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Abstract

The goal of this thesis is to develop an algorithm that effectively classifies audiodata into the categories music, speech and environmental noise. Traditionally,audio classification tasks have been approached with standard classificationprocedures applied to hand-crafted descriptive features derived from the audiowaveform. In recent years, inspired by their success in image classification andobject recognition, deep neural nets (DNNs) have been applied to different audioclassification tasks with promising results. This work assesses both traditionalmachine learning algorithms, as well as state-of-the-art deep learning methodsfor real-time audio classification. The algorithms are evaluated with audio data,coming from a far-field microphone array in different domestic and business envi-ronments. More specifically, a support vector machine (SVM) with non-linear kernelis evaluated with different descriptive audio features, as well as a convolutionalneural net (CNN) applied to Mel-spectrograms. While classification accuracy isexcellent for both algorithmswhen classifying ’clean’ audio data, the SVM performspoorly for ’real-world’ far-field microphone array recordings. An accuracy rate ofover 94% is achieved using the CNN for audio clips of 1 second, providing excellentperformance in real-time tests.
Zusammenfassung

Ziel dieser Arbeit ist der Entwurf und die Evaluierung eines Algorithmus zur Klas-sifizierung eines Audiodatenstroms in die Kategorien Musik, Sprache und All-tagsumgebungsgeräusche. Herkömmlicherweise wurden zur Audioklassifizierungkonventionelle statistische Klassifikationsverfahren in Verbindung mit sogenann-ten Merkmalsvektoren verwendet, welche das Audiosignal mit wenigen Beschrei-bungsgrößen charakterisieren. Angeregt durch die erfolgreiche Anwendung in denBereichen Bildklassifikation und Objekterkennung, wurden in den letzten Jahrensogenannte Deep Neural Nets zur Audioklassifizierung verwendet. Diese Arbeitbeurteilt sowohl herkömmliche Klassifizierungsverfahren, als auch sogenannteDeep Learning Methoden für die Klassifizierung von Audiodaten in Echtzeit. DieAlgorithmen werden mit Aufnahmen einer Fernfeld-Mikrofonanordnung in verschie-denen häuslichen und gewerblichen Umgebungen evaluiert. Im engeren Sinne wirdeine nicht-lineare Support Vector Machine (SVM) in Verbindung mit verschiede-nen Beschreibungsgrößen, und ein Convolutional Neural Net (CNN) in Verbindungmit Mel-Spektrogrammen untersucht. Während für saubere Signale beide Klassi-fikationsverfahren exzellente Erkennungsraten erzielen, funktioniert die SVM fürAufnahmen mit den Fernfeld-Mikrofonaufnahmen sehr schlecht. Mit dem CNNwerden für Audio-Clips von 1 Sekunde Erkennungsraten von über 94% erreicht.
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Introduction 11

1 | Introduction

The goal of machine perception is to develop machines that are capable of pro-cessing and interpreting sensory input data in order to perceive and understandtheir surroundings like humans do.
Being one of the five traditional senses (vision, hearing, touch, taste and smell),hearing allows us to communicate with each other through vocalised speech, enjoymusic and is essential for orientation in the environment. For example, an acousticevent might warn us of dangers, such as wild animals or approaching vehicles,even when our view is obstructed [1].
Starting with Bregman [2] and Brown & Cooke [3] in the early 1990s, researchershave tried to exploit themechanics of the human auditory system for computationalanalysis of sound. Since then, computational auditory scene analysis (CASA) andin particular audio classification has attracted a lot of research.
With the rise of virtual assistants like Cortana 1.1, incorporating highly accuratespeech recognition systems, people have come to expect human-level auditoryperception of machines. Ideally, machines should be able to easily distinguishspeech from music and background noise, locate the source of a sound and reactto acoustic events in real-time [4].
For this thesis, different algorithms coming from the field of artificial intelligenceare evaluated for real-time audio classification into the categories speech, musicand environmental noise.

Thesis OverviewThis chapter provides a detailed problem description (chapter 1.1), a generaloverview and summarises related research (chapter 1.2).
In chapter 2, fundamental signal characteristics are summarised for the threecategories speech, music and environmental noise.
In chapter 3, different classification algorithms, as evaluated for this thesis, aredescribed. Both traditional feature-based machine learning algorithms (chapter3.1), as well as state-of-the-art deep learning methods (chapter 3.2) are introduced.
1.1. Cortana is a virtual assistant developed by Microsoft, recognising and processing voice-commands. https://www.microsoft.com/ en-us/ cortana - accessed: December 2017

https://www.microsoft.com/en-us/cortana
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Chapter 4 describes the audio data used to train and validate the classificationalgorithms investigated.
Several feature-based audio classification algorithms are investigated. Chapter5 describes the implemented descriptive features (chapter 5.1) and the differentmachine learning algorithms in more detail, including a simple Gaussian naivebayes (NB) classifier (chapter 5.2), a k-nearest neighbours (kNN) algorithm (chapter5.3) and a support vector machine (SVM) with radial basis function (RBF) kernel(chapter 5.4).
Chapter 6 describes the deep neural nets, namely so-called convolutional neuralnets (CNNs), investigated for this thesis in more detail and summarises their per-formance for speech, music and environmental noise classification. As describedin chapter 6.8, a prototype real-time classification procedure was implemented todemonstrate the algorithm’s performance in real-world environments.
Chapter 7 summarises the findings of this thesis and provides an outlook for futureexperiments and applications.
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1.1 Problem Description
Invoke (see figure 1.1),HarmanKardon’s recently introduced voice-activated portableloudspeaker features a state-of-the-art beam-forming microphone array for voicecommands and phone-calls.

Figure 1.1 – Harman Kardon Invoke [5]

In order tomake future devicesmore aware oftheir surroundings, and thus clearing the pathfor new services, different audio classificationalgorithms are evaluated with emphasis onaudio data coming from the device’s far-fieldmicrophone array.
More specifically, the goal of this thesis is todevelop an algorithm that effectively classi-fies an audio data stream into the categoriesmusic, speech and environmental noise inreal-time.
While this might sound trivial, as most peo-ple can do this easily without thinking muchabout it, this can be a challenging task for ma-chines and in some cases impossible even fortrained listeners. This is especially the case innoisy or reverberant environments and is evenmore challenging for short signal segments,as needed for real-time classification.
Figure 1.2 shows the basic signal-flow for real-time classification: Audio datarecorded with a microphone array is combined into one or more beam channelsusing a filter-and-sum beamforming technique 1.2. From the audio data, so-calleddescriptive features are calculated by a feature extraction module. The classifierat the end outputs a class label (i.e. ’music’, ’speech’ or ’environmental noise’) oran a-posteriori probability for each class.

microphone
array beamformer feature

extractor classifier class label
(e.g. ”speech”)

Figure 1.2 – Real-time classification of an audio data stream coming from a microphonearray with subsequent beam-forming.
1.2. As the name suggests, a ’filter-and-sum’ beamformer works by adding up filtered sensor datafrom different microphones [6].
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Several classification approaches are evaluated, including traditional machinelearning algorithms (chapter 5), as well as deep learning methods inspired byrecent developments in computer vision (chapter 6).
In the following, an overview of related research is provided.

1.2 Related Work
Given the many potential applications in multimedia analysis, home automationand medical care, computational auditory scene analysis (CASA), and in particularaudio classification has attracted a lot of research during the last decades.
Early DaysR. Clark Jones has filed a patent for a device discriminating music and speechsignals as early as 1951 [7]. The proposed electric circuit was designed to be usedin radio receivers to automatically silence radio signals that are predominantlyspeech. Classification was donemonitoring rapid variations in signal energy, whichoccur more often in speech than music signals [8].
Feature-based Audio ClassificationStarting with John Saunders in 1996 [9], audio classification has mostly beenapproached with descriptive audio features derived from the audio waveform,applied to different classification algorithms. As will be described in more detail inchapter 5.1, classification is usually done using clip-level features, with typical cliplengths of one to several seconds [10].
Saunders [9] successfully discriminated music and speech on broadcast radiousing a multivariate Gaussian (MVG) classifier trained with features based on thezero-crossing rate (ZCR) and short-time energy (STE), claiming a classificationaccuracy of around 98% for audio clips of 2.4 seconds.
In 1997, Eric Scheirer and Malcolm Slaney [11] proposed a system for speech musicdiscrimination that uses 13 different spectral, temporal and cepstral features inconjunction with a Gaussianmixturemodel (GMM) and k-nearest neighbours (kNN)algorithm as classifiers. They claim excellent recognition rates of 98% at clip-level(2.4 seconds).
Zhu Liu et al. [12] have classified audio clips from television broadcasts into fivescene classes: news reports, weather reports, advertisement, basketball gamesand football games. They used 13 features based on the signal energy, fundamentalfrequency and spectral distribution in conjunction with a neural network classifier(one-class-in-one-network structure) with promising results.
In 1999 Zhang et al. [13] presented a hierarchical multi-expert system that segmentsand classifies audio data in a coarse-level and fine-level stage. On coarse-level, theaudio stream is segmented and classified into the categories music, noise, silenceand speech based on morphological and statistical analysis of short-term features(STE, ZCR and fundamental frequency). In the second stage, environmental sounds
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are classified in more detail using a Hidden-Markov-Model (HMM) and 65 FFT-binsfor classification. They report an accuracy of over 90 % at coarse-level.
Williams and Ellis [14] evaluated features derived from a hybrid connectionist-HMM-based speech recognition system for speech music discrimination, claimingan accuracy rate of 98% for voice activity detection (VAD) at clip-level (2.5s).Classification was performed by calculating means and variances separately forthe speech and music training examples and performing a Gaussian likelihoodratio test.
In 2000, Khaled El Maleh et al. [15] used line spectral frequencies together with theZCR as features and discriminated speech and music using a kNN classifier withpromising results (80% at frame-level and 80-100% at clip-level (1s)).
In 2001, De Santo et al. [16] proposed a multi-expert system for audio classificationinto seven categories. The proposed algorithm first detects silence by simpleenergy thresholding. In a second stage, the non-silent signal is classified into tomacro classes music and speech by a multi-layer perceptron (MLP) neural net.The two macro classes are then sub-classified further by two MLP classifiers inthe third stage. They report an overall accuracy of 77% for classification in sevencategories.
Lie Lu et al [17] used cascaded support vector machines (SVMs) to classify audiosegments of 1s into the categories silence, music, background noise, pure speechand non-pure speech. They used the means and standard deviations for 8 melfrequency cepstral coefficients (MFCC) and several perceptual features. Theyreport a high accuracy of around 96.5% and constitute much better performanceto the SVM than other classification algorithms like kNN and GMM.
Tong Zhang and C.-C. Jay Kuo [18] investigated audio segmentation and classifica-tion for content analysis of audiovisual data. Simple descriptive audio features(energy, zero-crossings, fundamental frequency and spectral peak tracks) whereanalysed using a rule-based heuristic approach in order to classify audio segmentsinto the categories silence, speech, environmental sound, pure music, song andspeech with background music. They claim an accuracy of just over 90% for theirefficient real-time system.
Michael C. Büchler [19] studied different classification algorithms for audio classi-fication in hearing aids and proposed a multi-expert system in two stages. Fourclasses (speech, speech in noise, noise and music) were discriminated usingdescriptive audio features and a HMM classifier, followed by a rule-based post-processing where the output of the HMM is corrected if necessary. Büchler reportsa hit rate of 91%.
In 2002, Bugatti et al. [20] trained a multi-layer perceptron (MLP) with variousenergy, zero-crossing and spectral features, as well as MFCCs and achieved aclassification accuracy of 95% to 96% for speech music discrimination and audiosegments of around 2s.
In 2003, Hadi Harb and Liming Chen [21] used statistical features derived from
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Mel-spectrograms in conjunction with an MLP as a classifier for speech musicdiscrimination. They report promising results (96% accuracy), even when trainingwith little data only (40s of audio per class) for audio clips of 0.2 to 4s.
In 2004, Juan J. Burred and Alexander Lerch [22] classified audio data into threespeech classes, 13 musical genres and background noise, using a hierarchicaltree-structure of classifiers (kNN and GMM). They carried out an extensive featureselection for each branch fork in the classification tree and report an accuracyof around 95% for high-level classification in the categories speech, music andbackground noise.
M. Kashif Saeed Khan et al. [23] investigated MLPs and statistical metrics of adiscrete wavelet transform in addition to other descriptive features for speechmusic discrimination. For audio clips of 3s and cross-validation, they achieved apromising classification accuracy of up to 96.6%. In 2006, M. Khan andW. Al-Khatib[10] compared MLPs and other classifiers for speech and music discrimination,reporting good performance for MLPs as well as HMMs, indicating however thatHMMs require more training time. The best results were achieved using an MLPwith six descriptive features (range of zero-crossings, variance of a discrete wavelettransform, RMS of low-pass signal, spectral flux, linear predictive coefficients(LPCs) and the variance of four MFCCs).
Lei Chen et al. [24] classified audio data into five categories: music, speech, environ-ment sound, speech mixed with music and music mixed with environment sound.They compared different classifiers (SVM, kNN, naive bayes (NB) and artificialneural nets (ANN)), reporting superior performance using SVMs. For each audiosegment of 1s, four audio features (ZCR, silence ratio, harmonic ratio, sub-bandenergy) and respective statistical representations (mean, minimum, maximum,(maximum + minimum)/2) are calculated. They achieved an overall accuracy of78% using an SVM with Gaussian kernel, outperforming other classifiers.
In 2009, Yiizhar Lavner and Dima Ruinskiy [25] proposed an efficient speech mu-sic discriminator based on a rule-based decision-tree algorithm. Features weremean and standard deviation of STE, ZCR, sub-band energy ratio, autocorrelationcoefficients, MFCCs, spectral roll-off, spectral centroid, spectral flux and spectralspread. They report music and voice detection rates of around 98%.
In 2017, M.Won et al. [26] used several time-based and spectral features with anon-linear SVM to classify audio data into the categories speech, music, noiseand speech over music in noisy in-vehicle environments. As different acousticalenvironments significantly degrade classification performance, they developed analgorithm that adapts based on the driving environment in order to achieve highaccuracy rates.
Recent developments and Convolutional Neural NetsInspired by their tremendous success in image classification [27], researchers haveapplied so-called convolutional neural nets (CNNs) to audio classification.
In 2016, Justin Salamon and Juan P. Bello [28] proposed a CNN architecture for
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environmental sound classification into 10 classes. To overcome the lack of trainingdata, they propose the use of audio data augmentation. They generate additionalaudio data using time-scale modification (time- and pitch-shifting), dynamic rangecompression techniques and additive background noise. They report state-of-the-art results for multi-class environmental sound classification.
Lukic et al. [29] used CNNs for speaker identification and clustering. More specif-ically, they discriminated many different speakers by analysing simple spectro-grams, and studied the optimal model structure for the CNN. They report resultscomparable to state-of-the-art systems without the need for hand-crafted descrip-tive features.
In 2017, Naoya Takahashi et al. [30] proposed a CNN for audio classification, oper-ating on spectrograms several seconds long. They report significant performanceimprovements on action recognition tasks for audio-visual data compared to visualfeatures alone and visual features with MFCC-feature based approaches.
In 2017, Gemmeke et al. [31] published Audio Set, an extensive ontology for audioevent description and a massive human-labeled audio dataset from YouTube-videos. Shawn Hershey et al. [32] used the data for large-scale audio classificationusing different neural net topologies, finding that CNNsoutperformother topologiesand feature-based approaches.
SummaryExcellent classification accuracy is reported for a wide variety of algorithms. Tradi-tionally, standard statistical classification procedures are applied to hand-crafteddescriptive features derived from the audio waveform.
Classifiers include Gaussian mixture models (GMM), naive bayes (NB) and k-nearest neighbours (kNN) classifiers, non-linear support vector machines (SVM)as well as multi-layer perceptrons (MLP).
While many authors report excellent classification accuracy, it is hard to comparethe proposed algorithms. For one, they use different datasets and clip lengths(time resolution) and maybe even more importantly, classify audio into differentcategories and sub-categories.
For most research, ’clean’ low-noise broadcast audio was used to train and evalu-ate the algorithms, where the waveform is not heavily degraded by room impulseresponses, additive noise and other signal distortions. As reported by Won [26],feature-based classifiers are prone to noise and changes of acoustic parame-ters. So the performance is expected to be worse for far-field audio data in noisyenvironments, as investigated for this thesis.
More recent research successfully applies CNNs, deep neural nets borrowed fromthe field of computer vision [33], to audio classification tasks, eliminating theprocess of feature extraction and selection, while reporting similar, if not betterperformance. CNNs have been proven to be noise-robust in speech recognitiontasks [34], making them a promising contender for audio classification in varyingand noisy acoustic environments.
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2 | Signal Characteristics

In order to find meaningful descriptors, capable of discriminating speech, musicand environmental noise signals, it makes sense to study their characteristics first.
In the following, fundamental signal characteristics of speech, music and environ-mental noise signals will be described.

2.1 Speech
Speech describes the ability of humans to communicate with each other throughvocalised sounds produced by specialised vocal organs.
speech [ "spi:tS

<
] noun • The expression of or the ability to express thoughts and

feelings by articulate sounds [35].

Speech signal characteristics arewell-studied and have been successfully exploitedin various applications, such as speech-coding or automatic speech recognition(ASR) [36].
vocal tract

larynx

trachea

lungs

Figure 2.1 – The human organsof speech produc-tion [36].

Human speech is produced by the vocal organsshown in figure 2.1. The lungs provide energy inthe form of compressed air, which then passesthrough the larynx, where the airflow can be al-tered in different ways. When the vocal chordsare under tension, the airflow will cause them tovibrate. This causes the periodic release of air,which will result in voiced sounds. If the vocalchords are relaxed, this results in a turbulent air-flow, resulting in wide-band noise or unvoicedsounds. The excitation signal (either pulse trainor wide-band noise) travels through the pharynx,nasal and oral cavities which act as a resonantacoustic filter [37].
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The nature of speech production can be approximated with the so called source-filter model, as depicted in figure 2.2. The vocal chords / larynx are modelled aseither a generator of wide-band noise or a pulse-train at fundamental frequency f0.The vocal tract is modeled by a resonant predictive filter [36].

Excitation
Source

Source
parameters

Time-varying
vocal tract
filter H(t)

speech
signal

v(t) x(t)x(t)

Figure 2.2 – Source-filter model: The excitation signal v(t) (i.e. pulse train or wide-bandnoise) is generated by the excitation source and is characterised by its sourceparameters. The speech signal x(t) is the excitation signal filtered by a time-varying filter H(t), modeling the vocal tract [36].
Voiced and unvoiced speechIn essence, a speech signal is a sequence of syllables and pauses. On average,English speech consists of around 4 syllables per second [38]. Generally spoken,syllables consist of a voiced syllable nucleus (vowel) and optional onset andcoda, which can be unvoiced (consonants) or voiced (semi-vowels and voicedconsonants).
Fundamental Frequency and ProsodyAs mentioned above, a speech signal can be either voiced or unvoiced. Voicedspeech segments are characterised by their pitch and the energy distributionamong the lower order harmonics. The period of the vocal chord pulse traindetermines the fundamental frequency f0 of a speech segment. For men, theaverage fundamental frequency is around f0 = 120 Hz, for women around f0 = 200Hz with a standard deviation of around ±20Hz [39].
The fundamental frequency or pitch is not stationary but varies to emphasisecertain speech segments (e.g. to signify a question). This fluctuation of pitchis part of what is called prosody and can be observed when looking at the lowergraph in figure 2.3.
Figure 2.3 shows the audio waveform of a speech signal x(t) and the correspond-ing magnitude spectrogram |X[k, t]|dB in dB. As can be seen, voiced and unvoicedspeech segments can be to some extend discriminated visually, both in the wave-form (top) and spectrogram 2.1 (bottom).
Voiced segments like vowels and voiced consonants are of greater signal energy,indicated by greater amplitudes in the waveform (top). Amplitudes vary quicklywith segments of silence (amplitude close to zero), unvoiced consonants with low
2.1. The spectrogram describes the distribution of signal energy among time and frequency andis described in more detail in chapter 5.1
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Figure 2.3 – Speech signal of female speaker. (top) Audio waveform for 3s of audio and(bottom) corresponding magnitude spectrogram in dB.
amplitudes or short energy bursts (e.g. plosives 2.2) and voiced segments withlarger amplitudes. The graph shows 1 second of audio, containing 4 syllables ofspeech.
In the spectrogram, voiced speech segments are characterised by horizontal linesin the lower frequency range, representing the fundamental frequency f0 and lowerorder harmonics (multiples of f0). Unvoiced segments are characterised by theirbandwidth and distribution of energy along frequency.
Note that the described signal characteristics apply to normal human speechof male and female adults. For special modes of phonation, like whispering orscreaming, characteristics may differ and are not investigated. Also, only speechsignals with one single speaker are evaluated. Mixtures of multiple simultaneousspeakers may be interesting for future work. As will be described in more detail inchapter 4, both male and female speech is examined.

2.2. Plosives, also known as stop consonants describe articulate sounds produced by blockingand releasing compressed air in the vocal tract. e.g. [p],[t],[k], ... [40]
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2.2 Music
Generally spoken, the term music describes all sounds intentionally produced byhumans using musical instruments or their voice, intended to invoke pleasure orsatisfaction.
music ["mju:zIk] noun • Vocal or instrumental sounds (or both) combined insuch a way as to produce beauty of form, harmony, and expression of emotion[35].

Due to its diverse nature, music cannot be parameterised as well as speech. How-ever, two key assumptions can be made for what is referred to as western music:Music is organised temporally and harmonically, i.e. in time and frequency.
Figure 2.4 shows an excerpt of common staff notation, which graphically visualisesthe organisation of a musical piece in time and frequency.

Figure 2.4 – Simplifiedmusical notation of themain theme of ’The Blue Danube’ by JohannStrauss [41].
The pitch of a musical note is denoted by its vertical placement on or betweenthe staff lines. In tonal music, the placement of pitches determines the harmonictonality or harmony of a piece. The horizontal placement of musical notes denotesthe temporal organisation or rhythm of a piece. [41].
Most music is organised around an underlying pulse or beat. The tempo of amusical piece is defined by the number of beats per minute (bpm) (e.g. 142 bpmfor the shown walz) and is typically between 40 and 200 bpm [42].
Besides the temporal and harmonic organisation, music is characterised by its tem-poral evolution of loudness or dynamic (as denoted by the annotation mezzoforte(mf) and the so called ’hairpin’ below the staff in figure 2.4) and timbre.
Fundamental Frequency and TonalityThe perceived pitch of a musical tone is determined by the fundamental frequency
f0. In contrast to speech signals, where the fundamental frequency ranges fromaround 50Hz to 250Hz, the range of f0 is a lot greater in music signals. For example,the lowest musical note on a typical piano with 88 keys (A0) is pitched at around27.5 Hz. The highest note (C8) has a fundamental frequency of around 4,186Hz [43].
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Figure 2.5 shows the audio waveform (top) and corresponding spectrogram (bot-tom) of amusic segment. Compared to the speech signal (figure 2.3), signal energyfluctuates less rapidly over time and frequency.
Generally, in music signals, the fundamental frequency and harmonic structure areexpected to be stationary for longer segments compared to speech signals [44].This can be observed when looking at the spectrogram of the music segmentshown in figure 2.5 (bottom).
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Figure 2.5 – Music signal (excerpt of piano concert). Audiowaveform (top) and logarithmicpower spectrogram (bottom). Straight horizontal lines in the spectrogram arecharacteristic for tonal music signals.

