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Abstract

The goal of this thesis is to develop an algorithm that effectively classifies audio
data into the categories music, speech and environmental noise. Traditionally,
audio classification tasks have been approached with standard classification
procedures applied to hand-crafted descriptive features derived from the audio
waveform. In recent years, inspired by their success in image classification and
object recognition, deep neural nets (DNNs) have been applied to different audio
classification tasks with promising results. This work assesses both traditional
machine learning algorithms, as well as state-of-the-art deep learning methods
for real-time audio classification. The algorithms are evaluated with audio data,
coming from a far-field microphone array in different domestic and business envi-
ronments. More specifically, a support vector machine (SVM) with non-linear kernel
is evaluated with different descriptive audio features, as well as a convolutional
neural net (CNN) applied to Mel-spectrograms. While classification accuracy is
excellent for both algorithms when classifying ‘clean’ audio data, the SVM performs
poorly for ‘real-world’ far-field microphone array recordings. An accuracy rate of
over 94% is achieved using the CNN for audio clips of 1 second, providing excellent
performance in real-time tests.

Zusammenfassung

Ziel dieser Arbeit ist der Entwurf und die Evaluierung eines Algorithmus zur Klas-
sifizierung eines Audiodatenstroms in die Kategorien Musik, Sprache und All-
tagsumgebungsgerausche. Herkommlicherweise wurden zur Audioklassifizierung
konventionelle statistische Klassifikationsverfahren in Verbindung mit sogenann-
ten Merkmalsvektoren verwendet, welche das Audiosignal mit wenigen Beschrei-
bungsgrolRen charakterisieren. Angeregt durch die erfolgreiche Anwendung in den
Bereichen Bildklassifikation und Objekterkennung, wurden in den letzten Jahren
sogenannte Deep Neural Nets zur Audioklassifizierung verwendet. Diese Arbeit
beurteilt sowohl herkémmliche Klassifizierungsverfahren, als auch sogenannte
Deep Learning Methoden fiir die Klassifizierung von Audiodaten in Echtzeit. Die
Algorithmen werden mit Aufnahmen einer Fernfeld-Mikrofonanordnung in verschie-
denen hauslichen und gewerblichen Umgebungen evaluiert. Im engeren Sinne wird
eine nicht-lineare Support Vector Machine (SVM) in Verbindung mit verschiede-
nen BeschreibungsgréfRen, und ein Convolutional Neural Net (CNN) in Verbindung
mit Mel-Spektrogrammen untersucht. Wahrend fiir saubere Signale beide Klassi-
fikationsverfahren exzellente Erkennungsraten erzielen, funktioniert die SVM flr
Aufnahmen mit den Fernfeld-Mikrofonaufnahmen sehr schlecht. Mit dem CNN
werden fiir Audio-Clips von 1 Sekunde Erkennungsraten von liber 94% erreicht.
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Introduction 11

1 | Introduction

The goal of machine perception is to develop machines that are capable of pro-
cessing and interpreting sensory input data in order to perceive and understand
their surroundings like humans do.

Being one of the five traditional senses (vision, hearing, touch, taste and smell),
hearing allows us to communicate with each other through vocalised speech, enjoy
music and is essential for orientation in the environment. For example, an acoustic
event might warn us of dangers, such as wild animals or approaching vehicles,
even when our view is obstructed [1].

Starting with Bregman [2] and Brown & Cooke [3] in the early 1990s, researchers
have tried to exploit the mechanics of the human auditory system for computational
analysis of sound. Since then, computational auditory scene analysis (CASA) and
in particular audio classification has attracted a lot of research.

With the rise of virtual assistants like Cortana ', incorporating highly accurate
speech recognition systems, people have come to expect human-level auditory
perception of machines. Ideally, machines should be able to easily distinguish
speech from music and background noise, locate the source of a sound and react
to acoustic events in real-time [4].

For this thesis, different algorithms coming from the field of artificial intelligence
are evaluated for real-time audio classification into the categories speech, music
and environmental noise.

Thesis Overview
This chapter provides a detailed problem description (chapter 1.1), a general
overview and summarises related research (chapter 1.2).

In chapter 2, fundamental signal characteristics are summarised for the three
categories speech, music and environmental noise.

In chapter 3, different classification algorithms, as evaluated for this thesis, are
described. Both traditional feature-based machine learning algorithms (chapter
3.1), as well as state-of-the-art deep learning methods (chapter 3.2) are introduced.

1.1. Cortana is a virtual assistant developed by Microsoft, recognising and processing voice-
commands. hitps: // www.microsoft.com/ en-us/ cortana - accessed: December 2017


https://www.microsoft.com/en-us/cortana
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Chapter 4 describes the audio data used to train and validate the classification
algorithms investigated.

Several feature-based audio classification algorithms are investigated. Chapter
5 describes the implemented descriptive features (chapter 5.1) and the different
machine learning algorithms in more detail, including a simple Gaussian naive
bayes (NB) classifier (chapter 5.2), a k-nearest neighbours (kNN) algorithm (chapter
5.3) and a support vector machine (SVM) with radial basis function (RBF) kernel
(chapter 5.4).

Chapter 6 describes the deep neural nets, namely so-called convolutional neural
nets (CNNs), investigated for this thesis in more detail and summarises their per-
formance for speech, music and environmental noise classification. As described
in chapter 6.8, a prototype real-time classification procedure was implemented to
demonstrate the algorithm’s performance in real-world environments.

Chapter 7 summarises the findings of this thesis and provides an outlook for future
experiments and applications.
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1.1 Problem Description

Invoke (see figure 1.1), Harman Kardon's recently introduced voice-activated portable
loudspeaker features a state-of-the-art beam-forming microphone array for voice
commands and phone-calls.

In order to make future devices more aware of
their surroundings, and thus clearing the path
for new services, different audio classification
algorithms are evaluated with emphasis on
audio data coming from the device’s far-field
microphone array.
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More specifically, the goal of this thesis is to
develop an algorithm that effectively classi-
fies an audio data stream into the categories
music, speech and environmental noise in
real-time.
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While this might sound trivial, as most peo-
ple can do this easily without thinking much
about it, this can be a challenging task for ma-
chines and in some cases impossible even for
trained listeners. This is especially the case in
noisy or reverberant environments and is even
more challenging for short signal segments,
as needed for real-time classification. Figure 1.1 - Harman Kardon Invoke [5]

harman/kardon

Figure 1.2 shows the basic signal-flow for real-time classification: Audio data
recorded with a microphone array is combined into one or more beam channels
using a filter-and-sum beamforming technique 2. From the audio data, so-called
descriptive features are calculated by a feature extraction module. The classifier
at the end outputs a class label (i.e. 'music’, 'speech’ or ‘environmental noise’) or
an a-posteriori probability for each class.

microphone

O array Q
Q O

feature .
beamformer — | classifier |—» class label
extractor (0.9, "specch’)

Figure 1.2 — Real-time classification of an audio data stream coming from a microphone
array with subsequent beam-forming.

1.2. As the name suggests, a ‘filter-and-sum’ beamformer works by adding up filtered sensor data
from different microphones [6].
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Several classification approaches are evaluated, including traditional machine
learning algorithms (chapter 5), as well as deep learning methods inspired by
recent developments in computer vision (chapter 6).

In the following, an overview of related research is provided.

1.2 Related Work

Given the many potential applications in multimedia analysis, home automation
and medical care, computational auditory scene analysis (CASA), and in particular
audio classification has attracted a lot of research during the last decades.

Early Days

R. Clark Jones has filed a patent for a device discriminating music and speech
signals as early as 1951 [7]. The proposed electric circuit was designed to be used
in radio receivers to automatically silence radio signals that are predominantly
speech. Classification was done monitoring rapid variations in signal energy, which
occur more often in speech than music signals [8].

Feature-based Audio Classification

Starting with John Saunders in 1996 [9], audio classification has mostly been
approached with descriptive audio features derived from the audio waveform,
applied to different classification algorithms. As will be described in more detail in
chapter 5.1, classification is usually done using clip-level features, with typical clip
lengths of one to several seconds [10].

Saunders [9] successfully discriminated music and speech on broadcast radio
using a multivariate Gaussian (MVG) classifier trained with features based on the
zero-crossing rate (ZCR) and short-time energy (STE), claiming a classification
accuracy of around 98% for audio clips of 2.4 seconds.

In 1997, Eric Scheirer and Malcolm Slaney [11] proposed a system for speech music
discrimination that uses 13 different spectral, temporal and cepstral features in
conjunction with a Gaussian mixture model (GMM) and k-nearest neighbours (kNN)
algorithm as classifiers. They claim excellent recognition rates of 98% at clip-level
(2.4 seconds).

Zhu Liu et al. [12] have classified audio clips from television broadcasts into five
scene classes: news reports, weather reports, advertisement, basketball games
and football games. They used 13 features based on the signal energy, fundamental
frequency and spectral distribution in conjunction with a neural network classifier
(one-class-in-one-network structure) with promising results.

In 1999 Zhang et al. [13] presented a hierarchical multi-expert system that segments
and classifies audio data in a coarse-level and fine-level stage. On coarse-level, the
audio stream is segmented and classified into the categories music, noise, silence
and speech based on morphological and statistical analysis of short-term features
(STE, ZCR and fundamental frequency). In the second stage, environmental sounds
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are classified in more detail using a Hidden-Markov-Model (HMM) and 65 FFT-bins
for classification. They report an accuracy of over 90 % at coarse-level.

Williams and Ellis [14] evaluated features derived from a hybrid connectionist-
HMM-based speech recognition system for speech music discrimination, claiming
an accuracy rate of 98% for voice activity detection (VAD) at clip-level (2.5s).
Classification was performed by calculating means and variances separately for
the speech and music training examples and performing a Gaussian likelihood
ratio test.

In 2000, Khaled El Maleh et al. [15] used line spectral frequencies together with the
ZCR as features and discriminated speech and music using a kNN classifier with
promising results (80% at frame-level and 80-100% at clip-level (1s)).

In 2001, De Santo et al. [16] proposed a multi-expert system for audio classification
into seven categories. The proposed algorithm first detects silence by simple
energy thresholding. In a second stage, the non-silent signal is classified into to
macro classes music and speech by a multi-layer perceptron (MLP) neural net.
The two macro classes are then sub-classified further by two MLP classifiers in
the third stage. They report an overall accuracy of 77% for classification in seven
categories.

Lie Lu et al [17] used cascaded support vector machines (SVMs) to classify audio
segments of 1s into the categories silence, music, background noise, pure speech
and non-pure speech. They used the means and standard deviations for 8 mel
frequency cepstral coefficients (MFCC) and several perceptual features. They
report a high accuracy of around 96.5% and constitute much better performance
to the SVM than other classification algorithms like kNN and GMM.

Tong Zhang and C.-C. Jay Kuo [18] investigated audio segmentation and classifica-
tion for content analysis of audiovisual data. Simple descriptive audio features
(energy, zero-crossings, fundamental frequency and spectral peak tracks) where
analysed using a rule-based heuristic approach in order to classify audio segments
into the categories silence, speech, environmental sound, pure music, song and
speech with background music. They claim an accuracy of just over 90% for their
efficient real-time system.

Michael C. Biichler [19] studied different classification algorithms for audio classi-
fication in hearing aids and proposed a multi-expert system in two stages. Four
classes (speech, speech in noise, noise and music) were discriminated using
descriptive audio features and a HMM classifier, followed by a rule-based post-
processing where the output of the HMM is corrected if necessary. Biichler reports
a hit rate of 91%.

In 2002, Bugatti et al. [20] trained a multi-layer perceptron (MLP) with various
energy, zero-crossing and spectral features, as well as MFCCs and achieved a
classification accuracy of 95% to 96% for speech music discrimination and audio
segments of around 2s.

In 2003, Hadi Harb and Liming Chen [21] used statistical features derived from
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Mel-spectrograms in conjunction with an MLP as a classifier for speech music
discrimination. They report promising results (96% accuracy), even when training
with little data only (40s of audio per class) for audio clips of 0.2 to 4s.

In 2004, Juan J. Burred and Alexander Lerch [22] classified audio data into three
speech classes, 13 musical genres and background noise, using a hierarchical
tree-structure of classifiers (kNN and GMM). They carried out an extensive feature
selection for each branch fork in the classification tree and report an accuracy
of around 95% for high-level classification in the categories speech, music and
background noise.

M. Kashif Saeed Khan et al. [23] investigated MLPs and statistical metrics of a
discrete wavelet transform in addition to other descriptive features for speech
music discrimination. For audio clips of 3s and cross-validation, they achieved a
promising classification accuracy of up t0 96.6%. In 2006, M. Khan and W. Al-Khatib
[10] compared MLPs and other classifiers for speech and music discrimination,
reporting good performance for MLPs as well as HMMs, indicating however that
HMMs require more training time. The best results were achieved using an MLP
with six descriptive features (range of zero-crossings, variance of a discrete wavelet
transform, RMS of low-pass signal, spectral flux, linear predictive coefficients
(LPCs) and the variance of four MFCCs).

Lei Chen et al. [24] classified audio data into five categories: music, speech, environ-
ment sound, speech mixed with music and music mixed with environment sound.
They compared different classifiers (SVM, kNN, naive bayes (NB) and artificial
neural nets (ANN)), reporting superior performance using SVMs. For each audio
segment of 1s, four audio features (ZCR, silence ratio, harmonic ratio, sub-band
energy) and respective statistical representations (mean, minimum, maximum,
(maximum + minimum)/2) are calculated. They achieved an overall accuracy of
78% using an SVM with Gaussian kernel, outperforming other classifiers.

In 2009, Yiizhar Lavner and Dima Ruinskiy [25] proposed an efficient speech mu-
sic discriminator based on a rule-based decision-tree algorithm. Features were
mean and standard deviation of STE, ZCR, sub-band energy ratio, autocorrelation
coefficients, MFCCs, spectral roll-off, spectral centroid, spectral flux and spectral
spread. They report music and voice detection rates of around 98%.

In 2017, M.Won et al. [26] used several time-based and spectral features with a
non-linear SVM to classify audio data into the categories speech, music, noise
and speech over music in noisy in-vehicle environments. As different acoustical
environments significantly degrade classification performance, they developed an
algorithm that adapts based on the driving environment in order to achieve high
accuracy rates.

Recent developments and Convolutional Neural Nets
Inspired by their tremendous success in image classification [27], researchers have
applied so-called convolutional neural nets (CNNs) to audio classification.

In 2016, Justin Salamon and Juan P. Bello [28] proposed a CNN architecture for
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environmental sound classification into 10 classes. To overcome the lack of training
data, they propose the use of audio data augmentation. They generate additional
audio data using time-scale modification (time- and pitch-shifting), dynamic range
compression techniques and additive background noise. They report state-of-the-
art results for multi-class environmental sound classification.

Lukic et al. [29] used CNNs for speaker identification and clustering. More specif-
ically, they discriminated many different speakers by analysing simple spectro-
grams, and studied the optimal model structure for the CNN. They report results
comparable to state-of-the-art systems without the need for hand-crafted descrip-
tive features.

In 2017, Naoya Takahashi et al. [30] proposed a CNN for audio classification, oper-
ating on spectrograms several seconds long. They report significant performance
improvements on action recognition tasks for audio-visual data compared to visual
features alone and visual features with MFCC-feature based approaches.

In 2017, Gemmeke et al. [31] published Audio Set, an extensive ontology for audio
event description and a massive human-labeled audio dataset from YouTube-
videos. Shawn Hershey et al. [32] used the data for large-scale audio classification
using different neural net topologies, finding that CNNs outperform other topologies
and feature-based approaches.

Summary

Excellent classification accuracy is reported for a wide variety of algorithms. Tradi-
tionally, standard statistical classification procedures are applied to hand-crafted
descriptive features derived from the audio waveform.

Classifiers include Gaussian mixture models (GMM), naive bayes (NB) and k-
nearest neighbours (kNN) classifiers, non-linear support vector machines (SVM)
as well as multi-layer perceptrons (MLP).

While many authors report excellent classification accuracy, it is hard to compare
the proposed algorithms. For one, they use different datasets and clip lengths
(time resolution) and maybe even more importantly, classify audio into different
categories and sub-categories.

For most research, ‘clean’ low-noise broadcast audio was used to train and evalu-
ate the algorithms, where the waveform is not heavily degraded by room impulse
responses, additive noise and other signal distortions. As reported by Won [26],
feature-based classifiers are prone to noise and changes of acoustic parame-
ters. So the performance is expected to be worse for far-field audio data in noisy
environments, as investigated for this thesis.

More recent research successfully applies CNNs, deep neural nets borrowed from
the field of computer vision [33], to audio classification tasks, eliminating the
process of feature extraction and selection, while reporting similar, if not better
performance. CNNs have been proven to be noise-robust in speech recognition
tasks [34], making them a promising contender for audio classification in varying
and noisy acoustic environments.
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2 | Signal Characteristics

In order to find meaningful descriptors, capable of discriminating speech, music
and environmental noise signals, it makes sense to study their characteristics first.

In the following, fundamental signal characteristics of speech, music and environ-
mental noise signals will be described.

2.1 Speech

Speech describes the ability of humans to communicate with each other through
vocalised sounds produced by specialised vocal organs.

speech [ 'spi:t/] noun e The expression of or the ability to express thoughts and
feelings by articulate sounds [35].

Speech signal characteristics are well-studied and have been successfully exploited
in various applications, such as speech-coding or automatic speech recognition
(ASR) [36].

Human speech is produced by the vocal organs
shown in figure 2.1. The lungs provide energy in
the form of compressed air, which then passes
through the larynx, where the airflow can be al-
tered in different ways. When the vocal chords
are under tension, the airflow will cause them to
vibrate. This causes the periodic release of air,
which will result in voiced sounds. If the vocal
chords are relaxed, this results in a turbulent air-
flow, resulting in wide-band noise or unvoiced
soupds. The exgltatlon signal (either pulse train Figure 2.1 - The human organs
or wide-band noise) travels through the pharynx,

2 . of speech produc-
nasal and oral cavities which act as a resonant -

. tion [36].

acoustic filter [37].
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The nature of speech production can be approximated with the so called source-
filter model, as depicted in figure 2.2. The vocal chords / larynx are modelled as
either a generator of wide-band noise or a pulse-train at fundamental frequency f.
The vocal tract is modeled by a resonant predictive filter [36].

Source
parameters

Time-varying x(©)
vocal tract
filter H(z)

speech
signal

Excitation
Source

Figure 2.2 — Source-filter model: The excitation signal v(¢) (i.e. pulse train or wide-band
noise) is generated by the excitation source and is characterised by its source
parameters. The speech signal x(7) is the excitation signal filtered by a time-
varying filter H(r), modeling the vocal tract [36)].

Voiced and unvoiced speech

In essence, a speech signal is a sequence of syllables and pauses. On average,
English speech consists of around 4 syllables per second [38]. Generally spoken,
syllables consist of a voiced syllable nucleus (vowel) and optional onset and
coda, which can be unvoiced (consonants) or voiced (semi-vowels and voiced
consonants).

Fundamental Frequency and Prosody

As mentioned above, a speech signal can be either voiced or unvoiced. Voiced
speech segments are characterised by their pitch and the energy distribution
among the lower order harmonics. The period of the vocal chord pulse train
determines the fundamental frequency f; of a speech segment. For men, the
average fundamental frequency is around f; = 120 Hz, for women around f; = 200
Hz with a standard deviation of around +20Hz [39].

