
Alexey Shelkovich

Software Quality Assurance Methods

for Enterprise Applications

MASTER’S THESIS

to achieve the university degree of

Master of Science

Master’s degree programme: Software Engineering and Management

submitted to

Graz University of Technology

Supervisor

Univ.-Prof. Dipl.-Ing. Dr.techn. Franz Wotawa

Institute of Software Technology

Faculty of Computer Science and Biomedical Engineering

Graz, November 2020

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to TUGRAZonline is
identical to the present master’s thesis.

Date, Signature

Abstract

Enterprise software is one of the most complex, comprehensive and wide-used software
families worldwide. Today it not only merely supports, but to a much greater extent
makes it possible to process and seamlessly accomplish within a uniform technology ar-
chitecture and information system from the very beginning to the end business processes
of various nature for companies of different scales, simultaneously providing sophisticated
online data management und data analytics possibilities. To be able to do it efficiently
and adequately enterprise applications’ actual state should be synchronised with all the
current trends, forms and practices in industry and various business areas, constantly in-
corporating in applications and infrastructure all the relevant latest technical advances.
As more and more vital functions, including those that have direct influence on human
lives, are becoming reliant on the stable, correct and sustainable functioning of enterprise
applications, the problems, concerns and tasks of achieving and securing strict long-term
quality goals, which in their turn rely on the development and correct application of the
appropriate quality evaluation and assurance methods, acquire the utmost importance.

This thesis makes a review of the quality conception views, followed by the analysis of
evolution and comparison of software quality models. The details of the most actual and
mature standards series in software quality ISO/IEC 25nnn: Software Product Quality
Requirements and Evaluation (SQuaRE) are explained, emphasising the possibilities of
extension and modification of the provided software quality models and going though
the properties and validity criteria of the new or modified quality measures. The latest
and the future development trends of the enterprise software, which have a big impact
on the quality goals, are demonstrated on the example of SAP solutions as the biggest
enterprise software provider. On the basis and as a result of the conducted analysis
the important characteristics of hybrid applications are examined and summarised, top-
level models of external quality and quality in use for enterprise application have been
developed and proposed including a general view of their integration into a software
lifecycle and possible re-engineering strategy. The objective is to create the basis for the
further development of the evaluation and assurance methods of enterprise applications
aligned with and based on the international software quality standards ISO/IEC 25nnn.

3

Kurzfassung

Unternehmenssoftware ist eine der komplexesten, umfassendsten und am weitesten ver-
breiteten Softwarefamilien weltweit. Heute unterstützt es nicht nur, sondern ermöglicht
es in viel größerem Umfang, innerhalb einer einheitlichen Technologiearchitektur und
eines einheitlichen Informationssystems von Anfang bis Ende Geschäftsprozesse ver-
schiedener Art für Unternehmen unterschiedlicher Größenordnungen zu verarbeiten und
nahtlos durchzuführen, und bietet gleichzeitig anspruchsvolle Möglichkeiten zur Online-
Datenverwaltung und Datenanalyse. Um dies effizient und angemessen tun zu können,
sollte der tatsächliche Status von Unternehmenssoftware mit allen aktuellen Trends, For-
men und Praktiken in der Industrie und in verschiedenen Geschäftsbereichen synchro-
nisiert werden, wobei ständig alle relevanten technischen Fortschritte in Anwendungen
und Infrastruktur einbezogen werden. Da immer wichtigere Funktionen, einschlielich
solcher, die direkten Einfluss auf das menschliche Leben haben, auf das stabile, kor-
rekte und nachhaltige Funktionieren von Unternehmenssoftware angewiesen sind, gewin-
nen die Probleme, Bedenken und Aufgaben der Erreichung und Sicherung strenger
langfristiger Qualitätsziele, die wiederum von der Entwicklung und korrekte Anwen-
dung der geeigneten Methoden zur Qualitätsbewertung und -sicherung abhängen, die
äußerste Bedeutung.

Diese Masterarbeit gibt einen Überblick über die Ansichten zur Qualitätskonzeption,
gefolgt von der Analyse der Evolution und dem Vergleich von Softwarequalitätsmodellen.
Die Details der aktuellsten und ausgereiftesten Normenreihen in Softwarequalität ISO/IEC
25nnn: Anforderungen und Bewertung der Softwareproduktqualität (SQuaRE) werden
erläutert, wobei die Möglichkeiten der Erweiterung und Änderung der bereitgestell-
ten Softwarequalitätsmodelle sowie die Eigenschaften und die Gültigkeit Kriterien der
neuen oder geänderten Qualitätsmaßnahmen hervorgehoben werden. Die neuesten und
zukünftigen Entwicklungstrends der Unternehmenssoftware, die einen großen Einfluss
auf die Qualitätsziele haben, werden am Beispiel von SAP-Lösungen als größtem Anbi-
eter von Unternehmenssoftware demonstriert. Auf der Grundlage und als Ergebnis der
durchgeführten Analyse werden die wichtigen Merkmale von Hybridanwendungen un-
tersucht und zusammengefasst. Es wurden Top-Level-Modelle für externe Qualität und
Qualität im Gebrauch entwickelt und vorgeschlagen, einschließlich eines allgemeinen
Überblicks über deren Integration in einem Software-Lebenszyklus und mögliche Re-
Engineering-Strategie. Ziel ist es, die Grundlage für die Weiterentwicklung der Bewertungs-
und Sicherungsmethoden von Unternehmensanwendungen zu schaffen, die an den in-
ternationalen Softwarequalitätsstandards ISO/IEC 25nnn ausgerichtet und auf diesen
basieren sind.

4

Contents

1 Introduction 11

2 Evolution of quality conception and software quality models 14
2.1 Quality definition . 14
2.2 Development of software quality models 16
2.3 Factor-Criteria-Metric Models . 16
2.4 Goal-Question-Metric Models . 20
2.5 Process-Product Models . 21
2.6 Standard IEEE 1061 . 23
2.7 Standards ISO/IEC 9216, ISO/IEC 25000 24
2.8 Comparison of the structure of the quality models 26
2.9 Comparison of the build methods of the quality models 26

2.9.1 Strict approach and rigid quality models 27
2.9.2 Agile approach and flexible quality models 27
2.9.3 Mixed approach and overlapping of levels 28
2.9.4 External and internal quality characteristics 28
2.9.5 Relationships between quality attributes 28

3 Software quality standard ISO/IEC 25000 SQuaRE series 34
3.1 Software quality standard structure SQuaRE 34

3.1.1 External / Internal Quality Model 39
3.1.2 Quality in Use Model . 40

3.2 Software qualimetry basics . 41
3.3 Extension and customisation of the quality model and measures 47

3.3.1 Properties and criteria for the validity of quality measures 47

4 Enterprise applications quality assurance 50
4.1 Enterprise applications definition . 50
4.2 SAP Enterprise software evolution from R/1 to HANA 52
4.3 Focus transformation to user-centred design and technological advances . 55

4.3.1 SAP Classical GUI . 56
4.3.2 SAP Fiori . 56
4.3.3 SAP Transactions transformation 59

4.3.3.1 De-composition of transactions 61
4.3.3.2 Re-composition of transactions 62
4.3.3.3 Role-based applications 62

4.3.4 Data model simplification and application code push-down 62

5

4.3.5 Hybrid enterprise applications . 64
4.4 Analysis of characteristics of hybrid enterprise applications while design,

development and usage . 66
4.5 Enterprise applications quality model . 68

4.5.1 External quality model . 70
4.5.2 Quality in use model . 72

4.6 Quality models in enterprise applications lifecycle 73

5 Conclusion 76

References 77

6

List of Figures

2.1 The triange of McCall . 17
2.2 McCall Quality Model . 18
2.3 Boehm Software Quality Characteristics Tree 18
2.4 FURPS+ Software Quality Model . 19
2.5 Gilb Quality Model, fragment . 20
2.6 GQM Quality Model . 21
2.7 Dromey Quality Model, elements . 22
2.8 SQUID Quality Model, elements . 23
2.9 IEEE1061 Software Quality metrics framework 24
2.10 ISO/IEC 9216-1 - Quality model for external and internal quality 25
2.11 ISO/IEC 9216-1 - Quality model for quality in use 26
2.12 Quality attributes relationships (Perry) 29
2.13 Quality factors relationships (IEEE 1061) 30

3.1 Organisation of SQuaRE series of International Standards 34
3.2 ISO25010 - Structure of the quality models 35
3.3 ISO25020 - Software product quality measurement reference model 36
3.4 ISO25010 - System / Software Quality Life Cycle Model 37
3.5 ISO25010 - Quality in the lifecycle . 37
3.6 Quality prediction in the lifecycle . 38
3.7 ISO25010 - System/Software External / Internal Quality Model 39
3.8 ISO25010 - Quality in Use Model . 40
3.9 ISO25040 - Generalised measurement process and software product qual-

ity evaluation general reference model . 42
3.10 ISO/IEC 14598-1 - Possible ranking of measured values of quality measures 44
3.11 Ordinal scale . 45
3.12 Interval scale . 45
3.13 Scale types relation . 46

4.1 SAP product family evolution . 53
4.2 SAP HANA - evolution . 53
4.3 SAP HANA - OLTP and OLAP, speed advantage 54
4.4 SAP HANA DB architecture . 55
4.5 Design thinking process . 56
4.6 SAP Classical-GUI components . 56
4.7 SAP Fiori - UX Direction . 57
4.8 SAP Fiori - Interface 1st generation . 58

7

4.9 SAP Fiori - Interface 2nd generation . 58
4.10 SAP Fiori - Interface 3rd generation . 59
4.11 SAP Monster transactions exacmple . 60
4.12 SAP Monster transaction composition . 61
4.13 SAP de-composition process . 61
4.14 SAP re-composition process . 62
4.15 Remove complexity with SAP S/4HANA 63
4.16 Simplification of database-schema and table structure with SAP S/4HANA 63
4.17 SAP HANA - Platform SAP S/4HANA 64
4.18 SAP HANA Code push-down paradigm 64
4.19 SAP HANA Multi-target application . 65
4.20 External Quality of Enterprise Applications - top level definition 72
4.21 Quality in Use of Enterprise Applications - top level definition 73
4.22 Enterprise applications quality models in a lifecycle 74
4.23 Enterprise application re-engineering strategy for quality flaws 75

8

List of Tables

2.1 ISO 9216-1 - external and internal quality characteristics 25
2.2 ISO 9216-1 - quality in use characteristics 26
2.3 Comparison of the Quality Models structure 31
2.5 Comparison of the Quality Models build methods 33

3.1 ISO 25010 - external and internal quality characteristics 40
3.2 ISO 25010 - quality in use characteristics 41
3.3 SQuaRE - Terminology related to the theory of measurement 42

4.1 SAP Real-time domains . 54
4.2 SAP Fiori Design: values, principles and practices 57
4.3 ISO25010 - Influence of the quality characteristics 70

9

List of Acronyms and Symbols

SAP SAP SE is a German multinational software corporation that makes enterprise
software to manage business operations and customer relations. Also used to reference
the whole range of software development by SAP SE
ISO International Organization for Standardisation
IEEE Institute of Electrical and Electronics Engineers
FCM Factor, Criteria, Metrics Quality Model
FURPS Functionality, Usability, Reliability, Performance, Supportability Quality
Model
GQM Goal Question Metric Quality Model
SQuaRE Systems and software Quality Requirements and Evaluations (ISO defini-
tion)

10

1 Introduction

Development, maintaining and using an enterprise software of high quality are complex
multistage processes, which imply carrying out a big number of different tasks and
solving countless unpredictable problems, challenges and issues. Enterprise applications
are used in and supporting, sometimes even controlling to the extent of dependence on
them, almost all areas of enterprise activities, many of which are of extremely importance
for the existence of a company itself, including those that might be potentially dangerous
and threatening for human lives. In the development of such a software a lot of people,
organisations and resources are involved and huge amount of money is spent.

The recent trends, such as globalisation, strong international market competition and
ubiquitous digitalisation, led to the shift of focus from mostly pure technical and func-
tional view on the enterprise software to the human-centred view, to the end user, who
comes form all business areas around and stays now in the middle of attention, influenc-
ing all processes starting with methods of interaction with a software and even the ways
how the software should work. The software is starting to show its ”human face”.

This turn together with an explosive spread and development of technologies brought
with itself many new, before unknown, types of users into the area of enterprise software:
today not only long-familiar technical and business experts, possessing solid education
and many years of experience, but also a lot of specialists from other domains, often
completely technically ignorant but still needing the possibilities provided by enterprise
applications, have to use it and are dependent on it for the success of their everyday
routine. The feedback from end-users and the requests for changes for a new functionality
are coming now much faster, in much bigger scale and it is assumed that the results
and new solutions will be delivered fast, seamless for already running processes and
with achievement of high quality goals. As a response to these challenges in the last
decade completely new agile methods and practices were incorporated and adapted into
a software engineering practice. Nobody wants and has enough time anymore to wait
before the complete thorough specification would be written and compete development
cycle would be finished and integrated into the production: all this together could take
years. Agile methods are aimed at rapid development and deployment in production
ready-to-use versions is short development cycles.

