
Roland Urbano, BSc

Design and Implementation of Advanced Honeynet Use Cases
in an Enterprise Environment

to achieve the university degree of

MASTER'S THESIS

 Master's degree programme: Computer Science

submitted to

Graz University of Technology

 Diplom-Ingenieur

Graz, September 2017

Advisor

Ass.Prof. Dipl.-Ing. Dr.techn. Christian Steger
Raphael Otto (Infineon Technologies AG)

Supervisor

Ass.Prof. Dipl.-Ing. Dr.techn. Christian Steger

Institute for Technical Informatics

Affidavit

I declare that I have authored this thesis independently, that I have not used other than
the declared sources/resources, and that I have explicitly indicated all material which
has been quoted either literally or by content from the sources used. The text document
uploaded to TUGRAZonline is identical to the present master‘s thesis.

Graz,

Date Signature

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere
als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen
wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe. Das in
TUGRAZonline hochgeladene Textdokument ist mit der vorliegenden Masterarbeit iden-
tisch.

Graz, am

Datum Unterschrift

ii

Kurzfassung

Über die Jahre hinweg haben sich die unterschiedlichsten Gefahren im Internet verbreitet,
um sowohl Firmennetzwerke als auch private Nutzer anzugreifen. Diese Gefahren können
in Form von Schadsoftware, Denial-of-Service Angriffen und sogar in persistenter Form
auftreten. Während Angreifer neue Wege suchen um in Computer Netzwerke einzudrin-
gen, entwickeln Sicherheitsexperten Werkzeuge um deren Angriffe zu erkennen und zu
verhindern. Ein solches Werkzeug ist ein Honeynet, ein Netzwerk speziell ausgerichtet um
Angreifer anzulocken und mehr über deren Taktiken, Werkzeuge und Vorgehensweisen zu
lernen. In dieser Arbeit wird der aktuelle Stand in Bezug auf Honeynets evaluiert und
fortgeschrittene Fallstudien, basierend auf existierenden Lösungen, werden beschrieben.
In diesem Zusammhang werden Vorlagen erstellt um ein solches Honeynet zu bauen. Mit
der praktischen Realisierung zweier dieser Vorlagen wird deren verbesserte Anwendbarkeit
und deren Vorteil gegenüber traditionellen Honeypots aufgezeigt.

1

Abstract

Over the years the Internet has seen a broad variety of attacks targeting both, commercial
networks and customers using it for day-to-day business. These threats can occur as
malware, denial-of-service attacks, and even in a persistent form. As attackers find new
ways to compromise computer systems, the security community develops tools to detect
and mitigate these attacks. One such a method is a honeynet, a network dedicated to
attract hackers and to learn about their tactics, tools and procedures by monitoring every
interaction. In this work the current state-of-the-art in honeynet systems is evaluated and
advanced honeynet deployment blueprints are designed, based on use cases for enterprise
environments. By implementing two of these blueprints, their applicability, and advantages
over traditional honeypots are outlined.

2

Danksagung

Diese Diplomarbeit wurde 2017 in Zusammenarbeit mit Infineon Technologies Austria AG
in Villach durchgeführt.

Ich danke Raphael Otto, meinem technischen und fachlichen Betreuer bei Infineon für
die Unterstützung bei der Arbeit und den ständigen Input an Informationen und Ideen,
sowie die stundenlangen Diskussionen zu diversen Design- und Umsetzungsentscheidungen.
Außerdem danke ich Ass.Prof. Dipl.-Ing Dr.techn. Christian Steger für die organisatorische
und persönliche Betreuung auf universitärer Seite.

Ich danke meiner Lebensgefährtin Heike und meiner Tochter Lea für die Geduld und
Unterstützung während der intensiven Schreibphase und den wöchentlichen Aufenthalten
in Villach.

Graz, August 2017 Roland Urbano

3

Contents

1 Introduction 8

2 Background 11
2.1 Definitions . 12

2.1.1 Honeypot . 12
2.1.2 Honeynet . 14
2.1.3 Honeytoken . 14

2.2 Considerations . 14
2.3 History . 16
2.4 Related Work . 17

2.4.1 Analysis studies of honeypot software 17
2.4.2 Honeynet implementations . 20

3 Evaluation of Existing Honeynet Implementations 25
3.1 CyberTrap . 26
3.2 Modern Honey Network . 28
3.3 T-Pot . 30
3.4 SURFcert IDS . 31
3.5 Honeywall . 33
3.6 Honeybrid . 34

4 Design 36
4.1 IT Use cases . 37

4.1.1 Web Application Honeynet . 37
4.1.2 Darkspace . 39
4.1.3 Ransomware Detection . 40
4.1.4 APT Detection . 42
4.1.5 APT Monitoring . 44

4.2 OT Use cases . 45
4.2.1 SCADA/ICS Honeynet . 46
4.2.2 Passive Field-Bus Monitoring . 47

4.3 Honeynets & Use cases . 49
4.3.1 IT Use cases . 49
4.3.2 OT Use cases . 50
4.3.3 Design Conclusion . 51

4

5 Implementation 52
5.1 Modern Honey Network . 52

5.1.1 Advantages - Disadvantages . 54
5.2 Development Environment . 55
5.3 Contribution . 57

5.3.1 Ransomware Detection . 57
5.3.2 Advanced Persistent Threat (APT) Detection 61

5.4 Experimental Results . 63
5.4.1 Ransomware Detection Honeypot . 63
5.4.2 APT Detection Honeypot . 64

5.5 Experiences gained . 65
5.5.1 Use Case . 66
5.5.2 Design . 66
5.5.3 Implementation . 67
5.5.4 Analysis . 69

5.6 Identified Threats . 69

6 Conclusion and Future Work 70
6.1 Future Work . 70

A Source Code 72
A.1 Ransomware Detection Honeypot . 72
A.2 APT Detection Honeypot . 76

Literaturverzeichnis 81

5

List of Figures

2.1 Attacks per destination port as observed by Moore et al [MA15] 18
2.2 Schematic network layout used by Sochor et al [SZ15] 19
2.3 HoneyLabs’s architecture consisting of the HLC and the sensor nodes [Chi+09] 21
2.4 HoneyBrid is combined with Netflow analysis and a threat data aggregation

unit [Ber09] . 22
2.5 HoneyBrid’s internal architecture consisting of a gateway, a set of low in-

teraction honeypots and a set of high interaction honeypots [Ber09] 23
2.6 An example setup of a honeywall with Honeywall CDROM and a local

honeynet consisting of three honeypots [Pro05] 24

3.1 MHN modular overview showing the different parts [Anob] 28
3.2 T-Pot by Deutsche Telekom’s Security Team 30
3.3 SURFcert IDS consists of a internal network and the distributed clients . . 32
3.4 Honeybrid’s architecture overview showing the interconnected modules . . . 34

4.1 Network topology scheme for the web application honeynet use case 38
4.2 Network topology scheme for the ransomware and apt detection usecases . . 43
4.3 Industrial Control System (ICS) network toplology scheme with an active

SCADA honeypot . 46
4.4 Network topology scheme for a passive ICS monitor sensor 48

5.1 Modern Honey Network (MHN)’s dashboard with the individual tabs on top. 54
5.2 Network view of the honeynet setup . 56
5.3 MHN’s attack report page showing events of unauthorized access to the

honeypot fileshare . 64
5.4 MHN’s attack report page listing captured pass-the-hash authentication

requests with a honeyhash from user user1 65

6

List of Tables

3.1 Top- and sub-level categories . 26
3.2 Discrete selection criteria listed for each top- and sub-level category 27

4.1 Blueprint section description . 37
4.2 Recommended Honeypots to cover the three core principles of Information

Technologies (IT) security . 45
4.3 Mapping of proposed use cases to honeynet implementations with the de-

gree of support categorized as: supported (
√

), extendable (+) and not
possible (×) . 50

4.4 Mapping of supported T use cases to honeynet solutions. 51

5.1 Data mappings for mnemosyne . 60
5.2 Data mappings for mnemosyne . 63

7

Chapter 1

Introduction

Cyber–attacks on Information Technologies systems have always been a problem to com-
panies around the world. With the rise of the Internet and the fact that more and more, IT
systems are getting connected, cyber–criminals start to reach out for new targets. Today
almost everybody carries a smartphone or a laptop with personal data which represents a
valuable target for these cyber–criminals. The way people communicate and organize their
work has changed, everything seems to be connected to the Internet now. Before these
connected systems became ubiquitous, targeted attacks, and intrusions were reserved to
skilled hackers. Viruses, breaking or rendering the system unusable, were the only threat
for ordinary users on the Internet. Besides of viruses and worms, which spread around
the Internet quite quickly and affected many users, the first encryption malware variants
appeared in the late 80s. These encryption malware variants demanded a small ransom
for the decryption key, but were rather easy to break since cryptography implementations
were not sophisticated enough yet, and used simple symmetric cipher.

Titled the ”first ever ransomware” the PC Cyborg Trojan or AIDS Trojan spread in
1986 via floppy disks handed out to attendees of the World Health Organization’s AIDS
conference [Kno]. Fast forward to the 21st century, with the rise of the Bitcoin crypto–
currency and it’s popularity beyond cyber–criminals, ransomware reached new heights and
dozens of variants appeared. In addition to that, companies and governments are not only
facing criminals, but also sponsored hacker groups and blackhats, hackers with criminal
intentions, who have the knowlege and the skills to break into any system and exfiltrate
confidential data.

Companies and individuals need to be aware of the risks and the implications following
their ubiquitous global interconnections more then ever before. Regularly published statis-
tics by Kaspersky Security Lab1 show that there are dozens of globally acting criminal
groups targeting individuals as well as companies. Groups like Lazarus are especially dan-
gerous, because they stay undetected on the network for a long time. Lazarus, which was

1https://securelist.com

8

CHAPTER 1. INTRODUCTION 9

responsible for the first digital banking heist on the SWIFT network [Kha], has also been
responsible for several other major incidents such as the attack on Sony Pictures [Bau14].

In the last few years a new kind of attack emerged. In late 2015 an attack on an Ukrainian
energy provider cut the electricity in large parts of west Ukraine [EUK16]. This was
possible, because of the ”fourth industrial revolution” (Industry 4.0 − since everything
now needs a number). As a result, more and more Operational Technologiess (OTs), such
as facility networks and ICSs, were connected to traditional IT networks. Unfortunately
these OT systems were never designed to be secure and connected to the Internet. They
are designed to be robust and the software is designed and programmed to run for a
long time without restart. Therefore many of these systems still rely on old technologies
without all of the latest security patches.

With increasing complexity of both local networks and the Internet, there will be even more
motivation for blackhats to break into these systems. They have recourse to a huge digital
black market for stolen user data, information and account credentials. Moreover there
are many black markets available to get undisclosed software vulnerabilities and exploit–
kits for different systems. Because most of these vulnerabilities are traded secretly it is
very unlikely that they are disclosed and patched by the vendors. System administrators
are not only responsible for the latest security patches, they are additionally in charge
of keeping an eye on potential malicious activities within their systems. This advantage
will always enable sponsored hackers to be one step ahead of system administrators. To
overcome their digital advance special systems have been developed to learn the insight of
attacks against the network. It’s a constant arms–race between cyber–criminals exploiting
software vulnerabilities and security experts finding these vulnerabilities and keeping the
production systems secure. Therefore finding vulnerabilities and disclosing them to the
developers has to have top priority for system administrators and security experts.

In addition to firewalls and Intrusion Detection Systems (IDSs), honeypots are tools to
detect undisclosed vulnerabilities and malware being distributed. Among all the available
tools used by security experts, honeypots play an important role in observing malicious
activities with ”fake” production systems. They can be used to detect everything from
full Internet Protocol (IP) range scanning to APT techniques and provide a steady stream
of threat intelligence to the security community and dedicated experts. By analyzing this
threat data, techniques of criminals and hackers can be analyzed, which immediately re-
sults in patches for the exploited vulnerabilities. Today, countless honeypots are deployed
by companies and individuals to collect valuable information on how their systems might
be attacked. Most of them contribute their individual log collection to a shared threat
data set which can be subscribed by software vendors and other security experts.

Today, more and more companies are becoming aware of their need for dedicated threat
intelligence. IDS mostly do not suffice the need for learning how the company might be
attacked. They rely on known signatures and will not detect unknown attack patterns.
Furthermore the signal to noise ratio is far higher with IDSs, because they tend to collect
lots of false positive events. With the right design, honeypots can fill this gap for companies
by detecting if the company is attacked and providing information about these attacks.

CHAPTER 1. INTRODUCTION 10

Honeypots significantly reduce the amount of false positives by design.

With this thesis the state-of-the-art of honeynet management frameworks is analyzed
and enterprise honeypot use cases are designed to build a reliable honeynet inside the
company’s network. It will also provide a guide on implementing and integrating new
custom honeypot sensors with a central honeynet management. The structure of the thesis
will be as follows: Chapter 2 will provide baisc background on honeypots and honeynets.
Chapter 3 will discuss the evaluation of multiple honeynet management frameworks. In
chapter 4 the use cases will be designed and implemented in chapter 5. Chapter 6 will be
a explantaion on how to integrate these use cases with the central management. Lastly
chapter 7 will conclude what can be learned from designing honeynet use cases and their
implementations.

Chapter 2

Background

The concept of using honeypots in enterprise environments is not really new in the infor-
mation security sector, but it has changed radically over the last ten years. From simple
protocol emulating scripts to stealth root-kits and kernel modules, monitoring the op-
erating system itself, a vast amount of different solutions were developed and tested in
research and production environments. In enterprise information systems, honeypots are
commonly used as an additional layer to the company’s information security filling the gap
of conventional firewalls and Intrusion Detection Systems. This additional layer is used
to capture information about “real” attacker actions and to analyze them with further
forensic methods. This information is primarily used to improve detection and defense
methods of the company’s security team. Furthermore new signatures of monitored at-
tacks can be generated and added to the IDS, which automatically will lower the number
of false positive alerts [Pro05]. Because every connection to a honeypot is assumed to
be unauthorized, all interactions provide information about ongoing attacks to the hon-
eynet operator and this gathered information is used to identify tactics, techniques, and
procedures of adversaries on the network.

To integrate a honeynet in an enterprise network it is necessary to understand the princi-
ples behind honeypots and honeynets and learn to select the right products for individual
enterprise needs and environments. Therefore, a definition for honeypot and honeynet is
given and strategic considerations are discussed. Moreover, a brief history of honeypots
and related work will be given at the end of the chapter.

11

CHAPTER 2. BACKGROUND 12

2.1 Definitions

2.1.1 Honeypot

The first use of the term honeypot dates back to Lance Spitzner, who defined honeypots as
follows: “a honeypot is an information system resource whose value lies in unauthorized
or illicit use of that resource“ [Spi]. They have no legit production use [Spi03b] and
are designed to be used in an unauthorized way by attackers. Therefore any interaction
with such a resource is deemed to be malicious [MA15]. This leads to much less, but
high valued traffic since only traffic directly targeting the honeypot is monitored. A
honeypot can either be any arbitrary service or also a full operating system exposed to
the attacker [Gor+11]. Its efficiency is defined as the the amount of incoming connections
observed. To increase efficiency, honeypots may be advertised either locally or publicly
on the Internet. This advertisement should lure possible attackers onto the honeypot to
observe as much about their motivations and background as possible. This leads to a
common goal of gathering as much information about suspicious interactions as possible
and gain knowledge of the attacker’s tactics, techniques, and procedures (TTP).

Honeypots are divided into two main categories: passive sensors, which only passively
observe and monitor incoming traffic; and active sensors, which offer interaction in the
form of network protocols, to the attacker [Ber09]. Passive sensor honeypots could be so
called network telescopes [F+08], darknets or darkspaces. In this work the term darkspace
will be used, since darknet is a common synonym for the Tor1 network and network
telescope refers to one dedicated product. With active sensors the degree of interaction
can vary from zero interaction to full system interaction. Additionally, honeypots can be
further sectioned into low interaction and high interaction honeypots depending on this
degree of interaction and the system layer which is monitored.

Low interaction

A low interaction honeypot offers only very basic interaction to an attacker. These hon-
eypots mostly emulate only initial steps of different protocols, but do not provide further
interaction beyond this initial communication. Emulation in this context means that the
honeypot is bound to specific ports simulating some standard protocol like HTTP2, FTP3

or SSH4. The degree of accuracy significantly affects the deception efficiency, because
insufficient emulation accuracy might cause an attacker to terminate the connection and
leave the honeypot. Since they are lightweight and can be deployed quickly, many different
low interaction honeypots can be used to deceive attackers.

1https://www.torproject.org/
2https://en.wikipedia.org/wiki/Hypertext Transfer Protocol
3https://en.wikipedia.org/wiki/File Transfer Protocol
4https://en.wikipedia.org/wiki/Secure Shell

CHAPTER 2. BACKGROUND 13

High interaction

High interaction honeypots are conventional network resources [Ber09], which do not limit
the degree of interaction by emulating services, but use the full operating system with its
user-applications as a valuable target. Specially crafted surveillance tools are used to mon-
itor every system interaction. This leads to more information than with low interaction
honeypots. With high interaction honeypots it is possible to monitor interactions beyond
the initial communication and observe multi-stage attacks. Furthermore high interaction
honeypots deceive an attacker much longer than low interaction honeypots and as long
as an attacker is attacking the honeypot, the attacks are not directed at the production
system.

