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ABSTRACT

This master thesis is about the implementation of a reconfigurable FPGA based Logic-Debugger, the
AID — Advanced Inverter Debugger and was provided by the Technical University of Graz and
accomplished in cooperation with AVL List GmbH. For FPGA based development, debugging of internal
signals is necessary to detect errors and to visualize signals. Xilinx Vivado already offers an Integrated
Logic Analyzer (ILA) to debug the signals of the design. Every time the input signals are changed, the
whole workflow (synthesis, placement, routing and the generation of the bit stream) must be done again.
This costs time and resources.

Therefore, it is better to use a custom Debug-Core, like the Advanced Inverter Debugger. The AID has
300 possible signal inputs. It can dynamically select 4 signals out of them for the debugging process.
The debugging process is controlled by a user-interface at a workstation. The adjusted debugging
parameters, like sample rate, number of samples, trigger settings and signal selection, are sent from
the workstation to the Debug-Core on the FPGA. The communication is done with UDP/IP. The Debug-
Core starts the debugging process with the adjusted parameters. The sampled signal data is sent from
the FPGA to the workstation and monitored with the user-interface. Optional, the signal data can be
logged in csv files.

The functionality of the AID was tested with the Zynq Development Board and a custom Controller Board
developed by FH Kapfenberg and AVL List GmbH. Different kinds of inverters and controllers are
running on the Controller Board, which are needed for test benches in the automotive industry.

In the future the AID should be used for FPGA based development and for error analysis for different
kinds of inverters.



ABSTRACT

Diese Masterarbeit beschéaftigt sich mit der Implementierung eines FPGA basierten Debuggers, dem
AID — Advanced Inverter Debugger und wurde von der Technischen Universitat Graz angeboten und in
Kooperation mit der AVL List GmbH durchgefihrt. Fir die Entwicklung mit FPGAs ist es wesentlich, die
internen Signale zu betrachten um Fehler zu erkennen und Signale darstellen zu kénnen. Xilinx Vivado
verflgt Uber einen Integrated Logic Analyzer (ILA), um Signale aus dem Design aufzuzeichnen.
Allerdings muss jedes Mal, wenn sich die Eingangssignale vom ILA-Core andern, der gesamte
Arbeitsprozess (Synthese, Platzierung, Verkabelung und die Generierung des Bitstreams) neu
durchlaufen werden, was in Folge viel Zeit und Ressourcen in Anspruch nimmt.

Um dies zu vermeiden, ist es sinnvoller einen eigenen Debug-Core zu entwickeln, den Advanced
Inverter Debugger. Der AID besitzt 300 mogliche Eingangssignale. Aus diesen konnen jeweils 4 Signale
dynamisch ausgewahlt und aufgezeichnet werden. Auf einem Computer kann der Debugging-Prozess
mit Hilfe einer Benutzeroberflaiche gesteuert werden. Die Parameter Abtastrate, Anzahl der
Abtastpunkte, Triggereinstellung und Signalauswahl werden fiur die Aufzeichnung in der
Benutzeroberflache eingestellt und an den FPGA gesendet. Die Kommunikation erfolgt mit UDP/IP. Der
Debug-Core verarbeitet die eingestellten Parameter und startet den Debugging-Prozess. Die
abgetasteten Signalwerte werden vom FPGA zurick an den Computer gesendet und mit der
Benutzeroberflache grafisch dargestellt. Die Signalwerte konnen optional in csv Dateien gespeichert
und wieder angezeigt werden.

Die Funktionalitdt wurde mit dem Zynq Development Board und einem, von der FH Kapfenberg und
AVL List GmbH entwickelten, Controller Board getestet. Auf diesem Controller Board laufen diverse
Umrichter, die fur Testeinrichtungen in der Automobilindustrie verwendet werden.

In der Zukunft soll der AID fir die Entwicklung mit FPGAs und zur Fehlererkennung von verschiedenen
Umrichtern eingesetzt werden.
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1 INTRODUCTION

This master thesis is about the implementation of an FPGA based Logic-Debugger in cooperation with
AVL List GmbH?, which can monitor internals signals of the FPGA design.

AVL List GmbH is a company in the automotive industry. Their main focus is the development of drive
systems like engines, powertrains, batteries and the associated software, test benches for engines,
vehicles and their components and simulations for engines and vehicle development.

For the development of FPGA based products, debugging of internal signals is necessary to detect
errors or to visualize signals of the FPGA design. Xilinx Vivado? already offers an Integrated Logic
Analyzer (ILA) to debug signals of the design. Every time, the input signals of the ILA-Core change, the
whole workflow (synthesis, placement, routing and generation of the bit stream) must be done again.
This costs time and resources.

To avoid this waste of resources, it is better to use a custom Debug-Core, like the AID — Advanced
Inverter Debugger. The AID has 300 possible signal inputs. It can dynamically select 4 signals out of
them for the debugging process. The debugging process is controlled by a user-interface at a
workstation. The adjusted debugging parameters are sent from the workstation to the Debug-Core on
the FPGA. The communication is done with UDP/IP. The Debug-Core starts the debugging process with
the adjusted parameters. The sampled signal data is sent from the FPGA to the workstation and
monitored with the user-interface. Optional, the signal data can be logged in csv files.

The AID should be used for debugging different kinds of inverters in the automotive industry. These
inverters are used to convert voltages and currents from AC to three-phase and vice versa. They also
provide several functionalities like PWM, PLL, voltage and current control etc. for test benches to power
synchronous and asynchronous engines.

First, there is a little overview about different concepts to implement this Debug-Core. These concepts
have different advantages and disadvantages. A comparison was made, which concept is better and
also feasible with the existing tools.

Second, there is an overview of the whole system and how the different parts interact with each other.
The main parts are the Debug-Core on the FPGA and the user-interface for the workstation.

After the short overview, the different parts of the Debug-Core and the user-interface are explained in
detail and how they were implemented. These parts were simulated and tested to check if they work
properly.

After the simulations of the different parts, the whole system was combined and tested on the Zynq
Development Board?® and on the Controller Board. The Controller Board is a custom PCB for test
benches and was developed by FH Kapfenberg* and AVL List GmbH.

T AVL List GmbH is a company in the automotive industry, which develops drive systems, simulations
and test benches, www.avl.com

2 Xilinx Vivado is a development tool for FPGA based development,
https://www.xilinx.com/products/design-tools/vivado.html

3 The ZedBoard is a development kit, http://zedboard.org/product/zedboard

4 FH Kapfenberg is a college, www.fh-joanneum.at/hochschule/standorte/kapfenberg/



2 MOTIVATION

The motivation behind this thesis is to develop an FPGA based Logic-Debugger, which can debug
internal signals of the FPGA design during runtime. A user-interface controls the Debug-Core and
displays the sampled signal data on a workstation.

AVL List GmbH is a company in the automotive industry and develops drive systems like engines,
powertrains, batteries and the associated software, test benches for engines, vehicles and their
components and simulations for engines and vehicle development.

For some products, like test benches, FPGA based inverters and controllers are required. These
inverters and controllers provide several functionalities like PWM, PLL, voltage and current control etc.
to power synchronous and asynchronous engines. Currently, Zyng-7000 Kintex®-7 FPGAs® are used
for the development. To verify the correct work of the inverters and controllers, debugging is necessary.

Currently, the Xilinx Integrated Logic Analyzer (ILA) is used to debug internal signals of the FPGA design.
Every time, the input signals of the ILA-Core change, the whole workflow (synthesis, placement, routing
and generation of the bit stream) must be done again. This costs time and resources.

To avoid this waste of resources it is better to use a custom Debug-Core, the Advanced Inverter
Debugger (AID). The AID has 300 possible signal inputs. 4 of these 300 signals can be dynamically
selected for the debugging process. The debugging process is controlled by a user-interface on a
workstation. The adjusted parameters like sample rate, number of samples, trigger settings and signal
selection are sent to the Debug-Core on the FPGA. The communication is done with UDP/IP. The
Debug-Core starts the debugging process with the adjusted parameters and sends the sampled signal
data back to the workstation. The signal data is displayed with the user-interface and optional logged
into csv files. The logged data can also be displayed with the user-interface.

5 Zyng-7000 Kintex®-7, https://www.xilinx.com/products/silicon-devices/soc/zyng-7000.html



2.1

GOALS

To control the Debug-Core, a LabVIEWS® user-interface should be realized. The communication between
the LabVIEW user-interface and the FPGA should be done with UDP/IP. During the development this
goal was changed to a C# user-interface, because C# is more flexible with file operations than LabVIEW.

The requirements for the Debug-Core are:

Selection of 4 signals out of 300 input signals. The AID should contain 300 possible input signals,
each 32 bit. 4 signals of these 300 signals should be selectable for the debugging process. To
observe the behavior of the inverters and controllers, internal signals of the FPGA design must
be connected to the AID IP-Core. The 300 input signals are necessary to be flexible in the
selection of the signals for the debugging process.

Adjustable number of sample points. The number of samples applies to all 4 selected signals
and the AID should stop the debugging process when the adjusted number of samples is
reached. The sample number is between 1024 and 999424. There should be the possibility to
sample longer, but in this case, the debugging process must be stopped with the user-interface.
Adjustable sampling rate. The sampling rate applies to all 4 selected signals and determines,
how fast the sampling is done. The lowest sample frequency should be 1 kHz and the maximum
sample frequency should be 1 MHz. The maximum sample frequency is determined by the
operating frequency of the different controllers.

There should be different trigger types, like post- and pre-triggers with the functionality to check,
if the signal value is above, lower, or equal to the adjusted trigger value of the user-interface.
The trigger option should be available for only one signal.

Adjustable trigger value. The trigger value should be set in the user-interface. It should be an
integer value, because most of the internal signals of the controllers are integer signals.

There should be different package types for the UDP/IP connection. The package types
determine how to handle the data from the UDP packages. To control the Debug-Core with the
user-interface, configuration data is used with the package types to start and stop the debugging
process and to get the AID version number. The Debug-Core sends data packages to the user-
interface with the sampled signal data or the AID version number.

The resource usage on the FPGA should be as low as possible.

The controller must work independently from the Debug-Core.

The Debug-Core is not allowed to influence the controller.

The Debug-Core should be controlled from a workstation with a user-interface.

The user-interface should monitor the signal data. Optional, data logging in csv files should be
possible.

The implementation should be done with MATLAB” Simulink® and later with Xilinx Vivado. The user-
interface should be designed with NI LabVIEW. An analysis for the data transmission should be made
and the internal routing of the AID should be analyzed.

6 LabVIEW is a graphical development tool, https://www.ni.com/de-at/shop/labview.html
7 MATLAB is a development tool, https://de.mathworks.com/products/matlab.html
8 Simulink is a toolbox for MATLAB, https://de.mathworks.com/products/simulink.html



3 CONCEPT OF THE DEBUG-CORE

Currently for debugging signals in the FPGA design, the Xilinx Integrated Logic Analyzer (ILA) is used.
This works fine, but every time when new signals are routed into the ILA core, the whole design flow,
with synthesis, placement, routing and generation of the bit stream has to be done again. Furthermore,
the ILA core needs a number of sample points for the debugging process. Every time the number of
sample points change, the work flow must be done again. Due to the slow data transmission with JTAG,
the signal data is stored on the FPGA and sent via the JTAG interface to the workstation. To avoid a
repetition of the design flow, when changes are made, more signals are into the ILA core, although
some of these signals are never used for debugging. This also leads to more resource usage on the
FPGA to save the signal data for the JTAG transmission.

Figure 1 shows the current status how a controller is debugged by using the ILA core and the JTAG
interface. Here, internal signals of a controller are debugged to verify the correct work. The controller
will be used for test benches in the automotive industry. The JTAG interface is connected to a
workstation with Xilinx Vivado to monitor the debugged signals. The Controller is set up with parameters
from another workstation with a LabVIEW user-interface. The communication between the Controller IP
core and the LabVIEW user-interface is done with TCP/IP and with the ARM-Processor of the ZedBoard.
The ARM-Processor receives the incoming TCP/IP packages and forwards them with the AXI4-Lite bus
to the Controller IP core on the FPGA. The Controller sends the controller information back to the ARM-
Processor, which builds a TCP/IP package and sends it to the workstation with the user-interface.

< < LabVIEW
] ARM- Application
Controller AX|4-Lite i Processor TCP/IP N for
l Controller
Xilinx
Debug- Workstation
Core (ILA)
ZedBoard
\/
JTAG

FIGURE 1: XILINX ILA cORE WITH JTAG COMMUNICATION

The ZedBoard is used for the FPGA based development. It is a complete development kit with a Xilinx
Zynq®-7000 All Programmable SoC. Several interfaces, like UART, JTAG, HDMI, VGA, Audio 1/O,
Ethernet etc. are supported and can be used for different kinds of applications. The Zyng®-7000 SoC
is structured into the Processor Subsystem, which contains the clock, reset, DDR3 RAM and Multiplexed
I/0 (MIO), like SD Card, Gb Ethernet, USB UART, LED, switches and other I/O interfaces. The second
part is the Programmable Logic (PL), which can be configured. The PL can access interfaces like, XADC,
clock, LEDs, switches, JTAG etc.®. The ZedBoard also includes a Xilinx Vivado® Design Edition license
voucher, which is locked to Zyng-72020.

9 ZedBoard, http://zedboard.org/product/zedboard



Currently, a controller for voltage and current control, which was develop by AVL List GmbH, is running
on the FPGA of the ZedBoard. This controller is controlled by a LabVIEW user application. The
communication is done with TCP/IP and with the ARM-Processor. A TCP/IP echo server is running on
the Processing System (PS) [1], which handles the communication by using the integrated Ethernet
interface of the ARM-Processor.

The ARM-Processor is the heart of the Processing System, which also includes on-chip memory,
external memory interfaces and a lot of 1/O peripherals. The PS offers the whole functionality of the
ARM-Processer. It is possible to enable different functionalities with driver files'. These driver files, like
a TCP/IP echo server, are executed on the ARM-Processer.

The PS receives the configuration data from the user-interface and forwards it via AXI-Lite [2] bus to the
Controller IP core. The Controller sends the status data back to the workstation.

The concept of the Advanced Inverter Debugger (AID) is, to implement an FPGA based Debug-Core,
which can select signals for the debugging process during runtime. This Debug-Core should be able to
select 4 signals out of 300 possible input signals. To control the debugging process, a user-interface is
necessary. All of the important control information can be set in the user-interface. Important parameters
are the number of samples, sampling rate, trigger type, trigger value and the selection of the 4 signals
for the debugging process. The parameters will be sent as control information to the FPGA. The Debug-
Core will set up the debugging process with the control information and sends the signal data to the
workstation. The communication between the user-interface and the FPGA is done with UDP/IP.

This connection can be implemented in different ways. There are two approaches how to send and
receive the data between the FPGA and the user-interface:

In the first approach a similar design was chosen. The communication is also done with the Processing
System of the ARM-Processor. The communication can either be TCP/IP (Figure 2) or UDP/IP (Figure
3). In both cases, the implementation for the FPGA is the same. Due to faster possible data rates (MAC
interface supports 1GBit/s) and since data packet loss is acceptable, UDP/IP is for streaming data to
the workstation more suitable. To use the PS, driver files are necessary to enable different functionalities
for the communication. The ARM-Processor will execute these driver files, which sets up a UDP echo
server to establish a connection between the workstation and the PS. After receiving the control
information, the PS will write the control data into the RAM. Via the GPIO port, the PL can be enabled
to read the data with the AXI DataMover [3] from the RAM. The Debug-Core extracts the different
parameters out of the AXIS [2] data stream to start the debugging process with the chosen parameters.
The sampled signal data is written with the AXI DataMover into the RAM. Each time, a certain number
of samples was written into the RAM, an interrupt is raised. This number can be adjusted in the PS. The
PS reads out the signal data and sends it to the workstation. The AID user-interface will handle the
received data for monitoring and optional for logging the data into a csv file.

10 Processing System see Chapter 4.2 Processing System
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FIGURE 2: COMMUNICATION WITH THE PROCESSING SYSTEM AND TCP/IP
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FIGURE 3: COMMUNICATION WITH THE PROCESSING SYSTEM AND UDP/IP

The second approach is, to avoid the Processing System for the communication. To do that, the AXI-
Ethernet [4] IP core from Xilinx is used, as shown in Figure 4. This core converts the AXIS data stream
into data for the Ethernet transeiver, which builds and sends the UDP/IP package to the workstation. To
use the AXI-Ethernet core, a licence for the Xilinx TEMAC [5] (Tri-Mode Ethernet MAC) core is
necessary. Due to the missing licence this approach was not possible.
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FIGURE 4: COMMUNICATION WITH THE AXI-ETHERNET IP CORE

Therefore, the decision was made to implement the communcation with the PS of the ARM-Processor
and a UDP/IP echo server. Currently, the Controller IP core communicates with the Controller LabVIEW
user-interface via the ARM-Processor and TCP/IP. Therefore, the driver files must be extended to
include the UDP/IP communication between the Debug-Core and the Debug-Core user-interface.
Furthermore, the PS has to enable the read operation from the RAM (PL side) to start the debugging
process with the adjusted debugging parameters and a interrupt handler is necessary when the sampled
signal data is written into the RAM and ready to be sent to the user-interface.

Maybe in the future, the AXI-Ethernet module will be used to avoid the communication via the ARM-
Processor and the PS. The Processing System is slowly and when the Controller IP core is
communicating a lot with the Controller user-interface, the Processor utilization increases. This can lead
to performance problems of the Controller and the Debug-Core.

4 DEBUG-CORE ON THE FPGA

4.1 STRUCTURE OF THE DEBUG-CORE ON THE FPGA

The Debug Core on the FPGA is structured into different submodules, shown in Figure 5. These
modules together provide the functionality on the FPGA.
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FIGURE 5: DEBUG-CORE STRUCTURE ON THE FPGA

To start the debugging process, the Processing System waits for the arrival of the control information
from the user-interface. The PS writes the received data into the RAM and it accesses the AXI_GPIO
ports to activate the data transfer from the RAM to the AXI DataMover. The AXI DataMover routes the
control data through the MM2S-DataMover-Interface! to the UNPKG-Module'? of the AID. The MM2S-
Datamover-Interface block is an interface, which gives the AXI DataMover the control information for
the read operation. Furthermore, it checks if the transfer from the RAM was successful. The UNPKG-
Module checks, if the package type is for starting the Debug-Core or for resetting it. It also splits the
AXIS data stream into the different parameters, which are needed to control the Debug-Core Module.
The Debug-Core Module itself is the part, which handles the sampling rate, the numbers of samples,
and waits for the right trigger event. It starts the debugging process and returns the sampled data. The
PKG-Samples module'® converts the sampled data to an AXIS data stream and sends it with the help
of the DatamoveCTL block to the AXI DataMover. The AXI DataMover writes the sampled signal data
into the RAM. The PS reads the data from the RAM and sends it to the workstation, where the user-
interface can monitor the signal data.

" MM2S-DataMover-Interface stands for Memory Mapped to Stream DataMover Interface, see
chapter 4.4

2 UNPKG-Module stands for Unpackage Module, see chapter 4.7

13 PKG-Samples Module stands for Package Samples Module, see chapter 4.8
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Figure 6 shows an overview of the AID IP core with all the sub modules. The S2MM-Datamover-
Interface’* and the MM2S-Datamover-Interface provide the interfaces to control the AXI DataMover with
commands from the DatamoveCTL module's. The DatamoveCTL module counts the samples, which
are written into the RAM. If the number is reached, which was set by the PS at the initialization, an
interrupt occurs and the PS handles the interrupt with the corresponding interrupt handler and reads out
the sampled data from the RAM, builds and sends the UDP package to the workstation. Currently, 32
samples are collected in the RAM for the UDP transmission. One sample corresponds to one data
package with the package type, sample number and the 4 signal values, each 32 bit longé. 32 of these
data packages are put together to build the UDP payload. Therefore, the UDP package payload is 768
bytes.

4.2 IP CORE PROCESSING SYSTEM

The Processing System [1] (PS) offers the whole functionality of the ARM-Processor. Some of the
functionalities are interfaces to peripherals, interfaces to memory, clocks, high performance ports and
DMA, shown in Figure 7. Functionalities can be activated to use them in the design. The AID requires a
proper PS-PL (Processing System to Programmable Logic), DDR, clock and interrupt configuration.
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FIGURE 7: BLOCK DESIGN OF THE ZYNQ PROCESSING SYSTEM

4 S2MM-DataMover-Interface stands for Stream to Memory Mapped DataMover Interface
5 See chapter 4.6, IP core DataMoveCTL
6 See chapter 11, UDP connection

10



The Processing System provides the clocks for the different modules of the Debug-Core. In this design,
the PL Fabric clocks with 100 MHz and 1 MHz are used, shown in Figure 8. The Debug-Core, UNPKG
and PKG Samples modules use the 1 MHz clock. This is also the maximum sampling frequency for the
debugging process. The UNPKG and PKG Samples modules additionally use the 100 MHz clock for the
AXI-Stream transfers. This frequency is necessary to split the configuration data into the different
parameters for the debugging process and to build the AXIS data stream to save the sampled signal
data into the RAM. The different AXI modules use the 100 MHz clock.

ZYNQ7 Processing System (5.5) ¢
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FIGURE 8: CLOCK SETTINGS OF THE ZYNQ PROCESSING SYSTEM

To access the Programmable Logic (PL) from the PS, AXI_GPIO [6] ports are used. Therefore, the AXI
GP master interface must be enabled in the PS-PL section. Figure 9 shows the M_AXI_GPO0 output port.
With the AXI GP master interface, the AXI to GPIO blocks can be addressed and the signals can be set
with the driver software. Parameters of the AID, like memory addresses, data length and number of
samples for the UDP package are set with this interface. Also, the start command to read the control
information from the RAM is done with an AXl_GPIO port.

To access the DDR RAM from the PL, the AXI High Performance Slave port (S_AXI_HPO) must be
activated. This is done in the DDR section. With the S_AXI_HPO port, data can be transferred between
the AXI DataMover and the RAM. The control information is read from the RAM and the sampled signal
data are written into the RAM.

To signal the PS that data is available, an interrupt is raised. To use the interrupts, Fabric Interrupts are
activated. The interrupt is set by the DataMoveCTL block and is routed into the interrupt interface,
IRQ_F2P, of the PS, shown in Figure 9.

The first interrupt (mm2s_finished_intr) is set, when the command data was successfully transferred
from the RAM to the AXI DataMover. The interrupt handler resets the signal, which enabled the read
operation. At that point, no read operations are necessary. The signal to start the read operation will be
set again, when the PS received new control information from the user-interface.

The second interrupt (s2mm_finished_intr) is set, when the number of samples for the UDP package is
reached and all the data is successfully written into the RAM. The interrupt handler of the
s2mm_finished_intr is called. The PS reads the signal data from the RAM and sends it with a UDP
package to the workstation.
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FIGURE 9: ZYNQ PROCESSING SYSTEM

Two Fabric clocks are used with 100 MHz and 1 MHz. The PS also offers a reset. This reset is active
low. To use this reset, a Processor System Reset [7] block is used (Figure 10). It uses the clock and the
FCLK_RESETO_N signal to generate the peripheral reset signal, which is also active low. For both
clocks, Processor System Reset modules are used.

proc_sys_reset_0

slowest_sync_clk mb_reset =
ext_reset_in bus_struct_reset[0:0] =
aux_reset_in peripheral_reset[0:0] =
mb_debug_sys_rst interconnect_aresetn[0:0] @»
dcm_locked peripheral_aresetn[0:0] (@

Processor System Reset

FIGURE 10: PROCESSOR SYSTEM RESET BLOCK
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FIGURE 11: ZYNQ PROCESSING SYSTEM /O PERIPHERALS

To use the integrated Ethernet interface of the ARM, the Ethernet I/O peripheral must be activated. Also
the UART1 is activated to debug some signals from the design (ILA core with JTAG), to verify the correct
work of the Debug-Core. USBQO is activated but not used. Figure 11 shows the activated communication
interfaces.
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4.3 IP CORE AXI-DATAMOVER

The AXI DataMover [3] is an IP-core provided by Xilinx. It is able to write and read AXIS [2] data streams
to and from the RAM via the AXl4 interface. Commands are sent to the AXIS command slave interfaces
of the IP-core to initialize the transfers. For writing data into the RAM, the Stream to Memory Mapped
(S2MM) ports are used and to read data from the RAM, the Memory Mapped to Stream (MM2S) ports
are used. The command data contains information like start memory address, bytes to transfer and other
information. After the data transfer, status information is returned with the STS Master interfaces and
with error signals. The AXI DataMover block requires clock and reset signals. All of the AXI4 interfaces
use the 100 MHz PL Fabric Clock of the Processing System and the associated resetn signal. The error
signals are not used for further processing but the status stream is used for checking if the data transfer
was successful. The AXI DataMover block is shown in Figure 12.

axi_datamover_0

Z[— S_AXIS_S2MM
— P s_axis_s2mm_tdata[31:0]
— P s_axis_s2mm_tkeep[3:0] M_AXI_MM2S <+ —
—— » s_axis_s2mm _tlast M_AXI_S2MM - |
——{ 4 s_axis_s2mm_tready M_AXIS_S2MM_STS - [
—— » s_axis_s2mm_tvalid M_AXIS_MM2S_STS - [m=
w4 S_AXIS_S2MM_CMD M_AXIS_MM2S —
—: 4+ S_AXIS_MM2S_CMD m_axis_mm2s_tdata(31:0] » e
—== m_axi_mm2s_aclk m_axis_mm2s_tkeep[3:0] P jm—
- m_axi_mm2s_aresetn m_axis_mm2s_tlast p p—oo
—== m_axis_mm2s_cmdsts_aclk m_axis_mm2s_tready 4 p——o0
-—Q m_axis_mm2s_cmdsts_aresetn m_axis_mm2s_tvalid p» j=—o
—== m_axi_s2mm_aclk MM2S_efr jm=
- m_axi_s2mm_aresetn S2Mm_err =
—== m_axis_s2mm_cmdsts_awclk
- m_axis_s2mm_cmdsts_aresetn

AXI| DataMover

FIGURE 12: AXI DATAMOVER WITH INPUTS AND OUTPUTS

4.3.1 STREAM TO MEMORY MAPPED

To write data streams into the RAM, the Stream to Memory Mapped (S2MM) ports are used. There is
an interface for S2MM command information (S_AXIS_S2MM_CMD), which contains the bytes to
transfer (BTT), the type of AXI4 access, the start memory address, DRE Stream Alignment and
Realignment, End of Frame and Command TAGs.

To start the transfer, the PKG_Samples block sets the initTF signal. The DataMoveCTL block
immediately sends the transfer settings to the S2MM_DataMover _Interface, which builds the command
data stream to initialize the data transfer into the RAM. Then, the AXIS data stream is sent to the
S_AXIS_S2MM interface of the AXI DataMover and furthermore with the AXI bus to the AXI High
Performance Slave interface of the Processing System (S_AXI_HPO0). The data is forwarded into the
DDR RAM. After the data transfer, a status is returned via the M_AXIS_S2MM_STS interface. If the
transfer was successful, the status value is 0x80 and the DataMoveCTL block sets the interrupt or
increases the internal sample counter for further transfers.
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4.3.2 MEMORY MAPPED TO STREAM

To read data streams from the RAM, the Memory Mapped to Stream (MM2S) ports are used. There is
an interface for MM2S command information (S_AXIS_MM2S_CMD), which contains the bytes to
transfer (BTT), the type of AXI4 access, the start memory address, DRE Stream Alignment and
Realignment, End of Frame and Command TAGs.

To start the transfer, the Processing System sets the mm2s_startTF signal of the DataMoveCTL block.
This initializes the read operation with the proper settings for the AXI DataMover. Then, the data stream
is read from the RAM with the AXI High Performance Port. The M_AXI_MM2S interface of the AXI
DataMover receives the data, forwards it via the M_AXIS_MMZ2S interface to the user logic. After the
data transfer, a status is returned via the M_AXIS_MM2S_STS interface. If the transfer was successful,
the status value is 0x80 and the DataMoveCTL block sets the mm2s_finished_intr interrupt. The interrupt
handler resets the mm2s_startTF signal. It will be set again with the PS, when new command information
should be read from the RAM.

4.3.3 COMMAND INFORMATION FOR MM2S AND S2MM TRANSFERS

For the AID, the type of AXl4 access is set to 1 (INCR) and there is no use of Stream Alignment and
Realignment. INCR automatically increases the memory address with the bytes to transfer. This setting
is used for S2MM and MM2S transfers. The start memory address can be set with GPIO ports from the
Processing System or with a generic in the DataMoveCTL block. The DataMoveCTL block also sets the
BTT (Bytes to transfer) field for the command and sends this information to the DataMover_Interfaces
to build the command data stream.

4.3.4 AXIDATAMOVER IP SETTINGS

The AXI DataMover can access the RAM with write and read operations. It can be configured for the
appropriate use with its IP settings, as shown in Figure 13. The most important settings are, to enable
MM2S and S2MM transfer, Memory Map Data Width, Stream Data Width, Maximum Burst Size and the
Width of the BTT (Bytes to transfer) field.

Both transfer directions are enabled, both data width are set to 32 bits, maximum burst size is set to 16
and the BTT width is set to 23. The chosen settings for the AXI DataMover handle the data transfer
between the AID and the RAM.

14



¢ Re-customize IP
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FIGURE 13: AXI DATAMOVER IP SETTINGS

4.4 IP CORE MM2S_DATAMOVER_INTERFACE

This IP core was provided by my college Stephan Hochmiller from AVL List GmbH. It connects the AXI
DataMover with the DataMoveCTL block. The DataMoveCTL block sets the BTT (Bytes to Transfer),
the Addr (memory address) and the initTf (initialize transfer) to send the command data with the
m_axis_mm2s_c' interface to the AXI DataMover, which starts the read operation with the adjusted
settings, from the RAM. The control data for the debugging process are routed from the AXI DataMover
via the AXIS-interfaces s_axis_mm2s_d'® and m_axis_umm2s_d'® to the user logic (UNPKGModule).
With the AXIS interface s_axis_mm2s_s20, the transfer status stream is decoded to a Status signal,
which is processed by the DataMoveCTL block. The status signal gives information about the read
operation from the RAM. The IP core is shown in Figure 14. An overview of the inputs and outputs of
this IP core is shown in Table 6 and Table 7 in the Appendix. The data width of the AXIS interface and
the BTT can be changed in the property window of the IP core.