And exactly at this time the quality of these applications becomes of utterly im-
portance, not only to ensure that all business processes run correctly and efficiently,
implemented solutions are satisfactory and do exactly what is excepted from them, but
also to protect the whole extreme complex system from potential risks, errors and in-
consistencies.

It is rather impossible to define exactly and describe precisely what the quality is
because of its ubiquitous and inborn nature. There are many ways of treating it and the

11

influencing factors include the scope of application, personal perception, cultural and
industry differences, context in which the quality concept is used and also many others.
For the area of interest and tasks of this thesis under the quality would be understood a
degree to which a set of inherent characteristics of an object fulfils requirements [Sta15a],
and this definition applied to the enterprise software applications quality implies the
capability of software product to satisfy stated and implied needs when used under
specified conditions [Sta14].

The before mentioned challenges, importance and complexity of the tasks solved by
enterprise applications discover und highlight the urgent need in research aimed at de-
velopment of quality models, algorithms and methods of enterprise applications quality
assurance. Quality assurance of enterprise software is a multi-criteria process, including
but not limited to developing of the quality models, the definition of set of quality crite-
rias, choosing the etalon values, measurement and evaluation of real values, evaluation
and assurance of the enterprise software quality. In practice quality evaluation processes
are often carried out by experts or are based on personal judgements of the staff involved
in the development or support, what in most of the cases gives the results which are
not objective enough. Chosen criterias are mainly descriptive, the selection of base and
etalon values is rather intuitive and measurement and comparison processes are difficult
to formalise.

To archive the quality goals and to assure the quality of enterprise applications it is
necessary to evaluate the quality constantly, a set of criterias used for the measurements
and their appropriate base values should be regularly reconsidered and appropriately ad-
justed in accordance with the progress of development, testing and real use in production
environment. These might be a very ambitious and demanding tasks taking into account
the variety of users, business cases and staying behind them multiple business roles with
many business-processes and applications, interacting with each other and running on a
heterogeneous set of end-user devices in a countless number of possible contexts. In this
thesis a number of tasks were set to come closer and tackle the mentioned objectives:

• Analyse the quality conception, the evolution and development of approaches and
software quality models used in quality assurance processes;

• Review and analyse the most mature and recent standards in the area of software
quality ISO/IEC 25000 SQuaRE series;

• Show the trends of the enterprise software development directions in the last
decades on the example of SAP as the largest enterprise software supplier in the
world;

• Develop and propose the top-level external quality model and top-level quality in
use model for enterprise applications based on the actual SQuaRE standard series.

The second chapter of the thesis presents the broad range of quality definitions, which
were constantly changed and clarified with time, and shows the ways of how these various
quality interpretations were formalised in the form of software quality models, giving
their short analysis and a final comparison of the properties and parameters.

12

Third chapter gradually continues this overview by getting into details of the latest
mature international standards in the software quality ISO/IEC 25000 series. Starting
with the description of the standards’ structure, the conceptions of internal, external
quality and quality is use are explained followed by the presentation of the corresponding
reference quality models. Shortly the basics of quality qualimetry are explained and
the important question of extension and adaptation of the reference models, including
measures and such important concerns as their desired properties and criteria for the
validity, is clarified.

Fourth chapter deals with the enterprise software, firstly presenting how SAP enter-
prise solutions have evolved, what are the current and future trends of changes and
developments, which, in their turn, will have a big impact on how the software is being
used, on future quality goals and on quality assurance methods. The analysis of char-
acteristics of hybrid enterprise applications highlights the important aspects needed to
be considered while development, usage and quality assurance processes. Finally, based
on all of the conducted researches, top-level models of external quality and quality in
use of enterprise applications quality are proposed, shortly touching the aspects of their
integration into software lifecycle and possible re-engineering strategy.

13

2 Evolution of quality conception and
software quality models

2.1 Quality definition

One of the challenges of quality assurance is that the quality definition itself is not exact
and obvious. It happens that quality can be understood differently, context-dependent,
sometimes subtle or false. The main reasons for this are:

• Quality is not an isolated idea, but it a complex multi-level conception.

• Different people perceive the quality with different abstraction level. In some cases
quality is seen as a broad idea, in others as a concrete values of defined separate
characteristics.

• The term quality is used frequently in all areas of human life, not only in software
area, which makes is difficult to focus of exact definition.

If we try to analyse how the idea of quality if used in most of the cases (for example
expressions or, better to say, broad evaluations as ”good” or ”bad” quality) it becomes
clear, that the majority treats the quality as something abstract und undefined, uncon-
trollable and therefore not really measurable. However, the professional and scientific
approach to the quality allows not only to measure and control it, but also manage and
improve it.

One more common misconception is that quality inextricably connected with high
complexity, high costs and sophistication of the product. According to this view a
simple, inexpensive and effective program may rare be assessed as one having a high
quality level.

As such perception of the quality makes it impossible to use it for constant improve-
ment of the processes of software development, specialists and scientist gave a number
of more precise and convenient definitions.

Juran has defined quality as ”fitness for use” [JJ88]. What is important that this
definition takes into consideration the requirements and expectations of the users of the
software.

Later Crosby [Cro79] described quality as ”conformance to requirements”. This def-
inition is based on maximal clear detailed requirements. Unconformity of the product
to this requirements is considered by Crosby as defect and otherwise full conformance
means maximal level of quality of the product.

Afterwards a number of definitions of quality were given. Hamphrey [W.S89] de-
fined quality as achievement of excellent level of suitability for use, IBM introduced the

14

”market-driven quality” and in Baldrige National Quality Program ”customer-driven
quality” idea is used.

Pressman [R.97] gave the definition of the quality as conformance to explicitly stated
functional and performance requirements, explicitly documented development standards,
and implicit characteristics that are expected of all professionally developed software.
Later [R.09] he has given one more definition: software quality can be defined as an
effective software process applied in a manner that creates a useful product that provides
measurable value for those who produce it and those who use it.

The definition given in [AG15] is: quality is a property representing a set of those
and only those properties that characterise the consumption results of an object, both
desirable and undesirable, excluding the cost of their creation and consumption. That is
to say, this set includes only properties associated with the results achieved in consuming
an object, and does not include ones associated with the cost of providing these results.
The property in turn is defined as: a feature, characteristic or peculiarity of an object,
that becomes apparent during its consumption/operation/use/application (henceforth,
all these terms are used interchangeably) according to the purpose of its use (e.g., the
mean lifetime of a community).

Fitzpatrick [R.96] defined software quality as the extent to which an industry-defined
set of desirable features are incorporated into a product so as to enhance its lifetime
performance. It worth mentioning that in this definition quality has been given a time
dimension.

The most accurate definitions of quality have been formulated and recorded in inter-
national standards ISO (International Organization for Standardisation). Standard ISO
9000:2015 [Sta15a] defines quality as ”degree to which a set of inherent characteristics
of an object fulfils requirements”. From this definition one can deduce that quality
is a complex, multi-dimensional concept:

• degree implicate that quality is a variable and not fixed;

• set means that quality is not an atomic characteristic;

• inherent means that quality exists in object itself, cannot be detached from the
object as another independent object and ist not assigned by external force;

• object means anything perceivable or conceivable therefore the term quality can
be used relative to both tangible and intangible objects, for example quality of
software;

• requirement means a need or expectation that is stated, generally implied or
obligatory.

To put it all in simple words - to what extent the object corresponds to our expectations.
In relation to the area of information technologies and software, the exact definition of

the software quality was first given in standard ISO/IEC 9126-1 [Sta01] and afterwards
in the newest standards of series 25000 SQauRE [Sta14]. The quality conception there
is analysed from different perspectives, it is described in detail in 3.

data quality
degree to which the characteristics of data satisfy stated and implied needs when used

under specified conditions

15

quality in use
degree to which a product or system can be used by specific users to meet their needs

to achieve specific goals with effectiveness, efficiency, freedom from risk and satisfaction
in specific contexts of use

software quality
capability of software product to satisfy stated and implied needs when used under

specified conditions
The historical approach to the quality definition mainly focuses on the compliance of

the software to the functional requirements. However, since the publishing of interna-
tional standards 9126- and later 2500-series, the focus of the definition has been shifted.
In according to the standards the quality is defined thought the set of characteristics,
which to a greater extent reflects the expectations and needs of the real users than the
technical conformity to the documentation and requirements.

2.2 Development of software quality models

The main research domain in the area of software quality assurance is the formalisation
of quality attributes and methods of their evaluation. To support, facilitate and regulate
these processes in the middle of 1970 the first quality models were created and have been
constantly evolving since then. The most mature and modern international standard of
software quality ISO/IEC 25000 [Sta14] characterises quality model as a set of indica-
tors, i.e. attribute categories which are related to the software quality, and relations
between them, what provides the basis for quality requirements and quality evaluation
specification.

Further follows the overview and analysis of the most important and known quality
models, approaches to quality concepts, which have been developed in the last four
decades. Some of them aimed at solving some specific corporate tasks, others were used
in heterogeneous projects of software developing and the other ones inspired and became
part of the industry, state or international standards of quality.

2.3 Factor-Criteria-Metric Models

Models of software quality possess hierarchical structure in their nature. The main
advantage of this is the possibility to decompose every quality attribute into the number
of factors, which, in their turn, can be further decomposed to the number of criterias.
Criterias can be afterwards matched with the set of appropriate metrics and therefore
evaluated. Such models are named after the first letters of their components as FCM
(Factor, Criteria, Metrics) Models.

One of the first wide-known quality model became the work of McCall [MJ77]. Here
the quality indicators are divided into three groups:

• factors - describe the software from the users’ point and provide the requirements,
external software view

16

• criterias - describe the software from the developers’ point and provide the targets,
internal software view

• metrics - used for qualitative description and measurement of quality.

Criterias of the quality (overall 11) are combined into three factor-groups in accordance
with the different methods of interaction of users with software. Revision identifies
the ability to undergo the changes, Transition characterises the adaptability to new
environments and Operations are operational characteristics. The resulting structure
can be represented in so-called triangle of McCall (figure 2.1).

Figure 2.1: The triange of McCall (from [MJ77])

Criterias of quality are the quantitative values of the factors, which are set as targets
for the software development. It is difficult to make objective evaluation of the quality
factors directly, so the metrics of the quality were introduced to allow measurement and
valuation. The values of metrics are getting values from 0 to 10, each metric can influence
several quality factors and the value of the factor is calculated as a liner combination
of the related metric values. Appropriate coefficients are defined differently for different
organisations, development teams, types of software, used processes etc. The main aim of
the model application in real project is the achieving of the measurability of the software
quality attributes. The model is shown on the figure 2.2.

17

Figure 2.2: McCall Quality Model (from [MJ77])

Boehm [BB78] has introduced the model, which is basically the extension of McCall
model. It introduces high-level factors such as as-us utility, maintainability and porta-
bility, and additional characteristics (criterias) also including those dealing with the
performance of hardware. The model is shown on the figure 2.3.

Figure 2.3: Boehm Software Quality Characteristics Tree (from [BB78])

18

Hewlett Packard company in 1987 proposed FURPS software quality model [GR87],
which is an industrial interpretation of McCall and Boehm models. It differentiates be-
tween functional requirements, which include the input and excepted output (Functionality),
and non-functional requirements, which are defined by several attributes (Usability,
Reliability, Performance, Supportability). These 5 high-level attributes are detailed
with 27 low-level attributes. Laster the model was extended by IBM Rational Software
to FURPS+ which includes additional non-functional constraints: design constraints,
implementations constraints, interface constraints, physical constraints. The model is
shown on the figure 2.4.

Figure 2.4: FURPS+ Software Quality Model (from [GR87])

The model from Gilb [T.88] corresponds in general the concept of FCM-Model but has
some major differences. The quality model is incorporated into project documentation,
and every attribute must be measurable and must be further specified in the processes
of software lifecycle. Apart from quality attributes the models also includes restriction
attributes. The model is based of four quality and four resource attributes and it is
possible to extend them (see figure 2.5).

19

Figure 2.5: Gilb Quality Model, fragment (from [T.88])

Gilb proposed seven principles of model use, main from them is the principle of mea-
surability: all attributes may and must be measurable on practice. Gilb says, that it is
always possible to find the appropriate measurement for an attribute. If no measurement
for some attribute can be found, it means, that it is not an attribute but an indicator,
which needs to be further decomposed.

2.4 Goal-Question-Metric Models

The Goal-Question-Metric model GQM was developed to identify defects of the software
in center of space flights at NASA [BV94]. The main purpose of the model is to facilitate
making decisions and controlling the processes of software development on the basis of
measurements. The GQM Model provides the basis for translating the goals of the
software development to the set of questions and metrics. This model also has 3-level
hierarchical structure (see figure 2.6).

20

Figure 2.6: GQM Quality Model (from [BV94])

1. conceptual level (goals) - goals are the abstract attributes, which define the di-
rection of the development and can be matched to different objects (software,
development processes, resources of development etc.). For example reliability,
testability, portability etc.

2. operational level (questions) - questions are used to describe the methods to achieve
the goals. The questions characterise the objects for measurement (software, pro-
cesses, resources etc.) in accordance with the chosen quality factor and describe
the quality from some definite point of view.

3. quantitative level (metrics) - metrics are the procedures, formulas or algorithms,
wich can be used to answer the question in a quantitative way. Metrics can be
objective or subjective.

