start Debugging button is pressed. Port numbers between 49152 and 65535 are 
valid. These port numbers are dynamic or private ports [10] and are not registered. The string from the 
IP address text box is parsed to an IP address. If this parsing fails, an error message occurs. An error 
message will also occur, when the port numbers are invalid.  

The sample settings contain the sample rate and the number of samples. The number of samples 
defines how many samples are debugged. The number of samples is a multiple of 1024. The minimum 
is 1024 and the maximum is 999424.  

There are two operation modes for the AID IP core. The normal mode and the infinity mode. In the 
normal mode, the AID automatically stops debugging, when the adjusted number of samples is reached. 
In the infinity mode, the AID only stops, when the Stop Debugging button is pressed, otherwise it run 
infinitely long. To activate the infinity mode, inf (infinity mode) must be selected in the Number of 
Samples combo box.  

The sample rate defines the sample frequency of the debugging process. There are 25 different sample 
frequencies to choose for the debugging process. The maximum sample frequency is 1 MHz and the 
minimum sample frequency is 1 kHz.  

With the trigger settings, the trigger can be enabled. Pre- and post-trigger can be selected with the radio 
buttons. The trigger event is defined by the trigger type and the trigger value. Each trigger type is 
available for the post- and pre-trigger.  

The trigger types are: 

 Above trigger value 
 Lower trigger value 
 Equal to trigger value 

If the trigger is active, the signal selection for signal 0 works with the Trigger Signal combo box. The 
Signal 0 Selection combo box is disabled to avoid conflicts. It is automatically updated with the selected 
signal from the Trigger Signal combo box. The chosen trigger signal is monitored in chart 0. Chart 0 
always monitors the trigger signal, when a trigger is selected. If no trigger is enabled, the signal selection 
must be done with the Signal 0 Selection combo box. 

To log the debugged data, it is necessary to check the Log Data check box. This activates the data 
logging. By pressing the Select CSV File button, a window appears to select the csv file. The selected 
file is checked for the correct ending (csv file). If the file type is invalid, an error message occurs. With 
the csv file format, it is possible to open the files with a normal editor, like Notepad++. It is also possible 
to load the csv files with Microsoft Excel. There is a limitation of 1048576 [9] lines to monitor the data.  

When data logging is active and the AID is running in infinity mode, more than 1 million lines of data are 
logged. Each line contains a sample with the 4 signal values and the sample number. Microsoft Excel 
can only monitor 1048576 [9] lines of the csv file. To log more lines, the received UDP packages are 
counted. When the counter reaches the maximum number of samples for one file, a new file is created. 
The maximum number of samples per file is set to 999424 samples. The new file is named with the 
actual file name and additionally with the extension of –partX.csv, where X is the file counter. Every log 
file contains the header with the debugging settings. The logged data files with the extended file names 
are shown in Figure 114. In this case, the maximum samples were limited to 4096 per file, to test the 
creation of new files.  
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FIGURE 114: LOAD LOG FILES INTO THE USER-INTERFACE 

 

When the Load Data button is pressed, the event handler creates the read data thread, which loads the 
data from the selected csv file into the charts. When the debugged data is logged into more than one 
file, the first log file must be selected. The user-interface is updated with the debugging information from 
the log files and the signal data of the other files is automatically loaded one by one into the charts. 

The charts monitor the debugged signals. Each chart has its own signal selection combo box, to 
determine the signals for the debugging process. The charts are scalable by marking the desired window. 
Each chart has its own scale and a Clear Chart button. The Clear Chart button resets the chart history. 
There is also a Clear All Charts button, which resets the history of all charts. 

To get the actual version number of the AID IP core, the Get Version Number button must be pressed. 
The button event creates a task, which handles the following steps: A new UDP client is created, which 
sends the control information with the package type 5 to the target HW. The Processing System with 
the UDP echo server receives the control information and due to package type 5, it responds with the 
version number of the AID. The version number is set in the driver files. The UDP package with package 
type 6 and the version number is sent to the AID-UI. The task receives the version number and monitors 
it in the Version Number text box.  

The Start Debugging button, sends the control information to the AID IP core to start the debugging 
process. First, the different inputs from the user-interface are checked. If every input is valid, the UDP 
payload with the control information is created. Then, a UDP client is created to send the control 
information to the AID IP core. To receive and process the UDP packages, 2 threads are used. The first 
thread, t_recv, is the thread to receive all the incoming UDP packages. They are saved as byte arrays 
into a FIFO queue. The second thread, t_proc, is the thread to process the data from the FIFO queue. 
The data queue needs to be locked, to avoid concurrent access and to synchronize the threads. This is 
done by using a lock. The processing thread reads the data from the queue and converts the byte array 
into integer values and writes the data into the file, when data logging is active. It also updates the charts 
with the processed signal values. The thread also handles the maximum number of samples per file. 
When this number is reached, a new file is created. The receive thread runs with the highest priority, to 
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receive the UDP packages as fast as possible. The processing thread runs with normal priority. Both 
are running in the background, to avoid a frozen main window of the user-interface. The threads 
terminate themselves, when all received data has been processed.  

The receive thread can also be terminated by pressing the Stop Debugging button. It creates a new 
UDP client, which sends the stop debugging control information to the AID IP core with the package 
type 3. This package resets the AID IP core on the FPGA.  

If the FIFO queue is still full with received data, the processing thread runs as long as the data queue is 
full. When the queue is empty, a timeout occurs and the processing thread terminates itself. The 
processing thread can also be terminated by pressing the Cancel Data Processing button. This 
immediately terminates the processing thread and the FIFO data queue is cleared. 

The Default Settings button, loads the default settings, like the UDP settings, which were discussed 
earlier.  

The AID status defines the status of the user-interface. It can be in idle mode or in running mode. In idle 
mode, the AID-UI is able to perform every functionality. In running mode, the AID-UI is working in the 
background to process data. This can be converting the byte array from the data queue to integer values, 
updating the charts and writing the data to files or reading the data from the log files. Loading log files 
cannot be executed, when the AID-UI is in running mode.  

The Help button activates the help window. It gives an overview of the different options of the AID-UI. 
The help window shows instructions to start the debugging process.  

 

10.2 C# CLASSES OF THE USER-INTERFACE 
 

The class Program.cs instantiates the AID-UI window and runs it. 

The class Form1 is the main window with the name AID-UI. Form1 contains all the different elements, 
which are present in the user-interface. The Form1.cs handles all the different events, like pressed 
buttons. It instantiates the FileIO, UIHandler, UDP_Connection, UIStartConfiguration and AID_Thread. 
This is shown in the code below. These instances are used for the proper work of the AID-UI. The help 
window is created, when the Help button is pressed. 

 /// create instances 
uiHandler = new UIHandler(); 
udp_con = new UDP_Connection(); 
ui_startconfig = new UIStartConfiguration(); 
csvFileIO = new FileIO(); 
t_aid = new AID_Thread(); 

The class Form2 is the help window. It contains only a text box, which is read only. The text is assigned 
during the initialization phase.  

The class FileIO handles the file access. It handles the read operation from the signal configuration file. 
Therefore, the file path is checked for validity and the configuration data is loaded into the user-interface. 
It also handles the file access to log and load the signal data. Therefore, the file path is checked for 
validity, the header and the signal data is written into the log file. The header gives information about 
the adjusted parameters of the debugging process. It also automatically creates new log files with the 
extension –partX.csv, when more than one log file is required. To read the log files, the file path is also 
checked and if more than one log file exists of the same debugging process, it automatically loads all of 
the created log files. Furthermore, the header information of the debugging process will be read. 
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The class AID_Thread contains the receive thread, for receiving the UDP packages, the processing 
thread, for processing the received UDP data and the read data thread, for loading the logged data into 
the charts. The receive thread fills the data queue with the received UDP data. The processing thread 
converts the UDP data into integer values, which are written into the files, if data logging is active and 
the charts are updated. The read data thread opens the log files and loads all the data into the charts. 
The user-interface settings are automatically updated with the header information of the csv files. The 
header of the log file contains the settings of the debugging process. The signal data is monitored with 
the charts. 

The UDP_Connection class handles the UDP connection. It creates the UDP clients to send and receive 
UDP packages. It also builds the UDP payload with the adjusted settings from the user-interface and 
sends the control information to the AID IP core. This control information can either be a start debugging 
command with the necessary debugging parameters, a stop debugging command or a get version 
number request. 