7 M_axis_mm2s_c stands for Master AXIS Memory Mapped to Stream Command interface
8 S axis_mm2s_d stands for Slave AXIS Memory Mapped to Stream Data interface

9 M_axis_umm2s_d stands for Master AXIS User Memory Mapped to Stream Data interface
20 S axis_mm2s_s stands for Slave AXIS Memory Mapped to Stream Status interface
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FIGURE 14: MM2S_DATAMOVER_INTERFACE IP CORE WITH INPUTS AND OUTPUTS

4.5

IP CORE S2MM_DATAMOVER_INTERFACE

This IP core was provided by my college Stephan Hochmiller from AVL List GmbH. It connects the AXI
DataMover with the DataMoveCTL block. The DataMoveCTL block sets the BTT, Addr and initTf to send
the command data with the m_axis_ S2MM_C?! interface to the AXI DataMover, which starts the write
operation with the adjusted settings, into the RAM. The signal data is routed from the PKG Samples
block via the interfaces s_axis_ uS2MM?22 and m_axis_S2MM 23 to the AXI| DataMover. The AXI
DataMover returns the transfer status stream to the s_axis_ S2MM_S?* interface, which is decoded into
a Status signal. The information of the Status signal is processed by the DataMoveCTL block. The IP
core is shown in Figure 15. The data width of the AXIS interface and the BTT can be changed in the
property window of the IP core. An overview of the inputs and outputs of this IP core is shown in Table

8 and Table 9 in the Appendix.
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RERRE N

-

S2MM_DataMover_Interface_v1_0

FIGURE 15: S2MM_DATAMOVER_INTERFACE INPUTS AND OUTPUTS

21 M_axis_S2MM_C stands for Master AXIS Stream to Memory Mapped Command Interface
22 S axis_uS2MM stands for Slave AXIS User Stream to Memory Mapped Interface

28 M_axis_S2MM stands for Master AXIS Stream to Memory Mapped Interface

24 S axis_S2MM_S stands for Slave AXIS Stream to Memory Mapped Interface
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4.6 IP CORE DATAMOVECTL

The DataMoveCTL IP core coordinates the data transfer between the AXI DataMover and the user logic.
It was developed by me during the implementation of the Debug-Core. There are input ports to set up
the data transfer in S2MM and MM2S direction. The DataMoveCTL block is shown in Figure 16. An
overview of the inputs and outputs of this IP core is shown in Table 10 and Table 11 in the Appendix.

DataMoveCTLv3_0

s2mm_data_length[11:0]
s2mm_Status([7:0]
s2mm_startTF

s2mm_BTT([22:0]
S2MM_MEM_ADDR([31:0]
s2mm_Addr[31:0]
S2MM_MEM_ADDR2[31:0]
s2mm_initTF

s2mm_number_pkg[15:0]

s2mm_finished_intr
mm2s_Status[7:0]

mm2s_BTT[22:0]
mm2s_startTF
mm2s_Addr{31:0]
mm2s_data_length[11:0] .
mm2s_initTF

RERRRRR

MM2S_MEM_ADDR[31:0]

mm2s_finished_intr
aclk
aresetn

Resetn_DC

DataMoveCTLv3 v1_0

FIGURE 16: DATAMOVECTL WITH INPUTS AND OUTPUTS

The DataMoveCTL block contains different IP settings. The width of the memory addresses and of the
Bytes to transfer is always set in the IP Settings. The address width is set to 32 bits and BTT is set to
23 bits. The other options can either be set with the IP Settings or with AXI GPIO [6] ports from the
Processing System. Currently, the control with the Processing System (C_PS_CONTROL) is active and
the memory addresses and the C_NUMBER_PKG is defined with the PS and the GPIO ports. The
C_NUMBER_PKG defines, how many data packages are collected for the UDP payload, currently it is
set to 32 packages. An overview of the IP settings is shown in Table 12 in the Appendix.

4.6.1 INITIALIZE MM2S TRANSFER

To initialize the transfer from the RAM to the user logic to start the whole debugging process, the MM2S
ports have to be addressed. Therefore, the start memory address (MM2S_MEM_ADDR) and the data
length in bytes (mm2s_data_length) have to be set either with the Processing System or in the IP
settings. The MM2S transfer is initialized by the PS. The PS sets the AXI_GPIO port, which is connected
to the mm2s_startTF input. When the mm2s_startTF signal is set, the DataMoveCTL block sends the
proper command information via the signals mm2s BTT, mm2s_Addr and mm2s_initTF to the
MM2S DataMover_Interface. The MM2S_DataMover_Interface builds the command data and sends it
to the AXI DataMover. The AXI DataMover starts the reading operation. When the data was transferred,
the MM2S_DataMover_Interface gets the status stream back, decodes it into the Status signal and
sends the status to the DataMoveCTL mm2s_Status input. If the transfer was successful, the status
value is 0x80 and the interrupt (mm2s_finished_intr) for the MM2S transfer is set. The Processing
System catches and handles the interrupt. The PS resets the mm2s_startTF signal to stop further
transfers. When the PS receives data from the user-interface, the UDP data is stored in the RAM and
the mm2s_startTF signal is set again, to start the next read operation.
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4.6.2 INITIALIZE S2ZMM TRANSFER

To initialize the data transfer from the user logic (PKG_Samples) to the RAM, the S2MM ports have to
be addressed. The PKG_Samples block generates the s2mm_startTF signal. The s2mm_data_length
is the length of the data in Bytes, which will be written into the RAM. Both S2MM memory addresses
and the number of samples can be set either with the port signals or in the IP Settings. To enable the
use of the port signals, C_PS_CONTROL has to be enabled. This allows setting up the DataMoveCTL
block with the Processing System and the AXI GPIO ports.

One of the two S2MM start memory addresses is used to write the signal data into the RAM. The
C_NUMBER_PKG/s2mm_number_pkg defines the number of samples, which are stored into the RAM
until the s2mm_finished_intr is set. After each data transfer from the AXI DataMover to the RAM, the
S2MM_DataMover_Interface receives the status stream and returns the Status to the DataMoveCTL
block. If the transfer was successful, the Status value is 0x80 and the internal counter increases. When
the C_NUMBER_PKG/ s2mm_number_pkg is reached, the interrupt signal (s2mm_finished_intr) is set.
The Processing System handles the interrupt, reads the stored data from the RAM, and builds the UDP
package. The package is transmitted via the integrated Ethernet interface of the ARM-Processor to the
workstation. In addition, the S2MM memory address are changed from S2MM_MEM_ADDR to
S2MM_MEM_ADDR2, when the internal sample counter reached the value of
C_NUMBER_PKG/s2mm_number_pkg.

This mechanism avoids concurrent read and write operations to and from the RAM. During the reading
process of the Processing System, the signal data is written into the RAM with the second memory
address. If the C_NUMBER PKG/s2mm_number_pkg is reached again, the memory address is
changed back to S2MM_MEM_ADDR. The memory address switch is shown in Figure 17

S2MM_MEM_ADDR NoS
\
Write DATA RAM
S2MM_MEM_ADDR2 NoS
v v
i RAM Read DATA
Counter = NoS
S2MM_MEM_ADDR NoS
v v
RAM Read DATA
S2MM_MEM_ADDR2 NoS
v v
: Write DATA RAM
Counter = NoS

FIGURE 17: DATAMOVECTL MEMORY ADDRESS SWITCHING
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Figure 18 shows the simulation of the DataMoveCTL block during the MM2S transfer. The MM2S start
memory address was set via the GPIO port and the Processing System. The C_PS_CONTROL is
enabled (red), therefore the corresponding values from the input ports are used (orange) to set up the
transfer from the RAM. With the mm2s_initTF signal (green at 1, 330 ns) the transfer from the RAM is
initialized. When the transfer is successful, the value of the mm2s_Status signal is 0x80 (violet) and the
finish interrupt is set (blue). This is shown at 1,399.000 ns.

1,390.000 ns

b aresetn

¥ aclk

m Resetn_DC
" mm2s_BTT[22:0] 000018
"8 mm2s_Addr(31:0] 01a00000
"8 mm2s_Status[7:0]

® mm2s_initTF

_'m mm2s_startTF
"8 mm2s_data_length[11:0
15 mm2s_finished_intr I
™ S2MM_MEM_ADDR[31:0] 01210000 01al000
"8 S2MM_MEM_ADDR2[31:0] 01320000
™ MM2S_MEM_ADDR(31:0] 01300000
e C_BTT
& C_MM2S_DATA_LEN
& C_S00_AXI_DATA_WIDTH
& C_PS_CONTROL

FIGURE 18: SIMULATION OF DATAMOVECTL DURING THE MM2S DATA TRANSFER

Figure 19 shows the simulation of the DataMoveCTL block after a successful S2MM data transfer. At
11,190.000 ns, the data transfer was successful, the transfer status is 0x80 (violet). The signal data
were correctly written to the memory address 0x01A102E8 of the RAM. The interrupt is set (blue)
because the number of collected samples for the UDP payload is reached. The internal sample counter
is reset (red) and the memory address switch is done (orange). The new memory address is set to
0x01A20000. During the next write operations, the PS is able to read the previous signal data from the
RAM without a conflict.

11.190.000 ns

ns 11,220 ns

& aresetn

¥ aclk

™ s2mm_BTT[22:0] 000018

m™ s2mm_data_length[11:0] 018

™ s2mm_Addr{31:0] 01320000 0lal0Ze8 01a200p0
™ s2mm_Status[7:0] 00

¥ s2mm_initTF

& s2mm_startTF

™ s2mm_number_pkg[15:0] 0020

™ counter{31:0] 0

™ S2MM_MEM_ADDRJ[31:0] 01310000 01al0poo
™ S2MM_MEM_ADDR2[31:0] 01320000

™ mm2s_BTT[22:0] 000018

™ mm2s_data_length[11:0] 018

™ mm2s_Addr{31:0] 01a00000

™ mm2s_Status[7:0 00

FIGURE 19: SIMULATION OF DATAMOVECTL AFTER A SUCCESSFUL S2MM DATA TRANSFER
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Figure 20 shows also shows the simulation of DataMoveCTL with a successful S2MM data transfer. At
10,500 ns, the status signals a successful transfer with the value 0x80 (violet). No interrupt is set. The
number of the collected samples for the UDP payload is not reached and the internal counter (red) is
increased. Also the memory address s_2mm_Addr (orange) is updated. At 11,190.000 ns, the memory
address switch (orange) is shown. The collected number of samples for the UDP payload is reached
and the memory address is switched to S2MM_MEM_ADDR?2 (orange). After the memory switch, the
sample collection starts again.

11, 190.000 ns

¥ aresetn

¥ aclk

™ s2mm_BTT[22:0] 000018
" s2mm_data_length[11:0] 018

™ s2mm_Addr{31:0] 01320000
™ s2mm_Status([7:0]

¥ s2mm_initTF

¥ s2mm_starTF

™ s2mm_number_pkg[15:0] 0020

™ counter{31:0] 0

™ S2MM_MEM_ADDRJ[31:0] 01310000
™ S2MM_MEM_ADDR2[31:0] 01320000
™ mm2s_BTT[22:0] 000018
™ mm2s_data_length[11:0] 018

FIGURE 20: SIMULATION OF DATAMOVECTL WITH S2MM TRANSFER AND INTERRUPT

4.7 |IP CORE UNPKGMODULE

The UNPKGModule decodes the AXIS data stream, which is sent from the AXI DataMover via the
MM2S_DataMover _Interface to the UNPKGModule. This module was developed by me during the
implementation of the Debug-Core. The tready signal of the AXIS slave interface (S_AXI4S) is always
high (ready to receive data). The com_PS_en (communication Processing System enable) enables the
communication with the PS. The outgoing signals are necessary for the debugging process with the
different settings like commands?® (CMD), numbers of samples, sample rate, trigger type, trigger value
and the chosen signals to debug. The signals pkg_ctl (Package control) and start_1MHz were used for
debugging. The module is shown in Figure 21. An overview of the inputs and outputs of this IP core is
shown in Table 13 and Table 14 in the Appendix.

25 Commands, see chapter 11 UDP connection
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UNPKGModulev2_0

pkg_ctl[15:0] =
NumOfSamples[31:0] =
— SampleRate[15:0] mm—
=4 S_AXI4S
- CMD[7:0] e
— clk_1MHz Ti T 0
n Y -
—— aclk_100MHz ] 99erTyp(7-0]
- TriggerValue[15:0] p—
—Q aresetn
Signal0[15:0] e
—Q aresetn_1MHz
N Signal1[15:0]
- com_PS_en )
Signal2[15:0] e
Signal3[15:0] m—
start 1IMHz —

UNPKGModulev2_v1_0

FIGURE 21: UNPKGMODULE WITH INPUTS AND OUTPUTS

4.7.1 INTERNAL STRUCTURE OF THE UNPKGMODULE IP CORE

Figure 22 shows the overview of the UNPKGModule. It is structured into the blocks
UNPKG_UDP_CTL_Unit, UNPKG_UDP_DATA and UNPKG_UDP_Start. All three block together
provide the functionality to map the AXIS data stream to the different control signals for the debugging
process. The UNPKG_UCP_CTL block contains a state machine, which activates the different enable
signals. The UNPKG_UCP_Data block uses the enable signals to route the incoming data to the
corresponding output signals. The UNPKG_UDP_Start block, creates with the S_AXI4S _tlast signal,
the 1 MHz start signal. The tlast signal of the AXIS data stream signals the end of the data transfer. It is
set for only one clock cycle (100 MHz).

S_AXI4S_tkeep(3:0] [ Inst_UNPKG_UDP_Start
aresetn
aresetn_1MHz [ aresein_MHz
ck_1MHz [ LA storlibiie [ start_1MHz
clk_100MHz |
start_100MHz
S_AXI4S_tdata[31:0] [ ‘ 1 Inst_UNPKG_UDP_Data UNPKG_UDP_START_PULS
S_AXI4S_tlast ¥
- - | AXIS4S _S_tdata(31:0] _. _Lcmopo) 9
)
Inst_UNPKG_UDP_CTL adk — NumOfSamples(31:0) > NumOl 31:0]
r aresetn = SanEieRa!e 15:0] D 15:0)
AXIS4S_S_tready com_PS_en = SgnaH 15:0) 3 Sig n;IO[IS'U; :
AXI4S_S _tlast en_NumOfSamples en_NumOfSamples | Sgna& 15:0] 3 S;nal1[|5'0]
S AXI4S tvalid > Axms,s,nvawi: enizR;C:D;TT en,sR,Scr:us,r; :gna\:hzz: D> signai2[15:0]
acll en_Sig i en_Si nald(15:(
ack:100MHz [0 aresetn enisiQAV = i :«75194 -_YETI\‘_V'O] D> signais(15:0]
aresetn [ 2ol S | TriggerTyp( D TriggerTyp([7:0]
com_PS_en D com_PS_en en_TV_Sig1 en_TV_Sig1 ul TrlgEEVamﬂ‘SO D TriggerValue[15:0]
en_pkg_ctl en_pkg_ctl _Lpkg_cl[15:0)
UNPKG_UDP_CTL_Unit | [— UNPKG_UDP_Data S_AXI4S_tready_OBUF _inst
H>=° [ S_AXI4S._tready
s_CMD2_i OBUF ——> cMD[7:0]
1o & L 1o _CMDO_i
S=detaut I - - g o 8
L " <
s[15:0) | RTL_MUX RTL_AND
s_CMD2_i_0 L 1 CMDO_i_0
10 \o >—Jﬂ D ° 7
S=defaut 11
RTL_AND
s[15:0) | RTL_MUX D pkg_ct[15:0]

FIGURE 22: INTERNAL STRUCTURE OF THE UNPKGMODULE IP CORE
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Figure 23 shows the simulation of the decoding process of the AXIS data stream. The AXIS data
(orange) is mapped to the corresponding output signals (blue and violet). The AXIS data stream is sent
with a frequency of 100 MHz (5,100 ns). Therefore, the data is converted into the 1 MHz clock domain
for further use. At 6,000 ns, all values are assigned to the output signals. The start signal is generated
(red). Also the CMD signal is assigned with the correct values depending on the control information from
the user-interface. Here, the package type?® was start debugging. Therefore, the start debugging bit is
set of the CMD signal. After one clock cycle, this start bit is reset to 0 (at 7 ns), to avoid a restart of the
debugging process. The com_PS_en signal enables the module for the communication with the ARM-
Processor and the integrated Ethernet interface.

tb_UNPKGModule_behav.wcfg*

Q W @ @ I « I« + o

n|clk_1MHz
m aclk_100MHz
m aresetn
m aresetn_1MHz
n S_AXI4S_tvalid
a S_AXI4S_tlast
"4 S_AX14S_tkeep[3:0]
" S_AXI4S_tdata[31:0] 00000000 00000000
» S_AXI4S_tready
" pkg_cti[15:0] 0000 0000
"8 NumOfSamples[31:0] 00000100 00000000 00000100
" SampleRate[15:0] 0000 00d1
"8 CMD[7:0] 00 20 a0
"8 TriggerTyp[7:0] 00
" TriggerValue[15:0] 0000
®d Signal0[15:0] 0000
" Signal1[15:0] 0000
" Signal2[15:0] 0000
" Signal3[15:0] 0000
w start_1MHz
m com_PS_en

FIGURE 23: SIMULATION OF THE UNPKGMODULE PROCESSING THE AXIS DATA STREAM

4.7.2 UNPKG_UDP_CTL_UNIT BLOCK

This block counts the incoming data words of the AXIS data stream. The AXIS interface transfers 4
Bytes each clock cycle until the transfer is finished. Due to the AXIS transfer, the operating frequency
of this block is 100 MHz. Depending on the counter, the enable signals are set to start the data mapping.
The module is shown in Figure 24. A state machine is working inside this block. The state machine
switches into the read data state (RD_DATA), when the tvalid signal of the AXIS interface is set (the
tvalid signal starts the data transfer) In the read state, the internal counter is increased every clock cycle
of the transfer, which enables the corresponding enable signals. With the tlast signal of the AXIS
interface, the transfer is over and the state machine switches back into the IDLE state. The state
machine is shown in Figure 25. The outputs of this block are the different enable signals to map the
received AXIS data stream to the corresponding debugging parameters. It is also possible, that more
than one debugging parameter is mapped by an enable signal, like the en_SR_CMD_TT signal. This
signal enables the mapping of the sample rate, the CMD Byte and the trigger type. The tready signal for
the AXIS interface is constantly set, which means the UNPKGModule is always ready to receive data.
This block is designed, that only the configuration data (start debugging, stop debugging) from the user-
interface is processed. The configuration data are always the same length. If wrong data is transmitted,

26 Package Type, see chapter 11.1 Package Type Numbers
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the Debug-Core is not able to start or reset the debugging process. An overview of the inputs and outputs

of this IP core is shown in Table 15 and Table 16 in the Appendix.

Inst. UNPKG_UDP_CTL

AXIS4S_S_tready
AXI4S_S tlast | en_NumOfSamples
AXI4S_S _tvalid | en_SR_CMD_TT
aclk | en_Sig2_Sig3
aresetn | en_Sig4
com_PS_ en | en_TV_Sig1
en_pkg_ctl

UNPKG_UDP_CTL_Unit

FIGURE 24: UNPKG_UDP_CTL_UNIT BLOCK

tlast or
aresetn

RD_DATA
State

FIGURE 25: UNPKG_CTL_UNIT STATE MACHINE

Figure 26 shows the simulation of the state machine. Due to the set tready signal (orange), the AXIS
interface is always ready to receive data. When the transfer starts, the tvalid signal gets set (orange at
30,430 ns). At this point, the state machine switches from the IDLA state into the RD_DATA state. At
this point, the first 4 Bytes are transmitted with the AXIS interface. Therefore, the first enable signal is
set, which is en_NumOfSamples (Number of Samples). The AXIS transfer is still active, as long as tvalid
and tready is set. At each further clock cycle and ongoing data transfer, the internal counter increases
and sets the other enable signal, en_ SR _CMD_TT (sample rate, CMD, trigger type at 30,44 ns),
en_TV_Sig1 (trigger value, signal 1 at 30,45 ns), en_Sig2_Sig3 (signal 2, signal 3 at 30,46 ns) and
en_Sig4 (signal 4 at 30, 47 ns). The previous signals are reset again. The enable signal are marked
blue. When the tlast signal is set, which means the data transfer is finished, the state machine switches

back into the IDLE state (red at 30,47 ns).
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30,.430.000 ns

30,420 p ns 30,460 ns
m aresetn

1 AXI4S_S_tvalid

T AXI4S_S_tlast

® AXIS4S_S_tready T

® en_pkg_ctl

e en_NumOfSamples

m en_SR_CMD_TT

® en_Sig2_Sig3

¥ rd_state RD_DATA :

FIGURE 26: SIMULATION OF THE STATE MACHINE OF THE UNPKG_CTL_UNIT BLOCK

4.7.3 UNPKG_UDP_DATA BLOCK

The UNPKG_UDP_Data block maps with help of the enable signals the data from the AXIS data stream
to the right output signals. The AXIS data stream contains the information to start the debugging process
with the adjusted parameters or reset the Debug-Core (stop debugging). This block also uses the 100
MHz clock due to the AXIS interface. The module is shown in Figure 27. The input signal en_pkg_ctl
and the output signal pkg_ctl are not used. An overview of the inputs and outputs of this IP core is shown
in Table 17 and Table 18 in the Appendix.

Inst_ UNPKG_UDP_Data

AXIS4S_S_tdata[31:0] n CMDJ[7:0]
aclk NumOfSamples[31:0]

aresetn SampleRate[15:0]
com_PS_en__ Signal1[15:0]
en_NumOfSampIes___ Signal2[15:0]
en:SiR_%_lT__ Signal3[15:0]
en_SigZ_SigS__ Signal4[15:0]

en_Sig4 TriggerTyp([7:0]

en_TV_Sig1 TriggerValue[15:0]

en_pkg_ctl pkg_ctl[15:0]

UNPKG_UDP_Data

FIGURE 27: UNPKG_UDP_DATA BLOCK

Figure 28 shows the processing of the AXIS data stream. Due to the different enable signals, the values
of AXIS data stream can be assigned to the different output signals. In one clock cycle the AXIS interface
transfers 4 Bytes. At 5,090 ns, the en_NumOfSamples (green) is set, but no values are assigned to any
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output signal. That is because, the first 2 Bytes is the package type?” value and the value for the number
of samples is a 32 bit value. Therefore, the NumOfSamples signal is assigned with a value, when the
next 4 Bytes are received. This happens at 5,1 ns. The other 2 Bytes are assigned to the SampleRate
signal (orange). At 5,11 ns, the en_TV_Sig1 signal enables the assignment for the CMD Byte, the trigger
type and the trigger value (blue). At 5,12 ns, the values for the signals Signal1 and Signal2 are assigned
and at the end the last two signals (violet) are set with their values. The assignments of all signals are
delayed by one clock cycle.

5.090.000 ns

m aresetn
m com_PS_en
M AXIS4S_S_tdata[31:0] 01000001 00000000 01000001 a0000003 00000002 00030006
" pkg_cti[15:0] 0000 0000
" NumOfSamples[31:0] 00000000 00004000 0000100
®# SampleRate[15:0] oodo 0001
"& CMD[7:0] 00
™ TriggerTyp([7:0]
" TriggerValue[15:0] 0000
" Signal1[15:0]
" Signal2[15:0] 0002
" Signal3[15:0] I 0000
®d Signal4[15:0] 0000
w en_pkg_ctl
» en_NumOfSamples
m en_SR_CMD_TT
m en_TV_Sig1
m en_Sig2_Sig3
m en_Sigd

FIGURE 28: UNPKG_UCP_DATA SIMULATION OF PROCESSING THE AXIS DATA STREAM

4.7.4 UNPKG_UDP_START PULS BLOCK

The UNPKG_UDP_Start PULS block generates the 1 MHz start pulse to initialize the debugging
process. The 1 MHz and 100 MHz clocks are used for this block. For this, the tlast signal of the AXIS
interface is used. The tlast signal has a clock frequency of 100 MHz and with the detection of the falling
and rising edge of the 1 MHz clock, the 1 MHz start pulse is created. Also the CMD_Reset signal is
created this way, depending on the incoming package type?8. Package type 0 (start debugging package)
generates the start signal and package type 3 (stop debugging/reset) generates the reset/stop signal.
The block is shown in Figure 29. An overview of the inputs and outputs of this IP core is shown in Table
19 and Table 20 in the Appendix.

27 Package type of the UDP payload, see chapter 11.1 Package Type Numbers
28 Package type, see chapter 11.1 Package Type Numbers
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Inst UNPKG_UDP_Start

aresetn

aresetn_1MHz

clk_1MHz start 1MHz

clk_100MHz
start_100MHz

UNPKG_UDP_START_PULS

FIGURE 29: UNPKG_UDP_START_PULS BLOCK

Figure 30 shows the simulation of the UNPKG_UDP_Start Puls block at the generation of the 1 MHz
start signal. The input is the start_100MHz signal (blue), which is the tlast signal of the AXIS interface.
This signal is only set for a 100 MHz clock cycle, when the AXIS data transfer is finished.

At 15,265 ns, the rising edge of the start 100MHz signal is detected and the s_puls signal (orange) is
set. Due to the enabled s_puls signal, the signals start 1MHz (red) and s_en_fedge?® (green) are set at
16,000 ns.

Due to the high s_en_fedge signal at the falling edge of the 1 MHz clock, the signal s_falling_edge is
set (violet at 16,500 ns). This signal is sampled by the 100 MHz clock and when it is set, the s_puls
signal is reset to 0. Due to the reset of s_puls, the s_en_fedge signal is reset at 17,000 ns. At this point
the start_1MHz signal is also reset, which generated the 1 MHz start pulse to start or stop the debugging
process. The s_falling_edge signal is reset at 17,500 ns, due to the disabled s_en_fedge signal.

16,000.000 ns

15,265 ns
0 ns 16,500 ns 17,000 ns 17,500 ns
a clk_100MHz
m clk_1MHz
m aresetn
m aresetn_1MHz
o start_100MHz
m start_1MHz
¥ s_puls
¥ s_falling_edge
¥ s_en_fedge

FIGURE 30: SIMULATION OF THE UNPKG_UDP_START_PULS BLOCK TO CREATE THE 1 MHZ START PULSE

4.8 IP CORE PKG_SAMPLES

The PKG_Samples block generates an AXIS data stream for the transfer into the RAM. The data stream
contains the package type, the sample number and the four signal values. Each of these signals and
the send_enable signal are routed from the DebugCoreModule block to the PKG_Samples block. To
build the data stream, the send_enable signal has to be set. To build the AXIS data stream, the signals
are converted from the 1 MHz clock domain into the 100 MHz clock domain. The frame size determines

29 S_en_fedge stands for signal enable falling edge
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the length of the AXIS data stream. The initTF3° signal initializes the data transfer with the AXI
DataMover into the RAM. Figure 31 shows the PKG_Samples block. The signal framesize defines the
length of the AXIS data stream. The signal package_type is set to 1, which is defined as data package
with the sampled signal data (SignalO, Signall, Signal2 and Signal3) and the sample number
(number_of_samples). The send_enable signal enables the build of the AXIS data stream. The AXIS
data width can be adjusted in the IP settings. Currently the width is set to 32 bits. An overview of the
inputs and outputs of this IP core is shown in Table 21 and Table 22 in the Appendix.

To lower the longest path in the design, pipeline stages were added between the DebugCoreModule
and the PKG_Samples block. The pipeline stages are simple Flip-Flops to save the signal values. The
pipeline stages are necessary to fulfill the timing constrains, which were generated from the FPGA
design.

PKG_Samples_0

framesize[11:0]
send_enable
package_type[31:0]
number_of _samples[31:0]
signal0[31:0] . e
m_axis = frm—
signal1[31:0] . i
initTF ——
signal2[31:0]
signal3[31:0]
clk_1MHz
m_axis_aclk

m_axis_aresetn

PKG_Samples v1_0

FIGURE 31: PKG_SAMPLES BLOCK WITH INPUTS AND OUTPUTS

Figure 32 shows the conversion of the 1 MHz send_enable signal (orange) to the 100 MHz initTF signal
(red). The 100 MHz clock samples the 1 MHz clock and detects the rising edge of the 1 MHz clock.
When send_enable is set and the rising edge was detected, the rising_1MHz signal is set. It gets delayed
by one 100 MHz clock cycle (rising_1MHz_1). Both rising_1MHz signals (blue) generate the initTF signal
for the 100 MHz clock cycle (20.000 ns). The falling edge of the 1 MHz clock resets the signals to detect
the next rising edge.

This procedure makes it possible to convert the 1 MHz signal to a 100 MHz signal with the highest
sample rate (1 MHz) and with lower sample rates. The send_enable signal is set with the sampling
frequency. At the highest sample rate, the send_enable signal is constantly set to high, shown in Figure
32. At each rising edge of the 1 MHz clock, the initTF signal is generated. The send_enable signal is set
with the sampling frequency.

30 Init_TF stands for initialize transfer
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¥ clk_1MHz
¥ s_m_axis_aclk

¥ s_send_enable

¥ s_m_axis_aresetn
m send_enable

¥ rising_sample

¥ rising_1MHz

FIGURE 32: SIMULATION OF THE PKG_SAMPLES BLOCK TO GENERATE THE 100 MHZ INITTF SIGNAL

Figure 33 shows the packaged AXIS data stream (red). The data is sent with the AXIS master interface
(red) to the S2MM_DataMover_Interface and forwarded to the AXI DataMover to write the data into the
RAM. The initTF signal is generated from the send_enable signal (violet) and is set one clock cycle
before the AXIS data transfer starts. The initTF signal is routed to the DataMoveCTL block, which
initializes with the S2MM_DataMover_Interface the data transfer to the AXI DataMover and into the
RAM. The data transfer starts at 2,020 ns. The last data word of the AXIS data stream is determined
with the tlast signal (2,070 ns).