The fundamental frequency or pitch is not stationary but varies to emphasise
certain speech segments (e.g. to signify a question). This fluctuation of pitch
is part of what is called prosody and can be observed when looking at the lower
graph in figure 2.3.

Figure 2.3 shows the audio waveform of a speech signal x(¢) and the correspond-
ing magnitude spectrogram | X[k, t]|qg in dB. As can be seen, voiced and unvoiced
speech segments can be to some extend discriminated visually, both in the wave-
form (top) and spectrogram 2! (bottom).

Voiced segments like vowels and voiced consonants are of greater signal energy,
indicated by greater amplitudes in the waveform (top). Amplitudes vary quickly
with segments of silence (amplitude close to zero), unvoiced consonants with low

2.1. The spectrogram describes the distribution of signal energy among time and frequency and
is described in more detail in chapter 5.1
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Figure 2.3 — Speech signal of female speaker. (top) Audio waveform for 3s of audio and
(bottom) corresponding magnitude spectrogram in dB.

amplitudes or short energy bursts (e.g. plosives 22) and voiced segments with
larger amplitudes. The graph shows 1 second of audio, containing 4 syllables of
speech.

In the spectrogram, voiced speech segments are characterised by horizontal lines
in the lower frequency range, representing the fundamental frequency f; and lower
order harmonics (multiples of f;). Unvoiced segments are characterised by their
bandwidth and distribution of energy along frequency.

Note that the described signal characteristics apply to nhormal human speech
of male and female adults. For special modes of phonation, like whispering or
screaming, characteristics may differ and are not investigated. Also, only speech
signals with one single speaker are evaluated. Mixtures of multiple simultaneous
speakers may be interesting for future work. As will be described in more detail in
chapter 4, both male and female speech is examined.

2.2. Plosives, also known as stop consonants describe articulate sounds produced by blocking
and releasing compressed air in the vocal tract. e.g. [pl[t],IK], ... [40]
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2.2 Music

Generally spoken, the term music describes all sounds intentionally produced by
humans using musical instruments or their voice, intended to invoke pleasure or
satisfaction.

music [ mju:zik] noun e Vocal or instrumental sounds (or both) combined in
such a way as to produce beauty of form, harmony, and expression of emotion
[35].

Due to its diverse nature, music cannot be parameterised as well as speech. How-
ever, two key assumptions can be made for what is referred to as western music:
Music is organised temporally and harmonically, i.e. in time and frequency.

Figure 2.4 shows an excerpt of common staff notation, which graphically visualises
the organisation of a musical piece in time and frequency.

n M J: 142 o M . .
i) e e
{14 — e <«
) g ' '
mf
Figure 2.4 - Simplified musical notation of the main theme of 'The Blue Danube’ by Johann
Strauss [41].

The pitch of a musical note is denoted by its vertical placement on or between
the staff lines. In tonal music, the placement of pitches determines the harmonic
tonality or harmony of a piece. The horizontal placement of musical notes denotes
the temporal organisation or rhythm of a piece. [41].

Most music is organised around an underlying pulse or beat. The tempo of a
musical piece is defined by the number of beats per minute (bpm) (e.g. 142 bpm
for the shown walz) and is typically between 40 and 200 bpm [42].

Besides the temporal and harmonic organisation, music is characterised by its tem-
poral evolution of loudness or dynamic (as denoted by the annotation mezzoforte
(mf) and the so called 'hairpin’ below the staff in figure 2.4) and timbre.

Fundamental Frequency and Tonality

The perceived pitch of a musical tone is determined by the fundamental frequency
fo- In contrast to speech signals, where the fundamental frequency ranges from
around 50Hz to 250Hz, the range of f; is a lot greater in music signals. For example,
the lowest musical note on a typical piano with 88 keys (A0) is pitched at around
27.5 Hz. The highest note (C8) has a fundamental frequency of around 4,186
Hz [43].
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Figure 2.5 shows the audio waveform (top) and corresponding spectrogram (bot-
tom) of a music segment. Compared to the speech signal (figure 2.3), signal energy
fluctuates less rapidly over time and frequency.

Generally, in music signals, the fundamental frequency and harmonic structure are
expected to be stationary for longer segments compared to speech signals [44].
This can be observed when looking at the spectrogram of the music segment
shown in figure 2.5 (bottom).

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time in seconds

1.0
0.5

0.0

amplitude

-0.5

-1.0

4000 -

frequency in Hz

0 0.5 1 1.5
timeins

Figure 2.5 — Music signal (excerpt of piano concert). Audio waveform (top) and logarithmic
power spectrogram (bottom). Straight horizontal lines in the spectrogram are
characteristic for tonal music signals.

Timbre and Perceptual attributes

Besides its pitch and loudness, a musical tone is characterised by the distribution
of energy among its harmonics, i.e. the shape of the spectrum and its development
over time. In psychoacoustics, this is called timbre of a musical sound. The timbre
of a sound can be described subjectively or objectively by analysing the audio
waveform. Perceptual qualities of music signals have been extensively studied in
the field of psychoacoustics and are exploited in various descriptive audio features,
as will be described in chapter 5.1.

In summary, music is characterised by the attributes pitch, loudness, timbre, rhythm
and harmony.

For this thesis, music recordings of various genres are evaluated, as will be de-
scribed in more detail in chapter 4.
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2.3 Environmental Noise

Most dictionaries describe the term noise as an unwanted or disturbing sound.
For this thesis however, environmental noise describes any sound that is neither
music nor speech. This includes various sounds that occur in different acoustic
environments, such as domestic areas and outdoor locations, as well as business
environments.

noise [1no1z] noun e A sound, especially one that is loud or unpleasant or that
causes disturbance [35].

The nature of environmental noise sounds is very diverse and cannot be generalised
satisfyingly. They include pitched sounds (e.g. electrical appliances or power tools),
as well as unpitched, wide-band noise like wind or street noise.

Figure 2.6 demonstrates the diverse characteristics of noise signals.

The top graph (a) shows a stationary wide-band noise signal and the corresponding
spectrogram. As can be observed, signal energy is stationary for the whole clip of
three seconds and evenly spread along time and frequency.

The middle graph (b) shows an audio recording of a door being shut, resembling
a transient noise event. Contrary to the wide-band noise signal (a), the ampli-
tude rapidly fluctuates (at around 1.2s and 2.25s). The transient noise event is
characterised by vertical lines in the spectrogram.

The lower graph (c) shows a recording of a power tool, resembling an environmental
noise sound with tonal energy content. The pitched noise sound is characterised
by its fundamental frequency and its evolution over time, as well as the distribution
of signal energy among the lower order harmonics.

For this thesis, sounds from various sources and environments were evaluated.
Chapter 4 describes the composition of the used data in more detail.
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(a) wide-band noise
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Figure 2.6 — Noise signals, plots show the audio waveform and spectrogram for (a) wide-
band noise, (b) transient noise event and (c) a pitched noise sound.
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3 | Classification Algorithms

The goal of machine learning (ML) is to estimate complex (non-linear) functions,
that cannot be solved easily using rule-based hand-crafted systems. Typical tasks
for ML algorithms are classification, regression, transcription, translation, anomaly
detection and de-noising.

The term learning describes the process of optimising an algorithm'’s parameters
based on experience (i.e. previous data samples) in order to maximise its perfor-
mance. Any algorithm that learns from so-called training data can thus be called a
ML algorithm [45, p.95].

This chapter provides a short introduction to the basics of ML needed for this
thesis, focusing on the classification task.

The Classification Task

In classification tasks, a ML algorithm aims to associate an observation x to one
of N, classes, based on experience gained from statistical analysis of previous
data points during the so-called training process.

The algorithm usually solves a function f : RY — {1,2,...,N.}, aiming to asso-
ciate an observation x = [x1, x9, . . ., xy] With a predicted class c:

c=fx) (3.1)

Other variants output an a-posteriori probability distribution, yielding an estimated
probability P(c) for observation x being of class ¢ [45, p.97].

P(1)
=" = e (32)
P(N,)

Supervised and Unsupervised Training

ML algorithms follow two fundamental training principles. Supervised training
methods aim to associate an input with a reference output (e.g. class label ¢),
provided by a (human) supervisor. Unsupervised training methods on the other
hand, learn useful properties from training data without reference data [45, p.102].
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For supervised ML algorithms, the training dataset X consists of O observations,
each with N attributes and the corresponding targets y (in classification task, y
contains class labels).

x(D 1 1 0 y(1)

xé) X%Q) e x](\;)

(2) 2)

X = x. _ x% x% x{v ’ y = y. (3'3)
x(0) x&O) xéo) - xl(\,o) y(O)

In classic ML algorithms, attributes resemble so-called descriptive features, derived
from the raw input data in order to obtain a more compact input representation.
Descriptive audio features evaluated for this thesis will be described in more detail
in chapter 5.1.

Overfitting and Underfitting
Ideally, a ML algorithm should perform well on new, previously unknown input data.
In other words, the algorithm should represent a generalised model that works on
a wide variety of input data.

Training a ML algorithm usually involves minimising the so-called training error by
adapting the algorithm’s parameters. The training error is obtained by comparing
the algorithm'’s output with the reference output (i.e. class label). To evaluate an
algorithm'’s ability to generalise, the so-called test error is derived from separate
test data. Samples in the test dataset are not be included in the training data and
vice-versa. Test data should resemble input data, that is expected to occur in the
algorithm'’s final application.

If a ML algorithm is too simple and thus not capable of achieving a low training
error, the algorithm will perform poorly on test data. The algorithm'’s underlying
statistical model fails to capture the training data’s trend. This is called underfitting.

Overfitting on the other hand occurs, when the training error is very small, but
the gap between the training and test error is too large. This indicates that the
underlying model is too complex, reacting to noise in the training data rather than
general trends [45, p.107-112].

Figure 3.1 shows three different estimated models with rising complexity, aiming
to describe a datasets underlying trend. As can be seen, the under- and overfit
models (a) and (c) fail to describe the samples’ underlying function.

In general, good generalisation performance is achieved, when the capacity /
complexity of the classification function is matched to the amount of available
training data [46] and the offset between the error for train and test data is small.

Figure 3.2 shows how increasing the capacity of a model will decrease the test
error until the optimal capacity is reached. Beyond the optimal capacity the model
will overfit the training data leading to poor generalisation performance.
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Figure 3.1 — Training data points fitted with three different models, with rising complexity.
If the model is too simple (a), the model cannot describe the underlying trend.
If it is too complex (c), overfitting will occur [47].

optimal capacity

— train error

underfitting «— — overfitting ——- test error

error

capacity

Figure 3.2 — The capacity of a model should match the amount of training data. If the
model is too complex (high capacity) the model will overfit. If the capacity is
too low, the model will underfit. [45, p.113]
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3.1 Feature-based Classifiers

Feature-based classifiers have been proven useful for classification of broadcast
audio [9,11], as described in chapter 1.2. For this thesis, a simple Gaussian naive
bayes (NB) classifier, a k-nearest neighbours (kNN) algorithm and a support vector
machine (SVM) with Gaussian kernel are evaluated in conjunction with several
descriptive features (see chapter 5.1).

In the sections below, the underlying mechanics of the classification algorithms
will be explained.

3.1.1 Naive Bayes Classifier

The naive bayes (NB) classifier is a simple probabilistic classifier, applying Bayes’
law of conditional probabilities. It is used as a baseline classifier, to compare other
more sophisticated algorithms against.

The classifier is naive in that it assumes independence between attributes. Even
though this is almost never the case in real life, the classifier still works well for a
wide variety of classification tasks, as long as the attributes are note too strongly
correlated [48].

Bayes’ Law

Bayes' law (also Bayes' theorem or Bayes' rule) describes conditional probabilities
mathematically. Given the probabilities P(A) and P(B), observing the events A and
B, the probability that event A occurs, given that B is true, is given as

P(A) - P(B|A)

P(A[B) = PB)

(3.4)

with P(B) # 0, assuming that A and B are independent [45, p.68].

A NB classifier aims to predict the probability P(c|x) for an observation x being of
class c.

Multi-class discrimination
For multi-class discrimination, the probability for observation x = [x1, x2,. . ., xy]
being of class ¢ is computed as

N
P(clx) o« P(c) | | P(xile), (3.5)
i=1

where x; is one of N observed attributes or features for observation x. P(c) describes
the a-priori probability of class ¢. When assuming a-priori probabilities to be equal
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for all classes c = 1,2, ..., N, the term can be simplified to

N
P(c|x) o Ni [ T2, (3.6)
¢ =1

In classification tasks, the goal is to find the most probable class ¢ for an observa-
tion x, or in other words finding the maximum a-posterori (MAP) class cuap:

N
cmap = argmax P(c|x) = argmax rl P(x;|c). (3.7)
¢ ¢ i=1

where P(x;|c) denotes estimated probabilities learned during training [49, p.258].
To prevent underflow in the digital domain, instead of multiplying probabilities,
their logarithms are summed, as follows.

N

cmap = argmax P(c|x) = argmax Z log (I@(x,-lc)) ) (3.8)
¢ S|

Gaussian Naive Bayes Algorithm
The Gaussian NB algorithm assumes, that the likelihood of each attribute x; is
distributed according to the Gaussian function

1 ()

P(x;|c) = e 2 (3.9)

2mo?

where o and u. denote the attribute’s standard deviation and mean derived from
the training data [50].
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3.1.2 k-Nearest Neighbours Classifier

The k-nearest neighbours (kNN) algorithm is a classifier that estimates the class
membership of previously unknown data samples based on the class membership
of the k closest samples within the training data.

The kNN algorithm is a so-called instance-based learning algorithm, meaning that
the training process only consists of storing the training dataset X (also called
lazy learning) [51].

X
2 o O o |:|
ok k]
RIS
O g
O O

X1

Figure 3.3 — An unknown sample (star) is classified by evaluating the class membership
of the k nearest neighbours (kNN) in a two-dimensional feature space. For
k = 3 two neighbours are of class 'square’ and one of class ‘circle’, resulting
in a predicted class 'square’. For k = 5, two neighbours are of class 'square’
and three of class 'circle’, resulting in a predicted class ‘circle’.

Figure 3.3 demonstrates how the algorithm works: The k closest data points
xD, with i = 1,2,...,k within the training data X are evaluated for their class
membership. Usually the so-called Euclidean distance is used to find the nearest
neighbours, corresponding to a straight line between the unknown feature vector x
and the training data sample x). The unknown sample x is predicted to be of the
class which occurs the most among the k nearest neighbours [45, p.141].

As can be seen, the choice of k severely affects the prediction capabilities. Gen-
erally spoken, a large k increases the analysis radius around the input x, making
the implicit decision boundary smoother and in consequence reducing the effects
of local noise [51]. If k is too small, overfitting might occur, if it is too large, the
algorithm might underfit the training data.
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3.1.3 Support Vector Machine (SVM)

The support vector machine (SVM), is a popular algorithm for binary classification
tasks, due to its relatively low computational cost during prediction and ability to
find well-performing solutions with relatively little training data.

SVMs, originally introduced as maximum margin classifiers [46] separate data sam-
ples in the N-dimensional parameter-space R" by finding a so-called hyperplane,
that maximises the margin M between data samples belonging to two separate
classes.

Figure 3.4 shows some data belonging to the two classes 'square’ and ‘circle’. For
two-dimensional data, the hyperplane is a straight line, separating the two classes.

X9 A

X1

Figure 3.4 — Two linearly separable classes ‘square’ and ‘circle’ and the maximum margin
hyperplane defined by the support vectors, visualised as filled circles and
squares respectively.

The algorithms underlying decision function d(x) is defined as the dot product of a
weight vector w and the input vector x

dx)=w'x+b (3.10)

Essentially, data points on one side of the hyperplane (d > 0) are associated with
one class (y = +1), data points on the other side (d < 0) with the other class
(y = —-1). The weight vector w is normal to the hyperplane separating the two
classes, defining the orientation of the hyperplane in the multidimensional space
RN . The bias b defines its shift from the origin ﬁ.

In order to maximise the margin M we define the constraints
fory? =+1: =wxP+b> g (3.1)
for y(i) =1 =w/'x?+b<—q. (3.12)
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for all training examples {x®, y©@}, or simpler
y® (WTX(i) + b) >a Vi, (3.13)

with an arbitrary scaling variable a. From this we can derive the function for the

margin
M= 22 (3.14)

lIwll’

Maximising the margin M is thus equivalent to minimising the norm ||w||?

1 . . ; ;
M = arg min §||w||2 with constraint  y® (wa(’) + b) >1Vi=1...,0. (3.15)

In other words, the weight vector w is a linear combination of the training examples
x\) for all observationsi = 1,2, ... O in the training dataset X:

0
dx)=wlx+b= Z aix'x? + b (3.16)
i=1

In practice, it is sufficient to store the so-called support vectors x') with non-zero
weights «; # 0, as depicted as filled circles and squares in figure 3.4 [45,52].

Kernel Trick

Due to the linearity of the decision boundary, standard SVMs can only classify
linearly separable data. However, by applying a non-linear function @ : RM — R
to the input x, transforming it into a higher-order feature space R (N, > Ny),
non-linearly spaced data can be made separable using a linear decision function
(as demonstrated in figure 3.5).

0 o ©

@ |

‘OI 7

o) O EO
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O 5 C

D O ,/’ D D

Figure 3.5 — Applying a non-linear transformation @ to the input feature space allows to
separate non-linearly spaced data with a linear hyperplane [53].

Actually applying the transform &(x) to the input data is computationally demand-
ing, and sometimes even impossible (i.e. if N; is infinite). The so-called kernel
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trick simplifies the transformation to a higher-order feature space, by simple kernel
evaluations. The decision function (see formula 3.16) can be rewritten as

d(x) = Z a; K(x,xV) + b (3.17)

replacing the dot product x”x® with the (non-linear) kernel function

K(x%) = ) ¢i(x)gi(%). (318)

Gaussian Kernel
The most commonly used kernel is the Gaussian or radial basis function (RBF)

kernel
K%)= 5t o 1 (3.19)
202
resembling the Gaussian standard normal density. ||x—%||? is the squared Euclidean
distance between x and %, the open parameter y controls the variance o2 of the

Gaussian RBF.

When an unknown sample x is located near a training sample x, the RBF kernel
function will yield a strong response, indicating that they are similar, putting a large
weight on the associated training label [45, p.140].

A small value for v, i.e. a large variance o will expand the influence of the support
vector x') on the classification result for x. A large value for y on the other hand
means that only support vectors very close to x will have an influence on the
classification result.

SVM with Soft Margin

The standard SVM aims to find an optimal decision boundary to separate all data
samples in the training set. However, this means that the classifier might overfit
the data (or in case of a linear kernel might not be possible). To alleviate this
problem, a so-called soft margin decision boundary is used [54].

The optimisation problem (equation 3.15) then extends to

1 . . ; ;
M = arg min §||w||2 +C- Z & with constraint  yO(w'x? +5) > 1-¢, (3.20)
W .
l

penalty parameter C and slack variables ¢&; [52, 54, 55].

Essentially, the penalty parameter C controls the number of support vectors that
are either within the margin or on the ‘wrong’ side of the decision function (¢, # 0).
If C is small, the decision boundary will be smoother, making the model less prone
to overfitting. A large penalty C will lead to a more complex decision boundary,
describing the training data more accurately. The goal is to find a parameter C that
explains the actual trend in the training data without being too complex (overfitting)
or too simple (underfitting).
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>
>

X1

Figure 3.6 — Using a soft-margin can reduce overfitting, by allowing some support-vectors
to be within the margin or even on the ‘'wrong’ side of the decision boundary.
[52]

Multi-class discrimination
For multi-class classification tasks (N, > 2), several SVMs can be combined to
form a multi-class classifier.

