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Abstract

There are more than enough reasons for science (e.g. climate change re-
search) and economy (e.g. shipping) to know the exact altitude of sea and
ice areas. Equally interesting as the altitudes are some characteristics such
as roughness, wind direction and wind speed for sea areas or thickness
and surface roughness for ice surfaces. Of course, it would be the best to
obtain all these information simultaneously for the whole Earth. A good
way to obtain these information on a global level is satellite remote sensing.
In satellite remote sensing, one or more satellites orbit the Earth and, by
using a wide variety of measurement techniques, acquire diverse types
of information about the Earth. One of these measurement techniques is
passive reflectometry. Passive reflectometry measures and compares the
direct and the earth-reflected electromagnetic signal of an already existing
source (e.g. a satellite of a global navigation satellite system). Out of the
comparison, information (e.g. altitude) about the area where the signal was
reflected can be obtained. This thesis deals with satellite missions which use
passive reflectometry to gain information about the altitudes and character-
istics of sea and ice areas. In order to conduct correct measurements, such
missions have to gauge the approximate location of the reflection point of
the electromagnetic signal before they can perform the measurements. The
approximate reflection point is calculated by the use of the position data
of the satellites and an model of the Earth. Different already existing and
new methods to calculate the approximate reflection point are explained
and discussed in this thesis. Furthermore, three of the methods discussed
were evaluated with regard to their performance on board a satellite. Pre-
liminary to the investigation of the reflection point calculation, the influence
of the atmosphere on the refraction of an electromagnetic signal propa-
gating through it was investigated. This was done in order to be able to
estimate the influence of the refraction on the reflection point calculation
and, if necessary, to take this influence into account for the evaluation. One
conclusion of this thesis is, why only two of the three methods discussed
are appropriate to calculate the reflection point on-board a cube satellite. A
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second conclusion is why the refraction of an electromagnetic signal caused
by the atmosphere can be neglected.

Key words:
reflectometry, reflection point calculation, GNSS-R, Binary Search for reflec-
tion point calculation, atmospheric refraction of an electromagnetic signal,
cube satellite
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1. Introduction

For the scientific research, like the research of climate change, it is of great
interest to know the altitude changes of sea and ice areas. Additionally it is
useful to have information on the thickness of ice areas. For the economy
like shipping in turn, it is handy to have information on the wind speed and
the wind direction of open sea areas. This information eases shipping in
such areas. To obtain all these information on a global scale, one way would
be to travel to all these destinations and perform measurements. Which
is very difficult, costly and dangerous. Another way to gain these infor-
mation on a global level is satellite remote sensing. The PRETTY (Passive
REflectomeTry and dosimeTrY) mission is an upcoming European Space
Agency (ESA) science mission, which is intended to perform sea and ice
level altimetry with satellites of a global navigation satellite system (GNSS)
as measurement signal source. PRETTY will be a three unit cube satellite
planned, produced and operated under cooperation of RUAG Space, Graz
University of Technology and Seibersdorf Laboratories.

In the following, the introductory chapter explains reflectometry in general,
with a specific focus on passive reflectometry. It continuous with a descrip-
tion of global navigation satellite system reflectometry (GNSS-R) and some
of its possible applications. After a brief explanation of the PRETTY mission,
the chapter finally specifies the objective of the thesis.

1.1. Overview of reflectometry

In general, the term reflectometry refers to the measurement of signals
reflected at an object. Basically, a transmitter emits a signal which is re-
flected at an object and the reflected signal is measured by a receiver. The
measurements are evaluated to detect as well as describe and characterize
the reflecting object. Measurement signals can be any kind of travelling
waves, such as sonic waves under water or electromagnetic waves in free
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1. Introduction

space. The variety of existing reflectometry methods can be classified in
terms of radiation form, measurement geometry, application, wave length
and so on.

Since this thesis refers to the PRETTY mission, the used reflectometry
method is assigned to the application class of satellite remote sensing. Satel-
lite remote sensing uses electromagnetic waves as measurement signals.
Furthermore, satellite remote sensing can be divided into active and passive
satellite remote sensing, respectively reflectometry. According to Gleason
and Gebre-Egziabher (2009, chapter 16), active and passive reflectometry dif-
fer with respect to the source of the measurement signal. Whereas in active
reflectometry, a signal is deliberately emitted and its reflection measured,
passive reflectometry detects the reflections of already existing sources.
Figure 1.1 shows schemes of active and passive reflectometry. A simple and
easily imaginable example for active reflectometry is radar or sonar on a
boat. The sonar device in the hulk, for example, emits the sonic wave in
the water and measures its reflection to determine the depth of the water.
Human vision on the other hand is a good example for passive reflectometry.
The sun or a light bulb is the signal source and the eye is the receiver for
the reflected light. An object which appears completely black for example,
simply does not reflect any light. An object which appears red, only reflects
light in the specific wave length of red. With respect to satellite remote
sensing, this means that missions using active reflectometry carry both the
transmitter and the receiver on board. Whereas, missions using passive
reflectometry only carry the receiver. Therefore, for passive reflectometry a
sufficiently strong measuring signal source covering the areas to be investi-
gated must be available. Possible sources could be television broadcasting
satellites or satellites from a global navigation satellite system. Because of
the global coverage and the rather high number of satellites, GNSS satellites
are good choices as signal sources. The method to use GNSS satellites for
passive reflectometry remote sensing satellite missions is called GNSS-R .

1.2. GNSS-R and some of its possible applications

GNSS-R was first introduced by Martin-Neira (1993) under the name PARIS
(Passive Reflectometry and Interferometry System). The idea was to perform
altimetry from space that covers large areas of sea or ice surfaces with some
form of multi-beam measurement. Therefore, a GNSS-R mission measures

2



1.2. GNSS-R and some of its possible applications

Figure 1.1.: Scheme of active and passive remote sensing (GrindGIS, 2017)

the directly received GNSS signal and the GNSS signal reflected by the
Earth’s surface, compares them and calculates the delay of the reflected
signal. From this delay it is possible to gauge the altitude of the sea surface.
Compared to the nadir looking active remote sensing method, GNSS-R is
able to perform measurements also in other directions than nadir due to
the use of reflected GNSS signals. Due to this ability, GNSS-R is directed
towards the multi-beam measurement objective. Of course, with one GNSS
receiver, GNSS-R can only measure one reflection point per processing
chain. Another advantage of GNSS-R compared to active reflectometry is
the absence of the transmitter for the measurement signal. This results in
lower energy and space demand on board the satellite.

The biggest potential of GNSS-R applications is in the field of oceanographic
research. Here, Martin-Neira (1993) and Gleason and Gebre-Egziabher (2009,
chapter 16) do not only write about large scale ocean altimetry, they also
mention the possibility to determine properties of the sea surface such
as roughness, wind speed and wind direction. For more information re-
fer to Martin-Neira (1993). In addition to measurements of sea surfaces,
measurements of ice and land surface can be carried out too. Again, not
only the altitudes of land and ice surfaces can be measured, parameters
such as thickness, concentration or surface roughness can be obtained too
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1. Introduction

(see Zhu (2017) and Kostelecký, Klokocnı́k, and Wagner (2005)). This is
possible due to the measurement signal penetrating through the ice layer
and generating additional reflections at subsurfaces. These parameters can
be used to characterize different ice types such as new ice, thin first year
ice or multiyear ice. On land surfaces, the reflected measurement signal has
different characteristics, depending on the surface condition. These char-
acteristics provide various information about the surface, such as ground
vegetation or soil moisture.

1.3. The PRETTY mission

The PRETTY mission is a GNSS-R mission to perform sea and ice area
altimetry from a satellite operating in a Low Earth Orbit (LEO). PRETTY
uses one antenna to receive both the direct and the reflected signal. The
advantage of this design is that both signals have to go through the same
system path and therefore get influenced by the same inaccuracies. On the
other hand, the design limits the possible measurement constellations for
PRETTY. Due to the use of only one GNSS antenna, the antenna must be
able to detect the direct and the reflected signal. Therefore, an elevation
of the satellites above the horizontal plane is narrowed to approximately
0 ◦ / ele / 15 ◦. The horizontal plane is the plane which is tangential to the
reflection point on the earth surface.

As described in the section above, to obtain the altitude of a surface, the
GNSS-R mission has to calculate the delay of the earth-reflected GNSS
signal compared to the direct GNSS signal. One way, as stated in Wickert
(2016), to obtain the delay is to correlate the pseudo random noise (PRN)
modulation of the direct and the earth-reflected signal with a local code
replica of the PRN code of the GNSS signal. The correlation yields the code
delay, related to the local code replica, for each signal and the difference of
these code delays is the delay of the earth-reflected signal. The local code
replicas necessary for the correlation are generated on-board the satellite.
For the method using local code replicas, only the known modulations of the
GNSS signal can be used for the correlation. Another way, which is used on-
board PRETTY, is called interferometric approach. With the interferometric
approach, the direct and the earth-reflected signal are correlated. Hence,
no local code replica is necessary and the correlation directly yields the
delay of the earth-reflected signal. The advantage of this method is that
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unknown PRN modulations (e.g. military codes) of the GNSS signal still
contribute to the signal power. To correlate the direct and the reflected signal
the correlator has to know the approximate delay of the reflected signal.
Otherwise it would have to store the whole direct signal and compare it with
the whole reflected signal to determine the exact delay of the reflected signal.
This is not possible due to the limited resources on-board a satellite.

1.4. Objective of the thesis

The objectives of this thesis are itemised below. Additionally, this section
provides some input on these objectives.

Objectives:

• Investigation of the influence of the atmosphere on the refraction of
an electromagnetic signal and its associated effects on the reflection
point calculation.
• Find and discuss methods to calculate the reflection point for a snap-

shot of the measurement constellation.
• Implement and evaluate some of these methods.

As stated in the section above, the PRETTY mission has to gauge the
approximate delay of the earth-reflected signal compared to the direct
signal to perform correct measurements. Therefore, the reflection point of
the earth-reflected signal has to be calculated on-board the satellite before
the measurement is performed. The objective of this thesis is to find methods
to calculate this reflection point. The methods should be able to perform the
reflection point calculation for a snapshot of the measurement constellation
and a model of the Earth. A snapshot of the measurement constellation
means that the satellites are frozen in time. Hence, the satellites have fixed
positions in relation to the earth model. The earth model to be used in
this thesis shall be the World Geodetic System 1984 (WGS 84). Figure 1.2
shows a scheme of a possible GNSS-R measurement constellation on the
northern hemisphere of the WGS 84. T is the transmitter satellite, R is the
receiver satellite and S is the reflection point. Depending on the literature,
the reflection point is also referred to as specular point. The solid line
represents the direct signal path (SPd) and the dotted line represents the
reflected signal path (SPr). For better visibility, the scheme is not true to
scale.
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1. Introduction

Due to the changing conditions in the atmosphere (e.g. electron density,
temperature), the propagation velocity of the electromagnetic signal changes.
Therefore, the signal propagating through the atmosphere is delayed. This
delay is caused mainly by the ionosphere (ionospheric delay) and can go
up to 15 m. Additionally, the change of the propagation velocity causes a
refraction of the electromagnetic signal. This refraction can influence the
location of the reflection point and thereby cause a deviation of the signal
path of the measurement signal. This deviation results an additional delay
of the signal. Therefore, in addition to the reflection point calculation, this
thesis also investigates the influence of the atmosphere on the refraction
of an electromagnetic signal and the associated effects on the reflection
point calculation. This is done in order to clarify, how much additional
delay is caused by the influence of the atmosphere on the refraction of an
electromagnetic signal and if this influence has to be taken into account for
the reflection point calculation. Since the reflection point calculation in this
thesis is performed for a snapshot of the measurement constellation, it does
not matter when but only where (reflection point) the signal hits the Earth.
Therefore, the ionospheric delay, although it occurs also for the snapshot of
the measurement constellation, is neither investigated nor considered in this
thesis. However, to set up the approximate delay for the comparison of the
direct and the earth-reflected signal on-board the satellite, the ionospheric
delay has to be taken into account.

According to section 1.3 and the text above, the method to calculate the
reflection point has to fulfil the following requirements.

Requirements:

• The calculation method has to be applicable for a snapshot of the
measurement constellation with the WGS 84 as earth model.
• The altitude of the transmitter satellite is hT = 20, 000 km.
• The altitude of the receiver satellite is hR = 600 km.
• The elevation angle ele of the satellites over the horizontal plane has

to be within 0 ◦ < ele < 15 ◦.
• The signal path difference (SPdi f f ) between the true reflected signal

path (SPr) and the calculated reflected signal path (SPrcalc) is allowed
to reach a maximum of 10 m→ SPdi f f < 10 m.
• The calculation should require as little calculation time as possible.

The altitudes of the satellites are given by the operating altitude of global
navigation satellite systems and the planned LEO for the PRETTY mission.
ele is determined by the use of one GNSS antenna to receive both the direct
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1.4. Objective of the thesis

Figure 1.2.: Scheme of a GNSS-R measurement constellation for the northern hemisphere
of WGS 84 with transmitter satellite (T), receiver satellite (R) and reflection
point (S)
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1. Introduction

and the reflected signal. The maximum signal path difference is given by the
correlator, as it has to gauge the delay of the reflected signal compared to the
direct signal within a margin of ±200 m. Since the deviation of the reflection
point calculation is not the only error source (e.g. delay of electromagnetic
signal caused by ionosphere), the maximum difference between the reflected
and the non-reflected signal path is allowed to be at most 10 m. Due to the
limited hardware on board a the satellite, the calculation should be as fast
as possible.
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2. Theory

The theory chapter provides information to understand the calculations
executed in this thesis and explains the models and algorithms used. The
structure of this chapter is to first explain the theoretical background of the
influence of the atmosphere on the refraction of an electromagnetic signal.
It continuous with the description of the geometry necessary to calculate a
reflection point and an explanation of the earth models used. At the end
of this chapter, the basic physics and algorithms for the reflection point
calculation are explained.

2.1. Influence of the atmosphere on the
refraction of an electromagnetic signal

The influence of the atmosphere on an electromagnetic signal propagating
through it causes changes for several parameters of the electromagnetic
signal. Like its phase, amplitude, polarisation and/or propagation velocity
(see Alizadeh et al. (2013, chapter 1,2 and 3) and Heise (2002, chapter 2)).
Changes of the propagation velocity for example can cause signal delay and
refraction. Changes of the amplitude and the polarisation on the other hand
influence for instance the signal to noise ratio (SNR). For the reflection point
calculation the most interesting influence is the change of the propagation
velocity or more precise the ionospheric signal delay and the refraction
of the signal. The ionospheric delay is proportional to the total electron
count of the ionosphere (TEC) and can go up to more than 15 m path
delay. The refraction of the signal also depends on the electron count and
has additional dependencies on parameters of the neutral atmosphere. As
stated in section 1.4, this thesis deals with a snapshot of the measurement
constellation. Hence, the ionospheric signal delay occurs, but, does not effect
the reflection point calculation in this thesis (see 1.4). Therefore, the influence

9



2. Theory

of the atmosphere which is described in this section is the influence of the
atmosphere on the refraction of an electromagnetic signal.