The created AXIS data stream contains the package type (1 for data package), the sample number
(timestamp) and the 4 values of the selected signals for the debugging process (all orange).

&
.
W s_m_axis_tdata[31:0] 00000001
& s_m_axis_tiast 0
K
00000001
00000003
00000005
00000006
00000007
00000008
5000 ps
500000 ps
32
SEND_STREA
0

FIGURE 33: SIMULATION OF BUILDING THE AXIS DATA STREAM WITH THE PKG_SAMPLES BLOCK

4.9 |IP CORE DEBUGCOREMODULE

The DebugCoreModule was designed by me with MATLAB Simulink and provides the whole sampling
functionality of the Advanced Inverter Debugger. The MATLAB model was converted to vhd files, which
were included into a new Vivado project. Figure 34 shows the DebugCoreModule IP core. Most of the
inputs are from the UNPKGModule to set up the debugging process. The Input_Signals is an interface
with 300 signals, each 32 bits. 4 signals out of these 300 signals can be selected for the debugging
process. The signal clk_1MHz_enable enables the module. All control signals, like ¢ NumOfSamples,
c_SampleRate, c_ CMD, c¢_TriggerTyp, c_TriggerValue, c_Signal0, c_Signal1, ¢c_Signal2 and c_Signal3,
are used to set up the debugging process with the adjusted parameters. The value of c_ NumOfSamples
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determines how long the Debug-Core is sampling. The value of c_SampleRate determines the sampling
frequency. The value of c_CMD determines whether the debugging process is started or stopped/reset.
It also determines whether a trigger is active. The value of c_TriggerType determines which trigger is
active. The value of ¢_TriggerValue is the trigger value. The values of ¢_SignalO, c_Signal1, c_Signal2
and c_Signal3 determines the signals, which are selected for the debugging process. The signals
debugged_Sig0, debugged_Sig1, debugged_Sig2 and debugged_Sig3 are the signals with the sampled
values. They are used to build the data package. The signal debugged NoS contains the sample
number and is also used to build the data package. The sample number works as time stamp. The
out_start_pkg1MHz signal enables the PKG_Samples block to build the AXIS data stream and start the
AXIS data transfer into the RAM. The Resetn_1MHz signal is used to reset the DataMoveCTL block. All
other signals were used for debugging and are not used anymore. An overview of the inputs and outputs
of this IP core is shown in Table 23 and Table 24 in the Appendix.

DebugCoreModule_0

out_start_pkgTMHZ me=——
debugged_NoS[31:0] M
debugged_Sig0[31:0] e

= ||[4 mput_signais debugged_Sig1[31:0] mmm—
clk_1MHz debugged_Sig2[31:0] e
resetn debugged_Sig3[31:0] e
clk_1MHz_enable db_CMD[7:0] =
c_NumOfSamples[31:0] db_TT([7:0] mm
¢_SampleRate[15:0] db_TV[15:0] mm
c_CMD[7:0] db_SR[15:0] wm
c_TriggerTyp[7:0] db_NoS[31:0] mm
c_TriggerValue[15:0] db_Sig0[15:0] =
c_Signal0[15:0] db_Sig1[15:0] =
c_Signal1[15:0] db_Sig2[15:0] wm
¢_Signal2[15:0] db_Sig3[15:0] w=
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FIGURE 34: DEBUGCOREMODULE WITH INPUTS AND OUTPUTS

The DebugCoreModule is structured into several submodules shown in Figure 36.

The submodule Split_ CMD_Bits splits the 8-Bit command signal into the different 1-bit signals. These
signals are CMD_StartSampling, which start the debugging process, CMD_Reset, which stops/resets
the debugging process, CMD _trigger, which enables the trigger and CMD_PreTrigger, which enables
the Pre-Trigger®'. The post-trigger3? is active, when the trigger is enabled and the CMD_PreTrigger is
not set.

The submodule Start_Control starts the sampling process. It also resets the sampling process.

The submodule Trigger_Control handles the whole triggering. It checks which trigger was selected and
when to start the sampling depending on the present trigger settings.

The submodule Sample_Rate_Counter handles the sampling rate. Depending on the selected sample
rate, the internal counter is changed to achieve the proper sample rate.

31 Pre-Trigger, see chapter 4.12 Submodule Trigger_Control
32 Post-Trigger, see chapter 4.12 Submodule Trigger_Control
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The submodule Send_Control handles the sampling until the number of samples is reached or a reset
occurs. It also resets the submodules, Sample_Rate_Counter, Start_Control and RingBuffer, when the
adjusted number of samples is reached.

The submodule RingBuffer saves 100 signal values before the trigger event happens (Pre-Trigger).
When the post-trigger is active, the signals are only routed through this block.

The submodule Signal_Selection contains the 300 to 1 multiplexer. There are 4 of these submodules in
use due to the possibility to select 4 different signals for the debugging process. These 4
Signal_Selection blocks use most of the resources on the FPGA, which are used for the Advanced
Inverter Debugger.

Figure 35 shows the simulation of the DebugCoreModule with an active post-trigger. The post trigger is
the trigger that immediately activates the debugging process, when the trigger condition is met. The
orange marked signals are the control signals, to set up the debugging process. At 2 us, all signals are
updated to the values from the AXIS data stream. The ¢_CMD signal®® has the value 0xAQ, which sets
up the debugging process with an active post-trigger. One clock cycle later at 3 us, the start debugging
bit is reset again. The debugging process starts, when the value of the trigger signal (signal0) is less
than the trigger value. The trigger value is 0. At 9 us, the trigger signal (debugged_Sig0, red) switches
to the value -1, which activates the trigger. At this point, the sample counter (debugged_NoS, blue)
starts increasing and also the signal to enable the AXIS data transfer is set (out_start Pkg1MHz, violet).
The selected signals for the debugging process are, signal0, which changes its value each clock cycle,
signal2, signal3 and signal5, which are constants with the values 2, 3 and 5.

w dk_1MHz

m resetn

m dk_1MHz_enable
™ c_NumOfSamples[31:0]
" c_SampleRate[15:0)
" c_CMDI[7:0]
" c_TriggerTyp(7:0]
™ c_Triggervalue[15:0)

w db_triggered

start_pkg1MHz

ebugge
™ debugged_

"4 signal[
™ signal2|
" signal3
"4 signal4
" signal5|

"d signal6[31:0)

FIGURE 35: SIMULATION OF THE DEBUGCOREMODULE BLOCK WITH AN ACTIVE POST-TRIGGER

33 CMD signal, see chapter 4.10 Submodule Split CMD_Bits
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FIGURE 36: DEBUGCOREMODULE BLOCK OVERVIEW IN MATLAB SIMULINK WITH SUBMODULES
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Figure 37 shows the simulation of the DebugCoreModule with an active pre-trigger. With the pre-trigger,
up to 100 signal values of the 4 selected signals can be stored in ring buffers, before the trigger is
activated. When no trigger occurs, the ring buffer overflows (cyclic overwrite). At 2 us, all signals are
updated to the values from the AXIS data stream. The ¢_CMD signal has the value 0xB0, which sets up
the debugging process with an active pre-trigger. At this point, the WriteRAM_Enable signal (blue) is
set, which enables the write operation for the ring buffer. The selected signal values are written into the
ring buffer. The selected signals are signal0 (also trigger signal), signal2, signal3 and signal5 (all marked
blue). At 9 us, the trigger signal value is less than the trigger value, the trigger event occurs and the
db_triggered signal (violet) is set. Due to the read operations from the ring buffers, the
out_start_pkg1MHz signal (red) is set 2 clock cycles delayed, which initializes the AXIS data transfer.
Also at 11 us, the sample number (debugged NoS) increases and the signal values are read from the
ring buffer (green). The read values start with 2, 3, 4 and 5 from the debugged_Sig0. The other 3
debugged signals (green) are constants with the values 2,3 and 5.
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FIGURE 37: SIMULATION OF THE DEBUGCOREMODULE BLOCK WITH AN ACTIVE PRE-TRIGGER

410 SUBMODULE SPLIT_CMD_BITS

The submodule Split_ CMD_Bits splits the 8-bit command signal into 1 bit signals. The block is shown
in Figure 38. An overview of the inputs and outputs of this block is shown in Table 25 and Table 26 in
the Appendix.

The CMD_In signal is shown in Figure 39. The 4 LSB are not accessed and can be used to extend the
AID in the future. The start bit, CMD_StartSampling, is used to initialize the debugging process with a 1
MHz pulse. The reset bit, CMD_Reset, is used to stop the debugging process. The trigger bit,
CMD_Trigger, enables the post-trigger. The pre-trigger is enabled, when both, the trigger and the Pre-
Tr (CMD_PreTrigger) bits are set. When the start and reset bits are set during an unexpected error case,
the reset signal is prioritized.
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FIGURE 38: SPLIT_CMD_BITS BLOCK WITH INPUTS AND OUTPUTS

7 6 5 4 3 2 1 0

Start Reset | Trigger | Pre-Tr | reserved | reserved | reserved | reserved

FIGURE 39: COMMAND BYTE WITH BIT DESCRIPTION

411 SUBMODULE START_CONTROL

The Start_Control block gets the 1 MHz CMD_StartSampling pulse from the Split. CMD_Bits block to
generate a constant CMD_Start signal. This signal is set until a reset occurs. This reset can be the
internal one, when the number of samples is reached or the CMD_Reset from the user-interface. When
both input signals are set, the CMD_Start signal is not set and the debugging process is not started.
Figure 40 shows the Start _Control block. An overview of the inputs and outputs of this block is shown
in Table 27 and Table 28 in the Appendix.

—Pp reset
CMD_Start ——
—p» CMD_StartSampling

Start Control

FIGURE 40: START_CONTROL BLOCK WITH INPUTS AND OUTPUTS

The Figures 41 and 42 show the simulation of the start and reset of the debugging process. To start the
debugging process, the CMD_StartSampling signal sets the CMD_Start signal. It is constant high until
a reset occurs. The reset can either be a stop debugging command (CMD_Reset) or an internal reset
when the number of samples is reached to stop the sampling process. The CMD_start signal is set at 2
us in Figure 41 and is reset at 1,037 us in Figure 42, when the reset_1 signal is set.
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FIGURE 41: START_CONTROL SIMULATION OF THE CMD_START SIGNAL

1,037.000000 us

¥ clk_100MHz

¥ clk_1MHz

¥ clk_1MHz_enable

a CMD_StartSampling
hreset_1

» CMD_Start

FIGURE 42: START_CONTROL SIMULATION OF THE CMD_START SIGNAL RESET

Figure 43 shows the simulation of the Start_Control block, when the signals to start and stop the
debugging process are set at the same time. At 2 us, the signals CMD_StartSampling and reset_1 are
set. The reset gets prioritized and the debugging process is reset. Due to the start and stop/reset
package types, this case should not happen.

Z2.000000 us

¥ clk_100MHz
¥ clk_1MHz

¥ clk_1MHz_enable

» CMD_StartSampling

» CMD_Start

FIGURE 43: START_CONTROL SIMULATION WHEN BOTH INPUT SIGNALS ARE SET

412 SUBMODULE TRIGGER_CONTROL

The submodule Trigger_Control handles the trigger process. The submodule is shown in Figure 44. The
internal structure is shown in Figure 45. Depending on the command signal, Pre- or Post-Trigger or even
none trigger is selected. Depending on the TriggerType and the TriggerValue, the trigger point is
changed. There are 3 Post-Triggers and 3 Pre-Triggers available. The signal and the trigger value are
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converted into int32 signals. This makes a comparison possible, to check for the different trigger events.
The trigger event can happen when the signal value is higher, lower or equal to the trigger value. Figure
46 shows an overview of the Trigger Selection block. If CMD_Trigger is low, no trigger is active and the
Start_Sampling signal is set immediately. The Trigger_Control block handles only Post-Triggers. The
Pre-Trigger is handled in combination with the RingBuffer block. The CMD_PreTrigger signal enables
in combination with the Enable_NoSCounter signal the write operations into the ring buffer. A maximum
of 100 data points can be stored (with cyclic overwrite) before the trigger event starts reading those
values (enabled by Start_Sampling) to build the AXIS data stream. An overview of the inputs and outputs
of this block is shown in Table 29 and Table 30 in the Appendix.
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FIGURE 44: TRIGGER_CONTROL WITH INPUTS AND OUTPUTS
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FIGURE 45: INTERNAL STRUCTURE OF THE TRIGGER_CONRTOL MODULE
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FIGURE 46: INTERNAL STRUCTURE OF THE TRIGGER_SELECTION MODULE

4.12.1 TRIGGER TYPE DESCRIPTION

The functionality of the Pre- and Post-Trigger of the Trigger_Control block is the same. The Post-Trigger
is handled with this module but the Pre-Trigger is handled in combination with the ring buffer. The
CMD_PreTrigger enables with the Enable_NoSCounter signal the write operations into the ring buffer.
When the trigger event happens, the read operations start. The Trigger_Control block handles the
different trigger types, like higher, less, or equal to a value, shown in Table 1. Each of this options can

be selected for the Post- and Pre-Trigger.

TABLE 1: TRIGGER TYPE DESCRIPTION

the trigger value

Trigger TriggerType | Description
Value
Signal value is higher 0 The trigger activates the sampling, when the signal value is
than the trigger value higher than the trigger value. If the Pre-Trigger is active, the
read operations from the ring buffer is also enabled.
Signal value is lower 1 The trigger activates the sampling, when the signal value is
than the trigger value lower than the trigger value. If the Pre-Trigger is active, the
read operations from the ring buffer is also enabled.
Signal value is equalto | 2 The trigger activates the sampling when the signal value is

equal to the trigger value. If the Pre-Trigger is active, the read
operations from the ring buffer is also enabled.
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4.12.2 FUNCTIONALITY OF THE TRIGGER

Figure 47 gives an overview of the trigger process. The signal, which is used for the trigger, is compared
with the trigger value. This is done with the operating frequency of the AID, 1MHz. When the selected
sample rate is 1 MHz, the trigger event starts the sampling process immediately. Figure 47 shows the
trigger process with a lower sampling rate. Here, the signal value crosses the trigger value shortly after
the sample point. The sampling process starts with the next sample point. The same principle is also
used for the other trigger types.

A

trigger_even?t/\ trigger_value
10

MILA_ P

0 N / |

t

sigl
-10

v sample_times
FIGURE 47: TRIGGER FUNCTIONALITY

Figure 48 shows the simulation of the trigger process. The signal value (Signal_rsvd, red) changes every
clock cycle and can be a positive or negative integer. At 2 us, the trigger is enabled with the command
signals CMD_Start and CMD_Trigger and set up with the trigger type and the trigger value (marked
orange). The trigger value is set to 0 and the trigger type is set to 1, which means the trigger event
happens, if the signal value is below the trigger value. At 9 us, the signal S_LoV _triggered (lower than
value) is enabled. Also the other signals, S_UpV_triggered (above value) and S_EqT _triggered (equal
to) can be enabled at this point. With the trigger type, the correct trigger event is selected and the
Start_Sampling signal (blue) is set.
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m enb

m Reset_1

& CMD_Start
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FIGURE 48: TRIGGER_CONTROL SIMULATION WITH SIGNAL VALUE LOWER THAN TRIGGER VALUE
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Figure 49 shows the simulation when no trigger is active. The CMD_Trigger signal (blue) is not set and
therefore no trigger is active. The CMD_Start signal sets the Start_Sampling signal (red) to start the
debugging process immediately.

4,006.000000 us

m clk

m reset

m enb

m Reset_1

" TriggerTyp[7:0]
"4 TriggerVvalue[15:0]
"4 Signal_rsvd[31:0]
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I

FIGURE 49: TRIGGER_CONTROL SIMULATION WHEN NO TRIGGER IS ACTIVE

413 SUBMODULE SEND_CONTROL

The submodule Send_Control handles the sampling process. It counts the numbers of samples and if
the adjusted NumberOfSamples is reached, the internal Reset is set. This Reset resets the
Send_Control block, the Trigger Control block, the Sample_Rate_Counter block, the RingBuffer and
the internal sample counter of the Send_Control block. The internal sample counter increases when the
Start_Sampling signal from the Trigger_Control block and the Enable NoSCounter from the
Sample_Rate_Counter are set. The counter increments, when both signals are set. This is necessary
due to different sample rates. Figure 50 shows the Send_Control block. Figure 51 gives a more detailed
overview of this block. The Sample_Counter is the timestamp for the sampled signal values. With the
Sampling signal, the data transfer into the RAM is initialized and when the Pre-Trigger is active, the read
operation from the ring buffer is initialized with the data transfer into the RAM. The Reset_Counter signal
resets the counter, when the stop debugging command is sent from the user-interface. An overview of
the inputs and outputs of this block is shown in Table 31 and Table 32 in the Appendix.

—{ enable_NoSCounter Reset ———

—»| NumberOfSamples ~ Sample_Counter ———

—»{ Reset_Counter SamplingF———

Send Control

FIGURE 50: SEND_CONTROL WITH INPUTS AND OUTPUTS
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FIGURE 51: SEND_CONTROL MODULE OVERVIEW

The Send_Control block gets the selected number of samples, which can be between 1024 and 999424.
The sample counter is compared to the selected number of samples after each increase. The Reset
signal is set, when the counter value is higher. It resets the internal sample counter and the other
submodules. It is also possible to select 0 numbers of samples, which means the sampling process runs
to infinity until the CMD_Reset stops it. It also resets the sample counter and the other submodules. The
CMD_Reset is done with the user-interface.

Figure 52 shows the simulation of the Send_Control block. The selected sampling frequency is 250 kHz.
Therefore, the sample counter increases with each fourth clock cycle. When the sample counter reaches
the number of samples (blue), which is 1024, then the counter is reset and the other submodules are
also reset.

25.000000 us

¥ clk_100MHz
& clk_1MHz
b enb

i reset

b Reset_1

m Reset_Counter

» enable_NoSCounter

"8 NumberOfSamples[31:0]
" Sample_Counter{31:0]
I Sampling

FIGURE 52: SEND_CONTROL SIMULATION WITH A SAMPLE RATE OF 250 KHz

Figure 53 shows the simulation of the Send_Control block when the adjusted number of samples is
reached. The sample frequency is 1 MHz, therefore the Sampling signal (orange) is constantly set and
the sample counter (red) is increased with each clock cycle. The number of samples (blue) is set to
1024 and at 1,048 ns, the sample counter reaches 1024 samples. Therefore, the sample counter is
reset. The reset is also used, to reset the other submodules with the signal Reset_1.
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FIGURE 53: SEND_CONTROL SIMULATION WHEN THE NUMBER OF SAMPLES IS REACHED

414 SUBMODULE SAMPLE_RATE_COUNTER

The submodule Sample_Rate_Counter handles the sample frequency. The value of the SampleRate
signal determines the sample frequency. It is the compare value to the internal counter. The
start_counter signal enables the counting process to determine the sample frequency. Each time, the
counter reaches the value of the SampleRate signal, the counter is reset and the Enable_NoSCounter
is set. The Reset_Counter signal resets the Sample_Rate_Counter block. The block is shown in Figure
54. The internal structure of the Sample_Rate_Counter block is shown in Figure 55. An overview of the
inputs and outputs of this block is shown in Table 33 and Table 34 in the Appendix.

——» Reset_Counter

—p»| start_counter Enable_NoSCounter

—— SampleRate

Sample Rate Counter

FIGURE 54: SAMPLE_RATE_COUNTER WITH INPUTS AND OUTPUTS
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FIGURE 55: INTERNAL STRUCTURE OF THE SAMPLE_RATE_COUNTER MODULE

Table 2 shows the different sample frequencies, which can be selected with the user-interface. The
selectable sample frequencies are between 1 kHz and 1 MHz. To start the debugging process with the
selected frequency, the internal counter must be compared to the sample rate value. This value is
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calculated with the maximum frequency (1 MHz) and the selected sample frequency, shown in Equation
1. When the sample frequency is set to 1 MHz, the internal counter is reset each clock cycle. Also the
Enable_NoSCounter signal is set each clock cycle. If other frequencies are selected, the internal counter
increases with a frequency of 1 MHz until the sample rate value is reached and enables the
Enable_NoSCounter signal. The counter is reset again and starts increasing until the start_counter
signal is reset.

maxFrequency[Hz]

S leRat lue] =
ampleRate [value] SampleRateFrequency [Hz]

TABLE 2: SELECTABLE SAMPLE FREQUENCIES FOR THE DEBUGGING PROCESS

SampleRate Sample Frequency
[value] [kHZz]
1 1000
2 500

4 250

5 200

8 125
10 100
16 62.5
20 50

25 40

32 31.25
40 25

50 20

64 15.625
80 12.5
100 10
125 8

160 6.25
200 5

250 4

320 3.125
400 2.5
500 2

625 1.6
800 1.25
1000 1

415 SUBMODULE RINGBUFFER

The Submodule RingBuffer handles the Pre-Trigger setting. The module is shown in Figure 56. When
the Pre-Trigger is set, 100 signal values can be saved into Block-RAMs before the actual trigger event
happens. This gives more information about the behavior of the signals before an event was received.
As BRAMSs, Simple Dual Port RAMs of the MATLAB Simulink library are used.

The WriteRAM_Enable signal enables the RingBuffer to write the signal values into the BRAMs. The
RingBuffer will cyclic overwrite after 100 entries. When the trigger event occurs, the entries are read
from the BRAMSs. If the Pre-Trigger is disabled, the signal data is routed through the RingBuffer module.
Otherwise the signal data from the RingBuffer is used.

The Sampling signal sets the Send_Enable signal. It also activates the read operation by increasing the
read address for the BRAMs. When the Pre-Trigger is active, the Send_Enable signal is delayed by 2
clock cycles due to the write and read operations of the BRAMs. A more detailed overview of the
RingBuffer module is shown in Figure 57.
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The Reset signal resets the internal counters. The write and read counter are used as memory
addresses for the BRAMs. An overview of the inputs and outputs of this block is shown in Table 35 and
Table 36 in the Appendix.

The whole RingBuffer submodule is structured into the submodules RingBufferCTL and RingBufferSig.
The RingBufferCTL contains the counters to address the memory. The RingBufferSig contains the
BRAM blocks and the logic to select the right signal data for the output ports.
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FIGURE 56: RINGBUFFER WITH INPUTS AND OUTPUTS
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FIGURE 57: INTERNAL STRUCTURE OF THE RINGBUFFER MODULE

The submodule RingBufferCTL contains the counters for the write and read operations. The
ReadRAM_Enable signal increments the read counter and the WriteRAM_Enable signal increments the
write counter. When they reach the value 102, they overflow and start from 0 again. The counter values
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are used as BRAM addresses (rd_addr and wr_addr). When the trigger event occurs at the first sample,
a write and read operation of the BRAMs are necessary. To avoid concurrent access, the read address
is delayed by 1 clock cycle. This makes sure, that the signal data is written into the BRAMs before they
are read. When the trigger event occurs, the ReadRAM_Enable signal is set and the read counter starts
to increase. The read counter moves always with the same gap to the write counter. Figure 58 shows
the internal structure of the RingBufferCTL module. An overview of the inputs and outputs of this block
is shown in Table 37 and Table 38 in the Appendix.
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FIGURE 58: INTERNAL STRUCTURE OF THE RINGBUFFERCTL MODULE

The submodule RingBufferSig checks if the Pre-Trigger is active and which data will be routed to the
output ports. If the Pre-Trigger is active, the saved signal values from the BRAMs are selected, otherwise
the 4 signals are directly routed through the RingBufferSig block. The read and write address for the
BRAMs are controlled with the RingBufferCTL block. With the WriteRAM_Enable signal, new values are
written into the BRAMs and the previous values are read. Due to this behavior of the Simple Dual Block
RAM, there is no need for an extra read signal. Every debugging signal has its own ring buffer, shown
in Figure 59. An overview of the inputs and outputs of this block is shown in Table 39 and Table 40 in
the Appendix.
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FIGURE 59: INTERNAL STRUCTURE OF THE RINGBUFFERSIG MODULE

Figure 60 shows the read and write pointer to address the BRAMs of the ring buffer. When the
CMD_Start signal is set, the sample rate counter starts to work (0). The write address increases with
each enable signal from the sample rate counter block (2). This is only done, when the pre-trigger is
enabled. For every sample point, the data is written into the BRAMSs, until the pre-trigger event occurs.
If there is no trigger event, the read address starts incrementing, when the write address reaches 99 (3).
The read pointer follows the write pointer with a constant delay of a 100 entries (4). After reaching the
value 102, the address starts from 0 again and the saved values will be overwritten.

Figure 61 shows the read and write pointer to address the BRAMSs of the ring buffer, when the pre-trigger
event occurs. First, both counters start at 0 (1). Then, the write address increases and the sample points
are written into the BRAMs (2). When the write pointer reaches 9, the trigger event occurs and the saved
samples are read from the read pointer location. The read pointer increases and follows the write pointer
with a constant delay (3 and 4).
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FIGURE 60: RING BUFFER WITH READ AND WRITE POINTER MOVEMENT WHEN NO TRIGGER EVENT OCCURS
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FIGURE 61: RING BUFFER WITH READ AND WRITE POINTER MOVEMENT WHEN A TRIGGER EVENT OCCURS

The Figure 62 shows the simulation of the RingBuffer block with an active Pre-Trigger. At 2 us, the
signals WriteRAM_Enable and PreTrigger_Enabled (both orange) are set and the write operations start.
The signal data is written into the BRAMs. The write address (Wr_Addr) begins at 0 and increases with
the sample frequency, which is 1 MHz. At 6 us, the trigger event occurs, when the value of the signal
Sig_In (red) is above 5 (trigger value) and the Sampling signal (violet) is set. This activates the read
operations from the BRAMs with a delay of 1 clock cycle. At 8 us, the read operation is finished and the
read values are routed to the output signals. The signal Sig_Out (red) has the value 2, which was written
into the BRAMs at the first write operation. The read address (Rd_Addr) increments and the
Send_Enable signal is set (both marked blue) to build the AXIS data stream. The read counter follows
the write counter with a constant delay, depending on the trigger event.
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FIGURE 62: SIMULATION OF THE RINGBUFFER MODULE WITH AN ACTIVE PRE-TRIGGER

Figure 63 shows the simulation of the RingBuffer block, when a post-trigger is active. The
PreTrigger_Enabled signal is 0 and therefore no addresses are incremented. The BRAMs are not used.
At 6 us, the trigger event happens (Sig_In value is above 5) and the Sampling signal is set. Due to the
active post-trigger, the Send_Enable signal is set immediately to build the AXIS data stream.
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FIGURE 63: SIMULATION OF THE RINGBUFFER MODULE WITH AN ACTIVE POST-TRIGGER
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416 SUBMODULE SIGNALSELECTION

The submodule SignalSelection is a 300 to 1 multiplexer. It selects 1 signal out of 300 input signals. The
signal selection is done with the signal Signal_Sel. The value of this signal routes the selected signal to
the output port. To address the 300 signals correctly, the DebugCoreModule has its own interface for
the 300 input signals. This interface is called Input Signals and is used by integrating the
DebugCoreModule into the Xilinx Vivado Design. It contains all 300 input signals with 32 bit, each. The
SignalSelection block is shown in Figure 64. The Advanced Inverter Debugger has 4 SignalSelection
blocks, one block for each signal to debug. An overview of the inputs and outputs of this block is shown
in Table 41 and Table 42 in the Appendix.

— Signals300

Signal_Selected F——
—{ Signal_Sel

Signal Selection

FIGURE 64: SIGNAL_SELECTION WITH INPUTS AND OUTPUTS

To avoid, that the 300 to 1 multiplexer is synthesized with the internal multiplexers of the FPGA, the idea
was to build this big multiplexer with lookup tables. The SignalSelection block is structured into
submodules. The 300 input signals are separated into 3 times 100 signals (Figure 65) and these 100
signals are again separated into 10 times 10 signals (Figure 66). The 10 signals are controlled by the
SignalEnableTen block (Figure 67). It depends, which signal is selected (Figure 68) and the
SignalEnableTen block enables the corresponding SignalSelectTen block and routes the selected signal
to the output. When the enable signal is disabled, the output signal is set to 0 (Figure 69). All of the
outputs are combined with bitwise OR operations to get the chosen signal. Due to this process, the 300
to 1 multiplexer is synthesized with lookup tables in the FPGA. This is also shown in the Utilization report
of the design that no internal Mul7 and Mul8 are used.

Signal_Sel
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Signal_Selected
»{ Sig_Sel
Selected from Hundred Sig
Signals100 Bitwise
Signals300 Signal_Selected » OR
1 Sig_Sel o
> Signal_Selected
Selected from Hundred Sig1 —
Bitwise
Operator
| Signals100
Signal_Selected
Sig_Sel

Selected from Hundred Sig2

FIGURE 65: SIGNALSELECTION WITH 300 SIGNALS SEPARATED IN 3 TIMES 100 SIGNALS
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FIGURE 66: SIGNALSELECTION WITH 100 SIGNALS SEPARATED INTO 10 TIMES 10 SIGNALS
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FIGURE 69: SIGNALSELECTION TO ENABLE THE SELECTED SIGNAL FOR THE DEBUGGING PROCESS

417 PIPELINES AND CLOCK DOMAIN CORSSING

The Pipeline IP cores are simple registers to reduce the longest path in the FPGA design. This is
important to fulfill the timing constrains. The timing constrains were generated from the design. The
pipeline block is shown in Figure 70. The signal width can be chosen in the IP settings of the block. This
block is used for signals between the UNPKGModule and the DebugCoreModule. Pipelines are also
used between the DebugCoreModule and the PKG_Samples block. An overview of the inputs and
outputs of the Pipeline block is shown in Table 43 and Table 44 in the Appendix.

The pipeline block was modified with an input interface with 300 and 40 signals. These pipelines
(Pipeline40 and Pipeline300) are used as input interfaces for the packaged AlD403* and AID300%2. Each
input signal of the interfaces are 32 bits and can’t be changed. An overview of the inputs and outputs of
the Pipeline300 IP core is shown in Table 45 and Table 46 in the Appendix.