Timbre and Perceptual attributesBesides its pitch and loudness, a musical tone is characterised by the distributionof energy among its harmonics, i.e. the shape of the spectrum and its developmentover time. In psychoacoustics, this is called timbre of a musical sound. The timbreof a sound can be described subjectively or objectively by analysing the audiowaveform. Perceptual qualities of music signals have been extensively studied inthe field of psychoacoustics and are exploited in various descriptive audio features,as will be described in chapter 5.1.
In summary, music is characterised by the attributes pitch, loudness, timbre, rhythmand harmony.
For this thesis, music recordings of various genres are evaluated, as will be de-scribed in more detail in chapter 4.
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2.3 Environmental Noise
Most dictionaries describe the term noise as an unwanted or disturbing sound.For this thesis however, environmental noise describes any sound that is neithermusic nor speech. This includes various sounds that occur in different acousticenvironments, such as domestic areas and outdoor locations, as well as businessenvironments.
noise ["nOI<z] noun • A sound, especially one that is loud or unpleasant or thatcauses disturbance [35].

The nature of environmental noise sounds is very diverse and cannot be generalisedsatisfyingly. They include pitched sounds (e.g. electrical appliances or power tools),as well as unpitched, wide-band noise like wind or street noise.
Figure 2.6 demonstrates the diverse characteristics of noise signals.
The top graph (a) shows a stationary wide-band noise signal and the correspondingspectrogram. As can be observed, signal energy is stationary for the whole clip ofthree seconds and evenly spread along time and frequency.
The middle graph (b) shows an audio recording of a door being shut, resemblinga transient noise event. Contrary to the wide-band noise signal (a), the ampli-tude rapidly fluctuates (at around 1.2s and 2.25s). The transient noise event ischaracterised by vertical lines in the spectrogram.
The lower graph (c) shows a recording of a power tool, resembling an environmentalnoise sound with tonal energy content. The pitched noise sound is characterisedby its fundamental frequency and its evolution over time, as well as the distributionof signal energy among the lower order harmonics.
For this thesis, sounds from various sources and environments were evaluated.Chapter 4 describes the composition of the used data in more detail.
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(a) wide-band noise
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(b) transient noise event
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(c) pitched noise event
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Figure 2.6 – Noise signals, plots show the audio waveform and spectrogram for (a) wide-band noise, (b) transient noise event and (c) a pitched noise sound.
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3 | Classification Algorithms

The goal of machine learning (ML) is to estimate complex (non-linear) functions,that cannot be solved easily using rule-based hand-crafted systems. Typical tasksfor ML algorithms are classification, regression, transcription, translation, anomalydetection and de-noising.
The term learning describes the process of optimising an algorithm’s parametersbased on experience (i.e. previous data samples) in order to maximise its perfor-mance. Any algorithm that learns from so-called training data can thus be called aML algorithm [45, p.95].
This chapter provides a short introduction to the basics of ML needed for thisthesis, focusing on the classification task.
The Classification TaskIn classification tasks, a ML algorithm aims to associate an observation x to oneof Nc classes, based on experience gained from statistical analysis of previousdata points during the so-called training process.
The algorithm usually solves a function f : �N → {1, 2, . . . , Nc}, aiming to asso-ciate an observation x = [x1, x2, . . . , xN ] with a predicted class c:

c = f (x) (3.1)
Other variants output an a-posteriori probability distribution, yielding an estimatedprobability P̃(c) for observation x being of class c [45, p.97].

ỹ =


P̃(1)
P̃(2)
...

P̃(Nc)


= f (x) (3.2)

Supervised and Unsupervised TrainingML algorithms follow two fundamental training principles. Supervised trainingmethods aim to associate an input with a reference output (e.g. class label c),provided by a (human) supervisor. Unsupervised training methods on the otherhand, learn useful properties from training data without reference data [45, p.102].
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For supervised ML algorithms, the training dataset X consists of O observations,each with N attributes and the corresponding targets y (in classification task, ycontains class labels).

X =


x(1)

x(2)
...

x(O)


=


x(1)1 x(1)2 . . . x(1)N

x(2)1 x(2)2 . . . x(2)N
...

...
. . .

...

x(O)1 x(O)2 . . . x(O)N


, y =


y(1)

y(2)
...

y(O)


. (3.3)

In classicML algorithms, attributes resemble so-called descriptive features, derivedfrom the raw input data in order to obtain a more compact input representation.Descriptive audio features evaluated for this thesis will be described in more detailin chapter 5.1.
Overfitting and UnderfittingIdeally, a ML algorithm should perform well on new, previously unknown input data.In other words, the algorithm should represent a generalised model that works ona wide variety of input data.
Training a ML algorithm usually involves minimising the so-called training error byadapting the algorithm’s parameters. The training error is obtained by comparingthe algorithm’s output with the reference output (i.e. class label). To evaluate analgorithm’s ability to generalise, the so-called test error is derived from separatetest data. Samples in the test dataset are not be included in the training data andvice-versa. Test data should resemble input data, that is expected to occur in thealgorithm’s final application.
If a ML algorithm is too simple and thus not capable of achieving a low trainingerror, the algorithm will perform poorly on test data. The algorithm’s underlyingstatistical model fails to capture the training data’s trend. This is called underfitting.
Overfitting on the other hand occurs, when the training error is very small, butthe gap between the training and test error is too large. This indicates that theunderlying model is too complex, reacting to noise in the training data rather thangeneral trends [45, p.107-112].
Figure 3.1 shows three different estimated models with rising complexity, aimingto describe a datasets underlying trend. As can be seen, the under- and overfitmodels (a) and (c) fail to describe the samples’ underlying function.
In general, good generalisation performance is achieved, when the capacity /complexity of the classification function is matched to the amount of availabletraining data [46] and the offset between the error for train and test data is small.
Figure 3.2 shows how increasing the capacity of a model will decrease the testerror until the optimal capacity is reached. Beyond the optimal capacity the modelwill overfit the training data leading to poor generalisation performance.
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Figure 3.1 – Training data points fitted with three different models, with rising complexity.If the model is too simple (a), the model cannot describe the underlying trend.If it is too complex (c), overfitting will occur [47].
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Figure 3.2 – The capacity of a model should match the amount of training data. If themodel is too complex (high capacity) the model will overfit. If the capacity istoo low, the model will underfit. [45, p.113]
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3.1 Feature-based Classifiers
Feature-based classifiers have been proven useful for classification of broadcastaudio [9, 11], as described in chapter 1.2. For this thesis, a simple Gaussian naivebayes (NB) classifier, a k-nearest neighbours (kNN) algorithm and a support vectormachine (SVM) with Gaussian kernel are evaluated in conjunction with severaldescriptive features (see chapter 5.1).
In the sections below, the underlying mechanics of the classification algorithmswill be explained.

3.1.1 Naive Bayes Classifier
The naive bayes (NB) classifier is a simple probabilistic classifier, applying Bayes’law of conditional probabilities. It is used as a baseline classifier, to compare othermore sophisticated algorithms against.
The classifier is naive in that it assumes independence between attributes. Eventhough this is almost never the case in real life, the classifier still works well for awide variety of classification tasks, as long as the attributes are note too stronglycorrelated [48].
Bayes’ LawBayes’ law (also Bayes’ theorem or Bayes’ rule) describes conditional probabilitiesmathematically. Given the probabilities P(A) and P(B), observing the events A and
B, the probability that event A occurs, given that B is true, is given as

P(A|B) = P(A) · P(B |A)
P(B) , (3.4)

with P(B) , 0, assuming that A and B are independent [45, p.68].
A NB classifier aims to predict the probability P(c |x) for an observation x being ofclass c.
Multi-class discriminationFor multi-class discrimination, the probability for observation x = [x1, x2, . . . , xN ]being of class c is computed as

P(c |x) ∝ P(c)
N∏

i=1

P(xi |c), (3.5)
where xi is one of N observed attributes or features for observation x. P(c)describesthe a-priori probability of class c. When assuming a-priori probabilities to be equal
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for all classes c = 1, 2, . . . , Nc, the term can be simplified to

P(c |x) ∝ 1

Nc

N∏
i=1

P(xi |c), (3.6)
In classification tasks, the goal is to find the most probable class c for an observa-tion x, or in other words finding the maximum a-posterori (MAP) class cMAP:

cMAP = argmax
c

P̃(c |x) = argmax
c

N∏
i=1

P̃(xi |c). (3.7)
where P̃(xi |c) denotes estimated probabilities learned during training [49, p.258].To prevent underflow in the digital domain, instead of multiplying probabilities,their logarithms are summed, as follows.

cMAP = argmax
c

P̃(c |x) = argmax
c

N∑
i=1

log
(
P̃(xi |c)

)
. (3.8)

Gaussian Naive Bayes AlgorithmThe Gaussian NB algorithm assumes, that the likelihood of each attribute xi isdistributed according to the Gaussian function
P(xi |c) = 1√

2πσ2
c

e
− (xi−µc )

2

2σ2c , (3.9)
where σc and µc denote the attribute’s standard deviation and mean derived fromthe training data [50].
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3.1.2 k-Nearest Neighbours Classifier
The k-nearest neighbours (kNN) algorithm is a classifier that estimates the classmembership of previously unknown data samples based on the class membershipof the k closest samples within the training data.
The kNN algorithm is a so-called instance-based learning algorithm, meaning thatthe training process only consists of storing the training dataset X (also calledlazy learning) [51].

k = 5

k = 3

x1

x2

Figure 3.3 – An unknown sample (star) is classified by evaluating the class membershipof the k nearest neighbours (kNN) in a two-dimensional feature space. For
k = 3 two neighbours are of class ’square’ and one of class ’circle’, resultingin a predicted class ’square’. For k = 5, two neighbours are of class ’square’and three of class ’circle’, resulting in a predicted class ’circle’.

Figure 3.3 demonstrates how the algorithm works: The k closest data points
x(i), with i = 1, 2, . . . , k within the training data X are evaluated for their classmembership. Usually the so-called Euclidean distance is used to find the nearestneighbours, corresponding to a straight line between the unknown feature vector xand the training data sample x(i). The unknown sample x is predicted to be of theclass which occurs the most among the k nearest neighbours [45, p.141].
As can be seen, the choice of k severely affects the prediction capabilities. Gen-erally spoken, a large k increases the analysis radius around the input x, makingthe implicit decision boundary smoother and in consequence reducing the effectsof local noise [51]. If k is too small, overfitting might occur, if it is too large, thealgorithm might underfit the training data.
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3.1.3 Support Vector Machine (SVM)
The support vector machine (SVM), is a popular algorithm for binary classificationtasks, due to its relatively low computational cost during prediction and ability tofind well-performing solutions with relatively little training data.
SVMs, originally introduced asmaximummargin classifiers [46] separate data sam-ples in the N-dimensional parameter-space �N by finding a so-called hyperplane,that maximises the margin M between data samples belonging to two separateclasses.
Figure 3.4 shows some data belonging to the two classes ’square’ and ’circle’. Fortwo-dimensional data, the hyperplane is a straight line, separating the two classes.

d(x) = 0

x1

w

x2

M

Figure 3.4 – Two linearly separable classes ’square’ and ’circle’ and the maximum marginhyperplane defined by the support vectors, visualised as filled circles andsquares respectively.
The algorithms underlying decision function d(x) is defined as the dot product of aweight vector w and the input vector x

d(x) = wTx + b (3.10)
Essentially, data points on one side of the hyperplane (d > 0) are associated withone class (y = +1), data points on the other side (d < 0) with the other class(y = −1). The weight vector w is normal to the hyperplane separating the twoclasses, defining the orientation of the hyperplane in the multidimensional space
RN . The bias b defines its shift from the origin b

| |w| | .
In order to maximise the margin M we define the constraints

for y(i) = +1: = wTx(i) + b ≥ a, (3.11)
for y(i) = −1: = wTx(i) + b ≤ −a. (3.12)
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for all training examples {
x(i), y(i)

}, or simpler
y(i)

(
wTx(i) + b

)
≥ a ∀ i, (3.13)

with an arbitrary scaling variable a. From this we can derive the function for themargin
M =

2a
| |w| | , (3.14)

Maximising the margin M is thus equivalent to minimising the norm | |w| |2
M = argmin

w

1

2
| |w| |2 with constraint y(i)

(
wTx(i) + b

)
≥ 1 ∀ i = 1, . . . ,O. (3.15)

In other words, the weight vectorw is a linear combination of the training examples
x(i) for all observations i = 1, 2, . . .O in the training dataset X:

d(x) = wTx + b =
O∑

i=1

αix
Tx(i) + b (3.16)

In practice, it is sufficient to store the so-called support vectors x(i) with non-zeroweights αi , 0, as depicted as filled circles and squares in figure 3.4 [45,52].
Kernel TrickDue to the linearity of the decision boundary, standard SVMs can only classifylinearly separable data. However, by applying a non-linear functionΦ : �N1 → �N2

to the input x, transforming it into a higher-order feature space �N2 (N2 > N1),non-linearly spaced data can be made separable using a linear decision function(as demonstrated in figure 3.5).

Φ

Figure 3.5 – Applying a non-linear transformationΦ to the input feature space allows toseparate non-linearly spaced data with a linear hyperplane [53].
Actually applying the transformΦ(x) to the input data is computationally demand-ing, and sometimes even impossible (i.e. if N2 is infinite). The so-called kernel
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trick simplifies the transformation to a higher-order feature space, by simple kernelevaluations. The decision function (see formula 3.16) can be rewritten as

d(x) =
∑

i

αi K(x, x(i)) + b (3.17)
replacing the dot product xTx(i) with the (non-linear) kernel function

K(x, x̂) =
∑

i

ϕi(x)ϕi(x̂). (3.18)

Gaussian KernelThe most commonly used kernel is the Gaussian or radial basis function (RBF)kernel
K(x, x̂) = e−γ | |x−x̂| |

2
, γ =

1

2σ2
, (3.19)

resembling the Gaussian standard normal density. | |x−x̂| |2 is the squared Euclideandistance between x and x̂, the open parameter γ controls the variance σ2 of theGaussian RBF.
When an unknown sample x is located near a training sample x(i), the RBF kernelfunction will yield a strong response, indicating that they are similar, putting a largeweight on the associated training label [45, p.140].
A small value for γ, i.e. a large variance σ2 will expand the influence of the supportvector x(i) on the classification result for x. A large value for γ on the other handmeans that only support vectors very close to x will have an influence on theclassification result.
SVM with Soft MarginThe standard SVM aims to find an optimal decision boundary to separate all datasamples in the training set. However, this means that the classifier might overfitthe data (or in case of a linear kernel might not be possible). To alleviate thisproblem, a so-called soft margin decision boundary is used [54].
The optimisation problem (equation 3.15) then extends to

M = argmin
w

1

2
| |w| |2+C ·

∑
i

ξi with constraint y(i)(wTx(i)+ b) ≥ 1− ξi, (3.20)
penalty parameter C and slack variables ξi [52,54,55].
Essentially, the penalty parameter C controls the number of support vectors thatare either within the margin or on the ’wrong’ side of the decision function (ξk , 0).If C is small, the decision boundary will be smoother, making the model less proneto overfitting. A large penalty C will lead to a more complex decision boundary,describing the training data more accurately. The goal is to find a parameter C thatexplains the actual trend in the training data without being too complex (overfitting)or too simple (underfitting).
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ξ4
| |w| |

ξ2
| |w| |

ξ3
| |w| |ξ1

| |w| |

x1

x2

Figure 3.6 – Using a soft-margin can reduce overfitting, by allowing some support-vectorsto be within the margin or even on the ’wrong’ side of the decision boundary.[52]
Multi-class discriminationFor multi-class classification tasks (Nc > 2), several SVMs can be combined toform a multi-class classifier.
The most efficient and straight-forward implementation is the One-vs-Rest method.A classifier is trained separately for each class c, with samples of class c beingpositive (y = 1) and the rest being negative (y = −1). The maximum output score(e.g. distance from decision boundary) then defines the output class

c = argmax
c

fc(x). (3.21)
Another, more computationally demanding method is the ’One-vs-One’ method.
Nc(Nc−1)

2 binary classifiers are trained, one for each unique pair of classes {
ci, c j

}.All binary output predictions are then combined by counting the number of positivepredictions for each class.

c = argmax
c

gc(x) with gc(x) =
Nc (Nc−1)

2∑
k=1

δ(c, fk(x)) (3.22)
with the Kronecker delta δ(a, b) given as

δ(a, b) =

1 for a = b,

0 otherwise . (3.23)
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3.2 Deep Learning Algorithms

The term deep learning describes ML algorithms incorporating artificial neuralnetworks with three or more layers of artificial neurons. Deep learning algorithmsinclude both supervised and unsupervised training algorithms and are used forclustering and classification tasks, as well as regression tasks. By adding morelayers, a deep neural network can estimate functions of increasing complexity.
Especially so-called convolutional neural nets (CNN) have been tremendouslysuccessful in image classification and object recognition tasks, outperforming allprevious approaches [27].
In contrast to traditional ML algorithms, deep neural nets can extract features fromraw input data by non-linear transformations, outperforming hand-made descriptivefeatures [45].

3.2.1 Artificial Neural Net (ANN)

Artificial neural networks (ANNs) are an approach tomodel the learning capabilitiesof the central nervous system of animals. Also being referred to as connectionistsystems they are inspired by biological neural networks, which consist of intercon-nected neurons.
Dendrites collect electrical sig-nals.
The cell body combines incom-ing electrical signals beforepassing them on via the axon.

The axon passes electrical sig-nal on to neighbouring cells.

Telodendria are connected todendrites of neighbouring neu-rons via synaptic terminals.

Figure 3.7 – Biological model of a neuron consistingof the cell body and the axon [56].

Figure 3.7 shows the biologi-cal model of a neuron. It con-sists of the cell body and theaxon.The branches stemming fromthe cell body form the dendritictree which collects electro-chemical signals from neigh-bouring neurons.If there is enough stimulationcollected by the dendrites, anelectrical spike will move alongthe axon, passing the elec-trical signal on to other neu-rons like a transmission line[57].
This behaviour is modelledmathematically by intercon-nected processing units calledartificial neurons.
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Artificial NeuronsAn artificial neuron combines the input values {x1, x2, . . . , xN } by linear combination(see figure 3.8). Each input xi is weighted by multiplying with a correspondingweight wi. The sum of the weighted inputs and the bias b is called activation a,which is then transformed using a non-linear activation function σ(a), yielding theneuron’s output state y.
a =

N∑
i=1

wi · xi + b y = σ(a), (3.24)
which can be rewritten as a dot product of a weight vector w and input vector x

y = σ
(
wTx + b

)
. (3.25)

∑

x1

x2

...

xN

b

σ(a) y

×
wN

×
w2

×
w1

a

Figure 3.8 – Artificial Neuron
The trainable weight vector w determines the relevance of a neuron’s input onthe output. The trainable bias b determines the operating point in the non-linearactivation function σ(a).
The activation function σ(a)models the biological counterpart in that the electricalspike traveling through the axon cannot be of infinite strength but will be saturatedwithin a certain range. Common activation functions like the logistic sigmoid func-tion or hyperbolic tangent activation keep the neuron’s state y within a reasonablerange (see figure 3.9 (a) and (b)).
However, in modern implementations of deep neural networks so called rectifiedlinear units (ReLu) are often used instead [29,58,59] (see figure 3.9 (c)), as they canhave a strong regularising effect, and are faster to train than hyperbolic tangentactivation functions [27].
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y = tanh(a)
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(c) Rectifier Linear Unit
Figure 3.9 – Different activation functions for artificial neurons. The hyperbolic tangentfunction (a) ranges from -1 to 1, whereas the logistic sigmoid (b) ranges from0 to 1. The Rectifier Linear Unit (ReLu) clips negative values to 0.
3.2.2 Multi-Layer Perceptron (MLP)
Multiple interconnected artificial neurons form an artificial neural network. In feed-forward neural nets, such as so-called multi-layer perceptrons (MLP), neurons areorganised in consecutive layers:
The first layer, also called input layer is followed by L so called hidden layers, witheach hidden layer l consisting of m(l) parallel neurons.
The last layer (L + 1) is called the output layer, yielding the resulting output vector
y(L+1) =

[
y
(L+1)
1 , y

(L+1)
2 , . . . , y

(L+1)
m(L+1)

]T of a neural network.
Each layer’s activations a(l)i are transformed using non-linear activation functions
σ(l)(a(l)i ) as described above (see figure 3.9) and fed to the inputs of the next layer
(l + 1).
Or in other words, the states of the preceding layer y(l−1) = [

y
(l−1)
1 , y

(l−1)
2 , . . . , y

(l−1)
m(l−1)

]T

are the inputs for the subsequent layer, as depicted in figure 3.10 l [60].
Each neuron’s state yi is given as

a(l)i =

m(l−1)∑
j=1

w
(l)
i, j · y

(l−1)
j + b(l)i , y

(l)
i = σ

(l)(a(l)i ), (3.26)
with bias b(l)i and interconnection weight w(l)i, j .
In vector notation the activations for each layer can be rewritten as the productof a weight matrix W(l) containing all interconnection weights w

(l)
i, j between two

consecutive layers l and (l − 1) and the outputs of the previous layer y(l−1).
y(l) = σ(l)

(
(W(l))Ty(l−1) + b(l)

)
. (3.27)
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Figure 3.10 – Multilayer perceptron with N inputs, L hidden layers, each with m(l) neuronsand Nc = 3 output neurons. Arrows represent weighted connections betweenneurons.
Figure 3.10 shows a multi-layer perceptron (MLP) with N inputs, L hidden layersand Nc = 3 output neurons.
Softmax ActivationIn classification tasks, the output layer usually incorporates the so called softmaxactivation function, which normalises the sum of the output vector y(L+1) to 1, sothat each output yc represents the a-posteriori detection probability of a certainclass c 3.1:

yc =
ea(L+1)c∑Nc

j=1 ea(L+1)j

, ∀ c = 1, . . . , Nc (3.28)

3.1. Sometimes it makes sense to use a logistic sigmoid activation instead, as this allowsmultipleclasses to be detected at the same time [32].
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3.2.3 Training a Neural Net
The successive adaptation of a neural network’s parameters, such as intercon-nection weights w

(l)
i, j and biases b(l)j is called training. The training process aimsto minimise a loss function L, describing the deviation between the neural net’soutput ỹ = y(L+1) and the desired target y.