As mentioned in Heise (2002, chapter 2.4.1) the refraction of an electromag-
netic wave is given by the refraction index n.

n =
c
v

(2.1)

Where:
c speed of light in vacuum in m/s

v speed of light in a specific medium in m/s

As described in Hofmann-Wellenhof, Legat, and Wieser (2003, chapter 4.2)
the refractivity of the atmosphere can be divided into the the refractivitiy
of the troposphere and the refractivity of the ionosphere. A distribution of
the atmosphere with respect to its electromagnetic properties is described
too. For this distribution, the refractivity of the atmosphere is divided into
the refractivity of the neutral atmosphere including the troposphere and
the stratosphere up to approximately 50 km above the earth surface and the
refractivity of the ionosphere, which is everything above this 50 km up to
something between 500 km and 1000 km.

2.1.1. Refractivity of the neutral atmosphere

The refraction index of the neutral atmosphere is denoted as nnatmos and is
affected by the parameters temperature distribution, pressure distribution
and water vapour distribution of the atmosphere. By combining equation
one and seven from ITU-R P.453 (2017, chapter 1) a sufficient approach for
nnatmos is given with equation 2.2.

nnatmos(h) = 1 +
7.76× 10−6

Tatmos(h)

(
p(h) + 4810 · pw(h)

T(h)

)
(2.2)

Where:
p is the atmospheric pressure in hPa
pw is the water vapour pressure of the atmosphere in hPa
Tatmos is the absolute temperature of the atmosphere in K
h is the height above the earth surface in km

10



2.1. Influence of the atmosphere on the refraction of an electromagnetic signal

Equation 2.2 shows that the refraction index for the neutral atmosphere
is always higher than one. Therefore the propagation velocity of the elec-
tromagnetic signal in the neutral atmosphere is slower than the speed of
light.

To calculate the refraction index the distribution of the temperature, of the
atmospheric pressure and of the water vapour pressure over the height above
the earth surface is required. Since the atmosphere is a highly dynamical
system it is not possible to state the exact distributions. Therefore the
mean annual global reference atmosphere provided by ITU-R P.835 (2017) is
used. The equations 2.4 to 2.6 state the distribution of the temperature, the
atmospheric pressure and the water vapour pressure as given in ITU-R P.835

(2017, chapter 1.1 and 1.2). In the equations 2.4 and 2.5, ITU-R P.835 (2017)
uses so called geopotential heights (h′, given in km′) instead of geometric
heights (h, given in km) for h < 86 km. This is because the equations
2.4 and 2.5 include statistically determined factors which best work with
geopotential heights. Geopotential heights are calculated with equation
2.3. A geometric height of h = 86 km corresponds to a geopotential height
of h′ = 84.852 km′. The factors in the equations 2.4 to 2.6 are statistically
determined and therefore do not have units.

h′ =
6356.766 · h

6356.766 + h
(2.3)

Temperature distribution:

Tatmos(h′) = 288.15 K− 6.5 · h′; 0 km′ ≤ h′ ≤ 11 km′

Tatmos(h′) = 216.65 K; 11 km′ < h′ ≤ 20 km′

Tatmos(h′) = 216.65 K + (h′ − 20 km′); 20 km′ < h′ ≤ 32 km′

Tatmos(h′) = 228.65 K + 2.8 · (h′ − 32 km′); 32 km′ < h′ ≤ 47 km′

Tatmos(h′) = 270.65 K; 47 km′ < h′ ≤ 51 km′

Tatmos(h′) = 270.65 K− 2.8 · (h′ − 51 km′); 51 km′ < h′ ≤ 71 km′

Tatmos(h′) = 214.65 K− 2.0 · (h′ − 71 km′); 71 km′ < h′ ≤ 84.852 km′

Tatmos(h) = 186.8673; 86 km < h ≤ 91 km

Tatmos(h) = 263.1905− 76.3232 ·

√
1−

(
h− 91 km

19.9429

)2

; 91 km < h ≤ 100 km

(2.4)
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2. Theory

Pressure distribution:

p(h′) = 1013.25 hPa ·
(

288.15 K
Tatmos(h′)

)−34.1632
6.5

; 0 km′ ≤ h′ ≤ 11 km′

p(h′) = 226.3226 hPa · exp
(
−34.1632 · (h′ − 11 km)

Tatmos(h′)

)
; 11 km′ < h′ ≤ 20 km′

p(h′) = 54.7498 hPa ·
(

216.65 K
Tatmos(h′)

)34.1632

; 20 km′ < h ≤ 32 km′

p(h′) = 8.680422 hPa ·
(

228.65 K
Tatmos(h′)

) 34.1632
2.8

; 32 km′ < h′ ≤ 47 km′

p(h′) = 1.109106 hPa · exp
(
−34.1632 · (h′ − 47 km)

Tatmos(h′)

)
; 47 km′ < h′ ≤ 51 km′

p(h′) = 0.6694167 hPa ·
(

270.65 K
Tatmos(h′)

)−34.1632
2.8

; 51 km′ < h′ ≤ 71 km′

p(h′) = 0.03956649 hPa ·
(

214.65 K
Tatmos(h′)

)−34.1632
2.0

; 71 km′ < h′ ≤ 84.852 km′

p(h) = exp
(

a0 + a1 · h + a2 · h2 + a3 · h3 + a4 · h4
)

; 86 km < h ≤ 100 km
(2.5)

With:
a0 = 95.5718599
a1 = −4.011801

a2 = 6.424731× 10−2

a3 = −4.78966× 10−4

a4 = 1.340543× 10−6

Water vapour pressure distribution:

pw(h) =
ρ(h) · Tatmos(h)

216.7
(2.6)

With:

ρ(h) = ρ0 · exp
(
−h
h0

)
h0 = 2 km
ρ0 = 7.5 g/m3
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2.1. Influence of the atmosphere on the refraction of an electromagnetic signal

Figure 2.1.: Temperature distribution of earth atmosphere (Hakim, 2017)

Where:
ρ is the density of the atmosphere in g/m3

ρ0 is the standard ground level water vapour density
h0 is the scale height in

According to ITU-R P.835 (2017, chapter 1.2) the water vapour density
decreases with increasing altitude until a certain altitude at which the mixing
ratio pw(h)

p(h) = 2× 10−6. Above this certain altitude pw(h)
p(h) is assumed constant.

Similarly the atmospheric pressure decreases with increasing altitude. Thus,
both the atmospheric pressure and the water vapour pressure decrease with
increasing altitude. Hence, the refraction index of the neutral atmosphere
approaches the value of one with increasing altitude.

2.1.2. Refractivity of the ionosphere

The refraction index of the ionosphere is denoted as nion. As stated in
Alizadeh et al. (2013, chapter 2) and Heise (2002, chapter 2.4.1) it is dispersive
and generally a complex value. Although, for electromagnetic waves with a
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2. Theory

frequency higher than 100 Hz the refraction index can be seen as a real value
which is determined by the frequency of the electromagnetic wave and the
electron density of the ionosphere (Heise, 2002, chapter 2.4.1). As stated by
Heise (2002, chapter 2.4.1), nion can be represented as a development after
the inverse power of the frequency. Since the terms with order higher than
2 are much smaller than the terms with order one and two the refraction
index of the ionosphere can be written as

nion(h) = 1− K · Ne(h)
ν2 . (2.7)

With:

K =
Cx

2
= 40.3

m3

s2

Where:
Ne is the electron density in e−/m3

ν is the frequency of the electromagnetic wave (GNSS signal) in Hz

As can be seen in equation 2.7 the refraction index of the ionosphere is
indirect proportional to the square of the frequency of the electromagnetic
wave. Furthermore nion < 1 which indicates that the phase velocity of an
electromagnetic wave in the ionosphere is faster than the speed of light
in vacuum. With rising frequencies the refraction of the ionosphere loses
relevance until over 10 GHz it can be neglected. However, for GNSS signals
(e.g. GPS: ν1 = 1, 575.42 MHz, ν2 = 1, 227.60 MHz) it is significant. In case
of a signal modulated on a carrier frequency instead of nion the group
refraction index nGion of the ionosphere must be considered (see Heise
(2002) or Alizadeh et al. (2013)).

nGion(h) = 1 + K · Ne(h)
ν2 (2.8)

According to equation 2.8, nGion is always bigger than 1. Hence, the velocity
of a modulated signal is always smaller than the speed of light. Since GNSS
signals are modulated signals, equation 2.8 describes the refraction index of
the ionosphere for GNSS signal propagating through it.

In equation 2.8 all parameters except Ne are known. Referred to Figure 2.2
the electron density distribution changes from day to night. Additionally
it changes daily and has local variations and a height dependency. There
are several models to calculate an approximated Ne distribution. The one
used in this thesis is the International Reference Ionosphere provieded by
NASA (2012) where the Ne distribution for a given date and location can be
downloaded.
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2.1. Influence of the atmosphere on the refraction of an electromagnetic signal

Figure 2.2.: Electron density distribution of the ionosphere, solid lines: solar maximum,
dashed lines: solar minimum (PoleCATS, 2017)
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2. Theory

2.1.3. Geometry for refraction

The geometry needed to calculate the propagation path of a refracted signal
through mediums with different refraction indices is explained in this
section.

Refraction on straight interface / Snell’s law

An electromagnetic wave which propagates from a medium with a lower
refraction index into a medium with a higher refraction index (n1 < n2) is
refracted towards the normal on the interface. This is called Snell’s law and
is described by equation 2.9 and shown in Figure 2.3.

sin(α)
sin(β)

=
n2

n1
=

v1

v2
(2.9)

Where:
α is the angle of incidence in rd
β is the angle of refraction in rd
n1 is the refraction index for medium one
n2 is the refraction index for medium two
v1 is the wave propagation velocity for media one in m/s

v2 is the wave propagation velocity for media two in m/s

Refraction on a radially bent interface

To calculate the refraction on a radially bent interface some more geometry
is necessary. It is explicitly described in Mangum and Wallace (2015) and a
short description is given below.

Figure 2.4 shows the propagation of an electromagnetic wave through media
with different refraction indices (n1 < n2 < n3) and radially bent interfaces.
h1 and h2 denote arbitrarily selected interface boundaries. The heights for
these boundaries are related to the centre of the radially bent interfaces
(e.g. centre of the Earth for spherical earth model with radially bent layers
of atmosphere) and are selected according to the problem to be discussed.
Assumed angle α1 is given, α2 is calculated as follows.
Snell’s law

sin(α1) · n1 = sin(β) · n2 (2.10)
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2.1. Influence of the atmosphere on the refraction of an electromagnetic signal

Figure 2.3.: Illustration of Snell’s law

Figure 2.4.: Illustration of refraction on a radially bent interface

17



2. Theory

and the fact that
sin(β) · h1 = sin(α2) · h2 = x (2.11)

can be set equal for sin(β) to

sin(α1) · n1 · h1 = sin(α2) · n2 · h2. (2.12)

Equation 2.12 can be transformed into equation 2.13 to calculate α2.

α2 = arcsin
(

sin(α1) · n1 · h1

n2 · h2

)
(2.13)

2.2. Geometry necessary for the reflection point
calculation

The calculation of a reflection point is basically part of the field of analyt-
ical geometry. Since analytical geometry is a very wide field, this section
describes the basics and advanced methods of analytical geometry used in
this thesis.

2.2.1. Basics

To enable a better understanding, the equations and characteristics of the
geometric objects used in this thesis are given in this section.

Ellipse in R2

As stated in Fischer (2017, chapter 5.5.1 and 5.5.2), the implicit form of an
ellipse in R2 is

x2

a2 +
y2

b2 = 1 (2.14)

Where:
a and b are the semi axes of the ellipsoid

18



2.2. Geometry necessary for the reflection point calculation

Figure 2.5 shows some more parameters of an ellipse.
M is the centre of the ellipse
T and R are the foci of the ellipse
S is a point on the circumference of the ellipse
e is the linear eccentricity
pellipse is the semi-latus rectum of an ellipse

With the following relations:

e =
√

a2 − b2 (2.15)

ε =
e
a

(2.16)

f =
a− b

a
(2.17)

p =
b2

a
(2.18)

Where:
ε is the numerical eccentricity
f is the flattening

An important characteristic of an ellipse is that the length of a beam from
one focus to the other reflected by the circumference of the ellipse is twice
the length of the semi major axis.

SPr = a + a (2.19)

Straight line in R3

As stated in Lang and Pucker (2005, chapter 3.3.3), the parameter form of a
straight line~s in Rn is illustrated as follows.

~s(k) = S + k ·~r (2.20)

Where:
S is the so called space point
~r is the direction vector specifying the direction of the straight line
k is the parameter used to define any point lying on the straight line

Equation 2.20 can be rewritten in R3 asxs
ys
zs

 =

xS
yS
zS

+ k ·

xr
yr
zr

 . (2.21)
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2. Theory

Figure 2.5.: Parameters of an ellipse

Plane in R3

As stated in Lang and Pucker (2005, chapter 3.3.3), a plane in the R3 can be
illustrated by the following three forms.

• Three different points
• One point and two directions.
• One point and one vector normal to the plane

All three variations are associated. The difference between the three points
R, S and T of the first variant result in the two directions~r and~t and the
point S for the second variant.

~p(k, l) = S + k ·
(−−−→

R− S
)
+ l ·

(−−−→
T − S

)
= S + k ·~r + l ·~t (2.22)

Where:
~p is the plane
k and l are the parameters used to define any point on the plane (p) by

the use of the directions~r and~t
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2.2. Geometry necessary for the reflection point calculation

Equation 2.22 is the parameter form of a plane and can be written in R3

as xp
yp
zp

 =

xS
yS
zS

+ k ·

xr
yr
zr

+ l ·

xt
yt
zt

 . (2.23)

The cross product of the two direction vectors~r and~t of the second variation
yields the normal vector ~n on the plane ~p for the third variant.

~n =~r×~t (2.24)

Ellipsoid and spheroid in R3

As stated in Bronstein et al. (2008, chapter 3.5.3.10), the implicit form of an
ellipsoid in the R3 is

x2

a2 +
y2

b2 +
z2

c2 = 1. (2.25)

Where:
a, b and c are the semi axes of the ellipsoid

Equation 2.25 can be rewritten in the parameter form as

x = a · cos φ · cos λ (2.26)
y = b · cos φ · sin λ (2.27)
z = c · sin φ (2.28)

With:

−π

2
≤ φ ≤ π

2
−π ≤ λ ≤ +π

Where:
φ and λ are the angles that are used to perform a coordinate transfor-

mation from spherical coordinates to Cartesian coordinates

In case of the WGS 84 model of the Earth, the ellipsoid becomes a spheroid
where equation 2.25 becomes

x2

a2 +
y2

a2 +
z2

b2 = 1. (2.29)
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2. Theory

With only the semi major axis a and the semi minor axis b of en ellipse left.
The equations 2.26, 2.27 and 2.28 than become

x = a · cos φ · cos λ (2.30)
y = a · cos φ · sin λ (2.31)
z = b · sin φ. (2.32)

2.2.2. Angle between to vectors R3

As stated in Bronstein et al. (2008, chapter 3.5.3.9), a angle ζ between two
vectors is calculated as follows.

cos(ζ) =
~r ·~t
|~r| · |~t|

⇒ ζ = cos−1

(
~r ·~t
|~r| · |~t|

)
(2.33)

2.2.3. Surface normal on an ellipsoid

As stated in Lang and Pucker (2005, chapter 7.4), the normal on a surface
described by a function f (x, y, z) can be calculated by forming the gradient
of this function.