Types of Honeypots

Apart from the classification based on the degree of interaction, honeypots can also be
classified with respect to their purpose. Thereby the purpose does not define the class
of attacks, such as web attacks or malware, but the type of deployment and goal the
honeypot serves.

Research Honeypots are designed to collect information about all kinds of attacks hit-
ting the honeypot regardless of the severity and origin. They collect statistics of blackhat
activity and their attacks, but do not add direct value to the organization [SSY05]. As
research resources these honeypots learn general information about threats computer net-
works may face and provide this information to help organizations securing their networks
against such threats. Their goal is to study attacks and the blackhat community’s mo-
tivations to learn their objectives, behavior and methods [SPP]. Research honeypots are
complex systems which need more effort in maintenance since they collect huge amounts
of data about many different attacks. In many cases research honeypots are operated by
universities or other security research facilities.

Production Honeypots on the other hand, have a lower the risk of compromise and
collect more specific attack data by simulating a true production system using structures
and data that are parallel the real system [Swe03]. Their goal is not to observe automated
attacks and scans, but to detect targeted attacks on the company’s “crown jewels”. Most
production honeypots are deployed on local networks to detect intruders already on the in-
side of other security mechanisms and who are looking for sensitive information. To reduce
maintenance costs and effort, low interaction honeypots are commonly used as production
honeypots. Operators of production honeypots expect to be provided with information
about relevant attacks only and can neglect everything without directly endangering the
company’s values.

CHAPTER 2. BACKGROUND 14

2.1.2 Honeynet

In advance to a honeypot, a honeynet is not only a single decoy resource, but a network of
such resources. Furthermore, this network can consist of any arbitrary type of system such
as honeypots or networking hardware and might provide a threat intelligence interface to
the system administrator. Most honeynets nowadays indeed contain such a management
interface to visualize reported events and to deploy new honeypots. Practical examples for
such an interface could be a custom web interface or a integration with data visualization
tools based on the elastic stack 5. In fact the plausibility of such a network can be greatly
increased if it consists not only of honeypots but also of standard production systems [KK].
Honeynets scale much better than honeypots with respect to large company networks and
if virtual, literally dozens of honeypots can be deployed on a single physical machine.

2.1.3 Honeytoken

A honeytoken is a very unspecific resource which can be seen as the complemented part of a
honeypot. They share the same concepts and similar to a honeypot, every interaction with
a honeytoken is of malicious purpose [STI03]. While a honeypot can be seen as a computer,
server or physical resource, a honeytoken is everything digital which fulfills the same
purpose like digital data or breadcrumbs leading to a honeypot. Defined as a digital entity,
a honeytoken can be a credit card number [Spi03a], authentication credentials, emails,
documents and even database entries. Because of this flexibility to adapt honeytokens to
every environment, they can be used in many different contexts where honeypots would
fail. They solely serve as a resource to mislead the attacker and lure him to the honeypot.
This can also be seen as honeypot advertising, which aims to increase the range of the
honeypot and attract hackers more than the real production system. Although their value
seems to be rather small, honeytokens can be used to detect targeted attacks and advanced
persistent threats.

2.2 Considerations

Before starting to deploy a honeynet, some strategic considerations should be made. The
following considerations can help to determine the right honeypot types, the right hardware
and the location of deployment: It’s crucial for the effectiveness of a honeypot to look like
a real system and not to reveal it’s purpose to an attacker. An insufficient deception or
incomplete emulation may reveal the honeypot to a skilled attacker who will immediately
leave the network or, worse, compromise the host system and network. With the goal to
learn about the attacker’s tools, tactics and procedures, the main focus must be keeping
the intruder connected to the honeypot for as long as possible. Every interaction with the
honeypot helps to learn how to defend the real production system from being compromised.

5https://www.elastic.co/

CHAPTER 2. BACKGROUND 15

To select the best fitting honeynet product it is necessary to define the core requirements
of the honeynet, like how statistics are provided to the honeypot operator. The data might
be accessable using a dedicated web interface with different kind of visualizations. Or a
commandline interface can be provided to forward the collected data to the company’s
Security Information and Event Management (SIEM) system. In case of requiring a ded-
icated web interface, functionality to deploy honeypots directly and monitor their status
might be useful. Also different kinds of attack statistics can be displayed on the web inter-
face to show activity on the honeynet. On the other hand, a dedicated web interface also
introduces additional management overhead by requiring additional server infrastructure
and maintenance. Without the web interface, a command line interface can provide basic
management functionality such as deployment and event data forwarding, but reduces the
usability and increases the amount of required knowledge for the honeynet operator.

Besides the central management server, the modularity and flexibility of the honeynet
should be considered. Some products are very flexible and modular, so customizations
and module extensions are possible. Other ones which are difficult to customize, do not
need to be built and installed from source. Most of these products come with a pre-built
system image which can be installed either virtually or on a dedicated server directly, but
any sort of customization would require rebuilding of the system image of the product
and reinstalling it to the server. Furthermore, a good modular design of the honeynet
enables the operator to replace specific modules with company specific ones; e.g. replacing
the the communication module that collects data from the distributed honeypots with a
publishsubscribe protocol like hpfeeds 6.

A flexible solution can also be integrated more easily in existing SIEM systems within the
company’s information security department. Having threat data from deployed honeypots
available in the SIEM system enables the company’s CERT team to learn about targeted
attacks against the company and prepare necessary incident recovery tools. Thereby, the
value of honeypots in detecting new, unknown exploits plays an important role to extend
the abilities of an existing IDS. It is not enough to have either a honeypot or an IDS, but
the combination is the best option since both complement each other.

It is also worth considering the blocking of outgoing traffic from the honeynet to prevent
attackers to misuse the honeypot for further attacks on remote computers on the Internet
or the local network. Blocking this potentially malicious traffic does not directly increase
the security, but lowers the risk that attackers can spread their exploit from the honeypot
on. Unfortunately this also stops malware from connecting back to a command and
control center and therefore the amount of data collected about the malware is significantly
decreased.

When deploying a honeypot inside the honeynet, the limited emulation possibilities of
low interaction honeypots have to be kept in mind. They are more common and can be
deployed easier, but do not collect as much information as high interaction honeypots. In
cases where a high interaction honeypot is required it is necessary to have the possibility

6https://redmine.honeynet.org/projects/hpfeeds/wiki

CHAPTER 2. BACKGROUND 16

to revert the system to its original state immediately to prevent further spreading of the
attack. If the company is more interested in malware and automated attacks low interac-
tion honeypots should be enough. For targeted and multi-stage attacks high interaction
honeypots are required to observe the attacker’s actions on the system for some time pe-
riod. Additional honeytokens can be used to make up an efficient honeynet. Another
consideration should be made regarding the scalability of the honeynet. Low interaction
honeypots usually scale a lot better since they mostly require zero maintenance. With
enough resources, distributed deployment of honeypots can help to increase the range
of attacks observed on the honeynet, but requires a centralized management interface to
collect all the data reported from the honeypots.

2.3 History

The first documented story of tracking an intruder is about Clifford Stoll [Sto89], an
astrophysicist who worked as a system administrator at Lawrence Berkeley National Lab-
oratory. In 1986, Clifford observed discrepancy in the computer time billing system.
Only 75-cent were enough for him to carefully review system log files and set up network
monitoring to detect suspicious traffic. Thereby, he found a hacker accessing the system
remotely to search for files containing confidential information like military documents. To
decoy the hacker and increase the time to monitor his activity, Clifford created fake, but
legit looking documents for him to find. In collaboration with the FBI and after months
of observation they identified the intruder as a German citizen, selling the information to
foreign intelligence agencies.

Another use of a honeypot as a system to attract and lure attackers to learn about their
techniques and to examine their tools by researchers was published by Bill Cheswick
in, An Evening with Berferd [Che]. Cheswick not only tracked the intruder and logged
his activity, but also emulated an operating system, together with a variety of services,
manually to deceive him. Cheswick concluded that his chroot jail wasn’t worth the effort
since it was hard to get it right, and never quite secure [Che].

Following these first pioneers, honeypots gained more attention with the rise of the Hon-
eynet Project7 in 1999. The Honeynet Project was founded by Lance Spitzner with the
goal to improve the security of the Internet in three ways: increasing awareness of security
threats, providing details about securing and defending system resources and data, and
providing the necessary tools for further research and development [Pro04]. Since then,
various different honeypots and tools have been developed by the Honeynet Project. Hon-
eywall 8, Glastopf [VKM10], Conpot 9, Cuckoo 10 and Dionaea 11 are just a short excerpt
from a long list of tools.

7http://honeynet.org
8https://projects.honeynet.org/honeywall/
9http://conpot.org/

10https://cuckoosandbox.org/
11https://www.edgis- security.org/honeypot/dionaea/

CHAPTER 2. BACKGROUND 17

Lately a new focus on the Internet of Things (IoT) has emerged with more and more
systems being connected. With botnets like Mirai, Stuxnet [Che10] and others attack-
ing vulnerabilities in embedded devices, the need for security mechanisms to detect new
attacks has grown significantly.

2.4 Related Work

2.4.1 Analysis studies of honeypot software

There are many different studies evaluating honeypot software with different levels of
detail. Moore et al. [MA15] performed an analysis of different honeypot systems to identify
an appropriate product for further threat data analysis. The selection of honeypot systems
they evaluated covered both Linux and Windows based systems such as:

• BackOfficer Friendly

• HoneyBot

• Nepenthes

• Dionaea

• Kippo

Through the evaluation, which loosely focused on the simplicity and the reported infor-
mation, they decided to run an instance of Dionaea deployed with the MHN for a research
period. The experimental system was set up on an Ubuntu 12.04 VMware workstation
virtual appliance and connected to a network arm of the Demilitarized Zone (DMZ). To
collect incoming traffic it was given a public IP address. The collected threat data and
malware samples were exported from the MHN server via FTP to another workstation
where they used the R statistical programming language 12 to analyze it. They used R-
scripts to analyze the source IP of attacks, the destination port and the corresponding
timestamp. Figure 2.1 shows the different attacked destination ports with the amount of
attacks per port. They explained the high amount of attacks on port 5060 with an sus-
tained attack on the Session Initiation Protocol (SIP) which handles Voice-over-IP. They
concluded that any system with a public IP needs dedicated security mechanisms and
honeypots can be a great source for identifying potential risks for the network operator.

Another study conducted by Mokube et al. [MA07] who examined different honeypot
solutions and described their concepts, approaches to implementations and challenges.
At first the paper gives a good introduction to the topic and explains the differences
of low, medium and high-interaction honeypots, as well as honeytokens. They describe

12https://en.wikipedia.org/wiki/R (programming language)

CHAPTER 2. BACKGROUND 18

Figure 2.1: Attacks per destination port as observed by Moore et al [MA15]

honeytokens as a simple and flexible tool similar to a honeypot which ensures the detection
of unauthorized access to a file or a database. Their main contribution lies in their
discussion of honeypot concepts and approaches to honeypot implementation. According
to their work the following questions should be answered to determine the concept and
strategy for the implementation of a new honeypot:

• What kind of data should be made available through the honeypot?

• How do you prevent uplink liability?

• To build or not to build?

• Where is the best location for your honeypot?

In addition to the aforementioned discussion of concepts and approaches Mokube et al.
comment on the legal pitfalls when deploying and using a honeypot. They count three
major legal issues which must be addressed when deploying a honeypot. The first issue,
Entrapment, is not of any concern to private honeypot operators as it requires an in-
volvement of the government. The second issue has to be considered with more care as
it is about Privacy. Mokube et al. argued that although a network operator has the
responsibility to keep the network secure, there are some limitations to network monitor
such as federal statutes, privacy policies or terms of service agreements. Last but not
least, Liability is of concern for the operator, because a compromised system could be
used by the attacker to attack others. Therefore they recommend to come up with a good
strategy and goals before setting up the system.

A more recent and practical study on the attractiveness of honeypots was published by
Sochor et al. [SZ15] in 2015. The study aimed to evaluate the attractiveness of honeypots

CHAPTER 2. BACKGROUND 19

Figure 2.2: Schematic network layout used by Sochor et al [SZ15]

with respect to the underlying network. In the work they compared honeypots deployed
on the Czech academic network CESNET and the Slovak academic network SANET ver-
sus honeypots deployed on commercial private hosting networks. They analyzed data
obtained from a honeynet consisting of three low interaction honeypots: Dionaea, Kippo
and Glastopf. The honeynet itself was composed of four servers with all low interaction
honeypots implemented. Dionaea was configured to emulate SMB, MySQL MSSQL and
FTP on well known ports. Kippo, a SSH honeypot, emulated the SSH protocol on stan-
dard port 22 and non-standard port 2222. Glastopf used ports 80 and 8080 to serve web
content. The first server, connected into the Czech academic network CESNET, got no
Internet domain assigned to its IP address. The second server was connected into the
Slovak academic network SANET and got no Internet domain assigned neither. The third
server used a commercial private hosting in the Czech Republic and its IP address be-
longed to the “grayzone” (eg. adult content) of the Internet. The fourth server was also
connected to a commercial VPS hosting in the Czech Republic, but wasn’t available to
adult contents. In contrast to the first three servers, the last used port 2222. The overall
schematic structure is also highlighted in figure 2.2.

Sochor et al. further performed a detailed analysis on the gathered information and
statistics. They compared the different servers with respect to the attacked ports and
classified attacks according to the emulated service. In the end they concluded, that
attackers distinguish between sensors according to their IP. It’s relevant to them weather
an IP address belongs to a range of interest to them, an what services are associated
with this address range. Further, the security mechanisms used have an influence on
the attractiveness for attackers. As future work the author propose to focus on SCADA
honeynets and their attractiveness.

Mairh et al. [Mai+11] reviewed advances in honeypot strategies, applications and de-

CHAPTER 2. BACKGROUND 20

ployment. With their study they evaluated proposed aspects and tactics with honeypot
applications and deployments in different environments. Apart from the classical educa-
tional and reseach applications, they discuss combinations with IDS and hybrid solutions.
Both are not new, but Mairh et al. provide some good detail on the purpose and the
strategy used with both deployments.

2.4.2 Honeynet implementations

A key constraint in honeypot-based attack detection is the need for large-scale deployment,
as timely detection is strongly dependent on a large number of honeypot sensors spread
over different location on the Internet [Chi+09]. Even though honeypots are a valuable
security resource not every company can afford to devote resources for deploying a large
scale honeynet. Chin et al [Chi+09]. proposed a novel approach to share infrastructure
for deploying and monitoring honeypots on a distributed base. With their HoneyLab
project the authors present an architecture and implementation of this approach which
is designed to increase coverage and accelerate innovation among security researchers and
security industry experts. Figure 2.3 highlights the overall architecture with the individual
parts. The system was designed with focus on scalability, flexibility and ease of use. It
should scale easily up to a large number of deployments and it should be flexible enough
to run any arbitrary honeypot configuration. It should also be easy to use for researchers
without any configuration overhead and deployment steps. Additionally, a compromised
honeypot should not be able to affect any other honeypot in an malicious way.

The proposed system is built around a central HoneyLab Central (HLC) server and multi-
ple distributed sensor nodes. The HLC manages the users and available resources, as well
as the web interface where resources can be purchased. The sensor nodes are deployed on
Xen servers and can either host only the sensor software, or both sensor software and hon-
eypot software. Each honeypot can be deployed dynamically and is executed in a virtual
machine (VM). To collect traffic from sensor-only nodes, the client is provided with a VPN
server address and the traffic is redirected from the distributed sensor to the client-side
honeypot. Due to obvious performance and scalability issues, Chin et al. recommend
to host the honeypot on the same node as the sensor software. To ensure isolation, a
XenoServer platform is used which allows to manage and deploy Virtual Machines across
a large server infrastructure. The XenoServers enable users to manage and organize their
deployments and keep track of used resources which are relevant for billing. To ensure
that client honeypots cannot be used as part in a botnet or to attack external resources,
HoneyLab imposes traffic restrictions to outgoing traffic of these honeypots. By default
all outgoing connections, except connections back to the probing host, are denied. The
main advantage of HoneyLab over other honeynet implementations is it’s collaborative
resource sharing and simplicity in requesting resources for new honeypots. Clients with
specific interest in only a small set of ports can share their IPs with other clients. More-
over, clients can share their complete traces captured with the honeypot with other parties
which analyse these traces.

CHAPTER 2. BACKGROUND 21

Figure 2.3: HoneyLabs’s architecture consisting of the HLC and the sensor nodes [Chi+09]

Unlike others, HoneyLab allows security firms and security researchers to deploy their own
honeypot services, instrumentation code and detection algorithms, dispensing the need for
setting up a separate honeypot infrastructure whenever a new attack detection method
needs to be deployed or tested. At a high-level the authors envision their service oriented
architecture to be much like PlanetLab13, an open plattform for planetary-scale services.

According to Berthier [Ber09] malicious network activity can be categorized by two distinct
approaches: 1) monitoring production network which contain live hosts, actually used by
clients, and 2) monitoring an unset address space. The second approach profits from
non-existing production traffic and therefore no traffic filter needs to be applied. Tools
used in these approaches are of the active and passive kind. Active tools, which are
honeypots, are defined as network devices “that provide a mechanism for completing
network connections not normally provided on a system and logging those connection
attempts”. Passive tools such as IDS are used to monitor unused address ranges and are
also known as zero interaction honeypots. Berthier organized honeypots according to three
main categories: Fidelity, Scalability and Security. Whereas the fidelity of a honeypot
determines its level of interaction itself, scalability and security describe implementation
details and the attributes of honeypots. The overall goal of this work was to build an
advanced honeypot system which integrates with existing security tools and to deploy it
at the University of Maryland to improve the quantification of malicious activity on the
network.