Loss functionThe most common loss function for classification tasks using neural nets is thecategorical cross entropy [61]. The categorical cross entropy is the Kullback-Leiblerdivergence of the estimated probability distribution q from the ground truth p andis given as
Lp(q) = −

Nc∑
i=1

pi log(qi), (3.29)
where Nc is the number of categories or classes [62,63].
The output of a neural net classifier is the estimated probability distribution ỹ, whichaims to predict the target distribution y. The target or ground truth y resemblesa one-hot encoding of the class labels. So for the classes music, environmentalnoise and speech, the respective target distributions are given as

y =


y1

y2

y3

 =

1

0

0

 ,
(a) Music

y =


y1

y2

y3

 =

0

1

0

 ,
(b) Env. Noise

y =


y1

y2

y3

 =

0

0

1

 .
(c) Speech

A neural net’s classification output ỹ for a music segment might be the estimateda-posteriori probability distribution

ỹ =


y0

y1

y2

 =

0.95

0.02

0.03

 . (3.30)

The categorical cross entropy of the predicted distribution ỹ can then be computedas
Ly(ỹ) = −(1 · log(0.95)) ≈ 0.051. (3.31)

For a perfect prediction, the loss L will be 0. A classifier that guesses randomlywill yield a categorical cross entropy of L = −(1 · log(1/3)) ≈ 1.098.
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Parameter OptimisationThe goal of parameter optimisation is to minimise the loss L by iteratively adapt-ing a neural net’s trainable parameters, such as interconnection weights and bi-ases. The trainable parameters are adapted layer by layer using the so-calledback-propagation algorithm and an optimisation algorithm such as the stochasticgradient descent (SGD) or Adam.
Back Propagation AlgorithmWhen training a feed-forward neural net, the network’s response to an input x isevaluated by propagating the initial information contained in x through the networklayer by layer. This is called forward propagation. From the neural net’s output ỹand the reference or target y a scalar loss Ly(ỹ) is derived.
To minimise the loss L by gradient descent or other optimisation algorithms, itis important to compute the partial derivatives of L for each trainable parameterin the network. To find the gradients ∇W(l)L and ∇b(l)L for each layer l , the erroror loss L is propagated back through the network layer by layer starting with theoutput layer [64].
The underlying principle of the back-propagation algorithm is listed in pseudocodebelow (Algorithm 1). For a more detailed description of the back-propagationalgorithm, please refer to [45,64,65].
Stochastic Gradient DescentDifferent optimisation algorithms, also simply called optimisers, are used to calcu-late the weight and bias updates ∆W and ∆b.

W(l) ←W(l) + ∆W(l), b(l) ← b(l) + ∆b(l). (3.32)
For the sake of simplicity, all training parameters in W(l) and b(l) for each layer lare denoted as one parameter vector θ.

θ ← θ + ∆θ . (3.33)
The most common optimiser o(∇θL) is the so-called stochastic gradient descent(SGD), which updates the weights into the direction of the steepest descent movingalong the multi-dimensional error plane:

∆θ = o(∇θL) = −γ · ∇θL = −γ · ∂L
∂θ

, (3.34)
where ∇θL is the gradient of the loss function L evaluated for a training exampleand γ is the learning rate or step size [45, p.150].
SGD is very sensitive to changes in the learning rate γ. If it is too small, findingthe global minimum in the multi-dimensional loss plane will take very long. If it istwo large, the algorithm might ’overshoot’ the minimum in the error plane, resultingin an oscillation around it. To alleviate this problem, many different optimisationalgorithms with adaptive learning rates, such as Adam have been developed.
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Algorithm 1: Basic principles of back-propagation algorithm [45,65].
1. Feed-forward:feed the input x through the network layer by layer (forward propagation),starting with the input layer l = 1
y(1) ← x ;
for l = 2, . . . , (L + 1) do

y(l) = σ(l)
(
(W(l))Ty(l−1) + b(l)

) ;
end

2. Compute loss:compute the error or loss Ly(ỹ) from the neural net’s output ỹ = y(L+1)and the desired target y.
3. Back-propagation:propagate the error back through the network in order to obtain the partialderivatives or gradients g of the loss for each layer,starting with the output layer l = L + 1
g← ∇ỹLy(ỹ) ;
for l = L, L − 1, L − 2, ..., 1 do

g←
(
(W(l+1))Tg

)
� σ′(l)(a(l)) ;

compute rate of change of the loss with respect to the bias vector b(l)and weight matrix W(l)

∇b(l)L = ∂L
∂b(l) = g ;

∇W(l)L = ∂L
∂W(l) = y(l−1)g ;

update trainable parameters by evaluating the optimiser function o(∇L)
∆b(l) = o(∇b(l)L);
b(l) ← b(l) + ∆b(l);
∆W(l) = o(∇W(l)L);
W(l) ←W(l) + ∆W(l);

end

Adam
Adam was introduced by Kingma and Ba [66] in 2015. The name Adam is derivedfrom the term adaptive moment estimation and combines advantages of otherpopular optimisation techniques, such as AdaGrad [67] and requires little to notuning.
Adam keeps an exponentially decaying average of past gradients, estimating thefirst and second moment mean m and variance v. This helps accelerating thegradient descent in the relevant direction, dampening oscillation around local
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minima in the error plane, similar to momentum 3.2:
m← β1 ·m + (1 − β2) · ∇θL (3.35)
v← β1 · v + (1 − β2) · ∇2θL (3.36)

Before training, m and v are initialised to zero. To compensate the resulting bias inthe early adaptation steps, they are corrected as follows:
m← m

1 − β1 (3.37)
v← v

1 − β2 (3.38)
The final update rule is then given as

∆θ = − γ√
v + ε

·m, (3.39)
with recommended parameters γ = 0.001, β1 = 0.9, β2 = 0.999 and ε = 10−8 [66,68].

Mini-Batch TrainingWhen training on large amounts of data, calculating parameter updates by eval-uating all training samples successively will take very long. In practice, a verygood approximation of the gradient ∇L can be computed evaluating a randomlysampled subset of training examples.
Optimisation algorithms evaluating a single sample at a time (B = 1) are called
stochastic methods.
Optimisation algorithms using the entire training set for each parameter updateare called batch training or deterministic gradient methods, with the batch size Bbeing equal to the total number of observations O in the training set.
The so-calledMini-batch training algorithms fall somewhere in between, evaluatinga small set of B samples at a time.
Multi-core setups with GPU-accelerated 3.3 computing allow for parallel evaluationof multiple samples, where the amount of memory and hard disk read speeds areusually the limiting factor. Small batch sizes have a regularising effect, reducingoverfitting, but do not utilise multi-core setups well. Choosing the right batch size
B comes down to finding a compromise between speeding up training and anaccurate gradient estimation [45].
3.2. Momentum works by adding a fraction β of the previous update vector to the current updatevector: ∆θ ← −γ · ∇θL + β · ∆θ3.3. Graphics Processing Units (GPU) are specialised circuits for rendering image data. Incorpo-rating many parallel processing units, they are very efficient for parallel analysis of large amountsof data.
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EpochsUsually, the training data will be presented to the neural net several times until theloss L has reached its minimum. The number of times, the full training data ispresented to the neural net is called the number of epochs. Or put differently, onecomplete pass through all training examples is called an epoch. Usually trainingexamples in the training set are shuffled before each epoch, so that successivetraining examples are not correlated. This prevents the network from getting stuckin local minima within the error plane [69].
RegularisationThe term regularisation describes techniques to guide the training process intothe right direction and in consequence prevent overfitting.
One popular regularisation technique is the use of dropout between layers: Somerandomly drawn interconnection weights are set to zero (typically a dropout propa-bility of 25% - 50% is used), ensuring that the output at the end of the network doesnot depend on the state of only a few artificial neurons, which in consequencemakes it less prone to overfitting [70].
Another very straight-forward regularisation method is early stopping. Instead oftraining a NN for a certain number of epochs, training will be stopped, as soonas the validation loss Ly(ỹ) stops improving 3.4. This ensures that the NN doesnot overfit the training data. To do so, a test set is evaluated after each epoch toobtain the validation loss Ly(ỹ). Figure 3.11 shows the evolution of the trainingand evaluation loss for a NN trained for 35 epochs. As can be seen, validation lossstops improving after 22 epochs.
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Figure 3.11 – Early stopping: Training is stopped when the validation loss stops improving.
Other regularisation efforts include unsupervised pre-training [71] and batch nor-malisation [72] but have not been further investigated for this thesis.

3.4. In practice, usually training is not stopped immediately but after a few epochs (also calledpatience), so that the overall trend of the validation loss is captured rather than small fluctuations.
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3.2.4 Convolutional Neural Network (CNN)
Convolutional Neural Nets (CNN) are multi-stage architectures, consisting ofseveral so-called convolutional layers and consecutive feature pooling / down-sampling layers followed by several fully-connected layers of artificial neurons.Originally developed and successfully used for image classification [27,33], theyhave proven to work great for audio classification tasks [28,29,32].
Essentially, convolutional layers work by correlating segments of the input datawith trained prototype filter kernels, yielding a high output score for matchingpatterns. By adding more convolutional layers, patterns of rising complexity canbe extracted from the input image.
Figure 3.12 shows the model structure for a CNN with two convolutional layerswith consecutive pooling layers and two fully-connected layers as a classifier.
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Figure 3.12 – Model structure of CNN featuring two convolutional layers with consecutivepooling and an MLP classifier with two fully-connected layers for imageclassification.
In the following, discrete convolution and its application in convolutional neuralnets are explained.
Discrete ConvolutionThe convolutional operation for functions x(t) and k(t) is given as

s(t) = (x ∗ k)(t) =
∫

x(τ)k(t − τ)dτ. (3.40)
Assuming that x and k are only defined at discrete intervals, the so called discreteconvolution si can be defined as

si = (x ∗ k)i =
∞∑

n=−∞
xi · ki−n. (3.41)
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Filter kernels can be one-, two- or three-dimensional, depending on the input dataformat. In our case two-dimensional kernels are used to extract relevant informa-tion from spectrograms.
With a two-dimensional kernelK of size h1×h2 and an input imageX of size m2×m3the convolution operation is defined as

si, j = (X ∗K)i, j =
h1∑

m=1

h2∑
n=1

xi−m, j−n · km,n, (3.42)
with the kernel K and input X being

K =


k0,0 k0,1 · · · k0,l2
k1,0 k1,1 · · · k1,l2
...

...
. . .

...

kl1,0 kl1,1 · · · kl1,l2


and X =


x0,0 x0,1 · · · x0,m2

x1,0 x1,1 · · · x1,m2
...

...
. . .

...

xm1,0 xm1,1 · · · xm1,m2


,

yielding the two-dimensional output S [45, p.322-324].
Figure 3.13 demonstrates the mechanics of discrete two-dimensional convolution:A small kernel (2×2) resembling a vertical edge is moved across the larger inputimage (5×5), and evaluated according to equation 3.42. As can be seen the verticalline is emphasised (as indicated by darker color) in the output image, while thehorizontal line is getting washed out. Note that in this example no zero-paddingwas applied at the edges of the input image, resulting in reduced dimensions forthe output image S (4×4).
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Figure 3.13 – Discrete two-dimensional convolution for input imageX of size n2×n3 = 5×5with filter kernelK of size h1 × h2 = 2× 2, resulting in an output image of size
m2 × m3 = 4 × 4. The depicted filter kernel detects and emphasises verticallines.
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Convolutional LayerThe input of a two-dimensional convolutional layer l is a three-dimensional arraywith n(l)1 two-dimensional feature maps of size n(l)2 ×n(l)3 . For a spectrogram or black
and white image, the number of channels or feature maps is n(1)1 = 1 3.5.
Each convolutional layer is composed of m1 · n1 filter kernels Ki, j , each of size
h(l)1 × h(l)2 , yielding m(l)1 two-dimensional feature maps of size m(l)2 ×m(l)3 at the output.Each filter Ki, j detects a particular pattern at every location on the input X j [33].
The output feature maps Y(l)i for layer l are given as the sum over the discreteconvolutions of the trainable filter kernels Ki, j with the input feature maps X j anda trainable bias b(l)i .

Y(l)i = σ
(l) ©­­«b(l)i +

n(l)1∑
j=1

K(l)i, j ∗X
(l)
j

ª®®¬ , (3.43)

with i = 1, 2, . . . ,m1, j = 1, 2, . . . , n1 and non-linear transformation function σ(l).

Pooling LayerSo called pooling (also down-sampling) layers are used to reduce the resolutionof a preceding convolutional layer’s output feature maps Y(l−1)i . Pooling worksby moving an analysis window of size p1 × p2 along the input image with a stride
s1×s2 and evaluating the pooling function at each position, combining neighbouringpixels to a single value. Themost popular pooling function is so calledmax pooling,where the analysis window is represented by its maximum value at the output, asdemonstrated in figure 3.14
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Figure 3.14 – Max pooling on a two-dimensional input imageX of size m2 ×m3 = 4× 4 withpool size p1 × p2 = 2 × 2 and stride s1×2 = p1 × p2 (no overlap).

3.5. For a colored RGB image (The RGB color space is an additive color model, describing a colorin three channels, representing the colors red, green and blue.) the number of channels would be
n(1)1 = 3.
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Fully-connected LayerAs mentioned before, the convolutional layers with consecutive pooling or down-sampling are followed by one or more so-called fully-connected layers, resemblinga multi-layer perceptron (MLP) classifier. In other words, the outputs of the lastconvolutional layer resemble the features for classification with the MLP.

3.3 Evaluating a Classifier
To examine the performance of a classification algorithm, the trained model isapplied to previously unseen data. Several measures can then be used to comparedifferent algorithms, including the classification accuracy, precision and recall, aswell as the so-called f-measure.
A way to visualise the performance of a classification algorithm on a test set, isthe so called confusion matrix M.
By definition, each element mi, j represents the number of samples known to beof class i and predicted as class j [73]. The diagonal (i = j) contains the numberof correctly classified samples, the rest of the matrix contains the number ofmisclassifications (i , j).

M =


m1,1 m1,2 . . . m1,Nc

m2,1 m2,2
... m1,Nc

... . . .
. . . m2,Nc

mNc,1 mNc,2 . . . mNc,Nc


(3.44)

Or in other words, each row i of M corresponds to the true label of a class. Eachcolumn j represents the predicted label respectively.
Figure 3.15 shows a confusion matrix for a speech, music and environmental noiseclassifier (Nc = 3). The evaluated test set contains N = 3000 samples, 1000 foreach class. Out of 1000 music samples, 843 (84.3%) were predicted correctly, 103(10.3%) were misclassified as environmental noise and 54 (5.4%) were mislabelledas speech. The second and third row represent the number of correct and falseclassifications for environmental noise and speech respectively.
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Figure 3.15 – The confusion matrix: Each row represents true class membership, each col-umn represents predicted class membership respectively. The normalisedconfusion matrix (right) can be visualised with colours to make it easilyinterpretable. Green indicates correct classification, red indicates false clas-sification.
From the the confusion matrix, several measures of classification performancecan be derived.
Accuracy:The classification accuracy a measures how many of the total N samples areclassified correctly. Or put differently, the overall accuracy of a classifier is thenumber of samples in the main diagonal of the confusion matrix M divided by thetotal number of samples N =

∑Nc

i=1
∑Nc

j=1 mi, j .

a =

∑Nc

i=1 mi,i

N
(3.45)

For the example in figure 3.15 the overall accuracy is a = (843 + 856 + 989)/3000 ≈
90%.
PrecisionPrecision pc (also called positive predictive rate) is defined as the ratio of thenumber correct predictions and the total number of predictions of class c (sumover column).

pc =
mc,c∑Nc

i=1 mi,c
(3.46)

For our example, the precision for music is p1 = 843/(843 + 117 + 11) ≈ 86.28%.
The overall precision for the evaluated classifier is the average subject to thenumber of evaluated samples for each class c (sum over row).

p =
Nc∑

c=1

pc

∑Nc

j=1 mc, j

N
(3.47)
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For our example, the overall precision is p = (86.28% + 89.35% + 91.91%)/3 ≈ 90%.
RecallRecall rc (also called hit rate) is the ratio between the number correct predictionsof class c and the number of samples for class c (sum over row).

rc =
mc,c∑Nc

j=1 mc, j
(3.48)

For our example, the recall for music is r1 = 843/(843 + 103 + 54) = 84%.
Analogous to eq. 3.47, the overall recall for the evaluated classifier is given as

r =
Nc∑

c=1

rc

∑Nc

j=1 mc, j

N
. (3.49)

For our example, the overall recall is r = (84.3% + 85.6% + 98.9%)/3 ≈ 90%. As canbee observed, when the number of training examples is equal for each class, theoverall recall r is equivalent to the accuracy.
F-scoreThe so-called F-score is the harmonic mean of precision and recall. It is 1 forperfect classification, i.e. a precision and recall of 1, and 0 in worst case.

Fc = 2 · pc · rc

pc + rc
(3.50)

For our example, the F-score for music F1 is 2 · 87 · 84%/(87% + 84%) ≈ 86%.
As with precision and recall, the overall F-score is computed with regard to thedistribution of samples among classes.

F =
Nc∑

c=1

Fc

∑Nc

j=1 mc, j

N
. (3.51)

For our example, F = (86% + 87% + 96%)/3 ≈ 89%.
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4 | MUSPEN Dataset

As described in chapter 3, machine learning (ML) algorithms adapt their parametersbased on experience gained by evaluating so-called training data. The performanceof a ML algorithm is validated using separate test data.
The Music, Speech and Environmental Noise (MUSPEN) dataset consists of 150hhours of ’clean’ speech, music and noise data for training. To overcome the lack oftraining data recorded in real acoustic environments, the dataset was augmentedusing a room simulation procedure (see section 4.5), yielding another 150h of
’degraded’ training data.
In order to evaluate a classifier’s performance, the MUSPEN dataset contains30h of ’clean’ test data. Additionally, 1h of test data was recorded with a far-fieldmicrophone array and manually labelled, resembling real world data (see section4.4) . This test dataset is referred to as the ’target’ test data.
Table 4.1 lists the amount of training and test data for each class.

TRAIN TEST
class ’clean’ ’degraded’ ’clean’ ’target’

Music 50h 50h 10h 20m
Speech 50h 50h 10h 20m
Env. Noise 50h 50h 10h 20m
total 150h 150h 30h 1h

Table 4.1 – The Music, Speech and Environmental Noise (MUSPEN) dataset. This tableshows the duration of training and test data in hours.
Training data includesmusic, speech and environmental noise signals from varioussources, ensuring the training data features a wide variety of examples.
As the different sources provide audio data in different (compressed and uncom-pressed) data formats, all audio data was re-sampled to fs = 16kHz and 16bits andstored in .wav-files for further processing. For multi-channel audio files, only thefirst channel was kept.
Section 4.1 describes the ’clean’ music data collected for training and evaluation.Sections 4.2 and 4.3 present speech and environmental noise data respectively.



54 Speech, Music and Environmental Noise Classification

4.1 Music Data
The MUSPEN dataset includes a total of 60h of ’clean’ music data of which 50h areused for training and 10h are used for evaluation purposes. As described below,training and test data come from different sources, ensuring that audio from thetest set is not included in the training dataset and vice-versa.
Training DataTraining data is taken from the GC16UX song dataset provided by the InternationalMusic Information Retrieval Systems Evaluation Laboratory (IMIRSEL) as part ofthe MIREX challenge 2016 [74]. The dataset contains 10,000 songs in MP3 formatfrom Jamendo.com 4.1, a web-service hosting royalty-free music.
The dataset includes meta-data, such as each track’s genre, artist and duration.Figure 4.1 shows the distribution of music data by genre 4.2. As most music in theoriginal dataset is labeled as electronic music, a subset of 50h was drawn fromthe full dataset, that more evenly represents different styles of music (6.25h pergenre category).
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Figure 4.1 – Distribution of combined genres in the GC16UX song dataset [74]. Most musicin the database is labeled as electronic music (317.2h). Some genres, suchas funk, soul and jazz were combined into one category.

Test DataTest data was gathered by downloading popular music mixes from YouTube.comin MP3 format with a total duration of 10h. As with the training data, it includesmusic from various genres. More specifically the dataset contains approximately1h of audio data for each of the following categories: hip-hop, classic rock, heavymetal, jazz, classical music, funk, raggae, electronic dance music, pop and folk.
4.1. https://www.jamendo.com/ - accessed in June 20174.2. Genres annotations provided with the dataset were parsed and combined, so that each genreconsists of at least 450 audio files.

https://www.jamendo.com/
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4.2 Speech Data
Speech data was taken from the LibriSpeech database, curated by Panayotov et al.[75] for training and evaluating speech recognition systems. The dataset consistsof approximately 1,000h of English speech from hundreds of different speakers, asuncompressed .flac-files sampled at 16kHz. The audio data is collected from audiobooks provided by libriVox.org 4.3, an online-service hosting free public domainaudio books read by amateurs.
Training Data50h of speech recordings were taken for training, including 60 female and 60 malespeakers into the training set, around 25 minutes of speech recordings for eachspeaker. All speech signals feature one single speaker. All spoken text is in theEnglish language.
Due to the lack of available data, no children are included in the training data set.As already mentioned in chapter 2.1, special phonations such as screaming, cryingor whispering are not included in the training data set.
Test Data10h of speech data from various sources was collected, including 40 speakers fromthe librivox database, that are not included in the training set (around 8 minutesper speaker), as well as manually curated and segmented politician speeches andTED science talks 4.4. The test data contains approximately 50% female and 50%male speech. Around 25 minutes is children speech.

4.3. https:// librivox.org - accessed in June 2017.4.4. TED (Technology, Entertainment, Design) is an annual conference in California, USA. Speechesfrom TED conferences are available online, featuring a wide variety of topics and speakers.
https://www.ted.com - accesed in June 2017

https://librivox.org
https://www.ted.com
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4.3 Environmental Noise Data
To our knowledge, no large-scale environmental noise databases were publiclyavailable at the time of collecting audio data. Existing popular noise datasets, suchas NOISEX-92 or AURORA-2 typically only feature very little data [76].
Train DataTo cover a wide variety of sounds from different acoustic environments, severalpublicly available datasets have been combined:
The dataset provided by Stowell et al. for the IEEE AASP Challenge on Detection
and Classification of Acoustic Scenes and Events (DCASE) [77] features audio datafrom different acoustic environments, including different outdoor and indoor loca-tions 4.5.
The QUT-NOISE database was developed by Dean et al. in 2010 [76] to evaluatevoice activity detection algorithms. It features audio data recorded in differentdomestic and public environments 4.6.
Stork et al. have recorded kitchen noise for audio-based human activity recognitionwith robots [78]. The audio dataset Freiburg 106 is publicly available 4.7.
The TUT Acoustic Scenes 2017 [79] dataset features audio segments from 15different indoor and outdoor locations 4.8 with a total 52 minutes of audio.
The Diverse Environments Multichannel Acoustic Noise Database (DEMAND) [80]provides 1.5h of multi-channel recordings in different outdoor and indoor environ-ments 4.9. The dataset is publicly available 4.10.
Additionally, audio data from the Auditory Perception Lab at Carnegie MellonUniversity [81], Beltran et al. at CICESE [82] 4.11 and the CNBC Stimulus Repository[83] was included into the training dataset.
Furthermore, manually curated audio data downloaded from Freesound.org 4.12
and Soundcloud.com 4.13 was added to obtain a total of 50h of training data.
Test Data10h of environmental noise was collected from various sources (Freesound.org,
4.5. acoustic scenes included are: bus, busy street, office, open air market, park, quiet street,restaurant, supermarket, tube, tube station4.6. acoustic scenes included are: café, home, street, car and reverb.4.7. http://www.csc.kth.se/~jastork/ pages/ datasets.html - accessed in July 20174.8. acoustic scenes included are: bus, cafe / restaurant, car, city center, forest path, grocerystore, home, lakeside, library, metro station, office, residential area, train, tram, urban park4.9. acoustic scenes included are: domestic, nature, office, public, street, transportation4.10. http:// parole.loria.fr/DEMAND/ - accessed in July 20174.11. available at http:// sound.natix.org - accessed in July 20174.12. https:// freesound.org - accessed in July 20174.13. https:// soundcloud.com - accessed in July 2017

http://www.csc.kth.se/~jastork/pages/datasets.html
http://parole.loria.fr/DEMAND/
http://sound.natix.org
https://freesound.org
https://soundcloud.com
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Soudcloud.com, Youtube.com ...), ensuring that no data in the training set is in-cluded in the test set and vice versa. To make sure, noise data resembles en-vironments that are likely to occur in real-world scenarios, sounds of differentcategories were collected. The dataset contains approximately 1h of audio datafor each of the following environments/categories: bathroom, in-car traffic noise,city, kitchen, miscellaneous living, office, outdoor, party (no music or isolatedspeech) 4.14, weather and workshop.
Due to the diverse nature of the environmental noise sounds, the data is ratherinhomogeneous, especially when compared to the speech and music data.