The most efficient and straight-forward implementation is the One-vs-Rest method.
A classifier is trained separately for each class ¢, with samples of class ¢ being
positive (y = 1) and the rest being negative (y = —1). The maximum output score
(e.g. distance from decision boundary) then defines the output class

¢ = argmax f£.(x). (3.27)

Another, more computationally demanding method is the ‘One-vs-One’ method.
w binary classifiers are trained, one for each unique pair of classes {c;, ¢;}.
All binary output predictions are then combined by counting the number of positive
predictions for each class.

Ne(Ne-1)
2
¢ = argmax g.(x) Wwith g.(x) = Z (¢, fu(x)) (3.22)
¢ k=1
with the Kronecker delta 6(q, b) given as
saby =] Tore=b (3.23)

0 otherwise.
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3.2 Deep Learning Algorithms

The term deep learning describes ML algorithms incorporating artificial neural
networks with three or more layers of artificial neurons. Deep learning algorithms
include both supervised and unsupervised training algorithms and are used for
clustering and classification tasks, as well as regression tasks. By adding more
layers, a deep neural network can estimate functions of increasing complexity.

Especially so-called convolutional neural nets (CNN) have been tremendously
successful in image classification and object recognition tasks, outperforming all
previous approaches [27].

In contrast to traditional ML algorithms, deep neural nets can extract features from
raw input data by non-linear transformations, outperforming hand-made descriptive
features [45].

3.2.1 Artificial Neural Net (ANN)

Artificial neural networks (ANNs) are an approach to model the learning capabilities
of the central nervous system of animals. Also being referred to as connectionist
systems they are inspired by biological neural networks, which consist of intercon-
nected neurons.

Figure 3.7 shows the biologi-
cal model of a neuron. It con-
sists of the cell body and the
axon.

The branches stemming from
the cell body form the dendritic
tree which collects electro-
chemical signals from neigh-
bouring neurons.

If there is enough stimulation
collected by the dendrites, an
electrical spike will move along
the axon, passing the elec-
trical signal on to other neu-
rons like a transmission line
[57].

Dendrites collect electrical sig-
nals.

The cell body combines incom
ing electrical signals before
passing them on via the axon.

The axon passes electrical sig-
nal on to neighbouring cells.

Telodendria are connected to
dendrites of neighbouring neu-

. . . rons via synaptic terminals.
This behaviour is modelled ynap

mathematically by intercon- _
nected processing units called Figure 3.7 =
artificial neurons.

Biological model of a neuron consisting
of the cell body and the axon [56].
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Artificial Neurons

An artificial neuron combines the input values {xi, x, . . ., xx} by linear combination
(see figure 3.8). Each input x; is weighted by multiplying with a corresponding
weight w;. The sum of the weighted inputs and the bias b4 is called activation g,
which is then transformed using a non-linear activation function o (a), yielding the
neuron’s output state y.

N
a= Z wi-x;+b y = o(a), (3.24)
i=1

which can be rewritten as a dot product of a weight vector w and input vector x

y=0o (WTX + b) . (3.25)

Figure 3.8 — Artificial Neuron

The trainable weight vector w determines the relevance of a neuron’s input on
the output. The trainable bias b determines the operating point in the non-linear
activation function o (a).

The activation function o(a) models the biological counterpart in that the electrical
spike traveling through the axon cannot be of infinite strength but will be saturated
within a certain range. Common activation functions like the logistic sigmoid func-
tion or hyperbolic tangent activation keep the neuron’s state y within a reasonable
range (see figure 3.9 (a) and (b)).

However, in modern implementations of deep neural networks so called rectified
linear units (ReLu) are often used instead [29,58,59] (see figure 3.9 (c)), as they can
have a strong regularising effect, and are faster to train than hyperbolic tangent
activation functions [27].
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y = tanh(a) y = % y = max(0, a)
1.0 1 1.0 1.0
0.5 0.5 4 0.5
> 0.0 - 004 > 0.0
—0.5 - 054 —0.5 1
-1.01 . . . -104 ‘ ‘ —1.01 : . .
-5.0 =25 0.0 2.5 5.0 -5 0 5 -1.0 -0.5 0.0 0.5 1.0
(a) Hyperbolic tangent (b) Logistic Sigmoid (c) Rectifier Linear Unit

Figure 3.9 - Different activation functions for artificial neurons. The hyperbolic tangent
function (a) ranges from -1 to 1, whereas the logistic sigmoid (b) ranges from
0 to 1. The Rectifier Linear Unit (ReLu) clips negative values to 0.

3.2.2 Multi-Layer Perceptron (MLP)

Multiple interconnected artificial neurons form an artificial neural network. In feed-
forward neural nets, such as so-called multi-layer perceptrons (MLP), neurons are
organised in consecutive layers:

The first layer, also called input layer is followed by L so called hidden layers, with
each hidden layer / consisting of m") parallel neurons.

The last layer (L + 1) is called the output layer, yielding the resulting output vector

RUASII IN(AS RN (RS 1)’

i hYy ey o | of aneural network.

Each layer's activations afl) are transformed using non-linear activation functions

a(”(af”) as described above (see figure 3.9) and fed to the inputs of the next layer
(I+1).

T
Or in other words, the states of the preceding layer y-1 = [ygl‘l), Yy

=Y -1
are the inputs for the subsequent layer, as depicted in figure 3.10 / [60].
Each neuron’s state y; is given as
m=D
! n (-1 ! 1 !
af) = Z wl.(’j) . y;. )+ bg ), yl.() = 0'(1)(a§ N, (3.26)
j=1

g
i,j"

In vector notation the activations for each layer can be rewritten as the product
of a weight matrix W) containing all interconnection weights Wi(lj) between two

consecutive layers [ and (I — 1) and the outputs of the previous layer y/~1.

with bias bgl) and interconnection weight w

yO = ¢ ((W<z>)ry<z—1> . b(l)) , (3.27)
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Input Layer 1% Hidden Layer L' Hidden Layer Output Layer

Figure 3.10 — Multilayer perceptron with N inputs, L hidden layers, each with m") neurons
and N, = 3 output neurons. Arrows represent weighted connections between
neurons.

Figure 3.10 shows a multi-layer perceptron (MLP) with N inputs, L hidden layers
and N. = 3 output neurons.

Softmax Activation

In classification tasks, the output layer usually incorporates the so called softmax
activation function, which normalises the sum of the output vector y(“+1 to 1, so
that each output y. represents the a-posteriori detection probability of a certain

class ¢ 3
(L+1)
e

Ye = ——— @y

N. a;
Zjéle]

Ve=1,...,N. (3.28)

3.1. Sometimes it makes sense to use a logistic sigmoid activation instead, as this allows multiple
classes to be detected at the same time [32].
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3.2.3 Training a Neural Net

The successive adaptation of a neural network’s parameters, such as intercon-
nection weights w;") and biases by) is called training. The training process aims
to minimise a loss function £, describing the deviation between the neural net’s
output § = y“*1) and the desired target y.

Loss function

The most common loss function for classification tasks using neural nets is the
categorical cross entropy [61]. The categorical cross entropy is the Kullback-Leibler
divergence of the estimated probability distribution q from the ground truth p and
is given as

Ne
Ly(@ = - pilog(gi, (3.29)
i=1

where N. is the number of categories or classes [62,63].

The output of a neural net classifier is the estimated probability distribution y, which
aims to predict the target distribution y. The target or ground truth y resembles
a one-hot encoding of the class labels. So for the classes music, environmental
noise and speech, the respective target distributions are given as

y1 1 y1 0 V1 0
y = y2 = 0 , y = y2 = 1 , y = y2 = O .
Y3 0 y3 0 y3 1
(a) Music (b) Env. Noise (c) Speech

A neural net'’s classification output y for a music segment might be the estimated
a-posteriori probability distribution

yol [0.95
¥ =yl =10.02]- (3.30)
yo| 10.03

The categorical cross entropy of the predicted distribution y can then be computed
as
Ly(§) = —(1 - 10g(0.95)) ~ 0.051. (3.31)

For a perfect prediction, the loss £ will be 0. A classifier that guesses randomly
will yield a categorical cross entropy of £ = —(1 - log(1/3)) ~ 1.098.
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Parameter Optimisation

The goal of parameter optimisation is to minimise the loss £ by iteratively adapt-
ing a neural net’s trainable parameters, such as interconnection weights and bi-
ases. The trainable parameters are adapted layer by layer using the so-called
back-propagation algorithm and an optimisation algorithm such as the stochastic
gradient descent (SGD) or Adam.

Back Propagation Algorithm

When training a feed-forward neural net, the network’s response to an input x is
evaluated by propagating the initial information contained in x through the network
layer by layer. This is called forward propagation. From the neural net’s output y
and the reference or target y a scalar loss Ly (y) is derived.

To minimise the loss £ by gradient descent or other optimisation algorithms, it
is important to compute the partial derivatives of £ for each trainable parameter
in the network. To find the gradients V£ and V) £ for each layer [, the error
or loss £ is propagated back through the network layer by layer starting with the
output layer [64].

The underlying principle of the back-propagation algorithm is listed in pseudocode
below (Algorithm 1). For a more detailed description of the back-propagation
algorithm, please refer to [45, 64, 65].

Stochastic Gradient Descent
Different optimisation algorithms, also simply called optimisers, are used to calcu-
late the weight and bias updates AW and Ab.

WO WO L AW p) b 4 ABD, (3.32)

For the sake of simplicity, all training parameters in W and b(®) for each layer [
are denoted as one parameter vector 6.

9 — 0+ A6 (3.33)

The most common optimiser o(Vy.L) is the so-called stochastic gradient descent
(SGD), which updates the weights into the direction of the steepest descent moving
along the multi-dimensional error plane:

oL

Agzo(vag):_y.vagz_y.%, (3.34)

where Vy £ is the gradient of the loss function £ evaluated for a training example
and y is the learning rate or step size [45, p.150].

SGD is very sensitive to changes in the learning rate y. If it is too small, finding
the global minimum in the multi-dimensional loss plane will take very long. If it is
two large, the algorithm might ‘overshoot’ the minimum in the error plane, resulting
in an oscillation around it. To alleviate this problem, many different optimisation
algorithms with adaptive learning rates, such as Adam have been developed.
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Algorithm 1: Basic principles of back-propagation algorithm [45, 65].

1. Feed-forward:

feed the input x through the network layer by layer (forward propagation),
starting with the input layer [ = 1

y U —x;

fori=2...,(L+1)do

‘ yO = o0 ((WU>)Ty<1—1> + b(l)) :
end

2. Compute loss:
compute the error or loss £, (§) from the neural net's output j = y*+b
and the desired target y.

3. Back-propagation:

propagate the error back through the network in order to obtain the partial
derivatives or gradients g of the loss for each layer,

starting with the output layer/ = L + 1

g — ViLy(S’) )

fori=LL-1,L-2..,1do

g — (WiD)g) 0 V@) ;

compute rate of change of the loss with respect to the bias vector b")
and weight matrix W

Vo L = % =g,

VwoL = 8%’) = y(l_l)g;

update trainable parameters by evaluating the optimiser function o(VL)
AbD = o(Vyo L);

b® — b¥) + AbY);

AW = o(Vya L);

WO — WO 4 AWO:

end

Adam

Adam was introduced by Kingma and Ba [66] in 2015. The name Adam is derived
from the term adaptive moment estimation and combines advantages of other
popular optimisation techniques, such as AdaGrad [67] and requires little to no
tuning.

Adam keeps an exponentially decaying average of past gradients, estimating the
first and second moment mean m and variance v. This helps accelerating the
gradient descent in the relevant direction, dampening oscillation around local
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minima in the error plane, similar to momentum 32:

m« B1-m+(1-p2) VoL (3.35)
Ve v (1-p)- Vil (3.36)

Before training, m and v are initialised to zero. To compensate the resulting bias in
the early adaptation steps, they are corrected as follows:

me 2 (3.37)

1-p5

v
3.38
Ve TTs (3.38)
The final update rule is then given as

N=-—2 m (3.39)

Vv +e

with recommended parameters y = 0.001, 81 = 0.9, 82 = 0.999 and € = 10~® [66, 68].

Mini-Batch Training

When training on large amounts of data, calculating parameter updates by eval-
uating all training samples successively will take very long. In practice, a very
good approximation of the gradient V.£ can be computed evaluating a randomly
sampled subset of training examples.

Optimisation algorithms evaluating a single sample at a time (B = 1) are called
stochastic methods.

Optimisation algorithms using the entire training set for each parameter update
are called batch training or deterministic gradient methods, with the batch size B
being equal to the total number of observations O in the training set.

The so-called Mini-batch training algorithms fall somewhere in between, evaluating
a small set of B samples at a time.

Multi-core setups with GPU-accelerated 33 computing allow for parallel evaluation
of multiple samples, where the amount of memory and hard disk read speeds are
usually the limiting factor. Small batch sizes have a regularising effect, reducing
overfitting, but do not utilise multi-core setups well. Choosing the right batch size
B comes down to finding a compromise between speeding up training and an
accurate gradient estimation [45].

3.2. Momentum works by adding a fraction g of the previous update vector to the current update
vector: AQ «— —y - Vo L + - A0

3.3. Graphics Processing Units (GPU) are specialised circuits for rendering image data. Incorpo-
rating many parallel processing units, they are very efficient for parallel analysis of large amounts
of data.
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Epochs

Usually, the training data will be presented to the neural net several times until the
loss £ has reached its minimum. The number of times, the full training data is
presented to the neural net is called the number of epochs. Or put differently, one
complete pass through all training examples is called an epoch. Usually training
examples in the training set are shuffled before each epoch, so that successive
training examples are not correlated. This prevents the network from getting stuck
in local minima within the error plane [69].

Regularisation
The term regularisation describes techniques to guide the training process into
the right direction and in consequence prevent overfitting.

One popular regularisation technique is the use of dropout between layers: Some
randomly drawn interconnection weights are set to zero (typically a dropout propa-
bility of 25% - 50% is used), ensuring that the output at the end of the network does
not depend on the state of only a few artificial neurons, which in consequence
makes it less prone to overfitting [70].

Another very straight-forward regularisation method is early stopping. Instead of
training a NN for a certain number of epochs, training will be stopped, as soon
as the validation loss Ly(§) stops improving 4. This ensures that the NN does
not overfit the training data. To do so, a test set is evaluated after each epoch to
obtain the validation loss Ly(y). Figure 3.11 shows the evolution of the training
and evaluation loss for a NN trained for 35 epochs. As can be seen, validation loss
stops improving after 22 epochs.

--=-- val. loss
—— train loss
%)
)
o
«— early stopping e
. J—
' e ——— ”’_
T T
25 30

Figure 3.11 — Early stopping: Training is stopped when the validation loss stops improving.

Other regularisation efforts include unsupervised pre-training [71] and batch nor-
malisation [72] but have not been further investigated for this thesis.

3.4. In practice, usually training is not stopped immediately but after a few epochs (also called
patience), so that the overall trend of the validation loss is captured rather than small fluctuations.
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3.2.4 Convolutional Neural Network (CNN)

Convolutional Neural Nets (CNN) are multi-stage architectures, consisting of
several so-called convolutional layers and consecutive feature pooling / down-
sampling layers followed by several fully-connected layers of artificial neurons.
Originally developed and successfully used for image classification [27,33], they
have proven to work great for audio classification tasks [28,29,32].

Essentially, convolutional layers work by correlating segments of the input data
with trained prototype filter kernels, yielding a high output score for matching
patterns. By adding more convolutional layers, patterns of rising complexity can
be extracted from the input image.

Figure 3.12 shows the model structure for a CNN with two convolutional layers
with consecutive pooling layers and two fully-connected layers as a classifier.

fully- fully- softmax

2D 2D connected connected output
Convolutional Pooling Convolutional Pooling layer 1 layer 2 layer
Layer 1 Layer 2
’—'\
[ ——
1 —
I:?

1 (1) 2 (2)
T”’(I ) ml TTI,(l ) 77),1 ’n(3) ’"<1> N(:
feature maps pooled feature maps pooled

feature maps feature maps

input

feature map neurons neurons output neurons

Figure 3.12 — Model structure of CNN featuring two convolutional layers with consecutive
pooling and an MLP classifier with two fully-connected layers for image
classification.

In the following, discrete convolution and its application in convolutional neural
nets are explained.

Discrete Convolution
The convolutional operation for functions x(z) and k(z) is given as

s(t) = (xxk)(t) = /x(‘r)k(t - 71)dr. (3.40)

Assuming that x and & are only defined at discrete intervals, the so called discrete
convolution s; can be defined as

oo

si=(rk)= > xi ki, (3.41)

n=—oo
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Filter kernels can be one-, two- or three-dimensional, depending on the input data
format. In our case two-dimensional kernels are used to extract relevant informa-
tion from spectrograms.

With a two-dimensional kernel K of size h; x hy and an input image X of size mo xmsg
the convolution operation is defined as

hy  ho
sij = (X*K); = Z Z Xi—m,j—n * kmn, (3.42)
m=1 n=1
with the kernel K and input X being
koo ko1 -+ ko X00 X01 X0
k k ek X X ceex
K=| 1,0 . 1,1 . Ll and X=| 10 . 1,1 .1,m2 ’
kll,U kl1,1 kll,lz Xm,0 Xmy,1 7 Xmymg

yielding the two-dimensional output S [45, p.322-324].

Figure 3.13 demonstrates the mechanics of discrete two-dimensional convolution:
A small kernel (2x2) resembling a vertical edge is moved across the larger input
image (5x5), and evaluated according to equation 3.42. As can be seen the vertical
line is emphasised (as indicated by darker color) in the output image, while the
horizontal line is getting washed out. Note that in this example no zero-padding
was applied at the edges of the input image, resulting in reduced dimensions for
the output image S (4x4).

Figure 3.13 - Discrete two-dimensional convolution for input image X of size ny xng = 5x5
with filter kernel K of size iy x hy = 2 x 2, resulting in an output image of size
mso X m3 = 4 x 4. The depicted filter kernel detects and emphasises vertical
lines.
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Convolutional Layer
The input of a two-dimensional convolutional layer [ is a three-dimensional array
with n(ll) two-dimensional feature maps of size ng) X ng). For a spectrogram or black

and white image, the number of channels or feature maps is n(ll) =135

Each convolutional layer is composed of m; - ny filter kernels K; ;, each of size
n x 1)), yielding m\” two-dimensional feature maps of size m)’ xm at the output.
Each filter K; ; detects a particular pattern at every location on the input X; [33].

The output feature maps YE” for layer [ are given as the sum over the discrete
convolutions of the trainable filter kernels K; ; with the input feature maps X; and

a trainable bias bl(.l).
0
O _ O] 0 0) 0
Y =00 b+ > KD« xP, (3.43)
=1
withi =1,2,...,my, j =1,2,...,n; and non-linear transformation function .

Pooling Layer

So called pooling (also down-sampling) layers are used to reduce the resolution
of a preceding convolutional layer’s output feature maps YEH). Pooling works
by moving an analysis window of size p; x p; along the input image with a stride
51X s2 and evaluating the pooling function at each position, combining neighbouring
pixels to a single value. The most popular pooling function is so called max pooling,
where the analysis window is represented by its maximum value at the output, as
demonstrated in figure 3.14

max pooling

7

Figure 3.14 — Max pooling on a two-dimensional input image X of size my x m3 = 4 x 4 with
pool size p; X ps = 2 X 2 and stride s;x> = p1 X po (no overlap).