In accordance with the model every question can be matched only to one goal, but
metrics in their turn can be matched to different questions.

The models GQM and FCM can be compared with each other. Goals and questions
correspond to factors and criterias. It needs to be mentioned that FCM are general-
purpose models which implies their usage in different projects, whereas with GQM-type
models different projections of the same project are created. Several GQM models for
one project can have common questions and metrics, if the are different projections of
the project evaluation. There are a number of model application in different business
areas [BA02], [HL96], [V.R93].

2.5 Process-Product Models

Some of the models were developed not only for software quality, but also for controlling
the process of software development. This methods are mainly focused on the evaluation
of the internal software attributes and their influence and mapping to external attributes.

21

The main works in this direction are the Dromey model [R.G96] and SQUID method
[BJ99].

The Dromey model was first published in 1996 [R.G96]. According to the Dromey’s
approach the high-level quality indicators such as reliability, maintainability, portability
and others cannot be provided and guaranteed directly by the software itself. Instead
of this it is necessary to define the set of properties of the software, which, if the are
fulfilled, lead in turn to the desired level of values of high-level quality indicators. The
Dromey model is also hierarchical in nature but significantly differs from other hierar-
chical quality models. Hier by building the model the bottom-up approach is applied .
In the first turn the set of components, which comprise the software, is fixed. Some of
them can be atomic, other be complex and consist of other components. In the second
turn the properties of each component, which have the influence on the quality of com-
ponent, are defined. Finally to describe the quality of software the set of non-intersected,
comprehensive and aligned high-level quality attributes is introduced (see figure 2.7).

Figure 2.7: Dromey Quality Model, elements (from [R.G96])

The quality model is complemented by linkage between properties of the software
and high-level quality attributes. Each such a linkage must be verified experimentally
on practice for each property of the software. The linkage between software properties
and the attributes of the composite components of the software defines the quality of the
software as a whole. So the whole process can be described in the following steps: choose
the representative set of high-level quality attributes for evaluation, list components of
the software, identify quality-carrying properties for each component, understand how
each of these properties affects the quality attributes and finally evaluate the whole
model to determine weaknesses.

Because Dromey’s approach was focused on supporting the development of software,
three quality models were introduced: quality model of requirements, quality model of
the project and quality model of the implementation. Each model is related to the
appropriate phase of software lifecycle and has own set of attributes.

SQUID method [BJ99] covers the processes of planning, controlling and evaluation of
quality. SQUID defines quality as a behaviouristic characteristic of software needed by
users. Similar as already before mentioned models SQUID defines quality in terms of
high-level attributes, which must be detailed or decomposed until they can be measured.
SQUID does not define its own quality model and it is suggested to use any existing model
what is the most suitable for the concrete projects requirements (see figure 2.8).

22

Figure 2.8: SQUID Quality Model, elements (from [BJ99])

Quality attributes which define the behaviour of the software are called external quality
attributes, for example reliability, simplicity of use. The attributes which are related to
the software development and software itself are called internal attributes, for example
test coverage, structural complexity, size. Before the method can be used it is necessary
to define how internal attributes affect external attributes by discovering the linkages
between them in the quality model.

SQUID method describes quality requirements for software by setting goals for the
external quality attributes. Afterwards these goals are realised by defining and tracking
the goals for the internal quality attributes. In turn this is achieved by measurement of
the internal attribute values.

2.6 Standard IEEE 1061

Standard IEEE 1061 was first published in 1998 by the Institute of Electrical and Elec-
tronics Engineers [EE98]. The standard describes relative open and flexible hierarchical
structure of the quality model, which has quality factors on the top level and which are
decomposed to sub-factors and metrics. Each level can be decomposed to sub-levels (see
figure 2.9).

23

Figure 2.9: IEEE1061 Software Quality metrics framework (from [EE98])

Opposed to the standards ISO/IEC 9126-1-4 [Sta01], [Sta03b], [Sta03a], [Sta04], where
the set of quality attributes is fixed, this standards does not limit the number of factors
and sub-factors and allows to add or remove an arbitrary number of them. The standard
also contains the description of method of using it together with the GQM model (see
2.4). Interesting feature is the possibility of direct evaluation with the help of the metrics
of top levels’ factor and sub-factors in the hierarchy. It also means that it is possible to
decompose high-level elements of the quality model to the sets of multi-rank components.

2.7 Standards ISO/IEC 9216, ISO/IEC 25000

Today the most mature and actual standards for software quality is ISO/IEC 25000
series, which replaced standards of ISO/IEC 9216 series. ISO/IEC 2500 is described
and analysed in 3, in this section is given the description of ISO/IEC 9126 series.

The standards use the concept of external quality, internal quality and quality in use.
External quality defines the ability of the software system to show such a behaviour,

which would satisfy the implicit and explicit needs by using the system in a given context.
Internal quality is the ability of the set of statical attributes of software system

(i.e. inherent properties or characteristics of the essence, which can be characterised
qualitative or quantitative by the human or automatically) to assure the implicit or
explicit needs by using the system in a given context.

Quality in use in the extent to which particular software users can achieve their
goals in a context of effectiveness, productivity, security and reliability.

The model of external and internal quality divides the software quality into six main
characteristics, each of which is detailed by subcharacteristics (see figure 2.10).

24

Figure 2.10: ISO/IEC 9216-1 - Quality model for external and internal quality (from
[Sta01])

The subcharacteristics in turn can be measured by the appropriate internal or external
metrics.

Table 2.1: ISO 9216-1 - external and internal quality characteristics

Functionality The capability of the software product to provide functions which
meet stated and implied needs when the software is used under
specified conditions.

Reliability The capability of the software product to maintain a specified level
of performance when used under specified conditions.

Usability The capability of the software product to be understood, learned,
used and attractive to the user, when used under specified condi-
tions.

Efficiency The capability of the software product to provide appropriate per-
formance, relative to the amount of resources used, under stated
conditions.

Maintainability The capability of the software product to be modified. Modifi-
cations may include corrections, improvements or adaptation of
the software to changes in environment, and in requirements and
functional specifications.

Portability The capability of the software product to be transferred from one
environment to another.

To describe the quality in use other model and characteristics are used - see figure
2.11.

25

Figure 2.11: ISO/IEC 9216-1 - Quality model for quality in use (from [Sta01])

Table 2.2: ISO 9216-1 - quality in use characteristics

Effectiveness The capability of the software product to enable users to achieve
specified goals with accuracy and completeness in a specified con-
text of use.

Productivity The capability of the software product to enable users to expend
appropriate amounts of resources in relation to the effectiveness
achieved in a specified context of use.

Safety The capability of the software product to achieve acceptable lev-
els of risk of harm to people, business, software, property or the
environment in a specified context of use.

Satisfaction The capability of the software product to satisfy users in a specified
context of use.

2.8 Comparison of the structure of the quality models

The structural comparison of the described quality models is given in the Table 2.3.
All of these model have a tree-like structure formed by high-level characteristics which
are detailed by low-level characteristics until the decomposition reaches the atomic and
measurable attributes or metrics. Despite of the different terminology used it is not
difficult to identify the equivalent components of the models. In different models the
number of hierarchical levels and characteristics and attributes are different and can be
also fixed or flexible. The quality models are being developed as the basis for quality
evaluation and they have in their structure not only conceptual elements - characteristics
of different levels - but also measurable - metrics. The early models are more qualitative
that quantitative in their nature because the knowledge about metrics was not enough
developed. Later models show more strict approach to the evaluation and measurement
of quality. The main direction of quality model development is to make all of the quality
attributes measurable and to split between different levels qualitative and quantitative
attributes.

2.9 Comparison of the build methods of the quality models

In accordance with a standard or an approach a quality model can be rigid, where the set
of attributes and connections between them are fixed, or flexible, where it is specially

26

build for some project depending on the the view of customers, users and developers
[FN00]. The comparison is given in the Table 2.5.

2.9.1 Strict approach and rigid quality models

In case of strict approach the same final rigid model is used for all software projects for
quality evaluation. It is assumed that the model contains the whole set of all the neces-
sary quality indicators and for the evaluation of some particular software an appropriate
subset can be chosen. Examples of such models are McCall (see 2.3), Boehm (see 2.3),
FURPS (see 2.3). The advantage of the rigid models is:

• it is possible to get comparable common views of quality for potentially different
software.

There are also some disadvantages:

• lack of flexibility and reliance on the fact, that all quality attributes required for
quality evaluation of some special software must be the subset of the attributes of
the model. This is not always achievable because in reality in spite of the universal
nature of some attributes other ones are strongly dependent on the software type;

• difficulty in definition and distinction of quality attributes which lead to partial
match of criteria related to different factors.

2.9.2 Agile approach and flexible quality models

Agile approach allows to create own flexible quality models for one or more software
projects. As the basis the attributes of existing models are used and if necessary own
attributes can be introduced. There are no limitations on the number of hierarchy levels
or connections between attributes. Examples of such models are Gilb (see 2.3), GQM
(see 2.4) und SQUID (see 2.5). The advantages of the flexible models are:

• possibility to reach maximal consideration and coverage of the project features and
requirements in quality model;

• more precise and adequate evaluation of software quality by using more detailed
and specialised attributes on low-levels of the model.

There are also some disadvantages:

• additional costs for development of quality model for each project;

• potentially lower level of results’ correctness because the model is developed by
local groups of project specialists.

27

2.9.3 Mixed approach and overlapping of levels

It is possible to combine the advantages of both approaches (see 2.9.1, 2.9.2). The
models of the standards ISO/IEC 9126 and ISO/IEC 25000 can be treated as mixed
ones. One can use a subset of top-level characteristics from the standard and introduce
own project-specific attributes on low-levels.

On some models, for example early models McCall or Boehm, it is possible to see mul-
tiple connections form criteria to factors what actually represents not tree but network
structure of the hierarchy of quality characteristics. We can call this an overlapping
of levels. This is a natural phenomenon which can be explained by the nature of the
software itself [R.G95]. Model FURPS is an example of the model without levels over-
lapping. The models of the standards ISO/IEC 9126 and ISO/IEC 25000 are mixed
ones, because they do not allow overlapping on top-levels but allow it on low-levels.

2.9.4 External and internal quality characteristics

A number of models does not make a difference between internal characteristics, which
define the structure and behaviour of the software from the point of view of a developer,
and external characteristics, which reflect the point of view of the user of the software.
All such characteristics exist in one model and form one set of characteristics of one or
another level of hierarchy. An opposite to it are models where exact distinction between
external and internal characteristics is made. The importance of such approach can be
seen in [BJ99], where the development process, considered by internal characteristics, is
controlled by the values of external characteristics. The standards ISO/IEC 9126 and
ISO/IEC 25000 define completely different models for external quality, internal quality
and quality in use.

2.9.5 Relationships between quality attributes

It is reasonable while developing a quality model to consider the relationships between
quality characteristics (factors) on the same level. There are a number of works which
have defined such a relationships. In the figure 2.12 the example of relationships ”neu-
tral”, ”direct”, ”inverse” is shown [W.87].

28

Figure 2.12: Quality attributes relationships (Perry) (from [W.87])

In the figure 2.13 the relationships from standard IEEE 1061 are demonstrated.

29

Figure 2.13: Quality factors relationships (IEEE 1061) (from [EE98])

It worth mentioning that there are more studies which define more detailed relations
between quality attributes such as ”realises”, ”destroys”, ”supports”, ”violates”, ”un-
known”, ”equivalent”, ”rather support”, ”rather violets” [CL03], [L.99].

30

Table 2.3: Comparison of the Quality Models structure

Quality
model

Types of elements of the
model

No of levels Number of elements on each
level

Metrics set

Mc-
Call

Factors 2 1 level - 3, 2 level - 11
noCriterias 1 23

Metrics 1 user-defined

High-level characteristics 2 1 level - 1, 2 level - 3

Intermediate characteristics 1 6

Primitive characteristics 1 15
Boehm

Metrics 1 user-defined

no

FURPS
Quality attributes 2 1 level - 5, 2 level - 27

no
Metrics 1 user-defined

Goals 1

Questions 1GQM
Metrics 1

user-
defined

no

Gilb
High-level attributes user-defined

user-
defined

noLow-level attributes user-defined
Metrics user-defined

High-level attributes user-defined

Quality-carrying attributes user-definedDromey
Components user-defined

user-
defined

no

SQUID
Quality characteristics user-defined

user-
defined

noQuality attributes 1
Components 1

Factors user-defined

Sub-factors user-definedIEEE
1061 Metrics user-defined

user-
defined

no

31

Comparison of the Quality Models structure, continued

Quality
model

Types of elements of the
model

No of levels Number of elements on each
level

Metrics set

ISO/IEC 9126,
ISO/IEC 25000

Characterictics 1 6

yes
not fixed

Sub-characterictics 1 27
Quality attributes user-defined user-defined
Metrics 1 user-defined

there is a set of standard metrics

32

Table 2.5: Comparison of the Quality Models build methods
Quality
model

Types of relation
between elements

Build
method

Method
exists?

External /
Internal

elements?

levels

composition
allowed?