∇ f =


δ f
δx
δ f
δy
δ f
δz

 (2.34)

For the function of an ellipsoid the gradient of equation 2.25 is

∇ f =


2x
a2
2y
b2
2z
c2

 . (2.35)

To determine the surface normal for a given point S with the coordinates
(xS, yS, zS) enter the point S in equation 2.35.
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2.3. Earth models

2.2.4. Intersection of a straight line and an ellipsoid

To calculate the intersection of a straight line and an ellipsoid, equation 2.21

of a straight line has to be insert into equation 2.25 of the ellipsoid.

(xS + k · xR)
2

a2 +
(yS + k · yR)

2

b2 +
(zS + k · zR)

2

c2 = 1. (2.36)

Equation 2.36 must be transformed to receive k.

k2 · (b2 · c2 · x2
R + a2 · c2 · y2

R + a2 · b2 · z2
R)+

k · (2 · c2 · b2 · xS · xR + 2 · a2 · c2 · yS · yR + 2 · a2 · b2 · zS · zR)+

b2 · c2 · x2
S + a2 · c2 · y2

S + a2 · b2 · z2
S − a2 · b2 · c2 = 0

(2.37)

A = (b2 · c2 · x2
R + a2 · c2 · y2

R + a2 · b2 · z2
R) (2.38)

B = (2 · c2 · b2 · xS · xR + 2 · a2 · c2 · yS · yR + 2 · a2 · b2 · zS · zR) (2.39)

C = b2 · c2 · x2
S + a2 · c2 · y2

S + a2 · b2 · z2
S − a2 · b2 · c2. (2.40)

Equation 2.37 is a quadratic equation and can be solved with the well known
solution approach for quadratic equations and the relations 2.38, 2.39 and
2.40 to obtain k.

k1,2 =
−B±

√
B2 − 4 · A · C
2 · A (2.41)

Together with equation 2.36 this results in

I1,2 = ~S + k1,2 ·~r (2.42)

As can be seen in Figure 2.6, equation 2.42 leads to two intersection points.
If the results of equation 2.42 have imaginary parts, the straight line does
not intersect with the ellipsoid.

2.3. Earth models

The Earth is neither a sphere or an ellipsoid nor a rigid body. Flattened by
the rotation and deformed by the attraction forces of the sun, the moon
and the other planets of the solar system, it is more like a compressed
sphere, distorted in all directions. However, depending on the application,
adapted models are used for calculations that include the Earth. This section
describes the characteristics and inaccuracies of the earth models used in
this thesis.
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2. Theory

Figure 2.6.: Intersection of a straight line and an ellipsoid

2.3.1. Sphere

The simplest model of the Earth is a sphere. Where the radius of the sphere
is the average earth radius r0. The average earth radius is derived from
the WGS 84 model of the Earth for a sphere with the same volume as the
ellipsoid.

r0 = 6, 371, 008.8 m (2.43)

The comparison of the the average earth radius and the semiminor axis of
the WGS 84 reveals a serious inaccuracy of the sphere model. The differ-
ence between r0 and b is about 15 km and therefore could cause serious
inexactness. For comparison see Figure 2.7.

2.3.2. WGS 84

One of the most commonly used reference systems is the World Geodetic
System 1984 (WGS 84). According to Hofmann-Wellenhof, Lichtenegger,
and Wasle (2008, chapter 9.2.1) coordinates of about 1500 terrestrial sites
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2.3. Earth models

have been used to realize the WGS 84 reference system. A geocentric el-
lipsoid of revolution, also called spheroid, is associated to this reference
frame. Originally, the spheroid was defined by the semimajor axis (a), the
normalized second degree zonal gravitational coefficient ¯C2,0, the truncated
angular velocity of the Earth ωE and the Earth’s gravitational constant µ.
Where ¯C2,0 can be expressed by the flattening of the ellipsoid f . In 1996 a
revised version of the reference system, realized by monitor stations with
refined coordinates, was implemented. The related geocentric ellipsoid of
revolution is defined by the following parameters.

a = 6, 378, 137.0 m (2.44)

f =
1

298.257223563
= 0.003352811 (2.45)

ωE = 7, 292, 115× 10−11 rad/s (2.46)

µ = 3, 986, 004.418× 108 m3/s2 (2.47)

Out of equation 2.17 and the equations 2.15 and 2.16 as stated in section
2.2.1 the semiminor axis and the numeric eccentricity of the spheroid can be
calculated.

b = a− f · a = 6, 356, 752.3 m (2.48)

ε =

√
a2 − b2

a
= 0.081819191 (2.49)

Figure 2.7 shows a scheme of the ellipse related to the WGS 84 spheroid.
Hofmann-Wellenhof, Lichtenegger, and Wasle (2008, chapter 9.2.1) describes
the inaccuracy of the WGS 84 earth model as systematic difference of
about 1 cm compared to the International Terrestrial Reference Frame 2005

(ITRF2005, see International Terrestrial Reference Frame (2005)) and there-
fore as insignificant.

2.3.3. Transformation of geodetic coordinates on the
surface of the WGS 84 into ECEF Cartesian
coordinates

Positions on the WGS 84 spheroid are normally given in geodetic coordinates
(longitude λ and latitude ϕ). To transform the geodetic coordinates into
ECEF (Earth centred Earth fixed) Cartesian coordinates it is not possible
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Figure 2.7.: Scheme of the WGS 84 ellipse(blue) and the average earth radius(red) (Wikime-
dia Commons, 2004, File: WGS84 mean Earth radius.svg)

to use the equations 2.30 to 2.32, since φ and λ are geocentric coordinates.
Instead the transformation given by the equations 2.50 to 2.52 as stated in
Leick (1990, chapter 6.2) has to be used.

x = (a · C1 + h) · cos ϕ · cos λ (2.50)
y = (a · C1 + h) · cos ϕ · sin λ (2.51)
z = (a · C2 + h) · sin ϕ (2.52)

With:

C1 =
1√

1− ε2 · sin2 ϕ

C2 = C1 · (1− ε2)

−π

2
≤ ϕ ≤ π

2
−π ≤ λ ≤ +π

Where:
h is the height difference to the WGS 84 surface
ϕ and λ are the angles that are used to perform a coordinate transforma-

tion from geodetic coordinates toe ECEF Cartesian coordinates

For better understanding, Figure 2.8 shows a scheme of the relation between
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2.4. Reflection point calculation

Figure 2.8.: Scheme of geodetic and Cartesian coordinates

the geodetic and the Cartesian coordinates. h can be set to zero for a
coordinate transformation of a point on the WGS 84 surface.

2.4. Reflection point calculation

This section describes the physical basics and the basic algorithms used
to calculate the reflection point. The implementation of the algorithms is
described in detail in chapter 5.

2.4.1. Law of reflection

For an electromagnetic wave reflected on a surface the angle of incidence
and the angle of reflection must be equal. This is called the Law of Reflection
with the equation:

sin(θin) = sin(θre f )⇒ θin = θre f (2.53)
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Figure 2.9.: Scheme of Law of Reflection with θi = θin and θr = θre f (CliffsNotes, 2016)

Where:
θin is the angle of incidence at the reflection point
θre f is the reflected angle at the reflection point (This angle can also be

called emergent angle.)

Furthermore, the incident and the reflected beam as well as the surface
normal must be in the same plane (see Figure 2.9). The plane in which the
incident and the reflected ray as well as the surface normal must lie is called
plane of incidence or calculation plane.

2.4.2. Binary Search

As stated in Knuth (1998, chapter 6.2.1) the binary search algorithm is a
search algorithm used to find a target element within a sorted array of
elements. The algorithm starts at the middle element of the array and
compares it to the target element. This comparison can yield three results.
Result one, the values of both elements are equal and consequently the
target element has been found. Result two, the value of the target element is
higher than the value of the compared element. In this case the search must
be continued in the half containing the larger elements. Result three, the
value of the target element is lower than the value of the compared element.
In this case the search must be continued in the half containing the smaller
elements. In case of result two and three the search continuous with half
the list of elements left, following the same procedure as described above,
until the target element is found. Hence, Binary Search shows a binary
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2.4. Reflection point calculation

Figure 2.10.: Depiction of binary search (Wikimedia Commons, 2004, File: Binary Search
Depiction.svg)

logarithmic time behaviour.

N = log2(n) (2.54)

Where:
N is the maximum number of iterations the search needs
n is the number of elements the array consist of

Figure 2.10 shows an example for binary search where the number seven
is looked for in an sorted array consisting of 17 elements. According to
equation 2.54 the maximum number of iterations for the example is

log2(17) = 4.09→ 5 iterations.

E.g. the search for number 13 needs five iterations.

2.4.3. Monte Carlo methods

As reported by Theis and Kernbichler (2002) the Monte Carlo methods are
not particular algorithms,they are a group of numerical solution methods.
Monte Carlo methods use random numbers to generate approximate so-
lutions or perform simulations of various processes respectively problems.
Though, the original problem does not have to be related to random num-
bers. The field of application for Monte Carlo methods knows almost no
limit. Some applications for example are the direct solution of stochastic
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problems, random walks (diffusion processes), statistical physics (calcula-
tion of properties of orderless media) or the solution of high-dimensional
integrals or particular differential equations with complex boundary condi-
tions (Poisson equation). Monte Carlo methods normally have the following
characteristics.

• It is often the only method to provide suitable results within acceptable
calculation time.
• The results can be improved by the use of more calculation time.

In case of the evaluation of the reflection point calculation algorithms, it is
wiser to use randomly distributed true reflection points instead of evaluating
every possible reflection point.

Since Monte Carlo methods depend on random numbers, it is inevitable
to mention an inaccurateness of these methods. It is not possible to gener-
ate real random numbers with a computer. Therefore several methods to
generate random numbers with a computer have been invented. Although,
strictly speaking, these random numbers are no real random numbers, since
the sequence of the generated numbers repeats itself after a certain time.
For more information about the methods to generate random numbers refer
to appropriate literature like Theis and Kernbichler (2002).
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3. Influence of the atmosphere on
the refraction of an
electromagnetic signal and its
associated effects on the
reflection point calculation

Before the thesis deals with the reflection point calculation, this chapter
investigates the refraction of an electromagnetic signal caused by the atmo-
sphere and its associated effects on the reflection point calculation. This is
done in order to clarify, if this influence has to be taken into account for the
calculation of the reflection point.

As already stated in section 2.1, the refraction of an electromagnetic signal
is caused by changes of its propagation velocity (v). This changes are caused
by height dependent parameters of the atmosphere. Therefore, section 3.1
takes a closer look on the height dependency of the refraction index of
the atmosphere. To examine how the atmospheric influence on the refrac-
tion effects the reflection point calculation the following parameters are of
interest.

• the path length (PL)

• the signal emission angle at the transmitter satellite (θT)

• the location of the reflection point (S)

• the location of the receiver satellite (R)

The examination is done by calculation and comparison of these parameters
for the non refracted and refracted path. For a simple access to the problem
the calculation is done for two cases. Case one is the easy one which assumes
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3. Influence of the atmosphere on the refraction of an electromagnetic signal and
its associated effects on the reflection point calculation

a flat earth model with parallel layers of atmosphere (see section 3.2). For
this case Snell’s law and basic geometry is required . The second case is the
more realistic one which assumes a spherical earth model with radially bent
layers of atmosphere (see section 3.3). For this case Snell’s law and more
advanced geometry is required. Both cases deal with the problem in 2D and
were simulated for several different signal emission angles.

Similar parameters for both methods

Some given parameters and conditions apply for both the flat and the
spherical earth model. For a better overview these parameters and conditions
are summarized here.

• Horizontal distance of the transmitter satellite, xT = hdT = 0 km.
• Height of the transmitter satellite, hT = 20000 km
• Height of the receiver satellite, hR = 600 km
• Between the earth surface and the height of the ionosphere the height

step size (hstep) between the boundaries of the layers of the atmosphere
can be arbitrarily chosen between 500 m and 10 km.
• Above the ionosphere is only one step to the height of the transmitter

satellite.
• Frequency of the electromagnetic signal, ν = 1, 575.42 MHz
• For the refraction index of the atmosphere natmos applies equation 3.1
• natmos is only height dependent.
• Ne is given at 47 ◦4 ′ N and 15 ◦26 ′ O on 1 January 2000

In addition here is some input on the selected parameters. Since the transmit-
ter satellite is the position where the signal is emitted, there is no horizontal
distance to its position. The height of the transmitter satellite is given with
20000 km because GNSS systems like GPS or GLONASS operate at orbits
with about 20000 km of altitude. The PRETTY Cubesat will be operated in a
LEO and therefore the height of the receiver satellite is given with 600 km.
Between the earth surface and the height of the ionosphere the step size
of the atmospheric height can be arbitrarily chosen. Although step sizes
under 500 m and above 10 km does not make any sense. Under 500 m there
is no considerable change of the refraction index and it simply increases
the calculation time. Above 10 km it is not accurate enough anymore and
doesn’t decrease the calculation time noticeable. From the height of the
ionosphere until the height of the transmitter satellite there is only one step
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3.1. Height dependency of the refraction index

because above the ionosphere is the exosphere without any considerable
pressure or amount of charged particles and therefore its refraction index
is equal to one (see section 3.1). As signal frequency for the simulation the
L1-frequency of the GPS system was selected.

To receive the total refraction index of the atmosphere natmos, equation 2.2
and equation 2.8 are combined to

natoms(h) = 1 +
7.76× 10−6

Tatmos(h)
·
(

p(h) + 4810
pw(h)

Tatmos(h)

)
+ K · Ne(h)

ν2 (3.1)

With:
K =

Cx

2
= 40.3 m3/s2

Where T(h), p(h) and pw(h) are calculated with equation 2.4, 2.5 and 2.6
and the values for Ne(h) are from the International Reference Ionosphere
from NASA, 2012. This combination is possible because, as stated in section
2.1, the neutral atmosphere ends where the ionosphere starts. In other
words, the refraction index of the neutral atmosphere is one within the
ionosphere and the refraction index of the ionosphere is one within the
neutral atmosphere (see section 3.1).

As already mentioned in the theory chapter the refraction index of the neu-
tral atmosphere and the one of the ionosphere depend on several parameters
like location on Earth, time of the day, height and several known and un-
known parameters more. To simplify the calculation the neutral atmosphere
and the ionosphere are assumed only height dependent. Another step to
ease the calculation is to take a closer look at these height dependencies.
The investigation of the height dependencies is stated below.