3.5. For a colored RGB image (The RGB color space is an additive color model, describing a color
in three channels, representing the colors red, green and blue.) the number of channels would be
(€]
ny’ =3
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Fully-connected Layer

As mentioned before, the convolutional layers with consecutive pooling or down-
sampling are followed by one or more so-called fully-connected layers, resembling
a multi-layer perceptron (MLP) classifier. In other words, the outputs of the last
convolutional layer resemble the features for classification with the MLP.

3.3 Evaluating a Classifier

To examine the performance of a classification algorithm, the trained model is
applied to previously unseen data. Several measures can then be used to compare
different algorithms, including the classification accuracy, precision and recall, as
well as the so-called f-measure.

A way to visualise the performance of a classification algorithm on a test set, is
the so called confusion matrix M.

By definition, each element m; ; represents the number of samples known to be
of class i and predicted as class j [73]. The diagonal (i = j) contains the number
of correctly classified samples, the rest of the matrix contains the number of
misclassifications (i # j).

mi1 my2 ... MmMN,
m m Coom
M = 2,1 2,2 LN, (3.44)
: ma.N,
mNc»l mNCsQ c mNc»NC

Or in other words, each row i of M corresponds to the true label of a class. Each
column j represents the predicted label respectively.

Figure 3.15 shows a confusion matrix for a speech, music and environmental noise
classifier (N, = 3). The evaluated test set contains N = 3000 samples, 1000 for
each class. Out of 1000 music samples, 843 (84.3%) were predicted correctly, 103
(10.3%) were misclassified as environmental noise and 54 (5.4%) were mislabelled
as speech. The second and third row represent the number of correct and false
classifications for environmental noise and speech respectively.
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correct
music
843 103 54 g nose
/1000 =
M=|117 856 27 —
speech
11 0 989 false

Predicted lahel

Figure 3.15 — The confusion matrix: Each row represents true class membership, each col-
umn represents predicted class membership respectively. The normalised
confusion matrix (right) can be visualised with colours to make it easily
interpretable. Green indicates correct classification, red indicates false clas-
sification.

From the the confusion matrix, several measures of classification performance
can be derived.

Accuracy:

The classification accuracy a measures how many of the total N samples are
classified correctly. Or put differently, the overall accuracy of a classifier is the
number of samples in the main diagonal of the confusion matrix M divided by the
total number of samples N = 3" 3%, m;;.

N
a= iz Mid (3.45)
N
For the example in figure 3.15 the overall accuracy is a = (843 + 856 + 989)/3000 ~

90%.

Precision

Precision p. (also called positive predictive rate) is defined as the ratio of the

number correct predictions and the total number of predictions of class ¢ (sum

over column).

o Mee
Zl]'\;cl mi ¢

For our example, the precision for music is p; = 843/(843 + 117 + 11) ~ 86.28%.

De (3.46)

The overall precision for the evaluated classifier is the average subject to the
number of evaluated samples for each class ¢ (sum over row).

)

N
N X =1 M.

p=) pe—t— (3.47)

c=1 N
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For our example, the overall precision is p = (86.28% + 89.35% + 91.91%)/3 ~ 90%.

Recall
Recall r. (also called hit rate) is the ratio between the number correct predictions
of class ¢ and the number of samples for class ¢ (sum over row).

—_— (3.48)
Ne

2]21 mcv./‘

For our example, the recall for music is r; = 843/(843 + 103 + 54) = 84%.

Analogous to eq. 3.47, the overall recall for the evaluated classifier is given as

me,
r—Z”c < Syt 7o) (3.49)

For our example, the overall recall is r = (84.3% + 85.6% + 98.9%)/3 ~ 90%. As can
bee observed, when the number of training examples is equal for each class, the
overall recall r is equivalent to the accuracy.

F-score
The so-called F-score is the harmonic mean of precision and recall. It is 1 for
perfect classification, i.e. a precision and recall of 1, and 0 in worst case.

F.o=9. Pl (3.50)
Pc +re

For our example, the F-score for music Fy is 2 - 87 - 84%/(87% + 84%) ~ 86%.

As with precision and recall, the overall F-score is computed with regard to the
distribution of samples among classes.

Nc
F=) F.=.=
=1

_] 1mC]

(3.51)

a

For our example, F = (86% + 87% + 96%)/3 ~ 89%.
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4 | MUSPEN Dataset

As described in chapter 3, machine learning (ML) algorithms adapt their parameters
based on experience gained by evaluating so-called training data. The performance
of a ML algorithm is validated using separate test data.

The Music, Speech and Environmental Noise (MUSPEN) dataset consists of 150h
hours of ‘clean’ speech, music and noise data for training. To overcome the lack of
training data recorded in real acoustic environments, the dataset was augmented
using a room simulation procedure (see section 4.5), yielding another 150h of
‘degraded’ training data.

In order to evaluate a classifier’s performance, the MUSPEN dataset contains
30h of ‘clean’ test data. Additionally, 1h of test data was recorded with a far-field
microphone array and manually labelled, resembling real world data (see section
4.4) . This test dataset is referred to as the ‘target’ test data.

Table 4.1 lists the amount of training and test data for each class.

TRAIN TEST
class ‘clean’ ‘ ‘degraded’ ‘clean’ ‘ ‘target’
Music 50h 50h 10h 20m
Speech 50h 50h 10h 20m
Env. Noise 50h 50h 10h 20m
total | 150n 1s0h || 30n | |

Table 4.1 — The Music, Speech and Environmental Noise (MUSPEN) dataset. This table
shows the duration of training and test data in hours.

Training data includes music, speech and environmental noise signals from various
sources, ensuring the training data features a wide variety of examples.

As the different sources provide audio data in different (compressed and uncom-
pressed) data formats, all audio data was re-sampled to f; = 16kHz and 16bits and
stored in .wav-files for further processing. For multi-channel audio files, only the
first channel was kept.

Section 4.1 describes the ‘clean’ music data collected for training and evaluation.
Sections 4.2 and 4.3 present speech and environmental noise data respectively.
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4.1 Music Data

The MUSPEN dataset includes a total of 60h of ‘clean’ music data of which 50h are
used for training and 10h are used for evaluation purposes. As described below,
training and test data come from different sources, ensuring that audio from the
test set is not included in the training dataset and vice-versa.

Training Data

Training data is taken from the GC16UX song dataset provided by the International
Music Information Retrieval Systems Evaluation Laboratory (IMIRSEL) as part of
the MIREX challenge 2016 [74]. The dataset contains 10,000 songs in MP3 format
from Jamendo.com*7, a web-service hosting royalty-free music.

The dataset includes meta-data, such as each track’s genre, artist and duration.
Figure 4.1 shows the distribution of music data by genre 42. As most music in the
original dataset is labeled as electronic music, a subset of 50h was drawn from
the full dataset, that more evenly represents different styles of music (6.25h per
genre category).

350

300

N
a
o

N
o
o

duration in hours

Figure 4.1 - Distribution of combined genres in the GC16UX song dataset [74]. Most music
in the database is labeled as electronic music (317.2h). Some genres, such
as funk, soul and jazz were combined into one category.

Test Data

Test data was gathered by downloading popular music mixes from YouTube.com
in MP3 format with a total duration of 10h. As with the training data, it includes
music from various genres. More specifically the dataset contains approximately
1h of audio data for each of the following categories: hip-hop, classic rock, heavy
metal, jazz, classical music, funk, raggae, electronic dance music, pop and folk.

4. https://www.jamendo.com/ - accessed in June 2017
4.2. Genres annotations provided with the dataset were parsed and combined, so that each genre
consists of at least 450 audio files.


https://www.jamendo.com/
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4.2 Speech Data

Speech data was taken from the LibriSpeech database, curated by Panayotov et al.
[75] for training and evaluating speech recognition systems. The dataset consists
of approximately 1,000h of English speech from hundreds of different speakers, as
uncompressed .flac-files sampled at 16kHz. The audio data is collected from audio
books provided by libriVox.org 42, an online-service hosting free public domain
audio books read by amateurs.

Training Data

50h of speech recordings were taken for training, including 60 female and 60 male
speakers into the training set, around 25 minutes of speech recordings for each
speaker. All speech signals feature one single speaker. All spoken text is in the
English language.

Due to the lack of available data, no children are included in the training data set.
As already mentioned in chapter 2.1, special phonations such as screaming, crying
or whispering are not included in the training data set.

Test Data

10h of speech data from various sources was collected, including 40 speakers from
the librivox database, that are not included in the training set (around 8 minutes
per speaker), as well as manually curated and segmented politician speeches and
TED science talks *#. The test data contains approximately 50% female and 50%
male speech. Around 25 minutes is children speech.

4.3. hitps: // librivox.org - accessed in June 2017.

4.4. TED (Technology, Entertainment, Design) is an annual conference in California, USA. Speeches
from TED conferences are available online, featuring a wide variety of topics and speakers.
https: // www.ted.com - accesed in June 2017
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4.3 Environmental Noise Data

To our knowledge, no large-scale environmental noise databases were publicly
available at the time of collecting audio data. Existing popular noise datasets, such
as NOISEX-92 or AURORA-2 typically only feature very little data [76].

Train Data
To cover a wide variety of sounds from different acoustic environments, several
publicly available datasets have been combined:

The dataset provided by Stowell et al. for the IEEE AASP Challenge on Detection
and Classification of Acoustic Scenes and Events (DCASE) [77] features audio data
from different acoustic environments, including different outdoor and indoor loca-
tions 4.

The QUT-NOISE database was developed by Dean et al. in 2010 [76] to evaluate
voice activity detection algorithms. It features audio data recorded in different
domestic and public environments #°.

Stork et al. have recorded kitchen noise for audio-based human activity recognition
with robots [78]. The audio dataset Freiburg 106 is publicly available *”.

The TUT Acoustic Scenes 2017 [79] dataset features audio segments from 15
different indoor and outdoor locations 48 with a total 52 minutes of audio.

The Diverse Environments Multichannel Acoustic Noise Database (DEMAND) [80]
provides 1.5h of multi-channel recordings in different outdoor and indoor environ-
ments *°. The dataset is publicly available 0.

Additionally, audio data from the Auditory Perception Lab at Carnegie Mellon
University [81], Beltran et al. at CICESE [82] " and the CNBC Stimulus Repository
[83] was included into the training dataset.

Furthermore, manually curated audio data downloaded from Freesound.org*12
and Soundcloud.com '3 was added to obtain a total of 50h of training data.

Test Data
10h of environmental noise was collected from various sources (Freesound.org,

4.5. acoustic scenes included are: bus, busy street, office, open air market, park, quiet street,
restaurant, supermarket, tube, tube station

4.6. acoustic scenes included are: café, home, street, car and reverb.

4.7. http://www.csc.kth.se/ ~jastork/ pages/ datasets.html - accessed in July 2017

4.8. acoustic scenes included are: bus, cafe / restaurant, car, city center, forest path, grocery
store, home, lakeside, library, metro station, office, residential area, train, tram, urban park

4.9. acoustic scenes included are: domestic, nature, office, public, street, transportation
4.10. http:// parole.loria.fr/ DEMAND/ - accessed in July 2017

4.11. available at http: // sound.natiz.org - accessed in July 2017
4.12. https:// freesound.org - accessed in July 2017
4.13. https:// soundcloud.com - accessed in July 2017
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Soudcloud.com, Youtube.com ...), ensuring that no data in the training set is in-
cluded in the test set and vice versa. To make sure, noise data resembles en-
vironments that are likely to occur in real-world scenarios, sounds of different
categories were collected. The dataset contains approximately 1h of audio data
for each of the following environments/categories: bathroom, in-car traffic noise,
city, kitchen, miscellaneous living, office, outdoor, party (no music or isolated
speech) ', weather and workshop.

Due to the diverse nature of the environmental noise sounds, the data is rather
inhomogeneous, especially when compared to the speech and music data.

4.4 Mic-Array Recordings - 'Target’ Data

To investigate the classifiers’ performance in real-world scenarios, a small so-
called target’ test set was recorded with the microphone array of the Harman
Kardon Invoke voice-activated loudspeaker (see figure 1.1).

The audio data was recorded in different domestic and business environments,
including a kitchen, a living / bed room, a small bathroom and an office environment.

Speech data includes six different speakers, including the author. The data features
three female and three male speakers, all speaking in German. Music data includes
music of various genres played back by stereo systems of different sizes and at
different levels. Environmental Noise data includes different everyday activities
like hoovering, doing the dishes and taking a shower.

In total 1h of ‘target’ test data was used for validation purposes, 20 minutes for
each class.

4.5 Data Augmentation - ‘Degraded’ Data

The goal of this thesis is to develop an algorithm that effectively classifies an
audio data stream recorded with a far-field microphone array in real-life scenarios.
Unfortunately, no labelled audio data recorded with the far-field microphone array
was readily available.

As shown by Salamon et al. [28], the lack of training data can be overcome using
data augmentation techniques. In our case, the clean audio data in the training set
was processed, simulating the playback and recording of the ‘clean’ training data
in different acoustic environments. This way, training data is augmented, without
actually having to record and manually label large amounts of data.

More specifically, the training audio data was chopped into segments of 10s each.

4.14. This category includes so-called babble noise, which occurs when many individuals talk
simultaneously.
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Each segment was then convolved with one of 15 room impulse responses from
different indoor locations #1° and one of seven microphone impulse responses (as
measured for the ‘target’ microphone array in an anechoic chamber). The basic
signal flow for signal degradation is shown in figure 4.2.

room w(n] mic N
L simulation simulation| *n]
(x * hy)[n] (W * hy)[n]

Figure 4.2 - Degrading audio input signal x by convolving it with the impulse response of
aroom h, and the impulse response of a microphone #,,.

Each audio segment of 10s was then normalised after degradation. The resulting
audio data yields the ‘degraded’ train data (see table 4.1).

4.15. Room impulse responses come from small and medium sized indoor locations with re-
verberation times RTgq between 0.4s and 1.5s. Room impulse responses can be found at
http: // www.openairlib.net/ auralizationdb and https: // github.com/ idiap/ acoustic- simulator/ tree/
master/ impulse-responses-original/ spaces - accessed August 2017


http://www.openairlib.net/auralizationdb
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5 | Machine Learning Approach

As described in chapter 1.2, feature-based machine learning algorithms have been
used successfully for audio classification [9,11,17], using different statistical clas-
sification procedures from the field of artificial intelligence (Al).

While many classification algorithms, such as Gaussian mixture models (GMM) and
the k-nearest neighbours (kNN) algorithm, yielded promising results, support vector
machines (SVMs) have proven to perform better for multi-class audio classification
tasks [84].

For this thesis, a simple Gaussian naive bayes (NB) algorithm is evaluated, forming
the baseline to compare other classifiers against. Additionally a kNN classifier and
a non-linear SVM with radial basis function (RBF) kernel are investigated.

The underlying principles are presented in chapter 3. This chapter describes the
descriptive audio-features and the implementation of the classifiers evaluated for
this thesis.

5.1 Descriptive Audio Features

The characteristics of speech and music signals described in chapter 2, can be
exploited to define so-called descriptive features, which are more compact repre-
sentations of the respective audio signal.

In accordance with Khan et al. [10], audio features are extracted at frame-level
and clip-level. An audio frame is typically some tens of milliseconds long. Shorter
frames allow for a more accurate tracking of transient events. Longer frames on
the other hand will increase resolution for spectral analysis.

Classification can be carried out on frame-level, leading to adequate results. How-
ever, quite many frames will not be characteristic of the particular class and likely
lead to misclassification [85]. It thus makes sense to integrate frame-level features
over time into what is referred to as clip-level features. A clip is typically one to
several tens of seconds long and characterises the distribution of frame-level
features over time, as will be described in chapter 5.1.2. Audio data is segmented
so that the content within a clip belongs to one class [10].
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Section 5.1.1 describes investigated frame-level features. Section 5.1.2 describes
temporal integration techniques used to obtain clip level features. The final features
set used for classification is then obtained by ranking different clip-level features,
as described in section 5.1.3.

5.1.1 Frame-level Features

A total number of 26 frame-level features, as listed in table 5.1, are evaluated for
this thesis, including features derived from the time signal x[n], a mid-level spectral
representation X(k), as well as features in the cepstral domain.

These features were chosen, as they are well-researched and many of them have
been proven effective for various audio classification tasks [9,11,17]. Some are
readily available in the librosa audio analysis toolbox [86] and the Speech Signal
Processing Toolkit (SPTK) [87]. Others have been implemented based on the
Timbre Toolbox [88].

’ Symbol ‘ ID ‘ Feature ‘ Page ‘ Source ‘ # ‘
ZCR zcr Zero-Crossing-Rate 61 librosa [86] 1
STE ste Short-Time Energy 61 librosa [86] 1

1 spec_centroid | Spectral Centroid 64 librosa [86] 1

o spec_spread | Spectral Spread 64 librosa [86] 1

U3 spec_skew Spectral Skewness 65 Timbre [88] | 1

m spec_kurt Spectral Kurtosis 65 Timbre [88] 1

fro spec_rolloff Spectral Roll-Off 65 librosa [86] 1

SF spec_flux Spectral Flux 65 Timbre [88] 1
’ Hc ‘chroma_ent ‘Chromatic entropy ‘ 67 ‘ ‘ 1 ‘
’ c ‘ mfccs ‘ Mel Frequency Cepstral Coefficients ‘ 70 ‘ librosa [86] ‘ 12 ‘

fo fo Fundamental Frequency 71 SPTK [87,89] | 1

Harm harmonicity Harmonicity 71 Timbre [88]

T:, T>, T5 | tristimulus Tri-stimulus 72 Timbre [88] 3

Total ‘ 26 ‘

Table 5.1 — Frame-level features. Source is listed if feature was readily available.

All training and test data (see chapter 4) is sampled at f; = 16 kHz. Frame-level
features are evaluated for a frame length of 1024 samples (64ms) and a hop size
of 160 samples (10ms), yielding 100 feature values per second. Spectral features
were computed, using a Fast Fourier Transform (FFT) with a resolution of 1024
frequency bins (see chapter 5.1.1.2).
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5.1.1.1 Time-based features

Zero-Crossing Rate (ZCR)

As the name suggests, the zero-crossing rate (ZCR) measures how often a signal
crosses zero within a certain amount of time. It is high for noisy sounds and lower
for periodic signals, such as voiced speech segments or musical tones [90].

The ZCR for a frame-size N is given as

ZCR[r] = > (1-6(sign(x[n - 1]), sign(x[n]))). (5.1)

n=t—N

with the Kronecker delta 6(a, b) and the sign function sign(x) given as

5(a.b) = 1 fora=b, and sign(x) = 1 forx>0, (5.2)
0 otherwise 0 otherwise.

Short-Time Energy (STE)

The short-time energy (STE) estimates the signal energy at a given time. Contrary
to the ZCR, the STE is typically higher for voiced sounds and lower for unvoiced
sounds [90].

It is computed by evaluating the root mean square (RMS) energy of each frame of
length N:

STE[¢] = % Z x2[n]. (5.3)
n=t—N

Figure 5.1 shows the logarithmic magnitude spectrogram | X[k, t]|4g (see chapter
5.1.1.2 below), the ZCR, and STE for a music, environmental noise and speech
signal respectively.