The class UIHandler handles all the inputs from the user-interface. It checks the different elements for 
validity and handles error cases. It also updates elements when the signal configuration file or log files 
are loaded. 

The class UIStartConfiguration sets up the default values of the user-interface. It also fills the sample 
rate combo box, the number of samples combo box and the trigger type combo box with the 
corresponding values.  

 

10.3 PERFORMANCE OF THE C# USER-INTERFACE 
 

The performance of the C# user-interface is better than the performance of the LabVIEW user-interface. 
Whit the threads running in the background, 60000 samples can be debugged with a sample rate of 1 
MHz. With lower sample rates, it is possible to debug even more samples, without gaps in the charts. 
The user-interface was tested with the ZedBoard as target hardware. The SigGen300 was used to 
generate the test signals for the AID300. Figure 115 shows the debugging process with 60416 samples 
and a sample rate of 1MHz. 

The performance was increased. However, gaps can still appear. These gaps are caused, when the 
receiving thread is blocked by the processing thread. These gaps are usually very small. Due to the 
blocked receiving thread, time is wasted and at some point, gaps of missing samples will appear. Big 
gaps are caused, when the UDP packages are sent too fast. The receive buffer of the network card 
overflows and samples get lost.  

Figure 116 shows the two different kinds of gaps in the charts. The charts for signal 0 and signal 2 have 
bigger gaps, with about 2000 missing samples. These gaps are caused by the full receive buffer. The 
receive buffer overflows and the samples get lost. The chart for signal 1 shows the smaller gap, which 
is caused, when the processing thread blocks the receiving thread.  

The gaps can occur at lower sample rates as well, but in these cases, the gaps are small and about 
2000 samples are lost. At higher sample rates, the gaps of missing samples can increase up to 20000 
samples, depending on the adjusted number of samples for the debugging process. The worst case is 
a combination of a full receive buffer and a blocked receiving thread. 
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FIGURE 115: DEBUGGING PROCESS OF 60416 SAMPLES WITH A SAMPLE RATE OF 1MHZ 

 

FIGURE 116: GAPS IN THE CHARTS AT A SAMPLE RATE OF 250 KHZ 

 

Figure 117 shows the worst case of gaps. In that case, the sample rate is 500 kHz and the receive 
thread was blocked by the processing thread. The receive buffer overflows and data is lost. 15000 
samples are lost. This behavior is worse with a sample rate of 1MHz. The higher the sample rate and 
the higher the number of samples, the more samples get lost.  
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FIGURE 117: CHARTS WITH BIG GAPS AT A SAMPLE RATE OF 500 KHZ 

 

Figure 118 shows the debugging process with a sample rate of 1MHz and a number of samples of 
100352. Due to the blocked receiving thread and the fast sample rate, the data loss occurs earlier. There 
are also more lost samples because, the UDP packages are sent with a higher frequency.  

 

FIGURE 118: LOST SAMPLES AT SAMPLE RATE OF 1MHZ 
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The performance can still be increased by using different libraries for the charts. The update process for 
the charts takes too much time. Every time, the charts are updated, the Invoke function is called and the 
thread is changed to the main thread of the user-interface. The main thread is the window form 
application, which stays open, as long until the close button is pressed. 

The charts update very slowly. With the charts from the C# library, it is not possible to update the charts 
by appending them with data arrays until the debugging process is done. Therefore, every point has to 
be added in a loop. To make it still faster, the update process of the charts in the main window is done 
every 1024 samples. The update code is shown below. 

 

 // add point to charts 
 cSig0.Invoke(new Action(() => { cSig0.Series[0].Points.AddXY(sample_number, sig0); })); 
 cSig1.Invoke(new Action(() => { cSig1.Series[0].Points.AddXY(sample_number, sig1); })); 
 cSig2.Invoke(new Action(() => { cSig2.Series[0].Points.AddXY(sample_number, sig2); })); 
 cSig3.Invoke(new Action(() => { cSig3.Series[0].Points.AddXY(sample_number, sig3); })); 
 
 // update charts 
 if ((receivedSamples % 1024) == 0) 
 { 
  cSig0.Invoke(new Action(() => { 
   cSig0.Series[0].Points.ResumeUpdates(); 
   cSig0.ChartAreas[0].AxisX.Maximum = sample_number; 
   //cSig0.Series[0].Points.SuspendUpdates(); 
  })); 
  cSig1.Invoke(new Action(() => { 
   cSig1.Series[0].Points.ResumeUpdates(); 
   cSig1.ChartAreas[0].AxisX.Maximum = sample_number; 
   //cSig1.Series[0].Points.SuspendUpdates(); 
  })); 
  cSig2.Invoke(new Action(() => { 
   cSig2.Series[0].Points.ResumeUpdates(); 
   cSig2.ChartAreas[0].AxisX.Maximum = sample_number; 
   cSig2.Series[0].Points.SuspendUpdates(); 
  })); 
  cSig3.Invoke(new Action(() => { 
   cSig3.Series[0].Points.ResumeUpdates(); 
   cSig3.ChartAreas[0].AxisX.Maximum = sample_number; 
   //cSig3.Series[0].Points.SuspendUpdates(); 
  })); 
 } 
 
There are libraries for fast data monitoring available but they are not open source and you need a license 
to use them. That is why the standard C# library was used. 

Due to UDP/IP, UDP packages can arrive in the wrong order. Figure 119 shows the entries of the log 
file. The second UDP package with the samples 33-64 are written into the file followed by the first UDP 
package with the samples 1-32. Figure 120 also shows the wrong order in the charts of the user-interface. 

The performance of the C# user-interface also depends on the notebook or workstation. The threads 
can be processed faster, when the processors are faster and the cache/RAM is bigger. 
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FIGURE 119: LOG FILE WITH WRONG SAMPLE ORDER 

 

FIGURE 120: SAMPLES RECEIVED IN THE WRONG ORDER 
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11 UDP CONNECTION 
 

The communication between the AID and the user-interface is done with UDP/IP. To accomplish the 
communication, an UDP echo server is running on the Processing System of the ARM-Processor. The 
server handles incoming and outgoing UDP packages.  

The user-interface creates a UDP client, which establishes a connection to the server and the data is 
transmitted. There are different package types available. The UDP packages with the control information 
is structured in the same way to start and reset the AID and for the request of the version number. A 
typical payload from an UDP package from the user-interface to the AID is shown in Figure 121. The 
payload is structured in package type, number of samples, sample rate, CMD, trigger type, trigger value 
and 4 signals with the bit size of every entry. 

 

FIGURE 121: UDP PAYLOAD OF THE CONTROL INFORMATION 

 

The package type defines, which package it is. The package types are discussed in the next section. 

Figure 122 shows an overview of the command section. The MSB is the start bit. It enables the 
debugging process when the package type is Start Debugging. The reset bit, resets the AID to stop the 
debugging process when the package type is Stop Debugging. The trigger bit activates the Post-Trigger. 
To enable the Pre-Trigger, the Trigger bit and the Pre-Tr bit must be set. The trigger settings are only 
important with the Start Debugging package. The other bits are reserved for the future but currently not 
used. 

 

FIGURE 122: STRUCTURE OF THE COMMAND SECTION 

 

Figure 123 shows an overview of the UDP payload of a data package. The payload is structured when 
every sample is sent directly to the user-interface. Due to the Processing System, this is not possible. 
The fastest possible way is, to collect at least two of these data packages for the UDP payload. In the 
current implementation, 32 of these data packages are stored in the RAM and then sent with the UDP 
package to the user-interface. 

 

FIGURE 123: UDP PAYLOAD WITH ONE DATA PACKAGE 

 

Figure 124 shows the UDP payload for the transfer of the version number. The package type defines 
the package as version number with its value. The version number request is checked by the Processing 
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System and also handled by the Processing System. It sends the package type with the version number 
back to the user-interface. 

 

FIGURE 124: UDP PAYLOAD WITH VERSION NUMBER 

 

11.1 PACKAGE TYPE NUMBERS 
 

There are several UDP package types for the communication between the user-interface and the AID. 
The different package types with their numbers are shown in Table 5.  