3.1. Height dependency of the refraction index

As stated in section 2.1.1 and 2.1.2 the refraction index of the neutral
atmosphere (nnatmos) and the group refraction index of the ionosphere
(nGion) depend on the height above the earth surface (h). As can be seen
in equation 3.1 the refraction index of the neutral atmosphere depends on
the height dependency of the temperature of the atmosphere (Tatmos(h)),
the atmospheric pressure (p(h)) and the water vapour pressure (pw(h)).
Whereas the refraction index of the ionosphere depends on the height
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Figure 3.1.: Refraction index for the neutral atmosphere

dependency of the electron content of the atmosphere (Ne(h)). Therefore
both refraction indices show different height dependencies. Following, the
height dependency of the refraction index of the neutral atmosphere and
of the ionosphere are investigated. Additionally their impact on the height
dependency of the refraction index of the atmosphere is examined.

According to ITU-R P.835 (2017, chapter 1.1) the neutral atmosphere reaches
from the earth surface up to about 100 km. Hence, nnatmos should be neg-
ligible for heights above 100 km. Figure 3.1 shows a simulated height
distribution of the refraction index of the neutral atmosphere using the
equations from section 2.1.1. Since it shows nnatmos going against one al-
ready at altitudes of about 40 km, it confirms that the refraction index of
the neutral atmosphere can be neglected for altitudes above 100 km. E.g.
nnatmos(82 km) = 1.000000004112 and it is rapidly decreasing with increas-
ing altitude because of the decreasing pressure.

As mentioned above, the refraction index of the ionosphere depends on the
electron density distribution. The electron density distribution is from NASA
(2012) for the location of Graz (latitude: 47 ◦4 ′, longitude: 15 ◦26 ′) on the 1st
of January 2000. At NASA (2012) only Ne distributions between 60 km and
2000 km can be downloaded. As can be seen in Figure 3.2, nGion is going
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Figure 3.2.: Refraction index for the ionosphere

against one for altitudes above 1400 km. Therefore, the maximum height
of 2000 km for the electron density distribution is completely sufficient.
By comparison of Figure 3.1 and 3.2, it is noticeable that the refraction
index of the ionosphere is about 105 times smaller than the one of the
neutral atmosphere. Hence, the refraction index of the ionosphere has no
measurable impact on the refraction index of the atmosphere. This can also
be noticed by looking at Figure 3.3. Only the bulge of the refraction index
of the neutral atmosphere is noticeable.

The refraction indices in Figure 3.1, 3.2 and 3.3 were calculated with the
function Calculation of refraction indices (see appendix A.1.1) with a step size
of hstep = 0.5 km. The function uses equation 3.1 and the equations 2.2 and
2.8 to calculate the refraction indices.

3.2. Flat Earth

This section describes the calculation for the non refracted and the refracted
path as well as it states the simulation results for the flat earth model.
The flat earth model, as can be seen in Figure 3.4, assumes a flat Earth
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Figure 3.3.: Refraction index for the atmosphere

with parallel layers of atmosphere above the earth surface. The height step
sizes for the boundaries between the layers is determined by the data file
including the electron density distribution from NASA (2012). For each layer
of atmosphere the refraction index is calculated according to equation 3.1
for the height of the lower boundary of the layer. Within a single layer the
refraction index stays constant.

The matlab code for the flat earth model is given in the appendix A.1. To
allow a comparison of the non refracted and the refracted signal, both
signals have to leave the transmitter satellite at the same location and hit
the receiver satellite within a determined accuracy at the same location.
To achieve this, the signal emission angle of the refracted signal (θ1(1)) is
varied until the condition x2(end) = xR ± accuracy is fulfilled. The initial
value of θ1(1) is set to the signal emission angle of the non refracted signal
(θT). It can be expected that the signal emission angle for the refracted signal
satisfying the condition is greater than the signal emission angle of the non
refracted signal. The equations for the calculation of the non refracted and
the refracted path are stated and described below.

The calculations for the flat earth model are performed for the following
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Figure 3.4.: Non refracted signal (A) and refracted signal (B) for the flat earth model with
parallel layers of atmosphere
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signal emission angles for the non refracted signal.

θT = (1, 20, 40, 60, 85) ◦ (3.2)

3.2.1. Calculation of the non refracted path

The upper picture in Figure 3.4 shows a scheme of the non refracted path
of the signal from the transmitter satellite to the receiver satellite reflected
by the earth surface for the flat earth model. The equations to calculate the
postulated results for the non refracted path are given below.

Horizontal distances:

xS = tan(θT) · (hT − h0) + xT (3.3)
xR = tan(θT) · (hR − h0) + xS (3.4)

To calculate the horizontal distances for the non refracted signal the charac-
teristics of the tangent function are used.

Angle of incidence:

θin = θT (3.5)
θR = θT (3.6)

Because there is no refraction the angle of incidence at the reflection point
and at the receiver satellite is equal to the signal emission angle of the
transmitter satellite.

Path lengths:

PLTS =
hT − h0

cos(θT)
(3.7)

PLSR =
hR − h0

cos(θT)
(3.8)

PL = PLTR + PLSR (3.9)

To calculate the path length of the non refracted signal the characteristics of
the cosine function are used.
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3.2.2. Calculation of the refracted path

The lower picture of Figure 3.4 shows the scheme for the refracted path of
the signal from the transmitter satellite to the receiver satellite reflected by
the Earth. The refracted path is calculated with the function Calculation of
refracted signal for flat Earth (appendix A.1.2). To calculate the whole refracted
path the following calculation has to be done for every layer of atmosphere.
For better comparison the path is split up into a path 1 from the transmitter
satellite to the reflection point and a path 2 from the reflection point to the
receiver satellite. The initial horizontal distance for the refracted path is
set to x1(1) = xT. The equations to calculate the postulated results for the
refracted path are given below. Note that the calculation has to be repeated
until the condition x2(end) = xR ± accuracy is fulfilled.

Horizontal distances:

x1(l + 1) = tan (θ1(l)) · (h1(l)− h1(l + 1)) + x1(l) (3.10)
x2(l + 1) = tan (θ2(l)) · (h2(l + 1)− h2(l)) + x2(l) (3.11)
xSre f racted = x1(end) (3.12)

xRre f racted = x2(end) (3.13)

To calculate the horizontal distances for the refracted signal again the
characteristics of the tangent function are used. The index l corresponds to
the numbers in Figure 3.4 and to the counter variable used in MATLAB.

Angles of refraction:

θ1(l + 1) = arcsin
(

n1(l) · sin(θ1(l)
n1(l + 1)

)
(3.14)

θ2(l + 1) = arcsin
(

n2(l) · sin(θ2(l)
n2(l + 1)

)
(3.15)

θTre f racted = θ1(1) (3.16)

With:
θ2(1) = θ1(end)

To calculate the angles of refraction for the refracted signal equation 2.9
(Snell’s law) is used.
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Path lengths:

PL1(l) =
h1(l)− h1(l + 1)

cos (θ1(l))
(3.17)

PL2(l) =
h2(l + 1)− h2(l)

cos (θ2(l))
(3.18)

To calculate the path length of the refracted signal again the characteristics
of the cosine function are used. The path length from the transmitter satellite
to the reflection point for the refracted signal is received by summing up all
elements of PL1 and the path length from the reflection point to the receiver
satellite for the refracted signal is received by summing up all elements of
PL2.

PLTSre f racted = ∑ PL1 (3.19)

PLSRre f racted = ∑ PL2 (3.20)

The sum of PLTSre f racted and PLSRre f racted results the total path length of the
refracted signal.

PLre f racted = PLTSre f racted + PLSRre f racted (3.21)

3.2.3. Results flat Earth

In this section the results for the non refracted and the refracted path for
the flat earth model for the determined θT are shown.

The accuracy to fulfil the condition x2(end) = xR ± accuracy and the varia-
tion step size (θ1step) of the signal emission angle for the simulation of the
refracted signal path are:

accuracy = ±1 m
θ1step = 0.005 ◦

Description of the abbreviations used below:
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thetaT is the signal emission angle for the non refracted signal
related to nadir

thetaTre f racted is the signal emission angle for the refracted signal related
to nadir

xRdi f f is the difference between the refracted and the non re-
fracted horizontal distance from the transmitter satellite to
the receiver satellite

xSdi f f is the difference between the refracted and the non re-
fracted horizontal distance from the transmitter satellite to
the reflection point

PLdi f f is the difference between the refracted and the non re-
fracted total path length

Where xSdi f f , xRdi f f and PLdi f f are received through the following equa-
tions.

xSdi f f = |xS − xSre f racted| (3.22)

xRdi f f = |xR − xRre f racted| (3.23)

PLdi f f = |PL− PLre f racted| (3.24)

Height step size hstep = 500 m

θT θTre f racted xRdi f f xSdi f f PLdi f f
[◦] [◦] [m] [m] [m]
1.0 1.000 000 0.09 0.04 0.0

20.0 20.000 005 0.06 0.91 0.0
40.0 40.000 012 0.38 3.71 0.2
60.0 60.000 024 0.75 16.91 0.6
85.0 85.000 153 0.99 3408.00 1.6

Table 3.1.: Results for flat earth model, hstep = 500 m

Table 3.1 shows the results of the signal path simulation for the flat earth
model with a selected height step size of 500 m. xRdi f f is smaller than 1 m
for all five signal emission angles and therefore the accuracy condition is
fulfilled for each signal emission angle. The superelevation of the signal
emission angle for the refracted signal increases with the increase of the
signal emission angle for the non refracted signal. This is because, the
higher the signal emission angle is, the longer is the horizontal distance to

41



3. Influence of the atmosphere on the refraction of an electromagnetic signal and
its associated effects on the reflection point calculation

the receiver satellite. Therefore θTre f racted has to be more superelevated for
higher θT to fulfil the accuracy condition. Although, a difference between
the reflection points of xSdi f f ≈ 3.4 km for θT = 85 ◦ seems rather high, it
is not. A signal emission angle of 85 ◦ means, it is nearly parallel to the
surface of the flat Earth (θT = 90 ◦ would be parallel). And, a parallel signal
would not have a reflection point at all. Hence, 3.4 km difference between
the non refracted and the refracted reflection point are realistic (xS(θT =
85 ◦) ≈ 228, 601 km). The path length difference for all signal emission
angles except 85 ◦ is lower than 1 m. The reason for the comparatively
large PLdi f f (θT = 85 ◦) = 1.6 m is the accuracy criterion, that has just been
fulfilled (xRdi f f = 0.99 m).

Height step size hstep = 5 km

θT θTre f racted xRdi f f xSdi f f PLdi f f
[◦] [◦] [m] [m] [m]
1.0 1.000 000 0.11 0.06 0.0

20.0 20.000 005 0.72 0.57 0.2
40.0 40.000 015 0.44 4.00 0.3
60.0 60.000 032 0.07 21.53 0.1
85.0 85.000 201 0.06 4481.34 0.9

Table 3.2.: Results for flat earth model, hstep = 5 km

Table 3.2 shows the results of the signal path simulation for the flat earth
model with a selected height step size of 5 km. The results show nearly the
same behaviour as for a step size of 500 m and also satisfies the required
accuracy (xRdi f f < 1 m). There is only one small differences. With an increas-
ing θT, xSdi f f becomes larger compared to the results for a height step size
of 500 m. The reason for this is a smoother curve (more elements) for calcu-
lations with small step sizes. This results in a more precise calculation of the
reflection point for the refracted signal for calculations with smaller height
step sizes. Due to the more precise calculation the horizontal distances are
smaller for smaller height step sizes.
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3.3. Spherical Earth

This section describes the calculation for the non refracted and the refracted
path as well as it states the simulation results for the spherical earth model.
The spherical earth model, as can be seen in Figure 3.5, assumes a spherical
Earth (see section 2.3.1) and radially bent layers of atmosphere above the
earth surface. The satellite orbits are assumed to be circular orbits. Just as
in the flat earth model the height step sizes for the boundaries between
the layers is determined by the data file including the electron density
distribution from NASA (2012) and the refraction index for each layer of
atmosphere is calculated according to equation 3.1 for the height of the
lower boundary of the layer. Again, within a single layer the refraction index
stays constant.

The MATLAB code for the calculation is given in the appendix A.2. For the
spherical earth model the same accuracy condition as for the flat earth model
applies. The horizontal distance to the receiver satellite for the refracted
signal has to be equal to the horizontal distance to receiver for the non
refracted signal (hd2(end) = hdR ± accuracy). Note, that the horizontal
distances for the spherical earth model are denoted as hd and that they are
measured on the earth surface (r0) (see Figure 3.5). Again, a superelevation
of the signal emission angle for the refracted signal compared to the signal
emission angle of the non refracted signal can be expected. The equations
for the calculation of the non refracted and the refracted path are stated and
described below.

The calculations for the spherical earth model are performed for the follow-
ing signal emission angles for the non refracted signal.

θT = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 13.5, 13, 9, 13.95, 13.97) ◦ (3.25)

3.3.1. Maximum signal emission angle for spherical earth
model

Before the calculation of the signal paths is described, one characteristic
of the spherical earth model has to be investigated. For the spherical earth
model a maximum signal emission angle (θT) exists. If θT would exceed this
maximum angle the electromagnetic signal would miss the Earth. This is
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Figure 3.5.: Non refracted signal (A) and refracted signal (B) for the spherical earth model
with radially bent layers of atmosphere
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also true for the Earth modelled as an ellipsoid or as geoid. Therefore the
first step for the spherical earth model is to determine the maximum signal
emission angle θTmax by the use of the following equation.

θTmax = arcsin
(

r0

hT

)
= 13, 9805 ◦ (3.26)

The maximum signal emission angle occurs whenever the electromagnetic
wave is a tangent to the earth surface. In this case the electromagnetic wave
is normal on the earth radius and equation 3.26 applies.

3.3.2. Calculation of the non refracted path

The upper picture in Figure 3.5 shows a scheme of the non refracted path of
the signal from the transmitter satellite to the receiver satellite reflected by
the earth surface for the spherical earth model. The equations to calculate
the postulated results for the non refracted path are given below.

Angles of incidence:

θin = arcsin
(

sin(θT) · rT

r0

)
(3.27)

θR = arcsin
(

sin(θin) · r0

rR

)
(3.28)

With:

rT = r0 + hT

rR = r0 + hR

Where:
rT is the radius of circular transmitter satellite orbit
rR is the radius of circular receiver satellite orbit

θin and θre f are calculated according to equation 2.13 as described in section
2.1.3). The calculation uses the fact that for a non refractive atmosphere θT
can be mirrored at the tangent to rT where the signal ray crosses rT and θin
can be mirrored at the tangent to r0 where the signal ray crosses r0.

Angles between horizontal distances

ϕS = θin − θT (3.29)
ϕR = θre f − θR + ϕS (3.30)
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To calculate the angles between the horizontal distance the fact that the
sum of all angles within a triangle has to be π rad is used. E.g. ϕS =
π − θT − (π − θin)
Note that both angles ϕS and ϕR are related to the r-axis.