As expected for a pitched music signal (a), the ZCR is generally low and stationary
for longer segments. For the speech signal (c), the ZCR fluctuates more rapidly,
with higher values for unvoiced speech segments and lower for voiced segments.

For the speech signal (c) the STE fluctuates with each syllable and is higher for
voiced and lower for unvoiced, noise-like speech segments. As speech contains
pauses, the average STE is lower than for music (a).

Due to the heterogeneous nature of environmental noise sounds, the shown audio
features for environmental noise (b) are less characteristic and conclusive.
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Figure 5.1 — audio waveform, zero-crossing rate (ZCR) and short-time energy (STE) for 1s
of (a) music, (b) environmental noise and (c) speech.

5.1.1.2 Spectral Features

Spectral analysis describes a signal’s energy distribution along frequency. The
spectrum of a time signal x(t) is given as the Fourier Transform ¥ {x(t)}:

X(w) = F{x(t)} = 1 /OO x(t)e /@ dt, (5.4)

21 J_

with frequency w. For discrete signal x[n] of finite length N, we can compute the
Discrete Fourier Transform (DFT) for each spectral component k:

N
X[k] = DFT{x[n]} = > x[n]e ¥ = |X[k]| - ¢/¥I¥ (5.5)

n=1

The DFT is complex-valued with magnitude | X[k]| and phase ¢[k], given as

IX[K]| = VRAX[K]}2 + SM{X[k]})2,  ¢[k] = arctan (%) (5.6)

where Re{X[k]} denotes the real part and Im{X|[k]} the imaginary part of X[k] =
Re{X[k]} +j - Im{X[k]} [91].

The power spectrum S[k] = |X[k]|? (also spectral density) describes the signal
energy as a function of frequency, estimating how much each spectral component
k contributes to the signal. Often, the spectrum is evaluated in the logarithmic
domain, yielding the logarithmic power spectrum (LPS) Sqg[k] in decibels:

Saglk] = 20 -logy | X[K]| (5.7)
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The so-called Short-Time Fourier Transform (STFT) is the DFT computed for each
time frame ¢. The signal is evaluated segment-wise. Each segment or frame is
multiplied with a window function w[n] (i.e. a Hann window). The STFT

N
Xkl = x[t+n] - wln]e? ¥, (5.8)
n=0

yields the Spectrogram X|k, t] evaluated for each time instance ¢ and frequency
k =1,2,...,N. In practice, the Fast Fourier Transform (FFT) is used, which is the
fastest technical implementation of the STFT for power-of-2 frame lengths. Figure
5.2 shows the time-signal x[n] (top) and the logarithmic magnitude spectrogram
| X[k, t]|gg (bottom) for a music signal (a), environmental noise (b) and a speech
signal (c).
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Figure 5.2 — audio waveform and FFT spectrogram | X[k, t]|4g for 1s of (a) music, (b) envi-
ronmental noise and (c) speech.

The music signal’s spectrogram (a) features characteristic stationary horizontal
lines, which represent the musical notes and their harmonics, as well as some
vertical lines, corresponding to broad-band transient noise-like events like drum
hits.

The speech signal’s spectrogram (c) is more sparse and features a characteristic
succession of segments with horizontal lines (voiced speech segments), pauses
and broad-band transient segments.

In the following, features derived from the magnitude spectrum will be presented,
describing the spectral shape with only a few values.

The harmonic structure of pitched signals, such as tonal music, voiced speech
segments or pitched environmental noise sounds (i.e. horizontal lines in the
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spectrogram) can be exploited for additional features, as will be described in
section 5.1.1.4.

Spectral Centroid
The first statistical moment of the spectrum is the spectral centroid ;.

For pitched sounds, the spectral centroid is a good indicator for a sound’s ‘richness
in harmonics’ and its evolution over time. A sound with strong harmonics has a
higher center of gravity compared to a sound with less prominent harmonics. The
center of gravity is linked to the fundamental frequency f; of a sound. [91, p.363].

For unpitched sounds, the spectral centroid is an indicator for the ‘brightness’ of a
sound. Brighter noise sounds (e.g. hissing’ sounds or some affricatives in speech
[s, f.f, ...]) have a higher center of gravity than more dampened sounds.

The spectral centroid is defined as the geometric centroid (also called center
of gravity) of the power spectrum S[k] (or magnitude spectrum |X[k]|). First, a
normalised spectral density is defined as py:

S[k, 1]
pltl = —g———— (5.9)
Y1 Stk 1]
The spectral centroid yu;[¢] evaluated at each time step ¢ is then given as
K
ul =" fi- il (5.10)
k=1

where f; is the frequency of the spectral component k in Hertz.

Spectral Spread

The second statistical moment of the spectrum is called spectral spread. Wide-
band (noisy) signals will have a greater spectral spread compared to more narrow-
band sounds.

Itis defined as the variance of a spectral distribution u, around the spectral centroid
H1.

K
ualt] = JZ(fk — p1[1])? - pilt] (5.11)
=1

Spectral Skewness

The third statistical moment of the spectrum is called spectral skewness us. It
describes the shape, or more precisely the asymmetry of the spectral distribution
around the spectral centroid u[z].

Negative spectral skewness (u3 < 0) indicates, that more energy is located below
the spectral centroid u;, positive skewness (u3 > 0) indicates, more energy is
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located in higher frequencies, above u; [88].

pslt] = ug Z(fk—m D® - palf] (5.12)
2

Spectral Kurtosis

Spectral kurtosis uy, the fourth statistical moment, is a measure of the peakedness
or flatness of the spectrum. A lower number indicates a flatter, i.e. more evenly
distributed spectrum.

Broad-band noise sounds will have very low values for uy, pitched sounds with
weak harmonics on the other hand will have large values for uy.

K
z%] Z(fk —pa[t])* - pilt] (5.13)
k=1

Spectral Roll-Off

The spectral roll-off frequency f;, is the frequency below which 85% of the signal
energy is located [11,86]. This measure is related to the skewness u3 of the spectral
shape (see above) in that it is higher for left-skewed and lower for right-skewed
spectra.

Calculating the spectral roll-off frequency comes down to finding the smallest
spectral component k € {1,2,..., K} for which equation 5.14 holds true. The roll-off
frequency f, is then given as the frequency of spectral component k in Hertz.

K
(1 <085 > pilel. (5.14)
=1

i
S

Spectral Flux
The so-called spectral flux SF is a measure of novelty and is known for it's ability
to detect onsets in music and speech signals [92].

SF estimates the amount of spectral variation over time by correlating two succes-
sive frames according to [90].

K j— .
SF[]=1- x Pelt =11 - pelt] (5.15)

\/ AL \/kak

Figure 5.3 shows the spectral moments u;, uo, u3 and uy, as well as the spectral
roll-off f;, and flux spectral SF for music, environmental noise and speech signals
respectively.
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Chromagram A
The perception of musical pitch can be mod- Frequency
eled as a helix, showing the relation of perceived
musical pitch or chroma and frequency. Mov-
ing upwards, one full rotation of the helix corre-
sponds to one octave, i.e. doubling in frequency.

Pitched sounds being exactly one (or multiple) C
octaves apart, are perceived as the same musi-
cal tone (see figure 5.4) [93].

f

Features exploiting this behaviour, so-called
chroma features are well-established foranalysing G
and comparing music signals [94]. A

Essentially, the chromagram combines the sig-

. . . Bb D
nal energy of the entire spectrum into 12 bins, B C#
representing the distinct semitones of the mu-

sical octave: C[k, ] with k = 1,2,...,12[95]. Figure 5.4 — Perception of musical
pitch [93].

Chromatic Entropy

As the absolute values of pitch and harmony of a sound do not help to distinguish
its type (speech, music or environmental noise), the chromatic entropy Hc is
proposed.

For music signals, H¢ is expected to be higher than for speech signals, so the
chromatic entropy should be a good feature for speech music discrimination.

The chromatic entropy H¢ is computed as follows.

12
Helt] = = ) piltllog(pil]) (5.16)
k=1
with normalised Chroma-features
Clk,t]
t]|= ———. 5.17
prlt] i) (5.17)

and chromagram C|k, t] estimated at each time instance r and chroma «.

Figure 5.5 shows the chromagram C[k, t] and the corresponding entropy Hc for
music, speech and environmental noise signals respectively. As expected H¢
is generally lower and more stationary for music (a) compared to speech (c).
The entropy is considerably higher and fluctuates more rapidly for (unpitched)
environmental noise.
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Figure 5.5 — Chroma Features and Chromatic Entropy for (a) music, (b) environmental
noise and (c) speech.

Mel-scaling the spectrum

The Mel scale is a psychoacoustic scale of pitch perception, modeling the fre-
quency response of the human auditory system: Human hearing is more sensitive
in the lower frequency range where most speech and music content is located.

The Mel-scale describes the ability to discriminate pitch at different frequencies.
At lower frequencies, very small increments in frequency can be discriminated.
With rising frequency, the noticeable difference in pitch increases [96].

401

30 A

Mel

20 A

10 1

0 1000 2000 3000 4000 5000 6000 7000 8000
Frequency in Hz

Figure 5.6 — Mel-scale according to Slaney’s Auditory Toolbox [97], mapping the frequency-
scale between 0 and 8kHz to Mel.

Slaney’s definition of the Mel scale [97] was used for feature extraction, as im-
plemented in librosa [86]. According to Slaney’s implementation, the auditory
system'’s frequency response is linear below f. = 1000 Hz. Upwards of £, the
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frequency resolution decreases incrementally. Frequency f can be converted to
Mel as follows:

pr for f < f.,

Je R i
ot log (f) o2 (6.0 otherwise,

with spacing frequency f;, ~ 66.67 (see figure 5.6).

Mel =

Combining Linearly Spaced Frequency Bins to Mel Bins
N linearly spaced frequency bins k can be transformed to M Mel bins by weighted
summation:

M=

Xmellm] = ) |X[k]| - W[m, k], (5.18)

k=1
with linearly spaced spectrum X[k] and weights W[m, k]. W[m, k] represents a
filterbank with M triangular filters, as shown in figure 5.7. The filters are scaled so
that the area under each triangle is constant.

4 %1073

Fregency in kHz

Figure 5.7 — Mel-weighting filter bank consisting of 8 triangular filters combing linearly
spaced frequency bins between 0 and 8kHz into 8 Mel bands from 100Hz to
6kHz.

Figure 5.8 shows the spectrogram | X[k, ¢]|qg With 513 frequency bins linearly spaced
between 0 and 8kHz and a Mel-spectrogram | Xye[ &, t]|qg With 128 Mel bands for a
music (a), environmental noise (b) and speech signal (c).

Characteristic patterns in the lower order harmonics of the music signal (a) (straight
horizontal lines) and speech signal (b) (rising and falling lines interrupted by pauses
and transients) are still easily observable. As can be seen, the relevant information
is preserved while reducing the number of spectral components by 75% (513—128).
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Figure 5.8 — FFT spectrogram | X[k, t]|4qg and Mel-spectrogram | Xpell &, t]|qg With 128 Mel
bands for (a) music, (b) environmental noise and (c) speech.

5.1.1.3 Cepstral Features

Cepstral analysis (also quefrency analysis) was first introduced by Bogert et al. [98].
The terms cepstrum and quefrency were derived by reversing the first syllables
of the terms spectrum and frequency. Interchanging the consonants symbolises
the way of working in the frequency domain with methods, usually applied to time
series and vice-versa [99].

Mel Frequency Cepstral Coefficients (MFCC)

The so-called mel frequency cepstral coefficients (MFCC) allow to accurately
describe the shape of a signal’s spectral envelope using only a few coefficients,
making them popular features for various audio processing tasks.

MFCCs are obtained by calculating the Discrete Cosine Transform (DCT) ®" of the
logarithmic Mel-scaled magnitude spectrogram.

2 & (i— ) .
ci[t] = ” Z log (Xpei]k, 1]) - cos ( 7 (k - 0.5)) Vi=12... (519
=1

where M represents the number of Mel filter banks [100]. Typically, only the first
dozen MFCCs are evaluated. The first Coefficient ¢[¢] is equivalent to the signal
energy and is discarded.

Figure 5.9 shows the MFCCs ¢;[r] withi = 2,3, ..., 13 for audio clips of one second
for the categories music, environmental noise and speech.

5.1. The Discrete Cosine Transform is similar to the Discrete Fourier Transform (DFT) but only
uses the cosine function to represent the signal.
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Figure 5.9 - 12 first (omitting energy coefficient ¢;) Mel-Frequency Cepstral Coefficients
(MFCCs) for (a) music, (b) environmental noise and (c) speech.

5.1.1.4 Features from Harmonic Partials

As described in chapter 2, musical tones, voiced speech segments and some
pitched environmental noise sounds have a distinct pitch, that is described by the
fundamental frequency f;. The sounds timbre is described by the prominence of
the harmonics, i.e. multiples of the fundamental frequency.

Fundamental Frequency

The fundamental frequency f; describes the pitch of a sound. The Sawtooth
Waveform Inspired Pitch Estimator (SWIPE) developed by Camacho and Harris [101]
was used, as part of the Speech Processing Toolkit (SPTK) [87]. In essence, SWIPE
estimates the pitch as the fundamental frequency of the sawtooth waveform that
best matches the input signal. The comparison is done by computing a normalised
inner product between the spectrum of the input signal and a kernel, representing
the spectrum of a sawtooth signal.

Harmonicity

The harmonicity feature describes the ratio between the energy of the harmonic
content and the total signal energy. It is higher for "harmonically rich’ sounds, with
prominent harmonics and zero for unpitched sounds.

The harmonicity feature is defined as the ratio of harmonic energy Ey[¢] and total
energy Er[t].

H
Harmpi] = 22 g = > a2l (5.20)
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In accordance with [88] the amplitude of each harmonic partial » = 1,...,H is
denoted as a;(r). A total of up to H = 20 harmonics are evaluated.

Tri-stimulus

The Tri-stimulus is set a timbral descriptors, describing the time-dependent behav-
ior of musical transients. It was developed by Pollard and Jansson [102] as an
equivalent of color attributes in vision.

The three stimuli 71, T» and T3 describe the mixture of harmonics, analogous to the
three primary colors in vision (e.g. red, green and blue).
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Figure 5.10 — Fundamental Frequency and (up to 20) harmonics, Harmonicity feature and
tristimulus Ty, T, T3 for (a) music, (b) environmental noise and (c) speech.

Figure 5.10 shows the estimated fundamental frequency f; of a speech signal, and
its lower order harmonics, as well as the Harmonicity and Tri-stimulus features.
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5.1.2 Clip-level Features - Temporal Integration

As mentioned before, it makes sense to integrate frame-level features over time
into what is referred to as clip-level features [85].

One clip combines N = 100 overlapping frames, corresponding to one second of
audio >2. In literature, often longer clip lengths of 2s-3s are used [9-11]. However,
to allow for a responsive real-time classification, it was chosen to use a clip-length
of 1s (as suggested by [15,24]).

Frame-level features can be combined to clip features in numerous ways. The two
most common being mean and standard deviation of feature values over time.

L. Vrysis et al. [103] have reviewed the performance of several methods of temporal
integration and found that besides mean and variance, considerable performance
improvements in classification tasks have been achieved using different aggre-
gated features, such as the Mean Absolute Sequential Difference (MASD), Low
Crest Factor (LCF) and Relative Standard Deviation (RSD) of frame-level features.

For this thesis, the following temporal feature integration (TFI) procedures are
evaluated:

Mean and Standard Deviation
The mean u and standard deviation o of attribute a[n] are given as:

5 [ios
p== alnl o= =— > (aln] - w2 (5.22)
N N—ln=1

n=1

forn=1,2...,100 and a clip length of N = 100 time frames (equivalent of 1s).

Relative Standard Deviation
The Relative Standard Deviation (RSD) is the ratio of standard deviation ¢ and
mean u of attribute a[n].

RSD = % (5.23)

Skewness and Kurtosis
The third and fourth statistical moments Skewness and Kurtosis of attribute a[n]
are given as:

LN (aln] - p? LN (a[n] - p)*

Skewness = , Kurtosis =

(5.24)

o3 ot

5.2. As described in chapter 5.1.1, features are evaluated 100 times per second (hop size of 10ms).
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High and Low Crest Factor
High Crest Factor (HCF) and Low Crest Factor (LCF) are the ratios of the maximum
or minimum value within one feature clip and the mean p.

HCF = max({a[1],a[2],..., a[n]})’ LCF = min({a[1], a[2], .. .,a[n]})‘
(5.25)

u

Mean Sequential Difference

The Mean Absolute Sequential Difference (MASD) and Mean Squared Sequential
Difference (MSSD) describe the amount of variation within each feature clip, similar
to the standard deviation w but with regard to the temporal evolution attribute a[n].

N N
MASD = —— Z aln—1]| MSSD = —— Z x[n—1]%. (5.26)
n=2 n=2

Mean Crossing Rate
Similar to the Zero-Crossing Rate (see formula 5.1), the Mean Crossing Rate (MCR)
estimates how often an attribute a[n] crosses its mean value w in a clip.

N
MCR = > (1 - &(sign(aln — 1] — ), sign(aln] - ), (5.27)

Frames Below Mean

Inspired by the Percentage of Low Energy Frames (%LEF) feature [11], a Frames
Below Mean (FBM) temporal integration method is evaluated, counting the number
of frames below than the mean p.

N
1 ) 1 fora < b,
FBM = Z g(a[nl, ),  with  g(a,b) = (5.28)

0 otherwise.

Note that besides MASD and MSSD, the temporal evolution of frame-level features
is not considered and should be investigated in future work.
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5.1.3 Feature Ranking and Selection

Evaluating 11 TFI methods for 26 frame-level features, yields a total of 286 de-
scriptors. In order to obtain a more manageable feature set, features were ranked
using different weighting algorithms. To do so, all 286 clip-level features were
evaluated for 10800 non-overlapping audio clips, corresponding to 3h of audio data
randomly drawn from the training dataset (see chapter 4), containing equal parts
of music, speech and environmental noise. Prior to feature selection, attributes
were standardised by subtracting their mean values and dividing by their standard
deviation.

The attributes were then ranked using different feature weighting algorithms imple-
mented in Rapid Miner Studio >3, namely weighting by Gini index [104], weighting
by Information gain [105] and weighing by RELIEF [106].

The three feature ranking algorithms described above were then combined to
obtain an average rank R, for each attribute a:

R, = Ri., (5.29)

W

3
i=1

where R;, denotes the feature rank for method i = 1, 2, 3 and attribute a.

The 30 highest and 10 lowest ranked features for combined feature rank R,, as
well as their ranks and scores accoring to the Gini Index Rg, information gain R;g
and Relief Ry are listed in table 5.2.

Note that this feature selection procedure is very basic and was chosen to quickly
obtain a manageable set of 30 descriptors. Other more sophisticated feature
extraction algorithms should be investigated in the future.

As can be seen, top performing features are the standard deviation and MSSD of
lower order MFCCs, indicating that the amount of timbral variation in an audio
clip is a good descriptor for speech, music and environmental noise classification.
Other highly ranked features include different temporal integrations of the Short-
Time-Energy (STE), spectral moments and harmonicity feature.

The top 30 best-performing features were selected for classification using the
classification algorithms described below.