TABLE 5: PACKAGE TYPES 

Package Type Function 
0 Start Debugging, contains the information to start a debugging process 
1 Data Package, contains the information of 1 data sample. 32 of these data 

packages are currently collected for the UDP payload 
3 Reset, contains the information to reset the Debug-Core 
5 Get Version Number, contains the information for the version number request. 

This request is handled with the PS. 
6 Version Number is the acknowledge to the version number request and 

contains the version number 
 

The package type 0 is the Start Debugging package. Every information of the rest of the package can 
be adjusted with the user-interface. The control data contains number of samples, sample rate, trigger 
information, chosen signals and the command Byte. When the start bit of the command section is set, 
the AID will start the debugging process. The UDP payload size is 20 Bytes. 

The package type 1 is the data package. It contains the sample number and the signal values. One data 
package is 24 Bytes long. Currently, 32 of these data packages are collected and sent with one UDP 
package to the user-interface. The UDP payload size is 768 Bytes. 

The package type 3 is the reset package. It is used to reset the AID or to stop the AID from debugging. 
When the AID is running in infinity mode, the reset package is sent to stop the debugging process. The 
UDP payload is 20 Bytes long. 

The package type 5 is the package for the version number request and is processed from the Processing 
System. The version number is sent back to the user-interface. 

The package type 6, defines the package as version number. It contains the package type and the 
version number. 
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11.2 SETTINGS FOR THE PROCESSING SYSTEM 
 

The UDP echo server from the Processing System of the ZedBoard or Controller Board is set up without 
using the checksum. This increases the performance of the PS. The settings for the UDP echo server 
are in the aid_settings.h file. The following code shows the settings for the echo server: 

 /* 
  * increase speed of udp 
  * 1. Remove section in code for tcp/ip 
  * 2. Manually assigning MAC and IP -> not 15-20 sec bootup for DHCP 
  * 3. Reduce overhead for checksum 
  * 4. Reduce overhead for checksum 
  * 5. Reduce overhead for checksum 
  */ 
 #undef LWIP_TCP 
 #undef LWIP_DHCP 
 //#undef CHECKSUM_CHECK_UDP 
 //#undef LWIP_CHECKSUM_ON_COPY 
 //#undef CHECKSUM_GEN_UDP 
 

12 TESTING THE AID IP-CORE ON THE ZEDBOARD 
 

The first tests were made with the ZedBoard. The inverters need more resources, than the ZedBoard 
provides. Therefore, the signal generator Sig_Gen300 is used to generate the test signals. The signal 
generator generates counter signals with different frequencies and constant values. There is a signal 
generator with 40 and 300 output signals available.  

To test the design with the ZedBoard, the ZYNQ Processing System was added to the block design. It 
was modified with a High Performance AXI Slave Port and 2 Fabric Clock signals. The frequencies of 
the clocks are 1 MHz and 100 MHz. The 100MHz clock is used for the AXI IP cores and for the AID IP 
core. The 1MHz clock is used for the AID IP core and for the signal generator IP core. 

For the communication the Ethernet and UART peripheral I/O pins are enabled. The UART pins and the 
Xilinx ILA core are used to verify the correct work of the AID IP core. 

In the ZYNQ7 Processing System Settings, the PL-PS interrupts (Program Logic to Processing System 
interrupts) are enabled in the section interrupts. The access to the DDR memory is enabled with the 
High Performance AXI Slave ports in the section PS-PL Configuration (Processing System to Program 
Logic). This interface is used to write the received control information into the RAM. The data is read 
with the AXI DataMover to control the AID IP core. On the other hand, the sampled signal data are 
written with the AXI DataMover into the RAM. After the s2mm_finished_intr (interrupt), the Processing 
System reads the data from the RAM and sends the signal data with UDP/IP to the workstation. 

The AID IP core has 2 interrupt output ports, the s2mm_finished_intr and the mm2s_finished_intr. These 
interrupt signals need a Concat [11] IP core, to route them into the Processing System. The Concat IP 
core is shown in Figure 125. 

 

FIGURE 125: CONCAT FOR THE INTERRUPT SIGNALS 
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To start the AID IP core, the control information must be transmitted from the RAM to the AID IP core. 
This is done with the AXI DataMover [3]. The PS initializes the transfer and the command data is read 
from the RAM and transmitted to the AID. The AXI DataMover is also used to write the sampled signal 
data into the RAM. The AID initializes the transfer and the AXI DataMover writes the signal data into the 
RAM.  

The control information resets or starts the AID IP core. The AID works and transmits the sampled signal 
data as AXI-Stream to the AXI DataMover. To set up the AID, AXI_GPIO ports are used. Figure 126 
shows an AXI_GPIO [6] port. These ports have a memory address, which is shown in the Address Editor 
of Vivado (Figure 127). The AXI_GPIO ports can be used, to send information from the PS to the user 
logic. This is used to set the S2MM_MEM_ADDR, S2MM_MEM_ADDR2, MM2S_MEM_ADDR, 
mm2s_data_length, s2mm_data_length, s2mm_number_pkg and mm2s_startTF. All of these settings 
can be adjusted in the driver files of the Processing System. The mm2s_startTF signal enables the 
transfer from the RAM to the AID IP core, which starts the debugging process.  

 

FIGURE 126: AXI_GPIO PIN FOR SETTING UP THE AID IP CORE 

 

FIGURE 127: MEMORY ADDRESSES OF THE AXI_GPIO PORTS 

 

To reset all the used IP cores in the design, the Processor System Reset [7] is used 2 times. The first 
Reset System is used for the 1 MHz reset and the second is used for the 100 MHz reset. The reset 
signals are active low, which means, when a reset occurs, the signal values gets low and in the normal 
work condition the signals are high. This is very important to avoid errors and for the design of custom 
IP cores. The Processor System Reset is shown in Figure 128. 
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FIGURE 128: PROCESSOR SYSTEM RESET IP CORE 

 

To test the AID, test signals are necessary. The Sig_Gen300 IP core was designed for testing. 300 
signal are generated. 20 signals of them are counters, which count with different frequencies. The fastest 
frequency is 1MHz. Each counter overflows after reaching the highest value and will start at the starting 
value again. The other 280 signals are constants with the signal number assigned as signal value (e.g. 
the signal value of signal30 is 30). With this assignment, it is able to test the AID, if the right signals are 
selected during the signal selection process. 

The AID and the Sig_Gen IP core are also available with 40 signals. The design is the same, only these 
2 IP cores are different. There is a Xilinx Vivado project (ZB_AID40_PS) with the 40 signals available. 

To connect all the IP cores, the Run Connection Automation was used. It automatically generates the 
AXISmartConnect [12] and the AXIInterconnect [13]. The AXISmartConnect is used to access the RAM. 
The AXIInterconnect is used to access the AXI_GPIO ports. The finished design is shown in Figure 129. 
There is also such a design with the 40 signal AID with the 40 signal Sig_Gen IP core and 40 signal AID 
IP core. 

All other IP cores are used from the Xilinx IP catalog.  
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FIGURE 129: ZEDBOARD FPGA DESIGN WITH AID300 AND SIGNAL GENERATOR 
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After running the design check, the design wrapper was generated. With the wrapper the synthesis, the 
implementation and the bit stream were generated. A timing constraint file is used for the clock signals. 
To avoid timing problems, the AID was designed with pipelines to reduce the longest path in the design. 

Under the point Export/Export Hardware, the output product was generated with the bit stream.  

The SDK automatically creates the hardware platform. The board support package and the application 
project were created. The application project contains all the written driver files and after building the 
project, the FPGA was programmed and the design was tested.  

With the UART, the C-code was debugged and outputs were created. Figure 130 shows the console 
outputs, when the application starts. The interrupt system is initialized and the UDP echo server is set 
up. 

 

FIGURE 130: START OF THE AID_SW APPLICATION 

 

With the Xilinx ILA core, the internal signals were debugged to verify the correct work. Figure 131 shows 
the control information to start the debugging process. The AXIS data stream is sent from the RAM to 
the AID IP core. The transfer starts at 50 us. The signals for the AXIS interface are marked red. After 
the successful transfer, the interrupt is set by the DataMoveCTL block (orange). 