4.4 Mic-Array Recordings - ’Target’ Data
To investigate the classifiers’ performance in real-world scenarios, a small so-called ’target’ test set was recorded with the microphone array of the Harman
Kardon Invoke voice-activated loudspeaker (see figure 1.1).
The audio data was recorded in different domestic and business environments,including a kitchen, a living / bed room, a small bathroomand an office environment.
Speech data includes six different speakers, including the author. The data featuresthree female and three male speakers, all speaking in German. Music data includesmusic of various genres played back by stereo systems of different sizes and atdifferent levels. Environmental Noise data includes different everyday activitieslike hoovering, doing the dishes and taking a shower.
In total 1h of ’target’ test data was used for validation purposes, 20 minutes foreach class.

4.5 Data Augmentation - ’Degraded’ Data
The goal of this thesis is to develop an algorithm that effectively classifies anaudio data stream recorded with a far-field microphone array in real-life scenarios.Unfortunately, no labelled audio data recorded with the far-field microphone arraywas readily available.
As shown by Salamon et al. [28], the lack of training data can be overcome usingdata augmentation techniques. In our case, the clean audio data in the training setwas processed, simulating the playback and recording of the ’clean’ training datain different acoustic environments. This way, training data is augmented, withoutactually having to record and manually label large amounts of data.
More specifically, the training audio data was chopped into segments of 10s each.
4.14. This category includes so-called babble noise, which occurs when many individuals talksimultaneously.
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Each segment was then convolved with one of 15 room impulse responses fromdifferent indoor locations 4.15 and one of seven microphone impulse responses (asmeasured for the ’target’ microphone array in an anechoic chamber). The basicsignal flow for signal degradation is shown in figure 4.2.
w[n]

x[n] room
simulation

(x ∗ hr)[n]

mic
simulation

(w ∗ hm)[n]

x̂[n]

Figure 4.2 – Degrading audio input signal x by convolving it with the impulse response ofa room hr and the impulse response of a microphone hm.
Each audio segment of 10s was then normalised after degradation. The resultingaudio data yields the ’degraded’ train data (see table 4.1).

4.15. Room impulse responses come from small and medium sized indoor locations with re-verberation times RT60 between 0.4s and 1.5s. Room impulse responses can be found at
http://www.openairlib.net/ auralizationdb and https:// github.com/ idiap/ acoustic-simulator/ tree/
master/ impulse-responses-original/ spaces - accessed August 2017

http://www.openairlib.net/auralizationdb
https://github.com/idiap/acoustic-simulator/tree/master/impulse-responses-original/spaces
https://github.com/idiap/acoustic-simulator/tree/master/impulse-responses-original/spaces
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5 | Machine Learning Approach

As described in chapter 1.2, feature-based machine learning algorithms have beenused successfully for audio classification [9, 11, 17], using different statistical clas-sification procedures from the field of artificial intelligence (AI).
Whilemany classification algorithms, such asGaussianmixturemodels (GMM) andthe k-nearest neighbours (kNN) algorithm, yielded promising results, support vectormachines (SVMs) have proven to perform better for multi-class audio classificationtasks [84].
For this thesis, a simple Gaussian naive bayes (NB) algorithm is evaluated, formingthe baseline to compare other classifiers against. Additionally a kNN classifier anda non-linear SVM with radial basis function (RBF) kernel are investigated.
The underlying principles are presented in chapter 3. This chapter describes thedescriptive audio-features and the implementation of the classifiers evaluated forthis thesis.

5.1 Descriptive Audio Features
The characteristics of speech and music signals described in chapter 2, can beexploited to define so-called descriptive features, which are more compact repre-sentations of the respective audio signal.
In accordance with Khan et al. [10], audio features are extracted at frame-leveland clip-level. An audio frame is typically some tens of milliseconds long. Shorterframes allow for a more accurate tracking of transient events. Longer frames onthe other hand will increase resolution for spectral analysis.
Classification can be carried out on frame-level, leading to adequate results. How-ever, quite many frames will not be characteristic of the particular class and likelylead to misclassification [85]. It thus makes sense to integrate frame-level featuresover time into what is referred to as clip-level features. A clip is typically one toseveral tens of seconds long and characterises the distribution of frame-levelfeatures over time, as will be described in chapter 5.1.2. Audio data is segmentedso that the content within a clip belongs to one class [10].
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Section 5.1.1 describes investigated frame-level features. Section 5.1.2 describestemporal integration techniques used to obtain clip level features. The final featuresset used for classification is then obtained by ranking different clip-level features,as described in section 5.1.3.

5.1.1 Frame-level Features

A total number of 26 frame-level features, as listed in table 5.1, are evaluated forthis thesis, including features derived from the time signal x[n], a mid-level spectralrepresentation X(k), as well as features in the cepstral domain.
These features were chosen, as they are well-researched and many of them havebeen proven effective for various audio classification tasks [9, 11, 17]. Some arereadily available in the librosa audio analysis toolbox [86] and the Speech Signal
Processing Toolkit (SPTK) [87]. Others have been implemented based on the
Timbre Toolbox [88].
Symbol ID Feature Page Source #

ZCR zcr Zero-Crossing-Rate 61 librosa [86] 1
STE ste Short-Time Energy 61 librosa [86] 1
µ1 spec_centroid Spectral Centroid 64 librosa [86] 1
µ2 spec_spread Spectral Spread 64 librosa [86] 1
µ3 spec_skew Spectral Skewness 65 Timbre [88] 1
µ4 spec_kurt Spectral Kurtosis 65 Timbre [88] 1
fro spec_rolloff Spectral Roll-Off 65 librosa [86] 1
SF spec_flux Spectral Flux 65 Timbre [88] 1
HC chroma_ent Chromatic entropy 67 1
c mfccs Mel Frequency Cepstral Coefficients 70 librosa [86] 12
f0 f0 Fundamental Frequency 71 SPTK [87,89] 1

Harm harmonicity Harmonicity 71 Timbre [88] 1
T1, T2, T3 tristimulus Tri-stimulus 72 Timbre [88] 3
Total 26

Table 5.1 – Frame-level features. Source is listed if feature was readily available.

All training and test data (see chapter 4) is sampled at fs = 16 kHz. Frame-levelfeatures are evaluated for a frame length of 1024 samples (64ms) and a hop sizeof 160 samples (10ms), yielding 100 feature values per second. Spectral featureswere computed, using a Fast Fourier Transform (FFT) with a resolution of 1024frequency bins (see chapter 5.1.1.2).
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5.1.1.1 Time-based features

Zero-Crossing Rate (ZCR)As the name suggests, the zero-crossing rate (ZCR) measures how often a signalcrosses zero within a certain amount of time. It is high for noisy sounds and lowerfor periodic signals, such as voiced speech segments or musical tones [90].
The ZCR for a frame-size N is given as

ZCR[t] = t∑
n=t−N

(1 − δ(sign(x[n − 1]), sign(x[n]))) , (5.1)
with the Kronecker delta δ(a, b) and the sign function sign(x) given as

δ(a, b) =

1 for a = b,

0 otherwise and sign(x) =

1 for x ≥ 0,

0 otherwise . (5.2)

Short-Time Energy (STE)The short-time energy (STE) estimates the signal energy at a given time. Contraryto the ZCR, the STE is typically higher for voiced sounds and lower for unvoicedsounds [90].
It is computed by evaluating the root mean square (RMS) energy of each frame oflength N :

STE[t] =
√√√

1

N

t∑
n=t−N

x2[n]. (5.3)

Figure 5.1 shows the logarithmic magnitude spectrogram |X[k, t]|dB (see chapter5.1.1.2 below), the ZCR, and STE for a music, environmental noise and speechsignal respectively.
As expected for a pitched music signal (a), the ZCR is generally low and stationaryfor longer segments. For the speech signal (c), the ZCR fluctuates more rapidly,with higher values for unvoiced speech segments and lower for voiced segments.
For the speech signal (c) the STE fluctuates with each syllable and is higher forvoiced and lower for unvoiced, noise-like speech segments. As speech containspauses, the average STE is lower than for music (a).
Due to the heterogeneous nature of environmental noise sounds, the shown audiofeatures for environmental noise (b) are less characteristic and conclusive.
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Figure 5.1 – audio waveform, zero-crossing rate (ZCR) and short-time energy (STE) for 1sof (a) music, (b) environmental noise and (c) speech.
5.1.1.2 Spectral Features

Spectral analysis describes a signal’s energy distribution along frequency. Thespectrum of a time signal x(t) is given as the Fourier Transform F {x(t)}:
X(ω) = F {x(t)} = 1

2π

∫ ∞

−∞
x(t)e− jωt dt, (5.4)

with frequency ω. For discrete signal x[n] of finite length N , we can compute the
Discrete Fourier Transform (DFT) for each spectral component k:

X[k] = DFT{x[n]} = N∑
n=1

x[n]e− j 2πN nk = |X[k]| · e jϕ[k] (5.5)
The DFT is complex-valued with magnitude |X[k]| and phase ϕ[k], given as

|X[k]| =
√
Re{X[k]}2 + Im{X[k]}2, ϕ[k] = arctan

(
Im{X[k]}
Re{X[k]}

)
, (5.6)

where Re{X[k]} denotes the real part and Im{X[k]} the imaginary part of X[k] =
Re{X[k]} + j · Im{X[k]} [91].
The power spectrum S[k] = |X[k]|2 (also spectral density) describes the signalenergy as a function of frequency, estimating how much each spectral component
k contributes to the signal. Often, the spectrum is evaluated in the logarithmicdomain, yielding the logarithmic power spectrum (LPS) SdB[k] in decibels:

SdB[k] = 20 · log10 |X[k]| (5.7)
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The so-called Short-Time Fourier Transform (STFT) is the DFT computed for eachtime frame t. The signal is evaluated segment-wise. Each segment or frame ismultiplied with a window function w[n] (i.e. a Hann window). The STFT

X[k, t] =
N∑

n=0

x[t + n] · w[n]e− j 2πN kn, (5.8)
yields the Spectrogram X[k, t] evaluated for each time instance t and frequency
k = 1, 2, . . . , N . In practice, the Fast Fourier Transform (FFT) is used, which is thefastest technical implementation of the STFT for power-of-2 frame lengths. Figure5.2 shows the time-signal x[n] (top) and the logarithmic magnitude spectrogram
|X[k, t]|dB (bottom) for a music signal (a), environmental noise (b) and a speechsignal (c).
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Figure 5.2 – audio waveform and FFT spectrogram |X[k, t]|dB for 1s of (a) music, (b) envi-ronmental noise and (c) speech.
The music signal’s spectrogram (a) features characteristic stationary horizontallines, which represent the musical notes and their harmonics, as well as somevertical lines, corresponding to broad-band transient noise-like events like drumhits.
The speech signal’s spectrogram (c) is more sparse and features a characteristicsuccession of segments with horizontal lines (voiced speech segments), pausesand broad-band transient segments.
In the following, features derived from the magnitude spectrum will be presented,describing the spectral shape with only a few values.
The harmonic structure of pitched signals, such as tonal music, voiced speechsegments or pitched environmental noise sounds (i.e. horizontal lines in the
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spectrogram) can be exploited for additional features, as will be described insection 5.1.1.4.
Spectral CentroidThe first statistical moment of the spectrum is the spectral centroid µ1.
For pitched sounds, the spectral centroid is a good indicator for a sound’s ’richnessin harmonics’ and its evolution over time. A sound with strong harmonics has ahigher center of gravity compared to a sound with less prominent harmonics. Thecenter of gravity is linked to the fundamental frequency f0 of a sound. [91, p.363].
For unpitched sounds, the spectral centroid is an indicator for the ’brightness’ of asound. Brighter noise sounds (e.g. ’hissing’ sounds or some affricatives in speech[s, f ,S, ...]) have a higher center of gravity than more dampened sounds.
The spectral centroid is defined as the geometric centroid (also called centerof gravity) of the power spectrum S[k] (or magnitude spectrum |X[k]|). First, anormalised spectral density is defined as pk :

pk[t] = S[k, t]∑K
k=1 S[k, t]

(5.9)
The spectral centroid µ1[t] evaluated at each time step t is then given as

µ1[t] =
K∑

k=1

fk · pk[t], (5.10)
where fk is the frequency of the spectral component k in Hertz.
Spectral SpreadThe second statistical moment of the spectrum is called spectral spread. Wide-band (noisy) signals will have a greater spectral spread compared to more narrow-band sounds.
It is defined as the variance of a spectral distribution µ2 around the spectral centroid
µ1.

µ2[t] =
√√√ K∑

k=1

( fk − µ1[t])2 · pk[t] (5.11)

Spectral SkewnessThe third statistical moment of the spectrum is called spectral skewness µ3. Itdescribes the shape, or more precisely the asymmetry of the spectral distributionaround the spectral centroid µ1[t].
Negative spectral skewness (µ3 < 0) indicates, that more energy is located belowthe spectral centroid µ1, positive skewness (µ3 > 0) indicates, more energy is
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located in higher frequencies, above µ1 [88].

µ3[t] = 1

µ32[t]

(
K∑

k=1

( fk − µ1[t])3 · pk[t]
)

(5.12)

Spectral KurtosisSpectral kurtosis µ4, the fourth statistical moment, is a measure of the peakednessor flatness of the spectrum. A lower number indicates a flatter, i.e. more evenlydistributed spectrum.
Broad-band noise sounds will have very low values for µ4, pitched sounds withweak harmonics on the other hand will have large values for µ4.

µ4[t] = 1

µ42[t]

(
K∑

k=1

( fk − µ1[t])4 · pk[t]
)

(5.13)

Spectral Roll-OffThe spectral roll-off frequency fro is the frequency below which 85% of the signalenergy is located [11,86]. This measure is related to the skewness µ3 of the spectralshape (see above) in that it is higher for left-skewed and lower for right-skewedspectra.
Calculating the spectral roll-off frequency comes down to finding the smallestspectral component k̂ ∈ {1, 2, . . . ,K} for which equation 5.14 holds true. The roll-offfrequency fro is then given as the frequency of spectral component k̂ in Hertz.

k̂∑
i=1

pi[t] ≤ 0.85 ·
K∑

j=1

p j[t]. (5.14)

Spectral FluxThe so-called spectral flux SF is a measure of novelty and is known for it’s abilityto detect onsets in music and speech signals [92].
SF estimates the amount of spectral variation over time by correlating two succes-sive frames according to [90].

SF[t] = 1 −
∑K

k pk[t − 1] · pk[t]√∑K
k p2k[t − 1] ·

√∑K
k p2k[t]

(5.15)

Figure 5.3 shows the spectral moments µ1, µ2, µ3 and µ4, as well as the spectralroll-off fro and flux spectral SF for music, environmental noise and speech signalsrespectively.
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Figure 5.3 – Spectrogram |X[k, t]|dB and its statistical moments spectral centroid µ1,spread µ2, skewness µ3 and kurtosis µ4, as well as the features spectralroll-off fro and spectral flux SF for 1s of (a) music, (b) environmental noiseand (c) speech.
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ChromagramThe perception of musical pitch can be mod-eled as a helix, showing the relation of perceivedmusical pitch or chroma and frequency. Mov-ing upwards, one full rotation of the helix corre-sponds to one octave, i.e. doubling in frequency.Pitched sounds being exactly one (or multiple)octaves apart, are perceived as the same musi-cal tone (see figure 5.4) [93].
Features exploiting this behaviour, so-calledchroma features arewell-established for analysingand comparing music signals [94].
Essentially, the chromagram combines the sig-nal energy of the entire spectrum into 12 bins,representing the distinct semitones of the mu-sical octave: C[k, t] with k = 1, 2, . . . , 12 [95].
Chromatic EntropyAs the absolute values of pitch and harmony of a sound do not help to distinguishits type (speech, music or environmental noise), the chromatic entropy HC isproposed.
For music signals, HC is expected to be higher than for speech signals, so thechromatic entropy should be a good feature for speech music discrimination.
The chromatic entropy HC is computed as follows.

HC[t] = −
12∑

k=1

pk[t] log(pk[t]) (5.16)
with normalised Chroma-features

pk[t] = C[k, t]∑12
i=1 C[i, t]

. (5.17)
and chromagram C[k, t] estimated at each time instance t and chroma k.
Figure 5.5 shows the chromagram C[k, t] and the corresponding entropy HC formusic, speech and environmental noise signals respectively. As expected HCis generally lower and more stationary for music (a) compared to speech (c).The entropy is considerably higher and fluctuates more rapidly for (unpitched)environmental noise.
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Figure 5.5 – Chroma Features and Chromatic Entropy for (a) music, (b) environmentalnoise and (c) speech.
Mel-scaling the spectrumThe Mel scale is a psychoacoustic scale of pitch perception, modeling the fre-quency response of the human auditory system: Human hearing is more sensitivein the lower frequency range where most speech and music content is located.
The Mel-scale describes the ability to discriminate pitch at different frequencies.At lower frequencies, very small increments in frequency can be discriminated.With rising frequency, the noticeable difference in pitch increases [96].
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Figure 5.6 – Mel-scale according to Slaney’s Auditory Toolbox [97], mapping the frequency-scale between 0 and 8kHz to Mel.
Slaney’s definition of the Mel scale [97] was used for feature extraction, as im-plemented in librosa [86]. According to Slaney’s implementation, the auditorysystem’s frequency response is linear below fc = 1000 Hz. Upwards of fc, the
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frequency resolution decreases incrementally. Frequency f can be converted toMel as follows:

Mel =


f
fsp

for f < fc,
fc
fsp
+ log

(
f
fc

)
27

log(6.4) otherwise,
with spacing frequency fsp ≈ 66.67 (see figure 5.6).
Combining Linearly Spaced Frequency Bins to Mel Bins
N linearly spaced frequency bins k can be transformed to M Mel bins by weightedsummation:

XMel[m] =
N∑

k=1

|X[k]| ·W[m, k], (5.18)
with linearly spaced spectrum X[k] and weights W[m, k]. W[m, k] represents afilterbank with M triangular filters, as shown in figure 5.7. The filters are scaled sothat the area under each triangle is constant.
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Figure 5.7 – Mel-weighting filter bank consisting of 8 triangular filters combing linearlyspaced frequency bins between 0 and 8kHz into 8 Mel bands from 100Hz to6kHz.
Figure 5.8 shows the spectrogram |X[k, t]|dB with 513 frequency bins linearly spacedbetween 0 and 8kHz and a Mel-spectrogram |XMel[k, t]|dB with 128 Mel bands for amusic (a), environmental noise (b) and speech signal (c).
Characteristic patterns in the lower order harmonics of themusic signal (a) (straighthorizontal lines) and speech signal (b) (rising and falling lines interrupted by pausesand transients) are still easily observable. As can be seen, the relevant informationis preserved while reducing the number of spectral components by 75% (513→128).
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Figure 5.8 – FFT spectrogram |X[k, t]|dB and Mel-spectrogram |XMel[k, t]|dB with 128 Melbands for (a) music, (b) environmental noise and (c) speech.
5.1.1.3 Cepstral Features

Cepstral analysis (also quefrency analysis) was first introduced by Bogert et al. [98].The terms cepstrum and quefrency were derived by reversing the first syllablesof the terms spectrum and frequency. Interchanging the consonants symbolisesthe way of working in the frequency domain with methods, usually applied to timeseries and vice-versa [99].
Mel Frequency Cepstral Coefficients (MFCC)The so-called mel frequency cepstral coefficients (MFCC) allow to accuratelydescribe the shape of a signal’s spectral envelope using only a few coefficients,making them popular features for various audio processing tasks.
MFCCs are obtained by calculating the Discrete Cosine Transform (DCT) 5.1 of thelogarithmic Mel-scaled magnitude spectrogram.

ci[t] =
√

2

M

M∑
j=1

log (XMel[k, t]) · cos
( (i − 1)π

M
(k − 0.5)

)
∀ i = 1, 2, . . . (5.19)

where M represents the number of Mel filter banks [100]. Typically, only the firstdozen MFCCs are evaluated. The first Coefficient c1[t] is equivalent to the signalenergy and is discarded.
Figure 5.9 shows the MFCCs ci[t] with i = 2, 3, . . . , 13 for audio clips of one secondfor the categories music, environmental noise and speech.
5.1. The Discrete Cosine Transform is similar to the Discrete Fourier Transform (DFT) but onlyuses the cosine function to represent the signal.
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Figure 5.9 – 12 first (omitting energy coefficient c1) Mel-Frequency Cepstral Coefficients(MFCCs) for (a) music, (b) environmental noise and (c) speech.

5.1.1.4 Features from Harmonic Partials

As described in chapter 2, musical tones, voiced speech segments and somepitched environmental noise sounds have a distinct pitch, that is described by thefundamental frequency f0. The sounds timbre is described by the prominence ofthe harmonics, i.e. multiples of the fundamental frequency.
Fundamental FrequencyThe fundamental frequency f0 describes the pitch of a sound. The Sawtooth
Waveform Inspired Pitch Estimator (SWIPE) developed by Camacho andHarris [101]was used, as part of the Speech Processing Toolkit (SPTK) [87]. In essence, SWIPEestimates the pitch as the fundamental frequency of the sawtooth waveform thatbest matches the input signal. The comparison is done by computing a normalisedinner product between the spectrum of the input signal and a kernel, representingthe spectrum of a sawtooth signal.
HarmonicityThe harmonicity feature describes the ratio between the energy of the harmoniccontent and the total signal energy. It is higher for ’harmonically rich’ sounds, withprominent harmonics and zero for unpitched sounds.
The harmonicity feature is defined as the ratio of harmonic energy EH[t] and totalenergy ET [t].

Harm[t] = EH[t]
ET [t] , EH[t] =

H∑
h=1

a2h[t]. (5.20)
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In accordance with [88] the amplitude of each harmonic partial h = 1, . . . ,H isdenoted as ah(t). A total of up to H = 20 harmonics are evaluated.
Tri-stimulusThe Tri-stimulus is set a timbral descriptors, describing the time-dependent behav-ior of musical transients. It was developed by Pollard and Jansson [102] as anequivalent of color attributes in vision.
The three stimuli T1, T2 and T3 describe the mixture of harmonics, analogous to thethree primary colors in vision (e.g. red, green and blue).