Horizontal distances:

hdS = r0 · ϕS (3.31)
hdR = r0 · ϕR (3.32)

To calculate the horizontal distances, the formula to calculate a circular arc
is used. Note, the horizontal distances for the spherical earth model are
measured on the earth surface (r0).

Path lengths:

PLTS =
√

r2
T + r2

0 − 2 · rT · r0 · cos(ϕS) (3.33)

PLSR =
√

r2
R + r2

0 − 2 · rR · r0 · cos(ϕR − ϕS) (3.34)

PL = PLTS + PLSR (3.35)

To calculate the path length for the non refracted signal the characteristics
of the cosine function are used.

3.3.3. Calculation of the refracted path

The lower picture of Figure 3.5 shows the scheme for the refracted path of
the signal from the transmitter satellite to the receiver satellite reflected by
the Earth. The refracted path is calculated with the function Calculation of
refracted signal for spherical Earth (appendix A.2.1). To calculate the whole
refracted path, similar to the flat earth model the following calculations have
to be done for every layer of atmosphere. Again, the path is split up into a
path 1 from the transmitter satellite to the reflection point and a path 2 from
the reflection point to the receiver satellite. The initial value for horizontal
distance for the refracted path is set to hd1(1) = hdT and the initial value
for the refraction angle is set to β1(1) = θT. Note that the calculation has to
be repeated until the condition hd2(end) = hdR ± accuracy is fulfilled.
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Refraction angles: with equation 2.13

β1(l + 1) = arcsin
(

sin(β1(l)) · n1(l) · r1(l)
n1(l + 1) · r1(l + 1)

)
(3.36)

β2(l + 1) = arcsin
(

sin(β2(l)) · n2(l) · r2(l)
n2(l + 1) · r2(l + 1)

)
(3.37)

Equation 3.36 and 3.37 are calculated by the use of equation 2.13. The fact
that the atmosphere layer above rT and the first layer underneath have the
same refraction index is used to calculate equation 3.36. Therefore θ1(1)
can be mirrored at the tangent to rT where the signal ray crosses rT so
β1(1) = theta1(1). This is not necessary for equation 3.37 because
beta2(1) = β1(end) and equation 2.13 applies without any mirroring.
Similar to the flat earth model the index l corresponds to the numbers in
Figure 3.5 and to the counter variable used in MATLAB.

Angles after refraction:

θ1(l) = arcsin
(

sin(β1(l)) · n1(l)
n1(l + 1)

)
(3.38)

θ2(l) = arcsin
(

sin(β2(l + 1) · n2(l + 1)
n2(l)

)
(3.39)

θTre f racted = θ1(1) (3.40)

Where:
θTre f racted is the superelevated signal emission angle at transmitter satel-

lite for the refracted signal

To calculate the angles of refraction for the refracted signal equation 2.9
(Snell’s law) is used.

Angles between horizontal distances:

ϕ1(l + 1) = β1(l + 1)− θ1(l) + ϕ1(l) (3.41)
ϕ2(l + 1) = β2(l)− θ2(l) + ϕ2(l) (3.42)

With:

ϕ1(1) = 0 ◦

ϕ2(1) = ϕ1(end)

To calculate the angles between the horizontal distance the fact that the
sum of all angles within a triangle has to be π rad is used. E.g. ϕ1(2) =
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π − θ1(1)− (π − β1(2)) + ϕ1(1)
Note that the angles ϕ1(l) and ϕ2(l) are related to the r-axis.

Horizontal distances:

hd1(l + 1) = r0 · ϕ1(l + 1) (3.43)
hd2(l + 1) = r0 · ϕ2(l + 1) (3.44)
hdSre f racted = hd1(end) (3.45)

hdRre f racted = hd2(end) (3.46)

With:
hd2(1) = hd1(end)

To calculate the horizontal distances, the formula to calculate a circular arc
is used. Note, the horizontal distances for the spherical earth model are
measured on the earth surface (r0).

Path lengths:

PL1(l) =
√

r1(l)2 + r1(l + 1)2 − 2 · r1(l) · r1(l + 1) · cos(ϕ1(l + 1)− ϕ1(l))
(3.47)

PL2(l) =
√

r2(l)2 + r2(l + 1)2 − 2 · r2(l) · r2(l + 1) · cos(ϕ2(l + 1)− ϕ2(l))
(3.48)

To calculate the path length of the refracted signal again the characteristics
of the cosine function are used. The path length from the transmitter satellite
to the reflection point for the refracted signal is received by summing up all
elements of PL1 and the path length from the reflection point to the receiver
satellite for the refracted signal is received by summing up all elements of
PL2.

PLSre f racted = ∑ PL1 (3.49)

PLRre f racted = ∑ PL2 (3.50)

The sum of PLSre f racted and PLRre f racted results the total path length of the
refracted signal.

PLre f racted = PLSre f racted + PLRre f racted (3.51)
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3.3.4. Results spherical Earth

In this section the results for the non refracted and the refracted path for
the spherical earth model for the determined θT are shown.

The accuracy to fulfil the condition x2(end) = xR ± accuracy and the varia-
tion step size (θ1step) of the signal emission angle for the simulation of the
refracted signal path are:

accuracy = ±1 m
θ1step = 0.005 ◦

For the spherical earth model the same abbreviations as for the flat earth
model, with slight changes and additions, apply.

Description of the changed and added abbreviations used below:
hdRdi f f is the difference between the refracted and the non refracted

horizontal distance from the transmitter satellite to the re-
ceiver satellite, hdR and hdRre f racted

hdS is the horizontal distance from the transmitter satellite to the
reflection point for the non refracted signal

hdSre f racted is the horizontal distance from the transmitter satellite to the
reflection point for the refracted signal

hdSdi f f is the difference between hdS and hdSre f racted

Where hdRdi f f and hdSdi f f are received through the following equations.

hdRdi f f = |hdR − hdRre f racted| (3.52)

hdSdi f f = |hdS − hdSre f racted| (3.53)

Height step size hstep = 500 m

Table 3.3 shows the results of the signal path simulation for the spherical
earth model with a selected height step size of 500 m. Similar to the flat
earth simulations it is easy to see that hdRdi f f is smaller than 1 m for all
signal emission angles and therefore the accuracy condition is fulfilled for
each signal emission angle. The superelevation of the signal emission angle
for the refracted signal increases with increasing signal emission angle for
the non refracted signal. This has the same reason as for the flat earth model.
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θT θTre f racted hdRdi f f hdS hdSre f racted hdSdi f f PLdi f f
[◦] [◦] [m] [km] [km] [m] [m]
1.0 1.000 000 0.36 349.4437 349.4435 0.2 0.0
2.0 2.000 000 0.74 701.1761 701.1757 0.4 0.1
3.0 3.000 005 0.81 1057.5960 1057.5972 1.2 0.2
4.0 4.000 005 0.39 1421.3380 1421.3390 1.0 0.1
5.0 5.000 005 0.11 1795.4317 1795.4325 0.8 0.0
6.0 6.000 005 0.73 2183.5259 2183.5264 0.5 0.3
7.0 7.000 010 0.78 2590.2291 2590.2312 2.1 0.4
8.0 8.000 010 0.19 3021.6677 3021.6694 1.8 0.1
9.0 9.000 012 0.31 3486.4818 3486.4841 2.3 0.2

10.0 10.000 017 0.44 3997.7828 3997.7868 4.0 0.3
11.0 11.000 022 0.03 4577.5555 4577.5608 5.3 0.0
12.0 12.000 032 0.50 5268.7772 5268.7857 8.6 0.4
13.0 13.000 060 0.90 6183.6102 6183.6307 20.5 0.8
13.5 13.500 107 0.85 6847.2978 6847.3390 41.3 0.8
13.9 13.900 438 0.50 7784.8379 7785.0282 190.3 0.7
13.95 13.950 838 0.34 8039.8710 8040.2416 370.6 1.1
13.97 13.971 453 0.92 8210.0357 8210.6828 647.0 0.9

Table 3.3.: Results for spherical earth model, hstep = 500 m

For clarification, the horizontal distances can be greater than the radius
of the Earth because the horizontal distances are measured on the earth
surface. The path length difference for all signal emission angles is about
1 m and therefore has an acceptable value compared to the allowed signal
path difference for the reflection point calculation.

Height step size hstep = 5 km

Table 3.4 shows the results of the signal path simulation for the spherical
earth model with a selected height step size of 5 km. Obviously the results
show nearly the same behaviour as for a step size of 500 m and also satisfies
the accuracy condition. They only difference is, that the signal emission
angle for the refracted signal, the horizontal distance to the receiver satellite
and the horizontal distance to the reflection point show slightly higher
values. This is because of the bigger height step size. Similar to the results
of the flat earth model, a higher height step size results a less precise
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θT θTre f racted hdRdi f f hdS hdSre f racted hdSdi f f PLdi f f
[◦] [◦] [m] [km] [km] [m] [m]
1.0 1.000 000 0.48 349.4437 349.4435 0.2 0.0
2.0 2.000 000 1.00 701.1761 701.1756 0.5 0.1
3.0 3.000 005 0.43 1057.5960 1057.5970 1.0 0.1
4.0 4.000 005 0.14 1421.3380 1421.3387 0.7 0.0
5.0 5.000 005 0.83 1795.4317 1795.4321 0.4 0.3
6.0 6.000 010 0.51 2183.5259 2183.5279 2.0 0.2
7.0 7.000 010 0.49 2590.2290 2590.2306 1.6 0.2
8.0 8.000 015 0.62 3021.6677 3021.6707 3.0 0.4
9.0 9.000 017 0.10 3486.4818 3486.4853 3.5 0.1

10.0 10.000 022 0.15 3997.7828 3997.7877 4.9 0.1
11.0 11.000 030 0.09 4577.5555 4577.5642 8.7 0.1
12.0 12.000 043 0.00 5268.7772 5268.7890 11.8 0.1
13.0 13.000 078 0.52 6183.6102 6183.6361 25.9 0.5
13.5 13.500 142 0.03 6847.2978 6847.3516 53.8 0.1
13.9 13.900 572 0.93 7784.8379 7785.0856 247.7 0.5
13.95 13.951 078 0.76 8039.8710 8040.3480 477.0 1.9
13.97 13.971 824 0.62 8210.0357 8210.8486 812.9 3.3

Table 3.4.: Results for spherical earth model, hstep = 5 km

calculation. Therefore, the results of the calculation performed with the
smaller height step size are significant.

3.4. Discussion of the results

The objective of this chapter was to investigate how the atmosphere influ-
ences the refraction of an electromagnetic signal propagating through it and
to clarify, if this influence has to be taken into account for the reflection point
calculation. For this purpose, the path length difference (PLdi f f ) between the
refracted and the non refracted signal is the determining factor. For all four
calculations the path length difference is below 2 m. Except for the spherical
earth model with hstep = 5 km. Since a higher height step size results less
precise calculations, the results of the calculation with hstep = 500 m are
significant. The maximum allowed signal path difference for the reflection
point calculation is 10 m (stated in section 1.4). Since 1.19 m is a tenth of
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its associated effects on the reflection point calculation

the signal path difference allowed, the impact of the influence of the atmo-
sphere on the refraction of an electromagnetic signal on the reflection point
calculation can only be clarified in relation to the signal path difference of
the results of the reflection point calculation.

Since the spherical earth model is the more realistic one, we will take a closer
look at it below. As stated in section 1.4, the satellite elevation angle above
the horizontal plane has to be within 0 ◦ to 15 ◦. A satellite elevation angle of
15 ◦ corresponds to 13.5 ◦ of signal emission angle and a satellite elevation
angle of 0 ◦ corresponds to the maximum signal emission angle for the
spherical earth model of 13.9805 ◦. This means, all signal emission angles of
the spherical earth model equal or higher than 13.5 ◦ are significant for the
reflection point calculation. For a height step size of 500 m the highest path
length difference for these angles is 1.1 m. Again, this is a tenth of the signal
path difference allowed. Therefore, the influence on the reflection point
calculation has to be clarified in relation to the signal path difference of the
results of the reflection point calculation. If the influence of the atmosphere
has to be taken into account for the reflection point calculation, a height
step size of 500 m for the atmosphere model is recommended.

Additionally it can be seen that neither for the flat earth nor the spherical
earth simulations, the superelevation of the signal emission angle for the
refracted signal has an significant impact on the satellite alignment. Because
in both simulation cases, the effect on θTre f racted is visible first in the fourth
decimal place, if at all.
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4. Methods for the reflection
point calculation

Chapter 4 deals with the calculation of the reflection point. More precisely,
different methods and approaches for the reflection point calculation are
presented and explained here. In addition, their advantages, disadvantages
and possible problems concerning the implementation are elaborated.

The chapter starts with sketches and a description of the problem to give a
better understanding of the reflection point calculation and the abbrevia-
tions used. It continuous with a brief description of four methods presented
by Jales (2012, chapter 4). Since he describes four possible methods with
increasing complexity, this serves as a good access to the topic. The second
section explains how the Binary Search algorithm can be used for the cal-
culation of the reflection point. In the third section the idea of calculating
the reflection point by the use of Ray Tracing is elucidated. Both Binary
Search and Ray Tracing are based on ideas of Dipl. Ing. Andreas Dielacher
(RUAG Space). Section four outlines how the reflection characteristic of
an ellipse could be used for the calculation and section five avows how a
calculation method by the use of Finite Elements could work. An inaccuracy
that affects many of the calculation methods is explained as penultimate
point. The chapter ends with a calculation addition that could cancel out
this inaccuracy.

4.1. Problem description and used abbreviations

In order to better understand the problem of the reflection point calculation
and to get an overview of the abbreviations used later on, the Figures 4.1 to
4.4 show sketches of the problem. These sketches do not use the WGS 84

earth model. Instead a spheroid with a semimajor axis of a = 10000 km
and a much higher flattening of f = 0.25 is used. For comparison, the

53



4. Methods for the reflection point calculation

WGS 84 has a flattening of f = 0.0034. The altitudes of the satellites are
hT = 10000 km and hR = 7500 km above the ”earth surface”. This is done to
point out the positions and distances necessary for the calculation. Because,
with the WGS 84 as earth model and the real satellite altitudes the sketches
would be narrow and unclear.