 

FIGURE 131: AXIS DATA STREAM WITH THE CONTROL INFORMATION TO START THE DEBUGGING PROCESS 
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Figure 132 shows the AXIS data streams with the signal data, which are written into the RAM. The first 
transfer is initialized at 3,446 us (red). The signals of the AXIS interface are marked blue. The tready 
signal is set to 0 after the first data words were transmitted. The tvalid signal stays at 1 until the whole 
transfer is done. After about 10 us, tready is set to 1 again and the transfer continuous. The tlast signal 
determines the last data word. After the transfer into the RAM is done, the status is returned (orange). 
If the transfer was successful, the S2MM memory address is updated (orange). The interrupt is not set 
(violet), because the number of collected samples for the UDP package is not reached. 

 

FIGURE 132: AXIS DATA STREAMS WITH THE SIGNAL DATA WRITTEN INTO THE RAM 

 

13 TESTING THE AID IP-CORE ON THE 
CONTROLLERBOARD 

 

There is already an existing project for the controller board available. The resource files were 
downloaded from a Git repository. With the TCL [14] script, build.tcl, the whole Vivado project was 
created. 

Due to older IP cores in the TCL script, updates were necessary to create the block design. The AID IP 
core (AID with 40 signals) and the AXI DataMover were added to the design. 2 ports were added to the 
interrupt Concat to handle the interrupts. To set up the AID, the AXI_GPIO ports were added and 
connected.  

After a successful design check, the HDL Wrapper was created. After running the synthesis, the 
implementation and generating the bit stream, the hardware was exported. 

With the TCL script, build_SWProj.tcl, the SDK application project with all the resources was created. In 
the application project a new folder with the driver files for the AID was added. The driver files were 
modified to include the AID into the existing application project.  

The AID is initialized with the following code in the main.c: 

 // global variables definition 
 u8* DMA_MM2S_Buffer; 
 u32* DMA_S2MM_Buffer32; 
 u32* DMA_S2MM_Buffer232; 
 u8 S2MMaddr1_active; 
 // add AID in the main function 
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 #if DC_EN 
  // init AID 
  print("Init AID UDP connection\n\r"); 
  AIDConnect_InterruptHandler(&InterruptController, CPU_ID); 
  InitAID(); 
 #endif 

To program the FPGA, a new application project with a Zynq FSBL (First stage boot loader) was added. 
The bootloader from the fsbl_trenz board was selected and the FSBL application was created. With the 
FSBL application a new boot image was created to program the Flash. A board restart loaded the boot 
image. The main application was started with the included AID. 

The steps with the FSBL were necessary, because the application project was overwriting the FSBL 
from the Trenz Board and the application never started.  

Figure 133 shows the AID with the AXI_GPIO [6] ports and the AXI DataMover [3]. This IP cores were 
added, to include the AID into the existing design. The 1 MHz Processor System Reset [7] was already 
in the design. To set up the AID with the driver files, the AXI_GPIO ports are used. Figure 134 shows 
the Address Editor with the memory addresses of the design. 

 

FIGURE 133: CONTROLLER BOARD BLOCK DESIGN WITH THE AID 
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FIGURE 134: ADDRESS EDITOR OF THE CONTROLLER BOARD FPGA DESIGN 

 

In the existing project, the EtherCat is also used to transmit data. The EtherCat also needs the 
Processing System to establish a connection. The EtherCat transmission occurs every 100 µs and in 
the worst case it can last 80 µs. This is a big problem, because 80% of the processor is used for EtherCat.  

Due to the processor utilization of the EtherCat, interrupts from the AID are missed. This is a problem 
because UDP packages are not sent and the samples are lost. This causes gap in the charts. 

During the tests with a sample rate of 1 MHz and 500 kHz, some UDP packages were not sent, due to 
EtherCat. EtherCat was still in idle mode but when it is running and transmitting data, the performance 
will be much worse. 

Due to the missing AXI-Ethernet IP core, which provides an Ethernet stack, the Processing System was 
used to establish the UDP connection. This is not the best option to establish a fast UDP connection, 
because the Processing System is slow. The AXI-Ethernet [4] IP core would be the best solution to solve 
this problem. The AXI-Ethernet IP uses the TEMAC [5] core, which requires a license to add it to the 
design. Maybe this will be done in the future. 

Figure 135 shows the debugging test with a sample rate of 250 kHz and 31744 samples. With the zoom, 
the generated sinus signals are seen. The sinus signals are generated from the black box, where usually 
the inverter software is included. If no inverter software is included, the block box generates sinus signals. 
They are used to debug existing IP cores and to test different I/O operations and communications with 
other devices. 
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FIGURE 135: DEBUGGING TEST WITH A SAMPLE RATE OF 250KHZ 

 

Figure 136 shows the debugging test with a sample rate of 1.6 kHz and infinity mode. In the Explorer, 
the generated log files are shown. The maximum sample number per file was set to 249856. Therefore, 
2 log files were created. Currently the number of samples per file is set to 999424. 

 

 

FIGURE 136: DEBUGGING TEST WITH A SAMPLE RATE OF 1.6 KHZ AND INFINITY MODE 
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Due to UDP, the packages may arrive in the wrong order. To increase the performance of the user-
interface, this is not handled. Figure 137 shows the charts, when packages are received in the wrong 
order. 

 

FIGURE 137: WRONG ORDER OF THE UDP PACKAGES 

 

Figure 138 and Figure 139 show missing UDP packages in Wireshark. Due to the high processor 
utilization with EtherCat, interrupts of the AID are missed and the UDP packages are not sent. The 
sample frequency was 500 kHz and 64 samples (2 UDP packages) are missing between the packages 
455 and 456. The sample number in the UDP package 455 starts with 0x00001D41 (7489) and the 
sample number in the UDP package 456 starts with 0x00001DA1 (7585). This behavior appeared 
through the whole debugging process. At 1 MHz sample rate this behavior is even worse. There are 4 
or more UDP packages not sent, which are at least 128 missing samples. 
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FIGURE 138: UDP PACKAGES MISSING IN WIRESHARK 
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FIGURE 139: UDP PACKAGES MISSING IN WIRESHARK 

 

Figure 140 shows the debugging process with a sample rate of 500 kHz and with 20480 samples. There 
are small gaps in the charts. The biggest gap is about 1000 samples. At a frequency of 500 kHz not all 
packages are sent. This generates additionally gaps in the charts. The receiving thread has also a 
problem to process the incoming UDP packages, which creates the bigger gap. 
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FIGURE 140: DEBUGGING PROCESS WITH GAPS AT A SAMPLE RATE OF 500 KHZ 

 

The debugging process with a higher number of samples, creates bigger gaps at the same sample rate. 
This is shown in Figure 141. The sample rate is still 500 kHz and the number of samples is 31744. 

 

FIGURE 141: DEBUGGING PROCESS WITH GAPS AT A SAMPLE RATE OF 500 KHZ 
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These gaps can also appear with a higher number of samples at a sample rate of 250 kHz and 200 kHz. 
Mostly there are no gaps in the charts. The gaps may be caused by the DMA of the workstation as well, 
when the data is swapped from the RAM to the HDD or SSD. The receiving thread needs more time to 
fill the FIFO queue with the received data, when the data is written to the HDD (in the virtual memory). 

 

14 USED TOOLS 
 

Matlab-Simulink 

 

The DebugCoreModule was created with MATLAB39 Simulink40 2017b. With MATLAB, it is possible to 
convert the MATLAB Simulink model to HDL-Code. It is also possible to simulate the Debug-Core. 

MATLAB -Toolboxes: 

 MATLAB  
 Simulink 
 Simulink Coder 
 MATLAB Coder 
 Embedded Coder 
 HDL Coder 
 HDL Verifier 

 

Xilinx-Vivado 

 

The AID IP core and the FPGA designs were created with Xilinx Vivado41 2017.2.  

Xilinx Vivado is a tool for FPGA development and after generating the HDL-Code with MATLAB, the 
HDL-Code can be synthesized with Vivado to generate the bit stream for the hardware. 

Vivado is a design and development tool from Xilinx. This tool supports high level design, verification 
and implementation for FPGA, DSP and SoC designs. With the high-level synthesis, IP generator, logic 
simulation, mixed language simulator, verification IP and programming and debug environment, Vivado 
has a lot of benefits and is wide spread for this kind of hardware development. 