5.3. Rapid Miner Studio is a software for data science experiments, incorporating a wide variety of
machine learning algorithms. hitps: // rapidminer.com/ products/ studio/ - accessed: January 2018
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Rank | Feature G Rg IG Rig Relief Ry R

1 | std_mfccs_02 0.2089 1 0.5294 1 0.5514 4 2.00

2 | std_mfccs_00 0.1986 3 0.4917 3 0.4917 9 5.00

3 | std_mfccs_01 0.1896 9 0.4871 4 0.4981 7 6.67

4 | std_mfccs_03 0.1985 4 0.4966 2 0.3928 | 16 7.33

5 | std_ste 0.2039 2 0.4726 9 04314 | 12 7.67

6 | std_mfccs_04 0.1924 6 0.4868 5 0.4144 | 14 8.33

7 | std_mfccs_06 0.1915 7 0.4821 7 0.3833 17 10.33

8 | lcf_ste 0.1765 18 0.4119 19 1.0000 1 12.67

9 | mean_ste 0.1805 | 16 | 0.4000 | 23 | 0.7049 2 13.67
10 | mssd_mfccs_04 0.1904 8 0.4668 | 12 0.3138 | 28 16.00
11 | std_mfccs_05 0.1866 12 | 0.4807 8 0.2958 | 32 17.33
12 | mssd_mfccs_00 0.1878 10 0.4691 1 0.2553 | 43 21.33
13 | mssd_mfccs_01 0.1809 15 | 0.4586 | 15 0.2827 | 38 22.67
14 | mssd_mfccs_06 0.1847 14 0.4614 14 0.2543 44 24.00
15 | lcf_spec_centroid 0.1440 33 0.3751 29 0.4801 1 24.33
16 | std_spec_spread 0.1482 29 0.3928 25 0.3616 19 24.33
17 | mssd_mfccs_03 0.1931 5 0.4846 6 0.2074 | 63 24.67
18 | mssd_mfccs_02 0.1858 13 0.4720 10 0.2417 53 25.33
19 | mssd_mfccs_05 0.1871 1 0.4644 | 13 0.2250 | 56 26.67
20 | fbm_harmonicity 0.1424 | 35 | 0.3599 37 0.4847 10 27.33
21 | std_mfccs_07 0.1699 | 20 | 0.4300 | 17 | 0.2534 | 46 27.67
22 | std_mfccs_08 0.1599 21 0.4180 18 | 0.2443 | 52 30.33
23 | Icf_spec_spread 0.1368 | 46 | 0.3629 | 35 | 0.3783 | 18 33.00
24 | mssd_ste 0.1743 19 0.3946 | 24 | 0.2102 | 62 35.00
25 | std_spec_rolloff 01377 | 45 | 0.3563 | 39 | 0.3457 | 22 35.33
26 | mssd_mfccs_08 01572 | 23 | 0.3789 | 28 | 0.2233 | 57 36.00
27 | lcf_spec_kurt 0.1268 | 56 | 0.3265 | 52 | 0.5075 6 38.00
28 | mean_harmonicity | 0.1444 | 31 0.3643 | 34 | 0.2451 50 38.33
29 | rsd_spec_spread 0.1510 25 0.4069 20 0.1936 70 38.33
30 | Icf_spec_rolloff 0.1258 57 0.3187 54 0.5311 5 38.67
277 | skew_mfccs_10 0.0040 | 276 | 0.0089 | 276 | 0.0185 | 242 | 264.67
278 | skew_mfccs_11 0.0042 | 275 | 0.0093 | 275 | 0.0181 | 244 | 264.67
279 | skew_mfccs_09 0.0024 | 284 | 0.0049 | 284 | 0.0219 | 238 | 268.67
280 | rsd_tristimulus_00 | 0.0060 | 261 | 0.0129 | 263 | 0.0000 | 284 | 269.33
281 | Icf_harmonicity 0.0044 | 272 | 0.0106 | 273 | 0.0041 | 266 | 270.33
282 | lcf_tristimulus_00 | 0.0045 | 270 | 0.0110 | 267 | 0.0013 | 274 | 270.33
283 | skew_mfccs_07 0.0027 | 283 | 0.0062 | 282 | 0.0112 | 248 | 271.00
284 | lcf_tristimulus_01 0.0045 | 269 | 0.0108 | 269 | 0.0011 | 277 | 271.67
285 | lcf_tristimulus_02 | 0.0044 | 273 | 0.0107 | 272 | 0.0013 | 273 | 272.67
286 | rsd_spec_rolloff 0.0001 | 286 | 0.0001 | 286 | 0.0000 | 286 | 286.00

Table 5.2 — 30 highest and 10 lowest ranked features based on average rank R.
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5.2 Naive Bayes Classifier

The Gaussian naive bayes (NB) classifier, as described in chapter 3.1.1 and im-
plemented as part of the scikit-learn toolbox [107] for Python was trained and
evaluated with the top 30 ranked clip features (see chapter 5.1.3) derived from
data drawn from the MUSPEN dataset (see chapter 4).

The classifier does not have any open parameters and is used as a baseline, to
compare other classifiers against.

5.2.1 Training with 'Clean’ Audio Data

First, the classifier was trained using 75,600 clip-level feature vectors, derived from
audio data randomly drawn from the ‘clean’ training dataset, corresponding to 7h
of audio data per class or 21h in total.
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(a) test clean’ (b) test ‘target’

Figure 5.11 — confusion matrices for speech, music and environmental noise classification
for naive bayes classifier trained with ‘clean’ audio data and tested with (a)
‘clean’ test data, and (b) ‘target’ test data.

class | music | noise | speech | avg. music | noise | speech | avg.

recall | 84% 86% 99% 90% 53% 88% 14% 52%

precision | 87% 90% 93% 90% 35% 65% 100% 67%

f-score | 85% 88% 96% 90% 42% 75% 25% 47%
(a) test ‘clean’ (b) test ‘target’

Table 5.3 - naive bayes classifier trained with ‘clean’ audio data and evaluated with ‘clean’
and ‘target’ test data respectively. Table shows precision, recall and f-score
derived from the confusion matrix.

The trained model was then evaluated using the full ‘clean’ test dataset, yielding
a classification accuracy of approximately 90%. Figure 5.11 (a) shows the cor-
responding confusion matrix. Table 5.3 (a) lists the recall, precision and f-score
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derived from the confusion matrix. As can be seen, speech data is almost always
detected as such, with a recall of 99%. The discrimination between music and
environmental noise is less successful with a recall of 84% and 86% respectively.

While the result is far from perfect, it shows that the underlying feature set contains
enough information to discriminate speech from noise and music even with a
simple classification algorithm like NB, at least for clean’ audio data.

However, when applying the classifier trained with ‘clean’ audio data to real-world
data, i.e. microphone array recordings, the overall classification accuracy drops to
just 52%. The corresponding confusion matrix is shown in figure 5.11 (b). Speech
is misclassified as music most of the times (85%) and music is often mislabelled
as environmental noise (47%). The poor performance for the mismatched case
(f-score of 47% vs. 90% for the matched case) indicates that the training data does
not resemble the ‘target’ domain well, leading to poor performance in real-world
applications.

5.2.2 Training with '‘Degraded’ Audio Data

To overcome the mismatch between the ‘target’ domain, i.e. real-world recordings
with the far-field microphone array and the training data, the NB classifier was
trained with the so-called ‘degraded’ training dataset (see chapter 4.5). As with
the ‘clean’ training data (see above), the Gaussian NB classifier was trained using
75,600 feature vectors, derived from audio clips of 1s, randomly drawn from the
‘degraded’ training set, corresponding to 21h of audio.

music music 1 0.41 0.02

noise noise { 0.30 0.67 0.03

True label
True label

speech 1 speech{ 0.42 0.01

& F & & &F &
& & :,,QQ’Z & & G,QQ’Z
Predicted lahel Predicted lahel
(a) Test Clean (b) Test Target

Figure 5.12 - confusion matrices for speech, music and environmental noise classification
for naive bayes classifier trained with ‘degraded’ audio data and tested with
(a) ‘clean’ test data, and (b) ‘target’ test data.

Again, the trained model was evaluated using the ‘clean’ test data, as well as
the ‘target’ microphone-array recordings. Figure 5.12 shows the corresponding
confusion matrices. For ‘clean’ test data, the classification accuracy significantly
drops to approximately 68% (-22%) compared to training with ‘clean’ data (see
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above). Speech is always detected as such, however, music is only correctly
recognised in one out of three cases.

class | music | noise | speech | avg. music | noise | speech | avg.

recall | 35% | 70% | 100% | 68% 57% | 67% 57% 60%

precision | 73% | 69% 67% 70% 44% 61% 92% 66%

f-score | 47% | 69% 80% 65% 50% | 64% 70% 61%
(a) Test ‘clean’ (b) Test 'target’

Table 5.4 — Naive Bayes classifier trained with ‘degraded’ audio data and evaluated with
‘clean’ test data and the ‘target’ test data respectively. Table shows precision,
recall and f-score derived from the confusion matrix.

The prediction accuracy for the ‘target’ test set has improved considerably to 60%
(+8%). The overall f-score increased greatly by 14% to around 61% (see table 5.4
(b)), indicating that augmenting the training data by simulating different acoustic
environments helps to increase a classifier's performance in real-life application.

5.3 k-Nearest Neighbours classifier

As described in chapter 3, the kNN classifier discriminates new observation based
on the class-membership of the k closest samples in the training dataset. The kNN
algorithm as implemented in the scikit-learn toolbox for python [107] was used to
classify the top 30 ranked clip-level features (section 5.1.3) with k = 3.

5.3.1 Training with 'Clean’ Audio Data

First, the classifier was trained using 75,600 feature vectors, derived from audio
clips of 1s, randomly drawn from the ‘clean’ training dataset, corresponding to 7h of
audio data per class or 21h in total. The trained model was then evaluated with the
full ‘clean’ and ‘target’ test data. Figure 5.13 shows the corresponding confusion
matrices. Table 5.5 shows the performance measures derived from the confusion
matrices.

For ‘clean’ test data, the kNN classifier performs very well with a classification
accuracy of around 97%. Especially speech and environmental noise are detected
reliably with a recall of 99% and 98% respectively. Considering the fact that there
might be mislabelled data in the test set, this can be regarded as almost human-
level performance.

However, when evaluating with ‘target’ test data, classification accuracy drops
to approximately 58% which is only slightly better than with the Gaussian naive
bayes classifier (52%, section 5.2). Speech is often mislabelled as music (67%)
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and environmental noise is often mislabelled as music (53%) resulting in a low
f-score of only 56%.
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Figure 5.13 — confusion matrices for speech, music and environmental noise classification
for kNN (k = 3) classifier trained with ‘clean’ audio data and tested with (a)
‘clean’ test data and (b) ‘target’ data.

class | music | noise | speech | avg. music | noise | speech | avg.

recall | 93% | 98% 99% 97% 97% | 47% 30% 58%

precision | 98% 96% 97% 97% 45% 89% 100% 78%

f-score | 95% | 97% 98% 97% 61% | 62% 46% 56%
(a) test clean’ (b) test ‘target’

Table 5.5 — kNN classifier trained with ‘clean’ audio data and evaluated with ‘clean’ test
data and the ‘target’ test data respectively. Table shows precision, recall and
f-score derived from the confusion matrix.

5.3.2 Training with 'Degraded’ Audio Data

To overcome the mismatch between the target domain, i.e. real-world recordings
with the far-field microphone array and the training data, the kNN classifier was
then trained with the so-called ‘degraded’ training dataset (see chapter 4.5). The
classifier was trained using 75,600 feature vectors, derived from audio clips of 1s,
randomly drawn from the ‘degraded’ training set, corresponding to 21h of audio.

Again, the trained model was evaluated using clean’ test data, as well as the ‘target’
microphone-array recordings. Figure 5.12 shows the corresponding confusion
matrices. Table 5.6 shows the performance measures derived from the confusion
matrices.

For ‘clean’ test data, the classification accuracy is around 85% (compared to 68%
with the NB classifier, section 5.2). Especially environmental noise and speech are
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detected reliably. However, music is quite often mislabelled as env. noise (22%)
and speech (16%), yielding an f-score of 84%.

For the ‘target’ test data, performance is significantly improved compared to train-
ing with ‘clean’ audio data (f-score of 65% vs. 56%, see tables 5.6 and 5.5). Also
the kNN algorithm is more reliable than the NB classifier trained with ‘degraded’
audio data (f-score of 65% vs 61%, see tables 5.6 and 5.4). However, the overall
performance for the ‘target’ domain is still quite poor.
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Figure 5.14 — confusion matrices for kNN (k = 3) classifier trained with ‘degraded’ audio
data and tested with (a) ‘clean’ and (b) ‘target’ test data.

class | music | noise | speech | avg. music | noise | speech | avg.

recall | 61% | 95% | 100% | 85% 46% | 79% 71% 65%
precision | 98% | 81% 84% 88% 50% | 63% 84% 66%
f-score | 75% | 87% 91% 84% 48% | 70% 77% 65%

(a) test clean’ (b) test ‘target’

Table 5.6 — kNN classifier trained with ‘degraded’ audio data and evaluated with ‘clean’

test data and the ‘target’ test data respectively. Table shows precision, recall
and f-score derived from the confusion matrix.
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5.4 Support Vector Machine

The support vector machine (SVM) as implemented in the scikit-learn toolbox [107]
for Python was used. A soft-margin SVM with non-linear radial basis function (RBF)
kernel was used, with open parameters y and C (see chapter 3.1.3). The top 30
ranked clip-level features (see section 5.1.2) were evaluated.

The open parameters y and C were chosen based on a parameter grid search
algorithm.

Coarse-level parameter optimisation

A grid-search algorithm with stratified 10-fold cross-validation °# is used to find
well-performing parameters for y and C. First a coarse parameter grid is evaluated
with parameter values for y logarithmically spaced between 10~* and 1, and val-
ues for C ranging from 10~! to 10° respectively. A one-vs-rest (OVR) multi-class
implementation is used.

Parameter optimisation is done using a subset of 3,600 audio clips, corresponding
to 1h of audio randomly drawn from the Clean training dataset (see chapter 4).
The best performance was achieved using penalty parameter C = 1 and kernel
parameter y = 0.1 for both precision and recall, as can be seen in figure 5.15,
showing the average validation scores for precision (left) and recall (right) along
the investigated parameter grid.

Fine-tuning parameters

For fine-tuning the parameters, a logarithmic grid was evaluated with y € [0.01, 1]
and C € [1,100]. Figure 5.16 shows the parameter space drawn by parameters y
and C. best parameters for precision were y ~ 0.042 and C ~ 11.72, best parameters
for recall were y = 0.069 and C ~ 1.74.

Based on the fine-level grid evaluation, parameters C = 5 and y = 0.05 are chosen.

5.4. k-fold cross-validation splits the training data into k subsets. The model is evaluated &
times. Each time one of the k subsets is used for testing. The other (k — 1) subsets are used for
training. The average validation scores are then computed for all k evaluations. In stratified k-fold
cross-validation, the percentage of samples for each class is preserved for each subset.
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Figure 5.15 — Tuning parameters for support vector machine with RBF kernel. Optimising
10-fold cross-validation score for (a) precision and (b) recall. Darker spots
indicate better performance.
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Figure 5.16 — Fine-tuning parameters for support vector machine with RBF kernel. Opti-
mising 10-fold cross-validation score for (a) precision and (b) recall. Darker
color indicates better performance.
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5.4.1 Training with 'Clean’ Audio Data

The SVM with RBF kernel is trained with clip-level features derived from 21h of ‘clean’
training data randomly drawn from the raw audio data (see chapter 4) with equal
parts music, speech and environmental noise. Table 5.7 lists the classification
performance for the different evaluation sets. Figure 5.17 shows the corresponding
confusion matrices.

For ‘clean’ test data, an impressive accuracy of approximately 98% is achieved.
Given the fact that the test data might contain mislabelled data, this can be seen
as at least human-level performance. Especially environmental noise and speech
are detected very reliably with a recall of 99%. Music is sometimes mislabelled as
environmental noise (3%).

However, as with the other classification algorithms, when evaluating the classifier
with the ‘target’ test data, performance drops drastically, with a classification
accuracy of only 67%.
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Figure 5.17 — confusion matrices for SVM with RBF kernel trained with ‘clean’ audio data
and tested with (a) ‘clean’ test and (b) ‘target’ test data.

class | music | noise | speech | avg. music | noise | speech | avg.

recall | 96% | 99% 99% 98% 59% | 81% 61% 67%

precision | 99% 97% 99% 98% 53% 76% 74% 68%

f-score | 97% | 98% 99% 98% 56% | 78% 67% 67%
(a) test clean’ (b) test ‘target’

Table 5.7 — SVM classifier trained with ‘clean’ audio data and evaluated with ‘clean’ test
data and the ‘target’ test data respectively. Table shows precision, recall and
f-score derived from the confusion matrix.
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5.4.2 Training with 'Degraded’ Audio Data

In order to reduce the mismatch between the training data and the ‘target’ domain,
i.e. real-world microphone array recordings, the SVM with RBF kernel is trained with
clip-level features derived from 21h of audio randomly drawn from the ‘degraded’
audio data (see chapter 4.5). Figure 5.17 and table 5.7 show the corresponding
confusion matrices and derived performance measures.

For ‘clean’ test data, classification accuracy is approximately 92%. While this is
significantly less, than when trained with ‘clean’ audio data (-6%), environmental
noise and speech are still detected reliably (recall of 94% and 99% respectively).
Music is mislabelled as environmental noise quite often though (14%).

For ‘target’ test data, i.e. microphone array recordings, classification accuracy
improves to around 77% (+9%) compared to training with ‘clean’ audio data (see
tables 5.8 and 5.7). Even-though the overall performance for the ‘target’ test data
is much improved, music is often misclassified as noise (33%) and speech often
misclassified as speech (25%), as can be seen in figure 5.18.
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Figure 5.18 — confusion matrices for SVM with RBF kernel trained with ‘degraded’ audio
data and evaluated with (a) ‘clean’ and (b) ‘target’ test data.

class | music | noise | speech | avg. music | noise | speech | avg.

recall | 84% 94% 99% 92% 66% 96% 68% 77%

precision | 94% 87% 96% 92% 69% 71% 98% 79%

f-score | 89% 90% 97% 92% 67% 82% 80% 76%
(a) test clean’ (b) test ‘target’

Table 5.8 — SVM classifier trained with ‘degraded’ audio data and evaluated with ‘clean’
test data and the ‘target’ test data respectively. Table shows precision, recall
and f-score derived from the confusion matrix.
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5.5 Summary

As has been shown, traditional machine learning algorithms (namely naive bayes,
kNN and SVM) have been used successfully to distinguish between speech, music
and environmental noise for clean’ audio data, resembling broadcast audio. The
clip-level features carry enough information to effectively discriminate between
the three classes, at least for low-noise audio data. Accuracies of up to 98% were
achieved for a SVM with RBF kernel.

However, the models trained with ‘clean’ audio data, performed poorly for far-field
microphone array recordings. In order to overcome the mismatch between the
‘clean’ training data and the ‘target’ domain, the models were also trained with the
‘degraded’ audio data, simulating different acoustic environments (see chapter
4.5). While performance has been greatly improved, the resulting classifiers are
still not capable of reliably discriminating speech and music from environmental
noise in noisy and reverberant environments (i.e. ‘target’ test data).