Evaluation
objects

McCall hierarchical fixed - - X criterias

Boehm hierarchical,
dependency between metrics

fixed X - X
primitive charac-
teristics

FURPS
hierarchical fixed - - -

low-level quality
attributes

GQM
hierarchical flexible X -

X
on low-level

elements
questions

Gilb
hierarchical flexible - - X

high- and low-level
attributes

Dromey linkages between components and high-
level quality attributes

flexible X X X -

SQUID hierarchical,
linkages between internal and external
attributes

flexible - X X quality attributes

IEEE
1061

hierarchical,
conflicting and supporting relations be-
tween factors

flexible X - X
elements of any
level

ISO/IEC
9126,
ISO/IEC
25000

hierarchical mixed X X

X
on low-level

elements
quality attributes

33

3 Software quality standard ISO/IEC 25000
SQuaRE series

3.1 Software quality standard structure SQuaRE

The most mature and actual standards of quality are the standards ISO/IEC 25nnn:
Software Product Quality Requirements and Evaluation (SQuaRE) which have super-
seded and replaced standards ISO/IEC 9216 series and ISO/IEC 14598 series. The
standards of the family are grouped into divisions - the architecture is shown in the
figure 3.1.

Figure 3.1: Organisation of SQuaRE series of International Standards (from [Sta14])

ISO/IEC 2500n - define all common models, terms and definitions. The division also
provides requirements and guidance for a supporting function that is responsible for
the management of the requirements, specification and evaluation of software product
quality.

ISO/IEC 2501n - present detailed quality models for computer systems and software
products, quality in use, and data.

ISO/IEC 2502n - include a software product quality measurement reference model,
mathematical definitions of quality measures, and practical guidance for their applica-
tion.

34

ISO/IEC 2503n - help specify quality requirements, based on quality models and
quality measures. These quality requirements can be used in the process of quality re-
quirements elicitation for a software product to be developed or as input for an evaluation
process.

ISO/IEC 2504n - provide requirements, recommendations and guidelines for software
product evaluation, whether performed by evaluators, acquirers or developers.

ISO/IEC 25050 - 25099 - currently include requirements for quality of Commercial
Off-The-Shelf software and Common Industry Formats for usability reports.

The process of standardisation of software quality concerns has already own history
and the standard are constantly evolving taking the recents developments, fixed practices
and scientific achievements into consideration. The main reasons of developing and as
the consequence the main benefits the SQueRE standard series are: the coordination of
guidance on systems and software product quality measurement and evaluation; guidance
for the specification of system and software product quality requirements; harmonisa-
tion with ISO/IEC/IEEE15939 in the form of Software product Quality Measurement
Reference Model (figure 3.3).

Standard ISO/IEC 25010 [Sta11a] defines hierarchical structure for quality models
(see figure 3.2). Top level defines the characteristics which in turn can be divided into a
set of subcharacteristics. Measurable properties of software related to a quality are called
quality properties. Quality metrics in turn are linked with appropriate quality properties.
In order to measure the quality of some characteristic of subcharacteristic (if it is not
possible to accomplish by direct measurement or this characteristic of subcharacteristic)
it is necessary to define properties related to this characteristic of subcharacteristic,
calculate the values of all metrics of these properties and unite the measurement results
info a derivate measure of this characteristic of subcharacteristic.

Figure 3.2: ISO25010 - Structure of the quality models (from [Sta11a])

Standard ISO/IEC 25020 introduces the conception of quality measure elements which
are used as incoming arguments for measurement functions. In the figure 3.3 are shown
the relationships between Quality measure elements, Quality measures and quality char-

35

acteristics and subcharacteristics. Quality measures are constructed by by applying
quality measure elements to a measurement function, they can be either basic or derived
measures. Quality measure elements are constructed in accordance with the guidance
from ISO/IEC/IEEE 15939 [Sta19], [Sta17].

Figure 3.3: ISO25020 - Software product quality measurement reference model (from
[Sta19])

Standard defines the System/Software Quality Life Cycle Model (see figure 3.4). It is
used to address and differentiate between three principal phases of software lifecycle:

- software being developed undergoes internal measures of software quality;
- software in testing phase undergoes external measure of software quality;
- software in use phase is the subject of quality in use.

36

Figure 3.4: ISO25010 - System / Software Quality Life Cycle Model (from [Sta11a])

The quality of software product is therefore treated by standards on three phases of
lifecycle: development phase is defined by internal quality, testing and technical verifi-
cation and validation phase is defined by external quality and use of software is defined
by quality in use. The relationships between these different quality aspects are shown
in the figure 3.5.

Figure 3.5: ISO25010 - Quality in the lifecycle (from [Sta11a])

Internal quality is a set of software characteristic from internal point of view, which
is measured by internal measures and is evaluated against the requirements to the in-
ternal quality. The improvement of some quality elements can be archived by coding,

37

verification or testing, but the fundamental basis of internal quality can be changed only
by new design and development.

External quality is a set of software characteristic from external point of view, which
is measured by external measures while executing the software product in test modelled
environment with modelled data or while ist real usage. Estimated or forecasted external
quality - this is estimated or predicted quality of the final software product on each phase
of the development process for each quality characteristic or subcharacteristic which is
based on the knowledge of the internal quality.

Quality in use is the quality of software product used in a given environment in a
given context of use from the user point of view. The quality is evaluated by using quality
of use measures and in the fist place the degree to which the user achieves his goals in
this environment is measured. The user evaluates the attributes of the software which
are related to and are applicable in his tasks and not the properties of the software itself.
Estimated or forecasted quality in use - this is estimated or predicted quality of the final
software product on each phase of the development process for each quality characteristic
or subcharacteristic which is based on the knowledge of internal and external quality.

The reciprocal interaction and consistent integration and application of quality models
allows to estimate, evaluate, control and assure the required quality level during the
whole lifecycle of the software product - see figure 3.6

Figure 3.6: Quality prediction in the lifecycle

38

3.1.1 External / Internal Quality Model

Standard ISO/IEC 25010 [Sta11a] defines the hierarchical internal / external quality
model containing eight characteristics which is shown in the figure 3.7.

Figure 3.7: ISO25010 - System/Software External / Internal Quality Model (from
[Sta11a])

In the table 3.1 the characteristics of the model with their definitions are listed.

39

Table 3.1: ISO 25010 - external and internal quality characteristics
Functional
suitability

degree to which a product or system provides functions that meet
stated and implied needs when used under specified conditions

Performance
efficiency

performance relative to the amount of resources used under stated
conditions

Compatibility degree to which a product, system or component can exchange
information with other products, systems or components, and/or
perform its required functions, while sharing the same hardware
or software environment

Usability degree to which a product or system can be used by specified
users to achieve specified goals with effectiveness, efficiency and
satisfaction in a specified context of use

Reliability degree to which a system, product or component performs specified
functions under specified conditions for a specified period of time.

Security degree to which a product or system protects information and data
so that persons or other products or systems have the degree of
data access appropriate to their types and levels of authorization

Maintainability degree of effectiveness and efficiency with which a product or sys-
tem can be modified by the intended maintainers

Portability degree of effectiveness and efficiency with which a system, product
or component can be transferred from one hardware, software or
other operational or usage environment to another

3.1.2 Quality in Use Model

Standard ISO/IEC 25010 [Sta11a] defines the hierarchical quality in use model contain-
ing five characteristics which is shown in the figure 3.8.

Figure 3.8: ISO25010 - Quality in Use Model (from [Sta11a])

In the table 3.2 are listed the characteristics of the model with their definitions and
examples of primary user needs interacting with the software.

40

Table 3.2: ISO 25010 - quality in use characteristics

Effectiveness accuracy and completeness with which users achieve specified goals
how effective does the user need to be when using the system to perform

their task?

Efficiency resources expended in relation to the accuracy and completeness
with which users achieve goals
how efficient does the user need to be when using the system to perform

their task?

Satisfaction degree to which user needs are satisfied when a product or system
is used in a specified context of use
how satisfied does the user need to be when using the system to perform

their task?
Freedom from
risk

degree to which a product or system mitigates the potential risk
to economic status, human life, health, or the environment
how risk free does using the system to perform their task need to be for

the user?
Context cov-
erage

degree to which a product or system can be used with effective-
ness, efficiency, freedom from risk and satisfaction in both specified
contexts of use and in contexts beyond those initially explicitly
identified
to what extent does the system need to be effective, efficient, risk free and

satisfying in all the intended and potential contexts of use?

3.2 Software qualimetry basics

In the software evaluation a lot of used measures are quantitative ones unlike the qual-
itative measures which mainly were used earlier. This leads to the higher degree of
objectivity, accuracy and enables the automation of the evaluation process. Measure-
ments form the basis for understanding of development processes and of software itself,
which are used for evaluations of qualitative properties of the software and the processes
of its development. In works [AA02], [AA05] is proposed the generalised model of mea-
surement, slightly modified version of which together with the software product quality
evaluation general reference model from standard ISO/IEC 25040 [Sta11b] are shown in
the figure 3.9.

41

Figure 3.9: ISO25040 - Generalised measurement process and software product quality
evaluation general reference model (from [Sta11b])

In the beginning 1970 the scientific discipline qualimetry started to form [AG15], which
includes the measurement theories and is itself part of scientific discipline about quality
- qualitology. Qualimetry which acts as an interconnected system of theories, differing
in the degree of generality, means and methods of measurement and evaluation.

The main terminology and definitions from standards SQuaRE related to qualimetry
and to the software quality evaluations are listed in table 3.3.

Table 3.3: SQuaRE - Terminology related to the theory of measurement

Terminology Terminology semantic
measure
(noun)

variable to which a value is assigned as the result of measure-
ment. The term ”measures” is used to refer collectively to base
measures, derived measures, and indicators. To harmonise the ter-
minology with the standard ISO/IEC 15939 the term ”measure” and
not ”metric” is used - equivalent term from the standard ISO/IEC
9126.

base mea-
sure

measure defined in terms of an attribute and the method for quan-
tifying it. A base measure is functionally independent of other mea-
sures.

derived mea-
sure

measure that is defined as a function of two or more values of base
measures. A transformation of a base measure using a mathematical
function can also be considered as a derived measure.

external
measure

measure of the degree to which a software product enables the be-
haviour of a system to satisfy stated and implied needs for the system
including the software to be used under specified conditions. At-
tributes of the behaviour can be verified and/or validated by exe-
cuting the software product during testing and operation. [Sta11a]

internal
measure

measure of the degree to which a set of static attributes of a software
product satisfies stated and implied needs for the software product to
be used under specified conditions. Static attributes include those
that relate to the software architecture, structure and its compo-
nents. Static attributes can be verified by review, inspection, simu-
lation and/or automated tools. [Sta11a]

42

quality in
use measure

measure of the degree to which a product or system can be used
by specific users to meet their needs to achieve specific goals with
effectiveness, efficiency, freedom from risk, satisfaction and context
coverage in specific contexts of use [Sta12]

evaluation
method

procedure describing actions to be performed by the evaluator in
order to obtain results for the specified measurement applied to the
specified product components or on the product as a whole

evaluation
module

package of evaluation technology for measuring software quality
characteristics, subcharacteristics or attributes. The package in-
cludes evaluation methods and techniques, inputs to be evaluated,
data to be measured and collected and supporting procedures and
tools.

measurement set of operations having the object of determining a value of a mea-
sure. Measurement can include assigning a qualitative category.

measurement
function

algorithm or calculation performed to combine two or more base
measures

measurement
method

logical sequence of operations, described generically, used in quan-
tifying an attribute with respect to a specified scale

measurement
procedure

set of operations, described specifically, used in the performance of
a particular measurement according to a given method

measurement
process

process for establishing, planning, performing and evaluating soft-
ware measurement within an overall project or organisational mea-
surement structure

rating action of mapping the measured value to the appropriate rating
level. Used to determine the rating level associated with the software
product for a specific quality characteristic

scale ordered set of values, continuous or discrete, or a set of categories
to which the attribute is mapped

rating level scale point on an ordinal scale, which is used to categorise a measure-
ment scale. The rating level enables software product to be classified
(rated) in accordance with the stated or implied needs. Appropriate
rating levels may be associated with the different views of quality
i.e. Users’, Managers’ or Developers’.

software
product
evaluation

technical operation that consists of producing an assessment of one
or more characteristics of a software product according to a specified
procedure

A scale of measurement is a conventionally accepted procedure for determining and
denoting values of a certain quantity, which is a set of values onto which the measured
quality attribute is mapped. Using a certain measurement method the value of the
measured attribute is mapped on certain value of a scale. In the figure 3.10 is shown a
sample of a rate level from the standard ISO/IEC 14598-1 [Sta99].

43

Figure 3.10: ISO/IEC 14598-1 - Possible ranking of measured values of quality measures
(from [Sta99])

There are several approaches to the definition and properties of measurement scale, but
in general it is possible to differentiate between eight scales of measurement: nominal,
ordinal, interval, power, logarithmic, difference, ratio und absolute.

Nominal scale represents the qualitative properties; its elements are characterised by
the equivalence and similarity ratios of specific qualitative manifestations of the prop-
erty. This scale does not have zero and units of measurement, no comparisons as less
than, more than are possible, no arithmetic operations are possible, can possibly arise
the uncertainty in the measurement result. The measurement itself is reduced to com-
paring the measured object with the reference one (etalon) and choosing one (or two
neighbouring ones) that coincides with the measured one.