 

  

                                                      

39 MATALB, https://de.mathworks.com/products/matlab.html 
40 Simulink, https://de.mathworks.com/products/simulink.html 
41 Xilinx Vivado, https://www.xilinx.com/products/design-tools/vivado.html 
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LabVIEW 

 

The LabVIEW user-interface was created with NI LabVIEW 2017. 

NI LabVIEW42 provides: 

 A fast recording of measurement data through integration of hardware. 
 A graphical system abstraction, which offers access to collected data for validation of hardware 

connections. 
 A graphical programming system for the automation of systems and for repeatable 

measurements. 

LabVIEW was used to program the first user-interface. 

 

Visual Studio 

 

The C# user-interface was created with Visual Studio 2017. Microsoft Visual Studio43 is a development 
tool for software development. It provides the tools for software development with different programming 
languages like C#, Python, C++, C…  

C# was used to program the second user-interface, to gain more performance. 

 

Wireshark 

 

Wireshark 2.6.5 was used to analyze the UDP packages. Wireshark44 is a tool to analyze the network 
connections. It monitors incoming and outgoing packages. This tool was needed to verify the sent and 
received UDP packages from the communication between the user-interface and the AID. 

 

Visio 

 

Visio 2016 was used to create block structures of the design and technical images. Microsoft Visio45 is 
a visualization tool from Microsoft. It is possible to create flow diagrams, business processes and 
technical images. Visio was used to create technical images. 

  

                                                      

42 LabVIEW, http://ni.com/de-at/shop/labview/labview-details.html 
43 Microsoft Visual Studio, https://visualstudio.microsoft.com 
44 Wireshark, https://www.wireshark.org 
45 Microsoft Visio, https://products.office.com/de-at/visio/flowchart-software 
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15 USED TEST-HARDWARE 
 

ZedBoard Development Kit 

 

 ZedBoard46 
 12V Power supply 
 Micro USB cable 
 USB Adapter: Male Micro-B to Female Standard-A 
 4 GB SD Card 
 Xilinx Vivado® Design Edition license voucher (device locked to 7Z020)  
 Getting started guide 
 Downloadable documentation and reference designs 
 MathWorks Getting Started Package (optional) 

The ZedBoard is the hardware, where the Debug-Core will run. The Debug-Core was also tested on the 
ZedBoard. The Development Kit also includes a Xilinx Vivado license (locked to 7Z020) for the Synthesis. 
To use the ZedBoard, it is necessary to install the Embedded Coder® Support Package for Xilinx®Zynq®-
7000 Platform in MATLAB. With this package, it is possible to use blocks, which are provided by the 
hardware. 

 

Controller Board 

 

The controller board was developed by AVL List GmbH and FH Kapfenberg. It contains a Zynq-7000 
Kintex-7 FPGA, a Trenz Board TE0782-02 and several peripherals for different applications. The 
different inverters and controllers are running on the FPGA and the AID will be included into the design 
to debug the internal signals. 

 Zynq-7000 Kintex-7 FPGA (Xc7z100ffg900) 
 Trenz Board TE0782-02 

 

Trenz Board TE0782-02 

 

The Trenz Board TE0782-0247 is a High-Performance Xilinx Zynq Z-7100 Module. 

Properties: 

 Xilinx Zynq-7100 SoC XC7Z100-2FFG900I 
 Dual ARM Cortex-A9 MPCore 
 Real-Time 
 2x Hi-Speed USB 2.0 ULPI Transceiver PHY 
 2x Gigabit Ethernet Transceiver PHY 
 2x Ethernet MAC Address EEPROM 
 1 GB DDR3 SDRAM 
 32 MB QSPI Flash-Memory 

                                                      

46 ZedBoard, http://zedboard.org/product/zedboard 
47 Trenz Board, https://shop.trenz-electronic.de/de/TE0782-02-100-2I-High-Performance-Xilinx-Zynq-
Z-7100-Modul-industriell-8-5-x-8-5-cm 
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 4 GB eMMC (optional up to 64 GB) 
 Optional 2x 8MB HyperRAM (maximum 2 x 32 MB HyperRAM) 
 Si5338 PLL for GTX clocking 
 Plug-on-Module with 3 x 160-Pin High-Speed strips 
 16 GTX high-performance transceiver lanes 
 254 FPGA I/O (125 LVDS pairs) 
 On-board high power DC-DC-Converter 
 System management and power sequencing 
 eFUSE bit-stream encryption 
 AES bit-stream encryption 
 Distributed power pins 
 Temperature -40°C to +85°C 

 

Notebook HP EliteBook 840 

 

 512 GB M.2 SSD 
 8GB (1x8GB) 2133MHz DDR4 RAM 
 6th Gen Intel® Core™ i5-6300U Processor (2.4 GHz, 3MB, Dual Core) 
 Intel Integrated HD 520 Graphics 

This notebook belongs to AVL List GmbH and was used to develop the IP cores (with Xilinx Vivado and 
MATLAB), the LabVIEW user-interface. It was also used to test the AID with the target hardware and 
both user-interfaces.  

 

Notebook MSI GE73VR 7RF Raider 

 

 256 GB SSD 
 16GB 2400MHz DDR4 RAM 
 7th Gen Intel® Core™ i7-7700HQ Processor (2.8 GHz, 6MB, Quad Core) 
 GeForce® GTX 1070 

This notebook was used to make tests with the C# user-interface. 
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16 CONCLUSION 
 

For the development of FPGA based products, debugging of internal signals is necessary to detect 
errors or to visualize signals of the FPGA design. Xilinx Vivado already offers an Integrated Logic 
Analyzer (ILA) to debug signals of the design. Sometimes, custom Debug-Cores are necessary for 
prototype development, like the AID – Advanced Inverter Debugger. The AID has 300 possible signal 
inputs. It can dynamically select 4 signals out of them for the debugging process. The debugging process 
is controlled by a user-interface at a workstation. The adjusted debugging parameters are sent from the 
workstation to the Debug-Core on the FPGA. The communication is done with UDP/IP. The Debug-Core 
starts the debugging process with the adjusted parameters. The sampled signal data is sent from the 
FPGA to the workstation and monitored with the user-interface. Optional, the signal data can be logged 
in csv files.  

To lower the resource usage on the FPGA, the AID is also available with 40 possible signal inputs. 40 
signals are enough to debug the different inverters and the advantage of dynamically selecting the 
signals for the debugging process is still present. 

For the development of the AID, different concepts were considered and compared. In most cases, data 
is stored on the FPGA and big data packages are sent to the workstation. In the case of this master 
thesis, the data is transmitted with UDP/IP. UDP/IP was used for small data packages. 

The first approach was to stream the sampled signal data with the sample frequency to the workstation. 
Therefore, the direct connection from the Ethernet adapter to the AXI-Stream interface with the AXI-
Ethernet IP core should be used. This IP core is provided by Xilinx and requires a license for the included 
TEMAC (Tri-Mode Ethernet MAC). However, this license was not available and therefore the Processing 
System had to be used to establish the UDP/IP connection between the FPGA and the workstation.  

At the maximum sample frequency of 1 MHz, the Processing System was not able to stream the sampled 
signal data with the sample frequency anymore. The Processing System is too slow to process each 
interrupt from the AID. Therefore, samples are collected to build bigger UDP packages. To collect the 
samples, 2 memory addresses are alternately used to avoid simultaneous memory access.  

Despite the sample collection, the UDP packages are sent too fast for the receiver workstation. The 
LabVIEW user-interface works for slower sample frequencies but at higher sample frequencies the data 
processing is not fast enough and samples get lost. Furthermore, the file handling during runtime is very 
complex. It was not possible to dynamically create several log files when the sample number is very 
high (millions). To increase the performance of the data processing, wait functions were added to reduce 
the number of executions of while-loops in LabVIEW, which are not used for data processing. This 
increased the performance, however data loss still occurs. 

The C# user-interface was developed to dynamically create log files and to increase the performance of 
the data processing. To process the incoming UDP packages, 2 threads are used. The receiving thread 
handles the incoming UDP packages and writes the data into a FIFO queue. The processing thread 
reads the data from the FIFO queue and updates the charts and writes the data into the log files. The 
performance of the C# user-interface is much better than the LabVIEW user-interface, however sample 
loss also occurs at high sample frequencies. The charts of the C# library update very slowly and are not 
suited for that kind of application. Licensed libraries for fast data monitoring would be necessary to 
increase the performance. 