T1 =
a21(t)∑N

k=1 a2k(t)
T2 =

∑4
h=2 a2h(t)∑N
k=1 a2k(t)

T3 =

∑H
h=5 a2h(t)∑N

k=1(t)
(5.21)
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Figure 5.10 – Fundamental Frequency and (up to 20) harmonics, Harmonicity feature andtristimulus T1,T2,T3 for (a) music, (b) environmental noise and (c) speech.
Figure 5.10 shows the estimated fundamental frequency f0 of a speech signal, andits lower order harmonics, as well as the Harmonicity and Tri-stimulus features.
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5.1.2 Clip-level Features - Temporal Integration

As mentioned before, it makes sense to integrate frame-level features over timeinto what is referred to as clip-level features [85].
One clip combines N = 100 overlapping frames, corresponding to one second ofaudio 5.2. In literature, often longer clip lengths of 2s-3s are used [9–11]. However,to allow for a responsive real-time classification, it was chosen to use a clip-lengthof 1s (as suggested by [15,24]).
Frame-level features can be combined to clip features in numerous ways. The twomost common being mean and standard deviation of feature values over time.
L. Vrysis et al. [103] have reviewed the performance of several methods of temporalintegration and found that besides mean and variance, considerable performanceimprovements in classification tasks have been achieved using different aggre-gated features, such as the Mean Absolute Sequential Difference (MASD), LowCrest Factor (LCF) and Relative Standard Deviation (RSD) of frame-level features.
For this thesis, the following temporal feature integration (TFI) procedures areevaluated:

Mean and Standard DeviationThe mean µ and standard deviation σ of attribute a[n] are given as:

µ =
1

N

N∑
n=1

a[n], σ =

√√√
1

N − 1
N∑

n=1

(a[n] − µ)2, (5.22)

for n = 1, 2, . . . , 100 and a clip length of N = 100 time frames (equivalent of 1s).

Relative Standard DeviationThe Relative Standard Deviation (RSD) is the ratio of standard deviation σ andmean µ of attribute a[n].
RSD = σ

µ
(5.23)

Skewness and KurtosisThe third and fourth statistical moments Skewness and Kurtosis of attribute a[n]are given as:
Skewness = 1

N
∑N

n=1(a[n] − µ)3
σ3

, Kurtosis = 1
N

∑N
n=1(a[n] − µ)4

σ4
. (5.24)

5.2. As described in chapter 5.1.1, features are evaluated 100 times per second (hop size of 10ms).
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High and Low Crest Factor
High Crest Factor (HCF) and Low Crest Factor (LCF) are the ratios of the maximumor minimum value within one feature clip and the mean µ.

HCF = max({a[1], a[2], . . . , a[n]})
µ

, LCF = min({a[1], a[2], . . . , a[n]})
µ

.

(5.25)
Mean Sequential DifferenceThe Mean Absolute Sequential Difference (MASD) and Mean Squared Sequential
Difference (MSSD) describe the amount of variation within each feature clip, similarto the standard deviation ω but with regard to the temporal evolution attribute a[n].
MASD = 1

N − 2
N∑

n=2

|a[n]−a[n−1]|, MSSD = 1

N − 2
N∑

n=2

|x[n]− x[n−1]|2. (5.26)

Mean Crossing RateSimilar to the Zero-Crossing Rate (see formula 5.1), the Mean Crossing Rate (MCR)estimates how often an attribute a[n] crosses its mean value µ in a clip.
MCR = N∑

n=1

(1 − δ(sign(a[n − 1] − µ), sign(a[n] − µ))) , (5.27)

Frames Below MeanInspired by the Percentage of Low Energy Frames (%LEF) feature [11], a Frames
Below Mean (FBM) temporal integration method is evaluated, counting the numberof frames below than the mean µ.

FBM = 1

N

N∑
n=1

g(a[n], µ), with g(a, b) =

1 for a < b,

0 otherwise. (5.28)

Note that besides MASD and MSSD, the temporal evolution of frame-level featuresis not considered and should be investigated in future work.
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5.1.3 Feature Ranking and Selection
Evaluating 11 TFI methods for 26 frame-level features, yields a total of 286 de-scriptors. In order to obtain a more manageable feature set, features were rankedusing different weighting algorithms. To do so, all 286 clip-level features wereevaluated for 10800 non-overlapping audio clips, corresponding to 3h of audio datarandomly drawn from the training dataset (see chapter 4), containing equal partsof music, speech and environmental noise. Prior to feature selection, attributeswere standardised by subtracting their mean values and dividing by their standarddeviation.
The attributes were then ranked using different feature weighting algorithms imple-mented in Rapid Miner Studio 5.3, namely weighting by Gini index [104], weightingby Information gain [105] and weighing by RELIEF [106].
The three feature ranking algorithms described above were then combined toobtain an average rank R̃a for each attribute a:

R̃a =
1

3

3∑
i=1

Ri,a, (5.29)
where Ri,a denotes the feature rank for method i = 1, 2, 3 and attribute a.
The 30 highest and 10 lowest ranked features for combined feature rank R̃a, aswell as their ranks and scores accoring to the Gini Index RG , information gain RIGand Relief RR are listed in table 5.2.
Note that this feature selection procedure is very basic and was chosen to quicklyobtain a manageable set of 30 descriptors. Other more sophisticated featureextraction algorithms should be investigated in the future.
As can be seen, top performing features are the standard deviation and MSSD oflower order MFCCs, indicating that the amount of timbral variation in an audioclip is a good descriptor for speech, music and environmental noise classification.Other highly ranked features include different temporal integrations of the Short-Time-Energy (STE), spectral moments and harmonicity feature.
The top 30 best-performing features were selected for classification using theclassification algorithms described below.

5.3. Rapid Miner Studio is a software for data science experiments, incorporating a wide variety of
machine learning algorithms. https:// rapidminer.com/products/ studio/ - accessed: January 2018

https://rapidminer.com/products/studio/
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Rank Feature G RG IG RIG Relief RR R̃

1 std_mfccs_02 0.2089 1 0.5294 1 0.5514 4 2.00
2 std_mfccs_00 0.1986 3 0.4917 3 0.4917 9 5.00
3 std_mfccs_01 0.1896 9 0.4871 4 0.4981 7 6.67
4 std_mfccs_03 0.1985 4 0.4966 2 0.3928 16 7.33
5 std_ste 0.2039 2 0.4726 9 0.4314 12 7.67
6 std_mfccs_04 0.1924 6 0.4868 5 0.4144 14 8.33
7 std_mfccs_06 0.1915 7 0.4821 7 0.3833 17 10.33
8 lcf_ste 0.1765 18 0.4119 19 1.0000 1 12.67
9 mean_ste 0.1805 16 0.4000 23 0.7049 2 13.67

10 mssd_mfccs_04 0.1904 8 0.4668 12 0.3138 28 16.00
11 std_mfccs_05 0.1866 12 0.4807 8 0.2958 32 17.33
12 mssd_mfccs_00 0.1878 10 0.4691 11 0.2553 43 21.33
13 mssd_mfccs_01 0.1809 15 0.4586 15 0.2827 38 22.67
14 mssd_mfccs_06 0.1847 14 0.4614 14 0.2543 44 24.00
15 lcf_spec_centroid 0.1440 33 0.3751 29 0.4801 11 24.33
16 std_spec_spread 0.1482 29 0.3928 25 0.3616 19 24.33
17 mssd_mfccs_03 0.1931 5 0.4846 6 0.2074 63 24.67
18 mssd_mfccs_02 0.1858 13 0.4720 10 0.2417 53 25.33
19 mssd_mfccs_05 0.1871 11 0.4644 13 0.2250 56 26.67
20 fbm_harmonicity 0.1424 35 0.3599 37 0.4847 10 27.33
21 std_mfccs_07 0.1699 20 0.4300 17 0.2534 46 27.67
22 std_mfccs_08 0.1599 21 0.4180 18 0.2443 52 30.33
23 lcf_spec_spread 0.1368 46 0.3629 35 0.3783 18 33.00
24 mssd_ste 0.1743 19 0.3946 24 0.2102 62 35.00
25 std_spec_rolloff 0.1377 45 0.3563 39 0.3457 22 35.33
26 mssd_mfccs_08 0.1572 23 0.3789 28 0.2233 57 36.00
27 lcf_spec_kurt 0.1268 56 0.3265 52 0.5075 6 38.00
28 mean_harmonicity 0.1444 31 0.3643 34 0.2451 50 38.33
29 rsd_spec_spread 0.1510 25 0.4069 20 0.1936 70 38.33
30 lcf_spec_rolloff 0.1258 57 0.3187 54 0.5311 5 38.67
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

277 skew_mfccs_10 0.0040 276 0.0089 276 0.0185 242 264.67
278 skew_mfccs_11 0.0042 275 0.0093 275 0.0181 244 264.67
279 skew_mfccs_09 0.0024 284 0.0049 284 0.0219 238 268.67
280 rsd_tristimulus_00 0.0060 261 0.0129 263 0.0000 284 269.33
281 lcf_harmonicity 0.0044 272 0.0106 273 0.0041 266 270.33
282 lcf_tristimulus_00 0.0045 270 0.0110 267 0.0013 274 270.33
283 skew_mfccs_07 0.0027 283 0.0062 282 0.0112 248 271.00
284 lcf_tristimulus_01 0.0045 269 0.0108 269 0.0011 277 271.67
285 lcf_tristimulus_02 0.0044 273 0.0107 272 0.0013 273 272.67
286 rsd_spec_rolloff 0.0001 286 0.0001 286 0.0000 286 286.00

Table 5.2 – 30 highest and 10 lowest ranked features based on average rank R̃.
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5.2 Naive Bayes Classifier
The Gaussian naive bayes (NB) classifier, as described in chapter 3.1.1 and im-plemented as part of the scikit-learn toolbox [107] for Python was trained andevaluated with the top 30 ranked clip features (see chapter 5.1.3) derived fromdata drawn from the MUSPEN dataset (see chapter 4).
The classifier does not have any open parameters and is used as a baseline, tocompare other classifiers against.

5.2.1 Training with ’Clean’ Audio Data
First, the classifier was trained using 75,600 clip-level feature vectors, derived fromaudio data randomly drawn from the ’clean’ training dataset, corresponding to 7hof audio data per class or 21h in total.

musi
c

no
ise

spe
ech

Predicted label

music

noise

speech

Tr
ue

 la
be

l

0.84 0.10 0.05

0.12 0.86 0.03

0.01 0.00 0.99

Clean Test Dataset

(a) test ’clean’
musi

c
no

ise
spe

ech

Predicted label

music

noise

speech

Tr
ue

 la
be

l

0.53 0.47 0.00

0.12 0.88 0.00

0.85 0.01 0.14

Target Test Dataset

(b) test ’target’
Figure 5.11 – confusionmatrices for speech, music and environmental noise classificationfor naive bayes classifier trained with ’clean’ audio data and tested with (a)

’clean’ test data, and (b) ’target’ test data.
class music noise speech avg.
recall 84% 86% 99% 90%

precision 87% 90% 93% 90%
f-score 85% 88% 96% 90%

(a) test ’clean’

music noise speech avg.
53% 88% 14% 52%
35% 65% 100% 67%
42% 75% 25% 47%

(b) test ’target’
Table 5.3 – naive bayes classifier trained with ’clean’ audio data and evaluated with ’clean’and ’target’ test data respectively. Table shows precision, recall and f-scorederived from the confusion matrix.
The trained model was then evaluated using the full ’clean’ test dataset, yieldinga classification accuracy of approximately 90%. Figure 5.11 (a) shows the cor-responding confusion matrix. Table 5.3 (a) lists the recall, precision and f-score
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derived from the confusion matrix. As can be seen, speech data is almost alwaysdetected as such, with a recall of 99%. The discrimination between music andenvironmental noise is less successful with a recall of 84% and 86% respectively.
While the result is far from perfect, it shows that the underlying feature set containsenough information to discriminate speech from noise and music even with asimple classification algorithm like NB, at least for ’clean’ audio data.
However, when applying the classifier trained with ’clean’ audio data to real-worlddata, i.e. microphone array recordings, the overall classification accuracy drops tojust 52%. The corresponding confusion matrix is shown in figure 5.11 (b). Speechis misclassified as music most of the times (85%) and music is often mislabelledas environmental noise (47%). The poor performance for the mismatched case(f-score of 47% vs. 90% for the matched case) indicates that the training data doesnot resemble the ’target’ domain well, leading to poor performance in real-worldapplications.

5.2.2 Training with ’Degraded’ Audio Data
To overcome the mismatch between the ’target’ domain, i.e. real-world recordingswith the far-field microphone array and the training data, the NB classifier wastrained with the so-called ’degraded’ training dataset (see chapter 4.5). As withthe ’clean’ training data (see above), the Gaussian NB classifier was trained using75,600 feature vectors, derived from audio clips of 1s, randomly drawn from the
’degraded’ training set, corresponding to 21h of audio.
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Figure 5.12 – confusionmatrices for speech, music and environmental noise classificationfor naive bayes classifier trained with ’degraded’ audio data and tested with(a) ’clean’ test data, and (b) ’target’ test data.
Again, the trained model was evaluated using the ’clean’ test data, as well asthe ’target’ microphone-array recordings. Figure 5.12 shows the correspondingconfusion matrices. For ’clean’ test data, the classification accuracy significantlydrops to approximately 68% (-22%) compared to training with ’clean’ data (see
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above). Speech is always detected as such, however, music is only correctlyrecognised in one out of three cases.

class music noise speech avg.
recall 35% 70% 100% 68%

precision 73% 69% 67% 70%
f-score 47% 69% 80% 65%

(a) Test ’clean’

music noise speech avg.
57% 67% 57% 60%
44% 61% 92% 66%
50% 64% 70% 61%

(b) Test ’target’
Table 5.4 – Naive Bayes classifier trained with ’degraded’ audio data and evaluated with

’clean’ test data and the ’target’ test data respectively. Table shows precision,recall and f-score derived from the confusion matrix.
The prediction accuracy for the ’target’ test set has improved considerably to 60%(+8%). The overall f-score increased greatly by 14% to around 61% (see table 5.4(b)), indicating that augmenting the training data by simulating different acousticenvironments helps to increase a classifier’s performance in real-life application.

5.3 k-Nearest Neighbours classifier
As described in chapter 3, the kNN classifier discriminates new observation basedon the class-membership of the k closest samples in the training dataset. The kNNalgorithm as implemented in the scikit-learn toolbox for python [107] was used toclassify the top 30 ranked clip-level features (section 5.1.3) with k = 3.

5.3.1 Training with ’Clean’ Audio Data
First, the classifier was trained using 75,600 feature vectors, derived from audioclips of 1s, randomly drawn from the ’clean’ training dataset, corresponding to 7h ofaudio data per class or 21h in total. The trained model was then evaluated with thefull ’clean’ and ’target’ test data. Figure 5.13 shows the corresponding confusionmatrices. Table 5.5 shows the performance measures derived from the confusionmatrices.
For ’clean’ test data, the kNN classifier performs very well with a classificationaccuracy of around 97%. Especially speech and environmental noise are detectedreliably with a recall of 99% and 98% respectively. Considering the fact that theremight be mislabelled data in the test set, this can be regarded as almost human-level performance.
However, when evaluating with ’target’ test data, classification accuracy dropsto approximately 58% which is only slightly better than with the Gaussian naivebayes classifier (52%, section 5.2). Speech is often mislabelled as music (67%)
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and environmental noise is often mislabelled as music (53%) resulting in a lowf-score of only 56%.
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Figure 5.13 – confusionmatrices for speech, music and environmental noise classificationfor kNN (k = 3) classifier trained with ’clean’ audio data and tested with (a)

’clean’ test data and (b) ’target’ data.

class music noise speech avg.
recall 93% 98% 99% 97%

precision 98% 96% 97% 97%
f-score 95% 97% 98% 97%

(a) test ’clean’

music noise speech avg.
97% 47% 30% 58%
45% 89% 100% 78%
61% 62% 46% 56%

(b) test ’target’
Table 5.5 – kNN classifier trained with ’clean’ audio data and evaluated with ’clean’ testdata and the ’target’ test data respectively. Table shows precision, recall andf-score derived from the confusion matrix.

5.3.2 Training with ’Degraded’ Audio Data
To overcome the mismatch between the target domain, i.e. real-world recordingswith the far-field microphone array and the training data, the kNN classifier wasthen trained with the so-called ’degraded’ training dataset (see chapter 4.5). Theclassifier was trained using 75,600 feature vectors, derived from audio clips of 1s,randomly drawn from the ’degraded’ training set, corresponding to 21h of audio.
Again, the trainedmodel was evaluated using ’clean’ test data, as well as the ’target’microphone-array recordings. Figure 5.12 shows the corresponding confusionmatrices. Table 5.6 shows the performance measures derived from the confusionmatrices.
For ’clean’ test data, the classification accuracy is around 85% (compared to 68%with the NB classifier, section 5.2). Especially environmental noise and speech are
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detected reliably. However, music is quite often mislabelled as env. noise (22%)and speech (16%), yielding an f-score of 84%.
For the ’target’ test data, performance is significantly improved compared to train-ing with ’clean’ audio data (f-score of 65% vs. 56%, see tables 5.6 and 5.5). Alsothe kNN algorithm is more reliable than the NB classifier trained with ’degraded’audio data (f-score of 65% vs 61%, see tables 5.6 and 5.4). However, the overallperformance for the ’target’ domain is still quite poor.
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Figure 5.14 – confusion matrices for kNN (k = 3) classifier trained with ’degraded’ audiodata and tested with (a) ’clean’ and (b) ’target’ test data.

class music noise speech avg.
recall 61% 95% 100% 85%

precision 98% 81% 84% 88%
f-score 75% 87% 91% 84%

(a) test ’clean’

music noise speech avg.
46% 79% 71% 65%
50% 63% 84% 66%
48% 70% 77% 65%

(b) test ’target’
Table 5.6 – kNN classifier trained with ’degraded’ audio data and evaluated with ’clean’test data and the ’target’ test data respectively. Table shows precision, recalland f-score derived from the confusion matrix.
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5.4 Support Vector Machine
The support vector machine (SVM) as implemented in the scikit-learn toolbox [107]for Pythonwas used. A soft-margin SVMwith non-linear radial basis function (RBF)kernel was used, with open parameters γ and C (see chapter 3.1.3). The top 30ranked clip-level features (see section 5.1.2) were evaluated.
The open parameters γ and C were chosen based on a parameter grid searchalgorithm.
Coarse-level parameter optimisationA grid-search algorithm with stratified 10-fold cross-validation 5.4 is used to findwell-performing parameters for γ and C. First a coarse parameter grid is evaluatedwith parameter values for γ logarithmically spaced between 10−4 and 1, and val-ues for C ranging from 10−1 to 105 respectively. A one-vs-rest (OVR) multi-classimplementation is used.
Parameter optimisation is done using a subset of 3,600 audio clips, correspondingto 1h of audio randomly drawn from the Clean training dataset (see chapter 4).The best performance was achieved using penalty parameter C = 1 and kernelparameter γ = 0.1 for both precision and recall, as can be seen in figure 5.15,showing the average validation scores for precision (left) and recall (right) alongthe investigated parameter grid.
Fine-tuning parametersFor fine-tuning the parameters, a logarithmic grid was evaluated with γ ∈ [0.01, 1]and C ∈ [1, 100]. Figure 5.16 shows the parameter space drawn by parameters γandC. best parameters for precisionwere γ ≈ 0.042 andC ≈ 11.72, best parametersfor recall were γ = 0.069 and C ≈ 1.74.
Based on the fine-level grid evaluation, parameters C = 5 and γ = 0.05 are chosen.

5.4. k-fold cross-validation splits the training data into k subsets. The model is evaluated ktimes. Each time one of the k subsets is used for testing. The other (k − 1) subsets are used fortraining. The average validation scores are then computed for all k evaluations. In stratified k-foldcross-validation, the percentage of samples for each class is preserved for each subset.
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Figure 5.15 – Tuning parameters for support vector machine with RBF kernel. Optimising10-fold cross-validation score for (a) precision and (b) recall. Darker spotsindicate better performance.
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5.4.1 Training with ’Clean’ Audio Data

TheSVMwith RBF kernel is trainedwith clip-level features derived from21h of ’clean’training data randomly drawn from the raw audio data (see chapter 4) with equalparts music, speech and environmental noise. Table 5.7 lists the classificationperformance for the different evaluation sets. Figure 5.17 shows the correspondingconfusion matrices.
For ’clean’ test data, an impressive accuracy of approximately 98% is achieved.Given the fact that the test data might contain mislabelled data, this can be seenas at least human-level performance. Especially environmental noise and speechare detected very reliably with a recall of 99%. Music is sometimes mislabelled asenvironmental noise (3%).
However, as with the other classification algorithms, when evaluating the classifierwith the ’target’ test data, performance drops drastically, with a classificationaccuracy of only 67%.
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Figure 5.17 – confusion matrices for SVM with RBF kernel trained with ’clean’ audio dataand tested with (a) ’clean’ test and (b) ’target’ test data.

class music noise speech avg.
recall 96% 99% 99% 98%

precision 99% 97% 99% 98%
f-score 97% 98% 99% 98%

(a) test ’clean’

music noise speech avg.
59% 81% 61% 67%
53% 76% 74% 68%
56% 78% 67% 67%

(b) test ’target’
Table 5.7 – SVM classifier trained with ’clean’ audio data and evaluated with ’clean’ testdata and the ’target’ test data respectively. Table shows precision, recall andf-score derived from the confusion matrix.



Machine Learning Approach: Support Vector Machine 85
5.4.2 Training with ’Degraded’ Audio Data

In order to reduce the mismatch between the training data and the ’target’ domain,i.e. real-world microphone array recordings, the SVMwith RBF kernel is trained withclip-level features derived from 21h of audio randomly drawn from the ’degraded’audio data (see chapter 4.5). Figure 5.17 and table 5.7 show the correspondingconfusion matrices and derived performance measures.
For ’clean’ test data, classification accuracy is approximately 92%. While this issignificantly less, than when trained with ’clean’ audio data (-6%), environmentalnoise and speech are still detected reliably (recall of 94% and 99% respectively).Music is mislabelled as environmental noise quite often though (14%).
For ’target’ test data, i.e. microphone array recordings, classification accuracyimproves to around 77% (+9%) compared to training with ’clean’ audio data (seetables 5.8 and 5.7). Even-though the overall performance for the ’target’ test datais much improved, music is often misclassified as noise (33%) and speech oftenmisclassified as speech (25%), as can be seen in figure 5.18.
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Figure 5.18 – confusion matrices for SVM with RBF kernel trained with ’degraded’ audiodata and evaluated with (a) ’clean’ and (b) ’target’ test data.

class music noise speech avg.
recall 84% 94% 99% 92%

precision 94% 87% 96% 92%
f-score 89% 90% 97% 92%

(a) test ’clean’

music noise speech avg.
66% 96% 68% 77%
69% 71% 98% 79%
67% 82% 80% 76%

(b) test ’target’
Table 5.8 – SVM classifier trained with ’degraded’ audio data and evaluated with ’clean’test data and the ’target’ test data respectively. Table shows precision, recalland f-score derived from the confusion matrix.
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5.5 Summary
As has been shown, traditional machine learning algorithms (namely naive bayes,kNN and SVM) have been used successfully to distinguish between speech, musicand environmental noise for ’clean’ audio data, resembling broadcast audio. Theclip-level features carry enough information to effectively discriminate betweenthe three classes, at least for low-noise audio data. Accuracies of up to 98% wereachieved for a SVM with RBF kernel.
However, the models trained with ’clean’ audio data, performed poorly for far-fieldmicrophone array recordings. In order to overcome the mismatch between the
’clean’ training data and the ’target’ domain, the models were also trained with the
’degraded’ audio data, simulating different acoustic environments (see chapter4.5). While performance has been greatly improved, the resulting classifiers arestill not capable of reliably discriminating speech and music from environmentalnoise in noisy and reverberant environments (i.e. ’target’ test data).
For future work, using a more reliable set of features might improve performance,but requires expert knowledge about the signal characteristics. Considering theperformance gain achieved by using ’degraded’ audio data, augmenting the trainingdataset by actual far-field microphone recordings is expected to improve perfor-mance further.
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6 | Deep Learning Approach:
Convolutional Neural Nets

As described in chapter 1.2, deep learning algorithms have been applied to audioclassification tasks with great success. Especially so-called convolutional neuralnets (CNNs) have proven effective for classification tasks, such as speaker identi-fication [29], audio-based action recognition [30] and large-scale acoustic eventdetection [32].
In contrast to the feature-based ML approaches described in chapter 5, deeplearning algorithms don’t require the definition and selection of descriptive features.Instead, a deep neural net will learn to extract relevant features from the raw input(or a simple mid-level signal representation) during training.
The underlying mechanics of CNNs have been explained in chapter 3.2. Thischapter describes the deep learning approach with CNNs developed within thescope of this thesis, which is based on the neural net topology proposed by Lukicet al. [29].