Ordinal scale allows comparisons of one size with another on the basis of which is
larger or which is better. This scale can be thought of as an extension of the nominal
scale by introducing partial order relations. The operation of sizing in ascending or
descending order to obtain measurement information is called ranking. On an ordinal
scale, sizes are compared with each other, which at the same time remain unknown. The
comparison operation results in a ranked series. The mathematical model for comparing
two sizes of one measure on a scale of order is the inequality Mj ≤ Mi(Mj ≥ Mi), and
the result of the comparison is the conclusion about which size is larger than the other
or they are equal to each other. Such measurements are not informative, since they do
not give an answer to the question of how much or how many times one size is larger
than the other. On the scale of order, only some logical operations can be performed -
for example, if the first dimension is greater than the second, and the second is greater
than the third, then the first is greater than the third. If two sizes are less than the
third, then their difference is less than the third. Such properties of the scale are called
transitivity properties. At the same time, arithmetic operations are not defined on it.

44

Figure 3.11: Ordinal scale

Interval scale shows the difference between the dimensions. Figure 3.12 shows the
principle of constructing an interval scale for dimensions that form a ranged series M1 <
M2 < M3 < M4 < M5 < M6 < M7. The mathematical model for comparing two sizes of
one measure with each other is the expression Mi−Mj = ∆Mij . By constructing a scale
of intervals all sizes Mi are compared with a size Mj . Figure 3.12 shows an interval scale
with M4 selected as Mj . Choosing M5 as Mj would shift zero to the right, and M3 to
the left. The reference point on the interval scale can be chosen arbitrary. The interval
scale defines the mathematical operations of addition and subtraction. The intervals can
be added to each other and subtracted from each other, taking into account the signs,
and therefore it is possible to determine how much one size is larger or smaller than
the other: M7 − M5 = ∆M7 − ∆M5, M5 − M2 = ∆M5 − (−∆M2) = ∆M5 + ∆M2,
M3−M1 = −∆M3− (−∆M1) = ∆M1−∆M3. Additive operations in these expressions
are performed with the sizes of the intervals obtained according to the formula Mi−Mj =
∆Mij , that is, on an ungraded scale. In the case of a graduated scale, the sizes of units are
expressed in specific units of measurement and the expressions of equality given continue
to apply. Due to the uncertainty of the reference point, multiplicative operations on the
interval scale are not defined.

Figure 3.12: Interval scale

Ratio scale is obtained from an interval scale by adding the concept of zero to it. On
this scale, you can count the absolute value of the size and determine how many times
one size is larger or smaller than another. The relative scale is the most informative
one, it defines all mathematical operations: addition, subtraction, multiplication and

45

division. The value of the measured quantity M is determined by its numerical value g
and some size [M] taken as a unit of measurement: M = g[M], where M is the measured
value; [M] - unit of measurement; g is a numeric value. Increasing or decreasing [M]
results in an inversely proportional change in g. Therefore, the value, like the size of the
measured value, does not depend on the choice of measurement units.

Power scale differs from the interval in the type of transformations: proportional
transformations are used in the power scale whereas in the interval - linear.

Difference scale uses shift transformations: M = [M] + g, and logarithmic scale uses
exponentiation: M = [M]g.

Absolute scale has all the properties of a ratio scale. Its purpose is to reflect the
proportional relationship between values measured in the same units. Units of absolute
scales are natural, not chosen by convention, but these units are dimensionless (times,
percentages, fractions, etc.). The absolute scale can be limited and unlimited, it is not
linear and has no units of measurement.

The figure 3.13 shows the relation between different scale types, ordered by the degree
of information they contain.

Figure 3.13: Scale types relation

To ensure the possibility of joint use of various measures by quantitative assessment
of the software quality, regardless of their physical meaning, units of measurement and
ranges of values, the measures can be presented in relative units in the form:

X =
A

B
or X = 1 − A

B
(3.1)

46

where X - the value of the measure;
A - the absolute (measured) value of some property (attribute) of the evaluated object;
B - the base value of the corresponding property (attribute);
For a specific measure one equation from 3.1, which meets the criteria for tracing and

consistency, should be selected: with an increase of the relative value of the measure the
value of the subcharacteristic and characteristic of the quality should also increase.

Calculation of measures according to equation 3.1 allows bringing their relative values
into the range:

0 ≤ X ≤ 1 (3.2)

which simplifies their joint use in the integral assessment of the quality of software.

3.3 Extension and customisation of the quality model and
measures

The SQuaRE standards define the nominal quality model with the open possibility for
further extensions and modifications.

The decomposition of software product quality may go through several levels although
the nominal model contained in ISO/IEC 25010 [Sta11a] only contains two levels [Sta19].
So the top levels are fixed but it is possible to perform further decomposition if necessary.
In addition to that the selection and usage of measures is completely free provided the
essential constraints are met. It is allowed modify the measures or use measures which
are not included in SQuaRE standards. [Sta19] When using a modified of new measure
not identified in the ISO/IEC 25022 [Sta16a], ISO/IEC 25023 [Sta16b]or ISO/IEC 25024
[Sta15b], it is necessary to specify how the measure relates to its corresponding quality
model and how it is to be constructed from quality measure elements.

3.3.1 Properties and criteria for the validity of quality measures

The standards ISO/IEC 25022 [Sta16a], ISO/IEC 25023 [Sta16b], ISO/IEC 25024 [Sta15b]
define respectively internal, external measures and quality in use measures. Additionally,
desirable properties for measures are defined [Sta19].

• Reliability (of measure): is associated with random error. A measure is free of
random error if random variations do not affect the results of the measure.

• Repeatability (of measure): repeated use of the measure for the same product using
the same evaluation specification (including the same environment), type of users,
and environment by the same evaluators, should produce the same results within
appropriate tolerances. The appropriate tolerances should include such things as
fatigue, and learning effect.

• Reproducibility (of measure): use of the measure for the same product using the
same evaluation specification (including the same environment), type of users,

47

and environment by different evaluators, should produce the same results within
appropriate tolerances.

It is recommended to use statistical analysis to measure the variability of the results.

• Availability (of measure): the measure should clearly indicate the conditions (e.g.
presence of specific attributes) which constrain its usage.

• Indicativeness (of measure): capability of the measure to identify parts or items
of the software which should be improved, given the measured results compared
to the expected ones.

• Correctness (of measure): the measure should have the following properties:

1. Objectivity (of measure): the measure results and its data input should be
factual: i.e., not influenced by the feelings or the opinions of the evaluator,
test users, etc. (except for satisfaction or attractiveness measures where user
feelings and opinions are being measured).

2. Impartiality (of measure): the measurement should not be biased towards any
particular result.

3. Sufficient precision (of measure): Precision is determined by the design of the
measure, and particularly by the choice of the material definition used as the
basis for the measure. The measure user will describe the precision and the
sensitivity of the measure.

• Meaningfulness (of measure): the measurement should produce meaningful results
about the software behaviour or quality characteristics.

The developer of the measure must proof its validity. The measure must meet at least
one of the following criteria for validity [Sta16b]:

• Correlation: the variation in the quality characteristics values (the results of prin-
cipal measures in operational use) explained by the variation in the measure values,
is given by the square of the linear coefficient.

It is possible to predict quality characteristics without measuring them directly by using

correlated measures.

• Tracking : if a measure M is directly related to a quality characteristic value Q (the
results of principal measures in operational use), for a given product or process,
then a change value Q(T1) at the moment of time T1 to Q(T2) at the moment of
time T2, would be accompanied by a change measure value from M(T1) to M(T2),
in the same direction (for instance, if Q increases, M increases).

It is possible to detect the movement of quality characteristic along a time period without

measuring directly by using those measures which have tracking ability.

• Consistency : if quality characteristics values (the results of principal measures in
operational use) Q1, Q2, ..., Qn, corresponding to products or processes 1, 2, ..., n,
have the relationship Q1 > Q2 > ... > Qn, then the corresponding measure values
would have the relationship M1 > M2 > ... > Mn.

It is possible to notice exceptional and error prone components of software by using those

measure which are capable of being consistent.

48

• Predictability : If a measure is used at time T1 to predict a quality characteristic
value Q (the results of principal measures in operational use) at time T2, prediction

error, which is predictedQ(T2)−actualQ(T2)
actualQ(T2)

, would be within the allowed prediction
error range.

It is possible to predict the movement of quality characteristics in the future by using those

measures which are within the allowed prediction error range.

• Discrimination: a measure should be able to discriminate between high and low
quality for software characteristics and subcharacteristics.

It is possible to categorise software components and rate quality characteristics values

by using those measures which have the capability to discriminate between high and low

quality.

49

4 Enterprise applications quality assurance

4.1 Enterprise applications definition

In the last decades globalisation and total digitalisation set themselves as the main
influencing trends worldwide. Many companies are being forced to face with completely
new challenges and tasks, which have never existed before, and must quickly transform
themselves to be able to react properly to all these transformations or even should try to
become faster and be more predictive in order to set themselves as pioneers and inventors
of the products and services of the a nature. Enterprise software today not only supports
the companies in their common routine business processes but, more importantly, makes
the digital business transformation and digitalisation possible by providing technical
advances and appropriate environment for all of these changing processes.

It is not possible to give a precise definition of what the enterprise applications exactly
are because this family of software includes a wide range of possible solutions of diverse
scale and complexity. For example, wikipedia gives the concise and abstract definition:
enterprise software, also known as enterprise application software, is computer software
used to satisfy the needs of an organisation rather than individual users [Wik]. What
is possible to do is to define common properties, features and a range of functions of
typical enterprise software.

First, it is focused on the needs and, therefore, requirements and tasks of large or-
ganisations, such as enterprises, rather middle or big companies, governments, different
groups. It aims at modelling the company-wide structure with all the inherent complex-
ity, supporting all of the business processes from the very start to the end and creating
the uniform and solid enterprise environment.

Second, enterprise software works intensively with a huge amount of persistent trans-
actional data, which must be available for different applications and be stored for a long
time; provides solutions for diverse analysis and processing capabilities of the data. Dif-
ferent company divisions might require many advanced analytics and different knowledge
extracted from the same array of stored data. The data must be available for concurrent
access, not only for reading but also for modifications.

Third, much of the data requires many interfaces to handle it properly, including GUI
interfaces for end-users of the software as well as the technical interfaces and protocol
definitions for the exchange with external systems. Summing up it can be stated, that
enterprise software becomes a central hub of the corporate data.

Last but not least, enterprise applications are often distributed systems where multiple
software modules or components are executed on different calculation units in a networks,
which in turn can be local network of the company of a worldwide cloud-solution.

To give a more exact understanding of which software solutions can be classified as

50

enterprise software the following list shows the main types of enterprise applications
[Wik]:

• Business Intelligence BI comprises the strategies and technologies used by enter-
prises for the data analysis of business information.

• Business Process Management BPM is a discipline in operations management in
which people use various methods to discover, model, analyse, measure, improve,
optimise, and automate business processes.

• Customer Relationship Management CRM is one of many different approaches
that allow a company to manage and analyse its own interactions with its past,
current and potential customers.

• Content Management System CMS is a computer software used to manage the
creation and modification of digital content.

• Database Management System DBMS software system that enables users to define,
create, maintain and control access to the database.

– Master Data Management MDM is a technology-enabled discipline in which
business and information technology work together to ensure the uniformity,
accuracy, stewardship, semantic consistency and accountability of the enter-
prise’s official shared master data assets.and

– Data Warehousing DW, DWH, EDW is a system used for reporting and data
analysis, and is considered a core component of business intelligence.

• Enterprise Resource Planning ERP is the integrated management of main business
processes, often in real time and mediated by software and technology.

• Enterprise Asset Management EAM involves the management of the maintenance
of physical assets of an organisation throughout each asset’s lifecycle.

• Human Resource Management HRM is the strategic approach to the effective
management of people in a company or organisation such that they help their
business gain a competitive advantage.

• Knowledge Management KM is the process of creating, sharing, using and man-
aging the knowledge and information of an organisation.

• Low-code Development Platforms LCDP is software that provides a development
environment used to create application software through graphical user interfaces
and configuration instead of traditional hand-coded computer programming.

• Product Data Management PDM is the business function often within product
lifecycle management PLM that is responsible for the management and publication
of product data.

51

• Product Information Management PIM is the process of managing all the infor-
mation required to market and sell products through distribution channels.

• Product Lifecycle Management PLM is the process of managing the entire lifecy-
cle of a product from inception, through engineering design and manufacture, to
service and disposal of manufactured products.

• Supply Chain Management SCM the management of the flow of goods and services,
involves the movement and storage of raw materials, of work-in-process inventory,
and of finished goods as well as end to end order fulfilment from point of origin
to point of consumption. Interconnected, interrelated or interlinked networks,
channels and node businesses combine in the provision of products and services
required by end customers in a supply chain.

• Software Configuration Management SCM - such as Version Control System VCS
- is the task of tracking and controlling changes in the software, part of the larger
cross-disciplinary field of configuration management.

• Networking and Information Security

– Intrusion Detection Prevention IDS - is a device or software application that
monitors a network or systems for malicious activity or policy violations.

– Software Defined Networking SDN - technology is an approach to network
management that enables dynamic, programmatically efficient network con-
figuration in order to improve network performance and monitoring, making
it more like cloud computing than traditional network management.