The advanced honeypot system provided with this work, called HoneyBrid, is a hybrid
honeynet which can be configured dynamically by combining network flows with autmated
honeypot management. Figure 2.4 shows how Honeybrid integrates with the network and
network flow analysis. The final system combines not only the honeynet Honeybrid, but
also netflow analysis and a data classification engine. Nevertheless, the most interesting
part is the design of Honeybrid itself, as this system combines low and high interaction
honeypots and is able to redirect traffic from the low to the high interaction honeypots.

13https://www.planet-lab.org/

CHAPTER 2. BACKGROUND 22

Figure 2.4: HoneyBrid is combined with Netflow analysis and a threat data aggregation
unit [Ber09]

Inside HoneyBrid two distinct engines handle incoming traffic. First every packet is viewed
by the decision engine which performs active filtering. Second the redirection engine
handles the redirection of filtered packets to the high interaction honeypots. The idea is
to combine the scalability of low interaction honeypots with the detection capabilities of
high interaction honeypots. A large set of IPs is monitored with low interaction honeypots,
such as honeyd or dionaea. These honeypots are used to cover as much attack surface
as possible and if an interesting attack is detected the redirection engine is in charge of
transparently redirecting the traffic to the high interaction honeypots. This architecture
enables the operator to specify multiple parameters which define an “interesting” attack for
further investigation. The role of the high-interaction honeypots is to offer full interaction
to the attacker, in order to record detailed information about the attack process that was
flagged as interesting. In figure 2.5 HoneyBrid’s internal engines are visualized on a high
level.

Another approach to build a honeynet was published as part of the Honeynet Projects
Know Your Enemy [Pro05] whitepaper series and describes a centralized approach to
deploy honeypots behind a firewall. This firewall, also called honeywall, is equipped with
network level monitoring and firewall rules to monitor incoming and block outgoing traffic.
It is also the key element of the honeynet, because it separates the honeynet from the rest
of the Internet and ensures that no honeypot is used to attack other victims. A feature–
rich implementation of such a firewall is provided by the Honeynet Project under the
name Honeywall CDROM. It implements all the tools and techniques required by such a
firewall. Since all traffic incoming and outgoing has to pass the honeywall, it’s the critical
point for threat data aggregation and logging. Figure 2.6 provides an example setup for
a honeynet featuring a honeywall as command and control center. The honeywall acts

CHAPTER 2. BACKGROUND 23

Figure 2.5: HoneyBrid’s internal architecture consisting of a gateway, a set of low inter-
action honeypots and a set of high interaction honeypots [Ber09]

as a layer two bridge with at least three interfaces. The first (eth0) is connected to the
production network, the second (eth1) is connected to the honeynet’s system network. A
third interface is also required as management interface to setup the honeywall and remote
administration. Any honeynet is required to implement Data Control and Data Capture.
Data Control describes the ability to control incoming and outgoing traffic in a way that
no honeypot can be used in an adversary way. It does not eliminate, but reduces the risk
since one of the questions the operator has to answer is how much outbound activity is
controllable? The more activity allowed to the attacker, the more can be learned, but
also the more harm they can potentially cause. Honeywall CDROM implements multiple
features, such as IDS and connection limiting to ensure Data Control. Having Data Control
implemented, Data Capture can be added to collect information about incoming attacks.
The purpose of Data Capture is to log all of the attacker’s activity. This is the whole
purpose of the honeynet, to collect information. The key is to collect data on different
levels. Source IP, destination IP and related ports on the TCP/IP protocol level are a
good starting point, but for advanced learning, application data needs to be collected
too. Differing on the amount and the type of honeypots deployed the honeynet might be
able to log firewall, network and system level data. The last one is highly important to
learn, because if provides information about attackers interaction with the honeypots and
possible unknown attacks. With the rise of encrypted protocol channels such as SSH it
isn’t enough to capture the data on the honeywall only. Each honeypot on the honeynet
has to contribute logs to the overall data collection. The last feature recommended by
the Honeynet Project is Alerting. The authors recommend to either use a round-the-
clock monitoring staff or, if not affordable, an automated monitoring tool. Such a tool
should be able to report via email or similar to the operator with a overview of successful
attacks. But overall, constant supervision is required by every honeynet. With this work
the Honeynet Project provided the security community with guidance on how to setup
an advanced honeynet and the authors commented on the key elements on such systems
which need to be taken into account.

CHAPTER 2. BACKGROUND 24

Figure 2.6: An example setup of a honeywall with Honeywall CDROM and a local hon-
eynet consisting of three honeypots [Pro05]

Chapter 3

Evaluation of Existing Honeynet
Implementations

Prior to the evaluation some minimum requirements, which need to be satisfied for fur-
ther consideration, were defined. These minimum requirements contain the possibility
to integrate the honeynet with an existing SIEM system, the distribution property and
the support for modern state-of-the-art honeypots. To analyze state-of-the-art honeynet
products, a market research was conducted where multiple honeynet products were evalu-
ated and compared on a uniform basis. The evaluation period lasted from November 2016
to January 2017 and only previous releases were included in the results. Furthermore,
the existence of many “research-only” solutions, which are either not feature complete or
do not meet the minimum requirements to be used in an production system, draw the
focus to just a couple of production-ready systems. Out of these products a selection of
six possible candidates which represented the broadest variety of different solutions were
chosen, because a fully detailed evaluation of all would have exceeded the limits of this
thesis.

As a frame for the evaluation three top-level categories were chosen: 1) Architecture; 2)
Integration; 3) Information collection. Each top-level category was further split in two
to three sub-categories. in Table 3.1 all sub-level categories are listed according to their
top-level category. To get a consistent grading several predefined criteria determined the
points for each sub-level category. The criteria are designed to be very specific on different
aspects and a 0/2/4 points grading scale was used to assign points to each criterion. 0
points indicated that the criterion could not be satisfied, 2 points were given if the criterion
is partially satisfied, but additional effort is needed or minor parts were missing. To a fully
satisfied criterion 4 points were assigned. Table 3.2 lists the criteria for each sub-level
category.

The evaluation of six selected candidates is now described in detail. Focusing on the top
level categories each candidate will be sectioned in three parts: Architecture, Integration,

25

CHAPTER 3. EVALUATION OF EXISTING HONEYNET IMPLEMENTATIONS 26

Architecture Central Management

Design

Distribution

Integration Infrastructure

Deployment &
Maintenance

Project Support

Information Collection Honeypots

Threat Intelligence

Table 3.1: Top- and sub-level categories

Information Collection; each part will give a brief summary of the criteria.

3.1 CyberTrap

CyberTrap is a commercial product from SEC Consult1 security company, which they
offer either as a product to be used and maintained by the customer himself or as a
service maintained by SEC Consult. Either way, the system is integrated in the customer’s
network infrastructure.

Architecture

The architecture of CyberTrap is straightforward. It is a high interaction honeypot fea-
turing a variety of deception techniques. It can convert a client computer or a server to a
honeypot. It also features a web interface accessible for the operator where logged events
can be analyzed. If the operator wants to deploy multiple instances of CyberTrap through
the network, then it needs to be done manually because CyberTrap does not offer a remote
deployment option on a central server.

Integration

Since CyberTrap is only available for Microsoft Windows, it requires a Windows standard
client or server on a dedicated hardware or in a virtual machine to be setup. The advantage
CyberTrap has, with respect to maintenance is that it does not need to be maintained
by the operator, but can be maintained and updated by SEC Consult as a service. This
reduces the maintenance work load for the operator and ensures that CyberTrap is always
up-to-date with the latest features and updates. Through evaluation of CyberTrap it was
found to be quite difficult to lure attackers to the honeypot if it is facing the internet on
a DMZ, because a lot of advertisement of the honeypot’s IP address is needed.

1https://www.sec-consult.com/index.html

CHAPTER 3. EVALUATION OF EXISTING HONEYNET IMPLEMENTATIONS 27

Central
Management web interface is a webinterface provided

commandline interface is a commandline interface provided

central honeypot deployment can honeypots be deployed from the central management

deployment what is the effort to deploy the system

online IDS rulset are IDS rules online and can they be selectively activated

Design modular is the software moduar designed

exchange moduls can moduls be exchanged

add moduls can we add new moduls like honeypots

extend moduls can we modify or extend single moduls

extendability can we extend the system itself to support more moduls

Distribution distributed deployment is the honeynet designed with distributed honeypots

distribution paradigm how is the software distributed

automated distributed deployment is the deployment automated

distributed honeypots are the honeypots distributed

distributed proxies are proxies ditributed, but honeypots local

Infrastructure virtualization supported does the system work in a virtualized environment

addition Hardware required is hardware required to setup the system

gateway is the system working as a gateway

firewall required is a firewall required for the honeynet

host OS requirments are there OS requirements

Deployment &
Maintenance deploy using virtualization honeypot deployable in VMs

deploy using container honeypots deployable in docker-container

scripted deployment are scripts provided for deployment

provided by package manager can honeypots be installed from package manager

build from source need to build honeypots from source

easy to maintain does it cost a lot of maintenance effort

easy to revert honeypot can the honeypots be reverted easily

easy to redeploy can we revert and redeploy the system easily

Project
Support active development is the product under active development

active maintenance is the product actively maintained by the developers

recent contributions
was there contribution to the product during

the last 6 months

quality of documentation what’s the size and quality of the documentation

license under which license is the product developed

Honeypots modern honeypots supported are state-of-the-art honeypots supported

high interaction honeypots are high interaction honeypots supported

medium interaction honeypots are medium interaction honeypots supported

low interaction honeypots are low interaction honeypots supported

web application honeypots are web application honeypots supported

ICS honeypots are Industrial Control System honeypots supported

Threat
Intelligence automatic threat data acquisition is the threat data collected automatically

application layer data is application layer threat data provided

network layer data is network layer threat data provided

OS layer data is operating system layer threat data provided

IDS supported are IDSs integrated or supported

SIEM integration
can the threat data be forwarded

to a Security Information and Event Management system

Table 3.2: Discrete selection criteria listed for each top- and sub-level category

CHAPTER 3. EVALUATION OF EXISTING HONEYNET IMPLEMENTATIONS 28

Figure 3.1: MHN modular overview showing the different parts [Anob]

Information Collection

Even though CyberTrap can be seen as a traditional honeynet when deployed distributed
or locally as a honeyfarm, it does not support any state-of-the-art honeypots. To deploy,
e.g. a web application honeypot with CyberTrap, the operator has to configure the host
operating system to act like a web server hosting a web application. On the other hand,
the rootkit used to convert the client to a honeypot gives highly detailed logs on an
operating system level where attackers can be observed quite well. With support for
syslog 2 forwarding, SIEM integration is not a problem.

3.2 Modern Honey Network

Developed by Anomali 3 for their threat intelligence platform, the MHN is a state-of-the-
art honeynet solution. Anomali defines it an enterprise-grade [Anoa] honeypot manage-
ment system with fast honeypot deployment and a central management unit.

Architecture

The MHN consists of two independent parts: the MHN server and remote honeypot
sensor nodes. The server is responsible for data collection, control and presentation.

2https://en.wikipedia.org/wiki/Syslog
3https://www.anomali.com

CHAPTER 3. EVALUATION OF EXISTING HONEYNET IMPLEMENTATIONS 29

The honeypots can be located locally on the same server, on the same network or even
distributed over the Internet. The only requirement is that they are able to send the
data to the central server. The threat data is collected from incoming attacks and send
to the central management server via the hpfeeds4 protocol. Since the deployment of
honeypots has to be done manually, SSH 5 can be used to connect to each sensor node for
deployment of new honeypots or update existing ones. To deploy a new honeypot bash
scripts are available on the MHN management server for most of the typical honeypots.
New custom deployment scripts can be added to support new honeypot products. These
scripts must be added before the server is installed. Additionally, the provided REST-API
can be used to attach specialized analysis and data processing modules to the honeynet
or to extract the raw data from the database. Only the ability to automatically deploy
honeypots remotely over the network is missing at the central server. A normalization of
the collected data is listed on the web interface together with some statistics about past
and current attacks. It also features a threat map where source IPs are marked according
to their geoIP resolution.

Integration

The official recommendation for the host operating system from Anomali is a Debian based
Ubuntu 14.04 or CentOS 6.7. Both can also be used inside a virtual environment without
any additional hardware. 2 network interfaces are further recommended on the honeypots,
because one should be used for external connections, and one for internal maintenance by
the operator. To ensure data control, which is the concern of protecting non-honeynet
systems that an attacker might target from a compromised honeypot [GKO05], a good
firewall setup and network separation are required anyway. The MHN can be used in
many different setups and is quite flexible with respect to the underlying network, but
nevertheless a DMZ is probably the simplest setup to ensure security and deception to-
gether. The general installation process of the honeynet is rather easy since everything
is automated with bash scripts. It also adds support for ELK stack and SPLUNK 6, as
well as email notifications for the operator. The advantage of a virtual setup arise when
reverting the honeypots back to a clean state after a compromise. To simplify the process
of installing the honeynet, the community has created extension to deploy it using docker
and or ansible playbooks. In general, the support from the community is good and issues
are addressed quite fast, but without a commercial product the maintenance is in the
responsibility of each operator.

Information Collection

Due to the active community and the interest in the honeynet many state-of-the-art hon-
eypots, including Glastopf 7, Kippo 8, Dionaea or Conpot, are already supported by the

4https://github.com/rep/hpfeeds
5https://en.wikipedia.org/wiki/Secure Shell
6https://www.splunk.com/
7https://github.com/mushorg/glastopf
8https://github.com/disaster/kippo

CHAPTER 3. EVALUATION OF EXISTING HONEYNET IMPLEMENTATIONS 30

Figure 3.2: T-Pot by Deutsche Telekom’s Security Team

MHN. However, the MHN does not support high interaction honeypots such as Argos 9

yet, and therefore no operating system level attack data is collected. Aside from operating
system level data, network and application level threat information is collected and stored
in a database on the central server. Lastly, the SIEM integration, which is one of the
minimal requirements on the evaluation, can be achieved with the MHN by either, using
already provided scripts for ArcSight and Splunk, or extending the existing hpfeeds-logger
module to support further SIEM systems.

3.3 T-Pot

Developed by the security team of ”Deutsche Telekom”, T-Pot is an enhanced multi-
honeypot platform. The intention behind T-Pot was to build a platform easy to deploy
and simple to maintain, which can be used in home networks as well as in large corporal
networks and where people are motivated to contribute to security research [Deu15].

Architecture

9https://github.com/rvermeulen/argos

CHAPTER 3. EVALUATION OF EXISTING HONEYNET IMPLEMENTATIONS 31

T-Pot comes as a fully loaded operating system image bundled with many different well-
established honeypots and a web application using ELK 10 - Elasticsearch, Logstash,
Kibana - for data visualization. Since T-Pot is designed as a multi-honeypot platform
including management and honeypots, out of the box it cannot distribute honeypots across
the network with a centralized management server. Luckily CyberPoint, a north American
security company, adapted T-Pot to be able to distribute honeypot nodes and gather all the
data on one server. The utilization of open source tools for different parts of the honeynet
simplifies the customization and extendability of the overall system. The honeypots are
further deployed using Docker 11 container and the data is visualized on the Kibana web
interface.

Integration

To integrate T-Pot in an existing network only a dedicated or virtual server is required to
deploy it. The only maintenance required is the redeployment of honeypot container in
case of a compromise, but since there are no high interaction honeypots it’s very unlikely
to happen often. Also the redeployment is made very easy through a custom-developed
container management system on the web interface. Similar to the Modern Honey Network
T-Pot is developed by a company for their own use and therefore gets regular updates
and new features. Additional contributions from the community regarding new tools or
honeypots to integrate are also merged by this core developer team.

Information Collection

Currently the most important open source honeypots are already integrated with the hon-
eynet. Additional dockerized honeypots can easily be added, but additional configuration
of the ELK stack is required to visualize the logged data. The standard setup of T-Pot
monitors both application level and network level threat information from honeypots and
IDS. By default the collected data is submitted to the “Sicherheitstacho” 12. Unfortu-
nately there is no direct option to integrate T-Pot with any existing SIEM system, but
with support for syslog this can be implemented straight forward.

3.4 SURFcert IDS

SURFcert IDS, the successor of SURFids, is an open source Distributed Intrusion Detec-
tion System based on passive sensors 13. It’s a centralized approach to gather data from
distributed sensors which forward incoming traffic to the central server.

Architecture
10ELK
11https://www.docker.com/
12http://www.sicherheitstacho.eu/
13ids.surfnet.nl

CHAPTER 3. EVALUATION OF EXISTING HONEYNET IMPLEMENTATIONS 32

Figure 3.3: SURFcert IDS consists of a internal network and the distributed clients

Compared to the MHN SURFcert IDS does not really distribute the honeypots, but sensor
nodes redirecting traffic through a layer-2 VPN tunnel to a centralized tunnel server and
further to the local honeypot farm (honeyfarm). For the VPN tunnel OpenVPN 14 is used
on the tunnel server and it can also run a loadbalancer for higher amount of traffic to
one specific honeypot type. Locally connected to the tunnel server and the honeyfarm a
logging server with a web interface and a database are installed which collect the threat
data and visualize it for the operator.