Pipeline_5
—= clk
—) resetn sig_out[15:0]
—mm sig_in[15:0]

Pipeline_v1_0

FIGURE 70: PIPELINE WITH INPUTS AND OUTPUTS

34 AID40, Advanced Inverter Debugger IP core with 40 input signals
35 AID300, Advanced Inverter Debugger IP core with 300 input signals
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The ClkDomainCrossing block converts a signal from one clock domain to another clock domain. This
block is used to convert the 1 MHz out_start_pkg1MHz signal from the DebugCoreModule to the 100
MHz send_enable signal for the PKG_Samples block. The block is shown in Figure 71. The width of the
input and output signal can be set in the IP settings. An overview of the inputs and outputs of the
ClockDomainCrossing IP core is shown in Table 47 and Table 48 in the Appendix.

ClkDomainCrossing_0

clk_1MHz
clk_100MHz
resetn_1MHz out_signal_100MHZ[0:0] e
resetn_100MHz

in_signal_1MHz[0:0]

ClkDomainCrossing_v1_0

FIGURE 71: CLKDOMAINCROSSING IP CORE WITH INPUTS AND OUTPUTS

Figure 72 shows the structure of the clock domain crossing in general. The first Flip-Flop is used to
synchronize the input signal to the rising edge of clk1. Then, the second Flip-Flop is used to synchronize
the signal B to clk2. It is still possible, that the output C is metastable due to a violation of the setup or
hold time. To avoid this, another Flip-Flop is added, to get valid data after the third Flip-Flop.

B C D

2 _»b a D Q D al-»
FF1  FF2  FF3
clkl
clk2
e — — — .
clk2 [ t
A [ | | ;
B | i .
c | | | ¢
D [ i ;

FIGURE 72: FUNCTIONALITY OF THE CLOCK DOMAIN CROSSING

Figure 73 shows the clock domain crossing simulation from the 1 MHz clock domain to the 100 MHz
clock domain. It also shows the Flip-Flop stages for the clock domain crossing. At the rising edge of the
1 MHz clock, the stage1 is set to the in_signal_1MHz. At the rising edge of the 100 MHz clock, stage?2
takes over the value of stage1. By the next rising edge, stage3 takes over the value of stage2. At 2,020
us, the signal out_signal_100MHz (red) is set to the value of stage3.
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FIGURE 73: SIMULATION OF THE CLOCK DOMAIN CROSSING

418 SIGNAL GENERATOR IP CORE SIG_GEN300

The Sig_Gen300 module generates the test signals for the practical tests of the Advanced Inverter
Debugger. It generates 300 signals. Each signal is 32 bits. The first 20 signals are generated as counters.
The first counter starts counting from a negative value and counts upwards until the maximum is reached
and starts at the minimum again. The starting points of all counters are -40, -30, -20, -10, 0, 10, 20, 30,
40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140 and 150. Each counter increases the value by 1. Every
counter has a different counting speed. The first one counts with 1 MHz, the second counter needs 2
clock cycles, the third counter needs 3 clock cycles ... and the last counter needs 20 clock cycles to
increase the counter value by 1. The maximum value is 50 higher than the starting point. When the
maximum is reached, the counters start from the starting values again. The other 280 signals are just
constants with the values 20 — 299. These values were chosen to test the signal selection. The
Sig_Gen300 block is shown in Figure 74. The output signals are combined to an interface with the name
Gen_Signals, which stands for generated signals. An overview of the inputs and outputs of the
Sig_Gen300 IP core is shown in Table 49 and Table 50 in the Appendix. This signal generator is also
available with 40 signals with the name Signal40Generator. The 40 signals contains 20 counters and
20 constant signals (values 20-39).

Sig_Gen300_0

p

clk_1MHz
Gen_Signals =~ “—
resetn

Sig_Gen300_v1_0

FIGURE 74: SIG_GEN300 INPUTS AND OUTPUTS

The Figure 75 shows the generation of the test signals for the Debug-Core. The first 20 signals are
counters, which start at different values and increase with a different rate. At the signal 20, the signal
values are constant with the signal value of the signal index.
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SIMULATION - Behavioral Simulation - Functional - sim_1-to_Sig_Gen300

FIGURE 75: SIMULATION OF THE SIG_GEN300 IP CORE TO GENERATE THE 300 TEST SIGNALS

419 PACKAGED ADVANCED INVERTER DEBUGGER IP CORE

The packaged AID IP core combines the UNPKGModule, DebugCoreModule, DataMoveCTL,
PKG_Samples, Pipelines and ClockDomainCrossing blocks to one IP core. The AID IP core is available
with 40 and 300 input signals. The input signals are combined to an interface.

For the AID IP core with 300 input signals, the interface name is Input_Signals. This interface was
created by me and is also used for the Sig_Gen300 IP core. For this interface, the Input_Signals.xml
and the Input_Signals_rtl.xml files are used. The packaged AID IP core with 300 input signals is named
AID300 and is used to test it on the ZedBoard.

For the AID IP core with 40 input signals, the interface name is debugSig. This interface was created by
Stephan Hochmidiller and is already used in the design on the Controller Board. For this interface, the
debugSig.xml and the debugSig_rtl.xml files are needed. The packaged IP core with 40 input signals is
named AID and is used to test it on the Controller Board.

To use the interfaces, the files must be copied into the IP repository, the interface names have to be
selected under the point User. The Figure 76 shows both interfaces. The left interface (debug_Sig) is
for 40 input signals and the interface, Input_Signals, is for 300 input signals. After selecting the right
interface, the signals must be mapped. The mapping sets the physical connections, how the single
signals are connected when the interface is used. The packaged AID IP core is shown in Figure 77.
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FIGURE 76: AID INTERFACES FOR 40 AND 300 INPUT SIGNALS
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FIGURE 77: AID IP CORE WITH THE INPUTS AND OUTPUTS

The AID IP core uses both clocks, 1 MHz and 100 MHz, to work properly. The mm2s_startTF signal
initiates the MM2S data transfer by sending the AXIS command data stream to the AXI DataMover. The
command data is built with the start memory address and the data length. After sending the AXIS
command data stream, the AXI DataMover reads the user data at the MM2S_MEM_ADDR from the
RAM and sends it to the s_axis_mm2s_d interface of the AID module. The status of the transfer is sent
to the s_axis_mm2s_s interface. If the MM2S transfer was successful, the mm2s_finished_intr occurs.

The user data contains the control information to start the debugging process with the chosen debugging
settings. When the AID Module starts working, it sends the AXIS command data stream to the AXI
DataMover with the m_axis_ S2MM_C interface. Furthermore, the signal samples are packaged together
to an AXIS data stream. This data stream is sent with the m_axis_S2MM interface to the AXI DataMover
to write the data into the RAM. The AXI DataMover returns the transfer status to the s_axis S2MM_S
interface. If the S2MM ftransfer was successful, the internal counter increases, until the
s2mm_number_pkg is reached. The s2mm_number_pkg is the number of signal samples, which are
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collected for the UDP package and stored in the RAM, until the s2mm_finished_intr occurs. The
Processing System handles the interrupts with the interrupt handlers.

To reduce the longest path, pipelines are used between the UNPKGModule and the DebugCoreModule.
They are also used for the Input_Signals interface and between the DebugCoreModule and the
PKG_Samples block. Pipelines are also used for the input signal interface. For the AID with 300 signals,
the Pipeline300 is used and for the AID with 40 signals, the Pipeline40 is used. Figure 78 shows the
structure of the whole AID IP core. An overview of the inputs and outputs of the AID IP core is shown in
Table 51 and Table 52 in the Appendix.

The AID with 40 signals was tested on the ZedBoard and on the Controller Board with a Zyng 7000
xc7z100ffg900-2 FPGA. This FPGA is placed on a Trenz Board Zyng-7000 TE0782_100_2L SPRT
PCB: REV02 on the Controller Board. The test results are discussed under the section testing the AID
IP-Core in chapter 13 and chapter 14.

The AID with 300 signals was tested on the ZedBoard. The test results are discussed under the section
testing the AID IP-Core in chapter 13 and chapter 14.
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FIGURE 78: STRUCTURE OF THE PACKAGED AID IP CORE
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5 COMPARISON OF THE AID40 AND AID300
RESOURCE UTILIZATION

In this section, the 2 AID IP cores are compared. The main focus is the FPGA resource utilization. Due
to the 300 input signals, the AID3003%¢ needs a lot more resources on the FPGA than the AID40%". The
300 to 1 multiplexers of the signal selection blocks are the biggest parts. The smaller the number of the
input signals, the lower is the resource usage on the FPGA. The first idea was, to debug 4 signals out
300 possible input signals, 32 bit each. Due to the already high FPGA utilization of the Controller Board
with the inverter software, the input signals were reduced to 40.

Table 7 shows the FPGA utilization of the AID40 and AID300 on the ZedBoard. The AlD40 needs 2055
of the available Slice LUTs, 1420 of the available Slice Registers, 755 of the available Slices, 2055 of
the available LUT as Logic, 257 of the available LUT Flip Flop Pairs, 2 of the available Block RAM Tiles
and 1 DSP, which is 0.455% of the available DSPs. The AID300 needs 5616 of the available Slice LUTs,
2500 of the available Slice Registers, 1730 of the available Slices, 5616 of the available LUT as Logic,
257 of the available LUT Flip Flop Pairs, 2 of the Block RAM Tiles and 1 of the available DSPs.

TABLE 3: COMPARISON OF THE FPGA RESOURCE UTILIZATION

Resource Available on FPGA AID40 used AID300 used
(ZedBoard) Resources Resources

Slice LUT 53200 2055 5616

Slice Register 106400 1420 2500

Slice 13300 755 1730

LUT as Logic 53200 2055 5616

LUT Flip Flop Pairs 53200 257 257

Block RAM Tile 140 2 2

DSP 220 1 1

Table 8 shows the FPGA utilization of the AID40 and AID300 on the ZedBoard. In this table percentages
are used. The values show how many of the total resources were used. The biggest differences of the
AID40 and AID300 are at the Slice LUT, Slices and LUT as Logic. The AID300 uses 10,56% of the Slice
LUT compared to the AID40 with 3,86%, 13,01% of the Slices compared to 5,68% and 10,56% of the
LUT as Logic compared to 3,86%. These significant differences are mainly caused by the 300 to 1
multiplexer and the pipeline stage for the 300 input signal interface.

TABLE 4: COMPARISON OF THE FPGA RESOURCE UTILIZATION IN PERCENT

Resource Resources on FPGA AID40 used AID300 used
(ZedBoard) Resources Resources

Slice LUT 53200 3.86% 10.56%
Slice Register 106400 1.33% 2.35%

Slice 13300 5.68% 13.01%

LUT as Logic 53200 3.86% 10.56%

LUT Flip Flop Pairs 53200 0.48% 0.48%

Block RAM Tile 140 1.43% 1.43%

DSP 220 0.455% 0.455%

36 AID300, Advanced Inverter Debugger IP core with 300 input signals
37 AID40, Advanced Inverter Debugger IP core with 40 input signals
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In both FPGA designs, the timing constraints [8] are fulfilled as shown in the Figures 79 and 80.

As long as the Worst Negative Slack (WNS) is positive, the path passes. If it is negative the path fails.
The Total Negative Slack (TNS) is the sum of the negative slack in the design. If it is positive, then there
is negative slack in the design. If it is 0, the timing is met. The TNS cannot be negative. The design
passes the Worst Hold Slack (WHS), when it is positive. That means, there is no WHS in the design. If
it is negative, the design fails. The Total Hold Slack (THS) is the sum of the WHS. If it is O, the design
passes, otherwise it fails. The Worst Pulse Width Slack (WPWS) checks if the periods of each clock pin
is ok. If the value is positive, the design passes. If it is negative, the design fails. The Total Pulse Width
Negative Slack (TPWS) is the sum of the WPWS. If it is 0, the design passes, otherwise it fails. The
value cannot be negative.

In both Figures, the timing constrains are fulfilled. The WNS, WHS and WPWS are positive and the TNS,
THS and TPWS are 0. This means the design passes the timing constrains.

Design Timing Summary

Setup Hold Pulse Width
Worst Negative Slack (WNS): 1,602 ns Worst Hold Slack (WHS): 0,016 ns Worst Pulse Width Slack (WPWS): 3,750 ns
Total Negative Slack (TNS): 0,000 ns Total Hold Slack (THS): 0,000 ns Total Pulse Width Negative Slack (TPWS). 0,000 ns
Number of Failing Endpoints: 0 Number of Failing Endpoints: 0 Number of Failing Endpoints: 0
Total Number of Endpoints: 23398 Total Number of Endpoints: 23398 Total Number of Endpoints: 8599

All user specified timing constraints are met.

FIGURE 79: AID40 TIMING SUMMARY

2= Cllel

Design Timing Summary

Setup Hold Pulse Width
Worst Negative Slack (WNS): 1,445ns Worst Hold Slack (WHS): 0,025 ns Worst Pulse Width Slack (WPWS): 3,750 ns
Total Negative Slack (TNS): 0,000 ns Total Hold Slack (THS): 0,000 ns Total Pulse Width Negative Slack (TPWS). 0,000 ns
Number of Failing Endpoints: 0 Number of Failing Endpoints: 0 Number of Failing Endpoints: 0
Total Number of Endpoints: 30125 Total Number of Endpoints: 30125 Total Number of Endpoints: 12649

All user specified timing constraints are met.

FIGURE 80: AID300 TIMING SUMMARY

Figure 81 shows the routing of the DebugCoreModule with 40 input signals. The white parts mark the
used resources for the DebugCoreModule. The light blue areas mark the used resources of the whole
AID with 40 input signals.

Figure 82 shows the routing of the DebugCoreModule with 300 input signals. The white parts mark the
used resources for the DebugCoreModule. The light blue areas mark the used resources of the whole
AID with 300 input signals. The areas for the AID300 and the DebugCoreModule are mainly bigger due
to the 300 to 1 multiplexer and the Pipeline300 IP core.
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FIGURE 81: ROUTING OF THE DEBUGCOREMODULE WITH 40 SIGNALS ON THE ZEDBOARD
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FIGURE 82: ROUTING OF THE DEBUGCOREMODULE WITH 300 SIGNALS ON THE ZEDBOARD

The Figures 83 and 84 show the power consumption of the FPGA designs with the AID40 and AID300.
The power consumption is very similar. The PS needs in both designs 1.533W and is the biggest
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consumer. All other parts are nearly the same. The BRAMs are a little bit different with 0.002W (AID40)
and 0.013W (AID300).The clocks need a little bit more power, 0.032W with AID300 compared to 0.022W
with AlD40. The overall power consumption is with the AID300 higher than with AID40, 1.596W
compared to 1.573W.

Power ? —-0aXx
Q| xz|s|C Summary
Settings <
g Power analysis from Implemented netlist. Activity On-Chip Power
Summary (1.725 W) derived from constraints files, simulation files or
Power Supply vectorless analysis. Dynamic: 1573W  (91%
v Utilization Details
Total On-Chip Power: 1.725W s 0
Hierarchical (1.573 W ) Clocks: 0.022 W 1%
o005V Junction Tem.perature. 449 °C Signals: 0.008 W
~ Signals (0 Thermal Margin: 40,1°C(34W) 91% Logic: 0.007 W
Data (0.008 W Effective SJA: 11,5°CIW M BRAM: 0.002W
Clock Enable (0.001 W Power supplied to off-chip devices: 0W DSP: 0001W (1%
SetReset (<0.001 W Confidence level: Medium Wrs7: 1533 W
Logic (0.007 W Launch Power Constraint Advisor to find and fix
. 1id switchi =
BRAM (0.002 Imvaild swhchingiactivily e Device Static. ~ 0.152W
DSP (0.001
PS7 (1.533 W

impl_1 (saved)

FIGURE 83: POWER CONSUMPTION OF THE AlID40
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FIGURE 84: POWER CONSUMPTION OF THE AID300

6 DRIVER FILES FOR THE ZEDBOARD

After successfully running the synthesis, implementation and generation of the bit stream, the hardware
with the bit stream was exported. Then, the Xilinx SDK (Xilinx Software Development Kit) can be used
to write the driver files for the Processing System.

After starting the Xilinx SDK, the files for the hardware platform were automatically generated. A board
support package was necessary. In the board support package settings, the Iwip141 library was added
to use the IwlP TCP/IP Stack (light weight TCP/IP Stack). The board support package settings are
shown in Figure 85. The xilffs library was also added, but it is not used for the AID.

After creating the hardware platform files and the board support package an echo server application
project was created. This project uses the hardware platform files. The echo server is used for the
UDP/IP connection. The Program of the echo server was modified by adding an interrupt system, a logic
control class and the class for the UDP connection.
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B Board Support Package Settings T

Board Support Package Settings ‘
| Control various settings of your Board Support Package. ]

|
4|Quenview standalone_bsp_0 |
4 standalone . . . |
Iwip1d1 0SType:  standalone Standalone is a simple, low-level software layer. It provides
silffs 3 access to basic processor features such as caches, interrupts
d . = and exceptions as well as the basic features of a hosted
4 ignvers 05 Version: environment, such as standard input and output, profiling,
ps7_cortexad_0 abort and ext.
Target Hardware
Hardware Specification: N:\XilinxProjects\DebugCorePS_ZB\DebugCorePS_Z8.sdk\design_1_wrappe:
Processor: psT_cortexad_0
Supported Libraries
Check the box next to the libraries you want included in your Board Support Package.You can
configure the library in the navigator on the left.
Name Version Description
libmetal 12 Libmetal Library
V| lwipldl 18 IwIP TCP/IP Stack library: IwlP v1.4.1
openamp 13 OpenAmp Library
7 xilffs 36 Generic Fat File System Library
xilflash 43 Xilinx Flash library for Intel/AMD CFI compliant paral...
xlisf 58 Xilinx In-system and Serial Flash Library
ilmfs 23 Xilin Memory File System
silpm 21 Power Management API Library for ZynqMP
xilrsa 13 Xilinx RSA Library
xilskey 62 Xilinx Secure Key Library
? Comw ]|

FIGURE 85: BOARD SUPPORT PACKAGE WITH LWIP141 LIBRARY

6.1 INTERRUPT_SYSTEM CLASS

The interrupt system class initializes the interrupt system and handles the different interrupts. It connects
the interrupt controller to the interrupt handlers and maps the interrupts to the CPU. After that, the
interrupts are enabled.

There are two different interrupts to handle, the MM2S_finished_intr and the S2MM_finished_intr. Each
interrupt is handled with a different interrupt handler.

When an UDP package arrives, the Processing System checks if the package type is Start, Reset or
GetVersion. If the packagetype is GetVersion, the PS sends the version number back to the user-
interface. If the package type is Start or Reset, the control data is stored in the RAM and the AXI_GPIO
[6] port for reading out the data of the RAM (mm2s_startTF) is set. This initializes the MM2S data transfer.
After successfully reading out the data from the RAM with the AXI DataMover, the mm2s_finished_intr
occurs. The interrupt controller handles the interrupt and the MM2S_Datamover_InterruptHandler is
called. This handler resets the mm2s_startTF back to 0.

When the Debug-Core was started, the signal data are written into the RAM. When the number of
samples for the UDP package is reached, the s2mm_finished_intr occurs. The interrupt controller calls
the S2MM_Datamover_InterruptHandler, which reads the signal data out of the RAM, builds the UDP
package and sends it to the user-interface.

6.2 LOGIC_CONTROL CLASS

The logic_control class is used to control the AXI_GPIO ports. The AXlI_GPIO ports are directly
connected to the Advanced Inverter Debugger IP core in the FPGA design. They are used to set the
memory addresses, the data length of the S2MM/MM2S data transfer, the number of samples for the
UDP package and to initialize the MM2S data transfer. The memory addresses of each AXI_GPIO port
is used to set the different control signals.

Figure 86 shows the AXI_GPIO memory addresses in the Address Editor of Xilinx Vivado.
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% Address Editor

Q| =2

Cell Slave Interfface  Base Name OffsetAddress  Range High Address
v 4F processing_system7_0
v [ Data (32 ts
= axi_gpio_0 S_AXI Reg 0x4120_0000 64K v 0x4120_FFFF
= axi_gpio_1 S_AXI Reg 0x4121_0000 64K v 0x4121_FFFF
== axi_gpio_2 S_AXI Reg 0x4122_0000 64K ~  0x4122_FFFF
= axi_gpio_3 S_AXI Reg 0x4123_0000 64K ~  0x4123_FFFF
= axi_gpio_4 S_AXI Reg 0x4124_0000 64K v  0x4124_FFFF
= axi_gpio_5 S_AXI Reg 0x4125_0000 64K v  0x412S5_FFFF
= axi_gpio_6 S_AXI Reg 0x4126_0000 64K ~  0x4126_FFFF
v 4F axi_datamover_0
v B Data_MM2S (32 address bits : 4
== processing_system7_0 S_AXI_HP0O HPO_DDR_LOWOCM  0x0000_0000 512M ~ Ox1FFF_FFFF
v E Data_S2MM (32 addre 4
== processing_system7_0 S_AXI_HP0O HPO_DDR_LOWOCM  0x0000_0000  512M v | Ox1FFF_FFFF

FIGURE 86: AXI_GPIO MEMORY ADDRESSES

To access an AXI_GPIO port, a memory address is necessary. The memory addresses are mapped
with the Address Editor to the different IP cores. With the Xilinx SDK, values can be assigned to the
AXI_GPIO ports to use this values in the user logic. This is done with the following code:

Xil_Out32(GPIO_S2MM_NUMBER_PKG, sample_pkg_number);

Xil_Out32 is the function to access the memory with a 32-bit value. GPIO_S2MM_NUMBER_PKG is
the memory address of the AXI_GPIO port, which is used to set the number of samples for the UDP
package. The sample_pkg_number is the actual value. All of the AXI_GPIO ports are access in this way.

6.3 UPD_CON CLASS

The udp_con class handles the initialization of the UDP connection. It creates a new UDP connection
and binds the listening port to the IP address.

The class also handles incoming UDP packages (control information for the AID). These data is received,
ordered and written into the RAM. Functions from the LogicControl class are used to access the
AXI_GPIO ports. After that, the MM2S data transfer is enabled. This class also handles the send process.
Therefore, the UDP package is built with the signal data and sent to the user-interface. The following
code shows the configuration of the AID, when a UDP package arrives:

/*

* Set Properties for the MM2S transfer of the AXI DataMover
* set mm2s memory address

* set data length, which will be written from RAM

*/

SetMM2SAddress(MM2S_BASEADDR);
SetMM2SDatalLength(EthBytesReceived);

/I config S2MM Transfer
SetS2MMAddress(S2MM_BASEADDR);
SetS2MMAddress2(S2MM_BASEADDR?2);

/I set S2MM address to the first one
S2MMaddr1_active = 1;

/I Length depends on package_type
SetS2MMDatalength(READ_LEN);

/I Set number of samples for the UDP package
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S2MMSetNumberOfPkgCollection(NUMBER_OF PACKAGES);

/I enable transfer (will cause the mm2s_intr, when the transfer was successful)
EnableMM2STransfer();

6.4 MAIN CLASS

The main function, starts the program. It was automatically created with the IwlP echo server application
project. It initializes the IwlIP stack with the MAC and IP addresses and adds the network interface to the
network interface list. After that, the MM2S transfer is disabled and the interrupt system is initialized.
The initialization of the interrupt system is shown in the following code:

/I disable mm2s transfer, should be activated when udp data is coming
DisableMM2STransfer();

/[ init interrupt system

int Status = InitInterruptSystem(DEVICE_ID);

if (Status 1= XST_SUCCESS){
xil_printf("error: init interrupt system failed.\n\r");
return XST_FAILURE;

}

else
xil_printf("init interrupt system done.\n\r");

After successfully initializing the interrupt system, a new DHCP server is created for the network
interface by using the IwlP stack. The IP and MAC addresses are mapped to the server.

Then, the memory addresses are assigned. One is used for the MM2S transfer and two are used for the
S2MM transfers with the switched buffer. After that, the UDP connection is initialized. This is shown in
the following code:

/I define memory location for buffer
DMA_MM2S_Buffer = (u8*) MM2S_BASEADDR,;
S2MMaddr1_active = 1;

DMA_S2MM_Buffer32 = (u32*) S2MM_BASEADDR,;
DMA_S2MM_Buffer232 = (u32*) S2MM_BASEADDRZ;

/[ Start udp
InitUDP();

/I receive and process packets
while (1) {

xemacif_input(echo_netif);

}

After initializing the UDP connection with the adjusted ports, the DHCP server works as an echo server.
The echo server constantly runs in a while loop and when a UDP package arrives the udp_recv_data
function is called to process the incoming data.

The main.h file is used, to include all the different header files for the program. It also contains the
constant definitions, like memory addresses, port numbers, interrupt ids, and other important variables
for the correct work of the program. The different parameters, which are used for the constant definitions
are mostly used from the xparameters.h file. The Xilinx SDK automatically generates the xparameters.h
file from the exported FPGA design. The following code shows the definitions.
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/I Device ID and interrupt
#define DEVICE_ID
#define INTC

#define INTC_HANDLER

/I RAM memory addresses
#define MM2S_BASEADDR
#define MM2S_HIGHADDR
#define S2MM_BASEADDR
#define S2MM_HIGHADDR
#define S2MM_BASEADDR?2
#define S2MM_HIGHADDR2
#define UDP_DATA_BASEADDR
#define UDP_DATA_HIGHADDR
/I GPIO memory addresses
#define GPIO_MM2S_ADDR
#define GPIO_S2MM_ADDR
#define GPIO_MM2S_EN_ADDR
#define GPIO_MM2S_LEN_ADDR
#define GPIO_S2MM_LEN_ADDR

#define GPIO_S2MM_NUMBER_PKG

#define GPIO_S2MM_ADDR?2
/I Define ports and IP

#define TR_UDP_PORT 63999
#define RV_UDP_PORT 64000

(XPAR_PS7_DD
(XPAR_PS7_DD
(XPAR_PS7_DD
(XPAR_PS7_DD
(XPAR_PS7_DD
(XPAR_PS7_DD
(XPAR_PS7_DD
(XPAR_PS7_DD

XPAR_SCUGIC_0 DEVICE_ID
XScuGic
XScuGic_InterruptHandler
#define S2MM_INTR  XPAR_FABRIC_DATAMOVECTLV3_0_S2MM_FINISHED_INTR_INTR
#define MM2S INTR  XPAR_FABRIC_DATAMOVECTLV3 0 _MM2S FINISHED_INTR_INTR

R_0_
R_0_
R_0_
RO
R_0_
RO
RO
R_0_

XPAR_AX|_GPIO_0_BASEADDR
XPAR_AX|_GPIO_1_BASEADDR
XPAR_AX|_GPIO_2_BASEADDR
XPAR_AX|_GPIO_3_BASEADDR
XPAR_AX|_GPIO_4 BASEADDR
XPAR_AX|_GPIO_5 BASEADDR
XPAR_AX|_GPIO_6_BASEADDR

#define MACADDR { 0x00, Ox0a, 0x35, 0x00, 0x01, 0x02 }

7 DRIVER FILES FOR THE CONTROLLER BOARD

S_AXI_BASEADDR + 0x00020000)
S_AXI_BASEADDR + 0x0003FFFF)
S_AXI_BASEADDR + 0x00040000)
_S_AXI_BASEADDR + 0x0005FFFF)
S_AXI_BASEADDR + 0x00060000)
_S_AXI_BASEADDR + 0x0007FFFF)
_S_AXI_BASEADDR + 0x00080000)
S_AXI_BASEADDR + 0x0009FFFF)

The Controller Board is the target hardware from AVL List GmbH with an ARM Zyng-7000 Kintex-7
FPGA (xc7z100ffg900). The AID will be used to debug inverters and controllers, which will run on this

FPGA.

To use the AID on the Controller Board, the AID, the AXI_GPIOs and the AXI DataMover IP cores were

added to the existing Controller Board FPGA design. The added IP cores are shown in Figure 87.
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FIGURE 87: CONTROLLER BOARD WITH THE AID IP CORE

The AXI_GPIO memory addresses are different to the memory addresses of the ZedBoard design.
Therefore, the driver files in the Xilinx SDK were modified and updated to the new values. The Address
Editor is shown in Figure 88.

Diagram X | Address Editor x I[P Catalog X
Q| =z
Cell Slave Interfface  Base Name Offset Address

v 4F processing_system7_0

v B Data (32 address bits : 0x40000000 [ 1G ] ,0x80000000 [ 1G ])

= bering/SAXI2SBUS_0
= com/SAXI2SBUS_0
= qm/SAXI2SBUS_0
= axi_gpio_1
= axi_gpio_2
= axi_gpio_3
= 3xi_gpio_4
= axi_gpio_5
= axi_gpio_6
= 3xi_gpio_7
== ctrl_board_interfaces_0
= jsabella_genhdl_wrapper_DC_0
v 4F axi_datamover_0

v B Data_MM2S (32 address bits : 4G)
= processing_system7_0

v B Data_S2MM (32 address bits : 4G)
= processing_system7_0

~ F pering/axi_datamover_0

v B Data_S2MM (32 address bits : 4G)

= processing_system7_0

S_AXI
S_AXI
S_AXI
S_AXI
S_AXI
S_AXI
S_AXI
S_AXI
S_AXI
S_AXI
s00_axi

s00_axi

S_AXI_HPO

S_AXI_HPO

S_AXI_HPO

reg0 0x43C0_0000
reg0 0x43C1_0000
reg0 0x43C3_0000
Reg 0x4120_0000
Reg 0x4121_0000
Reg 0x4122_0000
Reg 0x4123_0000
Reg 0x4124_0000
Reg 0x4125_0000
Reg 0x4126_0000
reg0 0x43C2_0000
reg0 0x43C4_0000

HPO_DDR_LOWOCM  0x0000_0000

HPO_DDR_LOWOCM  0x0000_0000

HPO_DDR_LOWOCM  0x0000_0000

FIGURE 88: ADDRESS EDITOR OF THE CONTROLLER BOARD

Range

64K
64K
64K
32K
64K
64K
64K
64K
64K
64K
64K
256K

High Address

v 0x43CO_FFFF
v  0x43Cl_FFFF
v  O0x43C3_FFFF
v 0x4120_7FFF
v 0x4121 FFFF
v 0x4122_FFFF
v 0x4123_FFFF
v 0x4124_FFFF
~ 0x4125_FFFF
v 0x4126_FFFF
v  0x43C2_FFFF
v  O0x43C7_FFFF

v  Ox3FFF_FFFF

v  Ox3FFF_FFFF

v  Ox3FFF_FFFF
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After successfully running the synthesis, implementation and generation of the bit stream, the hardware
with the bit stream was exported. To start the Xilinx SDK the TCL script build_swProj.tcl was used. This
TCL script automatically generates the software project with all the included files in the Xilinx SDK from
the Controller Board FPGA design.