For future work, using a more reliable set of features might improve performance,
but requires expert knowledge about the signal characteristics. Considering the
performance gain achieved by using ‘degraded’ audio data, augmenting the training
dataset by actual far-field microphone recordings is expected to improve perfor-
mance further.
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6 | Deep Learning Approach:
Convolutional Neural Nets

As described in chapter 1.2, deep learning algorithms have been applied to audio
classification tasks with great success. Especially so-called convolutional neural
nets (CNNs) have proven effective for classification tasks, such as speaker identi-
fication [29], audio-based action recognition [30] and large-scale acoustic event
detection [32].

In contrast to the feature-based ML approaches described in chapter 5, deep
learning algorithms don't require the definition and selection of descriptive features.
Instead, a deep neural net will learn to extract relevant features from the raw input
(or a simple mid-level signal representation) during training.

The underlying mechanics of CNNs have been explained in chapter 3.2. This
chapter describes the deep learning approach with CNNs developed within the
scope of this thesis, which is based on the neural net topology proposed by Lukic
et al. [29].

6.1 Input Signal Representation:
Mel-spectrograms

As investigated by Dieleman and Schrauwen [108], deep neural nets are capable
of learning relevant features directly from raw audio data. However, while they
achieved promising results for raw audio data, for CNNs superior performance was
reported using a 2D input signal representation, i.e. Mel-spectrograms. Essentially,
this transforms the classification of a time series x[7] into an image classification
problem.

CNNs with two-dimensional convolutional layers aim to find patterns within an
input image, by correlating small image-segments with learned filter kernels (see
chapter 3.2.4).

The most obvious choice for a two-dimensional audio signal representation is the
so-called spectrogram as described in chapter 5.1.1.2. As has been established in
chapter 2, most characteristic signal components of speech and music signals
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(i.e. fundamental frequency and lower order harmonics) are located in the lower
frequency range, where the human ear is the most sensitive. It thus makes sense
to use a tempo-spectral signal representation modelling the non-linearity of the
human auditory system’s frequency resolution, such as the Mel-spectrogram (see
chapter 5.1.1.2).

Mel-spectrograms have been used in conjunction with CNNs with great success
[29,32]. As proposed by Lukic et al. [29] and Hershey et al. [32] Mel-spectrograms
were calculated for audio clips of 1s. A clip length of 1s has proven to be a good com-
promise between sufficient temporal integration and responsiveness. If frames
shorter than 1s are used, there will be more non-characteristic frames, leading to
misclassification. Longer segments will make real-time classification slow and un-
responsive, as the prediction will depend on acoustic events that occurred several
seconds ago.

Figure 6.1 shows Mel-spectrograms for 1s of music, environmental noise and
speech respectively. As can be seen, the signal characteristics for (a) music and
(c) speech, i.e. stationary horizontal lines for music and the succession of voiced
and unvoiced speech segments - as described in chapter 2, can be easily observed.
The environmental noise signal is more evenly spread across frequency and time
with some transient events occurring around half way through the audio clip.
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Figure 6.1 — Mel-spectrograms for 1s of (a) music, (b) environmental noise and (c) speech.

Depending on the final application of the classification algorithm, other signal
representations should be investigated. Initial experiments with the proposed
CNN model (see section 6.2) suggest that using so-called cochleagrams ® yields
comparable results for the same number of spectral components.

6.1. Cochleagrams are an approximation to the filtering performed by the human ear. A filter-bank
of rectangular band-pass filters models the human auditory system. Similar to the Mel-scale, the
non-linearity in frequency resolution is modelled according to the so-called equivalent rectangular
bandwidth (ERB) scale. The energy of each filter's output models the nervous activity at a specific
location in the cochlea, a spiral-shaped cavity in the inner ear, containing the Organ of Corti, the
sensory organ of auditory perception [3,109].
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Time vs. Frequency resolution

If frequency-resolution is too low, it will be hard to detect small changes in pitch,
which can carry useful information (e.g. prosody in speech signals). If time-
resolution is too low, transients and rhythmic patterns will be 'washed out’ and
harder to detect.

Based on [29], Mel-spectrograms were computed from an FFT with a window size
of 1024 samples (64ms), a hop size of 160 samples (10ms) for audio sampled at f;
=16kHz, yielding 100 time frames for audio clips of 1s. The resulting 513 frequency
bins between 0 and 8kHz were combined to 128 Mel bands (see chapter 5.1.1.2).

This yields an input image of 128x100 pixels 2.

Dynamic Range Compression

Instead of using the linear magnitude of the spectrogram, usually some form of
non-linear amplitude compression is applied when training convolutional neural
nets on spectrograms, as this type of non-linearity can be hard to learn for a neural
net with only Relu activation functions (see chapter 3.2.1) [108]. For this thesis,
the logarithmic power spectrum (as described in chapter 5.1.1.2) and the resulting
Mel-spectrogram in dB is used.

Contrast Normalisation

The logarithmic magnitude of each inputimage X is scaled between 0 and 1 by first
deducting the minimum of each sample and consecutive normalisation (division
by maximum). This alleviates the problem of varying input signal levels (e.g. when
the source is closer or further away from the microphone) without the need for
automatic gain control (AGC).

X
max(X)

X « X — min(X), X (6.1)

6.2. In order to scale down the CNN for embedded applications, it might be necessary to reduce
the resolution of the Mel-spectrograms. Initial tests indicate that Mel-spectrograms with at least
64 Mel bands and 50 time frames per second yield good results using the proposed CNN model.
Mel-spectrograms with 24 Mel bands and 32 time frames per second still yielded recognition rates
of around 90% for ‘clean’ test data, indicating that the model can be scaled down without too much
of a hit on performance.
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6.2 Model structure

The basic model structure is based on the CNN model proposed by Lukic et al. [29]
for speaker identification and clustering. The model consists of two convolutional
layers, each with subsequent max pooling and two fully-connected layers. Rectifier
linear units (ReLu) are used for all layers except the output layer, for which the soft-
max activation was used. Dropout was evaluated between the two fully-connected
layers.

Figure 6.2 shows the basic model structure of the investigated CNN. Two convolu-
tional layers with subsequent pooling layers extract relevant information from the
input image. Two fully connected layers and an output layer form an MLP classifier,
which outputs the estimated a-posterior probability for each class.
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Figure 6.2 — Model structure of CNN featuring two convolutional layers with consecutive
pooling and an MLP classifier with two fully-connected layers for image
classification.

Number of Convolutional Layers

Deep learning breaks the analysis of raw sensory input data into a series of simple
mappings. The so-called hidden layers extract increasingly abstract features
from the input data. The first convolutional layer in an image classifier will learn
simple features like edges in various directions, by comparing the brightness of
neighbouring data points (pixels) in the input image (in our case a Mel-spectrogram).
The second convolutional layer will learn more complex contours. With rising depth
of the DNN, input representations get more and more complex [45, p.6].

CNNs for image classification, like AlexNet [27] or GoogLeNet [110] are usually
many layers deep, as they have to differentiate very complex objects. For this
thesis CNNs with only two convolutional layers are evaluated, as the input images
are less complex.
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Fundamentally, the system needs to be able to extract horizontal lines (for tonal
music segments), rising and falling lines (fundamental frequency and harmonics of
voiced speech), vertical lines (transient signals, like drum sounds or transient noise
events) and local noise. Using only one convolutional layer severely decreased the
models performance in initial tests and was not further investigated.

Kernel Sizes

Lukic et al. [29] have studied kernels of different sizes h; x hy along the frequency
and time axis. They found that good results can be achieved using both symmetri-
cal and asymmetrical kernels, concluding that two-dimensional filter kernels make
the model more easily interpretable. They settle for 4 x 4 kernels with strides 1 x 1.
For this thesis, greater 8 x 8 kernels were investigated as well but did not increase
performance (see chapter 6.4).

As suggested in [29], the resulting feature maps were pooled using a pool size 4 x 4
and stride 2 x 2.

Number of Filters

As mentioned before, kernels of the first and second convolutional layers represent
simple visual features, such as edges and contours in the spectrogram. Visualising
convolutional filters (see chapter 6.7 below) can help, finding the right number of
filters. When training a CNN with many filters for each convolutional layer, there
might be quite a few that look very similar, indicating that the number of filters can
be reduced, without a significant loss in performance.

If the model is too complex, overfitting will be more likely. If there are too few filters,
on the other hand, the model might not be able to extract relevant information from
the input image.

As mentioned above, the CNN needs to effectively differentiate harmonic con-
tent (horizontal lines) and transient events (vertical lines) in order to differentiate
between music, speech and environmental noise segments. For the speaker identi-
fication proposed by Lukic et al. [29], the differentiation of the spectrograms needs
to be more precise. It was thus chosen to use less than the 32 and 64 filters for the
first and second convolutional layer used by Lukic et al.. Instead, 8 and 16 filters
were evaluated for the first, 8, 16 and 32 for the second convolutional layer.

Fully-connected Layers

The convolutional layers with consecutive pooling layers are followed by two fully-
connected layers (also called dense layers) and an output layer, forming an MLP
classifier ©3.

If the number of neurons is too low, the neural net will struggle to locate learned
patterns (filter kernels) along the frequency and time axis. If the number of neurons

6.3. Feed-forward neural nets with two-hidden layers are known to perform excellent in classifica-
tion tasks and usually better than those with only one hidden layer [111].
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is too high, the model becomes overly complex as the number of trainable param-
eters (i.e. interconnection weights) rises at least exponentially with increasing
number of neurons.

Lukic et al. [29] suggest to chose the number of neurons depending on the number
of classes to predict (10 - N, for the first and 5 - N, for the second dense layer) and
a dropout rate of 50% between the two fully connected layers.

For this thesis 32, 64 and 128 computing units are evaluated for the first fully-
connected layer, 16, 32 and 64 for the second fully-connected layer.

Activation Functions

ReLu activation functions were used for all layers except the output layer. Instead,
the softmax activation function (equation 3.28 in chapter 3.2.1) was used for the
output neurons, so that the output vector j = [y, 7, 33" of the CNN estimates
the a-posteriori probabilities for each of the three classes.

When using a sigmoid activation function instead, the system can theoretically
detect mixtures of classes [32]. Initial experiments indicate that this could be
promising for future work, especially when differentiating more classes and sub-
categories.

Initialisation
In accordance with Glorot and Bengio [112] all biases were initialised with 0. In-
terconnection weights and convolutional filter kernels were initialised with the
common heuristic

1 1
V@D @D |

where U[-aq, a] is the uniform distribution in the interval (—q, @) and m!~Y denotes
the number of neurons in the previous layer (I - 1).

wo o Ul-

(6.2)
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6.3 Sanity Checks

Before training a neural net with a lot of data, which might take hours or even days,
several sanity checks can be performed to make sure training will go as intended.

Loss before training

First of all, to see if the model is correctly initialised and does not suffer from an
inherent bias, the untrained network should yield a prediction accuracy of a = 1/N,,
where N, is the number of classes.

For speech, music and environmental noise discrimination, prediction accuracy a
should be approximately 33%. The corresponding loss (categorical cross-entropy,
see chapter 3.2.3) is £ = —log(3) = —log(3) ~ 1.098 .

Overfitting a small subset of data

To see if the model is capable of discriminating the training data, a small subset
of data is over-fitted, so that an accuracy of a = 100% is achieved when evaluating
the network with the same data. This ensures that the network is able to extract
any relevant information from the input data.

Figure 6.3 shows the training loss for the a neural net trained and evaluated with
n = 1200 Mel-spectrograms per class, computed from audio clips randomly drawn
from the full MUSPEN dataset (see chapter 4), corresponding to one hour in total.
As expected, the validation loss starts at £ ~ 1.098 and rapidly drops to zero.

batch loss
--+-- training loss
—e— Validation loss

0 2 4 6 8 10 12 14
epochs

Figure 6.3 — Training progress for overfitting experiment. A deep neural net was trained
for 15 epochs and evaluated with the full training data after each epoch.
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6.4 Choosing Hyperparameters

Complex neural net topologies like CNNs have many tunable hyperparameters,
such as the number of layers, activation functions, number of filters, etc..

Hyperparameters can either be chosen manually or automatically using a grid
search algorithm. The manual approach requires a profound knowledge of what
each parameter does, and comes down to intuition and experience. Automatic
hyperparamter selection on the other hand does not require as much expert knowl-
edge but is computationally costly [45, p.422].

As explained above, the basic model structure was chosen as it has been proven
successful for audio classification before [29]. As the classification task in speech,
music and environmental noise is expected to require less features than for speaker
identification, the number of convolutional filters was reduced.

In order to find a model structure that works well for speech, music and environ-
mental noise classification, a total of 216 different hyperparameter settings was
evaluated, as listed in table 6.1.

Layer: # of settings

Conv. Layer1:  kernels 4x4, 8x8 2

strides 1x1 1

filters 8,16 2

activation Relu 1

Pooling Layer 1:  pools 4x4 1

strides 2x2 1

Conv. Layer 2: kernels 4x4, 8x8 2

strides 1x1 1

filters 8,16, 32 3

activation RelLu 1

Pooling Layer 2:  pools 4x4 1

strides 2x2 1

Dense Layer 1:  neurons 32, 64,128 3

activation RelLu 1

Dropout:  dropout 0.5 1

Dense Layer 2: neurons 16, 32, 64 3
activation Relu

Output Layer: neurons 3 1

activation  Softmax 1

# number of combinations: [ — 216

Table 6.1 — Evaluated hyperparameters for CNN model.
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For each of the 216 different hyperparameter settings, the CNN was trained with
144,000 Mel-spectrograms per class, representing around 40h of training data
randomly drawn from the full training data in the MUSPEN dataset, with equal
parts of ‘clean’ and ‘degraded’ data (see chapter 4). Each CNN was trained for 10
epochs with a batch size of B = 128 and optimiser Adam. After each epoch the
full target’ test set was evaluated. The best accuracy was kept to evaluate each

hyperparameter setting.

Table 6.2 lists the average, maximum and minimum performance achieved for
each hyperparameter within the grid of 216 parameter configurations. Note that
even-though the grid search algorithm only investigates a small subset of possible
hyperparameter configurations, it took several days to compute.

choosing hyperparameters for 1st convolutional layer:

# of filters: 8 16 kernel: 4x4 | 8x8
avg. acc. 73% | 73% avg.acc. | 76% | 71%
max. acc. 85% | 84% max. acc. | 85% | 81%
min. acc 61% | 60% min. acc | 63% | 60%
stdv. 5% | 5% stdv. 5% | 4%

choosing hyperparameters for 2nd convolutional layer:

# of filters: 8 16 32 kernel: 4x4 | 8x8
avg. acc. 72% | 74% | 74% avg.acc. | 75% | 72%
max. acc. 83% | 85% | 84% max. acc. | 85% | 81%
min. acc 60% | 61% | 63% min. acc | 62% | 60%
stdv. 6% | 5% | 5% stdv. 5% | 5%

choosing number of hidden units:

1st fully-connected layer 2nd fully-connected layer
# of neurons: 32 64 | 128 # of neurons: 16 32 64
avg. acc. 72% | 74% | 75% avg. acc. 73% | 73% | 74%
max. acc. 82% | 85% | 85% max. acc. 84% | 83% | 85%
min. acc 62% | 61% | 60% min. acc 60% | 61% | 61%
stdv. 5% | 5% | 5% stdv. 5% | 5% | 5%

Table 6.2 — How investigated hyperparameters affect performance: This table shows
the average, maximum and minimum accuracy for each investigated hyper-
parameter within the 216 combinations evaluated.
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As can be seen, when looking at the top section of table 6.2 the number of filter
kernels in the first convolutional layer does not affect performance noticeably.
However, using kernel sizes of 4x4 yielded better results than using larger kernels
(+5%).

Increasing the number of filter kernels in the second convolutional layer beyond 16
did not increase performance with an average accuracy of 74%. As with the first
convolutional layer, using smaller kernel sizes of 4x4 yielded better results than
using larger kernels (+3%).

When looking at the lower section of table 6.2, one can see that increasing the
number of hidden units in both the first and second fully-connected layer does
slightly increase average accuracy (at the cost of exponentially more trainable
parameters).

Based on the hyperparameter analysis, the following network hyperparameters, as
listed in table 6.3, were chosen for further experiments.

Layer: output shape: # of params.:
Input Layer: mel-spec. 128x100 128x100x1 0
Conv. Layer1:  kernel 4x4
strides 1x1
filters 8,16 8-4.-4+8
activation Relu 128%x100x8 =136
Pooling Layer 1:  pools 4x4
strides 2x2 64x50x8 0
Conv. Layer 2: kernel 4x4
strides 1x1
filters 16 8-16-4-4+16
activation Relu 64x50x16 = 2,064
Pooling Layer 2:  pools 4x4
strides 2x2 32x25x16 0
Dense Layer 1:  neurons 128 32-25-16-128 + 128
activation Relu 128 =1,638,528
Dropout:  dropout 0.5 128 0
Dense Layer 2:  neurons 64 128 - 64 + 64
activation Relu 64 = 8256
Output Layer: neurons 3 3 64-3+3
activation  Softmax =195

total: Y — 1,649,179

Table 6.3 — Chosen hyperparameters for CNN model. Note that 99% of all trainable pa-
rameters are located in the first fully-connected layer.
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As can be seen when looking at table 6.3, around 99% (~1.6M) of all trainable
parameters are located in the first fully-connected layer. If computational resources
are limited, the number of trainable parameters can be effectively reduced without
much of a loss in performance when using less hidden units in the first and second
fully-connected layers (see also table 6.2).

For example when using 64 instead of 128 hidden units in the first fully-connected
layer, the number of trainable parameters decreases by almost 50% to 825,819
while performance only decreases by a few percent.
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6.5 Offline Evaluation

In order to evaluate the performance of CNNs for speech, music and environmental
noise classification, the CNN with hyperparameters listed in table 6.3 was trained
with the full ‘clean’ training data, as well as the full ‘degraded’ training data.

In both cases, the CNN was trained for a maximum of 15 epochs. After each epoch,
the full ‘clean’ test data, as well as the full ‘target’ test data were evaluated. The
best performing weights for both the ‘clean’ and ‘target’ test data were stored. The
CNN was trained using the categorical cross entropy as a loss function and Adam

as the optimiser for batches of size B = 128. Training data was shuffled before
each epoch.

6.5.1 Training with ‘Clean’ Audio Data

First the CNN was trained with the full ‘clean’ training dataset (around one million
Mel-spectrograms) and evaluated with the ‘clean’ and 'target’ test data. Figure 6.4
and table 6.4 show the corresponding confusion matrices and derived performance
measures for (a) ‘clean’ test data and (b) the recorded dataset coming from the
far-field microphone array.

music music

noise noise

True label
True label

speech speech
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(a) Test Clean (b) Test Target

Figure 6.4 — confusion matrices for CNN classifier trained with ‘clean’ audio data and
tested with (a) ‘clean’ and (b) ‘target’ test data.

As can be seen, the CNN trained with clean’ audio data does an excellent job in
detecting speech and music for the ‘clean’ test set, resembling broadcast audio.
Music and speech are correctly detected with a recall of 99%. Environmental
noise is sometimes falsely labelled as music (3%) and speech (2%) which is not
surprising, given the inhomogeneous nature of environmental noise sounds. The
overall classification accuracy is around 98%. When considering the fact that there
might be mislabelled data in the test set, this can be regarded as human-level
performance and is comparable to the SVM trained and evaluated with ‘clean’
audio data (see chapter 5.4).
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class | music | noise | speech | avg. music | noise | speech | avg.

recall | 99% 96% 99% 98% 90% 86% 91% 89%

precision | 97% 98% 98% 98% 88% 85% 94% 89%

f-score | 98% 97% 98% 98% 89% 85% 92% 89%
(a) Test ‘clean’ (b) Test ‘target’

Table 6.4 — CNN classifier trained with clean’ audio data and evaluated with ‘clean’ test
data and the ‘target’ test data respectively. Table shows precision, recall and
f-score derived from the confusion matrix.