– Security Information Event Management SIEM - is a subsection within the
field of computer security, where software products and services combine se-
curity information management and security event management.

There are also additional solutions which do no relate directly to some business area
or spread over many other business functions providing common infrastructure services
such as Backup software, Billing Management, Accounting software.

4.2 SAP Enterprise software evolution from R/1 to HANA

SAP is the world’s largest provider of Enterprise Applications. Founded in 1972 in
Waldorf in Deutschland SAP has today more than 100.000 employees worldwide [SE20a].
SAP solution has been evolving already more than 40 years starting with the fist release
of SAP R/1 in 1972. It has succeeded for SAP all these year to anticipate, analyse
and provide appropriate solutions for the current market situation and demand. The
evolution of SAP product family is shown in the figure 4.1.

52

Figure 4.1: SAP product family evolution

With the ERP version in 2004 SAP introduced SAP NetWeaver software stack for the
applications and ECC - ERP Central Component - which is the evolutionary successor
of SAP R/3.

The latest technological platform of SAP is HANA. SAP HANA was first released
in 2010 as in-memory database which has dramatically increased the speed of data
processing. Afterwards it has gradually grown to a flexible, data source-agnostic, in-
memory data platform with the possibility of large data volume analysis in real time for
all solutions offered by SAP Enterprise software. It was called SAP S/4 HANA (SAP
Business Suite 4 SAP HANA). It delivers a lot of simplifications as customer adoption,
user experience and others as well as innovations such IoT, Big data, predictive analysis
etc. The evolution of SAP HANA solutions is shown in the figure 4.2.

Figure 4.2: SAP HANA - evolution (from [BJ19])

The speed achieved by the usage of technology advances such as multiple Multi-Core
CPUs, RAM in the size scale of Terabytes, fast SSD-storage in the size scale of Terabytes
enabled new possibilities for real-time data processing and analysis which made possible
completely new business applications and enterprise application types and interaction.
OLAP - online analytical processing - and OLTP - online transnational processing -
became possible in one place with the almost unlimited possibilities of data processing
and analysis (see figure 4.3). Moreover there are also different real-time application
domains and solutions are provided by SAP depending on the company business and
requirements (see table 4.1).

53

Figure 4.3: SAP HANA - OLTP and OLAP, speed advantage (from [K.K18])

Table 4.1: SAP Real-time domains

Real-Time Analytics Real-Time Solutions Real-Time Plat-
form

Operational reporting Core Business Accelera-
tion

Database

Data warehousing Planning and Optimisa-
tion

Mobile

Predictive and Text Analysis of large
data

Sensing and Response Cloud

SAP HANA platform is much more than a database and just database services them-
selves are very advanced and complex in order to allow real-time data transformation,
building of aggregates and performing complex calculations - database architecture is
shown in the figure 4.4.

54

Figure 4.4: SAP HANA DB architecture (from [R.19])

4.3 Focus transformation to user-centred design and
technological advances

With the technological advances in SAP HANA the focus was completely reconsidered
and shifted towards the end user of the enterprise applications with the completely new
way of thinking and transition to the direction of User experience strategy employing
design thinking and introducing completely new user-interface and the methods of in-
teraction with the SAP software products. It allowed to put in the first row not the
technical expert or developer but a common user from business area who must be able
to use the enterprise software to effectively, effortlessly, easily and smart perform the
daily tasks to support the business process in the area of his responsibility through
its whole lifecycle. The design thinking process is shown in the figure 4.5, it makes it
possible to approach and tackle unknown, vague-defined issues by looking at them in
human environment (as opposed to technical and engineering) and focusing directly on
the humans (user) and their needs and on what is important for them.

55

Figure 4.5: Design thinking process (from [SE20b])

4.3.1 SAP Classical GUI

SAP traditionally used proprietary graphical user interface technology called SAP-GUI.
Interface is developed in own programming language ABAP, screens in accordance
with the technology are called classical screens Dynpros and communicate with SAP-
application server using own protocol (see figure 4.6). First it required installation of
the local client (normally available for Windows OS) and later SAP has introduced Web
Dynpro technology which could be employed to render the classical GUI-screens on the
web-interface, what actually is only a transformation of display surface, not the way
a user interacts or uses the enterprise software. The classical GUI has evolved during
several decades, was created by technicians for technical and expert users and the way
of working and interacting with it is sometimes not only inconvenient or illogical but
even counterintuitive.

Figure 4.6: SAP Classical-GUI components

4.3.2 SAP Fiori

As a result of complete re-thinking and technological transformation SAP has developed
a completely new way of interaction with enterprise applications and a new user interface
called Fiori [SE20b]. Fiori has renewed the most widely-used scenarios and is aimed at
keeping things simple. Frontend part is based of the web-technology using HTML5 and
own javascript UI library SAPUI5. Fiori is a place where people, business and technology

56

meet together (see figure 4.7). This is a SAP’s user experience that applies modern user-
centric design principles. It provides a consistent and role-specific experience across all
tasks, for all lines of business. Fiori is simultaneously simple, can be personalised and
runs on any device, helping people to get the job done easily with an intuitive experience.

Figure 4.7: SAP Fiori - UX Direction (from [K.K18])

It is not the new collections of enterprise applications, it is the new face of SAP
business users and the user experience paradigm which upholds certain values, principles
and practices listed in the table 4.2 [SE].

Table 4.2: SAP Fiori Design: values, principles and practices

Val-
ues

Consistency Offer design solutions that can be adopted by all UI
technologies and scenarios across the entire range of
the SAP portfolio, leveraging the expertise of the en-
tire SAP design community.

Integration Provide solutions to integrate different independent
products and technologies into an environment that
is coherent and easy to use.

Intelligence Establish machine learning and artificial intelligence
as an integral part of the user experience, with a focus
on enabling the user rather than taking away control.

Prin-
ci-
ples

Role-based Provide the right information at the right time.
Adaptive Enable users to work where they want, on the device

of their choice.
Simple Help users focus on what is important.
Coherent Provide the same intuitive and consistent experience

across the enterprise.
Delightful Enrich the user’s work experience.

Practices Design-led
development

Put user experience at the heart of the product life-
cycle.

First version of Fiori was released in 2013, had only 25 most frequent applications.
The second version came to the market in 2016 and had already 600 applications and

57

7022 visually harmonised classic applications. The actual third version 2018 started in
2018. The features and functionality development between versions are shown below:

SAP Fiori 1.0

Figure 4.8: SAP Fiori - Interface 1st generation (from [SE])

• break down monolithic transactions into role-based and task-focused apps

• enable a responsive experience across all devices

• make use of modern and mobile-inspired interaction patterns

SAP Fiori 2.0

Figure 4.9: SAP Fiori - Interface 2nd generation (from [SE])

• scale the role-based and task-focused design approach to complex enterprise sce-
narios and native mobile platforms

• offer a powerful productivity environment for business users with new scalable
floorplans and patterns, including embedded analytics, notifications, search and
improved navigation

• introduce conversational interaction and machine intelligence

58

SAP Fiori 3

Figure 4.10: SAP Fiori - Interface 3rd generation (from [SE])

• establishes basic rules for consistency across all SAP products

• new Quartz theme

• new aligned shell bar for all SAP products

• greater flexibility for home pages

• integration of machine intelligence, focusing on a human-centric approach

• adoption across a broader range of technologies

4.3.3 SAP Transactions transformation

One important note: in SAP transaction means just a separate application which is
executed in the environment of enterprise software (an application can have a transac-
tion code attached to it; entering this transaction code in special field just starts this
application) - it does not mean a technical database transaction or something else (in
this sense in SAP other terms / conceptions are used like LUW - logical unit of work).

Classic SAP Transactions were designed mainly from technical and utility point of view
and constructed in the way to provide in one application maximal amount of functions,
options and settings to cover all possible business-situations and their combinations.
This view brought over time a number of serious flaws:

• Many ways to come the same functionality, as within one transaction as well as
the same business tasks can be executed with different transactions. This leads to
the situations where the same functionality is executed in different contexts with
different business data and deliver therefore different results for the same process,
what might be confusing and be too technical for the business user;

• Extreme complex user-interface and GUI-screen composition of transactions - many
functions are hidden in deep menus, layouts, buttons and in many cases it is coun-
terintuitive and prevents users from focusing on the task;

59

• Difficult to remember all the necessary transactions / sequence of them, especially
for complex, multi-step business processes;

• Some transactions only partially correspond to the business-process and business
task the user should execute and provide much more functionality that it is nec-
essary at the moment;

• User often is forced to execute and navigate between multiple transaction to com-
plete singe business task.

• Transactions are not specific to the business role / business tasks, therefore many
users from different business areas and with different roles can use the same trans-
action.

• Learning to effectively work with SAP enterprise applications takes a lot of time
and holds the new users from being productive.

Figure 4.11: SAP Monster transactions exacmple

All such transactions can be named monster or mega transactions, the most func-
tionality of which is complete overload or irrelevant for every single business user which
have to use them. From technical point of view one transaction can call (and in most of
the cases calls) other transaction(s) at its runtime, which in turn call multiple function
modules (globally available in the enterprise application environment function libraries)
and / or methods of classes (see figure 4.12).

60

Figure 4.12: SAP Monster transaction composition

The concepts and ideas that lay behind Fiori (see 4.3.2) aimed also at addressing and
resolving these problems and anomalies.

4.3.3.1 De-composition of transactions

SAP-Transaction functionality may be broken down into a set of multiple Fiori apps,
each of which is aimed at separate user-role and task and presents only what is relevant
now in this particular context. This process is called de-composition [K.K18] (figure
4.13).

Figure 4.13: SAP de-composition process

61

4.3.3.2 Re-composition of transactions

Fiori app is developed with the intent of performing one business transaction which
combines the related functionality from multiple SAP-Transactions. This process is
called re-composition [K.K18] (figure 4.14).

Figure 4.14: SAP re-composition process

4.3.3.3 Role-based applications

The described processes result in a conceptual transformation from technical, function-
based transactions (SAP Classic UI) designed from a system perspective to the role-
based, business-process oriented, user-experience focused applications (SAP Fiori UX)
designed from a user perspective. The purpose is to support a persona (or multiple
personas with very similar needs) to complete a task in their use context, design app in
such a way to suit specific business environments, specific roles and the way people work.
Users and tasks are now the main focus in the enterprise applications which creates a
much more efficient and easy system.

4.3.4 Data model simplification and application code push-down

SAP HANA has introduced many new technical advances and it brings many new pos-
sibilities and innovations to the application development cycle. One of them is a much
simpler data model for the business and database objects. The reason for that is the
re-design of the database schema where, thanks to HANA data processing capabilities,
a number of data tables and structure became unnecessary. The figure 4.15 [SE19]
shows that many additional objects such as aggregates, indexes etc are superfluous with
HANA, because all the necessary aggregations and calculations are constructed on the
fly in real time from the transactional data.

62

Figure 4.15: Remove complexity with SAP S/4HANA (from [SE19])

As an example in the figure 4.16 the simplification of database-schema and table
structure for several SAP-Modules as sale, finance is demonstrated [BJ19].

Figure 4.16: Simplification of database-schema and table structure with SAP S/4HANA
(from [BJ19])

Additionally SAP HANA platform provides much more solutions and intellectual tech-
nologies for data handling, analysis and transformation including multiple application,
processing, integration and database services (see figure 4.17).

63

Figure 4.17: SAP HANA - Platform SAP S/4HANA (from [SE19])

All these resulted in the development paradigm shift, where the complex calculations
and additional data processing services, which can be prepared and provided by on the
database level in real time with SAP HANA, should be done there and application only
gets the necessary results, so the calculations are pushed down from application code to
the database (see figure 4.18). This approach is called code to data as opposed to the
previously used one, data to code, where the transactional or intermediate data was in
big volumes returned to the application server and all the calculations were performed
by application code by application server computing resources.

Figure 4.18: SAP HANA Code push-down paradigm (from [SE19])

4.3.5 Hybrid enterprise applications

In this thesis under hybrid enterprise applications are understood the applications which
have a clear focus on end-user scenarios and context, have been designed and developed
and use the appropriate technologies in such a way to run everywhere, effectively support
business roles tasks and be technically efficient, including development, deployment,

64

operation and maintenance. In SAP the hybrid applications can have the following
properties:

• Run on any device (for example Fiori technology, see 4.3.2).

• Can be developed using one technology for all devices (i.e. HTML5) or different
technologies may be employed to maintain a set of applications with the same
functionality for different device families (i.e. IOS, Android etc)

• MTA (Muti-Target-Application)

In the industry in became a good approach to separate applications into three-tiers:
front-end, application (back-end) and a database. The combination of such multiple
application and service instances make a full-stack application. SAP with HANA has
introduced the concept of MTA - Multi-Target-Application. This is an application which
consists of a number of separate applications, each of each in their turn is independent
and is responsible for own domain of functionality, and which work together as one
solution while the operation. In the MTA project different modules of different types
are created (i.e. HTML5, Java, Node.js, SAP HANA DB) and white deployment every
module of the project becomes a separate application (for example in Cloud or in on-
premise installation infrastructure), each module has its own build-pack, development
language and runtime environment.