During the tests with the Controller Board, the Processing System was mostly used for EtherCat and 
other communications. EtherCat has a very high processor utilization in idle mode. When EtherCat is 
transmitting data, the processor utilization gets even worse. Due to the high utilization, the Processing 
System has not enough time to handle the AID interrupts. If interrupts are missed, UDP packages are 
not sent anymore and samples get lost.  
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The approach to stream the data with UDP/IP works with a lower number of samples and lower sample 
frequencies. It is possible to debug signals with a sample frequency of 1 MHz with a lower number of 
samples. The communication with the Processing System is a big disadvantage because the Processing 
System also handles other communications. In the future, the AXI-Ethernet IP core can be used for the 
UDP/IP connection. With this IP core, the communication can be done without the Processing System. 
At the workstation, fast data processing is necessary to handle the small data transfers with UDP/IP.  

The performance of the user-interfaces might be better, if the received UDP packages are saved directly 
into files. When the debugging process is done, the signal data is processed and monitored afterwards. 
This solution would not require fast data processing libraries. This is also a task for the future. 

The performance of the LabVIEW user-interface can be increased by using a real-time operating system 
and the LabVIEW extension for real-time applications. The data processing can be done with event 
triggered while loops, which are faster than the functions from the standard LabVIEW version. A big 
disadvantage of this solutions would be, that a real-time operating system is necessary and no normal 
workstation can be used, to process the received UDP packages. 
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20 APPENDIX 
 

TABLE 6: MM2S_DATAMOVER_INTERFACE INPUT PORT AND INTERFACE DESCRIPTION 

Port / Interface Input Bits Description 
s_axis_mm2s_d  Slave interface for the AXIS data stream from the AXI 

DataMover 
s_axis_mm2s_s  Slave interface for the AXIS status stream of the AXI 

DataMover 
axis_aclk 1 Clock for the AXIS interfaces 
axis_resetn 1 Resetn for the AXIS interfaces 
BTT 23 Bytes to transfer 
Addr 32 Memory start address 
initTf 1 Initializes the transfer of the command data 

 

TABLE 7: MM2S_DATAMOVER_INTERFACE OUTPUT PORT AND INTERFACE DESCRIPTION 

Port / Interface Output Bits Description 
m_axis_mm2s_c  Master interface for the AXIS command data for the 

AXI DataMover 
m_axis_umm2s_d  Master interface for the AXIS user data for the PL 
Status 8 Status of the AXI DataMover transfer 

 

TABLE 8: S2MM_DATAMOVER_INTERFACE INPUT PORT AND INTERFACE DESCRIPTION 

Port / Interface Input Bits Description 
s_axis_S2MM_S  Slave interface for the AXIS status stream of the AXI 

DataMover 
s_axis_uS2MM  Slave interface for the AXIS user data 
axis_aclk 1 Clock for the AXIS interfaces 
axis_resetn 1 Resetn for the AXIS interfaces 
BTT 23 Bytes to transfer 
Addr 32 Memory start address 
initTf 1 Initializes the transfer of the command data 

 

TABLE 9: S2MM_DATAMOVER_INTERFACE OUTPUT PORT AND INTERFACE DESCRIPTION 

Port / Interface Output Bits Description 
m_axis_S2MM_C  Master interface for the AXIS command data for the 

AXI DataMover 
m_axis_S2MM  Master interface for the AXIS data stream to the AXI 

DataMover 
Status 8 Status of AXI DataMover transfer 
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TABLE 10: DATAMOVECTL INPUT PORT AND INTERFACE DESCRIPTION 

Port / Interface Input Bits Description 
s2mm_data_length 12 Length of data stream, which will be written into the 

RAM 
s2mm_Status 8 Status of the transfer into the RAM 
s2mm_startTF 1 Initialization of the S2MM transfer 
S2MM_MEM_ADDR 32 First S2MM start memory address. Only active if 

C_PS_CONTROL is enabled, otherwise the memory 
address of the IP Settings is used 

S2MM_MEM_ADDR2 32 Second S2MM start memory address. Only active if 
C_PS_CONTROL is enabled, otherwise the memory 
address of the IP Setting is used. 

s2mm_number_pkg 16 Number of samples, which will be stored into the RAM 
till the s2mm_finished_intr is set. Only active if 
C_PS_CONTROL is enabled, otherwise 
C_NUMBER_PKG of the IP Settings is used. 

mm2s_Status 8 Status of the transfer from the RAM 
mm2s_startTF 1 Initialization of the MM2S transfer 
mm2s_data_length 12 Length of the data stream, which will be read from the 

RAM 
MM2S_MEM_ADDR 32 MM2S start memory address. Only active if 

C_PS_CONTROL is enabled, otherwise the memory 
address of the IP Settings is used. 

aclk 1 100 MHz clock 
aresetn 1 Resetn, active low 
Resetn_DC 1 Resetn from the Debug-Core module, when the 

debugging process is finished, the DataMoveCTL 
block is reset. Active low 

 

TABLE 11: DATAMOVECTL OUTPUT PORT AND INTERFACE DESCRIPTION 

Port / Interface Output Bits Description 
s2mm_BTT 23 S2MM Bytes to Transfer  
s2mm_Addr 32 S2MM start memory address 
s2mm_initTF 1 Initialization of the S2MM transfer 
s2mm_finished_intr 1 Finish interrupt. It will be set when the transfer into the 

RAM was successful and the adjusted number of 
samples was reached. 

mm2s_BTT 32 MM2S Bytes to Transfer 
mm2s_Addr 8 MM2S start memory address 
mm2s_initTF 8 Initialization of the MM2S transfer 
mm2s_finished_intr 1 Finish interrupt. It will be set when the transfer from the 

RAM was successful. 
 

TABLE 12: DATAMOVECTL IP SETTINGS 

Setting Bits Description 
C_ADDR_WIDTH 32 Address width of the memory addresses (set to 32) 
C_BTT 23 Bytes to transfer width (set to 23) 
C_MM2S_MEM_ADDR 32 MM2S memory start address (default value is 

0x00120000) 
C_NUMBER_PKG 16 Number of Samples to collect for the UDP package 

(value 1-32768), currently set to 32 
C_S2MM_MEM_ADDR 32 First S2MM memory start address (default value is 

0x00140000) 
C_S2MM_MEM_ADDR2 32 Second S2MM memory start address (default value is 

0x00160000) 
C_PS_CONTROL 1 Enable Processing System control (checked is PS 

control enabled) 
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TABLE 13: UNPKGMODULE INPUT PORT AND INTERFACE DESCRIPTION 

Port / Interface Input Bits Description 
S_AXI4S  Slave interface for the AXIS data stream 
clk_1MHz 1 1 MHz clock 
aresetn_1MHz 1 Resetn to corresponding 1 MHz clock 
aclk_100MHz 1 100 MHz clock for the AXIS interface 
aresetn 1 Resetn to corresponding 100 MHz clock 
Com_PS_en 1 Enables the Communication with Processing 

System, currently in use 
 

TABLE 14: UNPKGMODULE OUTPUT PORT AND INTERFACE DESCRIPTION 

Port / Interface Output Bits Description 
pkg_ctl 16 Package type (not used) 
NumOfSamples 32 Number of Samples to be debugged 
SampleRate 16 Sample Rate for the debugging process 
CMD 8 Command signal 
TriggerTyp 8 Trigger Type for the debugging process 
TriggerValue 16 Trigger Value for the debugging process 
Signal0 16 Chosen signal to debug and also trigger signal 
Signal1 16 Chosen signal 2 to debug 
Signal2 16 Chosen signal 3 to debug 
Signal3 16 Chosen signal 4 to debug 
start_1MHz 1 For debugging 

 

TABLE 15: UNPKG_UDP_CTL_UNIT INPUT PORT AND INTERFACE DESCRIPTION 

Port / Interface Input Bits Description 
S_AXI4S_tlast 1 AXIS TLAST of the S_AXI4S interface. This 

signal is used to signal the end of the data 
transfer. 

S_AXI4S_tvalid 1 AXIS TVALID of the S_AXI4S interface. This 
signal is used to get the valid data. 

aclk 1 100 MHz clock 
aresetn 1 Resetn to the corresponding 100 MHz clock 
com_PS_en 1 Enables the module for the communication 

with the integrated Ethernet interface of the 
ARM-Processor. Is currently set to 1. 