As stated in section 1.4, one of the objectives of this thesis is to find a method
which calculates the reflection point (Scalc) nearest to the true reflection point
(S). Which is the point on the earth surface, where an electromagnetic signal
leaving the transmitter satellite (T) is reflected in such a way to hit the
receiver satellite (R). Therefore at S the Law of Reflection (see section 2.4.1)
has to prevail. Although, Figures 4.1 to 4.4 do not show the WGS 84 earth
model, later on the model of the Earth shall be the WGS 84 (see section
1.4 and 2.3.2) with the centre of the Earth (M) located at (0, 0, 0) in Earth
Centered Earth Fixed (ECEF) coordinates. The absolute value of the vector
between the transmitter and the receiver satellite (

−→
TR) is denoted as the

direct signal path between transmitter and receiver satellite or as the signal
path of the non reflected signal (SPd = |−→TR|). The sum of the absolute value
of the vector between the transmitter satellite and the true reflection point
(
−→
TS) and the absolute value of the vector between the true reflection point

and the receiver satellite (
−→
SR) is the true earth-reflected signal path from

the transmitter to the receiver satellite (SPr = |−→TS|+ |−→SR|). The position
of the calculated reflection point is denoted as Scalc. With

−−−→
TScalc is the

vector between the transmitter satellite and the calculated reflection point
and

−−−→
ScalcR is the vector between the calculated reflection point and the

receiver satellite. The sum of
−−−→
TScalc and

−−−→
ScalcR is SPrcalc, the calculated earth-

reflected signal path from the transmitter to the receiver satellite. SPdi f f is
the difference between the true reflected signal path (SPr) and the calculated
reflected signal path (SPrcalc). For both, the true and the calculated reflection
point a surface normal exists. The surface normal of the true reflection point
is denoted as NS and the surface normal of the calculated reflection point as
NScalc. The vectors between the centre of the Earth (M) and either the true
or the calculated reflection point (S and Scalc) are

−→
MS and

−−−→
MScalc. SScalc is

denoted as the distance between the true and the calculated reflection point.
SScalc is the absolute value of the vector between the true and the calculated
reflection point (

−−−→
SScalc).

Note, all positions such as R, T or Scalc are points in ECEF coordinates.
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Differences between two positions / points such as
−−−→
SScalc = S − Scalc or

−→
TR = T − R are nominal vectors and therefore marked with an overhead
right arrow. To every vector exists an associated scalar which is the distance
between the two positions (e.g. SPd = |−→TR| or SScalc = |

−−−→
SScalc|). An excep-

tion are the surface normals (NS and NScalc). They are neither a position nor
a vector. They are a direction of a straight line and need a point like S or
Scalc to be well-defined (see section 2.2.1).
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Figure 4.1.: Outline sketch 1 of the reflection point calculation
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Figure 4.2.: Outline sketch 2 of the reflection point calculation
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Figure 4.3.: Outline sketch 3 of the reflection point calculation
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Figure 4.4.: Outline sketch 4 of the reflection point calculation
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4.2. Methods from Philip Jales

Jales (2012, chapter 4.4) describes four different methods to calculate the
reflection point for a GNSS-R mission. The description starts with an ap-
proximation using the spherical earth model. It continuous with a quasi
spherical earth approach followed by a description of the calculation for the
ellipsoidal earth model (WGS 84). Finally, an optimisation of the ellipsoidal
earth model by the use of polar coordinates is described.

Jales uses the ellipsoidal earth model (see section 4.2.3) as reference solution
to allow comparison with the spherical and the quasi-spherical earth model.
Therefore, he performed Monte-Carlo simulations with a random receiver
location (R) at an alltitude of 700 km and a random transmitter location (T)
at an alltitude of 20200 km. The results of the Monte-Carlo simulations are
not stated in the following description.

4.2.1. Spherical Earth

For the description of the spherical earth approach Jales refers to Martin-
Neira (1993, chapter 2). The description of Martin-Neira is not explicitly
stated here. In short, the spherical earth model can transform the reflection
point calculation into a 2D problem that has to fulfil the Law of Reflection
(see section 2.4.1). To calculate the reflection point Scalc a quartic polynomial
has to be solved.

According to [Jales, 2012, chapter 4.4.1] the maximum deviation between the
real and the calculated reflection point is SScalc < 25 km and the maximum
signal path difference is SPdi f f < 4 km. Obviously, this model does not
achieve the required accuracy of SPdi f f < 10 m. Therefore a more accurate
model than the spherical earth model will be needed.

4.2.2. Quasi-Spherical Earth

In Jales (2012, chapter 4.4.2) a more accurate model named the quasi-
spherical earth approach is described. For the quasi-spherical earth approach
the WGS 84 model of the Earth (see 2.3.2) is used. Figure 4.5 shows how the
quasi-spherical earth approach works. In the left picture the coordinates of
the transmitter (T) and the receiver (R) are given in correct relation to the
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4.2. Methods from Philip Jales

Figure 4.5.: Quasi-spherical earth approach, Jales, 2012

WGS 84 model of the Earth. In the first step a coordinate transformation
to scale down the WGS 84 ellipsoid to a unit sphere is applied (see Figure
4.5 transformation from the left to the middle picture). The transformation
is done independently for the polar and the equatorial axes. Due to the
transformation the coordinates of the transmitter and the receiver are scaled
into new (primed) coordinates equivalently to the model of the Earth. As
second step the calculation of the reflection point is performed similar to
the spherical earth approach described in Martin-Neira (1993, chapter 2) (4.5
middle picture). Finally the inverse of the previously performed coordinate
transformation is applied (see Figure 4.5 transformation form the middle to
the right picture). Thus the unit sphere and the positions of the satellites
are scaled back to the WGS 84 model and the related coordinates of the
satellites.

According to Jales (2012, chapter 4.4.2) the maximum deviation between the
real and the calculated reflection point is SScalc < 4 km and the maximum
signal path difference is SPdi f f < 15 m. Therefore, the quasi-spherical earth
approach does not achieve the required accuracy of SPdi f f < 10 m.

4.2.3. Ellipsoidal Earth

As stated in Jales (2012, chapter 4.4.3), for the ellipsoidal Earth the calculation
of the reflection point is a minimization problem of SPrcalc which is subjected
to the surface of the WGS 84. Philip Jales describes the solution of this
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problem as follows.

minimise: f (Scalc) = |Scalc − T|+ |R− Scalc| = SPrcalc (4.1)

subjected to: g(Scalc) =
S2

xcalc
a2 +

S2
ycalc

a2 +
S2

zcalc
b2 (4.2)

Where:
Sxcalc x coordinate of Scalc
Sycalc y coordinate of Scalc
Szcalc z coordinate of Scalc

According to Jales (2012, chapter 4.4.3), there is no analytical way to solve
this non linear optimisation problem with non linear constraints, although
convex optimization methods are able to solve this problem. Gleason and
Gebre-Egziabher (2009, appendix 16A on the enclosed DVD, includes MAT-
LAB code) show a method, based on the method of steepest descent, to
solve the problem. Jales refers to this method, although he mentions serious
short comings.

The method of Gleason and Gebre-Egziabher (2009, appendix 16A on the
enclosed DVD) starts with an initial estimate of the reflection point Sn. Based
on Sn, the true reflection point is iteratively calculated. Every improved
reflection point S′ for every iteration step is found along the direction of the
3D gradient of the path length function f (S) and has to be constraint to the
earth surface. The iteration procedure is as follows. For better understanding,
see Figure 4.6.

1. Partial derivation of f (S):

∇ f (Sn) =
(Sn − T)
|Sn − T| −

(R− Sn)

|R− Sn|
(4.3)

2. Calculation of new unconstrained estimate S′ in direction of the devia-
tion:

S′ = Sn − K ∗ ∇ f (Sn) (4.4)

3. Constrain S′ to the earth surface by use of the radius R(S′):

Sn+1 =
S′

|S′| ∗ R(S′) (4.5)

Where:
K is the update gain
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Figure 4.6.: Ellipsoidal earth approach with exaggerated earth flattening, Jales, 2012

The calculation is continued until the difference between S and S(n + 1) is
within a defined accuracy. The last Sn+1 is the calculated reflection point
Scalc

Jales (2012, chapter 4.4.3) describes two major problems with this method.
The first concerns the gain K and is already mentioned in Gleason and
Gebre-Egziabher (2009, appendix 16A on the enclosed DVD). The optimum
of K varies with the position of the satellites and the distance between
the true and the estimated reflection point. Therefore the gain should be
adjusted for every iteration step to achieve short calculation times. The
second problem arises because of the difference between the direction of the
earth radius and the surface normal for an spheroid. The problems are not
further examined here. For more information refer to Jales (2012, chapter
4.4.3).

The accuracy of the method is given with SPdi f f < 10 m.

4.2.4. Optimisation in Polar Coordinates

According to Jales (see 2012, chapter 4.4.4) the method Ellipsoidal Earth can
be improved by the use of polar coordinates instead of ECEF coordinates.
He describes the advantage of the use of polar coordinates as a complexity
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Figure 4.7.: Ellipsoidal earth approach with polar coordinates, Jales, 2012

reduction. By the use of polar coordinates (see Figure 4.7) the problem
becomes an unconstrained minimisation problem. For the calculation of the
path length the coordinates of S are converted back to the Cartesian system
similar to section 2.3.3.

S(ϕ, λ) =
1√

a2 ∗ cos2(ϕ) + b2 ∗ sin2(ϕ)
∗

a2 ∗ cos(ϕ) ∗ cos(λ)
a2 ∗ cos(ϕ) ∗ sin(λ)

b2 ∗ sin(λ)

 (4.6)

Thereby the problem has been changed into an unconstrained minimisation
problem.

minimise f (S(ϕ, λ)) = |S(ϕ, λ)− T|+ |R− S(ϕ, λ)| (4.7)

What is an easier problem to solve.

4.2.5. Feasibility

The method Spherical Earth described in section 4.2.1 is an rather easy to
implement method but does not fulfil the accuracy required. The same
applies for the method Quasi-Spherical Earth described in section 4.2.2.
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The Ellipsoidal Earth method and its optimisation in polar coordinates de-
scribed in section 4.2.3 and 4.2.4 seem to deliver satisfying results. Since
Gleason and Gebre-Egziabher (2009, appendix 16A on the enclosed DVD)
deliver a working MATLAB code for the Ellipsoidal Earth method (see section
4.2.3), this method is recommended for further investigation.

4.3. Binary Search for reflection point calculation

The method Binary Search for reflection point calculation (from now on
called BS) is based on the basic Binary Search algorithm as described in
section 2.4.2. In case of the reflection point calculation the sorted array of
elements consists of all points along the distance

−→
TR. According to the Law

of Reflection (section 2.4.1), at the reflection point the angle of incidence θin
has to be equal to the emergent angle θre f (e.g. see Figure 4.8). For this reason,

BS searches along
−→
TR for the point PBS whose satellite sub-point (Scalc) fulfils

the Law of Reflection (see Figure 4.8). Note, although PBS is no satellite, the
point on the surface of the Earth which surface normal hits PBS is called the
satellite sub-point of PBS. This means, the Law of Reflection is the stopping
criteria for BS. Since there is no easy way to deduce a suitable resolution for
−→
TR out of the stopping criteria, the maximum number of iterations BS could
require is calculated for an extreme case. Assumed, hT = 20, 000 km and
hR = 600 km, |−→TR| = SPd = 26, 000 km. For an assumed resolution of 1 mm,
according to equation 2.54 the maximum number of iterations BS requires
to find the target element is

log2(26× 109) = 34.6→ 35 iterations.

The problem to solve is the calculation of the satellite sub-point (Scalc).
Therefore the point of intersection of the vector

−−−→
MPBS and the earth surface

has to be calculated. The intersection point is calculated according to section
2.2.4. Figure 4.8 shows a scheme for the method BS for a spherical Earth
and Figure 4.9 shows a scheme for the method BS for a spheroid. As can
be seen in Figure 4.8, for the spherical Earth the vector

−−−→
MPBS is equal

to the surface normal NScalc. Hence, the Law of Reflection is completely
fulfilled. For the spheroid on the other hand, the vector

−−−→
MPBS is not equal

to the surface normal NScalc. This means, the calculated reflection point
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does not completely fulfil the Law of Reflection. Although, equation 2.53 is
fulfilled, the incident beam, the reflected beam and the surface normal are
no longer in the same plane and therefore Scalc is no true reflection point in
the mathematical sense. To obtain a more precise calculation with BS for a
spheroid, it will be extended with a more precise calculation of the satellite
sub-point as described in section 4.8.

The idea to use Binary Search to calculate the reflection point is from Dipl.
Ing. Andreas Dielacher (RUAG Space).

4.3.1. Feasibility

The method BS as described above is an easy to implement reflection point
calculation method. According to the rough calculation, BS will require only
a small number of iterations to perform the reflection point calculation. For
the spherical earth model this method should be able to deliver the true
reflection point, within a small tolerance necessary as stopping criteria for
the numerical calculation. BS for a spheroid as described above, is not able to
calculate the reflection point in the sense of its mathematical definition (see
section 4.7). Therefore the calculated reflection point could be inaccurate.
However, this inaccuracy will strongly depend on the model of the Earth
selected for the calculation. Since the WGS 84 is used as earth model, the
method BS is recommended for further investigation.

4.4. Ray tracing

To calculate the reflection point Scalc a signal ray leaving the transmitter
satellite T under a defined signal emission angle θT is assumed. The point
of intersection of the signal ray and the earth surface is assumed to be the
reflection point Scalc. If the emitted signal ray does not intersect with the
earth surface, a new signal ray has to be assumed. According to the Law
of Reflection (section 2.4.1) the angle θin of the incoming ray

−−−→
TScalc and the

angle θre f of the reflected ray
−−−→
ScalcR have to be equal. If

−−−→
ScalcR with θre f = θin

hits the receiver satellite, the reflection point has been found. If the reflected
ray doesn’t hit the receiver satellite, a new signal emission angle has to be
selected and the calculation has to be repeated. The idea to use Ray tracing
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Figure 4.8.: Sketch of BS for a spherical Earth
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Figure 4.9.: Sketch of BS for a spheroid with the same parameters as figure 4.1
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to calculate the reflection point is from Dipl. Ing. Andreas Dielacher (RUAG
Space).

4.4.1. Feasibility

Although the ray tracing method sounds simple, the determination of the
directioni of the signal ray is challenging. Theoretically the ray leaving the
transmitter satellite can point in any direction around the satellite. The
optimal direction of the emitted signal ray is in the plane defined by the
Law of Reflection. Therefore, the true reflection point (S) has to be known.
Since the reflection point is the thing to be looked for this is not possible
and other methods have to be used. One method would be to point the
ray at the centre of the Earth. This method leads to a similar calculation
method as BS (described in section 4.3) with the difference that the signal
emission angle is changed and not PBS. Therefore, this method is not further
investigated.

Another and probably more precise method to obtain the direction is to
pre calculate the satellite sub-point as described in section 4.8 and vary the
signal emission angle within the plane defined by T, R and one of the two
satellite sub-points.

4.5. Reflection ellipse method

This method uses the property of an ellipse that each beam which leaves at
one focus T of the ellipse is reflected from the circumference of the ellipse
to the other focus R. As can be seen in Figure 4.10 the angle of incidence θin
at the point of reflection S is equal to the emergent angle θre f at the point
of reflection. Therefore, S is a reflection point. The idea is based on Olivik
et al. (2005).