Interestingly, the CNN trained with ‘clean’ audio data works surprisingly well for
the 'target’ test data, with a classification accuracy of 89%, outperforming the
feature-based approaches by a comfortable margin. This could also be verified in
real-time tests (see chapter 6.8).

6.5.2 Training with 'Degraded’ Audio Data

As with the feature-based classifiers, the model was then trained with the ‘degraded’
dataset in order to reduce the mismatch between training data and the ‘target’
domain.

music music

noise noise

True label
True label

speech speech
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(a) test clean’ (b) test ‘target’

Figure 6.5 — confusion matrices for CNN classification trained with ‘degraded’ data and
tested with (a) clean’ and (b) 'target’ test data.

The CNN was trained with the full ‘degraded’ training dataset (around one million
Mel-spectrograms) and evaluated again with both the ‘clean’ and ‘target’ test data.

Figure 6.5 shows the corresponding confusion matrices for (a) ‘clean’ test data
and (b) the recorded ‘target’ data coming from the far-field microphone array. The
classifier’'s performance is listed in table 6.5.

As can be seen when looking at figure 6.5 (a), the performance for the ‘clean’
test data is still very good. However, around 10% of environmental noise data are
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class | music | noise | speech | avg. music | noise | speech | avg.

recall | 96% | 90% 98% 95% 94% | 93% 96% 94%

precision | 94% | 97% 94% 95% 95% | 92% 97% 95%

f-score | 95% | 93% 96% 95% 94% | 92% 96% 94%
(a) test ‘clean’ (b) test ‘target’

Table 6.5 — CNN classifier trained with ‘degraded’ audio data and evaluated with ‘clean’
test data and the ‘target’ test data respectively. Table shows precision, recall
and f-score derived from the confusion matrix.

misclassified as either speech or music, compared to just under 5% when training
with ‘clean’ audio data. The overall accuracy decreases to approximately 95%.

More interestingly though, the overall accuracy for the ‘target’ test data increases
to approximately 94%. The CNN trained with degraded audio also performed well
in real-time tests (see 6.8), allowing a responsive and robust detection of speech
and music, even when the source is several metres away from the microphone
array.

Overall the CNN proves to be a very robust classifier for audio data, even if heavily
degraded by background noise and reverberation, outperforming other feature-
based approaches. Note that the CNN has been trained with considerably more
audio data than the feature-based algorithms and is substantially more computa-
tionally demanding. In contrast to the feature-based machine learning approach
(see chapter 5), where expert knowledge is required to define and select relevant
descriptive features, the deep neural net learns to extract relevant patterns from the
input signal representation (i.e. Mel-spectrogram) during training. In consequence,
the CNN is more robust and less prone to noise.
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6.6 Common misclassifications

While classification accuracy is generally good, in some cases the CNN will mislabel
audio segments. In the following, common misclassification for a CNN trained with
‘degraded’ audio data are shown. The examples include both ‘clean’ and ‘target’
test data.

Environmental Noise misclassified as Music

Sometimes, environmental noise with prominent harmonic content will be mis-
interpreted as music, as shown in figure 6.6 (a). This is to be expected, as even
humans sometimes can have a hard time differentiating tonal noise events from
music, especially for short segments.

As shown in figure 6.6 (b), environmental noise sounds with a prominent rhythmic
pattern (which might sound similar to a drum pattern) are sometimes mislabelled
as music.

In both cases, the neural net is not certain about its decision, with predicted
probabilities of about 60% for music and 40% for environmental noise.
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Figure 6.6 — Environmental noise segments mislabelled as music.
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Environmental Noise misclassified as Speech

As described in chapter 2, speech spectrograms are characterised by their varying
fundamental frequency and its lower order harmonics. In rare cases, such as
depicted in figure 6.7 (a), environmental noise sounds with varying pitch can lead
to misclassification. Figure 6.7 (b) shows another, although less characteristic
environmental noise sound mislabelled as speech.
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Figure 6.7 — Environmental noise segments mislabelled as speech.

Music misclassified as Speech

Quite often music contains some sort of speech (see figure 6.8). Especially in
rap music, as shown in (a), the differentiation between music and speech is often
difficult and sometimes even impossible. The Mel-spectrogram inherits both
characteristics of speech signals and music, leading to a false prediction.
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Figure 6.8 — Music segments mislabelled as speech.
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Speech misclassified as Environmental Noise
If speech signals are too heavily distorted, the CNN will fail to identify them as
such (figure 6.9 (a)).

Pauses are an essential part of speech. However, longer pauses in speech signals
are not considered speech in this context. Even-though a silence-removal procedure
was applied to speech training data, there appears to be some mislabelled data
left in the test set (figure 6.9 (b)).
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Figure 6.9 — Speech segments mislabelled as environmental noise.

Looking at mislabelled data in the test set provides some information on what kind
of data is hard for the neural net to distinguish. However, it is not possible to say,
why the classifier identifies a sample to be of a certain class. To gain an insight
on the deciding factors of a neural net classifier, class models can be visualised,
as described below.
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6.7 Class Model Visualisation by Inverting the
Neural Net

One drawback of using deep neural nets for classification is that the underlying
decision rules of a neural net cannot be easily understood, sometimes making the
results hard to interpret.

One approach to alleviate this problem has been introduced by Simonyan et al. [113]
in 2013. They propose a method to visualise learned class models of a CNN by
inverting the model structure and generating an input image that maximises the
class score sc(I):
argmax s.(I) — A - ||T||3, (6.3)
I

with a regularisation parameter A. A synthetic input image I characteristic for class
c is obtained by iteratively changing the pixels with regard to the activation of the
classifier's output neurons 4. More specifically, a stochastic gradient ascend is
performed, maximising s.(I) with each step:

I—I+AI (6.4)

Similar to the gradient descent during training (see chapter 3.2), the image is

adapted in the direction of the gradient Vs.(I) (steepest ascent). As suggested

by [114], momentum was added to the gradient ascent.

0 s.(I)
01

with step size y, gradient Vs., and decaying factor m.

Al —y -Vs.D)+m-Al =y -

+m- Al (6.5)

Figure 6.10 shows model visualisations (sometimes called deep dream images) for
the classes music (a), environmental noise (b) and speech (c), coming from a CNN
trained with Mel-spectrograms. The images represent synthetic Mel-spectrograms
that result in a strong activation of the respective output neuron. This allows a cer-
tain insight into what signal characteristics are relevant for classification. However,
the quality of the images and how well they resemble an actual Mel-spectrogram
does not say much about the system’s performance, and is largely dependent on
the initial image (in our case random noise), chosen model parameters (such as
kernel sizes, strides, ...), step size y, decaying factor m and the number of iterations.

Looking at the images, one can see that the algorithm learns to identify music
based on straight horizontal lines in the spectrogram. Note that even though this
image suggests that the detection of music might only be dependant of the tonal
structure of a musical excerpt, the trained model also works well on isolated drum
sequences without harmonic / tonal content.

6.4. Note that the activations before the output layer’'s softmax activation function are evaluated
to make sure that the optimisation is only dependent of the class c itself. Otherwise, the score s,
will be maximised by minimising the scores for the other classes [113].
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Speech on the other hand is classified based the shape of the fundamental fre-
quency and lower order harmonics, which can be observed when looking at the
lower Mel bands in figure 6.10 (c). Additionally, temporal fluctuations of signal
energy in the higher frequency range seem to be characteristic for speech signals
(i.e. succession of consonants).

The generated image for environmental noise (b) does look less characteristic,
which is not surprising given the inhomogeneous nature of environmental noise
sounds. Interestingly it does not contain any horizontal (harmonic) structures in
the lower and mid frequency range.
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Figure 6.10 — Class model visualisations for the three classes music (a), environmental
noise (b) and music (c). CNN with two convolutional layers (kernel size 8 x 8
with stride 1 x 1), each with consecutive max pooling (pool size 4 x 4 with
stride 2 x 2) and two fully connected layers with 64 and 32 neurons was
trained with 1,728,000 Mel-spectrograms with 128 Mel bands and 100 time
frames, corresponding to 1s of audio.

Convolutional Layer Kernel Visualisation

In a similar fashion, the activations of convolutional layer filters can be visualised,
resulting in images that result in a strong activation for each learned filter kernel.
The input image is iteratively changed to maximise the activation of a convolutional
filter kernel. As stated above, this can help to see whether the training process is
going into the right direction.

Figure 6.11 shows the visualisation of 16 filter kernels of the first convolutional layer
after training for several epochs. Some kernels represent vertical and horizontal
lines of different strengths. As quite a few of the resulting images look very similar
(e.g. filters 5, 6 and 13 or filters 3 and 16), the number of filters can probably be
reduced without a great hit on performance. Also two of the images do not show
any characteristic patterns but random noise (filters 12 and 15). Ideally, all filter
kernels show characteristic, unique and distinct patterns.
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Figure 6.11 — Visualising learned filter kernels of first convolutional layer.
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6.8 Real-time Implementation

In order to demonstrate the capabilities of the proposed CNN classifier, a ‘proof-
of-concept’ real-time classification procedure was implemented.

More specifically, audio data is streamed from the microphone array via a USB
audio-interface ®->and buffered for one second using the pyAudio Toolkit [115].
The buffer is re-written and evaluated 12 times per second, meaning that a new
prediction of class membership is obtained every ~83.33 ms.

D ADC + . FFT + . CNN N prediction
audio buffer ‘| Mel filter bank T classifier score

microphone

Figure 6.12 — Basic signal flow for real-time audio classification.

All audio signal processing is done in Python using the pyAudio Toolkit [115] and
librosa [86]. The classification is done using Keras [116] with Tensorflow [117] as
backend. Figure 6.12 shows the basic signal flow for real-time audio classification.

Figure 6.13 demonstrates the performance of a CNN trained with ‘degraded’ audio
data (see section 6.8 above). The top graph shows the audio waveform for 8
seconds of audio recorded with a far-field microphone array in a domestic environ-
ment. For around 3.5s, music is playing, which results in characteristic horizontal
lines in the Mel-spectrogram (second plot). At around 5s, a male speaker starts
talking, resulting in the characteristic succession of horizontal lines in the lower
spectrum, pauses and transient wide-band noise bursts. In between (3.5s - 5s), a
transient environmental noise event occurs.

The third and fourth plot show the predicted score and a smoothed score respec-
tively. The smoothed score in the lower plot is obtained by averaging the last N = 5
predictions (moving average smoothing).

As can be seen, besides short segments at the transitions from music to environ-
mental noise at around 3s and environmental noise to speech in at around 5s, the
CNN accurately detects music, environmental noise and speech. This indicates
that it might be interesting to include such transitions in the training data in order
to further increase performance. Overall the detection of speech and music using
CNNs was very reliable and responsive.

6.5. MiniDSP USBStreamer, https: // www.minidsp.com/ products/ usb-audio-interface/ usbstreamer
- accessed January 2018


 https://www.minidsp.com/products/usb-audio-interface/usbstreamer

108 Speech, Music and Environmental Noise Classification
L music i env. noise speech 1
I L L 1
0.5 1
(]
o
2
= 00
€
©
—0.5 1
0 1 2 3 4 5 6 7 8
time in seconds
& wa
»n 100
o
c
3 H
o 50 = N 'F
| a8
0 E':.a:'.
7 8
10— e o
—— music
0.751 —=—=-_env. noise
A N A B WY R speech
§ 0.50 A
0.25 A
P
0.00 — - o/
7 8
10—
g —— music
g 0.751 —=—=-_env. noise
E osod N\ S N e speech
g
g 0.25 A
0
0.00 —t e, —
7 8

time in seconds

Figure 6.13 — Demonstration of classification performance on audio data stream. The top

plot shows the audio waveform of a signal recorded with a far-field micro-
phone array in a noisy environment. The class membership is estimated 12
times per second by evaluating the Mel-spectrogram (2nd plot) using a CNN.
The predicted class membership score is shown in the third plot. The last
plot shows the moving average of the predicted score, based on the last
N = 5 predictions.
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6.8.1 Directional Classification

When combining the audio classification algorithm with a beam-forming tech-
nique, different sources of audio surrounding the far-field microphone array can
be detected in real-time. Figure 6.14 shows the basic signal flow of the real-time
classification procedure integrating the beam-forming microphone array.
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Figure 6.14 — microphone array with 7 omni-directional MEMS microphones.

In essence, 7 microphone audio channels are combined to 8 equally spaced beam
channels using a filter-and-sum beam-forming technique. Mel-spectrograms are
then computed for each beam channel. For each beam channel i, the corresponding
a-posteriori probabilities y; are predicted. Finally, the results for all 8 beams are
interpolated to 360 degrees, yielding the output matrix Y, containing the predicted
a-posteriori probabilites ¥, ; = P(a = i, c = j) for each direction @ € {1,2...,360}
and class ¢ = {0, 1,2} ¢5.
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Figure 6.15 — Interpolated directional classification. The estimated a-posteriori probabili-
ties for each class are interpolated to 360 degrees, yielding a predicted class
membership for each direction.

6.6. Linear and cubic interpolation were evaluated, both with promising results.
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In initial tests, up to three different sources could be separated to promising
success, as qualitatively shown in figure 6.15. Separation of sources close to each
other is limited by the directivity of beam channels. Nonetheless, the ‘proof-of-
concept’ implementation suggests that an audio classification algorithm could be
useful for tracking various audio sources (like different speakers) in space, e.g. for
adaptive beam steering.
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7 | Summary

This thesis investigated the application of deep neural nets for audio classification
with special emphasis on the performance in noisy and reverberant environments.
More specifically, convolutional neural nets (CNNs) applied to Mel-spectrograms
were used to discriminate music, speech and environmental noise in different do-
mestic and business environments, outperforming other feature-based classifiers
by a comfortable margin.

In this final chapter, experimental results are briefly summarised and an outlook is
provided for future projects.

7.1 Summary of Experimental Results

Different audio classification algorithms were implemented and compared, in-
cluding traditional feature-based machine learning (ML) algorithms, as well as
state-of-the-art convolutional neural nets. Audio classification was done for au-
dio segments of 1s. All algorithms were first trained and evaluated with ‘clean’
low-noise audio data, resembling broadcast audio.

Both traditional ML algorithms and the investigated deep neural nets performed
admirably for a ‘clean’ test set (with accuracies of up to 98%). However, when
evaluated with a ‘target’ test set, resembling audio data recorded with a far-field
microphone array in different noisy and reverberant locations, traditional feature-
based approaches failed to discriminate speech and music from environmental
noise effectively. CNNs on the other hand, performed quite well, even when trained
with ‘clean’ audio data only (with accuracies of up to 89%).

To overcome the lack of labelled audio data recorded with the investigated far-
field microphone array, the ‘clean’ training dataset was augmented by simulating
the playback and recording in different acoustic environments (see chapter 4.5),
forming the ‘degraded’ training dataset. When trained with ‘degraded’ audio data,
performance for ‘clean’ test data decreased slightly for all classifiers. More in-
terestingly though, performance for the ‘target’ test data improved significantly.
However, performance for the feature-based classifiers was still poor (accuracy of
up to 78%), especially compared to the impressive performance of the deep neural
nets (accuracies of up to 94%).
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Table 7.1 lists the classification accuracies for the different classifiers investi-
gated for this thesis. As can be seen, the CNN outperforms all other classifiers
investigated.

train with ‘clean’ data train with ‘degraded’ data
classifier: || test ‘clean’ | test ‘target’ classifier: || test ‘clean’ | test ‘target’
CNN 98% 89% CNN 95% 94%
SVM 98% 67% SVM 92% 77%
kNN 97% 58% kNN 85% 65%
NB 90% 52% NB 68% 60%

Table 7.1 — Comparing different classifiers trained with ‘clean’ and ‘degraded’ train data and
evaluated with both the ‘clean’ and 'target’ test data. Table lists classification
accuracy in percent.

To demonstrate the algorithm’s capabilities, a prototype real-time system was im-
plemented, that classifies an audio data stream coming from a far-field microphone
array into the categories speech, music and environmental noise. Overlapping
audio clips of 1s are evaluated multiple times per second. As suggested by the re-
sults of offline evaluations, the CNN classifier reliably detected speech and music,
even when the source was several metres away from the microphone array. When
combined with a beam-forming algorithm, audio data from various sources spaced
around the microphone-array could be detected simultaneously with promising
results.

7.2 Conclusion

As has been shown, deep neural nets are incredibly flexible and can be applied
successfully to audio classification tasks. When trained with the right data, they
provide very robust performance even when there is a considerable mismatch
between training and evaluation data.

Deep neural nets learn to extract relevant features from raw input data (in our
case Mel-spectrograms) during training. This means that less expert knowledge
is required compared to traditional feature-based machine learning approaches,
where descriptive audio features are defined based on a-priori domain knowledge.

Compared to simpler machine-learning algorithms, convolutional neural nets are
computationally more demanding. So when computational resources and the
amount of labelled training data are limited, simpler machine learning algorithms
(like support vector machines) might yield a better trade-off between performance
and computational effort.

Especially when acoustic environments are confined and well-known (such as
for in-cabin applications in the automotive sector [26]), traditional feature-based
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machine learning algorithms might yield good-enough performance.

However, due to the wide-spread application in computer vision (e.g. for au-
tonomous driving [118)), a lot of specialised hardware for embedded training and
evaluation of CNNs is actively developed and already available [119], indicating
that computational cost will become less of a problem in the near future. With
the current revival of analogue computing [120], deep neural nets might even find
their way into hearing aids and other applications where space and power are
limited [119,121].

7.3 Outlook

In future work, the CNN model should be optimised for specific applications and
embedded hardware implementations. Depending on the final use case and the
availability of labelled training data, the model could be extended to discriminate
more (sub-)categories.

This thesis evaluates only one specific type of deep learning algorithm, namely
convolutional neural nets. While the results have been promising for applying this
technology to new products in the near future (due to the wide-spread application
in computer vision), other neural net topologies should be investigated as well. In
particular so-called recurrent neural nets (RNNs) should be considered due to their
ability to process time series [45, p.367].

The ‘proof-of-concept’ real-time implementation of the audio classifier already
reliably detects speech and music signals in reverberant and noisy environments.
In future work, it should be investigated how the classification algorithm is affected
by the use of de-noising, echo-cancelling and / or adaptive gain control algorithms.
Also, using some sort of post-processing with regard to previous predictions might
make the prediction more stable and reliable.

In general, deep neural nets require a lot of training data in order to find models
that generalise well. More training data is thus always desirable. In future work,
the training data should be augmented by labelled ‘real-life’ audio data. Based on
the performance gain achieved by using the ‘degraded’ dataset instead of ‘clean’
audio data for training, adding ‘real-life’ data is expected to improve performance
even further. Additionally, non-audio data could be included in the classification
process as well. For example the location or time of day could provide valuable
information.

The main focus of this thesis was on the evaluation of CNNs for audio classification.
Other classification algorithms have been implemented to form a baseline to
compare the CNN against, and were not investigated as thoroughly. In future
work it might thus be interesting to see how a more extensive feature selection
procedure might improve classification in noisy environments.
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