 

TABLE 16: UNCP_UDP_CTL_UNIT OUTPUT PORT AND INTERFACE DESCRIPTION 

Port / Interface Output Bits Description 
S_AXI4S_tready 1 AXIS TREADY of the S_AXI4S interface is 

always 1 (always ready to receive data) 
en_pkg_ctl 1 Enable signal for package type 
en_NumOfSamples 1 Enable signal for number of samples 
en_SR_CMD_TT 1 Enable signal for sample rate, command and 

trigger type 
en_TV_Sig1 1 Enable signal for trigger value and first signal 
en_Sig2_Sig3 1 Enable signal for second and third signal 
en_Sig4 1 Enable signal for fourth chosen signal 

 

  



  
 
 

126 
 

TABLE 17: UNPKG_UDP_DATA INPUT PORT AND INTERFACE DESCRIPTION 

Port / Interface Input Bits Description 
S_AXI4S_tdata 32 AXIS tdata of the S_AXI4S interface 
aclk 1 100 MHz clock 
aresetn 1 Resetn to the corresponding 100 MHz clock 
com_PS_en 1 Enables the module for the communication 

with the ARM-Processor and the integrated 
Ethernet interface. Is currently set to 1. 

en_pkg_ctl 1 Not used 
en_NumOfSamples 1 Enable signal for number of samples 
en_SR_CMD_TT 1 Enable signal for sample rate, command and 

trigger type 
en_TV_Sig1 1 Enable signal for trigger value and first chosen 

signal 
en_Sig2_Sig3 1 Enable signal for second and third chosen 

signal 
en_Sig4 1 Enable signal for fourth chosen signal 

 

TABLE 18: UNPKG_UDP_DATA OUTPUT PORT AND INTERFACE DESCRIPTION 

Port / Interface Output Bits Description 
CMD 8 Command Byte, gives information to start 

debugging, stop debugging and if pre- or post-
trigger is active 

NumOfSamples 32 Number of Samples 
SampleRate 16 Sample Rate 
Signal1 16 First chosen signal is also trigger signal 
Signal2 16 Second chosen signal 
Signal3 16 Third chosen signal 
Signal4 16 Fourth chosen signal 
Trigger Type 8 Trigger type for debugging process 
Trigger Value 16 Trigger value for debugging process 
pkg_ctl 16 Package type (not used) 

 

TABLE 19: UNPKG_UDP_START_PULS INPUT PORT AND INTERFACE DESCRIPTION 

Port / Interface Input Bits Description 
clk_1MHz 1 1 MHz clock  
clk_100MHz 1 100 MHz clock 
aresetn_1MHz 1 Resetn of corresponding 1 MHz clock 
aresetn 1 Resetn of corresponding 100 MHz clock 
start_100MHz 1 100 MHz start pulse (AXIS tlast signal) 

 

TABLE 20: UNPKG_UDP_START_PULS OUTPUT PORT AND INTERFACE DESCRIPTION 

Port / Interface Output Bits Description 
start_1MHz 1 1 MHz start pulse 
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TABLE 21: PKG_SAMPLES INPUT PORT AND INTERFACE DESCRIPTION 

Port / Interface Input Bits Description 
clk_1MHz 1 1 MHz clock  
m_axis_aclk 1 100 MHz clock 
m_axis_aresetn 1 Resetn of the corresponding 100 MHz clock 
framesize 12 Length of the AXIS data stream 
send enable 1 Initialization to build the AXIS data stream 
package_type 32 Package type of the data which will be sent 

with the UDP package. Currently 
package_type is set to 1 = data package 

number_of_samples 32 Sample number to give the signal values a 
timestamp 

Signal0 32 First chosen signal 
Signal1 32 Second chosen signal 
Signal2 32 Third chosen signal 
Signal3 32 Fourth chosen signal 

 

TABLE 22: PKG_SAMPLES OUTPUT PORT AND INTERFACE DESCRIPTION 

Port / Interface Output Bits Description 
m_axis  Master interface for the AXIS data stream, 

which will be written into the RAM 
initTF 1 Signal for the DataMoveCTL block to initialize 

the data transfer into the RAM 
 

TABLE 23: DEBUGCOREMODULE INPUT PORT AND INTERFACE DESCRIPTION 

Port / Interface Input Bits Description 
Input_Signals  Interface for the 300 input signals 
 Signal0 32 Input signal 1 
… … … 
 Signal299 32 Input signal 300 
clk_1MHz 1 1 MHz clock 
resetn 1 Resetn of the corresponding 1 MHz clock 
clk_1MHz_enable 1 Clock enable signal (constant 1) 
c_NumOfSamples 32 Number of Samples for the debugging process 
c_SampleRate 16 Sample rate for the debugging process 
c_CMD 8 Command bits for different operation modes 
c_TriggerType 8 Trigger type for the debugging process 
c_TriggerValue 16 Trigger value for the debugging process 
c_Signal0 16 First selected signal, also trigger signal 
c_Signal1 16 Second selected signal 
c_Signal2 16 Third selected signal 
c_Signal3 16 Fourth selected signal 
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TABLE 24: DEBUGCOREMODULE OUTPUT PORT AND INTERFACE DESCRIPTION 

Port / Interface Output Bits Description 
out_start_pkg1MHz 1 Signal to start the PKG_Samples block 
debugged_NoS 32 Sample number for time stamp 
debugged_Sig0 32 Debugged signal 1 
debugged_Sig1 32 Debugged signal 2 
debugged_Sig2 32 Debugged signal 3 
debugged_Sig3 32 Debugged signal 4 
db_CMD 8 Verification of received CMD bits 
db_TT 8 Verification of received trigger type 
db_TV 16 Verification of received trigger value 
db_SR 16 Verification of received sample rate 
db_NoS 32 Verification of received number of samples 
db_Sig0 16 Verification of received chosen signal 1 
db_Sig1 16 Verification of received chosen signal 2 
db_Sig2 16 Verification of received chosen signal 3 
db_Sig3 16 Verification of received chosen signal 4 
db_SampleNum 32 Verification of received sample number 
db_start 1 Verification of internal CMD_Start signal 
db_triggered 1 Verification of the internal Start_Sampling 

signal 
Resetn_1MHz 1 Resetn signal for the DataMoveCTL block 

 

TABLE 25: SPLIT_CMD_BITS INPUT PORT AND INTERFACE 

Port / Interface Input Bits Description 
CMD_In 8 Command signal for the debugging settings 

 

TABLE 26: SPLIT_CMD_BITS OUTPUT PORT AND INTERFACE 

Port / Interface Output Bits Description 
CMD_StartSampling 1 Initializes the debugging process 
CMD_Reset 1 Resets submodules and stops the debugging 

process 
CMD_Trigger 1 Enable trigger (post-trigger) 
CMD_PreTrigger 1 Enable pre-trigger 
CMD_NA1 1 Not accessed 
CMD_NA2 1 Not accessed 
CMD_NA3 1 Not accessed 
CMD_NA4 1 Not accessed 

 

TABLE 27: START_CONTROL INPUT PORT AND INTERFACE DESCRIPTION 

Port / Interface Input Bits Description 
reset 1 Resets the CMD_Start signal 
CMD_StartSampling 1 Initializes the debugging process 

 

TABLE 28: START_CONTROL OUTPUT PORT AND INTERFACE DESCRIPTION 

Port / Interface Output Bits Description 
CMD_Start 1 Starts the debugging process 
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TABLE 29: TRIGGER_CONTROL INPUT PORT AND INTERFACE DESCRIPTION 

Port / Interface Input Bits Description 
Reset 1 Resets the Trigger_Control block 
CMD_Start 1 Starts the waiting process for a trigger event 
CMD_Trigger 1 Enables trigger 
TriggerType 8 Selected trigger type 
TriggerValue 16 Selected trigger value 
Signal 32 Signal for trigger process 

 

TABLE 30: TRIGGER_CONTROL INPUT PORT AND INTERFACE DESCRIPTION 

Port / Interface Output Bits Description 
Start_Sampling 1 Set, when trigger event happened  

 

TABLE 31: SEND_CONTROL INPUT PORT AND INTERFACE DESCRPITION 

Port / Interface Input Bits Description 
Enable_NoSCounter 1 Enables the counter to increment 
NumberOfSamples 1 Number of samples for the debugging process 
Reset_Counter 1 Resets the counter 

 

TABLE 32: SEND_CONTROL OUTPUT PORT AND INTERFACE DESCRIPTION 

Port / Interface Output Bits Description 
Reset 1 Is high, when number of samples is reached 
Sample_Counter 1 Sample counter for time stamp 
Sampling 1 Initializes the data transfer into the RAM. 