Integration

SURFcert IDS also ships with a pre-build operating system images to be easy to deploy
and maintain. During deployment the logging server, the tunnel server with the honeyfarm
and sensor nodes are setup. Both servers can be configured with the official system images
and the sensors can be converted using tools from a custom package repository. Although
it’s not maintained anymore by the developer, the official website features a considerably
large and detailed documentation and installation guide.

Information Collection

Supported honeypots are Nepenthes and Dionaea, Kippo and Argos, a high interaction
honeypot. It does not support cutting-edge honeypots like SNARE 15 or conpot, but
with Dionaea and Kippo two high-value low interaction honeypots can provide enough
information about manual and automated attacks. The data collected on the honeypots

14https://openvpn.net/
15https://github.com/mushorg/snare

CHAPTER 3. EVALUATION OF EXISTING HONEYNET IMPLEMENTATIONS 33

is further stored in a PostgreSQL database on the logging server which hosts the web
interface. Furthermore SURFcert IDS data can also be manually integrated with a SIEM
system via syslog forwarding.

3.5 Honeywall

The Honeywall CDROM is a bootable CDROM that installs all of the tools and function-
ality necessary to quickly create, easily maintain, and effectively analyze a third generation
honeynet [Pro]. Developed by the Honeynet Project as a gateway for honeynets it found
wide adoption in research and production honeynet solutions. Although it was released
back in 2005 it is still used in many implementations nowadays.

Architecture

Honeywall acts as a gateway for a network of low and high interaction honeypots. Every
incoming connection is routed through the Honeywall to one of the honeypots depending
on IP and port. The honeypots are deployed behind the Honeywall gateway inside an
isolated subnetwork where outgoing traffic is blocked by the firewall to stop attackers
from using compromised honeypot to attack other computers on the Internet. Since the
gateway is configured as a layer 2 bridging device it requires at least 2 Network Interface
Cards (NICs) to bridge the traffic from the Internet to the local network. In between these
NICs the traffic is inspected and monitored to be visualized on the Walleye web interface.
This web interface also serves as a administration platform to remotely configure the
honeynet and the gateway.

Integration

The purpose of the Honeywall CDROM is to make setup and deployment of a honeynet
with a central management interface easy and user-friendly. The honeynet project there-
fore provides an installation image which can either be used with a CDROM or with
virtualization techniques to setup a fully monitored and secured honeynet. The image
configures the gateway with snort monitoring and the web interface during installation
process. The downside of the pre-build image is that honeypots are not directly included
and must be managed separately. Also the system is quite old compared to T-Pot or
MHN, which reflects in the lack of support and the outdated technology used. In some
cases where this is neglectable Honeywall might be a valuable option considering the good
documentation and the guided installation.

Information Collection

Since Honeywall was developed many years back and dropped support a few years later,
recent honeypot developments are not supported. In general Honeywall is designed to

CHAPTER 3. EVALUATION OF EXISTING HONEYNET IMPLEMENTATIONS 34

Figure 3.4: Honeybrid’s architecture overview showing the interconnected modules

support all kind of honeypots behind the gateway, but honeywall cannot automatically
collect application based event logs. The only automated log collection supported is for
data collected with sebek 16. Requiring sebek installed on each honeypot on the subnet-
work reduces performance for the honeypots and can lead to fingerprinting possibilities
for attackers to reveal the honeypots. Last but not least, no SIEM system is supported
where collected data can be forwarded for real time analysis.

3.6 Honeybrid

Honeybrid is a hybrid honeynet which combines both, low and high interaction honeypots
in a smart way. It can independently decide weather incoming traffic is routed to low
interaction honeypots or high interaction ones. The main work was done by Robin G.
Berthier as part of his dissertation [Ber09] at the University of Maryland. The idea
behind Honeybrid was, first, to develop a highly scalable and highly interactive honeynet,
and second, to adopt a more active approach on the honeypots when receiving illegitimate
connections.

Architecture

As a hybrid honeypot, Honeybrid follows a quite different approach then the other hon-
eypots and honeynets evaluated. It is described as a innovative technique to combine low
and high-interaction honeypots in a smart way to reduce the load for high-interaction

16https://projects.honeynet.org/sebek/

CHAPTER 3. EVALUATION OF EXISTING HONEYNET IMPLEMENTATIONS 35

honeypots. This is achieved by selecting only specific attacks hitting the low-interaction
honeypots which will be redirected to high-interaction ones for further investigation. The
overall architecture contains three parts: a gateway, a set of high interaction honeypots
and a set of low-interaction honeypots. No central management interface is provided to
analyze the collected threat data. Due to the specific design there are several limitations
with respect to distributed deployment and custom modifications.

Integration

With support for virtualization, Honeybrid can be deployed either on a virtual instance
or native on a gateway server. It requires a Debian host operating system but can be
ported to other UNIX distributions with medium effort. The installation procedure is
scripted, but Honeybrid needs to be build from source during the installation. Also the
maintenance is an issue, because the project is not officially maintained and developed
anymore and the documentation only consists of Berthier’s PhD publication. No source
code documentation or user manual was available at the time of evaluation.

Information Collection

More recent honeypot projects are not supported with the Honeybrid gateway. Projects
like Glastopf or Cowrie, which are state-of-the-art honeypot projects might give more
insight in special attack vectors, but Honeybrid only supports Honeyd17 as low interaction
honeypots and Nepenthes as high-interaction honeypots. On the other hand Honeybrid
benefits from its decision engine and the ability to switch from low to high interaction
honeypots, which enables high monitoring capabilities. Using syslog forwarding, it is also
possible to integrate Honeybrid with a SIEM system.

17http://www.honeyd.org/

Chapter 4

Design

Following the evaluation of different honeynet managment systems the Modern Honey
Network proved to be the most flexible and maintainable solution to be used in an en-
terprise environment. Therefore it will be used as the base framework for the following
honeynet use case designs and implementations. In this chapter possible use cases for an
enterprise environment will be discussed and detailed blueprints will be provided. Each
use case was seleceted carefully with with respect to the most important threats to enter-
prise environments. Due to the interconnection between IT and OT in the last years and
the ensuing risks for companies running critical infrastructure as well as production sites,
both IT and OT use cases will be considered.

Various honeypot and honeynet use case designs have already been published, but most of
them approach the design on an operational level [Anoc], [Sma]. They discuss high level
threats such as external and internal threats or combinations with IDSs, but do not pro-
vide any low level configuration advice. These use case designs rely on existing honeypot
software and already tested setups, without considering new strategies to build and deploy
honeypots in IT environments. Especially corporate IT networks require specific designs
with respect to the individual network setup and potential threats. Therefore new ways
to design and build honeynets based on existing, as well as custom developed, honeypots
have to be found. Even though the community behind honeypot development is quite
active, only a few designs manage to leave development and are being published with a
corresponding release. As a contribution this work propose a broad collection of use case
designs with high and low level configuration advice for building and integrating these use
cases in an enterprise network. Each of the following use cases is structured into four parts
representing the blueprint: Topology, Configuration, Detection and Presentation. Table
4.1 explains the different parts and their purpose for the blueprints.

36

CHAPTER 4. DESIGN 37

Topology Hardware setup and network design

Configuration Software requirements and configuration

Detection Threat data being collected by the honeynet

Presentation Presentation design for central management interface

Table 4.1: Blueprint section description

4.1 IT Use cases

With IT being an essential part of almost every company regardless of their economic field
it becomes more and more important to secure the IT infrastructure and prevent crimi-
nals from taking control. Therefore five enterprise honeynet use cases, ranging from web
application honeynets to APT monitoring, were designed to provide security mechanisms
to the company’s IT department.

4.1.1 Web Application Honeynet

Today every large company has at least one presentation on the internet. Either a self
hosted static website or a dynamic web application with all the relevant information.
These public domains are already facing a vast amount of attacks every day. Because they
are easily accessible, they require a good isolation from the rest of the network to prevent
possible attackers from compromising the whole network. Nevertheless, logging these
attacks gives insights on how attackers try to compromise such internet facing machines
and what are the potential weaknesses. With the first use case, an internet facing web
application honeynet blueprint is given and all the configurations are explained.

Topology

Best isolation for a web application honeynet can be achieved by placing it inside a DMZ.
There, strict firewall rules avoid any connection from the DMZ to the internal network.
It must be ensured that the firewalls are set up correctly and if needed, applications
only connect via VPN tunnel to the internal network. The honeynet itself is built up as
an multi-tier architecture consisting of a web application honeypot (presentation layer),
a MySQL database server (data layer) and the honeynet management server (business
layer). Both the application honeypot and the database honeypot are situated in the DMZ.
The management server should be setup behind the firewall on the internal network to
avoid compromise. Inside the DMZ only the web application honeypot can communicate
with the database, but not the other way round. Furthermore, both honeypots send the
collected attack data via a secure VPN tunnel to the management server on the internal
network.

CHAPTER 4. DESIGN 38

Figure 4.1: Network topology scheme for the web application honeynet use case

Configuration

For this blueprint it is recommended to use snare1 whih tanner2 as the main web applica-
tion honeypot and OpenCanary3 for the database. Snare is a web application honeypot
with a separated vulnerability emulation backend (Tanner) and the ability to clone ex-
isting websites. OpenCanary is a low interaction honeypot and provides many options
to emulate file sharing or database protocols. Operating system requirements for both
honeypots recommend an Ubuntu Trusty Tahr (14.04 LTS) host system. To increase the
range of the honeypot and to attract more attackers, the honeynet should be advertised.
Possible advertisement could be done by adding DNS entries for the honeypots, embed
links to the honeypots in the source code of the production site or add the honeypots to
the robots.txt. Additional coverage can be achieved by a higher density of honeypots or IP
addresses per honeypot. Translating multiple IP addresses to a single honeypot increases
the possibility that attackers find their way to the honeypot.

Detection

Data collected with this honeynet configuration includes not only classic web application
exploits like SQL injection, XSS or local/remote file inclusion, but also multi-stage at-
tacks which origin from the web application honeypot and target the database. This is
important since multi-stage attacks, which gain persistence on the database, are much
more harmful than non persistent attacks against the web server. Moreover, the database
honeypot collects data regarding all kind of exploits against the database which might not

1https://github.com/mushorg/snare
2https://github.com/mushorg/tanner
3https://github.com/thinkst/OpenCanary

CHAPTER 4. DESIGN 39

be captured by the web application honeypot.

Presentation

The most important part of any honeynet is the possibility to visualize and present the
collected data to the operator. With this web application honeypot not all the information
for each attack should be shown initially. Therefore the raw data is stored in a database
and the operator is presented with the most important fields:

• Who: source IP, user-agent

• What : honeypot IP, destination port, protocol

• How : payload (http packet body)

4.1.2 Darkspace

A darkspace is a fraction of the available IP range of a company which is eaten up by
a single zero-interaction network resource. This fraction of the IP address space can
be a whole 16 or 24 bit masked subnetwork routed to a passive monitoring and logging
resource. Its main advantage over other low interaction honeypots is the collection of raw
connection attempts on any port within the IP range. Without the active interaction it
also significantly reduces the risk of getting compromised.

Topology

Recommended location for such a passive monitoring resource is similar to the web ap-
plication honeypot inside a DMZ to reduce the risks if it gets compromised. If deployed
internally it will only be able to detect connection attempts from within the network. It
should be avoided to mix external and internal deployments by forwarding traffic through
the DMZ to an internal darkspace. If deployed in the DMZ, collected data is submitted
to the central management via a secure VPN tunnel.

Configuration

When configuring a darkspace honeypot, it is important to select the right size for the
subnetwork. The more IP addresses from the overall IP range of the company go into the
darkspace, the less addresses are available for production systems and self-hosted servers.

CHAPTER 4. DESIGN 40

Therefore it is recommended to use a 16 or 24 bit mask [Tea] to separate the subnetwork.
To track incoming connections the honeypot uses argus 4 and logs the packets to log files.

Detection

The goal for this honeynet is to capture unauthorized connections to IP addresses which
do not belong to the production site of a company and automated scanning of the whole
IP range of the company. If someone is scanning the IP range, this will apear on the
data collected by the darkspace. Inspecting packets collected with the darkspace gives an
overview of currently attacked ports and the related payloads. Another advantage of its
unversial collection and logging is the abilty to capture unexpected unknown vulnerability
exploits and self propagating malware.

Presentation

Detailed analysis of specific attack data has to be done manually, but data to trace the
origin of the attack should be presented on the visualization interface. Important data to
be presented on the web interface to the operator is:

• Who: source IP

• What : honeypot IP, destination port, protocol

• How : payload

4.1.3 Ransomware Detection

Ransomware exposes companies to an entirely new kind of threat. It is not the IT in-
frastructure and the software which gets exploited, but the human itself. Large phishing
campaigns aim at distributing their malware, which, if executed, encrypts all the files
on the victims computer and demands a ransom in form of bitcoins. Because for most
ransomware variants no software bugs are used, there is no network level prevention like
IDS rules. Without any real prevention against ransomware it is highly important to add
security mechanisms in place to detect infections as soon as possible.

4http://www.qosient.com/ argus/

CHAPTER 4. DESIGN 41

Topology

One way to address this issue is by setting up a file share on your network which does not
contain any real data, but dummy files, and is hidden from client discovery. It is further
mapped to all client machines to increase the possibility of detecting ransomware variants
as soon as they try to encrypt this new share.

Configuration

This ”fake” fileshare (honeyshare) can either be configured using Samba on a linux host,
or as a standard Windows network share. Both offer the ability to log file system changes
like read/write operations. On Samba the full-audit extention must be enabled and con-
figured within samba.conf 5.1 and on Windows the Windows Local Security Policy:

File System Audit Policy5 can be used to monitor file system changes. The Windows
Local Securtiy Policy can be set using the Advanced Audit Policy Configuration with Win-
dows Server 2008 and later. To limit the amount of events logged to a resonable level,
the honeyshare should be configured to only care about write operations, because those
are the detection features if ransomware starts to decrypt dozens of files simultaneously.
Furthermore each event is logged and can be send to the central management interface for
visualization.

Detection

Yet, there is no working prevention for ransomware in general. It is only possible to detect
ransomware activities as soon as it starts encrypting files on the compromised system.
With detecting ransomware it is crucial to get the hostname of the compromised machine
on the network and the user which is authenticated with that machine.

Presentation

As part of the visualization the hostname, the IP and the username should be instantly
extractable. Optional the modified files can be enumerated and presented with each event.
The following information is presented on the interface:

• Who: source IP, hostname

• What : fileshare name, files

• How : readwriteopen

5https://blogs.technet.microsoft.com/mspfe/2013/08/26/auditing-file-access-on-file-servers/

CHAPTER 4. DESIGN 42

4.1.4 APT Detection

Probably the most dangerous threat for companies and their valuable assets are Advanced
Persistent Threats. Besides their persistent presence on the network, they collect detailed
information about the structure and topology of it for further lateral movement. They
can stay undetected for a very long time before they extract the information they are
looking for. This use case aims to detect APT s when they start moving laterally from one
machine to another one by spreading user credentials on client machines which do not map
to any real user at the domain. On windows clients APT s commonly dump such stored
credentials from the LSASS6 process and pass them on for authentication. This attack,
commonly refered as ”pass the hash”7 and it’s the most used method to move laterally
on a compromised network. If the APT gets his hands on these canary user credentials
and tries to use them for authentication with the domain controller, the domain controller
logs the failed authentication request. For this use case it is assumed that the adversary
has already compromised one computer and established a persistent backdoor.

Topology

For this blueprint an active directory based network including at least one domain con-
troller is required. The domain controller authenticates users with the domain using Ker-
beros protocol8. All client machines on the network can connect to the domain controller
and are granted access to fileshares and servers.

Configuration

First the canary user credentials must be generated and distributed to all client ma-
chines on the network. One method to do this on a Windows domain is by using the
runas /user:<Domain>\<User> command[Bag15]. The runas command pushes a user-
name:NTLM hash pair into the memory without communication with the domain con-
troller. Logging on the domain controller for usage of this canary user can be configured
through enabling Audit Account Logon Events for the domain policy and filtering events
for Failure Audit on logon events (#533)[Mic] To collect the event logs from the domain
controller on the central interface a logfile parser publishes the logged Failure Audit events
via hpfeeds. The corresponding channel should be subscribed by the central management
server.

6https://en.wikipedia.org/wiki/Local Security Authority Subsystem Service
7https://en.wikipedia.org/wiki/Pass the hash
8https://en.wikipedia.org/wiki/Kerberos (protocol)

CHAPTER 4. DESIGN 43

Figure 4.2: Network topology scheme for the ransomware and apt detection usecases

Detection

APT s on the network are dangerous and it is very important to detect their presence
as soon as possible. Besides other security mechanisms to detect the intrusion and ex-
ploitation phase, detecting the lateral movement can be achieved with this canary user
honeynet use case blueprint. If the attacker uses a hash-dumping tool like mimikatz 9 the
canary user credentials are dumped and might get used. In any case when they are used
to authenticat with the domain controller an failed authentication event automatically
logged.