Figure 4.19: SAP HANA Multi-target application (from [SE19])

For example HTML5 modules are served as static files and are executed in Web-
browser, Node.js or Java modules are executed on the applications server and SAP
HANA DB modules generate appropriate objects in SAP HANA database.

65

4.4 Analysis of characteristics of hybrid enterprise applications
while design, development and usage

Constant availability of business data and vast possibilities for its on-line analysis cre-
ated, from one side, the enormous demand of having it. From the other side new tech-
nological achievements led to invention of completely new delivery and presentation
channels of this data and enabled hight-speeds at which it can be transferred. The re-
ciprocal phenomenon arose with the total spread of mobile technologies and powerful
devices: because these mobile devices are always at hand and are always connected to the
network, the demand for business data should be immediately satisfied at any moment.

Taking these recent trends into account a new paradigm of design for mobile first is
being employed in design and development processes to assure that application would be
smooth, seamless and responsive across platforms. Mobile first approach mainly means:

• look at the whole scenario as the mobile application is being designed fist;

• mobile in this context means that is is necessary to deal with restrictions - build
up, do no tear down;

• staying focused on what is important and thinking ahead;

• mobile first might lead to reconsideration of established solutions;

• working with restrictions lead to find new smart ways to reduce, aggregate or
group;

• mobile first has responsive or adaptive design in mind from the first moment of
designing and development.

In these circumstances it is essential to analyse and consider the characteristics of
mobile devices and the context of their usage while designing and developing enterprise
applications. The most important features, peculiarities and concerns are summarised
below.

• interface of an application: interface should take into account the physical pa-
rameters of the device, the variety of situations of its use and the set of functions
provided for the user. It is possible highlight three important aspects when de-
signing and developing an interface:

1. multimodality of the interface: in some case it is advisable to develop a multi-
modal interface - an interface that uses several modalities, i.e. inherent human
forms of influence on the device, for context-sensitive interaction between the
application and the user.

2. interface adaptability : an important aspect of interface design is its adapt-
ability to different devices in terms of their physical properties. Since the
application can be used on a number of devices with different physical param-
eters, for example, screen size and resolution, it is necessary to dynamically
adapt the interface for the most effective use of them.

66

3. usability : the issue of usability is especially relevant for mobile device ap-
plications in conditions of resource scarcity and physical limitations - the
application should allow solving the problem with the maximum convenience
for the user in the minimum possible time.

• contextual awareness of the application: using the capabilities provided by mod-
ern mobile devices (various sensors of location, motion, temperature, illumination,
etc.), the application can analyse the conditions of its operation in highly dy-
namical changing context - the physical environment, computing resources - and
automatically adapt the mode of its operation.

• computing resources: mobile devices use special computing processors with special
parameters. In addition, multitasking mobile operating systems are used, sharing
computing resources between all processes in the system. Complex computing
processes therefore can take longer and lead to an overall decrease in performance
and increased power consumption

• limited storage space: mobile devices have limited built-in RAM. Moreover, the
operating system may limit the amount of memory available for the application
and its service data. The feasibility of storing a large amount of data should be
evaluated and, if necessary, the external memory of the device (memory cards)
should be used or data should be stored outside the device (for example, use a
cloud service).

• power consumption: the amount of time a mobile device can operate autonomously
without additional charging is a critical parameter for the user. Excessive or
inappropriate use of the device’s resources (for example, non-disconnecting of data
transmission interfaces after the end of the communication session, etc.) can lead
to a rapid discharge of the battery of a mobile device and decrease the duration of
its autonomous work;

• limited time of continuous work : a mobile device is distinguished by a high dynam-
ics of its use, characterised by many often unpredictable events that can occur. It
should be borne in mind that the application may terminate its work at any time
(for example, the user switched to another task, the battery of the mobile device
is discharged, the device’s resources have run out, etc.);

• unpredictability of the moment when the application is interrupted by external
events: the operation of a mobile application at any time can be interrupted by
other more important events (for example, a phone call, a received message, etc.),
which must be taken into account when developing an application and always, if
possible, return the application to the last state before its work was interrupted;

• multi-interface of the device: the use of multiple input / output interfaces within
one user session, the use of specific interfaces - NFC, compass, gyroscope, light
sensor, accelerometer, various sensors (movement, orientation, etc.) that are not
available for stationary personal computers;

• limited / interruptable communication channel : since a mobile device in most
cases uses various wireless communication technologies and also moves in space,

67

the stability and quality of communication is constantly changing. If the applica-
tion uses a data transmission channel, then all situations of breakage and loss of
communication quality must be correctly processed;

• multi-platform: in some cases it turns out to be necessary to develop several appli-
cations in parallel for various device families (for example, iOS, Android) to cover
the maximum possible number of end users of the application;

• testing on emulators: given the large number of different models of mobile devices
(of different generations and classes), it is often not possible to test the application
on real devices, therefore, in some cases, the only way out is to test the application
on available software emulators;

• mandatory observance of the requirements and development rules for further dis-
tribution of the application: for a number of platforms, special requirements and
rules for the development of applications are put forward for their further sale
through a centralized application distribution system (for example, Apple), which
must be taken into account when designing and developing a mobile application;

• additional censorship of the application’s functionality : a number of companies
(for example, Apple) check the source code of the application and its work before
publishing it in the application distribution system;

• user event notification system: mobile applications are characterized by frequent
changes in the context of use and frequent switching between applications, it is
important to inform the user about important events if another application is
active at the time of their occurrence;

• operation of the application in online / offline modes: if the operation of the ap-
plication depends on external data stored outside the mobile device, and the avail-
ability of the communication channel is limited, depending on the requirements
for the application, it may be advisable to preload the necessary information and
save it on the mobile device for further use;

• limited availability of external peripheral devices (eg, printing, etc.);

• limited availability of common software technologies (eg flash, audio / video codecs);

• building web applications: for a number of tasks it may be more appropriate to
develop a mobile web application (using html5 technology) that can run on multiple
platforms instead of developing a native application for a specific platform.

4.5 Enterprise applications quality model

For quality assurance it is essential to formalise and constantly evaluate the quality of
enterprise application, trying to define the issues on early stage and initiate appropriate
requirements and changes. This is a difficult task because enterprise applications are
complex software products and it is necessary to clear define the purposes, models and
methods of quality assurance. Especially important in the context of enterprise applica-
tions, taking into account the user-centred focus, transformation of ideology from mainly
technical to business-orientation, is to measure and assure the quality on the business-
role level, where many aspects come into play together. Some business-processes are

68

a singe step or a single-application process, whereas another ones assume the usage of
several apps and different forms of interaction between them.

A business role represents the responsibility for performing specific behaviour, to which
an actor can be assigned (i.e. a user), or a part an actor plays in a particular action
or event. Business roles with certain responsibilities or skills are assigned to business
processes or business functions. A business actor that is assigned to a business role
is responsible for ensuring that the corresponding behaviour is carried out, either by
performing it or by delegating and managing its performance. A business role maybe be
assigned to one or more business processes or business functions, while a business actor
may be assigned to one or more business roles [Gro].

As was showed in chapters 2, 3 the model used for quality evaluation and assurance
for enterprise application is to be based on the actual SQuaRE series of standards.

While developing the quality models it makes sense to pay attentions to the external
quality and quality in use for the following reasons:

• the enterprise software often allows to get on early stages already working solution,
because the enterprise applications are in most of the cases already delivered as
some basic ready-to-use solution;

• if the customisation processes is required the results can be only seen and evaluated
in test environment with test data or in real production environment;

• in case of own developments or / and modifications of the delivered applications or
components it is to be done on known-platform using known technologies, frame-
works, libraries and integrated development environment. So it makes sense to
measure external quality of intermediate versions of already working solutions and
not try to predict it is based on the evaluation of internal quality;

• the quality of enterprise applications should be evaluated and assured in the test
environment with model data or while the real production use;

• the quality of enterprise applications should be evaluated primarily not from the
view of technical users but from the view of real business users in the context of
their business-roles taking into account the feedback from them and changing the
requirements accordingly;

• for enterprise applications the result of the work of the software is important and
not the details of the internal implementation;

• development process of the enterprise application implies the constant release of
new versions or the updates for rapidly changing business environment and re-
quirements. Moreover in contemporary software development practice agile devel-
opment methods are incorporated, what is aimed at fast provision and deployment
of working versions to test and production environment;

Because of these considerations the reliable data about the current version of applica-
tion can be obtained by the external quality and quality in use evaluation.

In this thesis the first outlines of the top level of quality models are proposed limiting
by the selection of characteristics. The choice of the subcharacteristics, measures and
evaluations methods are the tasks for the other detailed research.

69

The developed model assume that each characteristic has a conformity subcharacter-
istic, i.e. the ability of the enterprise application to comply with the standards and
conventions associated with this characteristic. Otherwise, if the enterprise application
does not meet the accepted standards and agreements, the quality of the enterprise
application cannot be assessed.

4.5.1 External quality model

The standard ISO/IEC 25010 shows the influence between quality models by the quality
characteristics (see Table 4.3).

Table 4.3: ISO25010 - Influence of the quality characteristics
Software
product
proper-

ties

Computer
system
proper-

ties

Product
quality
characteris-
tic

Influence
of quality
in use for
primary

users

Influence on
quality in use

for
maintenance

tasks

Information
system
quality

concerns of
other

stakeholders

- -
Functional
stability

x

- -
Performance
efficiency

x x

- - Compatibility x

- - Usability x

- - Reliability x x

- - Security x x

- -
Maintain-
ability

x

- - Portability x

The mentioned relations were taken into consideration because as was stated before
enterprise applications are evaluated using external quality and quality in use.

The proposed external quality model for enterprise applications is a hierarchical struc-
ture consisting of three levels - characteristics, subcharacteristics and measures of qual-
ity. The model is based on model for product quality (see figure 3.7) from the standard
ISO/IEC 25010 [Sta11a], would use and adapt the number of measures from the standard
ISO/IEC 25023 [Sta16b]. The model includes the following characteristics: functional
suitability, performance efficiency, usability, reliability, maintainability, portability and
can be represented as a set Qe:

Qe = FS, PE,U,R,M,P (4.1)

where FS - is a set of subcharacteristic of functional suitability;
PE - is a set of subcharacteristic of performance efficiency;
U - is a set of subcharacteristic of usability;

70

R - is a set of subcharacteristic of reliability;
M - is a set of subcharacteristic of maintainability;
P - is a set of subcharacteristic of portability.
In the model are not included the following characteristics defined by the standard

ISO/IEC 25010: compatibility, security.
Compatibility - degree to which a product, system or component can exchange in-

formation with other products, systems or components, and/or perform its required
functions, while sharing the same hardware or software environment. This character-
istic is not included while enterprise applications are developed in and for a special
enterprise infrastructure (hardware platform, used software technologies, defined com-
munication protocols between component and appropriate services, defined interfaces
to the communication with the external system etc). So the concerns and agreements
of intercommunication between applications, components, internal and external systems
are covered by enterprise software environment.

Security - degree to which a product or system protects information and data so that
persons of other products or systems have the degree of data access appropriate to their
types and levels of authorisation. In the enterprise software environment the security
is a comprehensive topic and the most security concerns are covered by different parts
of the infrastructure and not by the applications themselves. Database provides the
mechanism for data encapsulation, encryption and isolated data containers with au-
thorisation services, the hardware provides physical security of data (secure datacenters,
cloud storage), there also centralised authorisation services which control users and their
permissions. So in most of the cases enterprise applications work with the data they
were allowed to and special permissions are granted to users which are authorised to
run these applications. Special cases for special applications which are specially dealing
with security topics can be covered by the extended quality model with the security
characteristic and appropriate subcharacteristics, measure and methods of evaluation
defined.

The top-level model of external quality for enterprise applications is shown in the
figure 4.20.

71

Figure 4.20: External Quality of Enterprise Applications - top level definition

Functional suitability - degree to which a product or system provides functions
that meet stated and implied needs when used under specified conditions.

Performance efficiency - performance relative to the amount of resources used
under stated conditions.

Usability - degree to which a product or system can be used by specified users to
achieve specified goals with effectiveness, efficiency and satisfaction in a specified context
of use

Reliability - degree to which a system, product or component performs specified
functions under specified conditions for a specified period of time.

Maintainability - degree of effectiveness and efficiency with which a product or
system can be modified by the intended maintainers.

Portability - degree of effectiveness and efficiency with which a system, product or
component can be transferred from one hardware, software or other operational or usage
environment to another.

The development and choice of subcharacteristic and appropriate measures and evalu-
ation methods are the topics of other thorough research. In the figure are already shown
as the starting point of their further development some subcharacteristics and metrics
which do not exist in the SQuaRE standards.