When the Pre-Trigger is active, it also 
initializes the read operation of the ring buffer 
with the data transfer into the RAM. 

 

TABLE 33: SAMPLE_RATE_COUNTER INPUT PORT AND INTERFACE DESCRIPTION 

Port / Interface Input Bits Description 
Reset_Counter 1 Resets the sample rate counter 
start_counter 1 Enables the counter to increment 
SampleRate 16 The value of the SampleRate signal is the 

compare value for the internal counter to 
determine the sample frequency.  

 

TABLE 34: SAMPLE_RATE_COUNTER OUTPUT PORT AND INTERFACE DESCRIPTION 

Port / Interface Output Bits Description 
Enable_NoSCounter 1 Enables the Send_Control block with the 

sample counter 
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TABLE 35: RINGBUFFER INPUT PORT AND INTERFACE DESCRIPTION 

Port / Interface Input Bits Description 
Sampling 1 Starts the read operation from the BRAMs 
Reset 1 Resets the internal counters 
WriteRam_Enable 1 Starts the write operation into the BRAMs  
PreTrigger_Enabled 1 Enables the Pre-Trigger functionality 
Sig_In1 32 Signal 1 
Sig_In2 32 Signal 2 
Sig_In3 32 Signal 3 
Sig_In4 32 Signal 4 

 

TABLE 36: RINGBUFFER OUTPUT PORT AND INTERFACE DESCRIPTION 

Port / Interface Output Bits Description 
Sig_Out1 32 Signal 1 for the AXIS data stream 
Sig_Out2 32 Signal 2 for the AXIS data stream 
Sig_Out3 32 Signal 3 for the AXIS data stream 
Sig_Out4 32 Signal 4 for the AXIS data stream 
Send_Enable 1 Enables the packaging process to build the 

AXIS data stream 
 

TABLE 37: RINGBUFFERCTL INPUT PORT AND INTERFACE DESCRIPTION 

Port / Interface Input Bits Description 
ReadRAM_Enable 1 Enables the read counter to increment 
Reset 1 Resets the counters 
WriteRAM_Enable 1 Enables the write counter to increment 

 

TABLE 38: RINGBUFERRCTL OUTPUT PORT AND INTERFACE DESCRIPTION 

Port / Interface Output Bits Description 
rd_addr 8 BRAM read address 
wr_addr 8 BRAM write address 

 

TABLE 39: RINGBUFFERSIG INPUT PORT AND INTERFACE DESCRIPTION 

Port / Interface Input Bits Description 
Rd_Addr 1 BRAM read address 
Wr_Addr 1 BRAM write address 
WriteRAM_Enable 1 Enables write and read operations 
Pre_Trigger_Enable 1 Selects the signal data from the BRAMs 
Signal1_in 32 Signal 1 
Signal2_in 32 Signal 2 
Signal3_in 32 Signal 3 
Signal4_in 32 Signal 4 

 

TABLE 40: RINGBUFFERSIG OUTPUT PORT AND INTERFACE DESCRIPTION 

Port / Interface Output Bits Description 
Signal_Read1 32 Signal 1 
Signal_Read2 32 Signal 2 
Signal_Read3 32 Signal 3 
Signal_Read4 32 Signal 4 
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TABLE 41: SIGNAL_SELECTION INPUT PORT AND INTERFACE DESCRIPTION 

Port / Interface Input Bits Description 
Signals300 300 x 32 300 signal input vector, each signal has 32 bits 
Signal_Sel 16 Signal selection for the debugging signal 

 

TABLE 42: SIGNAL_SELECTION OUTPUT PORT AND INTERFACE DESCRIPTION 

Port / Interface Output Bits Description 
Signal_Selected 32 Selected signal for the debugging process 

 

TABLE 43: PIPELINE INPUT PORT AND INTERFACE DESCRIPTION 

Port / Interface Input Bits Description 
clk 1 clock 
resetn 1 Resetn (active low) 
sig_in xx Input signal (signal width can be chosen in the 

IP settings) 
 

TABLE 44: PIPELINE OUTPUT PORT AND INTERFACE DESCRIPTION 

Port / Interface Output Bits Description 
Sig_out xx Output signal (signal width can be chosen in 

the IP settings) 
 

TABLE 45: PIPELINE300 INPUT PORT AND INTERFACE DESCRIPTION 

Port / Interface Input Bits Description 
clk 1 clock 
resetn 1 Reset (active low) 
Input_Signals 300 x 32 Input signal interface (300 signals with each 32 

bits) 
 

TABLE 46: PIPELINE300 OUTPUT PORT AND INTERFACE DESCRIPTION 

Port / Interface Output Bits Description 
Output_Signals 300 x 32 Output signal interface (300 signals with each 

32 bits) 
 

TABLE 47: CLKDOMAINCROSSING INPUT PORT AND INTERFACE DESCRIPTION 

Port / Interface Input Bits Description 
clk_1MHz 1 1 MHz clock 
resetn_1MHz 1 resetn (active low) 
clk_100MHz 1 100 MHz clock 
resetn_100MHz 1 resetn (active low) 
in_signal_1MHz xx Input signal (signal width can be chosen in the 

IP settings) 
 

TABLE 48: CLKDOMAINCROSSING OUTPUT PORT AND INTERFACE DESCRIPTION 

Port / Interface Output Bits Description 
Out_signal_100MHz xx Output signal (signal width can be chosen in 

the IP settings) 
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TABLE 49: SIG_GEN300 INPUT PORT AND INTERFACE DESCRIPTION 

Port / Interface Input Bits Description 
clk_1MHz 1 1 MHz clock 
resetn 1 resetn (active low) 

 

TABLE 50: SIG_GEN300 OUTPUT PORT AND INTERFACE DESCRIPTION 

Port / Interface Output Bits Description 
Gen_Signals 300 x 32 

Bits 
Output signal interface with 300 signals. Each 
signal has a width of 32 bits. 

 

TABLE 51: AID IP CORE INPUT PORT AND INTERFACE DESCRIPTION 

Port / Interface Input Bits Description 
clk_1MHz 1 1 MHz clock 
clk_100MHz 1 100 MHz clock 
resetn_1MHz 1 1 MHz Resetn (active low) 
resetn_100MHz 1 100 MHz Resetn (active low) 
MM2S_MEM_ADDR 32 Start memory address, where to read the data 

for the MM2S transfer 
S2MM_MEM_ADDR 32 First start memory address, where to write the 

data for the S2MM transfer 
S2MM_MEM_ADDR2 32 Second start memory address, where to write 

the data for the S2MM transfer 
mm2s_data_length 12 Data length of the MM2S transfer 
mm2s_startTF 1 Initialize MM2S data transfer from RAM to set 

up the debugging process with the parameters 
from the user-interface 

s2mm_data_length 12 Data length of the S2MM data transfer 
s2mm_number_pkg 16 Number of samples to collect for the UDP 

package, before the S2MM interrupt is set 
s_axis_S2MM_S  AXIS interface for the S2MM transfer status 
s_axis_mm2s_s  AXIS interface for the MM2S transfer status 
s_axis_mm2s_d  AXIS interface for the MM2S data 
Input_Signals 40 x 32 bits Interface for the 40 or 300 input signals. The 

interface name is debugSig for 40 input 
signals and Input_Signals for 300 input 
signals. 

 

TABLE 52: AID IP CORE OUTPUT PORT AND INTERFACE DESCRIPTION 

Port / Interface Output Bits Description 
m_axis_S2MM  AXIS interface for the S2MM data. 
m_axis_S2MM_C  AXIS interface for the S2MM command data 
m_axis_mm2s_c  AXIS interface for the MM2S command data 
mm2s_finished_intr 1 Interrupt for a successful MM2S data transfer 
s2mm_finished_intr 1 Interrupt for a successful S2MM data 

transfers.  
 

 

 