Presentation

For this use case the presentation on the central web interface should yield the IP or the
hostname of the compromised machine and the IP for the lateral movement destination.
Further the used NTLM hash might be visualized together with the username. The
honeynet operator should get required information to instruct the emergency response
team to react and investigate how the APT got in the network.

• Who: source IP, username

9https://github.com/gentilkiwi/mimikatz

CHAPTER 4. DESIGN 44

• What : honeypot, destination IP

• How : canary user name

4.1.5 APT Monitoring

Following the use case design to detect APT s on the network, this advanced blueprint aims
to gather further information about the threat and its potential targets on the network.
What targets are of special interest for the adversary? Which tools are used and what
vulnerabilities exploited during exploitation phase? To answer these questions the setup
is based on the idea of spreading canary users to all client machines. These canary users
get valid access to specific machines isolated from the rest of the network.

Topology

The honeynet is designed as a subnetwork of the company’s network consisting of multiple
honeypots. This subnetwork can be made as complex as needed to build a legit looking
subtree of the network. Within this isolated subnetwork the attacker is allowed to au-
thenticate with the machines as a regular user. Only the central management interface is
located outside the isolated network and data is pushed via VPN-tunnel from the clients
to the server.

Configuration

To deceive the attacker and observe his movements beyond the nodes on the subnetwork,
each client and each server is configured as a honeypot. The deployed honeypots should
consist of different types to cover the three core principles: confidentiality, integrity and
availability. To build a believable honeynet inside the subnetwork it might help to add
standard client machines as high interaction honeypots so that the overall setup cannot
be differentiated from other subnetworks of the global network. Recommended honeypots
to be deployed are listed in table 4.2. The isolation of the subnetwork requires a firewall
set up to block outgoing traffic and a static IP for routing. To report the observed events
to the central management server, the honeypots are configured to publish it via hpfeeds
on a secure tunnel.

Detection

Added to the information gathered with the canary user use case, an additional honeynet
as an isolated subnetwork of the company will also detect exploits used on these honey-

CHAPTER 4. DESIGN 45

Confidentiality
Open Canary SMB share

Honeyd SMB share

Argos high interaction

Integrity
Open Canary MSSQL, MySQL

ESPot Elasticsearch

Honeyd MSSQL, MySQL

Availability

snare/tanner web application

Honeyd HTTP

DCEPT domain controller

glutton10 proxy mode honeypot

Table 4.2: Recommended Honeypots to cover the three core principles of IT security

pots. Therefore not only the presence can be detected, but also the tools, techniques and
procedures. The broader the variety of deployed honeypots, the more distinct information
can be learned about the threat and each interaction with one of the honeypots hold the
attacker off attacking the production systems.

Presentation

As most of the recommended honeypots are traditional types, the visualization on the
management interface should extend their collected threat data by combining it with the
canary user information. A continuous observation of attacker activities should be possible
without any blind spots.

• Who: source IP, username

• What : honeypot, protocol

• How : canary user name, payload

4.2 OT Use cases

In addition to the five IT use cases, two OT use cases have been designed. These use case
are more important for companies with actual OT infrastructure like ICS or Supervisory
Control And Data Acquisition (SCADA) systems and for research groups which are in-
terested in attacks on these infrastructures. Another type of OT is critical infrastructure.
Many people depend on the reliability of this critical infrastructure, such as power plants
or water supply. If parts of such systems are caused to fail, this would have tremendous
consequences. As already mentioned in chapter 1 attacks on critical infrastructure are not
only a serious theoretical threat, but can happen at any time. The following use cases are

CHAPTER 4. DESIGN 46

Figure 4.3: ICS network toplology scheme with an active SCADA honeypot

designed to capture active attacks against various systems as well as monitor rouge nodes
within such networks. The blueprints are structured similar to the IT use cases.

4.2.1 SCADA/ICS Honeynet

A SCADA/ICS network should never be directly connected to the IT network. Large
companies air-gap their SCADA system from conventional office IT systems. Another pos-
sibility is to connect the SCADA/ICS network to the DMZ with strict firewall rules. This
isolation is crucial for every OT network and also holds for ICS honeynets. These SCADA
honeynets are build to simulate common OT protocols and nodes, such as Programmable
Logic Controllers (PLCs), which talk to a Human Machine Interface (HMI). This HMI is
the operator’s interface to control the sates of each node.

Topology

Therefore such a honeynet should consist of multiple PLC honeypots and at least one
HMI. It is separated from the IT network by the DMZ. The DMZ ensures the critical
firewall rules and the routing. The HMI which is logically connected to the PLCs can also
be accessed from the DMZ.

CHAPTER 4. DESIGN 47

Configuration

The PLCs are conpot deployments with custom configurations for different types of sen-
sors. It is important not to use the default configuration as it has a known fingerprint
and can be detected. Modbus11, a common OT protocol can be emulated with conpot.
Conpot can also be used as a proxy for a real PLC if available. In proxy mode it is possible
to generate more reliable and legit data as with emulating a protocol. Furthermore, the
HMI can be implemented with a simple web server serving static data on a web frontend.
Both the PLC and the HMI transmit the collected logs to a central MHN server via a
secure tunnel.

Detection

Conpot is a modern OT honeypot with the ability to emulate some of the most common OT
protocols. Together with an HMI this honeynet aims at catching and deceiving attackers
who manage to bridge over from the IT network. Any interaction with the PLCs or the
HMI is recorded as malicious and can be evaluated live. In this way it is possible to
capture malicious interactions with PLCs and the HMI. Included in the capture are also
the payloads and potential 0-day exploits. Overall, this honeynet design detects intruders
to the simulated OT network as soon as they interact with any of the honeypot nodes and
collects all possible information.

Presentation

By presenting the hostname of the compromised machine and the destination of the ma-
licious interaction, the operator is instantly aware of the threat. Additional payloads and
protocols can be visualized as well and depending on the implementation some data may
be add important information.

• Who: source IP, src PLC ID

• What : destination PLC ID, destination port

• How : command sequence, payload

4.2.2 Passive Field-Bus Monitoring

Another option to learn about what’s going on within the OT network is to add passive
monitoring nodes. It’s different from the active honeynet approach but such passive mon-

11https://de.wikipedia.org/wiki/Modbus

CHAPTER 4. DESIGN 48

Figure 4.4: Network topology scheme for a passive ICS monitor sensor

itoring nodes do not require to set up a dedicated network. They can be plugged into
any OT network and configured to listen on traffic broadcasted to specific ports. The
advantage is the ability to detect already compromised nodes on the existing network.

Topology

Without the need to build a dedicated network, any already existing OT network can be
extended with a passive monitoring node. This node is placed strategically on the network
topology to be able to observe as much traffic as possible.

Configuration

The configuration for a passive monitor on the OT network is similar to the darkspace
use case on the IT network. It is a listening only node, configured to log any command it
observes on a specified port. The chosen port has to be related to the used OT protocol.
For example TCP port 502 is reserved for Modbus. Since it is only passively listening on
these ports it does not provide any form of interaction and only traffic which is broadcasted
on the network or is directly targeting the passive monitoring node can be logged.

Detection

As already mentioned this use case should reliably detect malicious nodes on an exiting
OT network. If one node is compromised and misbehaves or tries to manipulate other

CHAPTER 4. DESIGN 49

nodes it will broadcast exploits to all nodes on the corresponding port. Additionally, the
monitoring node can provide further information about unwanted interactions between
PLCs.

Presentation

This blueprint recommends to collect informations such as src IP and src port together
with the transmitted payload. Since it only passively monitors specific ports it won’t
collect much more information.

• Who: source IP, src PLC ID

• What : destination port

• How : payload

4.3 Honeynets & Use cases

Above, several novel use cases were discussed and blueprint designs provided. These
designs will now be theoretically tested against different honeynet solutions from the eval-
uation. Thereby the goal is to identify the best fitting solution to use for implemented
two selected use cases with a practical test environment. The comparison will partition
the use case in IT and OT, similar to the design section. In the end a comparsion table
shows a mapping of use cases and honeynets.

4.3.1 IT Use cases

The web application use case is probably the most common one and therefore all honeynet
solutions are able to form the designed honeynet. Building a darkspace honeypot would
work out of the box with CyberTrap and with some additional work with the MHN and
Honeywall. To realise it with MHN or Honeywall the missing darkspace honeypot would
need to be built and integrated with the management server. This is possible due to
MHN’s extensible design and Honeywall’s design per se. Honeywall does not directly
specify the honeypots behind the firewall, but inspects any incoming traffic regardless of
the targeted honeypot. All other honeynets are not capable to realize a darkspace without
overwhelming adaptions and extensions.

Ransomware detection via honeypot can be realised, based on the proposed design, by
extending the MHN and Honeywall again. Similar to the darkspace, both require the
honeypot to be built first, but can integrate it with the existing design easily. There are

CHAPTER 4. DESIGN 50

CyberTrap MHN T-Pot SURFcert IDS Honeywall Honeybrid

Web Application
√ √ √ √ √ √

Darkspace
√

+ × × + ×
Ransomware det. × + × × + ×

APT det. + + × × × ×
APT mon. +

√ √ √ √ √

Table 4.3: Mapping of proposed use cases to honeynet implementations with the degree
of support categorized as: supported (

√
), extendable (+) and not possible (×)

only small adaptions with the web interface of the MHN to set up data presentation. With
Honeywall the incoming file share accesses are automatically logged with the gateway if
the fileshare is located behind the firewall.

CyberTrap and the MHN furthermore support APT detection with some additions. First,
the honeytokens need to be distributed and logging on the corresponding domain controller
(DC) enabled. Second, the honeytokens need to be integrated with the management server
to provide the operator with the captured information. CyberTrap can be used directly
on any Windows DC to log the authentication requrest of interrest. MHN requires to
build a Samaba DC honeypot with hpfeeds integration to transmit data. Extending the
APT usecase from detection to monitoring can be done with all evaluated honeynets since
this is again based on the more common honeypots such as Kippo, Honeyd, Glastopf and
so on. Depending on the honeypot selection CyberTrap and MHN will require additional
extension to maximize the amount of information collected. The other honeynet solutions
can be used in individual ways to perform similar to the aformentioned.

Figure 4.3 highlits the mapping of use case and honeynet visually by setting
√

for sup-
ported use cases, + if additional work is neccessary and × if it is not possible to realize
the use case design with the corresponding honeynet solution.

4.3.2 OT Use cases

In contrast to the five IT use cases, there are only two interesting OT use cases which
need to be tested. The first, the SCADA/ICS honeynet ca be realised with the MHN and
T-Pot out of the box, because both support conpot as a honeypot. They do not require
any manual integration as with Honeywall. Honeywall can support an ICS, but needs to
be connected with the honeypots. All the other solutions are not easily integrateable with
any ICS capable honeypot.

The last OT use case, the passive field-bus monitoring, can be build using the MHN and
CyberTrap. The others are not designed to run small passive monitoring nodes, or are
too overloaded with firewalling or network setup. CyberTrap can convert any monitoring
node into a honeypot and with MHN Honeyd nodes can be configured to run silently on
the ICS network.

CHAPTER 4. DESIGN 51

CyberTrap MHN T-Pot SURFcert IDS Honeywall Honeybrid

ICS Honeynet × √ √ × + ×
Field-Bus Mon.

√
+ × × × ×

Table 4.4: Mapping of supported T use cases to honeynet solutions.

Figure 4.4 shows the mapping of OT use cases similar to figure 4.3 and uses the same
legend. Supported use cases are marked

√
, improvements with + and unsupported use

cases are marked with a ×.

4.3.3 Design Conclusion

By looking at the tabels 4.3 and 4.4 it can be seen, that the MHN is the only solution
capable of realising all use case concept designs. Either via extension or out-of-the-box
it supports both IT and OT deployments and the designed setups. T-Pot which is also
very feature rich, misses out on 3 of 5 IT designs at one OT design. Therefore it cannot
be considered further for implementing some of the designs. On the other hand, with
CyperTrap only one IT use case, the ransomware detection design, and one OT cannot
be covered. Due to CyberTrap’s system design it is not very easy to manage and or
extend, so it is also not useful for the procatical implementation. The others, Honeywall,
SURFcert IDS and Honeybrid, are either outdated with respect to supported honeypot
implementations or out of scope for implementing the proposed designs. Honeybrid’s
network for example is too complicated for a simple test setup and would not fit in the
existing security landscape. Honeywall misses the automation to install honeypots and
connect them with the management server and SURFcert IDS uses distributed sensors,
but local honeypots and forwards the traffic through VPN tunnels. Because each of these
violates at least one of the requirements for a useable honeynet solution, the MHN is the
solution to work with.

Chapter 5

Implementation

To show the feasibility and the real value of the discussed use cases, a Proof of Concept
(POC) implementation for two use cases was done. The selected use cases were a) the
ransomware detection; b) the APT detection. Both are novel in their design and the
provided blueprints. The POC implementations feature the recommended architecture
and software from the blueprints and provide the data to a central MHN server. More
details on the network setup, the development environment and the implementaion will
be discussed in the contribution section 5.3.

This chapter will start with the introduction of the MHN as the used management frame-
work with its advantages and disadvantages. The important parts to implement the use
cases will be highlighted explicitly. Further the development environment and the used
tools will be explained shortly. The main part of this chapter will be on the implementa-
tion of both POC implementations and how to integrate them with the MHN. In the end
the improvements for data collection and the practical results of a testing phase will be
discussed.

5.1 Modern Honey Network

As already mentioned, the MHN performed best with regards to the requirements defined
in chapter 3. It was also the only system evaluated, which can integrate all use case design
with the least work required. Therefore it was selected to be the honeynet managment
framework for the blueprint implementations and test phase.

The Modern Honey Network is a distributed network of honeypots with a central man-
agement server which implements the honeynet logic. This management server consists
of four essential parts: a hpfeeds broker, a mnemosyne data normalizer, a web app and
a SQLite database. The hpfeeds broker subscribes to the honeypot channels and stores

52

CHAPTER 5. IMPLEMENTATION 53

all incoming events in the SQLite database. Mnemosyne also subscribes to the honeypot
channels via hpfeeds, but normalizes the incoming events and pushes the resulting data
to the web app’s attacks interface. To normalize the events, each honeypot got its indi-
vidual normalizer implemented within mnemosyne with python. The web application is
a python web app which provides a high-level overview of attacks, as well as statistics for
the individual honeypots. There are eight different views on the web interface:

• Dashboard

• Map

• Deploy

• Attacks

• Payloads

• Rules

• Sensors

• Charts

Each one provides a different feature to the operator.

The dashboard, seen in figure 5.1 highlights “TOP 5” statistics on events over the last
24 hours. This includes the number of attacks, the most attacked ports or sensors and
event the top attacking IPs. The map provides geo-ip resolution for attacking IP addresses.
This might be very interesting with respect to the countries where most attacks are coming
from. The deployment view of the web interface provides honeypot deployment scripts.
Via a dropdown selection the operator can select the honeypot to deploy and he will get
a bash command which can be directly executed on the server where the honeypot will be
installed. The command automatically pulls a script which registers with the management
server and adds a new sensor to the sensors tab. The script further installs the honeypot
with its prerequisites and starts it. If the operator want to adapt the deployment script,
he can either edit the file on the server directly or edit the preview on the deployment
view. Custom honeypots have to add their own install script to be selectable via the web
interface. Next the attacks can be filtered on the attacks page of the web interface. There,
filters can be applied for sensors, honeypots, date, and IP/port. This attack listing
is actually only the listing of the normalized mnemosyne data and therefore it cannot be
inspected in greater detail. Depending on the honeypot, more details can be seen on the
next tab, the payloads tab. If the honeynet has a snort instance running as a sensor, the
recorded payloads can be inspected on this tab. It lists the payloads with respect to their
source IP, destination port and sensor together with a timestamp and a snort signature.
Without a snort IDS, this view is unfortunatelly useless. Same holds for the next tab,

CHAPTER 5. IMPLEMENTATION 54

Figure 5.1: MHN’s dashboard with the individual tabs on top.

because the rules managed on the rules view are snort IDS rules. They can be enabled,
disabled and updated on this tab. Very usefull is the sensors tab, it lists the active sensors
with their IP, the installed honeypots and the number of attacks per sensor. Also, sensors
can be removed from the honeynet via the trash symbol in front of each sensor. There is
also a subpage to add new sensor nodes manually, if they already existed or are migrated
from another honeynet. The last tab on the web interface is the charts view. These charts
are honeypot specific statistics about connections and interactions. MHN comes only with
views for Kippo and Cowrie available. These charts might be the place to add further
honeypot specific views for custom honeypots later on.

The following advantages and disadvantages will summarize the considerations taken into
account for the selection of MHN over its competitors.

5.1.1 Advantages - Disadvantages

One of the key features of the Modern Honey Network is its central deployment system.
The operator can use the web interface to generate a bash command which will automat-
ically install the honeypot when executed on a remote machine. The only requirement
is SSH access to the honeypot. All software dependencies will be installed automatically.
The installed honeypot will further start and publish its data via hpfeeds to the central
server. Also most of the state-of-the-art honeypots are supported already with deployment
scripts. For new honeypots custom deployment scripts can be added and bash commands
generated on the web interface.

Another good feature is the data visualization on the web interface. Attack trends of the
last 24h are plotted on the dashboard. The collection of events can be viewed and filtered
on the attacks page and for Dionaea and Kippo/Cowrie separate visualizations for their

CHAPTER 5. IMPLEMENTATION 55

data sets are available. The listing of all attacks presents only the normalized data stored
by mnemosyne1, which contains the source IP, the destination and the port. Since the
web applications is build with a python Django web backend it can be extended easily.
For example new visualization can be added or existing ones could be customized.