4.5.2 Quality in use model

The proposed quality in use model for enterprise applications is a hierarchical structure
consisting of three levels - characteristics, subcharacteristics and measures of quality. The
model is based on model for quality in use (see figure 3.8) from the standard ISO/IEC
25010 [Sta11a], would use and adapt the number of measures from the standard ISO/IEC
25022 [Sta16a]. The model includes the following characteristics: effectiveness, efficiency,
satisfaction, context coverage and can be represented as a set Qu:

Qu = EF,ES, S,C (4.2)

72

where EF - is a set of subcharacteristic of effectiveness;
ES - is a set of subcharacteristic of performance efficiency;
S - is a set of subcharacteristic of satisfaction;
C - is a set of subcharacteristic of context coverage.
In the model are not included the following characteristics defined by the standard

ISO/IEC 25010: freedom from risk.
Freedom from risk - degree to which a product or system mitigates the potential risk

to economic status, human life, health, or the environment. The decision about the use
of enterprise software solution is a thorough multi-criteria process taken on the company
management level assessing before the possible risks from different perspectives and di-
visions. For law-regulated ares of activity appropriate valid certifications of compliance
must be available. The main risks therefore are evaluated on the higher level and not
on the level of separate applications. For especially sensitive data or business-processes
enterprise software environment can provide additional protection measures, as the re-
striction of access, use only of defined, controlled and audited API-functions, restrictions
of use of some technologies etc.

The top-level model of quality in use for enterprise applications is shown in the figure
4.21.

Figure 4.21: Quality in Use of Enterprise Applications - top level definition

Effectiveness - accuracy and completeness with which users achieve specified goals.
Efficiency - resources expended in relation to the accuracy and completeness with

which users achieve goals.
Satisfaction - degree to which user needs are satisfied when a product or system is

used in a specified context of use.
Context coverage - degree to which a product or system can be used with effective-

ness, efficiency, freedom of risk and satisfaction in both specified context of use and in
context beyond those initially explicitly identified.

The development and choice of subcharacteristic and appropriate measures and eval-
uation methods are the topics of other thorough research.

4.6 Quality models in enterprise applications lifecycle

The quality assurance processes should be integrated into the enterprise software lifecycle
to enable regular or selective and specific quality evaluations, which would allow to make

73

appropriate decisions and take measures against detected quality flows in a timely and
suitable manner. One of the possible ways to do it is shown in the figure 4.22.

Figure 4.22: Enterprise applications quality models in a lifecycle

To amend the detected quality flaws by implementing the necessary or implied mod-
ifications the following re-engineering strategy is proposed - see figure 4.23. The same
strategy can be applied in case of migration of some existing custom solutions to a new
technology, for example from classic SAP-GUI to SAP Fiori to ensure that required
quality goals are remained fulfilled or even became stronger after the transition to the
re-engineered solution.

74

Figure 4.23: Enterprise application re-engineering strategy for quality flaws

The shown strategy is realised in the following three phases:

1. The external quality or / and quality in use (depending on the need only required
measures / subcharacteristics / characteristic could be considered) is measured
for the application of interest. This can be intentionally initiated evaluation or
the result of the evaluation of the regular quality assurance routine revealing the
quality flaw(s).

2. Implement the modifications / extensions of the application taking into account
the detected quality flaws.

3. Perform exactly the same quality measurements as in the phase 1 by re-applying
the chosen measurement criterias to the modified application from the phase 2.
At the end compare the results to make the judgement about if the application
improvements are compliant with and achieving the required quality goals.

This re-engineering strategy can be applied so many times as necessary until the
required quality goals are reached. The strategy might be applied to a single application
as well as to the whole business-process consisting of several applications by setting and
measurement appropriate quality attributes in a given context.

75

5 Conclusion

The history of software quality assurance problem is already almost six decades long.
In chapter one the long evolution path of this challenging and interesting problem was
shown from the fist qualify models to the latest international standards and a multi-
parameter analysis was carried out. The ideas, principles and practical applications
of all the models and interdisciplinary approach formed the basis of modern mature
standards in the area of software quality.

Chapter two gave the description and analysis of the standards ISO/IEC 25000 SQuaRE
and showed the possibilities of extension and further development of quality models. Es-
pecially important for the quality measurement methods and quality assurance processes
are the measures, the analysis of properties and validity criterias of which in accordance
with the standards’ approach and recommendations was conducted.

Enterprise software is always in the phase of active growth, extension and is in general
a rapidly changing software family, adapting and using all of the latest advances in
the field of diverse data analysis, including internet of things, big data and machine
learning, incorporating latest practices and technologies related to the user-interface and
data representation, module and distributed software technologies. These development
directions were demonstrated in the third chapter on the example of SAP-software as
the major enterprise applications provider worldwide. Taking all these concerns into
consideration the properties and features of the modern hybrid enterprise applications
were analysed and summarised, what is relevant and important for the development and
adaptations of the appropriate quality measures and evaluations methods.

Finally, the top-level external quality and quality in used models based on the SQuaRE
standards were developed and proposed. They include top-level characteristics, related
to the enterprise applications usage context, and it is the first important step and the
solid basis for further development of the models including measures and quality eval-
uation and assurance methods. Additionally, the concerns of the integration of quality
assurance processes into a software lifecycle and applications re-engineering strategy
were addressed.

This thesis showed the utmost importance of the quality assurance of enterprise ap-
plications problem and the pressing needs for the researches and new developments in
this direction. The provided analytics and based on it and on the actual standards in
software quality area top-level quality models are to be further developed. The choice of
the adequate models’ subcharacteristics, appropriate measures and corresponding qual-
ity assurance methods are the next consecutive steps, tasks and challenges for future
work.

76

References

[MJ77] Walter G. McCall J. Richards PP. Factors in Software Quality. US Rome Air
Development Center Reports NTIS, 1977.

[BB78] Lipow M. Boehm B.W. Brown J.R. Quantitative Evaluation of the Software
Quality. TRW Systems and Energy Group, 1978.

[Cro79] Philip B. Crosby. Quality is free. New York: New American Library, 1979.

[GR87] Caswell D. Grady R. Software metrics: establishing a company-wide program.
NJ Prentice-Hall, 1987.

[W.87] Perry W. Effective methods for EDI quality assurance. Prentice-Hall, 1987.

[JJ88] Gryna F.M. Juran J.M. Quality Control Handbook, 4th ed. McGraw-Hill, 1988.

[T.88] Gilb T. Principles of software engineering management. Addison-Wesley, 1988.

[W.S89] Humphrey W.S. Managing the Software Process. Addison-Wesley, Reading,
Mass., 1989.

[V.R93] Basili V.R. Applying the Goal/Question/Metric Paradigm in the Experience
Factory. Institute for Advanced Computer Studies, University of Maryland,
1993.

[BV94] Rombach H. Basili V. Caldiera G. The Goal Question Metric Approach. En-
cyclopedia of Software Engineering, 1994.

[R.G95] Dromey R.G. A Model for Software Product Quality. IEEE Transactions on
Software Engineering, 1995.

[HL96] Rosenberg L.H. Hyatt L.E. A Software Quality Model and Metrics for Identi-
fying Project Risks and Assessing Software Quality. Product Assurance Sym-
posium and Software Product Assurance Worksop, 1996.

[R.96] Fitzpatrick R. Software quality: definitions and strategic issues. Dublin Insti-
tute of Technology, 1996.

[R.G96] Dromey R.G. Cornering the Chimera. IEEE Software, vol. 20, 1996.

[R.97] Pressman R. Software Engineering: A Practitioner’s Approach, 4th Edition.
McGraw-Hill, 1997.

[EE98] Institute of Electrical and Electronics Engineers. 1061-1998. Standard for
Software Quality Metrics Methodology. Software Engineering Standards Com-
mittee of the IEEE Computer Society, 1998.

[BJ99] Kitchenham B. Pasquini A. Boegh J. Depanfilis S. A Method for Software
Quality Planning, Control and Evaluation. IEEE Software, vol. 23, 1999.

77

[L.99] Tahvildari L. Non-Functional Requirements in Software Engineering. Kluwer
Aceademic Publishers, 1999.

[Sta99] International Organization for Standardization. ISO/IEC 14598-1:1999 Infor-
mation technology - Software product evaluation - Part 1: General overview.
International Organization for Standardization, 1999.

[FN00] Pfleeger S.L. Fenton N.E. Software Metrics: A Rigorous and Practical Ap-
proach. Thomson Learning; Revised Auflage, 2000.

[Sta01] International Organization for Standardization. ISO/IEC 9126-1:2001. Soft-
ware engineering - Software product quality - Part 1: Quality model. Interna-
tional Organization for Standardization, 2001.

[AA02] Sellami A. Abran A. Initial Modeling of the Measurement Concepts in the
ISO Vocabulary of Terms in Metrology. Proceedings of the 10th International
Workshop on Software Technology and Engineering Practice, 2002.

[BA02] Visaggio G. Bianche A. Caivano D. Quality Models Reuse: Experimentation
on Field. Proceedings of the 26th IEEE Computer Software and Applications
Conference, 2002.

[CL03] Yu E. Mylopoulos J. Chung L. Nixon B. A. Quality-Driven Object-Oriented
Re-engineering Framework. PhD Thesis. Electrical and Computer Engineering
Waterloo, 2003.

[Sta03a] International Organization for Standardization. ISO/IEC 9126-3:2003 Soft-
ware engineering - Product quality - Part 3: Internal metrics. International
Organization for Standardization, 2003.

[Sta03b] International Organization for Standardization. SO/IEC 9126-2:2003 Soft-
ware engineering - Product quality - Part 2: External metrics. International
Organization for Standardization, 2003.

[Sta04] International Organization for Standardization. ISO/IEC 9126-4:2004 Soft-
ware engineering - Product quality - Part 4: Quality in use metrics. Interna-
tional Organization for Standardization, 2004.

[AA05] Desharnais J. M. Habra N. Abran A. Al-Qutaish R.E. An Information Model
for Software Quality Measurement with ISO Standards. Proceedings of the
International Conference on Software Development (SWDC-REK), 2005.

[R.09] Pressman R. Software Engineering: A Practitioner?s Approach, 7/e. McGraw-
Hill, 2009.

[Sta11a] International Organization for Standardization. ISO/IEC 25010:2011 Systems
and software engineering - Systems and software Quality Requirements and
Evaluation (SQuaRE) - System and software quality models. International
Organization for Standardization, 2011.

78

[Sta11b] International Organization for Standardization. ISO/IEC 25040:2011 Systems
and software engineering - Systems and software Quality Requirements and
Evaluation (SQuaRE) - Evaluation process. International Organization for
Standardization, 2011.

[Sta12] International Organization for Standardization. ISO/IEC 25021:2012 Systems
and software engineering - Systems and software Quality Requirements and
Evaluation (SQuaRE) - Quality measure elements. International Organization
for Standardization, 2012.

[Sta14] International Organization for Standardization. ISO/IEC 25000:2014 Systems
and software engineering - Systems and software Quality Requirements and
Evaluation (SQuaRE) - Guide to SQuaRE. International Organization for
Standardization, 2014.

[AG15] Padilla Omiste A.E. Azgaldov G.G. Kostin A.V. The ABC of Qualimetry.
Toolkit for measuring the immeasurable. Ridero, 2015.

[Sta15a] International Organization for Standardization. ISO 9000:2015 Quality man-
agement systems - Fundamentals and vocabulary. International Organization
for Standardization, 2015.

[Sta15b] International Organization for Standardization. ISO/IEC 25024:2015 Systems
and software engineering - Systems and software Quality Requirements and
Evaluation (SQuaRE) - Measurement of data quality. International Organiza-
tion for Standardization, 2015.

[Sta16a] International Organization for Standardization. ISO/IEC 25022:2016 Systems
and software engineering - Systems and software quality requirements and
evaluation (SQuaRE) - Measurement of quality in use. International Organi-
zation for Standardization, 2016.

[Sta16b] International Organization for Standardization. ISO/IEC 25023:2016 Systems
and software engineering - Systems and software Quality Requirements and
Evaluation (SQuaRE) - Measurement of system and software product quality.
International Organization for Standardization, 2016.

[Sta17] International Organization for Standardization. ISO/IEC/IEEE 15939:2017
- Systems and software engineering - Measurement process. International Or-
ganization for Standardization, 2017.

[K.K18] Kammaje K.K. SAP Fiori Certification Guide. Rheinwerk Publishing, 2018.

[BJ19] Franke J. Koehler B. Morgenthaler J. Butsmann J. Crumbach M. SAP S/4HANA
Embedded Analytics: Architektur, Funktionen, Anwendung. Rheinwerk Pub-
lishing, 2019.

[R.19] De Louw R. SAP HANA 2.0 Certification Guide. Rheinwerk Publishing, 2019.

[SE19] SAP SE. HA450 - Application Development for SAP HANA. SAP SE, 2019.

79

[Sta19] International Organization for Standardization. ISO/IEC 25020:2019 Systems
and software engineering - Systems and software Quality Requirements and
Evaluation (SQuaRE) - Quality measurement framework. International Orga-
nization for Standardization, 2019.

[SE20a] SAP SE. SAP01 - SAP Overview. SAP SE, 2020.

[SE20b] SAP SE. UX100 - SAP Fiori - Foundation. SAP SE, 2020.

[Gro] The Open Group. ArchiMate 3.1. Specification, a Standard of The Open
Group. url: https://pubs.opengroup.org/architecture/archimate3-
doc/toc.html. (accessed: 25.10.2020).

[SE] SAP SE. SAP Fiori Design Guidelines. url: https://experience.sap.com/
fiori-design/. (accessed: 16.10.2020).

[Wik] Wikipedia. Enterprise software. url: https://en.wikipedia.org/wiki/
Enterprise_software. (accessed: 10.10.2020).

80