This property of an ellipse can be used to calculate the reflection point.
Assumed that one focus of the ellipse is the transmitter and the other is the
receiver, a spheroid can be generated. In Figure 4.11 it is clear to see that
the reflection point is the point where the generated spheroid touches the
earth model spheroid. To calculate the parameters necessary to construct
the spheroid out of the satellite positions equations 2.15 to 2.19 are used.
The equations shows that either the path length of the reflected signal SPr
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or the semimajor or the semiminor axis has to be known to calculate the
satellite spheroid. Since these parameters are not given, the problem has to
be solved numerically. The set of equations to be solved is received out of
equation 2.29 to 2.32 and is given below.

aS · cos(φS) · cos(λS) = aE · cos(φE) · cos(λE) (4.8)
aS · cos(φS) · sin(λS) = aE · cos(φE) · sin(λE) (4.9)

bS · sin(φS) = bE · sin(φE) (4.10)

With:

bS =
√

a2
S − e2

S

eS =
T − R

2

aS =
SPr

2

Where the indices of the variable indicate:
S indicates parameters of the satellite spheroid
E indicates parameters of the earth spheroid

Equations 4.8 to 4.10 describe a problem consisting of a set of three equations
with five unknowns. Such a problem cannot be solved analytically, but only
numerically by variation of unknowns. Since the angles of the satellite
spheroid and the angles of the earth spheroid are not coherent, a numerical
solution has to vary three of the five unknowns (e.g. φS, φE and aS).

4.5.1. Feasibility

The reflection ellipse method would be able to calculate the true reflection
point, with only the calculation accuracy as a deviation. This is possible,
because there is only one point where the earth spheroid and the satellite
spheroid can touch. Solving the set of equations for the reflection ellipse
method numerically is possible. However, since all five unknowns have to
be varied, it can be predicted that this method will take a lot of calculation
time and computing power. Therefore, this method is likely to be unusable
on-board a satellite and will therefore not be further investigated. To speed
up the method the conversion into a 2D problem would be an interesting
approach. However, to transform it into 2D, the plane including the satellite
positions and the reflection point has to be known. Of course, this plane can
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Figure 4.10.: Reflection Ellipse, (Wikimedia Commons, 2004, File: Propriete reflexion ellipse
tangente bissectrice.svg)

Figure 4.11.: Intersection of spheroid generated by satellite positions and WGS 84 spheroid
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not be known. Therefore an approach like a plane including the satellite
positions and the centre of the Earth is necessary. In this case again it
becomes a similar problem as BS for a spheroid.

Olivik et al. (2005) describe three approaches to solve the reflection ellipse
problem without a variation of five variables. Since their approaches requires
SPr as known parameter and SPr can only be known when Strue is known,
their approaches seem not useful for a satellite mission.

4.6. Finite elements method

The idea of the finite elements (FE) method is to model the WGS 84 model
of the Earth out of finite number of single square surface elements of a
defined size (see Figure 4.12) and calculate the surface normal (see section
2.2.3) for each of these elements. Only the elements at the equator have the
defined size and the elements become smaller towards the poles. The goal
is to find the element which reflects the ray from the transmitter satellite
to the receiver satellite within a certain deviation. This element is called
the reflecting element. There are several different methods to determine the
reflecting element by the use of this model. One method called ”FE Ray
tracing” is described below.

4.6.1. FE Ray tracing

First a straight line between the transmitter and the receiver satellite is
drawn. Any element whose surface normal intersects the link line within a
defined deviation can be the reflecting element. Figure 4.13 shows a scheme
of the square elements, their surface normals, the two satellites and the link
line. The surface elements which could be the reflecting element are marked
with a red surface normal. To determine the reflecting element check for
which element θin is equal to θre f within a certain deviation.

4.6.2. Feasibility

Although the FE method described in this section looks promising and easy
to calculate it has a big disadvantage. To guarantee a sufficient accuracy for
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Figure 4.12.: FE model of the Earth

Figure 4.13.: Scheme of ray tracing for FE modelled Earth
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the reflection point calculation the square elements have to be rather small.
For example, if the elements are 100 m× 100 m, the model would consist of
1, 6 ∗ 1011 elements. To save all the node coordinates of a model with this
element size would require more than 1100 GB of storage space. Therefore
a quite well equipped computer is required to calculate the model of the
Earth. That is why it is better to begin with only a view big elements and
check which one of them includes the reflection point. Than model the big
element including the reflection point out of smaller elements and check
again which one of these elements does include the reflection point. This is
done until the model size gets small enough to include the reflection point
within a sufficient deviation.

4.7. The uncertainty of performing the reflection
point calculation in the plane defined by T, R
and M

Although it has been mentioned in several sections above (e.g. section 4.3),
once more the uncertainty of performing the reflection point calculation
in the plane including the satellite positions and the centre of the Earth is
pointed out in this section.

According to the Law of Reflection (see section 2.4.1), the incident ray
−→
TS, the reflected ray

−→
SR and the surface normal at the point of reflection

NS have to lie in the same plane. Therefore, the position of the receiver
satellite and the position of the transmitter satellite have to lie in the same
plane as the surface normal of the reflection point does. For all methods,
where the surface normal of the reflection point is not included in the
calculation plane (spanned by T, R and S), the calculated reflection point
(Scalc) is not a reflection point in the mathematical sense. Figure 4.14 and
4.15 show a scheme including the satellite positions, the calculated and the
true reflection point and the calculation plane. Especially Figure 4.15 shows
that the calculation plane does not include the surface normal NScalc. The
reflection point calculation in these figures was done with the BS method.
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defined by T, R and M

Figure 4.14.: Scheme 1 of the calculation plane
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Figure 4.15.: Scheme 2 of the calculation plane
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4.8. Method enhancement with the calculation of the satellite sub-point

4.7.1. Influence on calculation

Although, the calculated reflection point is no reflection point in the technical
sense, it has to be said, that the inaccuracy between S and Scalc strongly
depends on the deviation of the spheroid from the sphere. More precisely
on the flattening (see equation 2.17) of the spheroid. The bigger the value
of the flattening is, the bigger is the inaccuracy of the calculated reflection
point. Therefore, it is necessary to examine for each problem whether and to
what extent the calculation is influenced by the selected calculation plane.

4.8. Method enhancement with the calculation of
the satellite sub-point

As mentioned in section 4.7, some of the methods described in this chapter
have an inaccuracy due to the selected calculation plane. This inaccuracy can
be minimised or even eliminated by using the satellite sub-point to define
the calculation plane. The satellite sub-point, is the point on the surface
of the Earth (or the earth model) whose surface normal hits the satellite
orbiting the Earth (or an imaginary point above the earth surface).

According to Kelso (2014) the calculation of a satellite sub-point is given
below as example for RSP. First the longitude λ of the satellite is calculated
with equation 4.11.

λ = arctan
(

yR

xR

)
(4.11)

Secondly the geocentric latitude φ of the satellite is calculated with equation
4.12.

φ = arctan

 zR√
x2

R + y2
R

 (4.12)

Starting with ϕi = φ the geodetic latitude ϕ of the satellite sub-point is
calculated iteratively by the use of the following equations.

C =
1√

1− ε2 · sin2 ϕi

(4.13)

ϕ = arctan
(

zR + a · C · ε2 · sin ϕi

R

)
(4.14)
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4. Methods for the reflection point calculation

With:
R =

√
x2

R + y2
R

Equation 4.13 and 4.14 are repeated until |ϕ− ϕi| is within a predefined
accuracy. Before each repetition ϕi is set to the previously calculated ϕ.
If |ϕ − ϕi| is within the predefined accuracy, λ and ϕ are the geodetic
longitude and the latitude of the satellite sub-point and can be transformed
into Cartesian coordinates a stated in section 2.3.3.

The method from Kelso (2014) as described above calculates the true satellite
sub-point within the calculation accuracy. The question is, how much the
satellite sub-point calculation can improve the methods described above.
Figure 4.16 shows an example, where the satellite sub-points for T and
R are calculated. As can be seen, a calculation plane defined by the two
satellite positions R and T and the satellite sub-point RSP is closer to the
true reflection point than the calculated reflection point Scalc. For reference,
Scalc was calculated with BS within the less precise calculation plane shown
in the Figure 4.15. As a result, the method BS, for example, can be improved
simply by defining a more precise calculation plane by using the satellite
sub-point calculation. Therefore, the enhancement of BS with the satellite
sub-point calculation is recommended for further investigation.
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4.8. Method enhancement with the calculation of the satellite sub-point

Figure 4.16.: satellite sub-point and calculation plane
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5. Evaluation, results and
discussion for three reflection
point calculation methods

Chapter 4 introduced several, partly very different methods to calculate the
reflection point. The following methods are evaluated in this chapter.

• Ellipsoidal Earth (henceforward: SG), described in section 4.2.3, MAT-
LAB code from Gleason and Gebre-Egziabher (2009)
• Binary Search for an ellipsoid (henceforward: BS), described in section

4.3
• Binary Search for a spheroid enhanced with satellite sub-point calculation

(henceforward: BSSSP), described in section 4.3 and 4.8

The method SG was selected because Gleason and Gebre-Egziabher (2009)
already deliver a verified MATLAB code. Therefore, the evaluation consists
of at least one correctly working implementation. Which is a good reference
for the other implemented methods. The implementation of the method
BS was recommended by Dipl. Ing. Andreas Dielacher. It is his idea and
has already been fundamentally tested by him. Hence, it should deliver
satisfactory results and was selected as second method. The method BSSSP
is an enhancement of the method BS and was implemented to evaluate the
benefit of an accuracy enhancement compared to an possible increase of
calculation time due to an additional iterative calculation.

The method BS and BSSSP calculate the reflection point according to the
method Binary Search (see section 4.3). SG calculates the reflection point ac-
cording to the method Ellipsoidal Earth (see section 4.2.3). Because of the two
different methods, there is a serious difference in the accuracy/stopping cri-
teria. SG is a minimization problem that stops when the difference between
two reflection points calculated in successive iterations is less than the given
accuracy. BS and BSSSP search for the point for which the Law of Reflection
is fulfilled with the given accuracy. Therefore, the accuracy criteria of SG
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5. Evaluation, results and discussion for three reflection point calculation methods

and BS/BSSSP cannot be compared. For this reason, section 5.2.1 and 5.2.2
attempt to bring SG, BS and BSSSP to a comparable accuracy.

In the list above, BS is described as method working for an ellipsoid. Its
enhancement BSSSP is described as method working for a spheroid. An
ellipsoid has three semi axes. If all three semi axes are different, it is called
ellipsoid. If two of the three semi axes are equal it is called ellipsoid of
revolution or spheroid. And, if all three semi axes are equal it is a sphere.
Therefore, the WGS 84 is a spheroid (see section 2.2.1 and 2.3.2). The method
BS works for both an ellipsoid and a spheroid, whereas the method BSSSP
only works for a spheroid. This is because, for an ellipsoid the satellite
sub-point calculation can not be performed.

Chapter 5 is divided into three main sections. Section 5.1 describes how the
evaluation is carried out. Section 5.2 states and describes the results of the
evaluation and section 5.3 discusses the stated results.

5.1. Evaluation

This section describes how the evaluation of the three methods listed above
happens. The evaluation is done with regard to the following parameters

• SScalc, distance between the true and the calculated reflection point
• SPdi f f , difference between the signal path of the signal reflected at the

true reflection point and the signal path of the signal reflected at the
calculated reflection point (SPr − SPrcalc)
• Number of iterations necessary to find the reflection point
• Calculation time

and bound to the requirements stated in section 1.4. For a better overview,
the requirements are listed once more below.

Requirements:

• snapshot of the measurement constellation with the WGS 84 as earth
model
• altitude of the transmitter satellite, hT = 20, 000 km
• altitude of the receiver satellite, hR = 600 km.
• satellite elevation angle, 0 ◦ < ele < 15 ◦.
• maximum signal path difference, SPdi f f < 10 m.
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5.1. Evaluation

• as little calculation time as possible

To receive all the parameters listed above the knowledge of the true reflection
point (S) is necessary. Therefore, Monte Carlo simulations (see section
2.4.3) with true reflection points randomly distributed over the northern
hemisphere have been performed. The MATLAB code for the Monte Carlo
simulation is given in appendix A.3. Since the WGS 84 is symmetrical
at the equator plane, it is enough to perform the evaluation only on one
hemisphere. As symmetrical satellite constellations would appear on the
northern and the southern hemisphere. This allows the simulation of a larger
number of reflection points with the same validity as for the whole Earth,
but with less computing time. Figure 5.1 shows the distribution of 1, 000
true reflection points over the northern hemisphere. The well distributed
coverage of the northern hemisphere is good to see. Out of the position of the
true reflection point a measurement constellation for the transmitter satellite
(T) and the receiver satellite (R) is calculated. The satellite positions for the
measurement constellation are random for each reflection point. Although
the constellation is random, it has to fulfil the requirements mentioned
above and the Law of Reflection (see section 2.4.1). The MATLAB code
to calculate the measurement constellation is given in appendix A.3.4. To
calculate the measurement constellation the following mathematical basics
are required.

• a coordinate transformation form geodetic to ECEF coordinates. de-
scribed in section 2.3.3, MATLAB code in appendix A.3.8

• the calculation of the surface normal on a point on the WGS 84, de-
scribed in section 2.2.3, MATLAB code in appendix A.3.7

• the calculation of the intersection of a straight line and an ellipsoid,
described in section 2.2.4, MATLAB code in A.3.6

For all measurement constellations the calculated reflection point (Scalc) is
calculated with SG, BS and BSSSP. For how the methods work, refer to
chapter 4. The MATLAB code for SG is from Gleason and Gebre-Egziabher
(2009, appendix 16A on the enclosed DVD). The reference also includes
a more detailed description. Since the code has been modified slightly, it
is also given in appendix A.3.1. The changes affect mainly the transfer
parameters of the function. So, that all required parameters are passed to
the main function. The MATLAB code for BS is given in appendix A.3.2
and the MATLAB code for BSSSP is given in appendix A.3.3. BS require the
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5. Evaluation, results and discussion for three reflection point calculation methods

Figure 5.1.: Distribution of the true reflection points S over the northern hemisphere

mathematics to calculate the intersection of a straight line and an ellipsoid
and BSSSP require the mathematics to calculate the precise satellite sub-point
(see section 4.7.1). Unlike the example given in section 4.7.1, the satellite
sub-point is not calculated for one of the two satellites (T or R). Instead,
the satellite sub-point of PBS is calculated. Since, despite the calculation
accuracy, the satellite sub-point calculation will calculate the true satellite
sub-point for PBS, the Law of Reflection (see section 2.4.1) will be completely
fulfilled for the reflection point calculated with BSSSP. This means, θin = θre f
and the incident beam, the reflected beam and the surface normal of the
calculated reflection point will be in the same plane. Therefore, BSSSP can
be expected to approach the true reflection point down to the calculation
accuracy.

5.2. Results

In this section the results of the Monte Carlo simulations for different num-
bers of simulated reflection points and different accuracies are presented
and described.
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5.2. Results

The parameters that can be varied for the different simulations are:
npoints the number of calculated reflection points
maxit the maximal number of iterations a method is allowed to

need for the reflection point calculation
accuracySG the accuracy / stopping criteria for the method SG
accuracyBS the accuracy / stopping criteria for the method BS
accuracyBSSSP the accuracy / stopping criteria for the method BSSSP

Note that with latitude and longitude always the geodetic latitude and
longitude is meant.