The only obvious disadvantage is the installation process. To start a fresh install the
source code needs to be pulled and built on the target server. Dependencies need to be
installed beforehand and there are quite a few steps during the process which can fail if
software dependencies are missing or a timing issues occurs. Even though it automatically
installs all the different parts, some customizations can be made during installation. First,
it can be integrated with Splunk2. Second an ELK (Elasticsearch, Logstash, Kibana) stack
deployment can replace the Django web app for enhanced data visualization.

One missing feature found with the evaluation is that there is no option to deploy hon-
eypots remotely directly from the central server. A SSH connection to the honeypots has
to be done manually and the bash command needs to be executed by hand. It would be
better if this could be done automatically from the central server.

5.2 Development Environment

To build the POCs a set of development tools was used. Since the MHN is a Linux based
server application, all in the honeynet participating nodes, were set up using Linux based
operating systems. Especially Ubuntu Trusty Tahr (14.04 LTS) was used for the central
server and the honeypots. The only exception was made for the Windows client machines
which represented the company’s standard roll out.

For the implementation of honeypots integrated with MHN, a local distributed setup was
chosen, where the server and the honeypots where distributed over multiple virtual appli-
ances. Figure 5.2 shows the network toplogical overview of the setup with all components.
The clients, running Windows 7 are connected to both, the domain controller honeypot
for “authentication” and the file share honeypot. In addition the honeypots are connected
to a MHN server instance which can be locally or remote. The honeypots only submit
events via hpfeeds protocol to the MHN server.

1https://github.com/threatstream/mnemosyne
2https://www.splunk.com/en us/products/premium-solutions/splunk-enterprise-security.html

CHAPTER 5. IMPLEMENTATION 56

Figure 5.2: Network view of the honeynet setup

Following software tools were used to build the honeynet:

Linux Command Line

Bash was used as command line and is already included in Ubuntu Trusty Tahr.

python

Ubuntu Trusty Tahr includes python version 2.7.6 out of the box. This version is also the
minimum requirement for the MHN. With olde versions of Ubuntu it is recommended to
update python to version 2.7.6 before starting the installation, because for some parts it
is required and will fail to install.

vim

Vi Improved (Vim) was used as the main editor to modify existing python source code files
and to write new ones. Vim offers good python syntax highlighting and autocompletion.

CHAPTER 5. IMPLEMENTATION 57

No special plugins were used as part of the editor.

git

Like most other open source software the MHN is under version control with git. It’s
maintained on Github, a platform for open source projects with git version control. Mod-
ifications were made to a dedicated fork of Anomaly’s own MHN repository. Additionally
mnemosyne and hpfeeds-collector were forked for code changes and integration.

Samba

Samba is a software to use Windows protocols such as SMB/CIFS file, print, and login
server for Unix. For both POC implementations a dedicated samba server was used to
run the required protocols on an Ubuntu operating system.

5.3 Contribution

Both honeypots, the ransomware detection and the APT detection POCs, were build on
top of a MHN deployment. Differences in what software was installed and used only
depended on the blueprints. This work’s main contribution is in the novel design of the
presented blueprints and their first practical use to implement an enterprise honeynet.
There is currently a lot of work going on in building honeypots with similar goals, but
most of them are either extensions to old honeypots like Dionaea, or exerimental research
projects with limited practicability. In contrast to these research projects, the implemented
POCs are integrated into a full functional honeynet management and deliver all important
data in real time. They are easy to integrate and require a minimum of setup to work
with an existing MHN deployment. Furthermore, both are dedicated to a special use case
and therefore they can simulate a more realistic system.

5.3.1 Ransomware Detection

Using honeypots to detect ransomware is a complicated task. As an automated malware
most of its different variants are distributed via phishing emails and do not spread on
common vulnerabilities. The only exception was WannaCry, which used an undisclosed
SMB vulnerability. For most of the others it holds that the user has to open a malicious
document which runs some sort of code to download the actual malware. This malware
will then encrypt the personal files of the user and demand some ransom to be paid in

CHAPTER 5. IMPLEMENTATION 58

Bitcoins3. With this ransomware detection honeypot it is aimed to detect the phase
where the malware starts encrypting files. More precisely, file modifications to a network
file share are logged. This, indeed, can detect ransomware, because the malware will not
only encrypt local files, but also files on network shares. Such a network share can be used
to build a reliable ransomware honeypot by logging all file modifications consistently and
parse the log files in realtime. The advantage of using a honeypot is the continuous logging
of the source IP from where the ransomware is operating. This will help the Computer
Emergency Response Team (CERT) to take immediate actions to recover the files and stop
the malware from spreading further. To avoid false positive measurements, caused by users
which accidently modify files on such a ransomware detection share, it is of importance
to hide this share from regular users. No client in the network should be able to see the
network share mounted as a remote drive using Windows explorer or Linux file manager.
But still, under the surface the share is indeed mapped and can be accessed by all users
using SMB. Since most ransomware variants attack Windows operating systems, they use
the “net use“ command to list mapped network shares. Due to simplicity reasons, the
implemented POC ransomware honeypot is not hidden from client machines, because this
would require a Windows Server based network share and modifiactions to the Windows
Group Policy. Actually, the hiding is just a usability feature which has no effect on the
monitoring capabilities and can be neglected for a working POC.

Implementation

A samba server was set up and configured, providing the necessary SMB protocol to share
a folder of the server with all clients on the network. Listing 5.1 shows the relevant parts
of the samba config file. There are 2 parts of the config file which are of importance for the
setup. First, the [global] section contains the log level and log file specifier. The log level
needs to be set to 6 or above to get the necessary information. The log file specifies the
file path of samba’s log file on the linux server. Additionally the vfs full audit options are
added to this section. Second the [fileshare] section, which describes the location and
the properties of the shared folder. This POC uses the /home/dev/Public folder as root
for the network share. It is set writable and public to be accessable and also browsable
by all clients. Valid users are the Administrator and a domain user with name client. To
enable file audit logging, which reports all changes to the files on the share, vfs objects
is set to full audit. The full audit samba extension handles the file monitoring and uses
syslog to collect the log events. These events are further stored by syslog in a audit.log

logfile.

1 [global]

2 log level = 5 vfs:6

3 log file = /var/log/samba/samba.log

4

5 full_audit:prefix = %u|%I|%S

6 full_audit:failure = connect

7 full_audit:success = write pwrite

3https://en.wikipedia.org/wiki/Bitcoin

CHAPTER 5. IMPLEMENTATION 59

8 full_audit:facility = local5

9 full_audit:priority = notice

10

11 [fileshare]

12 path = /home/dev/Public

13 writeable = yes

14 public = yes

15 browsable = yes

16 valid users = TEST\client Administrator

17 vfs objects = full_audit

18 create mask = 0777

Source Code 5.1: Samba config file

Within this shared folder some dummy files are placed which will be the honey in the
honeypot. These files can be plain text files, images or documents such as .pdf, .doc,
.ppt. For the honeypot to work properly it is important that the share is not left empty,
because files are needed to monitor the read/write accesses with samba. Because of the
concurrent encryption of files and network shares, it won’t give any advantage if the amount
of files is increased to slow down the encryption. The encryption for one share might take
a little bit longer, but in paralell other shares and drives are encrypted. To monitor the
file system changes samba’s vfs full audit extension need to be installed and activated for
the shared folder. This extension’s configuration can be done on the [global] section in
samba’s config and contains the following attributes:

• prefix: Prepend audit messages with the specified string

• failure: List of VFS operations that should be recorded if they failed

• success: List of VFS operations that should be recorded if they succeed

• facility: Log messages to the named syslog facility

• priority: Log messages to the named syslog priority

To detect ransomware encryptions it is sufficient to enable logging for write and pwrite
operations only. Other operations would only cause double occurences for each file that
is modified. In addition to successful write operations, failed connection attempts are
logged to see if some application tries to connect to the network share and fails. This
may be due to an implementation mistake or a incompatible protocol such as SMBv3.
Syslog’s local5 facility is used with prioity notice to copy the log entries to a dedicated
logfile. With samba configured correctly, syslog requires to specify where to store the log
entries collected from samba’s vfs full audit. On Ubuntu rsyslog4 is the preferred syslog
implementation and was used for this setup. There are a few more configurations which

4http://www.rsyslog.com/

CHAPTER 5. IMPLEMENTATION 60

Database field JSON data

timestamp submission timestamp

source ip source ip

source port username——hostname

destination ip fileshare name

destination port 135

honeypot samba

protocol action

Table 5.1: Data mappings for mnemosyne

are required by rsyslog, but they are in no relation to the honeypot setup and can be
found on Martin’s blog5.

To connect the honeypot with the central honeynet server, the audit.log logfile must be
parsed and each event published on a hpfeeds channel reserved for this honeypot type. A
new channel was created for this blueprint and it’s ID is “samba.fileaudit”. To parse the
logfile the python script shown in A.1 was created. It uses multitail2 to continuously
collect events from the logfile and parses each line with a regex. If the line matches the
given pattern, parts of it are published as json using client-side hpfeeds-side.

Server side, mnemosyne is used to collect the events published on all channels and to
normalize the information. To enable mnemosyne to collect the events published on the
“samba.fileaudit” channel, a new normalizer was added. The code shown in A.2 normalizes
the events published by the ransomware honeypot and stores them to the database. Table
5.1 highlights the mappings between the json data published by the honeypot and the
one stored. To store and also present the necessary information some fields are used with
different data. Since the source port is not relevant, this field is used to store the username
and hostname of the compromised machine. The destination ip store the fileshare name
and the protocol field is used for the action. Other fields such as destination port and
honeypot are set constant since they do not provide any relevant information.

To deploy the honeypot from the central management server’s web interface, a deployment
script was added. The script A.3 installs the samba log file parser and its dependencies
on a working samba server. This samba server was already working and the fileshare
with the corresponding full audit logging was set up in advance to the honeypot deploy-
ment. The script first registers the honeypot with the management server using the pulled
registration.sh. Further it updates the system packages and installs git, python-pip

and supervisor. Git is required to pull the code for the logfile parser from Github.
Python-pip is required to install virtualenv and the requirements for the project spec-
ified in a requirements.txt. Last, supervisor is a system tool to automatically manage
starting and stopping applications on the server. A config for the honeypot logfile parser
is written to a config file in the working directory of the honeypot. The supervisor config

5http://linux-sys-adm.com/how-to-install-and-configuration-samba-server-on-ubuntu-server14.04-lts-
step-by-step/

CHAPTER 5. IMPLEMENTATION 61

file for the logfile parser is added to /etc/supervisor/conf.d/ as the last step. This
enables the honeypot to start automatically after a reboot.

5.3.2 APT Detection

APT s are a serious threat to companies and governments. They require good skills and
a lot of attention to be detected. Many companies simply don’t have enough resources
in IT personal to continuously monitor and analyze network traffic. A dedicated APT
detection honeypot has the advantage that it captures only actions which are related to
such a threat. In case of APT s, the honeypot captures malicious authentication requests
with the DC. APT s commonly use a technique called “pass the hash” to move from one
client machine to another one. Thereby credentials stored in memory are dumped and
the NTLM hash is reused to login on another machine on the domain. Since most client
computer not only store the current user credentials, but also credentials from remote
logins, a compromised machine can leak priviledged account credentials. An APT can
use this technique to find a way from an unpriviledged client to the domain administrator
account with just a few hops on the network. The proposed honeypot aims to detect this
lateral movement, by spreading fake user credentials on all client computers and watch
authentication requests on the DC. If an APT finds and uses these fake user credentials,
the honeypot will immediate capture the authentication request and store the necessary
information including the IP of the compromised computer and the username. For this
POC implemantation a Samba instance worked as the primary DC. The clients were
standard Windows 7 Enterprise installations. The drawback of the POC implementation
is that the information retrieval from Samba’s log file noisier than with a DC running
on Windows Server. With a Windows DC failed login attempts can be logged clean by
enabling Audit Account Logon Events for the domain policy.

Implementation

The used Samba server acting as the DC was set up manually on a virtual machine running
Ubuntu Trusty Tahr. The VM was configured with one core and 4 GB RAM. Samba itself
was installed from the Ubuntu repository, which provides version 4.3. To provision Samba
as a DC, the samba-tool domain provision command was used. Listing 5.2 highligts
the full command used to provision the DC. Samba’s internal dns backend is specified
with the --dns-backend parameter. With --realm the full qualified domain name is
set to test.honey.lab which implies that test is also the domain specification with the
--domain parameter. Last the --adminpass, which defines the password for the domain
administrator, is set to Passw0rd.

1 samba-tool domain provision --server-role=dc --use-rfc2307 \

2 --dns-backend=SAMBA_INTERNAL --realm=TEST.HONEY.LAB --domain=TEST \

3 --adminpass=Passw0rd

CHAPTER 5. IMPLEMENTATION 62

Source Code 5.2: Samba-tool provisioning command

By provisioning samba, a smb.conf as shown in A.4 is automatically created. There are
some parts which are resbonsible for the DC and some which are general. The DC spe-
cific entries contain the workgroup, realm, server role, dns forwarder, idmap ldb:use

rfc2307 and different auth methods. Most of them are related to the parameters provided
to the provisioning, the others are specific to the Samba version. Important for the DC is
the server role, which is set to “active directory domain controller“ and the realm. The
realm represents the full qualified domain name of the company’s active directory domain.
A logon script is set to run when a client authenticates with the DC. There are two
more sections apart from the [global] section: The [netlogon] and the [sysvol]. Since
both are without effect to the POC implementation, the default values were accepted.

The server was configured with a static IP address and its own IP for the primary dns-
resolver. Furthermore it was added to the domain by specifying search test.honey.lab

and domain test.honey.lab in Ubuntu’s /etc/resolv.conf. With a working DC and
DNS backend a “client” user was added via the samba-tool. This client was the primary
user for the Windows clients. All Windows clients executed a logon script after booting
which pushed the fake user credentials into the memory. This “canary user” was the
objective of interest for the DC honeypot.

To convert the standard DC into a dedicated honeypot a python logfile parser was written
to capture logon events to the DC. If a failed authentication attempt including the canary
user credentials occurs in the samba log, the honeypot publishes it on a “samba.events”.
Listing A.5 shows the source code for the parser. It is very similar to the ransomware
honeypot parser A.1. The regex is adjusted to the samba.log and it uses a different
channel to publish, but the general structure is the same for both python scripts.

To have the threat data available on the honeynet management web interface, mnemosyne
is extended similar to the ransomware honeypot implementation. Table 5.2 shows the
mappings between published hpfeeds data and the database fields to store the information.
For this POC implementation both destination fields are set to the same value since only
the destination ip is visualized and for remote logon to another network computer the
port can be neglected. The honeypot is primarily interested in the username, stored as
action, the destination and the already compromised machine (source ip). The stored
information is furthermore presented on the web interface.

To provide a possibility to deploy the honeypot to any Samba DC setup, a deployment
script was added to MHN’s deployment list. This script, shown in Listing A.6, is almost
identical structured as the one for the ransomware honeypot. It registers the honeypot
with the central server; updates the system packages and installs dependencies such as git
or python-pip; it creates a virtualenv for the python logfile parser and creates a config
file for it. Similar to most of the other honeypots provided by the MHN this one also
utilizes supervisor to run in background. Supervisor therefore handles autostart and
autorestart if the honeypot should crash.

CHAPTER 5. IMPLEMENTATION 63

Database field JSON data

timestamp submission timestamp

source ip source ip

source port source port

destination ip destination

destination port destination

honeypot DomainController

protocol username

Table 5.2: Data mappings for mnemosyne

5.4 Experimental Results

To show not only the theoretical design and feasibility for such honeynet deployments
some tests were executed to test both POC implementations. The tests were performed
independendly and focused on the main targets of the honeypots. The goal was to check
if the data presented on the honeynet web interface provides enough information to react
and recover from the related incident. Both POC implementations were deployed on the
same MHN honeynet. The test honeynet was setup on VMs based on Ubuntu Trusty Tahr
and Windows 7 Enterprise clients.

5.4.1 Ransomware Detection Honeypot

For the ransomware honeypot one of the clients was empowered with a Powershell script
to encrypt all files on connected network shares. The ransomware honeypot network share
was mounted, because it was not explicitly hidden from the clients. The Powershell script
connected to the network share and encrypted the files on the share to cause filesystem
changes which should be captured by the honeypot. Checking the central management
web interface the following data per event should be listed:

• Date: Submission timestamp

• Sensor: Name of the sensor

• Country: Country flag

• Src IP: < Domain >\< username >:< Sensor >

• Dst port: 135, SMB port

• Protocol: file operation

• Honeypot: Honeypot name

CHAPTER 5. IMPLEMENTATION 64

Figure 5.3: MHN’s attack report page showing events of unauthorized access to the hon-
eypot fileshare

Figure 5.3 shows a collection of event entries presented on the “Attack Report” page of the
web interface. The POC implementation for this honeypot does not provide an extension
to the existing table, but misuses some fields to print the required information.