6.1 Input Signal Representation:
Mel-spectrograms

As investigated by Dieleman and Schrauwen [108], deep neural nets are capableof learning relevant features directly from raw audio data. However, while theyachieved promising results for raw audio data, for CNNs superior performance wasreported using a 2D input signal representation, i.e. Mel-spectrograms. Essentially,this transforms the classification of a time series x[t] into an image classificationproblem.
CNNs with two-dimensional convolutional layers aim to find patterns within aninput image, by correlating small image-segments with learned filter kernels (seechapter 3.2.4).
The most obvious choice for a two-dimensional audio signal representation is theso-called spectrogram as described in chapter 5.1.1.2. As has been established inchapter 2, most characteristic signal components of speech and music signals
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(i.e. fundamental frequency and lower order harmonics) are located in the lowerfrequency range, where the human ear is the most sensitive. It thus makes senseto use a tempo-spectral signal representation modelling the non-linearity of thehuman auditory system’s frequency resolution, such as the Mel-spectrogram (seechapter 5.1.1.2).
Mel-spectrograms have been used in conjunction with CNNs with great success[29,32]. As proposed by Lukic et al. [29] and Hershey et al. [32] Mel-spectrogramswere calculated for audio clips of 1s. A clip length of 1s has proven to be a good com-promise between sufficient temporal integration and responsiveness. If framesshorter than 1s are used, there will be more non-characteristic frames, leading tomisclassification. Longer segments will make real-time classification slow and un-responsive, as the prediction will depend on acoustic events that occurred severalseconds ago.
Figure 6.1 shows Mel-spectrograms for 1s of music, environmental noise andspeech respectively. As can be seen, the signal characteristics for (a) music and(c) speech, i.e. stationary horizontal lines for music and the succession of voicedand unvoiced speech segments - as described in chapter 2, can be easily observed.The environmental noise signal is more evenly spread across frequency and timewith some transient events occurring around half way through the audio clip.
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Figure 6.1 – Mel-spectrograms for 1s of (a) music, (b) environmental noise and (c) speech.
Depending on the final application of the classification algorithm, other signalrepresentations should be investigated. Initial experiments with the proposedCNN model (see section 6.2) suggest that using so-called cochleagrams 6.1 yieldscomparable results for the same number of spectral components.
6.1. Cochleagrams are an approximation to the filtering performed by the human ear. A filter-bankof rectangular band-pass filters models the human auditory system. Similar to the Mel-scale, thenon-linearity in frequency resolution is modelled according to the so-called equivalent rectangularbandwidth (ERB) scale. The energy of each filter’s output models the nervous activity at a specificlocation in the cochlea, a spiral-shaped cavity in the inner ear, containing the Organ of Corti, thesensory organ of auditory perception [3, 109].
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Time vs. Frequency resolutionIf frequency-resolution is too low, it will be hard to detect small changes in pitch,which can carry useful information (e.g. prosody in speech signals). If time-resolution is too low, transients and rhythmic patterns will be ’washed out’ andharder to detect.
Based on [29], Mel-spectrograms were computed from an FFT with a window sizeof 1024 samples (64ms), a hop size of 160 samples (10ms) for audio sampled at fs= 16kHz, yielding 100 time frames for audio clips of 1s. The resulting 513 frequencybins between 0 and 8kHz were combined to 128 Mel bands (see chapter 5.1.1.2).
This yields an input image of 128×100 pixels 6.2.
Dynamic Range CompressionInstead of using the linear magnitude of the spectrogram, usually some form ofnon-linear amplitude compression is applied when training convolutional neuralnets on spectrograms, as this type of non-linearity can be hard to learn for a neuralnet with only ReLu activation functions (see chapter 3.2.1) [108]. For this thesis,the logarithmic power spectrum (as described in chapter 5.1.1.2) and the resultingMel-spectrogram in dB is used.
Contrast NormalisationThe logarithmic magnitude of each input imageX is scaled between 0 and 1 by firstdeducting the minimum of each sample and consecutive normalisation (divisionby maximum). This alleviates the problem of varying input signal levels (e.g. whenthe source is closer or further away from the microphone) without the need forautomatic gain control (AGC).

X← X −min(X), X← X

max(X) (6.1)

6.2. In order to scale down the CNN for embedded applications, it might be necessary to reducethe resolution of the Mel-spectrograms. Initial tests indicate that Mel-spectrograms with at least64 Mel bands and 50 time frames per second yield good results using the proposed CNN model.Mel-spectrograms with 24 Mel bands and 32 time frames per second still yielded recognition ratesof around 90% for ’clean’ test data, indicating that the model can be scaled down without too muchof a hit on performance.
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6.2 Model structure
The basic model structure is based on the CNN model proposed by Lukic et al. [29]for speaker identification and clustering. The model consists of two convolutionallayers, each with subsequent max pooling and two fully-connected layers. Rectifierlinear units (ReLu) are used for all layers except the output layer, for which the soft-max activation was used. Dropout was evaluated between the two fully-connectedlayers.
Figure 6.2 shows the basic model structure of the investigated CNN. Two convolu-tional layers with subsequent pooling layers extract relevant information from theinput image. Two fully connected layers and an output layer form an MLP classifier,which outputs the estimated a-posterior probability for each class.
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Figure 6.2 – Model structure of CNN featuring two convolutional layers with consecutivepooling and an MLP classifier with two fully-connected layers for imageclassification.

Number of Convolutional LayersDeep learning breaks the analysis of raw sensory input data into a series of simplemappings. The so-called hidden layers extract increasingly abstract featuresfrom the input data. The first convolutional layer in an image classifier will learnsimple features like edges in various directions, by comparing the brightness ofneighbouring data points (pixels) in the input image (in our case aMel-spectrogram).The second convolutional layer will learn more complex contours. With rising depthof the DNN, input representations get more and more complex [45, p.6].
CNNs for image classification, like AlexNet [27] or GoogLeNet [110] are usuallymany layers deep, as they have to differentiate very complex objects. For thisthesis CNNs with only two convolutional layers are evaluated, as the input imagesare less complex.
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Fundamentally, the system needs to be able to extract horizontal lines (for tonalmusic segments), rising and falling lines (fundamental frequency and harmonics ofvoiced speech), vertical lines (transient signals, like drum sounds or transient noiseevents) and local noise. Using only one convolutional layer severely decreased themodels performance in initial tests and was not further investigated.
Kernel SizesLukic et al. [29] have studied kernels of different sizes h1 × h2 along the frequencyand time axis. They found that good results can be achieved using both symmetri-cal and asymmetrical kernels, concluding that two-dimensional filter kernels makethe model more easily interpretable. They settle for 4 × 4 kernels with strides 1 × 1.For this thesis, greater 8 × 8 kernels were investigated as well but did not increaseperformance (see chapter 6.4).
As suggested in [29], the resulting feature maps were pooled using a pool size 4× 4and stride 2 × 2.
Number of FiltersAsmentioned before, kernels of the first and second convolutional layers representsimple visual features, such as edges and contours in the spectrogram. Visualisingconvolutional filters (see chapter 6.7 below) can help, finding the right number offilters. When training a CNN with many filters for each convolutional layer, theremight be quite a few that look very similar, indicating that the number of filters canbe reduced, without a significant loss in performance.
If the model is too complex, overfitting will be more likely. If there are too few filters,on the other hand, the model might not be able to extract relevant information fromthe input image.
As mentioned above, the CNN needs to effectively differentiate harmonic con-tent (horizontal lines) and transient events (vertical lines) in order to differentiatebetween music, speech and environmental noise segments. For the speaker identi-fication proposed by Lukic et al. [29], the differentiation of the spectrograms needsto be more precise. It was thus chosen to use less than the 32 and 64 filters for thefirst and second convolutional layer used by Lukic et al.. Instead, 8 and 16 filterswere evaluated for the first, 8, 16 and 32 for the second convolutional layer.
Fully-connected LayersThe convolutional layers with consecutive pooling layers are followed by two fully-connected layers (also called dense layers) and an output layer, forming an MLPclassifier 6.3.
If the number of neurons is too low, the neural net will struggle to locate learnedpatterns (filter kernels) along the frequency and time axis. If the number of neurons
6.3. Feed-forward neural nets with two-hidden layers are known to perform excellent in classifica-tion tasks and usually better than those with only one hidden layer [111].
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is too high, the model becomes overly complex as the number of trainable param-eters (i.e. interconnection weights) rises at least exponentially with increasingnumber of neurons.
Lukic et al. [29] suggest to chose the number of neurons depending on the numberof classes to predict (10 · Nc for the first and 5 · Nc for the second dense layer) anda dropout rate of 50% between the two fully connected layers.
For this thesis 32, 64 and 128 computing units are evaluated for the first fully-connected layer, 16, 32 and 64 for the second fully-connected layer.
Activation FunctionsReLu activation functions were used for all layers except the output layer. Instead,the softmax activation function (equation 3.28 in chapter 3.2.1) was used for theoutput neurons, so that the output vector ỹ = [ỹ(1), ỹ(2), ỹ(3)]T of the CNN estimatesthe a-posteriori probabilities for each of the three classes.
When using a sigmoid activation function instead, the system can theoreticallydetect mixtures of classes [32]. Initial experiments indicate that this could bepromising for future work, especially when differentiating more classes and sub-categories.
InitialisationIn accordance with Glorot and Bengio [112] all biases were initialised with 0. In-terconnection weights and convolutional filter kernels were initialised with thecommon heuristic

W(l) ∼ U
[
− 1√

m(l−1)
,

1√
m(l−1)

]
, (6.2)

where U[−a, a] is the uniform distribution in the interval (−a, a) and m(l−1) denotesthe number of neurons in the previous layer (l − 1).
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6.3 Sanity Checks
Before training a neural net with a lot of data, which might take hours or even days,several sanity checks can be performed to make sure training will go as intended.
Loss before trainingFirst of all, to see if the model is correctly initialised and does not suffer from aninherent bias, the untrained network should yield a prediction accuracy of a = 1/Nc,where Nc is the number of classes.
For speech, music and environmental noise discrimination, prediction accuracy ashould be approximately 33%. The corresponding loss (categorical cross-entropy,see chapter 3.2.3) is L = − log( 1N ) = − log(13 ) ≈ 1.098 .
Overfitting a small subset of dataTo see if the model is capable of discriminating the training data, a small subsetof data is over-fitted, so that an accuracy of a = 100% is achieved when evaluatingthe network with the same data. This ensures that the network is able to extractany relevant information from the input data.
Figure 6.3 shows the training loss for the a neural net trained and evaluated with
n = 1200 Mel-spectrograms per class, computed from audio clips randomly drawnfrom the full MUSPEN dataset (see chapter 4), corresponding to one hour in total.As expected, the validation loss starts at L ≈ 1.098 and rapidly drops to zero.
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Figure 6.3 – Training progress for overfitting experiment. A deep neural net was trainedfor 15 epochs and evaluated with the full training data after each epoch.
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6.4 Choosing Hyperparameters
Complex neural net topologies like CNNs have many tunable hyperparameters,such as the number of layers, activation functions, number of filters, etc..
Hyperparameters can either be chosen manually or automatically using a gridsearch algorithm. The manual approach requires a profound knowledge of whateach parameter does, and comes down to intuition and experience. Automatichyperparamter selection on the other hand does not require as much expert knowl-edge but is computationally costly [45, p.422].
As explained above, the basic model structure was chosen as it has been provensuccessful for audio classification before [29]. As the classification task in speech,music and environmental noise is expected to require less features than for speakeridentification, the number of convolutional filters was reduced.
In order to find a model structure that works well for speech, music and environ-mental noise classification, a total of 216 different hyperparameter settings wasevaluated, as listed in table 6.1.

Layer: # of settings
Conv. Layer 1: kernels 4×4, 8×8 2

strides 1×1 1
filters 8, 16 2
activation ReLu 1

Pooling Layer 1: pools 4×4 1
strides 2×2 1

Conv. Layer 2: kernels 4×4, 8×8 2
strides 1×1 1
filters 8, 16, 32 3
activation ReLu 1

Pooling Layer 2: pools 4×4 1
strides 2×2 1

Dense Layer 1: neurons 32, 64, 128 3
activation ReLu 1

Dropout: dropout 0.5 1
Dense Layer 2: neurons 16, 32, 64 3

activation ReLu 1
Output Layer: neurons 3 1

activation Softmax 1
# number of combinations: ∏→ 216

Table 6.1 – Evaluated hyperparameters for CNN model.
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For each of the 216 different hyperparameter settings, the CNN was trained with144,000 Mel-spectrograms per class, representing around 40h of training datarandomly drawn from the full training data in the MUSPEN dataset, with equalparts of ’clean’ and ’degraded’ data (see chapter 4). Each CNN was trained for 10epochs with a batch size of B = 128 and optimiser Adam. After each epoch thefull ’target’ test set was evaluated. The best accuracy was kept to evaluate eachhyperparameter setting.
Table 6.2 lists the average, maximum and minimum performance achieved foreach hyperparameter within the grid of 216 parameter configurations. Note thateven-though the grid search algorithm only investigates a small subset of possiblehyperparameter configurations, it took several days to compute.

choosing hyperparameters for 1st convolutional layer:

# of filters: 8 16
avg. acc. 73% 73%
max. acc. 85% 84%
min. acc 61% 60%
stdv. 5% 5%

kernel: 4×4 8×8
avg. acc. 76% 71%
max. acc. 85% 81%
min. acc 63% 60%
stdv. 5% 4%

choosing hyperparameters for 2nd convolutional layer:

# of filters: 8 16 32
avg. acc. 72% 74% 74%
max. acc. 83% 85% 84%
min. acc 60% 61% 63%
stdv. 6% 5% 5%

kernel: 4×4 8×8
avg. acc. 75% 72%
max. acc. 85% 81%
min. acc 62% 60%
stdv. 5% 5%

choosing number of hidden units:

1st fully-connected layer
# of neurons: 32 64 128
avg. acc. 72% 74% 75%
max. acc. 82% 85% 85%
min. acc 62% 61% 60%
stdv. 5% 5% 5%

2nd fully-connected layer
# of neurons: 16 32 64
avg. acc. 73% 73% 74%
max. acc. 84% 83% 85%
min. acc 60% 61% 61%
stdv. 5% 5% 5%

Table 6.2 – How investigated hyperparameters affect performance: This table showsthe average, maximum and minimum accuracy for each investigated hyper-parameter within the 216 combinations evaluated.
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As can be seen, when looking at the top section of table 6.2 the number of filterkernels in the first convolutional layer does not affect performance noticeably.However, using kernel sizes of 4×4 yielded better results than using larger kernels(+5%).
Increasing the number of filter kernels in the second convolutional layer beyond 16did not increase performance with an average accuracy of 74%. As with the firstconvolutional layer, using smaller kernel sizes of 4×4 yielded better results thanusing larger kernels (+3%).
When looking at the lower section of table 6.2, one can see that increasing thenumber of hidden units in both the first and second fully-connected layer doesslightly increase average accuracy (at the cost of exponentially more trainableparameters).
Based on the hyperparameter analysis, the following network hyperparameters, aslisted in table 6.3, were chosen for further experiments.

Layer: output shape: # of params.:
Input Layer: mel-spec. 128×100 128×100×1 0

Conv. Layer 1: kernel 4×4
strides 1×1
filters 8, 16 8 · 4 · 4 + 8
activation ReLu 128×100×8 = 136

Pooling Layer 1: pools 4×4
strides 2×2 64×50×8 0

Conv. Layer 2: kernel 4×4
strides 1×1
filters 16 8 · 16 · 4 · 4 + 16
activation ReLu 64×50×16 = 2,064

Pooling Layer 2: pools 4×4
strides 2×2 32×25×16 0

Dense Layer 1: neurons 128 32 · 25 · 16 · 128 + 128
activation ReLu 128 = 1,638,528

Dropout: dropout 0.5 128 0
Dense Layer 2: neurons 64 128 · 64 + 64

activation ReLu 64 = 8256
Output Layer: neurons 3 3 64 · 3 + 3

activation Softmax = 195
total: ∑→ 1,649,179

Table 6.3 – Chosen hyperparameters for CNN model. Note that 99% of all trainable pa-rameters are located in the first fully-connected layer.
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As can be seen when looking at table 6.3, around 99% (∼1.6M) of all trainableparameters are located in the first fully-connected layer. If computational resourcesare limited, the number of trainable parameters can be effectively reduced withoutmuch of a loss in performance when using less hidden units in the first and secondfully-connected layers (see also table 6.2).
For example when using 64 instead of 128 hidden units in the first fully-connectedlayer, the number of trainable parameters decreases by almost 50% to 825,819while performance only decreases by a few percent.
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6.5 Offline Evaluation
In order to evaluate the performance of CNNs for speech, music and environmentalnoise classification, the CNN with hyperparameters listed in table 6.3 was trainedwith the full ’clean’ training data, as well as the full ’degraded’ training data.
In both cases, the CNN was trained for a maximum of 15 epochs. After each epoch,the full ’clean’ test data, as well as the full ’target’ test data were evaluated. Thebest performing weights for both the ’clean’ and ’target’ test data were stored. TheCNN was trained using the categorical cross entropy as a loss function and Adamas the optimiser for batches of size B = 128. Training data was shuffled beforeeach epoch.

6.5.1 Training with ’Clean’ Audio Data
First the CNN was trained with the full ’clean’ training dataset (around one millionMel-spectrograms) and evaluated with the ’clean’ and ’target’ test data. Figure 6.4and table 6.4 show the corresponding confusionmatrices and derived performancemeasures for (a) ’clean’ test data and (b) the recorded dataset coming from thefar-field microphone array.
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Figure 6.4 – confusion matrices for CNN classifier trained with ’clean’ audio data andtested with (a) ’clean’ and (b) ’target’ test data.
As can be seen, the CNN trained with ’clean’ audio data does an excellent job indetecting speech and music for the ’clean’ test set, resembling broadcast audio.Music and speech are correctly detected with a recall of 99%. Environmentalnoise is sometimes falsely labelled as music (3%) and speech (2%) which is notsurprising, given the inhomogeneous nature of environmental noise sounds. Theoverall classification accuracy is around 98%. When considering the fact that theremight be mislabelled data in the test set, this can be regarded as human-levelperformance and is comparable to the SVM trained and evaluated with ’clean’audio data (see chapter 5.4).
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class music noise speech avg.
recall 99% 96% 99% 98%

precision 97% 98% 98% 98%
f-score 98% 97% 98% 98%

(a) Test ’clean’

music noise speech avg.
90% 86% 91% 89%
88% 85% 94% 89%
89% 85% 92% 89%

(b) Test ’target’
Table 6.4 – CNN classifier trained with ’clean’ audio data and evaluated with ’clean’ testdata and the ’target’ test data respectively. Table shows precision, recall andf-score derived from the confusion matrix.
Interestingly, the CNN trained with ’clean’ audio data works surprisingly well forthe ’target’ test data, with a classification accuracy of 89%, outperforming thefeature-based approaches by a comfortable margin. This could also be verified inreal-time tests (see chapter 6.8).

6.5.2 Training with ’Degraded’ Audio Data
Aswith the feature-based classifiers, themodel was then trainedwith the ’degraded’dataset in order to reduce the mismatch between training data and the ’target’domain.
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Figure 6.5 – confusion matrices for CNN classification trained with ’degraded’ data andtested with (a) ’clean’ and (b) ’target’ test data.
The CNN was trained with the full ’degraded’ training dataset (around one millionMel-spectrograms) and evaluated again with both the ’clean’ and ’target’ test data.
Figure 6.5 shows the corresponding confusion matrices for (a) ’clean’ test dataand (b) the recorded ’target’ data coming from the far-field microphone array. Theclassifier’s performance is listed in table 6.5.
As can be seen when looking at figure 6.5 (a), the performance for the ’clean’test data is still very good. However, around 10% of environmental noise data are
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class music noise speech avg.
recall 96% 90% 98% 95%

precision 94% 97% 94% 95%
f-score 95% 93% 96% 95%

(a) test ’clean’

music noise speech avg.
94% 93% 96% 94%
95% 92% 97% 95%
94% 92% 96% 94%

(b) test ’target’
Table 6.5 – CNN classifier trained with ’degraded’ audio data and evaluated with ’clean’test data and the ’target’ test data respectively. Table shows precision, recalland f-score derived from the confusion matrix.
misclassified as either speech or music, compared to just under 5% when trainingwith ’clean’ audio data. The overall accuracy decreases to approximately 95%.
More interestingly though, the overall accuracy for the ’target’ test data increasesto approximately 94%. The CNN trained with degraded audio also performed wellin real-time tests (see 6.8), allowing a responsive and robust detection of speechand music, even when the source is several metres away from the microphonearray.
Overall the CNN proves to be a very robust classifier for audio data, even if heavilydegraded by background noise and reverberation, outperforming other feature-based approaches. Note that the CNN has been trained with considerably moreaudio data than the feature-based algorithms and is substantially more computa-tionally demanding. In contrast to the feature-based machine learning approach(see chapter 5), where expert knowledge is required to define and select relevantdescriptive features, the deep neural net learns to extract relevant patterns from theinput signal representation (i.e. Mel-spectrogram) during training. In consequence,the CNN is more robust and less prone to noise.
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6.6 Common misclassifications
While classification accuracy is generally good, in some cases the CNNwill mislabelaudio segments. In the following, commonmisclassification for a CNN trained with
’degraded’ audio data are shown. The examples include both ’clean’ and ’target’test data.
Environmental Noise misclassified as MusicSometimes, environmental noise with prominent harmonic content will be mis-interpreted as music, as shown in figure 6.6 (a). This is to be expected, as evenhumans sometimes can have a hard time differentiating tonal noise events frommusic, especially for short segments.
As shown in figure 6.6 (b), environmental noise sounds with a prominent rhythmicpattern (which might sound similar to a drum pattern) are sometimes mislabelledas music.
In both cases, the neural net is not certain about its decision, with predictedprobabilities of about 60% for music and 40% for environmental noise.
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(b) env. noise sound with rhythmic pattern
Figure 6.6 – Environmental noise segments mislabelled as music.
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Environmental Noise misclassified as SpeechAs described in chapter 2, speech spectrograms are characterised by their varyingfundamental frequency and its lower order harmonics. In rare cases, such asdepicted in figure 6.7 (a), environmental noise sounds with varying pitch can leadto misclassification. Figure 6.7 (b) shows another, although less characteristicenvironmental noise sound mislabelled as speech.
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(a) env. noise sound with varying pitch.
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(b) env. noise sound with
Figure 6.7 – Environmental noise segments mislabelled as speech.