In the application project tcp_ecat_server, a new folder with the name AID was added. In this AID folder
all the necessary files were added to include the AID into the project.

The added files are:

e aid_intr_system.c
e aid_intr_system.h
e aid_settings.h

e logic_control.c

e logic_control.h

e udp_con.c

e udp_con.h

The board support package was also generated with the TCL script automatically. In case, the board
support package is deleted, a new one with the included libraries lwip141 and xilffs has to be created.
The lwip141 library is used for the IwIP TCP/IP Stack (light weight TCP/IP Stack) and the xilffs library is
the Generic FAT File System library. Both libraries are used in the Controller Board project.

To include the AID files (from the ZedBoard) into the project with the Controller Board, little modifications
were necessary. The modifications were, changing the name of the interrupt_system class to
aid_intr_system class to avoid confusion with already existing similar classes and to change the main.h
to aid_settings.h.

In the class aid_intr_system, a new function AIDConnect_InterruptHandler was added, which connects
the AID interrupt handlers to the existing interrupt system of the design.

In the class udp_con the function InitUDP was renamed to InitAID, which initializes the UDP connection
for the AID.

7.1 AID_INTR_SYSTEM CLASS

The class for the AID interrupt system handles the initialization of the interrupt system. It connects the
interrupt controller to the interrupt handlers and maps the interrupts to the CPU. After that, the interrupts
are enabled.

There are two different interrupts to handle, the MM2S _finished_intr and the S2MM _finished_intr. Each
interrupt is handled with different interrupt handlers.

When an UDP package arrives, the Processing System checks if the package type is Start, Reset or
GetVersion. If the package type is GetVersion, the PS sends the version number back to the user-
interface. If the package type is Start or Reset, the control data are written into the RAM and the
AXI_GPIO port for reading out the data of the RAM (mm2s_startTF) is set. This initializes the MM2S
data transfer. After successfully reading out the data from the RAM with the AXI DataMover, the
mm2s_finished_intr occurs. The interrupt controller handles the interrupt and the
MM2S_Datamover_InterruptHandler is called, which resets the mm2s_startTF signal back to 0.

When the Debug-Core was started, the signal data is written into the RAM. After the number of samples
for the UDP package is reached, the s2mm_finished_intr occurs. The interrupt controller calls the
S2MM_Datamover_InterruptHandler, which reads the stored signal data out of the RAM, builds the UDP
package and sends it to the user-interface.

Already existing project files initializes the interrupt system. Therefore, the InitinterruptSystem function
from the AID_IntR_System class is not used. To connect the interrupt ids of the AID with the interrupt
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system of the project, a new function was added. The AIDConnect_InterruptHandler function connects
the existing interrupt controller with the interrupt ids and the interrupt handlers of the AID. Then, the AID
is initialized with the function InitAlID.

7.2 LOGIC_CONTROL CLASS

The logic_control class is used to control the AXI_GPIO ports. The AXl_GPIO ports are directly
connected to the Advanced Inverter Debugger IP core in the FPGA design. They are used to set the
memory addresses, the data length of the S2MM/MM2S data transfer, the number of samples for the
UDP package and to initialize the MM2S data transfer. The memory addresses of each AXI_GPIO port
is used to set the different control signals.

To access an AXI_GPIO port, a memory address is necessary. The memory addresses are mapped
with the Address Editor to the different IP cores. With the Xilinx SDK, values can be assigned to the
AXI_GPIO ports to use this values in the user logic. This is done with the following code:

Xil_Out32(GPIO_S2MM_NUMBER_PKG, sample_pkg_number);

Xil_Out32 is the function to access the memory with a 32-bit value. GPIO_S2MM_NUMBER_PKG is
the memory address of the AXI_GPIO port, which is used to set the number of samples for the UDP
package. The sample_pkg_number is the actual value. All of the AXI_GPIO ports are access in this way.

7.3 UPD_CON CLASS

The udp_con class handles the initialization of the UDP connection. It creates a new UDP connection
and binds the ports to the IP address.

The class also handles incoming UDP packages (control information for the AID). These data is ordered
and written into the RAM. Functions from the logic_control class are used to access the AXl_GPIO ports
to set up the AID IP core. After that, the MM2S data transfer is enabled to start the data transfer from
the RAM to the user logic. Depending on the command information the debugging process is started or
stopped. The following code shows, how the AID IP core is set up.

/*

* Set Properties for the MM2S transfer of the AXI DataMover
* set mm2s memory address

* set data length, which will be written from RAM

*/

SetMM2SAddress(MM2S_BASEADDR);
SetMM2SDatalength(EthBytesReceived);

/I config S2MM Transfer
SetS2MMAddress(S2MM_BASEADDR);
SetS2MMAddress2(S2MM_BASEADDR?2);

/I set S2MM address to the first one

S2MMaddr1_active = 1;

/I Length depends on package_type
SetS2MMDatalLength(READ_LEN);

/I Set number of packages for the UDP package
S2MMSetNumberOfPkgCollection(NUMBER_OF_PACKAGES);

/I enable transfer (will cause the mm2s_intr, when the transfer was successful)
EnableMM2STransfer();
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With the InitAID function, the UDP connection is initialized for the AID. The InitAID function creates a
new UDP connection and bind the ports to the IP address. It also starts the UDP connection with the
function StartUDP. With the DC_EN variable, the AID can be disabled. The InitAID function is called in
the main.h. The following code shows, how the AID is initialized.

#if DC_EN
/I init AID
print("Init AID UDP connection\n\r");
AIDConnect_InterruptHandler(&InterruptController, CPU_ID);
InitAID();

#endif

To receive UDP packages, a while loop in the main function checks, if UDP packages arrive. The
incoming control information is used to set up the debugging process. The following code shows, how
the UDP packages are received.

/l'in while loop

#if DC_EN

/I enable AID debugger
/ receive udp data
xemacif_input(echo_netif);

#endif

To send UDP packages, the SendDebuggedData32 function is used. This function is called in the
S2MM_Datamover_InterruptHandler. The signal data is read from the RAM, the UDP payload is built
and the UDP package is sent to the user-interface.

7.4  MAIN CLASS

The main function, starts the program. It initializes the IwIP stack with the MAC and IP addresses and
adds the network interface to the network interface list. It also instantiates the interrupt system and
enables the interrupts.

A new DHCP server is created for the network interface by using the IwlP stack. The IP and MAC
addresses are mapped to the server.

With the InitAID function, the UDP connection of the AID is initialized. The InitAID function creates a
new UDP connection and binds the ports to the IP address. With the DC_EN variable, the AID can be
disabled. The following code shows, how the interrupts of the AID are connected to the interrupt system
and how the AID is initialized.

#if DC_EN
/ init AID and connect interrupts
AIDConnect_InterruptHandler(&InterruptController, CPU_ID);
InitAID();

#endif

In the main function, EtherCat and other IP cores are set up for communication or I/O services. A while
loop handles the communication with EtherCat, TCP and furthermore the new initialized UDP connection
for the AID. To receive UDP packages, the while loop checks if UDP packages arrive. With incoming
control information from the user-interface, the Processing System [1] starts or resets the Debug-Core.
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The request for the version number is handled directly from the Processing System. The following code
shows how UDP packages are received.

/l'in while loop

#if DC_EN

/I enable AID debugger
/ receive udp data

xemacif_input(echo_netif);

#endif

7.5 AID_SETTINGS

The aid_settings.h file is used, to include all the different header files for the AID into the application. It
also contains the constant definitions like memory addresses, port numbers, interrupt ids, and other
important variables for the correct work of the program. The different parameters, which are used as
defines are mostly used from the xparameters.h file. The xparameters.h file is automatically generated
by the Xilinx SDK. Some defines are shown below.

/I Device ID and interrupt

#define DEVICE_ID

#define CPU_ID

#define S2MM_INTR

#define MM2S_INTR

/I RAM memory addresses
#define MM2S_BASEADDR
#define MM2S_HIGHADDR
#define S2MM_BASEADDR
#define S2MM_HIGHADDR
#define S2MM_BASEADDR2
#define S2MM_HIGHADDR2
#define UDP_DATA_BASEADDR
#define UDP_DATA_ HIGHADDR

/I GPIO memory addresses
#define GPIO_MM2S_ADDR
#define GPIO_S2MM_ADDR
#define GPIO_MM2S_EN_ADDR
#define GPIO_MM2S_LEN_ADDR
#define GPIO_S2MM_LEN_ADDR

#define GPIO_S2MM_NUMBER_PKG

#define GPIO_S2MM_ADDR?2
/I Define port to listen on
#define TR_UDP_PORT 63999
#define RV_UDP_PORT 64000

XPAR_SCUGIC_0_DEVICE_ID

XPAR_CPU_ID

XPAR_FABRIC_AID_0_S2MM_FINISHED_INTR_INTR
XPAR_FABRIC_AID_0_MM2S_FINISHED_INTR_INTR

(XPAR_PS7_DD
(XPAR_PS7_DD
(XPAR_PS7_DD
(XPAR_PS7_DD
(XPAR_PS7_DD
(XPAR_PS7_DD
(XPAR_PS7_DD

R_0_
R_0_
R_0_
R_0_
R_0_
R_0_
R_0_
(XPAR_PS7_DDR_0_

S
S
S
S
S
S
S
S

_AXI_BASEADDR + 0x00020000)
_AXI_BASEADDR + 0x0003FFFF)
_AXI_BASEADDR + 0x00040000)
_AXI_BASEADDR + 0x0005FFFF)
_AXI_BASEADDR + 0x00060000)
_AXI_BASEADDR + 0x0007FFFF)
_AXI_BASEADDR + 0x00080000)
_AXI_BASEADDR + 0x0009FFFF)

XPAR_AX|_GPIO_7_BASEADDR
XPAR_AX|_GPIO_3_BASEADDR
XPAR_AX|_GPIO_2_ BASEADDR
XPAR_AX|_GPIO_1_BASEADDR
XPAR_AX|_GPIO_5 BASEADDR
XPAR_AX|_GPIO_6_BASEADDR
XPAR_AX|_GPIO_4 BASEADDR

#define MACADDR { 0x00, Ox0a, 0x35, 0x00, 0x01, 0x02 }

68



With help of the aid_settings.h, the UDP echo server can be modified. It is possible to disable the
checksum. This increases the performance of the Processing System. The code is shown below.

/*

* increase speed of udp

* 1. remove section in code for tcp/ip

* 2. manually assigning MAC and IP -> not 15-20 sec bootup for DHCP
* 3. reduce overhead for checksum

* 4. reduce overhead for checksum

* 5. reduce overhead for checksum

*/

#undef LWIP_TCP

#undef LWIP_DHCP

/Hundef CHECKSUM_CHECK_UDP
[Hundef LWIP_CHECKSUM_ON_COPY
[Hundef CHECKSUM_GEN_UDP

8 SIGNAL CONFIGURATION FILE GENERATOR

The signal configuration file generator generates the signal configuration file and was developed with
C# and Microsoft Visual Studio. As mentioned in the section Packaged AID, the AID uses an interface
to route the signals for the debugging process into the IP core. This interface name and the vhd file of
the FPGA design with the included AID are used to generate the signal configuration file. This file maps
the signal names to the input ports of the AID. The output file is a csv file, which is used for the user-
interface of the AID. The signal configuration file generator is shown in Figure 89.

. I 1
o Signal Configuration File Generator —- o - - E@Jﬂ

Input: vhd Design File
ator\SignalConfigurationFileGenerator\bin\Debug'\system.vhd [ Select Design File ]

Output: csv - Signal Configuration File:
ionFileGenerator\bin\Debug'\controller_board_design_scf csv [ Select Signal Configuration File ]

Interface Name:  Input_Signals| [ Generate Signal Configuration File ]

= <

FIGURE 89: SIGNAL CONFIGURATION FILE GENERATOR

The vhd file of the FPGA design is selected with the Select Design File button. Then, the interface name
of the AID is entered. The interface name of the AID40 and the AID300 is different. Therefore, it is
important to enter the correct interface name, otherwise the mapping from the signal names to the input
ports will not work. An output file is selected with the Select Signal Configuration File button. With the
Generate Signal Configuration File button, the signal names are mapped to the AID input ports and
saved in the output csv file.
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Figure 90 shows a part of the vhd file with the FPGA design for the Controller Board. This part shows
the port mapping of the AID IP core. The interface of the AID is called Input_Signals and the input ports
are named sig0 to sig39 (AID with 40 signals). The signals, which should be debugged are from the
interface Isabella_genhdl_wrapper_DC_0 DebugSig. These signals are from a black box, which
contains custom inverters to test the AID. These inverters generate different sinus signals.

sensor0_vib2_adc7923_sclk <= ctrl_board_interfaces_0_sensor_vib2_ adc7923_sclk:

sensor0_vib2_adc7923_ssel <= ctrl_board_interfaces_0_sensor_vib2_adc7923_ssel:

sensor0_vib3_ adc7923_mosi <= ctrl board interfaces_0_sensor_vib3_adc7923 mosi;

sensor0_vib3_adc7923_sclk <= ctrl_board interfaces_ 0_sensor_vib3_adc7923_sclk:

sensor0_vib3_adc7923_ssel <= ctrl_board interfaces_0_sensor_vib3_adc7923_ssel:
AID 0: component system AID 0_1
=] port map (
Input_Signals_sig0 (31 downto 0) => isabella genhdl wrapper DC 0_DebugSig_sigO (31 downto 0),
Input_Signals_sigl (31 downto 0) => isabella genhdl wrapper DC 0_DebugSig_sigl (31 downto 0),
Input_Signals_siglO (31 downto 0) => isabella genhdl wrapper DC O DebugSig siglO (31 downto 0),
Input_Signals_sigll (31 downto => isabella genhdl wrapper DC_O_ DebugSig_sigll (1 downto 0),
Input_Signals_sigl2 (31 downto => isabella_genhdl wrapper DC_O_DebugSig_sigl2 (31 downto 0),
Input_Signals_sigl3 (31 downto => isabella genhdl wrapper DC_O_ DebugSig_sigl3 (31 downto 0),
Input_Signals_sigl4 (31 downto 0) => isabella genhdl wrapper DC_O_DebugSig_sigl4 (31 downto 0),
Input_Signals_sigl5(31 downto => isabella_genhdl wrapper DC_0 DebugSig_sigl5 (31 downto 0),
Input_Signals_siglé6 (31 downto => isabella genhdl wrapper DC_0_DebugSig_siglé (31 downto 0),
Input_Signals_sigl7 (31 downto => isabella genhdl wrapper DC_O_ DebugSig_sigl7 (31 downto 0),
Input_Signals_siglg8 (31 downto => isabella_genhdl wrapper DC_O_DebugSig_sigl8 (31 downto 0),
Input_Signals_sigl9 (31 downto => isabella_genhdl wrapper DC_O DebugSig_sigl9 (31 downto 0),
Input_Signals_sig2 (31 downto 0) => isabella genhdl wrapper DC 0_DebugSig_sig2 (31 downto 0),
Input_Signals_sig20(31 downto => isabella_genhdl wrapper DC_O0 DebugSig_sig20(31 downto 0),
Input_Signals_sig2l (31 downto => isabella genhdl wrapper DC_0O_ DebugSig_sig2l (31 downto 0),
Input_Signals_sig22 (31 downto => isabella_genhdl wrapper DC_O_DebugSig_sig22 (31 downto 0),
Input_Signals_sig23(31 downto 0) => isabella genhdl wrapper DC_O_DebugSig_sig23 (1 downto 0),
Input_Signals_sig24 (31 downto isabella genhdl wrapper DC_O_DebugSig_sig24 (31 downto 0),
Input_Signals_sig25(31 downto 0) => isabella genhdl wrapper DC_O_DebugSig_sig25(31 downto 0),
Input_Signals_sig26 (31 downto => isabella_genhdl wrapper DC_O DebugSig_sig26(31 downto 0),
Input_Signals_sig27 (31 downto => isabella_genhdl wrapper DC_O_DebugSig_sig27 (31 downto 0),
Input_Signals_sig28 (31 downto => isabella_ genhdl wrapper DC_O_DebugSig_sig28 (31 downto 0),
Input_Signals_sig29(31 downto => isabella_genhdl wrapper DC_O DebugSig_sig29(31 downto 0),
Input_Signals_sig3 (31 downto 0) => isabella genhdl wrapper DC 0_DebugSig_sig3 (31 downto 0),
Input_Signals_sig30(31 downto 0) => isabella genhdl wrapper DC_O_DebugSig_sig30(31 downto 0),
Input_Signals_sig31 (31 downto => isabella_genhdl wrapper DC_O_DebugSig_sig31 (31 downto 0),
Input_Signals_sig32 (31 downto => isabella_genhdl wrapper DC_O_DebugSig_sig32 (31 downto 0),
Input_Signals_sig33 (31 downto isabella genhdl wrapper DC_O_DebugSig_sig33 (31 downto 0),
Input_Signals_sig34 (31 downto => isabella_genhdl wrapper DC_O_ DebugSig_sig34 (31 downto 0),
Input_Signals_sig35(31 downto 0) => isabella genhdl wrapper DC_O_DebugSig_sig35(31 downto 0),
Input_Signals_sig36 (31 downto => isabella_genhdl wrapper DC_O_ DebugSig_sig36(:.1 downto 0),

- e e e e e e e

— e e e e e
I
v

— o~
Il
v

FIGURE 90: VHD FILE WITH THE FPGA DESIGN OF THE CONTROLLER BOARD

Figure 91 shows the generated signal configuration file with the input ports mapped to the signal names.
This file is used to load the signal names into the AID user-interface. It is also possible to use this file
generator for other IP cores, when the interface is known.
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AEN e [ D EN R e
1 0 isabella_genhdl_wrapper_DC_0_DebugSig_sig0
2 | 1 isabella_genhdl_wrapper_DC_0_DebugSig_sigl
3 2 isabella_genhdl_wrapper_DC_0_DebugSig_sig2
4 3 isabella_genhdl_wrapper_DC_0_DebugSig_sig3
5 | 4 isabella_genhdl_wrapper_DC_0_DebugSig_sig4
6 | 5 isabella_genhdl_wrapper_DC_0_DebugSig_sigh
7| 6 isabella_genhdl_wrapper_DC_0_DebugSig_sigb
8 7 isabella_genhdl_wrapper_DC_0_DebugSig_sig?
3 | 8 isabella_genhdl_wrapper_DC_0_DebugSig_sig8
10 | 9 isabella_genhdl_wrapper_DC_0_DebugSig_sig9
| 10 isabella_genhdl_wrapper_DC_0_DebugSig_sigl0
12 | 11 isabella_genhdl_wrapper_DC_0_DebugSig_sigil
13 | 12 isabella_genhdl_wrapper_DC_0_DebugSig_sigi2
4 13 isabella_genhd|_wrapper_DC_0_DebugSig_sigl3
15| 14 isabella_genhdl_wrapper_DC_0_DebugSig_sigl4
16 | 15 isabella_genhdl_wrapper_DC_0_DebugSig_sigis
L L 16 isabella_genhdl_wrapper_DC_0_DebugSig_siglé
18 17 isabella_genhd|_wrapper_DC_0_DebugSig_sigl?
13 18 isabella_genhd|_wrapper_DC_0_DebugSig_sigl8
20 | 19 isabella_genhd|_wrapper_DC_0_DebugSig_sigl9
21 | 20 isabella_genhdl_wrapper_DC_0_DebugSig_sig20
22 | 21 isabella_genhdl_wrapper_DC_0_DebugSig_sig21
23 | 22 isabella_genhdl_wrapper_DC_0_DebugSig_sig22
24 | 23 isabella_genhdl_wrapper_DC_0_DebugSig_sig23
25 | 24 isabella_genhdl_wrapper_DC_0_DebugSig_sig24
26 | 25 isabella_genhd|_wrapper_DC_0_DebugSig_sig25
21 | 26 isabella_genhd|_wrapper_DC_0_DebugSig_sig26
28 | 27 isabella_genhd|_wrapper_DC_0_DebugSiq_sig27?
23 | 28 isabella_genhdl_wrapper_DC_0_DebugSig_sig28
30 29 isabella_genhdl_wrapper_DC_0_DebugSig_sig29
31 30 isabella_genhdl_wrapper_DC_0_DebugSig_sig30
32 | 31 isabella_genhdl_wrapper_DC_0_DebugSig_sig31
33 32 isabella_genhdl_wrapper_DC_0_DebugSig_sig32
34 33 isabella_genhdl_wrapper_DC_0_DebugSig_sig33
35 34 isabella_genhd|_wrapper_DC_0_DebugSig_sig34
36 | 35 isabella_genhd|_wrapper_DC_0_DebugSig_sig35
37 | 36 isabella_genhd|_wrapper_DC_0_DebugSig_sig36
38 | 37 isabella_genhd|_wrapper_DC_0_DebugSiq_sig37
39 | 38 isabella_genhdl_wrapper_DC_0_DebugSig_sig38
40 | 39 isabella_genhd|_wrapper_DC_0_DebugSig_sig39
41
42 |

controller_board_design_scf

FIGURE 91: GENERATED SIGNAL CONFIGURATION FILE FOR THE CONTROLLER BOARD

To create the Signal Configuration File Generator, different classes were used:

e The class Program.cs instantiates the Signal Configuration File Generator window and runs it.

e The class Form1.cs is the main window for the Signal Configuration File Generator. It contains
the buttons and other elements. It instantiates the UIHandler.

e The class UlHandler.cs handles the inputs of the user-interface and checks them for validity. It
also reads the vhd file and generates the csv file.

e The class SignalEntry is used for mapping the signal names to the input ports. Therefore, it
contains only two member variables, the signal name and the index.

71



9 LABVIEW USER-INTERFACE

9.1 GUI

The LabVIEW user-interface controls the Advanced Inverter Debugger on the FPGA. It sends the control
information to the FPGA and receives the signal data. The user-interface is shown in Figure 92.

AID Input Signals  Signal Configuration File
300 | 3[PAMasterthesis\LabVIEW Proj\Signal Config-2018-05-30.csv =

Remote P Address Remote Port Out Remote Port In
192.168.1.10 5 64000 3 63999

Get Version

Version Number 0
#Samples Sampling Rate

g/ 10240 1wkt | Logoats (B

Trigger QP &> Post-Trigger @ Pre-Trigger )

Trigger Type Trigger Value Trigger Signal Start Debugging
above value 210 SigProcsng_IDc v
File Path - Debug-Data
Stop Debuggin:
% D:\Masterthesis\LabVIEW Proj\test03.csv = i

Monitoring Options

Clear All Charts realtimedata | Load Debug Data
Signal Selection Signal Selection 1
Clearchat | SigProcsng IDc | [Enable xscale T Clear Chart SigProcsng linviegd | —

5 i85

Amplitude
°
Amplitude
°

0 10240 0 10240
Samples Samples

Signal Selection 2 Signal Selection 3
Clear Chart | SigProcsng linviegy | Enable x-scale| Plot0 Clear Chart | SigProcsng_IDc v | Enable x-scale]|

1

Plot 0

15

Amplitude
°
Amplitude
°

0 10240 0 10340
Samples Samples

FIGURE 92: LABVIEW USER-INTERFACE TO CONTROL THE AID

The IP address and the port numbers are used to set up the UDP connection between the user-interface
and the FPGA. The default IP address is 192.168.1.10, which was adjusted at the target HW. The default
input port is 63999 and the default output port is 64000.

The signal configuration file is used to load the signal names of the FPGA design into the LabVIEW
user-interface. The AID is available with 40 and 300 input signals. Therefore, the signal configuration
files are different for both versions. After the signal configuration file is loaded, the signal selection menus
are updated to the signal names. This provides a better overview of the connected signals and makes
the interpretation of the debugged results easier.

The number of samples defines how long the AID samples, transmits and monitors the data. The number
of samples is a multiple of 1024. The minimum number is 1024 and the maximum is 999424 samples.
The Advanced Inverter Debugger automatically stops the debugging process, when the number of
samples matches the adjusted number of samples from the user interface. When the AID is running in
this mode, it is called normal mode. The second mode is the infinity mode. The AID is running as long
as the stop debugging button is pressed. The stop debugging button transmits the Reset UDP package
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(package type 3) to the FPGA. After receiving the stop information, the AID on the FPGA is reset. To
enable the infinity mode, the number of samples has to be set to 0.

The sample frequency for the debugging process is determined by the sample rate menu. It was created
with a Menu Ring. The advantage of this element is, that it is easy to handle and can be extended with
more elements very easily.

The trigger is set up with the trigger settings. The Trigger button enables the trigger and by switching
the shift button, the trigger can be switched between pre- and post-trigger. With the Trigger Type
selection and the trigger value, the trigger event can be defined. The trigger signal determines the signal,
which is used for the trigger. If the trigger is enabled, the selected signal is automatically updated in the
signal selection menu of the first chart.

To log the received signal data, data logging can be enabled with the Log Data button. A csv file must
be selected with the file path selection, File Path — Debug-Data. After starting the debugging process,
the received signal data is written into the selected csv file and also monitored in the charts. This file
path is also used to load the logged data. To load the saved data, the Monitoring Options has to be
changed to logged data. After setting the right file path (csv file) and the monitoring options, the button
Load Debug Data must be pressed. The button initializes the read process from the csv file into the
LabVIEW application. When loading data from files into the LabVIEW application, it is important to set
the corresponding signal configuration file. By setting the wrong signal configuration file, it can be, that
the application can’t find the signal name entries and the signal names are not updated correctly in the
signal selection menus. However, the signal values are displayed in the charts.

To monitor the signal data, 4 charts are used. Each chart has its own signal selection menu to select
the debugging signal for the chart. The first signal selection menu is disabled, when the trigger is active.
In this case, the trigger signal menu is used as signal selection for chart 1.

To get a better overview of the monitored data, the x-axis can be changed. This is possible by pressing
the button Enable x-scale. This enables the fields for setting the start and the end point on the x-axis.
The Clear Chart button resets the history of the chart. There is also a Clear All Charts button, which
resets the history of all charts.

To start the debugging process, the Start Debugging button has to be pressed. The user-interface sends
the control information for starting the AID to the FPGA.

To stop the debugging process, the Stop Debugging button has to be pressed. The user-interface sends
the control information for stopping/resetting the AID to the FPGA.

To get the version number, the Get Version button has to be pressed. The user-interface sends the
control information (package type 5) to the FPGA, which returns the version number (package type 6).
The received UDP package with the version number is not processed with LabVIEW. It appeared that
the processing structure slowed down the receiving while loop and performance problems occurred.
Therefore, this part was removed in the final version to gain more performance.

The close the LabVIEW-application, the Exit Program button has to be pressed.

If there is something not clear, how the AID is controlled by the LabVIEW user-interface, the Help button
can be pressed. Under the different sections, the whole flow to set up a correct debugging process is
explained step by step.

9.2 LABVIEW FUNCTIONS

There are several LabVIEW functions, which provide the functionality of the user-interface. Most
functions run in separate while loops. To increase the performance, some while loops use a Wait(ms)
function to reduce the number of executions. The free execution time is used for other while loops, like
the receiving while loop, to process the incoming UDP data.
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Figure 93 shows the while loop, to load the signal configuration data into the trigger and signal selection
menus of the user-interface. First, the signal configuration file has to be selected. The while loop opens
the file and reads line by line from the file. Each selection menu is filled with the read signal names. This
while loop is processed every 50ms to increase the performance for other while loops.

Load Config File:

The config file maps the internal signal structure of the FPGA with the
signal names. These signal names will be loaded into the Ring Enums
Signal Configuration File for the signal selection / trigger signal selection to have a better overview

| of the incoming data.
3——1__
Gy ﬁ&

19 2-M
String ¥

e Trigger Signal

21—

m_ PStrings|]
Signal Selection

PStrings|]

i

Signal Configuration: Signal Selection 1
This configuration holds the signal names, which (57 m— 1]

are selectable in the signal selection fields and for PStrings|]
the trigger signal.

The configuration is done by loading the csv-file
with the signal names and the internal interface
numbers of these signals. With the data, the ring - )
data structure is filled and the wanted signals can Signal Selection 3

be chosen for the debugging process. bStrings(]

Signal Selection 2

21— '

PStrings|]

FIGURE 93: LOAD SIGNAL CONFIGURATION FILE

Figure 94 shows the while loop to process the x-axis scale, when it is enabled. Each chart has its own
button to enable the x-axis scale.

When the x-axis scale is enabled, two new input fields appear, the x-min input field and the x-max input
field. The x-min input field defines the minimum value of the x-axis and the x-max input field defines the
maximum value of the x-axis. With this functionality, a scalability in the x-axis direction was implemented
to get a better overview of each chart.

If the minimum value is greater or equal to the maximum value, the maximum value is automatically
increased by 100.

When the x-axis scale is disabled, the input field for the minimum x-axis and the maximum x-axis are
invisible. When the number of samples is 0, which means the AID is running in infinity mode, the
maximum value of the x-axis is incremented (Figure 94, Chart1). If a finite number of samples is selected
in the menu, the maximum value of the x-axis is set to the selected number of samples (Figure 94,
Chart3).
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FIGURE 94: CHART X-AXIS SCALE

Figure 95 shows the while loop for resetting the charts. There is a Clear All Charts button, which resets
the history of all signal charts. With the Clear Signal Chart buttons, every signal chart can be reset
separately. The execution of this while loops is also slowed down by 50ms.
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FIGURE 95: CLEAR SIGNAL CHARTS

Figure 96 shows the trigger event to close the user-interface. By pressing the Exit Program button, the
trigger event occurs and the user-interface is closed.