5.4.2 APT Detection Honeypot

To test the APT honeypot POC implementation one of the Windows 7 clients was in-
tentionally compromised with a Remote Access Trojan (RAT). This RAT was created
with Powershell Empire6, a powerfull post-exploitation framework which can also create
RATs. After successful connecting back to the Empire server, an agent was downloaded
and commanded to gain higher privileges. With these local admin privileges mimikatz
was executed remotely to dump the stored credentials. Since the compromised client has
authenticated with the domain, it had run the logon script which pushes the fake cre-
dentials into memory. Therefore mimikatz also dumped the fake user credentials. For
this test only these fake “canary user” credentials were used with a pass-the-hash attack
performed with the corresponding Empire module. Checking the honeynet web interface
on the central management server the following data per event should be listed:

• Date: Submission timestamp

• Sensor: Name of the sensor

• Country: Country flag

• Src IP: IP address of compromised machine

• Dst port: Host and domain info

6https://www.powershellempire.com

CHAPTER 5. IMPLEMENTATION 65

Figure 5.4: MHN’s attack report page listing captured pass-the-hash authentication re-
quests with a honeyhash from user user1

• Protocol: canary user’s username

• Honeypot: Honeypot name

Similar to the presentation of the ransomware honeypot data, the APT honeypot im-
plementation also misuses some table fields to show different data. The test results for
unauthorized uses of the “canary user” credentials are shown in figure 5.4.

5.5 Experiences gained

By performing research and active work in the field of defensive security methods, such as
honeypots and honeynets, a lot of first hand experience has been gained. From conceptual
design to practical implementations everything was covered to some degree and increased
the author’s knowledge on these topics significantly. By performing research, designing
use case blueprints and integrateable implementations, each step to build a custom self-
made honeynet could be analysed and lessons learned. Within the following section,
these experience will be shared with the reader to help develop their own honeynet and
honeypots. The experiences will be bundled according to the steps of development:

• Use Case

CHAPTER 5. IMPLEMENTATION 66

• Design

• Implementation

• Analysis

It might be noted, that the following experiences were gathered by the author while
working on this topic and reflect his personal opinion which might differ from that of
others.

5.5.1 Use Case

Before an actual honeynet can be developed, the threat scenario and the contained systems
have to be specified. This requires a good knowlege of the underlying network as well
as the services offered. It is of importance that the final honeynet looks similar to the
production environment and mirrors the same services. This provides better understanding
of incoming attacks and exploits are more relevant to be captured with systems used also
in production. There is no sense in providing services with the honeynet which does not
occur on the production environment. Besides the similarity to the production network,
the honeynet should be kept as simple as possible. This means that there is no gain in
providing dozens of servers and clients, but only a few fully monitored honeypots on the
honeynet network. The most important systems should be kept together with just a few
dummy clients to ensure the legitimacy of the network. Furthermore the different attack
vectors have an important influence on the use case of the honeynet. As shown with
the different use cases in the Design chapter, the resulting networks differ a lot. With
an external facing honeynet different services have to be provided than with an internal
only honeynet. By working out a strategy for the corresponding honeynet, a goal will be
defined. Each honeypot has to serve the purpose of collecting specific threat information
helping to secure the overall network as well as individual applications. This information
has to contain at least 1) source IP 2) destination IP 3) port 4) protocol 5) payload.
Depending on the protocol and the attack additional information might be neccessary.

5.5.2 Design

To design the system which fits best, some essential steps must be taken. At first, the
goal of the design is to come up with some sort of description of the final solution. This
can either be a graphical design, a textual description or a component diagram. Either
way, it must define the essential components and their connections. Furthermore, the
software and hardware used must be defined explicitly. Having the design document should
enable any developer to build the described system. By this design the actual honeynet,
according to the defined use case and the selected threat of interest is becoming more
clear. It will also specify strict requirements concerning network, hardware and software
to use for the implementation. As with every honeynet, the design process should focus on

CHAPTER 5. IMPLEMENTATION 67

maximizing the threat information output. This means, that neglecting performance for
better intelligence is tolerated to some degree. The implicit requirements for the different
design levels are discussed in more detail in the following.

Network specific requirements define the topology of the honeynet as well as its loca-
tion. Depending on these requirements different setups and network configurations can
be made. A honeynet can be internal or external facing. It can be connected to a cen-
tral switch, providing its own subnetwork or in a DMZ denying attacks from hitting the
internal network. Additionally, firewalls might be considered with the design to ensure
that compromised machines in the honeynet cannot attack machines outside the honeynet.
One good example therefore would be the Honeywall CDROM honeynet gateway from the
Honeynet Project. Honeypots as sensor nodes can be located locally on the same system
or on the local network and also on any reachable network anywhere. With such network
requirements a connection between all parts of the honeynet is ensured.

Hardware requirements such as dedicated servers or virtualization techniques should also
be defined with the design of the system. Using virtualization is more resource friendly, but
depending on the software and the use case dedicated hardware might also be required.
An adversary on the honeynet should not be able to identify a sensor honeypot as a
virutal machine when he is expecting a client computer or an ICS. Server honeypots can
normally be virtualized to ensure isolation. Honeypots acting as end-user systems should
be installed on dedicated hardware to make the system look legit for an adversary.

Software requirements on the other hand define the actual system components such as
honeypots, protocols, analysis server and so on. Any software component from central
management with web interface to honeypot sensor software and potential VPN tunneling
should be defined with detail. Therefore, not only the existing software components are
specified, but also missing parts, such as required sensors, servers or protocols must be
designed. A good component design should cover the programming language, the interac-
tion protocols and the structure for the threat information collected. With the software
requirements the method of user-interaction is chosen. The user, so the operator of the
honeynet, should be able to interact with web interfaces from the management server, or
get the collected information into a SIEM system for analysis.

5.5.3 Implementation

Now, with the finished design it should be straight forward to implement the system. If
any question regarding the tools, components or setup is unclear, a redefinition of the
design is required. Depending on the use case and the resulting design most honeynets
are built as distributed systems around a central management server. This management
server does not neccessarily have to be located on the same subnetwork as the sensor
nodes, but can be placed strongly guarded by firewalls, on the internal network. The
sensor nodes are using honeypots such as Kippo, Glastopf, Conpot, Dionaea, and
Honeyd to deceive attackers and capture information about their actions and malware.

CHAPTER 5. IMPLEMENTATION 68

Distributing these honeypot sensor nodes across any company network ensures the best
coverage to catch attacks. Companies or institutions with tighter network structures
might place the honeypots locally on a range of servers, or even all on the same server,
and forward traffic from remote deployed sensor nodes via VPN tunneling. By tunneling
the traffic, it is important to keep the source address, because otherwise this information
is lost for analysis and no geo-ip resolution can be made. This second approach is also
known as honeyfarm.

Besides using existing honeypots to capture different attacks it might be required to im-
plement custom honeypots for special needs. These custom implementations can be build
using any programming language supported on the host system. The only requirement
for such custom implementations is to standardize the information stream directed to the
analysis and management server. With the design the used protocol should have been
specified, so this protocol should be used within the honeypot to transmit collected threat
data to the central server. An example of such a protocol is hpfeeds, used by the MHN
to publish data on different channels. The server on the other side subscribes to these
channels and stores the data in a local database.

This central server is the key part with every honeynet as it should provide management
for the sensor nodes and the honeypots and offer possibilities to inspect incomming at-
tacks by analyzing the collected information. By designing a custom management server
it is recommended to include a web interface where the data can be listed, filtered, and
inspected with good detail. T-Pot includes a elasticsearch, logstash, kibana setup, which
is a modern data visualization plattform offering many features to filter data and plot it.
This is also the author’s recommendation since it runs out-of-the box and there exist client
implementations to push data to elasticsearch with almost any programming language.
Apart from data visualization, the management server should also offer automated deploy-
ment for distributed sensors and honeypots. If the operator of the honeynet is required
to deploy dozens of honeypots through the network, it might not be efficient to install
every single one by hand. Therefore, with an automated deployment the operator can
deploy new honeypot by providing the destination IP and the credentials. To automate
the further installation process, there are different approaches recommended: 1) Ansible7

or 2) SSH with deployment scripts. The simpler the automated deployment is, the more
honeypots can be deployed and managed by the operator of the honeynet. By including
the automation process in the design concept, it is ensured that the overall system can be
kept simple and extendable as well. Most of the modern honeynet implementations use
Python or Go as their primary programming language since both languages offer sufficient
server side frameworks and come with the neccessary feature set to realise such distributed
systems. In the author’s oppinion the MHN is a great example for modular and structured
code, even though it lacks the ability to automate the honeypot deployment.

7https://www.ansible.com/

CHAPTER 5. IMPLEMENTATION 69

5.5.4 Analysis

Analysis of the collected threat information is the first real performance indication for any
new honeynet. The honeypot performance is well known from other implementations, but
the performance of the interconnected sensors, honeypots and the management server can
only be evaluated by capturing real attacks and deceiving attackers. The honeynet should
run at least 30 days with the complete setup to gather enough threat data for analysis.
Large companies might want to integrate the honeynet with existing SIEM systems to
combine it with data from IDSs or other sources. Nevertheless, it should be kept in mind
that more data also blurs the details of individual attacks. Without artificial intelligence to
analyse the incomming data, it is still the operator or an analyst who has to look through
all the information to find potential unknown attack vectors or vulnerability exploits. The
data should therefore be precise and not overwhelming any interface with doublicated
entries or false positives. Applying filters, based on honeypots and data of interest, can
help to find the source of the attack and its course.

5.6 Identified Threats

Over the course of the work two major threats have been identified: a) ransomware and
b) APT s. Ransomware is probably the most used type of malware at the moment and
does not only cause problems to private users, but also to big companies with dozens of
systems locked down after an infection. It cannot be preveted before starting to encrypt
files, and even then it’s difficult to distinguish ransomware from normal user activities such
as copying or moving a lot of files. A honeypot, on the other hand, sees every connection
as malicious and does not produce false positive events. By designing and implementing
a honeypot to detect ransomware, it was shown that the idea of honeypot can also be
adopted to a less interactive, but more automated kind of threat.

The second threat, APT s are far more interactive and difficult to detect. They can stay
stealth for a long time before taking any action and if they do, they move slow and
carefully. A traditional honeynet featuring state-of-the-art honeypots might catch some
of these APT s, but the goal for this work to close the gap and focus on a more interesting
part of their process. The lateral movement. In this work a domain controller honeypot
was proposed which utilizes fake “canary user” credentials as honeytokens to lure an APT
to use these credentials for authentication. Every potential use of these honeytokens is
recorded by the DC and deemed to be malicious. The implemented POC showed that a
DC can be extended to act like a honeypot for honeytokens by defining rules to identify
malicious events.

Chapter 6

Conclusion and Future Work

The purpose of this thesis was to show that the idea of using honeypots and honeytokens
is not only limited to interactive applications and protocols such as SSH or HTTP, but
can also be adapted to a wider range of use cases. At the moment honeypots see a growth
in development, but most of them provide limited usability and applicability. One severe
limitation to honeypots is the missing integration to advanced honeynet frameworks such
as the Modern Honey Network. In this work new use cases for honeypots and honeynets
within an enterprise environment are discussed and implementation concepts are provided.
The goal was to extract threats which are of danger for global companies and design
honeynet extensions which can detect and inspect action performed by such threats.

To complement the honeynet research with practical applications for the implemented use
cases, a real world enterprise scenario was assumed. By providing such a scenario, the
cornerstone for future honeynet use cases and implementations was laid.

6.1 Future Work

Due to time and network limitations the implemented use case blueprints were only Proof
of Concepts. They showed the feasibility and the basic concept, but for real production
use, they should be tested on a real company network. The POCs diverged from the
recommended setup in the blueprints by setting up a Samba instead of a Windows server.
So migrating from Samba on Ubuntu to a Windows server should be the first step with
both implementations. The ransomware honeypot could be deployed using Samba, but
it is recommended to move it to a Windows server too. The DC for the APT honeypot
should definitly be migrated to a Windows active directory DC, as it provides better
logging capabilities than Samba. In addition, the deployment for both use cases should
not rely on existing Samba installations, but should take care of installing the correct
solution for either Windows or Linux DCs.

70

CHAPTER 6. CONCLUSION AND FUTURE WORK 71

The next step could be further implementations of the other proposed use cases such as
the Darkspace, the Web application honeypot or the two OT use cases. Especially the OT
use cases should be implemented to enhance the security of OT networks and connected
systems. These systems are relatively new and security hasn’t bee their top focus, so
experts expect more attacks on OT emerging within the next few years.

As honeynets can grow quite fast with the number of deployed honeypots it is essential to
use a honeynet management system such as the Modern Honey Network. For this reason
the proposed use cases should be integrated or integratable with it. To ensure good data
visualization the general attack report page could be improved, or custom visualization
pages added similar to the Dionaea Malware report page. These custom visualizations are
not required for all of the proposed use cases, but for Ransomware and APT detection
this could increase the amount of information presented to the operator.

In general Advanced Persistent Threats are the most serious threat to companies and
their “crown jewels”. Based on this research about Advanced Persistent Threat detection
and observation using honeypot technology the author of this work recommends further
investigation in advanced techniques to capture post-exploitation activities or even detect
the initial exploitation.

APPENDIX

Appendix A

Source Code

A.1 Ransomware Detection Honeypot

1 #!/usr/bin/python

2

3 import multitail2

4 import hpfeeds

5

6 import sys

7 import datetime

8 import json

9 import hpfeeds

10 import logging

11 import re

12

13 logger = logging.getLogger()

14 logger.setLevel(logging.DEBUG)

15

16 ch = logging.StreamHandler(sys.stdout)

17 ch.setLevel(logging.DEBUG)

18 formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - \

19 %(message)s')

20 ch.setFormatter(formatter)

21 logger.addHandler(ch)

22

23 def parse(line):

24 regex =

25 r'\^(?P<timestamp>\S{3}\s+\d+\s+\d{2}:\d{2}:\d{2})\s+ \

26 (?P<hostname>\S+)\s(?P<flag>\w+):\s+ \

27 (?P<username>\w+|\d+)\| \

72

APPENDIX A. SOURCE CODE 73

28 (?P<source_ip>\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})\| \

29 (?P<fileshare_name>\w+|\d+)\|(?P<action>\w+)\| \

30 (?P<status>\w+)\|(?P<filename>\S*)'

31 match = re.match(regex, line)

32 if match:

33 res = match.groupdict()

34 for name in res.keys():

35 if not res[name]:

36 del res[name]

37 return res

38 return None

39

40 def hpfeeds_connect(host, port, ident, secret):

41 try:

42 logger.info('{0}, {1}'.format(ident, secret))

43 connection = hpfeeds.new(host, port, ident, secret)

44 except hpfeeds.FeedException as e:

45 logger.error('feed exception: %s'%e)

46 sys.exit(1)

47 logger.info('connected to %s (%s:%s)'%(connection.brokername, \

48 host, port))

49 return connection

50

51 def main():

52 cfg = {

53 'host' : '',

54 'port' : 10000,

55 'channel' : '',

56 'ident' : '',

57 'secret' : '',

58 'tail_file' : ''

59 }

60

61 if len(sys.argv) > 1:

62 logger.info("Parsing config file: %s"%sys.argv[1])

63 cfg.update(json.load(file(sys.argv[1])))

64

65 for name,value in cfg.items():

66 if isinstance(value, basestring):

67 cfg[name] = value.encode("utf-8")

68 else:

69 logger.warning("Warning: no config found, using default values for hpfeeds server")

70 publisher = hpfeeds_connect(cfg['host'], cfg['port'], cfg['ident'], cfg['secret'])

71

72 tail = multitail2.MultiTail(cfg['tail_file'])

73 for filemeta, line in tail:

74 record = parse(line)

APPENDIX A. SOURCE CODE 74

75 if record:

76 publisher.publish(cfg['channel'], json.dumps(record))

77 logger.debug(json.dumps(record))

78 publisher.stop()

79 return 0

80

81 if __name__ == '__main__':

82 try:

83 sys.exit(main())

84 except KeyboardInterrupt:

85 sys.exit(0)

Source Code A.1: Ransomware detection collector.py log file parser

1 import json

2

3 from normalizer.modules.basenormalizer import BaseNormalizer

4

5

6 class SambaFileaudit(BaseNormalizer):

7 channels = ('samba.fileaudit',)

8

9 def normalize(self, data, channel, submission_timestamp, ignore_rfc1918=True):

10 o_data = self.parse_record_data(data)

11

12 if ignore_rfc1918 and self.is_RFC1918_addr(o_data['source_ip']):

13 return []

14

15 session = {

16 'timestamp': submission_timestamp,

17 'source_ip': o_data['username']+':'+o_data['hostname'],

18 'source_port': o_data['source_ip'],

19 'destination_ip': o_data['fileshare_name'],

20 'destination_port': 135,

21 'honeypot': 'samba',

22 'protocol': o_data['action']

23 }

24 relations = {'session': session}

25 return [relations]

Source Code A.2: mnemosyne normalizer for samba’s file audit events

1 #!/bin/bash

2

3 if [$# -ne 2]

APPENDIX A. SOURCE CODE 75

4 then

5 echo "Wrong number of arguments supplied."

6 echo "Usage: $0 <server_url> <deploy_key>."