Music misclassified as SpeechQuite often music contains some sort of speech (see figure 6.8). Especially inrap music, as shown in (a), the differentiation between music and speech is oftendifficult and sometimes even impossible. The Mel-spectrogram inherits bothcharacteristics of speech signals and music, leading to a false prediction.
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(a) rap music segment
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Figure 6.8 – Music segments mislabelled as speech.
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Speech misclassified as Environmental NoiseIf speech signals are too heavily distorted, the CNN will fail to identify them assuch (figure 6.9 (a)).
Pauses are an essential part of speech. However, longer pauses in speech signalsare not considered speech in this context. Even-though a silence-removal procedurewas applied to speech training data, there appears to be some mislabelled dataleft in the test set (figure 6.9 (b)).
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Figure 6.9 – Speech segments mislabelled as environmental noise.

Looking at mislabelled data in the test set provides some information on what kindof data is hard for the neural net to distinguish. However, it is not possible to say,
why the classifier identifies a sample to be of a certain class. To gain an insighton the deciding factors of a neural net classifier, class models can be visualised,as described below.



104 Speech, Music and Environmental Noise Classification

6.7 ClassModel Visualisation by Inverting the
Neural Net

One drawback of using deep neural nets for classification is that the underlyingdecision rules of a neural net cannot be easily understood, sometimes making theresults hard to interpret.
One approach to alleviate this problem has been introduced by Simonyan et al. [113]in 2013. They propose a method to visualise learned class models of a CNN byinverting the model structure and generating an input image that maximises theclass score sC(I):

argmax
I

sc(I) − λ · | |I| |22, (6.3)
with a regularisation parameter λ. A synthetic input image I characteristic for class
c is obtained by iteratively changing the pixels with regard to the activation of theclassifier’s output neurons 6.4. More specifically, a stochastic gradient ascend isperformed, maximising sc(I) with each step:

I← I + ∆I (6.4)
Similar to the gradient descent during training (see chapter 3.2), the image isadapted in the direction of the gradient ∇sc(I) (steepest ascent). As suggestedby [114], momentum was added to the gradient ascent.

∆I← γ · ∇sc(I) + m · ∆I = γ · ∂ sc(I)
∂ I

+ m · ∆I (6.5)
with step size γ, gradient ∇sc, and decaying factor m.
Figure 6.10 showsmodel visualisations (sometimes called deep dream images) forthe classes music (a), environmental noise (b) and speech (c), coming from a CNNtrained with Mel-spectrograms. The images represent synthetic Mel-spectrogramsthat result in a strong activation of the respective output neuron. This allows a cer-tain insight into what signal characteristics are relevant for classification. However,the quality of the images and how well they resemble an actual Mel-spectrogramdoes not say much about the system’s performance, and is largely dependent onthe initial image (in our case random noise), chosen model parameters (such askernel sizes, strides, ...), step size γ, decaying factor m and the number of iterations.
Looking at the images, one can see that the algorithm learns to identify musicbased on straight horizontal lines in the spectrogram. Note that even though thisimage suggests that the detection of music might only be dependant of the tonalstructure of a musical excerpt, the trained model also works well on isolated drumsequences without harmonic / tonal content.
6.4. Note that the activations before the output layer’s softmax activation function are evaluatedto make sure that the optimisation is only dependent of the class c itself. Otherwise, the score scwill be maximised by minimising the scores for the other classes [113].
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Speech on the other hand is classified based the shape of the fundamental fre-quency and lower order harmonics, which can be observed when looking at thelower Mel bands in figure 6.10 (c). Additionally, temporal fluctuations of signalenergy in the higher frequency range seem to be characteristic for speech signals(i.e. succession of consonants).
The generated image for environmental noise (b) does look less characteristic,which is not surprising given the inhomogeneous nature of environmental noisesounds. Interestingly it does not contain any horizontal (harmonic) structures inthe lower and mid frequency range.
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Figure 6.10 – Class model visualisations for the three classes music (a), environmentalnoise (b) and music (c). CNN with two convolutional layers (kernel size 8 × 8with stride 1 × 1), each with consecutive max pooling (pool size 4 × 4 withstride 2 × 2) and two fully connected layers with 64 and 32 neurons wastrained with 1,728,000 Mel-spectrograms with 128 Mel bands and 100 timeframes, corresponding to 1s of audio.

Convolutional Layer Kernel VisualisationIn a similar fashion, the activations of convolutional layer filters can be visualised,resulting in images that result in a strong activation for each learned filter kernel.The input image is iteratively changed tomaximise the activation of a convolutionalfilter kernel. As stated above, this can help to see whether the training process isgoing into the right direction.
Figure 6.11 shows the visualisation of 16 filter kernels of the first convolutional layerafter training for several epochs. Some kernels represent vertical and horizontallines of different strengths. As quite a few of the resulting images look very similar(e.g. filters 5, 6 and 13 or filters 3 and 16), the number of filters can probably bereduced without a great hit on performance. Also two of the images do not showany characteristic patterns but random noise (filters 12 and 15). Ideally, all filterkernels show characteristic, unique and distinct patterns.
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Figure 6.11 – Visualising learned filter kernels of first convolutional layer.
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6.8 Real-time Implementation
In order to demonstrate the capabilities of the proposed CNN classifier, a ’proof-
of-concept’ real-time classification procedure was implemented.
More specifically, audio data is streamed from the microphone array via a USBaudio-interface 6.5and buffered for one second using the pyAudio Toolkit [115].The buffer is re-written and evaluated 12 times per second, meaning that a newprediction of class membership is obtained every ∼83.33 ms.

microphone

ADC +
audio buffer

FFT +
Mel filter bank

CNN
classifier

prediction
score

Figure 6.12 – Basic signal flow for real-time audio classification.
All audio signal processing is done in Python using the pyAudio Toolkit [115] andlibrosa [86]. The classification is done using Keras [116] with Tensorflow [117] asbackend. Figure 6.12 shows the basic signal flow for real-time audio classification.
Figure 6.13 demonstrates the performance of a CNN trained with ’degraded’ audiodata (see section 6.8 above). The top graph shows the audio waveform for 8seconds of audio recorded with a far-field microphone array in a domestic environ-ment. For around 3.5s, music is playing, which results in characteristic horizontallines in the Mel-spectrogram (second plot). At around 5s, a male speaker startstalking, resulting in the characteristic succession of horizontal lines in the lowerspectrum, pauses and transient wide-band noise bursts. In between (3.5s - 5s), atransient environmental noise event occurs.
The third and fourth plot show the predicted score and a smoothed score respec-tively. The smoothed score in the lower plot is obtained by averaging the last N = 5predictions (moving average smoothing).
As can be seen, besides short segments at the transitions from music to environ-mental noise at around 3s and environmental noise to speech in at around 5s, theCNN accurately detects music, environmental noise and speech. This indicatesthat it might be interesting to include such transitions in the training data in orderto further increase performance. Overall the detection of speech and music usingCNNs was very reliable and responsive.

6.5. MiniDSP USBStreamer, https://www.minidsp.com/ products/ usb-audio-interface/ usbstreamer- accessed January 2018

 https://www.minidsp.com/products/usb-audio-interface/usbstreamer
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Figure 6.13 – Demonstration of classification performance on audio data stream. The topplot shows the audio waveform of a signal recorded with a far-field micro-phone array in a noisy environment. The class membership is estimated 12times per second by evaluating the Mel-spectrogram (2nd plot) using a CNN.The predicted class membership score is shown in the third plot. The lastplot shows the moving average of the predicted score, based on the last
N = 5 predictions.
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6.8.1 Directional Classification

When combining the audio classification algorithm with a beam-forming tech-nique, different sources of audio surrounding the far-field microphone array canbe detected in real-time. Figure 6.14 shows the basic signal flow of the real-timeclassification procedure integrating the beam-forming microphone array.
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Figure 6.14 – microphone array with 7 omni-directional MEMS microphones.
In essence, 7 microphone audio channels are combined to 8 equally spaced beamchannels using a filter-and-sum beam-forming technique. Mel-spectrograms arethen computed for each beamchannel. For each beamchannel i, the correspondinga-posteriori probabilities yi are predicted. Finally, the results for all 8 beams areinterpolated to 360 degrees, yielding the output matrix Y, containing the predicteda-posteriori probabilites Yi, j = P(α = i, c = j) for each direction α ∈ {1, 2 . . . , 360}and class c = {0, 1, 2} 6.6.
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Figure 6.15 – Interpolated directional classification. The estimated a-posteriori probabili-ties for each class are interpolated to 360 degrees, yielding a predicted classmembership for each direction.
6.6. Linear and cubic interpolation were evaluated, both with promising results.
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In initial tests, up to three different sources could be separated to promisingsuccess, as qualitatively shown in figure 6.15. Separation of sources close to eachother is limited by the directivity of beam channels. Nonetheless, the ’proof-of-
concept’ implementation suggests that an audio classification algorithm could beuseful for tracking various audio sources (like different speakers) in space, e.g. foradaptive beam steering.
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7 | Summary

This thesis investigated the application of deep neural nets for audio classificationwith special emphasis on the performance in noisy and reverberant environments.More specifically, convolutional neural nets (CNNs) applied to Mel-spectrogramswere used to discriminate music, speech and environmental noise in different do-mestic and business environments, outperforming other feature-based classifiersby a comfortable margin.
In this final chapter, experimental results are briefly summarised and an outlook isprovided for future projects.

7.1 Summary of Experimental Results
Different audio classification algorithms were implemented and compared, in-cluding traditional feature-based machine learning (ML) algorithms, as well asstate-of-the-art convolutional neural nets. Audio classification was done for au-dio segments of 1s. All algorithms were first trained and evaluated with ’clean’low-noise audio data, resembling broadcast audio.
Both traditional ML algorithms and the investigated deep neural nets performedadmirably for a ’clean’ test set (with accuracies of up to 98%). However, whenevaluated with a ’target’ test set, resembling audio data recorded with a far-fieldmicrophone array in different noisy and reverberant locations, traditional feature-based approaches failed to discriminate speech and music from environmentalnoise effectively. CNNs on the other hand, performed quite well, even when trainedwith ’clean’ audio data only (with accuracies of up to 89%).
To overcome the lack of labelled audio data recorded with the investigated far-field microphone array, the ’clean’ training dataset was augmented by simulatingthe playback and recording in different acoustic environments (see chapter 4.5),forming the ’degraded’ training dataset. When trained with ’degraded’ audio data,performance for ’clean’ test data decreased slightly for all classifiers. More in-terestingly though, performance for the ’target’ test data improved significantly.However, performance for the feature-based classifiers was still poor (accuracy ofup to 78%), especially compared to the impressive performance of the deep neuralnets (accuracies of up to 94%).
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Table 7.1 lists the classification accuracies for the different classifiers investi-gated for this thesis. As can be seen, the CNN outperforms all other classifiersinvestigated.
train with ’clean’ data

classifier: test ’clean’ test ’target’
CNN 98% 89%
SVM 98% 67%
kNN 97% 58%
NB 90% 52%

train with ’degraded’ data
classifier: test ’clean’ test ’target’
CNN 95% 94%
SVM 92% 77%
kNN 85% 65%
NB 68% 60%

Table 7.1 – Comparing different classifiers trained with ’clean’ and ’degraded’ train data andevaluated with both the ’clean’ and ’target’ test data. Table lists classificationaccuracy in percent.
To demonstrate the algorithm’s capabilities, a prototype real-time system was im-plemented, that classifies an audio data stream coming from a far-fieldmicrophonearray into the categories speech, music and environmental noise. Overlappingaudio clips of 1s are evaluated multiple times per second. As suggested by the re-sults of offline evaluations, the CNN classifier reliably detected speech and music,even when the source was several metres away from the microphone array. Whencombined with a beam-forming algorithm, audio data from various sources spacedaround the microphone-array could be detected simultaneously with promisingresults.

7.2 Conclusion
As has been shown, deep neural nets are incredibly flexible and can be appliedsuccessfully to audio classification tasks. When trained with the right data, theyprovide very robust performance even when there is a considerable mismatchbetween training and evaluation data.
Deep neural nets learn to extract relevant features from raw input data (in ourcase Mel-spectrograms) during training. This means that less expert knowledgeis required compared to traditional feature-based machine learning approaches,where descriptive audio features are defined based on a-priori domain knowledge.
Compared to simpler machine-learning algorithms, convolutional neural nets arecomputationally more demanding. So when computational resources and theamount of labelled training data are limited, simpler machine learning algorithms(like support vector machines) might yield a better trade-off between performanceand computational effort.
Especially when acoustic environments are confined and well-known (such asfor in-cabin applications in the automotive sector [26]), traditional feature-based
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machine learning algorithms might yield good-enough performance.
However, due to the wide-spread application in computer vision (e.g. for au-tonomous driving [118]), a lot of specialised hardware for embedded training andevaluation of CNNs is actively developed and already available [119], indicatingthat computational cost will become less of a problem in the near future. Withthe current revival of analogue computing [120], deep neural nets might even findtheir way into hearing aids and other applications where space and power arelimited [119, 121].

7.3 Outlook
In future work, the CNN model should be optimised for specific applications andembedded hardware implementations. Depending on the final use case and theavailability of labelled training data, the model could be extended to discriminatemore (sub-)categories.
This thesis evaluates only one specific type of deep learning algorithm, namelyconvolutional neural nets. While the results have been promising for applying thistechnology to new products in the near future (due to the wide-spread applicationin computer vision), other neural net topologies should be investigated as well. Inparticular so-called recurrent neural nets (RNNs) should be considered due to theirability to process time series [45, p.367].
The ’proof-of-concept’ real-time implementation of the audio classifier alreadyreliably detects speech and music signals in reverberant and noisy environments.In future work, it should be investigated how the classification algorithm is affectedby the use of de-noising, echo-cancelling and / or adaptive gain control algorithms.Also, using some sort of post-processing with regard to previous predictions mightmake the prediction more stable and reliable.
In general, deep neural nets require a lot of training data in order to find modelsthat generalise well. More training data is thus always desirable. In future work,the training data should be augmented by labelled ’real-life’ audio data. Based onthe performance gain achieved by using the ’degraded’ dataset instead of ’clean’audio data for training, adding ’real-life’ data is expected to improve performanceeven further. Additionally, non-audio data could be included in the classificationprocess as well. For example the location or time of day could provide valuableinformation.
Themain focus of this thesis was on the evaluation of CNNs for audio classification.Other classification algorithms have been implemented to form a baseline tocompare the CNN against, and were not investigated as thoroughly. In futurework it might thus be interesting to see how a more extensive feature selectionprocedure might improve classification in noisy environments.



114 Speech, Music and Environmental Noise Classification



Bibliography 115

Bibliography

[1] E. Friauf, “Hearing,” e-Neuroforum, vol. 5, no. 3, pp. 51–52, 2014.
[2] A. S. Bregman, Auditory Scene Analysis: The Perceptual Organization of

Sound. Cambridge, MA, USA: MIT Press, 1994.
[3] G. J. Brown and M. Cooke, “Computational auditory scene analysis,” Com-

puter Speech & Language, vol. 8, no. 4, pp. 297–336, 1994.
[4] R. F. Lyon, “Machine hearing: An emerging field,” IEEE signal processing

magazine, vol. 27, no. 5, pp. 131–139, 2010.
[5] “Introducing harman/kardon Invoke with Cortana by Microsoft,” Internet:http://www.harmankardon.com/invoke.html, accessed: February 2018.
[6] M. Kajala and M. Hamaldinen, “Broadband beamforming optimization forspeech enhancement in noisy environments,” in Workshop on Applications

of Signal Processing to Audio and Acoustics. IEEE, 1999, pp. 19–22.
[7] J. R. Clark, “Electronic device for automatically discriminating betweenspeech and music forms,” U.S. Patent 2,761,897, Sept. 4 1956.
[8] J. R. Clark, “An automatic device for discriminating between speech andmusic,” The Journal of the Acoustical Society of America, vol. 23, pp. 148–149,2006.
[9] J. Saunders, “Real-time discrimination of broadcast speech/music,” in Pro-

ceedings of the International Conference on Acoustics, Speech, and Signal
Processing, ICASSP-96, IEEE, vol. 2, 1996, pp. 993–996.

[10] M. K. S. Khan and W. G. Al-Khatib, “Machine-learning based classification ofspeech and music,” Multimedia Systems, vol. 12, no. 1, pp. 55–67, 2006.
[11] E. Scheirer and M. Slaney, “Construction and evaluation of a robust mul-tifeature speech/music discriminator,” in Proceedings of the International

Conference on Acoustics, Speech, and Signal Processing, ICASSP-97, IEEE,vol. 2, 1997, pp. 1331–1334.
[12] Z. Liu, J. Huang, Y. Wang, and T. Chen, “Audio feature extraction and analysisfor scene classification,” in Proceedings of First Signal Processing Society

Workshop on Multimedia Signal Processing, 1997, pp. 343–348.

http://www.harmankardon.com/invoke.html


116 Speech, Music and Environmental Noise Classification

[13] T. Zhang and C. C.-J. Kuo, “Hierarchical classification of audio data for archiv-ing and retrieving,” in Proceedings of the International Conference on Acous-
tics, Speech, and Signal Processing, ICASSP-99, IEEE, vol. 6, 1999, pp. 3001–3004.

[14] G. Williams and D. P. W. Ellis, “Speech/music discrimination based on pos-terior probability features,” in Proceedings of the Sixth European Conference
on Speech Communication and Technology, Eurospeech ’99, 1999.

[15] K. El-Maleh, M. Klein, G. Petrucci, and P. Kabal, “Speech/music discriminationfor multimedia applications,” in Proceedings of the International Conference
on Acoustics, Speech, and Signal Processing, ICASSP-00, IEEE, vol. 4, 2000,pp. 2445–2448.

[16] M. De Santo, G. Percannella, C. Sansone, and M. Vento, “Classifying audioof movies by a multi-expert system,” in Proceedings of the 11th International
Conference on Image Analysis and Processing, ICIAP-01, IEEE, 2001, pp. 386–391.

[17] L. Lu, S. Z. Li, and H.-J. Zhang, “Content-based audio segmentation usingsupport vector machines,” in Proceedings of the International Conference on
Multimedia and Expo, ICME’01, vol. 1, 2001, pp. 749–752.

[18] T. Zhang and C. C.-J. Kuo, “Audio content analysis for online audiovisual datasegmentation and classification,” IEEE Transactions on speech and audio
processing, vol. 9, no. 4, pp. 441–457, 2001.

[19] M. Büchler, S. Allegro, S. Launer, and N. Dillier, “Sound classification in hearingaids inspired by auditory scene analysis,” EURASIP Journal on Advances in
Signal Processing, vol. 2005, no. 18, p. 387845, 2005.

[20] A. Bugatti, A. Flammini, and P. Migliorati, “Audio classification in speech andmusic: a comparison between a statistical and a neural approach,” EURASIP
Journal on Applied Signal Processing, vol. 2002, no. 1, pp. 372–378, 2002.

[21] H. Harb and L. Chen, “Robust speech music discrimination using spectrum’sfirst order statistics and neural networks,” in Proceedings of the Seventh
International Symposium on Signal Processing and Its Applications, ISSPA-
03, IEEE, vol. 2, 2003, pp. 125–128.

[22] J. J. Burred and A. Lerch, “Hierarchical automatic audio signal classification,”
Journal of the Audio Engineering Society, vol. 52, no. 7/8, pp. 724–739, 2004.

[23] M. Khan, W. G. Al-Khatib, and M. Moinuddin, “Automatic classification ofspeech and music using neural networks,” in Proceedings of the 2nd ACM
international workshop on Multimedia databases, MMDB’04, 2004, pp. 94–99.

[24] L. Chen, S. Gunduz, and M. T. Ozsu, “Mixed type audio classification withsupport vector machine,” in Proceedings of the International Conference on
Multimedia and Expo, ICME-06, IEEE, 2006, pp. 781–784.



Bibliography 117
[25] Y. Lavner and D. Ruinskiy, “A decision-tree-based algorithm for speech/musicclassification and segmentation,” EURASIP Journal on Audio, Speech, and

Music Processing, vol. 2009, no. 1, 2009.
[26] M. Won, H. Alsaadan, and Y. Eun, “Adaptive multi-class audio classification innoisy in-vehicle environment,” arXiv preprint arXiv:1703.07065, 2017, [Online]Available: http://arxiv.org/abs/1703.07065, Accessed: January 2018.
[27] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification withdeep convolutional neural networks,” in Proceedings of the Conference on

Advances inNeural InformationProcessing Systems, NIPS’12, 2012, pp. 1097–1105.
[28] J. Salamon and J. P. Bello, “Deep convolutional neural networks and data aug-mentation for environmental sound classification,” IEEE Signal Processing

Letters, vol. 24, no. 3, pp. 279–283, 2017.
[29] Y. Lukic, C. Vogt, O. Dürr, and T. Stadelmann, “Speaker identification andclustering using convolutional neural networks,” in Proceedings of the 26th

International Workshop on Machine Learning for Signal Processing (MLSP).IEEE, 2016, pp. 1–6.
[30] N. Takahashi, M. Gygli, and L. Van Gool, “Aenet: Learning deep audio featuresfor video analysis,” IEEE Transactions on Multimedia, vol. 20, no. 3, pp. 513–524, 2018.
[31] J. F. Gemmeke, D. P. Ellis, D. Freedman, A. Jansen, W. Lawrence, R. C. Moore,M. Plakal, and M. Ritter, “Audio set: An ontology and human-labeled datasetfor audio events,” in Proceedings of the International Conference on Acous-

tics, Speech and Signal Processing, ICASSP-17, IEEE, 2017, pp. 776–780.
[32] S. Hershey, S. Chaudhuri, D. P. Ellis, J. F. Gemmeke, A. Jansen, R. C. Moore,M. Plakal, D. Platt, R. A. Saurous, B. Seybold et al., “Cnn architectures for large-scale audio classification,” in Proceedings of the International Conference on

Acoustics, Speech and Signal Processing, ICASSP-17, IEEE, 2017, pp. 131–135.
[33] Y. LeCun, K. Kavukcuoglu, and C. Farabet, “Convolutional networks and appli-cations in vision,” in Proceedings of the International Symposium on Circuits

and Systems, ISCAS’10, IEEE, 2010, pp. 253–256.
[34] Y. Qian, M. Bi, T. Tan, and K. Yu, “Very deep convolutional neural networks fornoise robust speech recognition,” IEEE/ACM Transactions on Audio, Speech,

and Language Processing, vol. 24, no. 12, pp. 2263–2276, 2016.
[35] Oxford University Press, “Oxford Living Dictionaries - English (Online Edition),”Internet: https://en.oxforddictionaries.com, 2017, accessed: July 2017.
[36] P. Vary and R. Martin, Digital Speech Transmission: Enhancement, Coding

And Error Concealment. Hoboken, NJ, USA: John Wiley & Sons, 2006.
[37] B. Milner, Display and Analysis of Speech. New York, NY, USA: Springer NewYork, 2008, pp. 449–481.

https://en.oxforddictionaries.com


118 Speech, Music and Environmental Noise Classification

[38] T. Houtgast and H. J. Steeneken, “A review of the MTF concept in roomacoustics and its use for estimating speech intelligibility in auditoria,” The
Journal of the Acoustical Society of America, vol. 77, no. 3, pp. 1069–1077,1985.