Exit Program
=] [[C‘] "Exit Program": Value Change 'P
Exit Program:
Close all Source FP.Close
Tibe
Time
CtIRef
m -

FIGURE 96: GUI ExIT

Figure 97 shows the while loop to load the debugged data from the log file. The log file is selected with
the File Path — Debug-Data. After selecting the file, the monitoring options must be changed to logged
data. To read the data from the file, the Load Debug Data button must be pressed. Then, the signal

76



charts are filled with the data and the trigger and signal selection menus are updated to the signal names,
which were debugged in the log file. It is important, that the same signal configuration file is used, which
was used to log the data, otherwise the signals can’t be updated in the signal selection menus. However,
the signal values are displayed.
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FIGURE 97: LOAD DEBUGGED DATA

Figure 98 shows the while loop for sending the command information to the FPGA. Before the command
data is sent, the adjusted parameters are saved into the header csv file. There are 2 files which are
generated with the LabVIEW user-interface when data logging is enabled. The normal data file and the
header file. Due to complications with writing these data into one file, 2 separate files are created. In the
header file, the debugging information is stored. The debugging information contains, time and date
when the debugging started, sample rate, number of samples, trigger options, trigger value and the
debugged signal names.

In the data file all of the received data is stored. This data contains the sample number and the values
of the debugged signals. The execution of the while loop is also slowed down by 50ms.

77



Remote Port Ot
[Trigger Signal Selection: Winit", Defautt 13
I the Tigger Signal Selction s acive, the Signa Slecion | Remte P Address
| i ed, Cot—h
Com
[rhe
[peci
e coemam
StartDebugaing
0=
=
VPl Start Debu
SiopD 3
ol , ebugging:
Sample Rate
Get Vesion
TiggerSwitch Post-Trigger Pre-Trigger
fai - D LS o) [ |
—_— 4 untionality to-stariordop
- sedsthe site changesto
e
Trigger Type sed, the state changes to Reset.
¥ [cvo
Felse <B Trigger Velue [The stat button also activates the first write
Signal Selection >
i St e o
Signal Selection dentiicaion.
Signal Selection 1
CE—h
Dissbid] Signal Selection2 E A ) 7 ‘ &
g ] Frpa oo ¢ B & FiREIE
fpasocions
=
]

FIGURE 98: WRITE HEADER

Figure 99 shows the case, when the Start Debugging button is pressed. When data logging is active,
the header file is created and after that, the state of the state machine changes to Start Debugging.

When data logging is not active, the state machine goes right into the Start Debugging state, without
creating the header file.

In this state, the UDP connection is established to send the control information to the Debug-Core. After

sending the control information, the connection is closed again. The state machine switches into the
Sending 0 and into the init state.

Remote Port Out

[Trigger Signal Selection: HStart Debugging” ~P]
[ the Trigger Signal Selection is active, the Signal Selection Remote P Address
hart i disabled, =3

UDP Open

1g core will be — @
UDP to the FPGA. [Workstationpc] | (2|

ent to the FPGA depend|

] B,

R —
=

Samples
Iy}

[>Sending 0 i

! ebuggl'“] "

Sample Rate

et Verson
=

%@u‘h N >

Post-Trigger Pre-Trigger
=i Ol

=
x
Tigger =B
el » s
3
Tigaut Ty S behuaging J R Debuggng Sate
T i e comtaps e conol dta t st
G
HFae <] v the debugaing proces f the DebugCore

B

Signal Selection
S
% Selection

=

[The firstframe of the UDP package is the
lpackage type. The package type gives the
DebugCore the information, which package

ignal Selection 1

o

ple should the debug core
Signal Selection 2 bVIEW.
- how fast should the debug core sample

199
- should  tigger be actve or not

- whatis the trigger value

- which signals should be debugged

Signal Selection 3

B

o

FIGURE 99: START DEBUGGING COMMAND

Figure 100 shows the Reset state. After pressing the Stop Debugging button, the state machine switches
into the Reset state. The Reset state establishes an UDP connection to send the Reset command
information to the Debug-Core. After sending the information, the state changes to Reset 0. In the Reset
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0 state, the Reset command is sent again, to increase the possibility that the Debug-Core receives the
reset command. Then, the state machine switches into the init state.
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FIGURE 100: RESET COMMAND

Figure 101 shows the state Get Version. The state machine jumps into this state, when the Get Version
button is pressed. An UDP connection is established and the GetVersion command information is sent
to the Debug-Core. Due to performance issues, the receive part for the version number was removed.
To receive the version number, the package type was compared to the version acknowledge package.
If the package type was correct, the output field for the version number was updated with the received
value. Due to this comparison, the performance dropped and this part was removed.
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The Figures 102-104 show parts of the receiving process. The while loop contains elements for receiving
and processing the UDP data.

First, the UDP connection on the receiver side is created. At that point, the file for the debugging process
is opened to write the data into the file. Opening the file at this point saves time, because inside the
while loop, the data only needs to be written into the file. Otherwise, the csv write function could be used,
but that would slow down the performance. The received data is read from the UDP Receive block.

The data processing part splits the received data into the sample number and signal values. The signal
values are added to arrays and displayed in the signal charts. Furthermore, the signal values and the
number of samples are prepared for the csv file. When data logging is active, the prepared data is written
into the log file.
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FIGURE 102: UDP RECEIVE
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FIGURE 103: UDP DATA PROCESSING
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9.3 PERFORMANCE OF THE LABVIEW USER-INTERFACE

The LabVIEW user-interface performance is bad. It works for low sample frequencies but at high sample
frequencies the incoming UDP data are not processed very quickly. This causes data loss in the graphs
and in the log files.

When the AID is debugging with a sample rate of 1 MHz, the receive buffer is full after a short time and
LabVIEW cannot process the incoming UDP data as fast as they arrive. The receive buffer of the
workstation is full and it overflows. Samples get lost and in the worst case, several thousand samples
are lost. This leads to gaps in the graphs and in the log files. With lower sample rates, the performance
becomes better.

The performance can be increased, when data logging is disabled. File operations are very slow and by
disabling them, the operations inside the receiving and data processing while loop can be processed
faster. This leads to a small increase of the performance but it is still not good enough to process bigger
sample numbers with higher sample rates.

Another problem is checking the received package type. There are different packages, which are sent
to the user-interface. The data package and the version number package. Both have a different package
type. By checking the received package type, the performance gets even worse than with enabled data
logging. Due to this behavior, the package check was removed in the final version of the LabVIEW user-
interface.

There is a LabVIEW version available, which supports real-time operations and event triggered while
loops, which executes with a frequency of 1 MHz, but a real-time operating system is necessary.
Notebooks, which will be used for debugging do not have a real-time operating system. Therefore, this
option is not feasible.

To increase the performance, parallelism is used. This was done by using different functions in multiple
while loops. Functions can be entries or changes from the user-interface or data processing. These
while loops work parallel to each other. The idea was, to slow down different while loops, with a Wait(ms)
statement to increase the execution time of the while loops, which must run faster. Every function, which
works with updates from the user-interface, was slowed down by 50ms. This effected the overall
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performance with higher sample rates. The sample rates of 500 kHz and 250 kHz perform better.
However, there is still a loss of data.

Handling the files is also difficult. There is a function to write to csv files, but this function performs every
time an open file, write to file, and close file operation. This slows down the performance. This problem
was reduced, by using an open file operation at the beginning of the receiving process. The data is
logged with a write to file function. During the whole data logging process, the file stays open.

The problem with this solution is, that changing the filename, closing the file and other file dependent
operations are difficult to do, when the file is still open. The csv file can only hold 1048576 [9] lines to
open it in Microsoft Excel. It was not possible to change the file during the receiving process. Therefore,
it is recommended to use the LabVIEW user-interface not in infinity mode.

Without the Wait statements in the while loops, the first data loss appears after nearly 2800 samples
(87 UDP packages), at a sample rate of TMHz.

Due to the parallelization of the while loops and slowing down the execution of some while loops, the
performance was increased.

The user-interface was tested with the AID300 IP core and the ZedBoard. The test signals were
generated by the SigGen_300 IP core. Figure 105 and Figure 106 show a debugging test with 7168
samples and a sample rate of 1 MHz. In Figure 105, the signals are monitored and there is no sample
missing. However, when data logging is active, the performance drops due to the file operations and
data loss occurs. This is shown in Figure 106.
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FIGURE 105: DEBUGGING TEST WITH 7168 SAMPLES AND A SAMPLE RATE OF 1 MHz
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Figure 107 shows the debugging process of 14336 samples with a sample rate of 500 kHz and data
logging. Before reaching the final samples, glitches in the signal charts appear. These glitches are
caused by the fast incoming UDP packages and the slow data processing. The receive buffer gets full
and samples get lost. Not even with the modifications 14336 samples can be debugged correctly with a
sample rate of 500 kHz when data logging is active.
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Figure 108 shows a debugging test with the same settings but without data logging.

debug 14336 samples with a sample frequency of 500 kHz.
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FIGURE 108: DEBUGGING TEST WITH 14336 SAMPLES AND A SAMPLE RATE OF 500 kHz

It is possible to

Figure 109 shows the debugging process of 21504 samples with a sample rate of 250 kHz. There is no

sample missing.
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FIGURE 109: DEBUGGING TEST WITH 21504 SAMPLES AND A SAMPLE RATE OF 250 KHz
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Figure 110 shows the debugging process with the same settings but with data logging. It is still possible
to debug 21504 samples with a sample rate of 250 kHz and log the data.

With lower sample rates, a higher number of samples can be adjusted for the debugging process.

It is still possible to debug 500736 samples with a sample rate of 250 kHz and enabled data logging.

This is show in Figure 111.
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FIGURE 110: DEBUGGING TEST WITH 21504 SAMPLES AND A SAMPLE RATE OF 250 KHZ AND DATA LOGGING
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FIGURE 111: DEBUGGING TEST WITH 500736 SAMPLES AND A SAMPLE RATE OF 250 KHZ AND DATA LOGGING
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Figure 112 shows the debugging process with infinity mode. The debugging is as long active, until the
stop button is pressed. It is theoretical possible to debug as long as possible. In practice, it is different,
due to the limitations explained before. After approximately 800000 received samples, the glitches occur.
The data processing is too slow, the receive buffer overflows and data is lost.
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FIGURE 112: DEBUGGING TEST WITH INFINITY MODE WITH A SAMPLE RATE OF 250KHZ AND DATA LOGGING

10 C# USER-INTERFACE

To solve some problems with the LabVIEW user-interface, a new user-interface with C# and Microsoft
Visual Studio® was developed. Visual Studio provides all the necessary libraries for this application. To
create a user-interface, which looks like the LabVIEW user-interface, a C# Form application was created.

The C# user-interface is better than the LabVIEW user-interface in several points:

e |t was possible to include the version number into the GUI.

file with the appendix *-partxx.csv.

The performance is better than the LabVIEW user-interface, due to multi-threading.

e |tis possible to show the working status of the application.
e The zoom in the graphs is better handled.

38 Microsoft Visual Studio, https://visualstudio.microsoft.com/

Data logging in infinity mode can be done. The C# application automatically creates a new csv
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10.1  GUI

The C# user-interface controls the Advanced Inverter Debugger on the FPGA. After the adjustments for
the desired debugging process, the C# application transmits the control information via a UDP
connection to the target hardware and the FPGA. The application is called AID-Ul, Advanced Inverter
Debugger User-Interface and is shown in Figure 113.
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FIGURE 113: AID C# USER-INTERFACE

The C# user-interface is structured into different sections, like loading the signal configuration file,
settings for the UDP connection, sampling settings, trigger settings, settings for data logging and the
charts for monitoring the debugged data.

With the Select Signal Config File button, a file selection menu pops up to select the signal configuration
file. The application checks if the file is a csv file and reads the data from the file. The trigger and signal
selection combo boxes are updated with the signal names. If the file is no csv file, a pop-up window with
the corresponding error message occurs.

When the AID-UI application is started, it tries to load a default signal configuration file. This default
configuration file with the name, SignalConfigurationFile.csv, must be located in the directory, where the
AID_Ul.exe file is located. The trigger and signal selection combo boxes are automatically filled with the
signal names of the default signal configuration file.

This feature is only working, if the file name and the file location is correct, otherwise the trigger and
signal selection combo boxes stay empty and the signal configuration file must be selected with the
Select Signal Config File button.

For the UDP connection between the C# user-interface and the FPGA, UDP connection settings are
necessary. The settings contain the board IP address of the target HW, where the FPGA with the AID
IP core is located and the port numbers for incoming and outgoing UDP packages. At the application
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start, the default values are loaded. The default IP address is 192.168.1.10 (which is also adjusted at
the target HW). The default input port is 63999 and the default output port is 64000.

The values can be changed in the user-interface. The IP address and the port numbers are checked for
valid input, when the Start Debugging button is pressed. Port numbers between 49152 and 65535 are
valid. These port numbers are dynamic or private ports [10] and are not registered. The string from the
IP address text box is parsed to an IP address. If this parsing fails, an error message occurs. An error
message will also occur, when the port numbers are invalid.

The sample settings contain the sample rate and the number of samples. The number of samples
defines how many samples are debugged. The number of samples is a multiple of 1024. The minimum
is 1024 and the maximum is 999424.

There are two operation modes for the AID IP core. The normal mode and the infinity mode. In the
normal mode, the AID automatically stops debugging, when the adjusted number of samples is reached.
In the infinity mode, the AID only stops, when the Stop Debugging button is pressed, otherwise it run
infinitely long. To activate the infinity mode, inf (infinity mode) must be selected in the Number of
Samples combo box.

The sample rate defines the sample frequency of the debugging process. There are 25 different sample
frequencies to choose for the debugging process. The maximum sample frequency is 1 MHz and the
minimum sample frequency is 1 kHz.

With the trigger settings, the trigger can be enabled. Pre- and post-trigger can be selected with the radio
buttons. The trigger event is defined by the trigger type and the trigger value. Each trigger type is
available for the post- and pre-trigger.

The trigger types are:

e Above trigger value
e Lower trigger value
e Equal to trigger value

If the trigger is active, the signal selection for signal 0 works with the Trigger Signal combo box. The
Signal 0 Selection combo box is disabled to avoid conflicts. It is automatically updated with the selected
signal from the Trigger Signal combo box. The chosen trigger signal is monitored in chart 0. Chart 0
always monitors the trigger signal, when a trigger is selected. If no trigger is enabled, the signal selection
must be done with the Signal 0 Selection combo box.

To log the debugged data, it is necessary to check the Log Data check box. This activates the data
logging. By pressing the Select CSV File button, a window appears to select the csv file. The selected
file is checked for the correct ending (csv file). If the file type is invalid, an error message occurs. With
the csv file format, it is possible to open the files with a normal editor, like Notepad++. It is also possible
to load the csv files with Microsoft Excel. There is a limitation of 1048576 [9] lines to monitor the data.

When data logging is active and the AID is running in infinity mode, more than 1 million lines of data are
logged. Each line contains a sample with the 4 signal values and the sample number. Microsoft Excel
can only monitor 1048576 [9] lines of the csv file. To log more lines, the received UDP packages are
counted. When the counter reaches the maximum number of samples for one file, a new file is created.
The maximum number of samples per file is set to 999424 samples. The new file is named with the
actual file name and additionally with the extension of —partX.csv, where X is the file counter. Every log
file contains the header with the debugging settings. The logged data files with the extended file names
are shown in Figure 114. In this case, the maximum samples were limited to 4096 per file, to test the
creation of new files.
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FIGURE 114: LOAD LOG FILES INTO THE USER-INTERFACE

When the Load Data button is pressed, the event handler creates the read data thread, which loads the
data from the selected csv file into the charts. When the debugged data is logged into more than one
file, the first log file must be selected. The user-interface is updated with the debugging information from
the log files and the signal data of the other files is automatically loaded one by one into the charts.

The charts monitor the debugged signals. Each chart has its own signal selection combo box, to
determine the signals for the debugging process. The charts are scalable by marking the desired window.
Each chart has its own scale and a Clear Chart button. The Clear Chart button resets the chart history.
There is also a Clear All Charts button, which resets the history of all charts.

To get the actual version number of the AID IP core, the Get Version Number button must be pressed.
The button event creates a task, which handles the following steps: A new UDP client is created, which
sends the control information with the package type 5 to the target HW. The Processing System with
the UDP echo server receives the control information and due to package type 5, it responds with the
version number of the AID. The version number is set in the driver files. The UDP package with package
type 6 and the version number is sent to the AID-UI. The task receives the version number and monitors
it in the Version Number text box.

The Start Debugging button, sends the control information to the AID IP core to start the debugging
process. First, the different inputs from the user-interface are checked. If every input is valid, the UDP
payload with the control information is created. Then, a UDP client is created to send the control
information to the AID IP core. To receive and process the UDP packages, 2 threads are used. The first
thread, t_recv, is the thread to receive all the incoming UDP packages. They are saved as byte arrays
into a FIFO queue. The second thread, t_proc, is the thread to process the data from the FIFO queue.
The data queue needs to be locked, to avoid concurrent access and to synchronize the threads. This is
done by using a lock. The processing thread reads the data from the queue and converts the byte array
into integer values and writes the data into the file, when data logging is active. It also updates the charts
with the processed signal values. The thread also handles the maximum number of samples per file.
When this number is reached, a new file is created. The receive thread runs with the highest priority, to
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receive the UDP packages as fast as possible. The processing thread runs with normal priority. Both
are running in the background, to avoid a frozen main window of the user-interface. The threads
terminate themselves, when all received data has been processed.

The receive thread can also be terminated by pressing the Stop Debugging button. It creates a new
UDP client, which sends the stop debugging control information to the AID IP core with the package
type 3. This package resets the AID IP core on the FPGA.

If the FIFO queue is still full with received data, the processing thread runs as long as the data queue is
full. When the queue is empty, a timeout occurs and the processing thread terminates itself. The
processing thread can also be terminated by pressing the Cancel Data Processing button. This
immediately terminates the processing thread and the FIFO data queue is cleared.

The Default Settings button, loads the default settings, like the UDP settings, which were discussed
earlier.

The AID status defines the status of the user-interface. It can be in idle mode or in running mode. In idle
mode, the AID-Ul is able to perform every functionality. In running mode, the AID-Ul is working in the
background to process data. This can be converting the byte array from the data queue to integer values,
updating the charts and writing the data to files or reading the data from the log files. Loading log files
cannot be executed, when the AID-Ul is in running mode.

The Help button activates the help window. It gives an overview of the different options of the AID-UI.
The help window shows instructions to start the debugging process.

10.2 C# CLASSES OF THE USER-INTERFACE

The class Program.cs instantiates the AID-Ul window and runs it.

The class Form1 is the main window with the name AID-UIl. Form1 contains all the different elements,
which are present in the user-interface. The Form1.cs handles all the different events, like pressed
buttons. It instantiates the FilelO, UIHandler, UDP_Connection, UlStartConfiguration and AID_Thread.
This is shown in the code below. These instances are used for the proper work of the AID-UI. The help
window is created, when the Help button is pressed.

/Il create instances

uiHandler = new UIHandler();

udp_con = new UDP_Connection();
ui_startconfig = new UlStartConfiguration();
csvFilelO = new FilelO();

t aid = new AID_Thread();

The class Form2 is the help window. It contains only a text box, which is read only. The text is assigned
during the initialization phase.

The class FilelO handles the file access. It handles the read operation from the signal configuration file.
Therefore, the file path is checked for validity and the configuration data is loaded into the user-interface.
It also handles the file access to log and load the signal data. Therefore, the file path is checked for
validity, the header and the signal data is written into the log file. The header gives information about
the adjusted parameters of the debugging process. It also automatically creates new log files with the
extension —partX.csv, when more than one log file is required. To read the log files, the file path is also
checked and if more than one log file exists of the same debugging process, it automatically loads all of
the created log files. Furthermore, the header information of the debugging process will be read.
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The class AID_Thread contains the receive thread, for receiving the UDP packages, the processing
thread, for processing the received UDP data and the read data thread, for loading the logged data into
the charts. The receive thread fills the data queue with the received UDP data. The processing thread
converts the UDP data into integer values, which are written into the files, if data logging is active and
the charts are updated. The read data thread opens the log files and loads all the data into the charts.
The user-interface settings are automatically updated with the header information of the csv files. The
header of the log file contains the settings of the debugging process. The signal data is monitored with
the charts.

The UDP_Connection class handles the UDP connection. It creates the UDP clients to send and receive
UDP packages. It also builds the UDP payload with the adjusted settings from the user-interface and
sends the control information to the AID IP core. This control information can either be a start debugging
command with the necessary debugging parameters, a stop debugging command or a get version
number request.

The class UlHandler handles all the inputs from the user-interface. It checks the different elements for
validity and handles error cases. It also updates elements when the signal configuration file or log files
are loaded.

The class UlStartConfiguration sets up the default values of the user-interface. It also fills the sample
rate combo box, the number of samples combo box and the trigger type combo box with the
corresponding values.

10.3 PERFORMANCE OF THE C# USER-INTERFACE

The performance of the C# user-interface is better than the performance of the LabVIEW user-interface.
Whit the threads running in the background, 60000 samples can be debugged with a sample rate of 1
MHz. With lower sample rates, it is possible to debug even more samples, without gaps in the charts.
The user-interface was tested with the ZedBoard as target hardware. The SigGen300 was used to
generate the test signals for the AID300. Figure 115 shows the debugging process with 60416 samples
and a sample rate of TMHz.

The performance was increased. However, gaps can still appear. These gaps are caused, when the
receiving thread is blocked by the processing thread. These gaps are usually very small. Due to the
blocked receiving thread, time is wasted and at some point, gaps of missing samples will appear. Big
gaps are caused, when the UDP packages are sent too fast. The receive buffer of the network card
overflows and samples get lost.

Figure 116 shows the two different kinds of gaps in the charts. The charts for signal 0 and signal 2 have
bigger gaps, with about 2000 missing samples. These gaps are caused by the full receive buffer. The
receive buffer overflows and the samples get lost. The chart for signal 1 shows the smaller gap, which
is caused, when the processing thread blocks the receiving thread.

The gaps can occur at lower sample rates as well, but in these cases, the gaps are small and about
2000 samples are lost. At higher sample rates, the gaps of missing samples can increase up to 20000
samples, depending on the adjusted number of samples for the debugging process. The worst case is
a combination of a full receive buffer and a blocked receiving thread.
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FIGURE 116: GAPS IN THE CHARTS AT A SAMPLE RATE OF 250 KHz

Figure 117 shows the worst case of gaps. In that case, the sample rate is 500 kHz and the receive
thread was blocked by the processing thread. The receive buffer overflows and data is lost. 15000
samples are lost. This behavior is worse with a sample rate of 1MHz. The higher the sample rate and
the higher the number of samples, the more samples get lost.
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FIGURE 117: CHARTS WITH BIG GAPS AT A SAMPLE RATE OF 500 KHz

Figure 118 shows the debugging process with a sample rate of 1MHz and a number of samples of
100352. Due to the blocked receiving thread and the fast sample rate, the data loss occurs earlier. There
are also more lost samples because, the UDP packages are sent with a higher frequency.
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FIGURE 118: LOST SAMPLES AT SAMPLE RATE OF 1MHz

93



The performance can still be increased by using different libraries for the charts. The update process for
the charts takes too much time. Every time, the charts are updated, the Invoke function is called and the
thread is changed to the main thread of the user-interface. The main thread is the window form
application, which stays open, as long until the close button is pressed.

The charts update very slowly. With the charts from the C# library, it is not possible to update the charts
by appending them with data arrays until the debugging process is done. Therefore, every point has to
be added in a loop. To make it still faster, the update process of the charts in the main window is done
every 1024 samples. The update code is shown below.

/[ add point to charts

¢Sig0.Invoke(new Action((
¢Sig1.Invoke(new Action((
¢Sig2.Invoke(new Action((
¢Sig3.Invoke(new Action((

{ cSig0.Series[0].Points.AddXY
{ cSig1.Series[0].Points.AddXY
{ cSig2.Series[0].Points.AddXY

{ cSig3.Series[0].Points.AddXY

sample_number, sig0
sample_number, sig1
sample_number, sig2
sample_number, sig3

)]
= ;D)
)]
»

[Sle e ie]
V V VYV
PN AN
- =

/I update charts
if ((receivedSamples % 1024) == 0)
{
¢Sig0.Invoke(new Action(() => {
¢Sig0.Series[0].Points.ResumeUpdates();
¢Sig0.ChartAreas[0].AxisX.Maximum = sample_number;
//cSig0.Series[0].Points.SuspendUpdates();
)
¢Sig1.Invoke(new Action(() => {
cSig1.Series[0].Points.ResumeUpdates();
¢Sig1.ChartAreas[0].AxisX.Maximum = sample_number;
//cSig1.Series[0].Points.SuspendUpdates();
)
¢Sig2.Invoke(new Action(() => {
cSig2.Series[0].Points.ResumeUpdates();
¢Sig2.ChartAreas[0].AxisX.Maximum = sample_number;
¢Sig2.Series[0].Points.SuspendUpdates();
)
¢Sig3.Invoke(new Action(() => {
¢Sig3.Series[0].Points.ResumeUpdates();
¢Sig3.ChartAreas[0].AxisX.Maximum = sample_number;
//cSig3.Series[0].Points.SuspendUpdates();
)
}

There are libraries for fast data monitoring available but they are not open source and you need a license
to use them. That is why the standard C# library was used.

Due to UDP/IP, UDP packages can arrive in the wrong order. Figure 119 shows the entries of the log
file. The second UDP package with the samples 33-64 are written into the file followed by the first UDP
package with the samples 1-32. Figure 120 also shows the wrong order in the charts of the user-interface.

The performance of the C# user-interface also depends on the notebook or workstation. The threads
can be processed faster, when the processors are faster and the cache/RAM is bigger.
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11 UDP CONNECTION

The communication between the AID and the user-interface is done with UDP/IP. To accomplish the
communication, an UDP echo server is running on the Processing System of the ARM-Processor. The
server handles incoming and outgoing UDP packages.

The user-interface creates a UDP client, which establishes a connection to the server and the data is
transmitted. There are different package types available. The UDP packages with the control information
is structured in the same way to start and reset the AID and for the request of the version number. A
typical payload from an UDP package from the user-interface to the AID is shown in Figure 121. The
payload is structured in package type, number of samples, sample rate, CMD, trigger type, trigger value
and 4 signals with the bit size of every entry.

159 144 143 112 11196 95 80 79 6463 4847 32 31 16 15 O

PT NoS SR cMmp| TT v Sigd Sigl Sig2 Sig3

FIGURE 121: UDP PAYLOAD OF THE CONTROL INFORMATION

The package type defines, which package it is. The package types are discussed in the next section.

Figure 122 shows an overview of the command section. The MSB is the start bit. It enables the
debugging process when the package type is Start Debugging. The reset bit, resets the AID to stop the
debugging process when the package type is Stop Debugging. The trigger bit activates the Post-Trigger.
To enable the Pre-Trigger, the Trigger bit and the Pre-Tr bit must be set. The trigger settings are only
important with the Start Debugging package. The other bits are reserved for the future but currently not
used.

7 6 2 4 3 p. 1 0

Start Reset | Trigger | Pre-Tr | reserved | reserved | reserved | reserved

FIGURE 122: STRUCTURE OF THE COMMAND SECTION

Figure 123 shows an overview of the UDP payload of a data package. The payload is structured when
every sample is sent directly to the user-interface. Due to the Processing System, this is not possible.
The fastest possible way is, to collect at least two of these data packages for the UDP payload. In the
current implementation, 32 of these data packages are stored in the RAM and then sent with the UDP
package to the user-interface.

191 160 159 128 127 96 95 64 63 32 31 0

Package Type Sample Number Signal 0 Value Signal 1 Value Signal 2 Value Signal 3 Value

FIGURE 123: UDP PAYLOAD WITH ONE DATA PACKAGE

Figure 124 shows the UDP payload for the transfer of the version number. The package type defines
the package as version number with its value. The version number request is checked by the Processing
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System and also handled by the Processing System. It sends the package type with the version number
back to the user-interface.

63 32 31 0

Package Type Version Number

FIGURE 124: UDP PAYLOAD WITH VERSION NUMBER

11.1  PACKAGE TYPE NUMBERS

There are several UDP package types for the communication between the user-interface and the AID.
The different package types with their numbers are shown in Table 5.

TABLE 5: PACKAGE TYPES

Package Type Function

0 Start Debugging, contains the information to start a debugging process

1 Data Package, contains the information of 1 data sample. 32 of these data
packages are currently collected for the UDP payload

3 Reset, contains the information to reset the Debug-Core

5 Get Version Number, contains the information for the version number request.
This request is handled with the PS.

6 Version Number is the acknowledge to the version number request and
contains the version number

The package type 0 is the Start Debugging package. Every information of the rest of the package can
be adjusted with the user-interface. The control data contains number of samples, sample rate, trigger
information, chosen signals and the command Byte. When the start bit of the command section is set,
the AID will start the debugging process. The UDP payload size is 20 Bytes.

The package type 1 is the data package. It contains the sample number and the signal values. One data
package is 24 Bytes long. Currently, 32 of these data packages are collected and sent with one UDP
package to the user-interface. The UDP payload size is 768 Bytes.

The package type 3 is the reset package. It is used to reset the AID or to stop the AID from debugging.
When the AID is running in infinity mode, the reset package is sent to stop the debugging process. The
UDP payload is 20 Bytes long.

The package type 5 is the package for the version number request and is processed from the Processing
System. The version number is sent back to the user-interface.

The package type 6, defines the package as version number. It contains the package type and the
version number.
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11.2 SETTINGS FOR THE PROCESSING SYSTEM

The UDP echo server from the Processing System of the ZedBoard or Controller Board is set up without
using the checksum. This increases the performance of the PS. The settings for the UDP echo server
are in the aid_settings.h file. The following code shows the settings for the echo server:

/*

* increase speed of udp

* 1. Remove section in code for tcp/ip

* 2. Manually assigning MAC and IP -> not 15-20 sec bootup for DHCP
* 3. Reduce overhead for checksum

* 4. Reduce overhead for checksum

* 5. Reduce overhead for checksum

*/

#undef LWIP_TCP

#undef LWIP_DHCP

/Hundef CHECKSUM_CHECK_UDP
[[#undef LWIP_CHECKSUM_ON_COPY
[Hundef CHECKSUM_GEN_UDP

12 TESTING THE AID IP-CORE ON THE ZEDBOARD

The first tests were made with the ZedBoard. The inverters need more resources, than the ZedBoard
provides. Therefore, the signal generator Sig_Gen300 is used to generate the test signals. The signal
generator generates counter signals with different frequencies and constant values. There is a signal
generator with 40 and 300 output signals available.