7 exit 1

8 fi

9

10 server_url=$1

11 deploy_key=$2

12

13 wget $server_url/static/registration.txt -O registration.sh

14 chmod 755 registration.sh

15

16 # Note: this will export the HPF_* variables

17 . ./registration.sh $server_url $deploy_key "samba"

18

19 echo "deb http://en.archive.ubuntu.com/ubuntu precise main \

20 multiverse" | sudo tee -a /etc/apt/sources.list

21

22 apt-get update

23 apt-get -y install git python-pip supervisor

24 pip install virtualenv

25

26 # Get the hpfeeds-collector source

27 cd /opt

28 git clone https://github.com/x4mp/hpfeeds-collector.git

29 cd hpfeeds-collector

30

31 virtualenv env

32 . env/bin/activate

33 pip install -r requirements.txt

34

35 cat >> hpfeeds-collector.conf <<EOF

36 {

37 "host": "$HPF_HOST",

38 "port" : $HPF_PORT,

39 "channel" : "samba.fileaudit",

40 "ident" : "$HPF_IDENT",

41 "secret" : "$HPF_SECRET",

42 "tail_file" : "/var/log/samba/audit.log"

43

44 }

45 EOF

46

47 # Set up supervisor

48 cat > /etc/supervisor/conf.d/samba-fileaudit-collector.conf <<EOF

49 [program:hpfeeds-collector]

50 command=/usr/bin/python /opt/hpfeeds-collector/collector.py \

APPENDIX A. SOURCE CODE 76

51 /opt/hpfeeds-collector/hpfeeds-collector.conf

52 stdout_logfile=/var/log/audit-collector.log

53 stderr_logfile=/var/log/audit-collector.err

54 autostart=true

55 autorestart=true

56 redirect_stderr=true

57 stopsignal=QUIT

58 EOF

59

60 supervisorctl update

Source Code A.3: MHN ransomware honeypot deplyment script

A.2 APT Detection Honeypot

1 [global]

2 workgroup = TEST

3 realm = TEST.HONEY.LAB

4 netbios name = DC1

5 server role = active directory domain controller

6 dns forwarder = 10.0.3.2

7 acl allow execute always = yes

8 idmap_ldb:use rfc2307 = yes

9 ntlm auth = no

10 lanman auth = no

11 client ntlmv2 auth = yes

12

13 # Logon script

14 logon script = logon.bat

15

16 # Logging

17 log level = 5

18 log file = /var/log/samba/samba.log

19 max log size = 5000

20

21

22 [netlogon]

23 path = /var/lib/samba/sysvol/test.honey.lab/scripts

24 writeable = no

25 browsable = no

26

27 [sysvol]

28 path = /var/lib/samba/sysvol

APPENDIX A. SOURCE CODE 77

29 read only = no

30 browsable = no

31 writeable = no

Source Code A.4: Samba DC config file

1 #!/usr/bin/python

2

3 import multitail2

4 import hpfeeds

5

6 import sys

7 import datetime

8 import json

9 import hpfeeds

10 import logging

11 import re

12

13 logger = logging.getLogger()

14 logger.setLevel(logging.DEBUG)

15

16 ch = logging.StreamHandler(sys.stdout)

17 ch.setLevel(logging.DEBUG)

18 formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - \

19 %(message)s')

20 ch.setFormatter(formatter)

21 logger.addHandler(ch)

22

23 def parse(line):

24 regex = r"\s*Kerberos:\s(?P<flag>\w+)-REQ\s \

25 (?P<username>\w+)@(\S*)\s+from\s+ipv4: \

26 (?P<source_ip>\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}): \

27 (?P<source_port>\d+)\sfor\s(?P<destination>host\/\S+)"

28 match = re.match(regex, line)

29 if match:

30 print(line)

31 res = match.groupdict()

32 for name in res.keys():

33 if not res[name]:

34 del res[name]

35 return res

36 return None

37

38 def hpfeeds_connect(host, port, ident, secret):

39 try:

40 logger.info('{0}, {1}'.format(ident, secret))

APPENDIX A. SOURCE CODE 78

41 connection = hpfeeds.new(host, port, ident, secret)

42 except hpfeeds.FeedException as e:

43 logger.error('feed exception: %s'%e)

44 sys.exit(1)

45 logger.info('connected to %s (%s:%s)'%(connection.brokername, \

46 host, port))

47 return connection

48

49 def main():

50 cfg = {

51 'host' : '',

52 'port' : 10000,

53 'channel' : '',

54 'ident' : '',

55 'secret' : '',

56 'tail_file' : '/var/log/samba/samba.log'

57 }

58

59 if len(sys.argv) > 1:

60 logger.info("Parsing config file: %s"%sys.argv[1])

61 cfg.update(json.load(file(sys.argv[1])))

62

63 for name,value in cfg.items():

64 if isinstance(value, basestring):

65 cfg[name] = value.encode("utf-8")

66 else:

67 logger.warning("Warning: no config found, using default values for hpfeeds server")

68 publisher = hpfeeds_connect(cfg['host'], cfg['port'], cfg['ident'], cfg['secret'])

69

70 tail = multitail2.MultiTail(cfg['tail_file'])

71 for filemeta, line in tail:

72 record = parse(line)

73 if record:

74 publisher.publish(cfg['channel'], json.dumps(record))

75 logger.debug(json.dumps(record))

76 publisher.stop()

77 return 0

78

79 if __name__ == '__main__':

80 try:

81 sys.exit(main())

82 except KeyboardInterrupt:

83 sys.exit(0)

Source Code A.5: DC logfile parser script

APPENDIX A. SOURCE CODE 79

1 #!/bin/bash

2

3 if [$# -ne 2]

4 then

5 echo "Wrong number of arguments supplied."

6 echo "Usage: $0 <server_url> <deploy_key>."

7 exit 1

8 fi

9

10 server_url=$1

11 deploy_key=$2

12

13 wget $server_url/static/registration.txt -O registration.sh

14 chmod 755 registration.sh

15

16 # Note: this will export the HPF_* variables

17 . ./registration.sh $server_url $deploy_key "samba"

18

19 echo "deb http://en.archive.ubuntu.com/ubuntu precise main \

20 multiverse" | sudo tee -a /etc/apt/sources.list

21

22 apt-get update

23 apt-get -y install git python-pip supervisor

24 pip install virtualenv

25

26 # Get the DC logfile parser source

27 cd /opt

28 git clone https://github.com/x4mp/samba-dc-hpfeeds.git

29 cd samba-dc-hpfeeds

30

31 virtualenv env

32 . env/bin/activate

33 pip install -r requirements.txt

34

35 cat >> samba-dc-hpfeeds.conf <<EOF

36 {

37 "host": "$HPF_HOST",

38 "port" : $HPF_PORT,

39 "channel" : "samba.events",

40 "ident" : "$HPF_IDENT",

41 "secret" : "$HPF_SECRET",

42 "tail_file" : "/var/log/samba/samba.log"

43

44 }

45 EOF

46

APPENDIX A. SOURCE CODE 80

47 # Set up supervisor

48 cat > /etc/supervisor/conf.d/collector-dc.conf <<EOF

49 [program:hpfeeds-collector-dc]

50 command=/usr/bin/python /opt/samba-dc-hpfeeds/collector.py \

51 /opt/samba-dc-hpfeeds/samba-dc-hpfeeds.conf

52 stdout_logfile=/var/log/collector.log

53 stderr_logfile=/var/log/collector.err

54 autostart=true

55 autorestart=true

56 redirect_stderr=true

57 stopsignal=QUIT

58 EOF

59

60 supervisorctl update

Source Code A.6: DC deployment script

Thank you

Bibliography

[Anoa] Anomali. Modern Honey Net — Manage & Deploy Honeypot Sensors. url:
https : / / www . anomali . com / platform / modern - honey - net (visited on
04/25/2017) (cit. on p. 28).

[Anob] Anomali. Modern Honey Network. url: https://threatstream.github.io/
mhn/ (visited on 08/13/2017) (cit. on p. 28).

[Anoc] Anomali. Modern Honey Network & Honeypot Use Cases. url: https://www.
anomali.com/platform/modern-honey-net/mhn-usage-cases (visited on
04/25/2017) (cit. on p. 36).

[Bag15] Mark Baggett. Detecting Mimikatz Use On Your Network. 2015. url: https:
//isc.sans.edu/diary/Detecting+Mimikatz+Use+On+Your+Network/

19311 (cit. on p. 42).

[Bau14] Kurt Baumgartner. Sony/Destover: mystery North Korean actor’s destruc-
tive and past network activity. 2014. url: https://securelist.com/blog/
research/67985/destover/ (visited on 06/04/2017) (cit. on p. 9).

[Ber09] Robin G Berthier. Advanced honeypot architecture for network threats quan-
tification. ProQuest, 2009 (cit. on pp. 12, 13, 21–23, 34).

[Che] Bill Cheswick.
”
An Evening with Berferd In Which a Cracker is Lured, En-

dured, and Studied“. In: (). url: http://web.cheswick.com/ches/papers/
berferd.pdf (cit. on p. 16).

[Che10] Thomas Chen.
”
Stuxnet, the real start of cyber warfare?“ In: IEEE Network

24.6 (2010). issn: 08908044. doi: 10.1109/MNET.2010.5634434 (cit. on p. 17).

[Chi+09] W Y Chin et al.
”
HoneyLab: large-scale honeypot deployment and resource

sharing“. In: Network and System Security, 2009. NSS’09. Third International
Conference on. 2009, pp. 381–388 (cit. on pp. 20, 21).

[Deu15] Deutsche Telekom AG Honeypot Project. T-Pot: A Multi-Honeypot Platform.
2015. url: http://dtag-dev-sec.github.io/mediator/feature/2015/03/
17/concept.html (visited on 05/05/2017) (cit. on p. 30).

81

BIBLIOGRAPHY 82

[EUK16] David Emm, Roman Unuchek, and Kirill Kruglov. Kaspersky Security Bul-
letin 2016/2017. Tech. rep. 2016. url: https://kasperskycontenthub.com/
securelist-germany/files/2016/12/Kaspersky%7B%5C_%7DSecurity%

7B%5C_%7DBulletin%7B%5C_%7D2016%7B%5C_%7DReview%7B%5C_%7DDE.pdf

(cit. on p. 9).

[F+08] Jérôme Francois, Olivier Festor, et al.
”
Activity monitoring for large honeynets

and network telescopes“. In: International Journal on Advances in Systems and
Measurements 1.1 (2008), pp. 1–13 (cit. on p. 12).

[GKO05] Julian B. Grizzard, Sven Krasser, and Henry L. Owen.
”
The Use of Honeynets

to Increase Computer Network Security and User Awareness“. In: Journal of
Security Education 1 (2005). issn: 1550-7890. doi: 10.1300/J460v01n02_03.
url: http://www.tandfonline.com/doi/abs/10.1300/J460v01n02%7B%5C_
%7D03 (cit. on p. 29).

[Gor+11] Katarzyna Gorzelak et al.
”
Proactive detection of network security incidents“.

In: ENISA report (A. Belasovs, Ed.) (2011) (cit. on p. 12).

[Kha] Swati Khandelwal. Here’s How Hackers Stole $80 Million from Bangladesh
Bank. url: https://thehackernews.com/2016/03/bank-hacking-malware.
html (visited on 06/04/2017) (cit. on p. 9).

[KK] Rauno. Kuusisto and Erkki. Kurkinen. Proceedings of the 12th European Con-
ference on Information Warfare and Security : University of Jyvaskyla, Finland
11-12 July 2013, p. 406. isbn: 1909507342. url: https://books.google.de/
books?id=CrIVBAAAQBAJ%7B%5C&%7Ddq=On+the+use+of+Honeypots+for+

Detecting+Cyber+Attacks+on+Industrial+Control+Networks%7B%5C&

%7Dlr=%7B%5C&%7Dhl=de%7B%5C&%7Dsource=gbs%7B%5C_%7Dnavlinks%7B%

5C_%7Ds (cit. on p. 14).

[Kno] KnowB4.com. AIDS Trojan — PC Cyborg — Original Ransomware — KnowBe4.
url: https://www.knowbe4.com/aids-trojan (visited on 05/09/2017) (cit.
on p. 8).

[MA07] Iyatiti Mokube and Michele Adams.
”
Honeypots: concepts, approaches, and

challenges“. In: Proceedings of the 45th annual southeast regional conference.
2007, pp. 321–326 (cit. on p. 17).

[MA15] Chris Moore and Ameer Al-Nemrat.
”
An Analysis of Honeypot Programs and

the Attack Data Collected“. In: International Conference on Global Security,
Safety, and Sustainability. 2015, pp. 228–238 (cit. on pp. 12, 17, 18).

[Mai+11] Abhishek Mairh et al.
”
Honeypot in network security“. In: Proceedings of the

2011 International Conference on Communication, Computing & Security -
ICCCS ’11. ACM Press, 2011. isbn: 9781450304641. doi: 10.1145/1947940.
1948065. url: http://portal.acm.org/citation.cfm?doid=1947940.
1948065 (cit. on p. 19).

[Mic] Microsoft. Audit logon events: Security Configuration Editor; Security Services.
url: https://technet.microsoft.com/en-us/library/cc787567.aspx
(visited on 05/24/2017) (cit. on p. 42).

BIBLIOGRAPHY 83

[Pro] The Honeynet Project. Honeywall CDROM. url: https://projects.honeynet.
org/honeywall/ (cit. on p. 33).

[Pro04] The Honeynet Project. Know Your Enemy: Learning about Security Threats.
Second. Addison-Wesley, 2004. isbn: 0321166469 (cit. on p. 16).

[Pro05] The Honeynet Project. Know your enemy: GenII Honeynets. 2005. url: http:
//old.honeynet.org/papers/gen2/ (cit. on pp. 11, 22, 24).

[Sma] SmartHoneypot. 5 effective use-cases of a honeypot system for enterprises -
Smart Honeypot Blog. url: https://blog.smarthoneypot.com/5-effective-
use-cases-of-a-honeypot-system-for-enterprises/ (visited on 04/25/2017)
(cit. on p. 36).

[Spi] L. Spitzner.
”
Honeypots: catching the insider threat“. In: 19th Annual Com-

puter Security Applications Conference, 2003. Proceedings. IEEE, pp. 170–
179. isbn: 0-7695-2041-3. doi: 10.1109/CSAC.2003.1254322. url: http:

//ieeexplore.ieee.org/document/1254322/ (cit. on p. 12).

[Spi03a] Lance Spitzner. Honeytokens: The Other Honeypot. 2003. url: https://www.
symantec.com/connect/articles/honeytokens-other-honeypot (visited
on 05/04/2017) (cit. on p. 14).

[Spi03b] Lance Spitzner.
”
The honeynet project: Trapping the hackers“. In: IEEE Se-

curity & Privacy 99.2 (2003), pp. 15–23 (cit. on p. 12).

[SPP] Hemraj Saini, H N Pratihari, and T C Panda.
”
EXTENDED HONEYPOT

FRAMEWORK TO DETECT OLD / NEW CYBER ATTACKS“. In: (). url:
https://www.researchgate.net/profile/Bimal%7B%5C_%7DMishra/

publication/50984926%7B%5C_%7DEXTENDED%7B%5C_%7DHONEYPOT%7B%5C_

%7DFRAMEWORK%7B%5C_%7DTO%7B%5C_%7DDETECT%7B%5C_%7DOLDNEW%7B%

5C_%7DCYBER%7B%5C_%7DATTACKS/links/0fcfd509b86b54225e000000.pdf

(cit. on p. 13).

[SSY05] K Sadasivam, B Samudrala, and TA Yang.
”
Design of network security projects

using honeypots“. In: Journal of Computing Sciences (2005). url: http://
dl.acm.org/citation.cfm?id=1047890 (cit. on p. 13).

[STI03] Lance Spitzner, Honeypot Technologies, and Inc.
”
Catching the Insider Threat“.

In: Acsac Acsac (2003), pp. 170–179. issn: 10639527. doi: 10.1109/CSAC.
2003 . 1254322. url: http : / / dblp . uni - trier . de / db / conf / acsac /

acsac2003.html%7B%5C#%7DSpitzner03 (cit. on p. 14).

[Sto89] C. Stoll.
”
The Cuckoo ’ s Egg“. In: (1989) (cit. on p. 16).

[Swe03] Craig Sweigart.
”
Honey Pots - Strategic considerations“. In: Global Informa-

tion Assurance Certification Paper (2003) (cit. on p. 13).

[SZ15] Tomas Sochor and Matej Zuzcak.
”
Attractiveness Study of Honeypots and

Honeynets in Internet Threat Detection“. In: Computer Networks: 22nd Inter-
national Conference, CN 2015, Brunów, Poland, June 16-19, 2015. Proceed-
ings. Ed. by Piotr Gaj, Andrzej Kwiecień, and Piotr Stera. Cham: Springer
International Publishing, 2015, pp. 69–81. isbn: 978-3-319-19419-6. doi: 10.
1007/978-3-319-19419-6_7. url: http://dx.doi.org/10.1007/978-3-
319-19419-6%7B%5C_%7D7 (cit. on pp. 18, 19).

BIBLIOGRAPHY 84

[Tea] Team CYMRU. The Darknet Project - Team Cymru. url: http://www.team-
cymru.org/darknet.html (visited on 04/27/2017) (cit. on p. 40).

[VKM10] Co-authors Sven Vetsch, Marcel Koßin, and Michael Mauer.
”
Know Your Tools

: Glastopf“. In: The Honeynet Project (2010). url: http://www.honeynet.org
(cit. on p. 16).