[39] R. J. Baken and R. F. Orlikoff, Clinical measurement of speech and voice.Boston, MA, USA: Cengage Learning, 2000.
[40] International Phonetic Association, Handbook of the International Phonetic

Association: A guide to the use of the International Phonetic Alphabet. Cam-bridge, England: Cambridge University Press, 1999.
[41] “Wikipedia: Notation (Musik),” Internet: https://de.wikipedia.org/wiki/Notation_(Musik), 2017, accessed: December 2017.
[42] “Wikipedia: Tempo (Musik),” Internet: https://de.wikipedia.org/wiki/Tempo_(Musik), 2017, accessed: December 2017.
[43] E. Sengpiel, “Klaviatur und Frequenzen, Notennamen und Piano-Tastatur, Fre-quenzen der gleichstufigen Stimmung,” Internet: http://www.sengpielaudio.com/Rechner-notennamen.htm, accessed: December 2017.
[44] K. Seyerlehner, T. Pohle, M. Schedl, and G. Widmer, “Automatic Music De-tection in Television Productions,” in Proceedings of the Int. Conference on

Digital Audio Effects, DAFX-2007, Bordeaux, France, 2007.
[45] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge, MA,USA: MIT Press, 2016.
[46] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for optimalmargin classifiers,” in Proceedings of the fifth annual workshop on Compu-

tational learning theory, ACM, 1992, pp. 144–152.
[47] “Scikit Learn Python Library - Underfitting vs. Overfitting,” Internet:http://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html, accessed: November 2017.
[48] H. Zhang, “The Optimality of Naive Bayes,” in Proceedings of the Seven-

teenth International Florida Artificial Intelligence Research Society Confer-
ence, FLAIRS 2004, no. 2, 2004.

[49] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to information re-
trieval. Cambridge, England: Cambridge University Press, 2008.

[50] “Scikit Learn Documentation - 1.9.1. Gaussian Naive Bayes,” Internet: http://scikit-learn.org/stable/modules/naive_bayes.html#naive-bayes, accessed:October 2017.
[51] “Scikit Learn Documentation - 1.6.2. Nearest Neighbors Classification,” Inter-net: http://scikit-learn.org/stable/modules/neighbors.html#classification,accessed: October 2017.
[52] C. Yeh, “Support Vector Machines for classification - Online Tutorial -efavdb.com (Everybody’s Favorite Data Blog),” Internet: http://efavdb.com/svm-classification/, 2015, accessed: October 2017.

https://de.wikipedia.org/wiki/Notation_(Musik)
https://de.wikipedia.org/wiki/Notation_(Musik)
https://de.wikipedia.org/wiki/Tempo_(Musik)
https://de.wikipedia.org/wiki/Tempo_(Musik)
http://www.sengpielaudio.com/Rechner-notennamen.htm
http://www.sengpielaudio.com/Rechner-notennamen.htm
http://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html
http://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html
http://scikit-learn.org/stable/modules/naive_bayes.html#naive-bayes
http://scikit-learn.org/stable/modules/naive_bayes.html#naive-bayes
http://scikit-learn.org/stable/modules/neighbors.html#classification
http://efavdb.com/svm-classification/
http://efavdb.com/svm-classification/


Bibliography 119
[53] “Stackexchange.com: Data science - kernel trick explanation,” In-ternet: https://datascience.stackexchange.com/questions/17536/kernel-trick-explanation, accessed: October 2017.
[54] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning, vol. 20,no. 3, pp. 273–297, 1995.
[55] Y.-W. Chang, C.-J. Hsieh, K.-W. Chang, M. Ringgaard, and C.-J. Lin, “Trainingand testing low-degree polynomial data mappings via linear svm,” Journal of

Machine Learning Research, vol. 11, no. Apr, pp. 1471–1490, 2010.
[56] “Pixabay.com - neuron,” Internet: https://pixabay.com/de/neuron-nervenzelle-axon-dendrit-296581/, accessed: December 2017.
[57] P. H. Winston, “MIT Open Course Ware - Artificial Intelli-gence, lecture 12A: Neural Nets,” Internet: https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-034-artificial-intelligence-fall-2010/lecture-videos/lecture-12a-neural-nets/, 2010, accessed: July 2017.
[58] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities improve neuralnetwork acoustic models,” in Proceedings of the International Conference on

Machine Learning, ICML-13, vol. 30, no. 1, 2013, p. 3.
[59] M. D. Zeiler, M. Ranzato, R. Monga, M. Mao, K. Yang, Q. V. Le, P. Nguyen,A. Senior, V. Vanhoucke, J. Dean et al., “On rectified linear units for speechprocessing,” in Proceedings of the International Conference on Acoustics,

Speech and Signal Processing, ICASSP-13, IEEE, 2013, pp. 3517–3521.
[60] C. Bishop, Neural Networks for Pattern Recognition, ser. Advanced Texts inEconometrics. Oxford, England: At the Clarendon Press, 1995.
[61] “MNIST For ML Beginners - tensorflow tutorial,” Internet: https://www.tensorflow.org/versions/master/get_started/mnist/beginners, 2017, ac-cessed: November 2017.
[62] “Wikipedia: Cross entopy,” Internet: https://en.wikipedia.org/wiki/Cross_entropy, 2017, accessed: November 2017.
[63] C. Olah, “Visual Information Theory - Cross-Entropy,” Internet: http://colah.github.io/posts/2015-09-Visual-Information/, 2015, accessed: November2017.
[64] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representationsby back-propagating errors,” nature, vol. 323, no. 6088, p. 533, 1986.
[65] M. Nielsen, “Neural Nets and Deep Learning - Chapter 2: How the backprop-agation algorithm works,” Internet: http://neuralnetworksanddeeplearning.com/chap2.html, accessed: December 2017.
[66] D. P. Kingma and J. L. Ba, “Adam: a Method for Stochastic Optimization,”

presented at the International Conference on Learning Representations, ICLR,
San Diego, CA, 2015.

https://datascience.stackexchange.com/questions/17536/kernel-trick-explanation
https://datascience.stackexchange.com/questions/17536/kernel-trick-explanation
https://pixabay.com/de/neuron-nervenzelle-axon-dendrit-296581/
https://pixabay.com/de/neuron-nervenzelle-axon-dendrit-296581/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-034-artificial-intelligence-fall-2010/lecture-videos/lecture-12a-neural-nets/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-034-artificial-intelligence-fall-2010/lecture-videos/lecture-12a-neural-nets/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-034-artificial-intelligence-fall-2010/lecture-videos/lecture-12a-neural-nets/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-034-artificial-intelligence-fall-2010/lecture-videos/lecture-12a-neural-nets/
https://www.tensorflow.org/versions/master/get_started/mnist/beginners
https://www.tensorflow.org/versions/master/get_started/mnist/beginners
https://en.wikipedia.org/wiki/Cross_entropy
https://en.wikipedia.org/wiki/Cross_entropy
http://colah.github.io/posts/2015-09-Visual-Information/
http://colah.github.io/posts/2015-09-Visual-Information/
http://neuralnetworksanddeeplearning.com/chap2.html
http://neuralnetworksanddeeplearning.com/chap2.html


120 Speech, Music and Environmental Noise Classification

[67] J. Duchi, E. Hazan, and Y. Singer, “Adaptive Subgradient Methods for On-line Learning and Stochastic Optimization,” Journal of Machine Learning
Research, vol. 12, pp. 2121–2159, 2011.

[68] S. Ruder, “An overview of gradient descent optimization algo-rithms,” arXiv preprint arXiv:1609.04747, 2016, [Online] Available:http://arxiv.org/abs/1609.04747, Accessed: January 2018.
[69] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum learning,” in

Proceedings of the 26th Annual International Conference on Machine Learn-
ing - ICML’09, 2009.

[70] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,“Dropout: A simple way to prevent neural networks from overfitting,” The
Journal of Machine Learning Research, vol. 15, no. 1, pp. 1929–1958, 2014.

[71] D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, and S. Bengio,“Why does unsupervised pre-training help deep learning?” Journal ofMachine
Learning Research, vol. 11, pp. 625–660, 2010.

[72] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep networktraining by reducing internal covariate shift,” in Proceedings of the Interna-
tional Conference on Machine Learning, ICML-15, 2015, pp. 448–456.

[73] “Scikit Learn Documentation - 3.3.2.4 Confusion Matrix,” Internet: http://scikit-learn.org/stable/modules/model_evaluation.html#confusion-matrix,accessed: October 2017.
[74] “MIREX Grand Challenge 2016 web site,” Internet: http://www.music-ir.org/mirex/gc16ux/index.php, 2016, accessed: June 2017.
[75] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech: An ASRcorpus based on public domain audio books,” in Proceedings of the Interna-

tional Conference on Acoustics, Speech and Signal Processing, ICASSP-15,
IEEE, 2015, pp. 5206–5210.

[76] D. B. Dean, S. Sridharan, R. J. Vogt, and M. W. Mason, “The QUT-NOISE-TIMIT corpus for the evaluation of voice activity detection algorithms,” in
Conference Proceedings of Interspeech, 2010, pp. 3110–3113.

[77] D. Stowell, D. Giannoulis, E. Benetos, M. Lagrange, and M. D. Plumbley, “De-tection and classification of acoustic scenes and events,” IEEE Transactions
on Multimedia, vol. 17, no. 10, pp. 1733–1746, Oct 2015.

[78] J. A. Stork, L. Spinello, J. Silva, and K. O. Arras, “Audio-based human activityrecognition using non-markovian ensemble voting,” inProceedings of the 21st
International Symposium on Robot and Human Interactive Communication,
RO-MAN2012, IEEE, Sept 2012, pp. 509–514.

[79] A. Mesaros, T. Heittola, and T. Virtanen, “TUT database for acoustic sceneclassification and sound event detection,” in Proceedings of the European
Signal Processing Conference, EUSIPCO, 2016, pp. 1128–1132.

http://scikit-learn.org/stable/modules/model_evaluation.html#confusion-matrix
http://scikit-learn.org/stable/modules/model_evaluation.html#confusion-matrix
http://www.music-ir.org/mirex/gc16ux/index.php
http://www.music-ir.org/mirex/gc16ux/index.php


Bibliography 121
[80] J. Thiemann, N. Ito, and E. Vincent, “DEMAND: a collection of multi-channelrecordings of acoustic noise in diverse environments,” Internet: http://parole.loria.fr/DEMAND/, 2013, accessed: July 2017.
[81] L. M. Heller, “Sound events database,” Internet: http://www.auditorylab.org/,2008, accessed: July 2017.
[82] J. Beltrán, E. Chávez, and J. Favela, “Scalable identification of mixed environ-mental sounds, recorded from heterogeneous sources,” Pattern Recognition

Letters, vol. 68, pp. 153–160, 2015.
[83] J. Vettel, “CNBC Stimulus Repository - Sound Databases - Real World Events,”Internet: http://wiki.cnbc.cmu.edu/Real_World_Events, accessed: July 2017.
[84] L. Lu, H.-J. Zhang, and S. Z. Li, “Content-based audio classification andsegmentation by using support vector machines,”Multimedia Systems, vol. 8,pp. 482–492, 2003.
[85] S. Ntalampiras, I. Potamitis, and N. Fakotakis, “Exploiting temporal featureintegration for generalized sound recognition,” Eurasip Journal on Advances

in Signal Processing, no. May, 2009.
[86] B.McFee, C. Raffel, D. Liang, D. P. Ellis, M.McVicar, E. Battenberg, andO. Nieto,“librosa: Audio and music signal analysis in python,” in Proceedings of the

14th python in science conference, 2015, pp. 18–25.
[87] SPTK Working Group, “The speech signal processing toolkit (sptk),” Internet:http://sp-tk.sourceforge.net, updated December 2016, accessed: October2017.
[88] G. Peeters, B. L. Giordano, P. Susini, N. Misdariis, and S. McAdams, “TheTimbre Toolbox: Extracting audio descriptors from musical signals,” The

Journal of the Acoustical Society of America, vol. 130, no. 5, pp. 2902–2916,2011.
[89] “pysptk - a python wrapper for speech signal processing toolkit (sptk),” Inter-net: https://github.com/r9y9/pysptk, 2015, accessed: September 2017.
[90] G. Peeters, “A large set of Audio Features for Sound Description (sim-ilarity and classification) in the CUIDADO project,” CUIDADO Project Re-

port, 2004, [Online] Available: http://recherche.ircam.fr/anasyn/peeters/ARTICLES/Peeters_2003_cuidadoaudiofeatures.pdf, Accessed: July 2017.
[91] U. Zoelzer, Ed., DAFX: Digital Audio Effects. New York, NY, USA: John Wiley& Sons, 2002.
[92] J. P. Bello, L. Daudet, S. Abdallah, C. Duxbury, M. Davies, and M. B. Sandler,“A tutorial on onset detection in music signals,” IEEE Transactions on Speech

and Audio Processing, vol. 13, no. 5, pp. 1035–1047, Sept 2005.
[93] C. Harte and M. Sandler, “Automatic chord identification using a quantisedchromagram,” presented at the 118th Audio Engineering Society Convention,

Barcelona, Spain, 2005.

http://parole.loria.fr/DEMAND/
http://parole.loria.fr/DEMAND/
http://www.auditorylab.org/
http://wiki.cnbc.cmu.edu/Real_World_Events
http://sp-tk.sourceforge.net
https://github.com/r9y9/pysptk
http://recherche.ircam.fr/anasyn/peeters/ARTICLES/Peeters_2003_cuidadoaudiofeatures.pdf
http://recherche.ircam.fr/anasyn/peeters/ARTICLES/Peeters_2003_cuidadoaudiofeatures.pdf


122 Speech, Music and Environmental Noise Classification

[94] M. Müller, S. Ewert, and S. Kreuzer, “Making chroma features more robust totimbre changes,” in Proceedings of the International Conference on Acous-
tics, Speech and Signal Processing, ICASSP-09, IEEE, April 2009, pp. 1877–1880.

[95] D. Ellis, “LabRosa - Matlab Resources: Chroma Feature Analysis and Synthe-sis,” Internet: https://labrosa.ee.columbia.edu/matlab/chroma-ansyn/, 2007,accessed: July 2017.
[96] S. S. Stevens, J. Volkmann, and E. B. Newman, “A scale for the measurementof the psychological magnitude pitch,” The Journal of the Acoustical Society

of America, vol. 8, no. 3, pp. 185–190, 1937.
[97] M. Slaney, “Auditory toolbox version 2 - technical report,” Internet: https://engineering.purdue.edu/~malcolm/interval/1998-010/, 1998, accessed:July 2017.
[98] B. P. Bogert, M. J. R. Healy, and J. W. Tukey, “The quefrency alanysis of timeseries for echoes: Cepstrum, pseudo autocovariance, cross-cepstrum andsaphe cracking,” in Proceedings of the Symposium on Time Series Analysis,1963, pp. 209–243.
[99] A. V. Oppenheim and R. W. Schafer, “From frequency to quefrency: a historyof the cepstrum,” IEEE Signal Processing Magazine, vol. 21, no. 5, pp. 95–106,Sept 2004.

[100] S. Young, G. Evermann, M. Gales, T. Hain, D. Kershaw, X. Liu, G.Moore, J. Odell,D. Ollason, D. Povey et al., “The HTK book,” Cambridge university engineering
department, 2002.

[101] A. Camacho and J. G. Harris, “A sawtooth waveform inspired pitch estimatorfor speech and music,” The Journal of the Acoustical Society of America, vol.124, no. 3, pp. 1638–1652, 2008.
[102] H. F. Pollard and E. V. Jansson, “A tristimulus method for the specification ofmusical timbre,” Acustica, vol. 51, pp. 162–171, 1982.
[103] L. Vrysis, N. Tsipas, C. Dimoulas, and G. Papanikolaou, “Extending TemporalFeature Integration for Semantic Audio Analysis,” presented at the 142nd

Audio Engineering Society Convention, 2017.
[104] “Rapid Miner Studio Documentation - Weight by Gini Index,” Internet:https://docs.rapidminer.com/latest/studio/operators/modeling/feature_weights/weight_by_gini_index.html, accessed: October 2017.
[105] “Rapid Miner Studio Documentation - Weight by Information Gain,”Internet: https://docs.rapidminer.com/latest/studio/operators/modeling/feature_weights/weight_by_information_gain.html, accessed: October 2017.
[106] “Rapid Miner Studio Documentation - Weight by Relief,” Internet:https://docs.rapidminer.com/latest/studio/operators/modeling/feature_weights/weight_by_relief.html, accessed: October 2017.

https://labrosa.ee.columbia.edu/matlab/chroma-ansyn/
https://engineering.purdue.edu/~malcolm/interval/1998-010/
https://engineering.purdue.edu/~malcolm/interval/1998-010/
https://docs.rapidminer.com/latest/studio/operators/modeling/feature_weights/weight_by_gini_index.html
https://docs.rapidminer.com/latest/studio/operators/modeling/feature_weights/weight_by_gini_index.html
https://docs.rapidminer.com/latest/studio/operators/modeling/feature_weights/weight_by_information_gain.html
https://docs.rapidminer.com/latest/studio/operators/modeling/feature_weights/weight_by_information_gain.html
https://docs.rapidminer.com/latest/studio/operators/modeling/feature_weights/weight_by_relief.html
https://docs.rapidminer.com/latest/studio/operators/modeling/feature_weights/weight_by_relief.html


Bibliography 123
[107] “Scikit Learn - Machine Learning in Python,” Internet: http://scikit-learn.org/,accessed: October 2017.
[108] S. Dieleman and B. Schrauwen, “End-to-end learning for music audio,” in

Proceedings of the International Conference onAcoustics, Speech and Signal
Processing, ICASSP-14, IEEE, 2014, pp. 6964–6968.

[109] “Wikipedia: Cochlea,” Internet: https://en.wikipedia.org/wiki/Cochlea, 2017,accessed: July 2017.
[110] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-houcke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings

of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 2015, pp. 1–9.

[111] A. J. Thomas, M. Petridis, S. D. Walters, S. M. Gheytassi, and R. E. Morgan,“Two hidden layers are usually better than one,” in International Conference on
Engineering Applications of Neural Networks. Springer, 2017, pp. 279–290.

[112] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedfor-ward neural networks,” in Proceedings of the 13th International Conference
on Artificial Intelligence and Statistics, AISTATS, 2010, pp. 249–256.

[113] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convo-lutional networks: Visualising image classification models andsaliency maps,” arXiv preprint arXiv:1312.6034, 2013, [Online] Available:http://arxiv.org/abs/1312.6034, Accessed: January 2018.
[114] A. Mahendran and A. Vedaldi, “Understanding deep image representationsby inverting them,” in Proceedings of the IEEE Computer Society Conference

on Computer Vision and Pattern Recognition, 2015, pp. 5188–5196.
[115] H. Pham, “PyAudio - cross-platform audio i/o library,” Internet: http://people.csail.mit.edu/hubert/pyaudio/, 2006, accessed: August 2017.
[116] “Keras: The Python Deep Learning Library,” Internet: https://keras.io/, ac-cessed: December 2017.
[117] “Tensorflow: An open-source machine learning framework for everyone,”Internet: https://www.tensorflow.org/, accessed: December 2017.
[118] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D.Jackel, M. Monfort, U. Muller, J. Zhang et al., “End to end learning for self-driving cars,” arXiv preprint arXiv:1604.07316, 2016.
[119] Mythic, “www.mythic-ai.com - The future of local AI,” Internet: http://www.mythic-ai.com/technology/, accessed: December 2017.
[120] E. Yablonovitch, “Deep Learning; the Reincarnation of Analog Computing- Brain Storming EECS Colloquium,” Internet: https://eecs.berkeley.edu/research/colloquium/171115, 2017, accessed: December 2017.
[121] T. Simonite, “An old technique could put artificial intelligencein your hearing aid,” Internet: https://www.wired.com/story/an-old-technique-could-put-artificial-intelligence-in-your-hearing-aid/,2017, accessed: December 2017.

http://scikit-learn.org/
https://en.wikipedia.org/wiki/Cochlea
http://people.csail.mit.edu/hubert/pyaudio/
http://people.csail.mit.edu/hubert/pyaudio/
https://keras.io/
https://www.tensorflow.org/
http://www.mythic-ai.com/technology/
http://www.mythic-ai.com/technology/
https://eecs.berkeley.edu/research/colloquium/171115
https://eecs.berkeley.edu/research/colloquium/171115
https://www.wired.com/story/an-old-technique-could-put-artificial-intelligence-in-your-hearing-aid/
https://www.wired.com/story/an-old-technique-could-put-artificial-intelligence-in-your-hearing-aid/

	Introduction
	Problem Description
	Related Work

	Signal Characteristics
	Speech
	Music
	Environmental Noise

	Classification Algorithms
	Feature-based Classifiers
	Naive Bayes Classifier
	k-Nearest Neighbours Classifier
	Support Vector Machine (SVM)

	Deep Learning Algorithms
	Artificial Neural Net (ANN)
	Multi-Layer Perceptron (MLP)
	Training a Neural Net
	Convolutional Neural Network (CNN)

	Evaluating a Classifier

	MUSPEN Dataset
	Music Data
	Speech Data
	Environmental Noise Data
	Mic-Array Recordings - 'Target' Data
	Data Augmentation - 'Degraded' Data

	Machine Learning Approach
	Descriptive Audio Features
	Frame-level Features
	Clip-level Features - Temporal Integration
	Feature Ranking and Selection

	Naive Bayes Classifier
	Training with 'Clean' Audio Data
	Training with 'Degraded' Audio Data

	k-Nearest Neighbours classifier
	Training with 'Clean' Audio Data
	Training with 'Degraded' Audio Data

	Support Vector Machine
	Training with 'Clean' Audio Data
	Training with 'Degraded' Audio Data

	Summary

	Deep Learning Approach: Convolutional Neural Nets
	Input Signal Representation: Mel-spectrograms
	Model structure
	Sanity Checks
	Choosing Hyperparameters
	Offline Evaluation
	Training with 'Clean' Audio Data
	Training with 'Degraded' Audio Data

	Common misclassifications
	Class Model Visualisation by Inverting the Neural Net
	Real-time Implementation
	Directional Classification


	Summary
	Summary of Experimental Results
	Conclusion
	Outlook

	Bibliography