To test the design with the ZedBoard, the ZYNQ Processing System was added to the block design. It
was modified with a High Performance AXI Slave Port and 2 Fabric Clock signals. The frequencies of
the clocks are 1 MHz and 100 MHz. The 100MHz clock is used for the AXI IP cores and for the AID IP
core. The 1MHz clock is used for the AID IP core and for the signal generator IP core.

For the communication the Ethernet and UART peripheral I/O pins are enabled. The UART pins and the
Xilinx ILA core are used to verify the correct work of the AID IP core.

In the ZYNQ7 Processing System Settings, the PL-PS interrupts (Program Logic to Processing System
interrupts) are enabled in the section interrupts. The access to the DDR memory is enabled with the
High Performance AXI Slave ports in the section PS-PL Configuration (Processing System to Program
Logic). This interface is used to write the received control information into the RAM. The data is read
with the AXI DataMover to control the AID IP core. On the other hand, the sampled signal data are
written with the AXI DataMover into the RAM. After the s2mm_finished_intr (interrupt), the Processing
System reads the data from the RAM and sends the signal data with UDP/IP to the workstation.

The AID IP core has 2 interrupt output ports, the s2mm_finished_intr and the mm2s_finished_intr. These
interrupt signals need a Concat [11] IP core, to route them into the Processing System. The Concat IP
core is shown in Figure 125.

xlconcat_0

[ =N
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<
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FIGURE 125: CONCAT FOR THE INTERRUPT SIGNALS
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To start the AID IP core, the control information must be transmitted from the RAM to the AID IP core.
This is done with the AXI DataMover [3]. The PS initializes the transfer and the command data is read
from the RAM and transmitted to the AID. The AXI DataMover is also used to write the sampled signal
data into the RAM. The AID initializes the transfer and the AXI DataMover writes the signal data into the
RAM.

The control information resets or starts the AID IP core. The AID works and transmits the sampled signal
data as AXI-Stream to the AXI DataMover. To set up the AID, AXI_GPIO ports are used. Figure 126
shows an AXI_GPIO [6] port. These ports have a memory address, which is shown in the Address Editor
of Vivado (Figure 127). The AXl_GPIO ports can be used, to send information from the PS to the user
logic. This is used to set the S2MM_MEM_ADDR, S2MM_MEM_ADDR2, MM2S_MEM_ADDR,
mm2s_data_length, s2mm_data_length, s2mm_number_pkg and mm2s_startTF. All of these settings
can be adjusted in the driver files of the Processing System. The mm2s_startTF signal enables the
transfer from the RAM to the AID IP core, which starts the debugging process.

axi_gpio_0

- =+ s_AXiI s ”

gpio_io_o[31:0] p>

s_axi_aclk

s_axi_aresetn

AXI GPIO

FIGURE 126: AXI_GPIO PIN FOR SETTING UP THE AID IP CORE

Address Editor

Q| = | &

Cell Slave Interface Base Name Offset Address Range High Address

v 4F processing_system7_0

v B Data (32 address bits : 0x40000000 [ 1

= axi_gpio_0 S_AXI Reg 0x4120_0000 64K v 0x4120_FFFF
== axi_gpio_1 S_AXI Reg 0x4121_0000 64K v 0x4121_FFFF
= 3xi_gpio_2 S_AXI Reg 0x4122_0000 64K v 0x4122_FFFF
= axi_gpio_3 S_AXI Reg 0x4123_0000 64K ~ 0x4123_FFFF
= axi_gpio_4 S_AXI Reg 0x4124_0000 64K ~  0x4124_FFFF
= axi_gpio_5 S_AXI Reg 0x4125_0000 64K ~  0x4125_FFFF
== 3xi_gpio_6 S_AXI Reg 0x4126_0000 64K v 0x4126_FFFF

v 4F axi_datamover_0
v B Data_MM2S (32 address bits : 4G

= processing_system7_0 S_AXI_HP0 HPO_DDR_LOWOCM  0x0000_0000 512M v Ox1FFF_FFFF
v B Data_S2MM (32 address bits : 4G
== processing_system7_0 S_AXI_HP0O HPO_DDR_LOWOCM  0x0000_0000 512M v Ox1FFF_FFFF

FIGURE 127: MEMORY ADDRESSES OF THE AXI_GPIO PORTS

To reset all the used IP cores in the design, the Processor System Reset [7] is used 2 times. The first
Reset System is used for the 1 MHz reset and the second is used for the 100 MHz reset. The reset
signals are active low, which means, when a reset occurs, the signal values gets low and in the normal
work condition the signals are high. This is very important to avoid errors and for the design of custom
IP cores. The Processor System Reset is shown in Figure 128.
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proc_sys_reset_0

fa B\
== slowest_sync_clk mb_reset p=
“Q ext_reset _in bus_struct_reset[0:0] =
=Q aux_reset_in peripheral_reset[0:0] =
== mb_debug_sys_rst interconnect_aresetn[0:0] @
== dcm_locked peripheral_aresetn[0:0] (==

& J

Processor System Reset

FIGURE 128: PROCESSOR SYSTEM RESET IP CORE

To test the AID, test signals are necessary. The Sig_Gen300 IP core was designed for testing. 300
signal are generated. 20 signals of them are counters, which count with different frequencies. The fastest
frequency is TMHz. Each counter overflows after reaching the highest value and will start at the starting
value again. The other 280 signals are constants with the signal number assigned as signal value (e.g.
the signal value of signal30 is 30). With this assignment, it is able to test the AID, if the right signals are
selected during the signal selection process.

The AID and the Sig_Gen IP core are also available with 40 signals. The design is the same, only these
2 IP cores are different. There is a Xilinx Vivado project (ZB_AID40_PS) with the 40 signals available.

To connect all the IP cores, the Run Connection Automation was used. It automatically generates the
AXISmartConnect [12] and the AXlInterconnect [13]. The AXISmartConnect is used to access the RAM.
The AXlInterconnect is used to access the AXI_GPIO ports. The finished design is shown in Figure 129.
There is also such a design with the 40 signal AID with the 40 signal Sig_Gen IP core and 40 signal AID
IP core.

All other IP cores are used from the Xilinx IP catalog.
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FIGURE 129: ZEDBOARD FPGA DESIGN WITH AID300 AND SIGNAL GENERATOR
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After running the design check, the design wrapper was generated. With the wrapper the synthesis, the
implementation and the bit stream were generated. A timing constraint file is used for the clock signals.
To avoid timing problems, the AID was designed with pipelines to reduce the longest path in the design.

Under the point Export/Export Hardware, the output product was generated with the bit stream.

The SDK automatically creates the hardware platform. The board support package and the application
project were created. The application project contains all the written driver files and after building the
project, the FPGA was programmed and the design was tested.

With the UART, the C-code was debugged and outputs were created. Figure 130 shows the console
outputs, when the application starts. The interrupt system is initialized and the UDP echo server is set

up.

Serial: (COM4, 115200, 8, 1, None, None - CONNECTED) - Encoding: (ISO-8859-1)
init interrupt system done.

Start PHY autonegotiation

Waiting for PHY to complete autonegotiation.
autonegotiation complete

link speed for phy address ©: 1@0@

Board IP: 192.168.1.16@

Netmask : 255.255.255.@

Gateway : 192.168.1.1

Listening to port: 64000, forwarding to port: 63999
192.168.1.1

Start or Reset

Start or Reset

FIGURE 130: START OF THE AID_SW APPLICATION

With the Xilinx ILA core, the internal signals were debugged to verify the correct work. Figure 131 shows
the control information to start the debugging process. The AXIS data stream is sent from the RAM to
the AID IP core. The transfer starts at 50 us. The signals for the AXIS interface are marked red. After
the successful transfer, the interrupt is set by the DataMoveCTL block (orange).

ILA Status:Idle

& design_1_i/processing_system7_0_FCLK_CLK1
™ design_1_i/axi_datamover_0_m_axis_mm2s_tkeep[3:0]

¥ design_1_i/axi_datamover_0_m_axis_mm2s_tlast

¥ design_1_i/axi_datamover_0_m_axis_mm2s_tvalid

% design_1_i/axi_gpio_2_gpio_io_o
™ design_1_iDataMoveCTLV3_0_s2mm_Addr{31:0]

¥ design_1_i/PKG_Samples_0_initTF
 design_1_i/DataMoveCTLv3_0_s2mm_finished_intr

™ design_1_i/S2MM_DataMover..._0_m_axis_S2MM_tkeep[3:0]
" design_1_i/S2MM_DataMover_...0_m_axis_S2MM_tdata[31:0
& design_1_i/S2MM_DataMover_...face_0_m_axis_S2MM_tias|
¥ design_1_i/S2MM_DataMover...face_0_m_axis_S2MM_tvalid
¥ design_1_i/axi_datamover_0_s_axis_s2mm_tready

" design_1_i/S2MM_DataMover_Interface_0_Status[7:0]

¥ design_1_i/Pipeline_17_sig_out

Updated at: Z019-Jan-11 10:46:35
> <

FIGURE 131: AXIS DATA STREAM WITH THE CONTROL INFORMATION TO START THE DEBUGGING PROCESS
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Figure 132 shows the AXIS data streams with the signal data, which are written into the RAM. The first
transfer is initialized at 3,446 us (red). The signals of the AXIS interface are marked blue. The tready
signal is set to O after the first data words were transmitted. The tvalid signal stays at 1 until the whole
transfer is done. After about 10 us, tready is set to 1 again and the transfer continuous. The tlast signal
determines the last data word. After the transfer into the RAM is done, the status is returned (orange).
If the transfer was successful, the S2MM memory address is updated (orange). The interrupt is not set
(violet), because the number of collected samples for the UDP package is not reached.

LA Status:Idle

Name

¥ design_1_i/processing_system7_0_FCLK_CLK1

™ design_1_i/axi_datamover_0_m_axis_mm2s_tkeep[3:0]

datamover_0_m_axis_mmz2s_tdata[31:0]

™ design_1_i/axi
¥ design_1_i/axi_datamover_0_m_axis_mm2s_tlast

¥ design_1_i/axi_datamover_0_m_axis_mmz2s_tvalid

¥ design_1_i/DataMoveCTLv3_0_mm2s_finished_intr
% design_1_i/axi_gpio_2_gpio_io_o
™ design_1_i/DataMoveCTLv3_0_s2mm_Addr(31:0

™ design_1_i/S2MM_DataMover_...0_m_axis_S2MM_tdata[31:0] 00000001

> <

FIGURE 132: AXIS DATA STREAMS WITH THE SIGNAL DATA WRITTEN INTO THE RAM

13 TESTING THE AID IP-CORE ON THE
CONTROLLERBOARD

There is already an existing project for the controller board available. The resource files were
downloaded from a Git repository. With the TCL [14] script, build.tcl, the whole Vivado project was
created.

Due to older IP cores in the TCL script, updates were necessary to create the block design. The AID IP
core (AID with 40 signals) and the AXI DataMover were added to the design. 2 ports were added to the
interrupt Concat to handle the interrupts. To set up the AID, the AXl_GPIO ports were added and
connected.

After a successful design check, the HDL Wrapper was created. After running the synthesis, the
implementation and generating the bit stream, the hardware was exported.

With the TCL script, build_SWProj.tcl, the SDK application project with all the resources was created. In
the application project a new folder with the driver files for the AID was added. The driver files were
modified to include the AID into the existing application project.

The AID is initialized with the following code in the main.c:

/I global variables definition
u8* DMA_MM2S_Buffer;

u32* DMA_S2MM_Buffer32;
u32* DMA_S2MM_Buffer232;
u8 S2MMaddr1_active;

/I add AID in the main function
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#if DC_EN

/I init AID
print("Init AID UDP connection\n\r");
AIDConnect_InterruptHandler(&InterruptController, CPU_ID);

#endif

InitAID()

To program the FPGA, a new application project with a Zynq FSBL (First stage boot loader) was added.
The bootloader from the fsbl_trenz board was selected and the FSBL application was created. With the
FSBL application a new boot image was created to program the Flash. A board restart loaded the boot

image. The main application was started with the included AID.

The steps with the FSBL were necessary, because the application project was overwriting the FSBL
from the Trenz Board and the application never started.

Figure 133 shows the AID with the AXI_GPIO [6] ports and the AXI DataMover [3]. This IP cores were
added, to include the AID into the existing design. The 1 MHz Processor System Reset [7] was already
in the design. To set up the AID with the driver files, the AXI_GPIO ports are used. Figure 134 shows
the Address Editor with the memory addresses of the design.
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FIGURE 133: CONTROLLER BOARD BLOCK DESIGN WITH THE AID
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Address Editor X IP Catalog

Q| z|=

Cell Slave Interface  Base Name Offset Address Range High Address

v 4F processing_system7_0

v M Data (32 address bits : 0x40000000 [ 1G ] ,0x8 [1G

= bering/SAXI2SBUS_0 S_AXI reg0 0x43C0_0000 64K ~  0x43CO_FFFF
= com/SAXI2SBUS_0 S_AXI reg0 0x43C1_0000 64K v 0x43Cl1_FFFF
= qm/SAXI2SBUS_0 S_AXI reg0 0x43C3_0000 64K v  0x43C3_FFFF
= 3xi_gpio_1 S_AXI Reg 0x4120_0000 32K v 0x4120_7FFF
= 3xi_gpio_2 S_AXI Reg 0x4121_0000 64K v 0x4121 FFFF
= axi_gpio_3 S_AXI Reg 0x4122_0000 64K v  0x4122_FFFF
== 3xi_gpio_4 S_AXI Reg 0x4123_0000 64K v 0x4123_FFFF
= axi_gpio_5 S_AXI Reg 0x4124_0000 64K v 0x4124_FFFF
= axi_gpio_6 S_AXI Reg 0x4125_0000 64K v 0x4125_FFFF
= 3xi_gpio_7 S_AXI Reg 0x4126_0000 64K v 0x4126_FFFF
= ctrl_board_interfaces_0 s00_axi regd 0x43C2_0000 64K v 0x43C2_FFFF
== jsabella_genhdl_wrapper_DC_0 s00_axi reg0 0x43C4_0000 256K v 0x43C7_FFFF

v 4F axi_datamover_0
v B Data_MM2S (32 address bits : 4G

= processing_system7_0 S_AXI_HPO HPO_DDR_LOWOCM  0x0000_0000 1G v Ox3FFF_FFFF
v H Data_S2MM (32 address bits : 4G
== processing_system7_0 S_AXI_HPO HPO_DDR_LOWOCM  0x0000_0000 1G v Ox3FFF_FFFF

v F bering/axi_datamover_0
v B Data_S2MM (32 address
= processing_system7_0 S_AXI_HPO HPO_DDR_LOWOCM  0x0000_0000 1G v O0x3FFF_FFFF

FIGURE 134: ADDRESS EDITOR OF THE CONTROLLER BOARD FPGA DESIGN

In the existing project, the EtherCat is also used to transmit data. The EtherCat also needs the
Processing System to establish a connection. The EtherCat transmission occurs every 100 ys and in
the worst case it can last 80 ps. This is a big problem, because 80% of the processor is used for EtherCat.

Due to the processor utilization of the EtherCat, interrupts from the AID are missed. This is a problem
because UDP packages are not sent and the samples are lost. This causes gap in the charts.

During the tests with a sample rate of 1 MHz and 500 kHz, some UDP packages were not sent, due to
EtherCat. EtherCat was still in idle mode but when it is running and transmitting data, the performance
will be much worse.

Due to the missing AXI-Ethernet IP core, which provides an Ethernet stack, the Processing System was
used to establish the UDP connection. This is not the best option to establish a fast UDP connection,
because the Processing System is slow. The AXI-Ethernet [4] IP core would be the best solution to solve
this problem. The AXI-Ethernet IP uses the TEMAC [5] core, which requires a license to add it to the
design. Maybe this will be done in the future.

Figure 135 shows the debugging test with a sample rate of 250 kHz and 31744 samples. With the zoom,
the generated sinus signals are seen. The sinus signals are generated from the black box, where usually
the inverter software is included. If no inverter software is included, the block box generates sinus signals.
They are used to debug existing IP cores and to test different 1/0O operations and communications with
other devices.
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FIGURE 135: DEBUGGING TEST WITH A SAMPLE RATE OF 250KHz

Figure 136 shows the debugging test with a sample rate of 1.6 kHz and infinity mode. In the Explorer,
the generated log files are shown. The maximum sample number per file was set to 249856. Therefore,

2 log files were created. Currently the number of samples per

file is set to 999424.

D s
Help

Start Debuggng |
Defaut Settings

| Cancel Data Processing |

 loadData Geear Al Chatts

Signal 1 Selection |SigProcsng_PwrDc v | Clear Chart1

— Sigl ng_PwrDc

@) target_hw_test02.csv 27.02.2019 11:29 Microsoft Excel-C... 564 KB
] target_hw_test03.csv Microsoft Excel-C. 2013K8
') target_hw_test0d.csv Microsoft Excel-C. 74KB Select Signal Corfig Fie
'] target_hw_test05.csv Microsoft Excel-C... 74KB .
) target_hw_test06.csv Microsoft Excel-C 74KB fple Rate
'] target_hw_test07.csv Microsoft Excel-C... 7.935K8 borvae 1|
') target_hw_test08.csv Microsoft Excel-C... 7.838 KB
1)) target_hw_test9.csv 7022019 12:14 Microsoft Excel-C.. 799K8 REashshovevake
) target_hw _testl0.csv 27.02.2019 12:18 Microsoft Excel-C... 767 KB e
'] target_hw_testil.csv 27.02.2019 13:16 Microsoft Excel-C... 158KB
) target_hw _testi2.csv Microsoft Excel-C... 316 KB fonNumber 1|
'] target_hw_test13.csv Microsoft Excel-C. 3158
') target_hw_test14.csv Microsoft Excel-C... 316KB :’ Seet Ve
@) target_hw _test1S.csv Microsoft Excel-C... 1487KB
] target_hw_test19.csv Microsoft Excel-C 10,008 KB
') target_hw_test19-part2.csv Microsoft Excel-C. 10.116 KB
£ target_hw_test19-part3.csv 27.02.2019 13:48 Microsoft Excel-C... 2K8
] target_hw_test20.csv 27.02.2019 1353 Microsoft Excel-C..  10.008KB
B target_hw_test20-part2.csv 27.02.2019 13:53 Microsoft Excel-C... 235K8
8 testesy 27.02.2019 11:04 Microsoft Excel-C... 395KB
8 testl.esv 21.02.2019 13:36 Microsoft Excel-C... 98 KB L,
= 0 100000 200000
] 50000 150000 250000 50000

150000 250000

Signal 2 Selection [SigProcsng_linvLeg1 - Clear Chat2 | Signal 3 Selection [SigProcsng_linvLeg2 v] [ CearChat3

— SigProcsng_linvLeg1

— SigProcsng_linvLeg2

0 100000 200000 [ 100000 200000

50000 150000 250000 50000

150000 250000

FIGURE 136: DEBUGGING TEST WITH A SAMPLE RATE OF 1.6 KHZ AND INFINITY MODE
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Due to UDP, the packages may arrive in the wrong order. To increase the performance of the user-
interface, this is not handled. Figure 137 shows the charts, when packages are received in the wrong

order.
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FIGURE 137: WRONG ORDER OF THE UDP PACKAGES

Figure 138 and Figure 139 show missing UDP packages in Wireshark. Due to the high processor
utilization with EtherCat, interrupts of the AID are missed and the UDP packages are not sent. The
sample frequency was 500 kHz and 64 samples (2 UDP packages) are missing between the packages
455 and 456. The sample number in the UDP package 455 starts with 0x00001D41 (7489) and the
sample number in the UDP package 456 starts with 0x00001DA1 (7585). This behavior appeared
through the whole debugging process. At 1 MHz sample rate this behavior is even worse. There are 4
or more UDP packages not sent, which are at least 128 missing samples.
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I]An:eg-:—.‘ ter anwenden ... <Ctrl-/> = '] Ausdruck... +

No. Time Source Destination Protocol Length Info
437 114.340493 192.168.1.10 192.168.1.1 ubP 810 64000 > 63999
438 114.340494 192.168.1.10 192.168.1.1 ubP 810 64000 > 63999
439 114.340494 192.168.1.10 192.168.1.1 upP 810 64000 > 63999
440 114.340494 192.168.1.10 192.168.1.1 ubP 810 64000 > 63999
441 114.340495 192.168.1.10 192.168.1.1 ubP 810 64000 > 63999
442 114.340826 192.168.1.10 192.168.1.1 ubP 810 64000 > 63999
443 114.340827 192.168.1.10 192.168.1.1 ubP 810 64000 » 63999
444 114.340827 192.168.1.10 192.168.1.1 ubP 810 64000 > 63999
445 114.340828 192.168.1.10 192.168.1.1 ubP 810 64000 > 63999
446 114.340828 192.168.1.10 192.168.1.1 ubP 810 64000 > 63999
447 114.341161 192.168.1.10 192.168.1.1 ubP 810 64000 » 63999
4438 114.341162 192.168.1.10 192.168.1.1 ubP 810 64000 > 63999
449 114.341162 192.168.1.10 192.168.1.1 ubP 810 64000 > 63999
450 114.341163 192.168.1.10 192.168.1.1 ubP 810 64000 > 63999
451 114.341497 192.168.1.10 192.168.1.1 ubP 310 64000 > 63999
452 114.341498 192.168.1.10 192.168.1.1 upP 810 64000 > 63999
453 114.341499 192.168.1.10 192.168.1.1 ubP 810 64000 > 63999
454 114.341499 192.168.1.10 192.168.1.1 ubP 810 64000 > 63999
455 114.341838 192.168.1.10 192.168.1.1 UDP 810 64000 - 63999
456 114.341838 192.168.1.10 192.168.1.1 ubP 810 64000 » 63999
457 114.341838 192.168.1.10 192.168.1.1 upP 810 64000 > 63999 v
ACO 114 DAM0O2N 10" 120 1 1n 10 1€0 1 1 nnn O1N cANNN . £O2NNN

< >

> Frame 455: 81@ bytes on wire (6480 bits), 81@ bytes captured (6480 bits) on interface @

> Ethernet II, Src: Xilinx ©0:01:02 (00:0a:35:00:01:02), Dst: HewlettP_cf:99:41 (f4:30:b9:cf:99:41)

> Internet Protocol Version 4, Src: 192.168.1.10, Dst: 192.168.1.1

> User Datagram Protocol, Src Port: 64000, Dst Port: 63999

> Data (768 bytes)

0000 f4 30 b9 cf 99 41 00 Ga 35 00 01 02 08 00 45 00 A

0010 @3 1c a5 5e 00 00 ff 11 90 16 c@ a8 01 Qa cO a8

0020 01 01 fa 00 f9 ff 03 08 de bo 00 00 00 01 00 00

0030 1d 41 ff b0 c3 50 ff bO 3 50 ff bo c3 50 ff bo

0040 c3 50 00 00 00 01 00 00 1d 42 ff b2 bc od ff b2

0050 bc @d ff b2 bc 0d ff b2 bc 0d 00 00 00 01 00 00

0060 1d 43 ff b5 ec b3 ff b5 ec b3 ff b5 ec b3 ff b5

0070 ec b3 00 00 00 01 00 00 1d 44 ff ba 48 61 ff ba

0080 48 61 ff ba 48 61 ff ba 48 61 00 00 00 01 00 00 ;

O 7 Ethernet: <live capture in progress>

FIGURE 138: UDP PACKAGES MISSING IN WIRESHARK

|| Pakete: 567 - Angezeigt: 567 (100.0%) || Profil: Default .
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No. Time Source Destination Protocol Length Info
437 114.340493 192.168.1.10 192.168.1.1 upP 810 64000 - 63999
438 114.340494 192.168.1.10 192.168.1.1 ubpP 810 64000 » 63999
439 114.340494 192.168.1.10 192.168.1.1 uppP 810 64000 » 63999
440 114.340494 192.168.1.10 192.168.1.1 uppP 810 64000 - 63999
441 114.340495 192.168.1.10 192.168.1.1 upP 810 64000 - 63999
442 114.340826 192.168.1.10 192.168.1.1 ubP 810 64000 -» 63999
443 114.340827 192.168.1.10 192.168.1.1 ubP 810 64000 - 63999
444 114.340827 192.168.1.10 192.168.1.1 upP 810 64000 -» 63999
445 114.340828 192.168.1.10 192.168.1.1 upP 810 64000 - 63999
446 114.340828 192.168.1.10 192.168.1.1 ubP 810 64000 » 63999
447 114.341161 192.168.1.10 192.168.1.1 ubP 810 64000 - 63999
448 114.341162 192.168.1.10 192.168.1.1 upP 810 64000 » 63999
449 114.341162 192.168.1.10 192.168.1.1 uppP 810 64000 - 63999
450 114.341163 192.168.1.10 192.168.1.1 ubP 810 64000 -» 63999
451 114.341497 192.168.1.10 192.168.1.1 ubP 810 64000 - 63999
452 114.341498 192.168.1.10 192.168.1.1 uppP 810 64000 » 63999
453 114.341499 192.168.1.10 192.168.1.1 upP 810 64000 » 63999
454 114.341499 192.168.1.10 192.168.1.1 ubP 810 64000 > 63999
455 114.341838 192.168.1.10 192.168.1.1 ubP 810 64000 - 63999
456 114.341838 192.168.1.10 192.168.1.1 ubP 810 64000 » 63999
457 114.341838 192.168.1.10 192.168.1.1 upP 810 64000 - 63999 v
ACO 11A DA10D2N 10" 120 1 An 10" 10 1 1 nnn ©1N CcANNN . £2NNN
< >
> Frame 456: 810 bytes on wire (6480 bits), 81@ bytes captured (6482 bits) on interface @
> Ethernet II, Src: Xilinx_00:01:02 (00:0a:35:00:01:02), Dst: HewlettP_cf:99:41 (f4:30:b9:cf:99:41)
> Internet Protocol Version 4, Src: 192.168.1.10, Dst: 192.168.1.1
> User Datagram Protocol, Src Port: 64000, Dst Port: 63999
> Data (768 bytes)
0000 4 30 b9 cf 99 41 00 0a 35 00 01 02 08 00 45 00 A
0010 03 1c a5 5f 00 00 ff 11 90 15 cO a8 01 Qa cO a8
0020 01 01 fa 00 f9 ff 03 08 7f e3 00 00 00 01 00 00
0030 1d al ff bS 65 97 ff b5 65 97 ff b5 65 97 ff b5
0040 65 97 00 00 00 01 00 00 1d 62 00 21 63 a6 00 21
0050 63 ab 00 21 63 a6 00 21 63 ab 00 00 00 01 00 00
0060 1d 63 00 18 05 2f 00 18 05 2f ff be 95 49 ff be
0070 95 49 00 00 00 01 00 00 1d 64 00 Qe 45 bd 00 Qe
0080 45 bd 00 e 45 bd 00 e 45 bd 00 00 00 01 00 00 Y
O 7 Ethernet: <live capture in progress> H Pakete: 571 + Angezeigt: 571 (100.0%) H Profil: Default

FIGURE 139: UDP PACKAGES MISSING IN WIRESHARK

Figure 140 shows the debugging process with a sample rate of 500 kHz and with 20480 samples. There
are small gaps in the charts. The biggest gap is about 1000 samples. At a frequency of 500 kHz not all
packages are sent. This generates additionally gaps in the charts. The receiving thread has also a

problem to process the incoming UDP packages, which creates the bigger gap.
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FIGURE 140: DEBUGGING PROCESS WITH GAPS AT A SAMPLE RATE OF 500 KHz

The debugging process with a higher number of samples, creates bigger gaps at the same sample rate.

This is shown in Figure 141. The sample rate is still 500 kHz and the number of samples is 31744.
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FIGURE 141: DEBUGGING PROCESS WITH GAPS AT A SAMPLE RATE OF 500 KHz
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These gaps can also appear with a higher number of samples at a sample rate of 250 kHz and 200 kHz.
Mostly there are no gaps in the charts. The gaps may be caused by the DMA of the workstation as well,
when the data is swapped from the RAM to the HDD or SSD. The receiving thread needs more time to
fill the FIFO queue with the received data, when the data is written to the HDD (in the virtual memory).

14 USED TOOLS

Matlab-Simulink

The DebugCoreModule was created with MATLAB3® Simulink#® 2017b. With MATLAB, it is possible to
convert the MATLAB Simulink model to HDL-Code. It is also possible to simulate the Debug-Core.

MATLAB -Toolboxes:

e MATLAB

e  Simulink

e Simulink Coder

e MATLAB Coder

e Embedded Coder
e HDL Coder

e HDL Verifier

Xilinx-Vivado

The AID IP core and the FPGA designs were created with Xilinx Vivado*' 2017.2.

Xilinx Vivado is a tool for FPGA development and after generating the HDL-Code with MATLAB, the
HDL-Code can be synthesized with Vivado to generate the bit stream for the hardware.

Vivado is a design and development tool from Xilinx. This tool supports high level design, verification
and implementation for FPGA, DSP and SoC designs. With the high-level synthesis, IP generator, logic
simulation, mixed language simulator, verification IP and programming and debug environment, Vivado
has a lot of benefits and is wide spread for this kind of hardware development.

39 MATALB, https://de.mathworks.com/products/matlab.html
40 Simulink, https://de.mathworks.com/products/simulink.html
41 Xilinx Vivado, https://www.xilinx.com/products/design-tools/vivado.html
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LabVIEW

The LabVIEW user-interface was created with NI LabVIEW 2017.
NI LabVIEW#2 provides:

o Afast recording of measurement data through integration of hardware.

e A graphical system abstraction, which offers access to collected data for validation of hardware
connections.

e A graphical programming system for the automation of systems and for repeatable
measurements.

LabVIEW was used to program the first user-interface.

Visual Studio

The C# user-interface was created with Visual Studio 2017. Microsoft Visual Studio*? is a development
tool for software development. It provides the tools for software development with different programming
languages like C#, Python, C++, C...

C# was used to program the second user-interface, to gain more performance.

Wireshark

Wireshark 2.6.5 was used to analyze the UDP packages. Wireshark** is a tool to analyze the network
connections. It monitors incoming and outgoing packages. This tool was needed to verify the sent and
received UDP packages from the communication between the user-interface and the AID.

Visio

Visio 2016 was used to create block structures of the design and technical images. Microsoft Visio*S is
a visualization tool from Microsoft. It is possible to create flow diagrams, business processes and
technical images. Visio was used to create technical images.

42 LabVIEW, http://ni.com/de-at/shop/labview/labview-details.html
43 Microsoft Visual Studio, https://visualstudio.microsoft.com
44 Wireshark, https://www.wireshark.org
45 Microsoft Visio, https://products.office.com/de-at/visio/flowchart-software
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15 USED TEST-HARDWARE

ZedBoard Development Kit

e ZedBoard?*®

o 12V Power supply

e Micro USB cable

e USB Adapter: Male Micro-B to Female Standard-A

e 4GB SD Card

e Xilinx Vivado® Design Edition license voucher (device locked to 7Z020)
e Getting started guide

e Downloadable documentation and reference designs

e MathWorks Getting Started Package (optional)

The ZedBoard is the hardware, where the Debug-Core will run. The Debug-Core was also tested on the
ZedBoard. The Development Kit also includes a Xilinx Vivado license (locked to 7Z020) for the Synthesis.
To use the ZedBoard, it is necessary to install the Embedded Coder® Support Package for Xilinx®Zynqg®-
7000 Platform in MATLAB. With this package, it is possible to use blocks, which are provided by the
hardware.

Controller Board

The controller board was developed by AVL List GmbH and FH Kapfenberg. It contains a Zyng-7000
Kintex-7 FPGA, a Trenz Board TE0782-02 and several peripherals for different applications. The
different inverters and controllers are running on the FPGA and the AID will be included into the design
to debug the internal signals.

e Zyng-7000 Kintex-7 FPGA (Xc7z100ffg900)
e Trenz Board TE0782-02

Trenz Board TE0Q782-02

The Trenz Board TE0782-0247 is a High-Performance Xilinx Zynq Z-7100 Module.
Properties:

e Xilinx Zyng-7100 SoC XC7Z100-2FFG900I

e Dual ARM Cortex-A9 MPCore

e Real-Time

e 2x Hi-Speed USB 2.0 ULPI Transceiver PHY
e 2x Gigabit Ethernet Transceiver PHY

e 2x Ethernet MAC Address EEPROM

¢ 1 GB DDR3 SDRAM

e 32 MB QSPI Flash-Memory

46 ZedBoard, http://zedboard.org/product/zedboard
47 Trenz Board, https://shop.trenz-electronic.de/de/TE0782-02-100-2I-High-Performance-Xilinx-Zyng-
Z-7100-Modul-industriell-8-5-x-8-5-cm
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4 GB eMMC (optional up to 64 GB)

Optional 2x 8MB HyperRAM (maximum 2 x 32 MB HyperRAM)
Si5338 PLL for GTX clocking

Plug-on-Module with 3 x 160-Pin High-Speed strips
16 GTX high-performance transceiver lanes

254 FPGA I/O (125 LVDS pairs)

On-board high power DC-DC-Converter

System management and power sequencing
eFUSE bit-stream encryption

AES bit-stream encryption

Distributed power pins

Temperature -40°C to +85°C

Notebook HP EliteBook 840

512 GB M.2 SSD
8GB (1x8GB) 2133MHz DDR4 RAM

6t Gen Intel® Core™ i5-6300U Processor (2.4 GHz, 3MB, Dual Core)

Intel Integrated HD 520 Graphics

This notebook belongs to AVL List GmbH and was used to develop the IP cores (with Xilinx Vivado and
MATLAB), the LabVIEW user-interface. It was also used to test the AID with the target hardware and
both user-interfaces.

Notebook MSI GE73VR 7RF Raider

256 GB SSD
16GB 2400MHz DDR4 RAM

7t Gen Intel® Core™ i7-7700HQ Processor (2.8 GHz, 6MB, Quad Core)

GeForce® GTX 1070

This notebook was used to make tests with the C# user-interface.
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16 CONCLUSION

For the development of FPGA based products, debugging of internal signals is necessary to detect
errors or to visualize signals of the FPGA design. Xilinx Vivado already offers an Integrated Logic
Analyzer (ILA) to debug signals of the design. Sometimes, custom Debug-Cores are necessary for
prototype development, like the AID — Advanced Inverter Debugger. The AID has 300 possible signal
inputs. It can dynamically select 4 signals out of them for the debugging process. The debugging process
is controlled by a user-interface at a workstation. The adjusted debugging parameters are sent from the
workstation to the Debug-Core on the FPGA. The communication is done with UDP/IP. The Debug-Core
starts the debugging process with the adjusted parameters. The sampled signal data is sent from the
FPGA to the workstation and monitored with the user-interface. Optional, the signal data can be logged
in csv files.

To lower the resource usage on the FPGA, the AID is also available with 40 possible signal inputs. 40
signals are enough to debug the different inverters and the advantage of dynamically selecting the
signals for the debugging process is still present.

For the development of the AID, different concepts were considered and compared. In most cases, data
is stored on the FPGA and big data packages are sent to the workstation. In the case of this master
thesis, the data is transmitted with UDP/IP. UDP/IP was used for small data packages.

The first approach was to stream the sampled signal data with the sample frequency to the workstation.
Therefore, the direct connection from the Ethernet adapter to the AXI-Stream interface with the AXI-
Ethernet IP core should be used. This IP core is provided by Xilinx and requires a license for the included
TEMAC (Tri-Mode Ethernet MAC). However, this license was not available and therefore the Processing
System had to be used to establish the UDP/IP connection between the FPGA and the workstation.

At the maximum sample frequency of 1 MHz, the Processing System was not able to stream the sampled
signal data with the sample frequency anymore. The Processing System is too slow to process each
interrupt from the AID. Therefore, samples are collected to build bigger UDP packages. To collect the
samples, 2 memory addresses are alternately used to avoid simultaneous memory access.

Despite the sample collection, the UDP packages are sent too fast for the receiver workstation. The
LabVIEW user-interface works for slower sample frequencies but at higher sample frequencies the data
processing is not fast enough and samples get lost. Furthermore, the file handling during runtime is very
complex. It was not possible to dynamically create several log files when the sample number is very
high (millions). To increase the performance of the data processing, wait functions were added to reduce
the number of executions of while-loops in LabVIEW, which are not used for data processing. This
increased the performance, however data loss still occurs.

The C# user-interface was developed to dynamically create log files and to increase the performance of
the data processing. To process the incoming UDP packages, 2 threads are used. The receiving thread
handles the incoming UDP packages and writes the data into a FIFO queue. The processing thread
reads the data from the FIFO queue and updates the charts and writes the data into the log files. The
performance of the C# user-interface is much better than the LabVIEW user-interface, however sample
loss also occurs at high sample frequencies. The charts of the C# library update very slowly and are not
suited for that kind of application. Licensed libraries for fast data monitoring would be necessary to
increase the performance.

During the tests with the Controller Board, the Processing System was mostly used for EtherCat and
other communications. EtherCat has a very high processor utilization in idle mode. When EtherCat is
transmitting data, the processor utilization gets even worse. Due to the high utilization, the Processing
System has not enough time to handle the AID interrupts. If interrupts are missed, UDP packages are
not sent anymore and samples get lost.
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The approach to stream the data with UDP/IP works with a lower number of samples and lower sample
frequencies. It is possible to debug signals with a sample frequency of 1 MHz with a lower number of
samples. The communication with the Processing System is a big disadvantage because the Processing
System also handles other communications. In the future, the AXI-Ethernet IP core can be used for the
UDP/IP connection. With this IP core, the communication can be done without the Processing System.
At the workstation, fast data processing is necessary to handle the small data transfers with UDP/IP.

The performance of the user-interfaces might be better, if the received UDP packages are saved directly
into files. When the debugging process is done, the signal data is processed and monitored afterwards.
This solution would not require fast data processing libraries. This is also a task for the future.

The performance of the LabVIEW user-interface can be increased by using a real-time operating system
and the LabVIEW extension for real-time applications. The data processing can be done with event
triggered while loops, which are faster than the functions from the standard LabVIEW version. A big
disadvantage of this solutions would be, that a real-time operating system is necessary and no normal
workstation can be used, to process the received UDP packages.
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20 APPENDIX

TABLE 6: MM2S_DATAMOVER_INTERFACE INPUT PORT AND INTERFACE DESCRIPTION

Port / Interface Input Bits Description

s_axis_mm2s_d Slave interface for the AXIS data stream from the AXI
DataMover

s_axis_mm2s_s Slave interface for the AXIS status stream of the AXI
DataMover

axis_aclk 1 Clock for the AXIS interfaces

axis_resetn 1 Resetn for the AXIS interfaces

BTT 23 Bytes to transfer

Addr 32 Memory start address

initTf 1 Initializes the transfer of the command data

TABLE 7: MM2S_DATAMOVER_INTERFACE OUTPUT PORT AND INTERFACE DESCRIPTION

Port / Interface Output Bits Description

m_axis_mm2s_c Master interface for the AXIS command data for the
AXI DataMover

m_axis_umm?2s_d Master interface for the AXIS user data for the PL

Status 8 Status of the AXI DataMover transfer

TABLE 8: S2MM_DATAMOVER_INTERFACE INPUT PORT AND INTERFACE DESCRIPTION

Port / Interface Input Bits Description

s_axis_ S2MM_S Slave interface for the AXIS status stream of the AXI
DataMover

s_axis uS2MM Slave interface for the AXIS user data

axis_aclk 1 Clock for the AXIS interfaces

axis_resetn 1 Resetn for the AXIS interfaces

BTT 23 Bytes to transfer

Addr 32 Memory start address

initTf 1 Initializes the transfer of the command data

TABLE 9: S2MM_DATAMOVER_INTERFACE OUTPUT PORT AND INTERFACE DESCRIPTION

Port / Interface Output Bits Description

m_axis_S2MM_C Master interface for the AXIS command data for the
AXI DataMover

m_axis_ S2MM Master interface for the AXIS data stream to the AXI
DataMover

Status 8 Status of AXI DataMover transfer
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TABLE 10: DATAMOVECTL INPUT PORT AND INTERFACE DESCRIPTION

Port / Interface Input Bits Description

s2mm_data_length 12 Length of data stream, which will be written into the
RAM

s2mm_ Status 8 Status of the transfer into the RAM

s2mm_startTF 1 Initialization of the S2MM transfer

S2MM_MEM_ADDR 32 First S2MM start memory address. Only active if
C_PS_CONTROL is enabled, otherwise the memory
address of the IP Settings is used

S2MM_MEM_ADDR2 32 Second S2MM start memory address. Only active if
C_PS_CONTROL is enabled, otherwise the memory
address of the IP Setting is used.

s2mm_number_pkg 16 Number of samples, which will be stored into the RAM
till the s2mm_finished_intr is set. Only active if
C_PS _CONTROL is enabled, otherwise
C_NUMBER_PKG of the IP Settings is used.

mm2s_Status Status of the transfer from the RAM

mm2s_startTF Initialization of the MM2S transfer

mm2s_data_length 12 Length of the data stream, which will be read from the
RAM

MM2S_MEM_ADDR 32 MM2S start memory address. Only active if

C_PS_CONTROL is enabled, otherwise the memory
address of the IP Settings is used.

aclk 1 100 MHz clock
aresetn 1 Resetn, active low
Resetn_DC 1 Resetn from the Debug-Core module, when the

debugging process is finished, the DataMoveCTL
block is reset. Active low

TABLE 11: DATAMOVECTL OUTPUT PORT AND INTERFACE DESCRIPTION

Port / Interface Output Bits Description

s2mm_BTT 23 S2MM Bytes to Transfer

s2mm_Addr 32 S2MM start memory address

s2mm_initTF 1 Initialization of the S2MM transfer

s2mm_finished_intr 1 Finish interrupt. It will be set when the transfer into the
RAM was successful and the adjusted number of
samples was reached.

mm2s BTT 32 MM2S Bytes to Transfer

mm2s_Addr 8 MM2S start memory address

mm2s_initTF 8 Initialization of the MM2S transfer

mm2s_finished_intr 1 Finish interrupt. It will be set when the transfer from the

RAM was successful.

TABLE 12: DATAMOVECTL IP SETTINGS

Setting Bits Description

C_ADDR_WIDTH 32 Address width of the memory addresses (set to 32)

C_BTT 23 Bytes to transfer width (set to 23)

C_MM2S_MEM_ADDR 32 MM2S memory start address (default value is
0x00120000)

C_NUMBER_PKG 16 Number of Samples to collect for the UDP package
(value 1-32768), currently set to 32

C_S2MM_MEM_ADDR 32 First S2MM memory start address (default value is
0x00140000)

C_S2MM_MEM_ADDR2 32 Second S2MM memory start address (default value is

0x00160000)

C_PS_CONTROL

Enable Processing System control (checked is PS
control enabled)
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TABLE 13: UNPKGMODULE INPUT PORT AND INTERFACE DESCRIPTION

Port / Interface Input Bits Description

S AXI4S Slave interface for the AXIS data stream
clk_1MHz 1 1 MHz clock

aresetn_1MHz 1 Resetn to corresponding 1 MHz clock

aclk 100MHz 1 100 MHz clock for the AXIS interface
aresetn 1 Resetn to corresponding 100 MHz clock
Com_PS_en 1 Enables the Communication with Processing

System, currently in use

TABLE 14: UNPKGMODULE OUTPUT PORT AND INTERFACE DESCRIPTION

Port / Interface Output Bits Description

pkg_ctl 16 Package type (not used)
NumOfSamples 32 Number of Samples to be debugged
SampleRate 16 Sample Rate for the debugging process
CMD 8 Command signal

TriggerTyp 8 Trigger Type for the debugging process
TriggerValue 16 Trigger Value for the debugging process
Signal0 16 Chosen signal to debug and also trigger signal
Signal1 16 Chosen signal 2 to debug

Signal2 16 Chosen signal 3 to debug

Signal3 16 Chosen signal 4 to debug

start_1MHz 1 For debugging

TABLE 15: UNPKG_UDP_CTL_UNIT INPUT PORT AND INTERFACE DESCRIPTION

Port / Interface Input Bits Description

S _AXI4S tlast 1 AXIS TLAST of the S_AXI4S interface. This
signal is used to signal the end of the data
transfer.

S_AXI4S_tvalid 1 AXIS TVALID of the S_AXI4S interface. This
signal is used to get the valid data.

aclk 1 100 MHz clock

aresetn 1 Resetn to the corresponding 100 MHz clock

com_PS en 1 Enables the module for the communication
with the integrated Ethernet interface of the
ARM-Processor. Is currently set to 1.

TABLE 16: UNCP_UDP_CTL_UNIT OUTPUT PORT AND INTERFACE DESCRIPTION

Port / Interface Output Bits Description

S_AXI4S_tready 1 AXIS TREADY of the S_AXI4S interface is
always 1 (always ready to receive data)

en_pkg_ctl 1 Enable signal for package type

en_NumOfSamples 1 Enable signal for number of samples

en SR CMD_TT 1 Enable signal for sample rate, command and
trigger type

en_TV_Sig1 1 Enable signal for trigger value and first signal

en_Sig2_Sig3 1 Enable signal for second and third signal

en_Sig4 1 Enable signal for fourth chosen signal
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TABLE 17: UNPKG_UDP_DATA INPUT PORT AND INTERFACE DESCRIPTION

Port / Interface Input Bits Description

S AXI4S tdata 32 AXIS tdata of the S_AXI4S interface

aclk 1 100 MHz clock

aresetn 1 Resetn to the corresponding 100 MHz clock

com_PS en 1 Enables the module for the communication
with the ARM-Processor and the integrated
Ethernet interface. Is currently set to 1.

en_pkg ctl 1 Not used

en_NumOfSamples 1 Enable signal for number of samples

en SR CMD_TT 1 Enable signal for sample rate, command and

trigger type

en_TV_Sig1 1 Enable signal for trigger value and first chosen
signal

en_Sig2_ Sig3 1 Enable signal for second and third chosen
signal

en_Sig4 1 Enable signal for fourth chosen signal

TABLE 18: UNPKG_UDP_DATA OUTPUT PORT AND INTERFACE DESCRIPTION

Port / Interface Output Bits Description

CMD 8 Command Byte, gives information to start
debugging, stop debugging and if pre- or post-
trigger is active

NumOfSamples 32 Number of Samples

SampleRate 16 Sample Rate

Signal1 16 First chosen signal is also trigger signal

Signal2 16 Second chosen signal

Signal3 16 Third chosen signal

Signal4 16 Fourth chosen signal

Trigger Type 8 Trigger type for debugging process

Trigger Value 16 Trigger value for debugging process

pkg_ctl 16 Package type (not used)

TABLE 19: UNPKG_UDP_START_PULS INPUT PORT AND INTERFACE DESCRIPTION

Port / Interface Input Bits Description

clk_1MHz 1 1 MHz clock

clk_100MHz 1 100 MHz clock

aresetn_1MHz 1 Resetn of corresponding 1 MHz clock
aresetn 1 Resetn of corresponding 100 MHz clock
start 100MHz 1 100 MHz start pulse (AXIS tlast signal)

TABLE 20: UNPKG_UDP_START_PULS OUTPUT PORT AND INTERFACE DESCRIPTION

Port / Interface Output

Bits

Description

start 1MHz

1

1 MHz start pulse
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TABLE 21: PKG_SAMPLES INPUT PORT AND INTERFACE DESCRIPTION

Port / Interface Input Bits Description

clk_1MHz 1 1 MHz clock

m_axis_aclk 1 100 MHz clock

m_axis_aresetn 1 Resetn of the corresponding 100 MHz clock

framesize 12 Length of the AXIS data stream

send enable 1 Initialization to build the AXIS data stream

package_type 32 Package type of the data which will be sent
with the UDP package. Currently
package type is set to 1 = data package

number_of samples 32 Sample number to give the signal values a
timestamp

Signal0 32 First chosen signal

Signal1 32 Second chosen signal

Signal2 32 Third chosen signal

Signal3 32 Fourth chosen signal

TABLE 22: PKG_SAMPLES OUTPUT PORT AND INTERFACE DESCRIPTION

Port / Interface Output

Bits

Description

m_axis

Master interface for the AXIS data stream,
which will be written into the RAM

initTF

Signal for the DataMoveCTL block to initialize
the data transfer into the RAM

TABLE 23: DEBUGCOREMODULE INPUT PORT AND INTERFACE DESCRIPTION

Port / Interface Input Bits Description
Input_Signals Interface for the 300 input signals

Signal0 32 Input signal 1

Signal299 32 Input signal 300
clk 1MHz 1 1 MHz clock
resetn 1 Resetn of the corresponding 1 MHz clock
clk_1MHz_enable 1 Clock enable signal (constant 1)
¢_NumOfSamples 32 Number of Samples for the debugging process
c_SampleRate 16 Sample rate for the debugging process
c CMD 8 Command bits for different operation modes
c_TriggerType 8 Trigger type for the debugging process
c_TriggerValue 16 Trigger value for the debugging process
c_Signal0 16 First selected signal, also trigger signal
c_Signal1 16 Second selected signal
c_Signal2 16 Third selected signal
c_Signal3 16 Fourth selected signal
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TABLE 24: DEBUGCOREMODULE OUTPUT PORT AND INTERFACE DESCRIPTION

Port / Interface Output Bits Description

out_start pkg1MHz 1 Signal to start the PKG_Samples block
debugged NoS 32 Sample number for time stamp
debugged Sig0 32 Debugged signal 1

debugged Sig1 32 Debugged signal 2

debugged Sig2 32 Debugged signal 3

debugged Sig3 32 Debugged signal 4

db_ CMD 8 Verification of received CMD bits

db TT 8 Verification of received trigger type

db TV 16 Verification of received trigger value

db SR 16 Verification of received sample rate
db_NoS 32 Verification of received number of samples
db_Sig0 16 Verification of received chosen signal 1
db_Sig1 16 Verification of received chosen signal 2
db_Sig2 16 Verification of received chosen signal 3
db_Sig3 16 Verification of received chosen signal 4
db_SampleNum 32 Verification of received sample number
db_start 1 Verification of internal CMD_ Start signal

db_triggered

1

Verification of the internal Start_Sampling
signal

Resetn_1MHz

1

Resetn signal for the DataMoveCTL block

TABLE 25: SPLIT_CMD_BITS INPUT PORT AND INTERFACE

Port / Interface Input

Bits

Description

CMD _In

8

Command signal for the debugging settings

TABLE 26: SPLIT_CMD_BITS OUTPUT PORT AND INTERFACE

Port / Interface Output Bits Description

CMD_ StartSampling 1 Initializes the debugging process

CMD_Reset 1 Resets submodules and stops the debugging
process

CMD_Trigger 1 Enable trigger (post-trigger)

CMD_PreTrigger 1 Enable pre-trigger

CMD_NA1 1 Not accessed

CMD_NA2 1 Not accessed

CMD_NA3 1 Not accessed

CMD_NA4 1 Not accessed

TABLE 27: START_CONTROL INPUT PORT AND INTERFACE DESCRIPTION

Port / Interface Input

Bits

Description

reset

1

Resets the CMD_Start signal

CMD_ StartSampling

1

Initializes the debugging process

TABLE 28: START_CONTROL OUTPUT PORT AND INTERFACE DESCRIPTION

Port / Interface Output

Bits

Description

CMD_ Start

1

Starts the debugging process
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TABLE 29: TRIGGER_CONTROL INPUT PORT AND INTERFACE DESCRIPTION

Port / Interface Input Bits Description

Reset 1 Resets the Trigger Control block

CMD_ Start 1 Starts the waiting process for a trigger event
CMD_Trigger 1 Enables trigger

TriggerType 8 Selected trigger type

TriggerValue 16 Selected trigger value

Signal 32 Signal for trigger process

TABLE 30: TRIGGER_CONTROL INPUT PORT AND INTERFACE DESCRIPTION

Port / Interface Output

Bits

Description

Start Sampling

1

Set, when trigger event happened

TABLE 31: SEND_CONTROL INPUT PORT AND INTERFACE DESCRPITION

Port / Interface Input

Bits

Description

Enable NoSCounter

1

Enables the counter to increment

NumberOfSamples

1

Number of samples for the debugging process

Reset Counter

1

Resets the counter

TABLE 32: SEND_CONTROL OUTPUT PORT AND INTERFACE DESCRIPTION

Port / Interface Output

Bits

Description

Reset

1

Is high, when number of samples is reached

Sample Counter

1

Sample counter for time stamp

Sampling

1

Initializes the data transfer into the RAM.
When the Pre-Trigger is active, it also
initializes the read operation of the ring buffer
with the data transfer into the RAM.

TABLE 33: SAMPLE_RATE_COUNTER INPUT PORT AND INTERFACE DESCRIPTION

Port / Interface Input Bits Description

Reset Counter 1 Resets the sample rate counter
start_counter 1 Enables the counter to increment
SampleRate 16 The value of the SampleRate signal is the

compare value for the internal counter to
determine the sample frequency.

TABLE 34: SAMPLE_RATE_COUNTER OUTPUT PORT AND INTERFACE DESCRIPTION

Port / Interface Output

Bits

Description

Enable_NoSCounter

1

Enables the Send_Control block with the
sample counter
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TABLE 35: RINGBUFFER INPUT PORT AND INTERFACE DESCRIPTION

Port / Interface Input Bits Description

Sampling 1 Starts the read operation from the BRAMs
Reset 1 Resets the internal counters
WriteRam_Enable 1 Starts the write operation into the BRAMs
PreTrigger Enabled 1 Enables the Pre-Trigger functionality
Sig_In1 32 Signal 1

Sig_In2 32 Signal 2

Sig_In3 32 Signal 3

Sig_In4 32 Signal 4

TABLE 36: RINGBUFFER OUTPUT PORT AND INTERFACE DESCRIPTION

Port / Interface Output Bits Description

Sig_Out1 32 Signal 1 for the AXIS data stream

Sig_Out2 32 Signal 2 for the AXIS data stream

Sig_Out3 32 Signal 3 for the AXIS data stream

Sig_Out4 32 Signal 4 for the AXIS data stream

Send_Enable 1 Enables the packaging process to build the
AXIS data stream

TABLE 37: RINGBUFFERCTL INPUT PORT AND INTERFACE DESCRIPTION

Port / Interface Input

Bits

Description

ReadRAM Enable

1

Enables the read counter to increment

Reset

1

Resets the counters

WriteRAM_Enable

1

Enables the write counter to increment

TABLE 38: RINGBUFERRCTL OUTPUT PORT AND INTERFACE DESCRIPTION

Port / Interface Output Bits Description
rd_addr 8 BRAM read address
wr_addr 8 BRAM write address

TABLE 39: RINGBUFFERSIG INPUT PORT AND INTERFACE DESCRIPTION

Port / Interface Input Bits Description

Rd_Addr 1 BRAM read address

Wr_Addr 1 BRAM write address

WriteRAM_Enable 1 Enables write and read operations
Pre_Trigger Enable 1 Selects the signal data from the BRAMs
Signal1_in 32 Signal 1

Signal2_in 32 Signal 2

Signal3_in 32 Signal 3

Signal4_in 32 Signal 4

TABLE 40: RINGBUFFERSIG OUTPUT PORT AND INTERFACE DESCRIPTION

Port / Interface Output Bits Description
Signal Read1 32 Signal 1
Signal Read2 32 Signal 2
Signal Read3 32 Signal 3
Signal Read4 32 Signal 4
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TABLE 41: SIGNAL_SELECTION INPUT PORT AND INTERFACE DESCRIPTION

Port / Interface Input Bits Description
Signals300 300 x 32 300 signal input vector, each signal has 32 bits
Signal_Sel 16 Signal selection for the debugging signal

TABLE 42: SIGNAL_SELECTION OUTPUT PORT AND INTERFACE DESCRIPTION

Port / Interface Output

Bits

Description

Signal_Selected

32

Selected signal for the debugging process

TABLE 43: PIPELINE INPUT PORT AND INTERFACE DESCRIPTION

Port / Interface Input Bits Description

clk 1 clock

resetn 1 Resetn (active low)

sig_in XX Input signal (signal width can be chosen in the

IP settings)

TABLE 44: PIPELINE OUTPUT PORT AND INTERFACE DESCRIPTION

Port / Interface Output

Bits

Description

Sig_out

XX

Output signal (signal width can be chosen in
the IP settings)

TABLE 45: PIPELINE300 INPUT PORT AND INTERFACE DESCRIPTION

Port / Interface Input Bits Description

clk 1 clock

resetn 1 Reset (active low)

Input_Signals 300 x 32 Input signal interface (300 signals with each 32

bits)

TABLE 46: PIPELINE300 OUTPUT PORT AND INTERFACE DESCRIPTION

Port / Interface Output

Bits

Description

Output_Signals

300 x 32

Output signal interface (300 signals with each
32 bits)

TABLE 47: CLKDOMAINCROSSING INPUT PORT AND INTERFACE DESCRIPTION

Port / Interface Input Bits Description

clk_1MHz 1 1 MHz clock

resetn_1MHz 1 resetn (active low)

clk_100MHz 1 100 MHz clock

resetn_100MHz 1 resetn (active low)

in_signal_1MHz XX Input signal (signal width can be chosen in the

IP settings)

TABLE 48: CLKDOMAINCROSSING OUTPUT PORT AND INTERFACE DESCRIPTION

Port / Interface Output

Bits

Description

Out_signal_100MHz

XX

Output signal (signal width can be chosen in
the IP settings)
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TABLE 49: SIG_GEN300 INPUT PORT AND INTERFACE DESCRIPTION

Port / Interface Input

Bits

Description

clk_1MHz

1

1 MHz clock

resetn

1

resetn (active low)

TABLE 50: SIG_GEN300 OUTPUT PORT AND INTERFACE DESCRIPTION

Port / Interface Output Bits Description
Gen_Signals 300 x 32 Output signal interface with 300 signals. Each
Bits signal has a width of 32 bits.

TABLE 51: AID IP CORE INPUT PORT AND INTERFACE DESCRIPTION

Port / Interface Input Bits Description

clk_1MHz 1 1 MHz clock

clk_100MHz 1 100 MHz clock

resetn_ 1MHz 1 1 MHz Resetn (active low)

resetn_100MHz 1 100 MHz Resetn (active low)

MM2S_MEM_ADDR 32 Start memory address, where to read the data
for the MM2S transfer

S2MM_MEM_ADDR 32 First start memory address, where to write the
data for the S2MM transfer

S2MM_MEM_ADDR2 32 Second start memory address, where to write
the data for the S2MM transfer

mmZ2s_data_length 12 Data length of the MM2S transfer

mm2s_startTF 1 Initialize MM2S data transfer from RAM to set
up the debugging process with the parameters
from the user-interface

s2mm_data_length 12 Data length of the S2MM data transfer

s2mm_number_pkg 16 Number of samples to collect for the UDP
package, before the S2MM interrupt is set

s_axis S2MM_S AXIS interface for the S2MM transfer status

s _axis mm2s_s AXIS interface for the MM2S transfer status

s_axis_ mm2s d AXIS interface for the MM2S data

Input_Signals 40 x 32 bits | Interface for the 40 or 300 input signals. The

interface name is debugSig for 40 input
signals and Input_Signals for 300 input
signals.

TABLE 52: AID IP CORE OUTPUT PORT AND INTERFACE DESCRIPTION

Port / Interface Output

Bits

Description

m_axis_S2MM

AXIS interface for the S2MM data.

m_axis_S2MM_C

AXIS interface for the S2MM command data

m_axis_mm2s ¢

AXIS interface for the MM2S command data

mm2s_finished intr

Interrupt for a successful MM2S data transfer

s2mm_finished_intr

Interrupt for a successful S2MM data
transfers.
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