5.2.1. Overview of performance

The first simulation is intended to provide an overview of the performance
of the three methods. This is done to compare the influence of accuracySG to
accuracyBS and accuracyBSSSP on the particular calculation method. Since,
as stated at the beginning of this chapter, it is not possible to compare
them. Therefore only a small number of reflection points is calculated. This,
however, with a large number of maximal iterations and an assumed high
accuracy.

Parameters:
npoints = 100
maxit = 1× 105 iterations
accuracySG = 0.05 m
accuracyBS = 1× 10−4 rd
accuracyBSSSP = 1× 10−4 rd

Distance between the true and the calculated reflection point, SScalc

The Figures 5.2, 5.3 and 5.4 show the distance between the true and the
calculated reflection point related to either the longitude or the latitude
of the true reflection point or the elevation of the satellites. It is easy to
see, that SG has the weakest performance and that BSSSP is better than
BS. Figure 5.4 shows that for elevations above ≈ 4 ◦ SG is able to deliver
the same accurateness as BS. As can be seen in Figure 5.2, no method has
any longitude dependency. Figure 5.3 shows that BS has a small latitude
dependency. SScalc is shortest at the poles and the equator. In Figure 5.4 the
poor performance of SG for small elevations can be seen.
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5. Evaluation, results and discussion for three reflection point calculation methods

Figure 5.2.: SScalc vs. longitude, npoints = 100, maxit = 1× 105 iterations, accuracySG =

0.05 m, accuracyBS = accuracyBSSSP = 1× 10−4 rd

Figure 5.3.: SScalc vs. latitude, npoints = 100, maxit = 1 × 105 iterations, accuracySG =

0.05 m, accuracyBS = 1× 10−4 rd
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5.2. Results

Figure 5.4.: SScalc vs. elevation, npoints = 100, maxit = 1 × 105 iterations, accuracySG =

0.05 m, accuracyBS = 1× 10−4 rd

Signal path difference, SPdi f f

The Figures 5.5, 5.6 and 5.7 show the signal path difference between SPrcalc
and SPr related to either the longitude or the latitude of the true reflection
point or the elevation of the satellites. SPdi f f shows the same dependencies
with the same reason for longitude and latitude as SScalc does. In Figure
5.7 it can be seen, that SG has a much higher signal path difference for low
elevations similar to its SScalc shown in Figure 5.4. Both, SG and BS show
an increasing signal path difference for increasing elevations. BSSSP shows
hardly any signal path difference at all.

Number of iterations

The Figures 5.8, 5.9 and 5.10 show the number of iterations each method
required for the calculation of each reflection point related to either the
longitude or the latitude of the true reflection point or the elevation of
the satellites. It is good to see, that BSSSP has no dependency at all and
that BS and BSSSP require much less iterations to calculate the reflection
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5. Evaluation, results and discussion for three reflection point calculation methods

Figure 5.5.: SPdi f f vs. longitude, npoints = 100, maxit = 1× 105 iterations, accuracySG =

0.05 m, accuracyBS = accuracyBSSSP = 1× 10−4 rd

Figure 5.6.: SPdi f f vs. latitude, npoints = 100, maxit = 1 × 105 iterations, accuracySG =

0.05 m, accuracyBS = accuracyBSSSP = 1× 10−4 rd
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5.2. Results

Figure 5.7.: SPdi f f vs. elevation, npoints = 100, maxit = 1× 105 iterations, accuracySG =

0.05 m, accuracyBS = accuracyBSSSP = 1× 10−4 rd

point than SG. Figure 5.10 shows the reason for bad performance of SG for
small elevations. For elevations lower than ≈ 5 ◦ SG needs the maximum
number of iterations. Therefore the results of the performance overview are
no longer evaluated because SG can not be compared reasonably.

5.2.2. Identification of working parameters for SG

Since SG was the only method which did not perform well in the perfor-
mance overview, this section is used to identify a working combination
of maxit and accuracySG for SG. Working means, all reflection points can
be calculated without reaching the maximum number of iterations and
therefore SG can reach the determined accuracy. To identify the working
parameters several simulations with different maxit and accuracySG are
performed and evaluated with respect to the number of iterations required.
Since BS and BSSSP performed well for the selected parameters and Figure
5.10 shows that for npoints = 100 the reflection points are well distributed
over the elevation angles and SG shows bad performance for low elevations,
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5. Evaluation, results and discussion for three reflection point calculation methods

Figure 5.8.: Number of iterations vs. longitude, npoints = 100, maxit = 1× 105 iterations,
accuracySG = 0.05 m, accuracyBS = accuracyBSSSP = 1× 10−4 rd

Figure 5.9.: Number of iterations vs. latitude, npoints = 100, maxit = 1 × 105 iterations,
accuracySG = 0.05 m, accuracyBS = accuracyBSSSP = 1× 10−4 rd
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5.2. Results

Figure 5.10.: Number of iterations vs. elevation, npoints = 100, maxit = 1× 105 iterations,
accuracySG = 0.05 m, accuracyBS = accuracyBSSSP = 1× 10−4 rd

the number of reflection points and the accuracy of BS and BSSSP are kept
from section 5.2.1.

Fixed parameters for section 5.2.2:
npoints = 100
accuracyBS = 1× 10−4 rd
accuracyBSSSP = 1× 10−4 rd

1st try

For the 1st try the number of iterations has been increased. Since the
reflection point calculations of SG which did not require the maximal
number of iterations from section 5.2.1 showed an accurateness comparable
to that of BS, accuracySG from section 5.2.1 is used.

Variable parameters for 1st try:
maxit = 1.5× 105 iterations
accuracySG = 0.05 m
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5. Evaluation, results and discussion for three reflection point calculation methods

Figure 5.11.: Number of iterations vs. elevation, npoints = 100, maxit = 1.5× 105 iterations,
accuracySG = 0.05 m, accuracyBS = accuracyBSSSP = 1× 10−4 rd

Figure 5.11 shows the number of iterations related to the elevation of the
satellites for the parameters stated above. It is obvious at first sight, that these
parameter are no working combination for SG, since SG reaches the maxi-
mum number of iterations for elevations lower than ≈ 4 ◦. Hence another
try with a higher number of iterations or lower accuracy is necessary.

2nd try

Since the 1st try did not lead to a working combination of the parameters
for SG, for the 2nd try the accuracy for SG is lowered. A lower accuracy
means a higher number for accuracySG. Following are the parameters for
SG for the 2nd try.

Variable parameters for 2nd try:
maxit = 1.5× 105 iterations
accuracySG = 0.5 m

Figure 5.12 again shows the number of iterations related to the elevation of
the satellites. It is good to see, that for an accuracy lowered by the factor of
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5.2. Results

Figure 5.12.: Number of iterations vs. elevation, npoints = 100, maxit = 1.5× 105 iterations,
accuracySG = 0.5 m, accuracyBS = accuracyBSSSP = 1× 10−4 rd

10 more reflection point calculations get along with the number of iterations.
However, SG needs much more iterations than BS or BSSSP. This can be
seen in Figure 5.13 which is already zoomed in and BS and BSSSP are still
on the zero line. According to the calculated extreme case in section 4.3,
BS and BSSSP will require a maximum of 35 iterations. SG needs at least
≈ 10, 000 iterations with the parameters selected above.

Lets have a look at the signal path difference for these parameters (Figure
5.14) and see if the accurateness of SG with the selected parameters is
comparable to BS and BSSSP. Similar to SPdi f f in section 5.2.1 SG has
problems with low elevations. For the lower accuracy though, only with
very small ones. The values of SPdi f f over the whole range of elevation
show clearly, that the accurateness of SG is about 10 m worse than the one
of BS. SG has an accurateness of ≤ 25 m and BS has an accurateness of
SPdi f f < 15 m. Therefore SG and BS do not achieve the required accurateness
of SPdi f f < 10 m, as stated at the beginning of this chapter. BSSSP on the
other hand is easily within the required accurateness.

For the sake of completeness lets have a look at the calculation time. Figure
5.15 shows the calculation time for each reflection point related to the
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5. Evaluation, results and discussion for three reflection point calculation methods

Figure 5.13.: Number of iterations vs. elevation zoomed in, npoints = 100, maxit = 1.5×
105 iterations, accuracySG = 0.5 m, accuracyBS = accuracyBSSSP = 1× 10−4 rd

Figure 5.14.: SPdi f f vs. elevation, npoints = 100, maxit = 1.5× 105 iterations, accuracySG =

0.5 m, accuracyBS = 1× 10−4 rd
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5.2. Results

Figure 5.15.: Calculation time vs. elevation, npoints = 100, maxit = 1.5 × 105 iterations,
accuracySG = 0.5 m, accuracyBS = 1× 10−4 rd

elevation of the satellites. Since the calculation time of SG for small elevations
goes up to ≈ 33 s, Figure 5.15 is already zoomed in for better comparison.
Thus, no values of SG are displayed for elevations lower than ≈ 4.5 ◦. It is
clear at first sight, that SG can not compete with BS or BSSSP concerning
the calculation time. Since SG does not achieve the required accurateness
and a higher accuracySG would require more iterations and thus an even
longer calculation time, it can be said here that SG performs worse than BS
and BSSSP.
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5.2.3. BS vs. BSSSP

In section 5.2.2 it turns out that the accurateness of SG cannot compete with
BS and BSSSP for small elevations and only with a much high number of
iterations and much longer calculation time for large elevations. Therefore,
SG is no longer evaluated. This section takes a closer look at the perfor-
mance of BS and BSSSP. To obtain a statistically more significant statement,
the number of calculated reflection points was increased to 1, 000. Since
BS and BSSSP should require a maximum of 35 iterations, the maximum
number of iterations allowed was decreased to 1, 000. The high number
of 1, 000 iterations was selected in order to better investigate any outliers
that might occur. The accuracy for BS was kept the same. The accuracy for
BSSSP has been reduced because Figure 5.14 shows that BSSSP is much
more accurate than BS.

Parameters for the comparison of BS and BSSSP:
npoints = 1, 000
maxit = 1, 000 iterations
accuracyBS = 1× 10−4 rd
accuracyBSSSP = 1× 10−3 rd

Distance between true and calculated reflection point, SScalc

Figures 5.16, 5.17 and 5.18 show the distance between the true and the
calculated reflection point related to either the longitude or the latitude of
the true reflection point or the elevation of the satellites. The reflection points
calculated with BSSSP are much closer to the true reflection points than the
ones calculated with BS. Similar to section 5.2.1 the SScalc does not show any
longitude dependency. Figure 5.17 shows an significant latitude dependency
of BS similar to section 5.2.1. SScalc for BS is shortest at the poles and the
equator and largest at ≈ 45 ◦ latitude. This is because the vector

−−−→
MPBS, BS

uses for the satellite sub-point calculation of PBS, is equal to the surface
normal of the reflection point at the poles and the equator (see section
4.3). Figure 5.18 shows, that SScalc for BS decreases with increasing satellite
elevation. The maximum distance between the true and the calculated
reflection point for BS is ≈ 22 km. To be able to read the maximal distance
for BSSSP, Figure 5.19 shows SScalc related to the elevation only for BSSSP.
The maximum distance between the true and the calculated reflection point
for BSSSP is ≈ 2.15 km and it is also decreasing for increasing satellite
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Figure 5.16.: SScalc vs. longitude, npoints = 1000, maxit = 1, 000 iterations, accuracyBS =

1× 10−4 rd, accuracyBSSSP = 1× 10−3 rd

elevations. The fact that SScalc for BSSSP only varies slightly around 2 km
and decreases continuously without variance was not expected. At the
moment there is no explanation for this behaviour. It might be an indication
of an error in the BSSSP implementation.

Additionally to its latitude and elevation dependency, BS has a dependency
on the orientation of the plane defined by T, R and S. Figure 5.20 shows a
scheme of this plane. For better visibility, the scheme is not true to scale. T
and R are calculated from S and must be in one plane with NS to fulfil the
Law of Reflection. The orientation (rather north-south or east-west) of this
plane is generated by a random number. Since BS uses a plane defined by T,
R and M to calculate the reflection point, the calculation is more accurate,
the more the plane defined by T, R and S is orientated north-south. Because,
for a north-south orientation, the plane defined by T, R and S does include
M. Therefore, the accuracy of the reflection point calculation of BS will
depend not only on the longitude and elevation, but also on the orientation
of this plane. This is also the reason that BS can calculate reflection points
with a lower SScalc than BSSSP. Since the maximum values are of interest,
there is no need to further investigate this dependency. Because, it will not
change the maximum values.
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Figure 5.17.: SScalc vs. latitude, npoints = 1000, maxit = 1, 000 iterations, accuracyBS =

1× 10−4 rd, accuracyBSSSP = 1× 10−3 rd

Figure 5.18.: SScalc vs. elevation, npoints = 1000, maxit = 1, 000 iterations, accuracyBS =

1× 10−4 rd, accuracyBSSSP = 1× 10−3 rd
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Figure 5.19.: SScalc vs. elevation, npoints = 1000, maxit = 1, 000 iterations, accuracyBSSSP =

1× 10−3 rd

Signal path difference, SPdi f f

Figures 5.21, 5.22 and 5.23 show the signal path difference between SPrcalc
and SPr related to either the longitude or the latitude of the true reflection
point or the elevation of the satellites. It is good to see, that BSSSP has a
much lower signal path difference than BS. BS shows the same latitude
dependency with the same reason for SPdi f f as it does for SScalc. The
elevation dependency of BS is reversed. This is logical, because for an
elevation of ele = 0 ◦ the signal path stays the same. No matter where on
the signal path the calculated reflection point is located, since the straight
line between T and R already is the direct and the reflected signal path.
The maximum signal path difference for BS is ≈ 12 m. Again, to be able
to read the maximal signal path difference for BSSSP, Figure 5.24 shows
SPdi f f related to the elevation only for BSSSP. The maximum signal path
difference for BSSSP is ≈ 18 cm and it is also increasing for increasing
satellite elevations. As for SScalc, BSSSP shows a continuous behaviour
without variance for SPdi f f too. Again, this behaviour was not expected
and there is no explanation for this effect, than a possible implementation
error.

99



5. Evaluation, results and discussion for three reflection point calculation methods

Figure 5.20.: Scheme of a measurement constellation
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Figure 5.21.: Signal path difference SPdi f f vs. longitude, npoints = 1000, maxit =

1, 000 iterations, accuracyBS = 1× 10−4 rd, accuracyBSSSP = 1× 10−3 rd

Since BS has a maximum signal path difference of 12 m, Figure 5.25 shows
a simulation with higher accuracy for BS (accuracyBS = 1× 10−5 rd) but the
same for BSSSP (accuracyBSSSP = 1× 10−3 rd). Although, the simulation
was performed with a higher accuracy for BS, BS still has a maximum
signal path difference of 12 m. Hence, BS already reached the maximal
accurateness possible with SPdi f f = 12 m. This limitation is because of the
calculation plane (see section 4.7).

Number of iterations

Figures 5.26, 5.27 and 5.28 show the number of iterations each reflection
point calculation needed related to either the longitude or the latitude of
the true reflection point or the elevation of the satellites. As can be seen,
BSSSP requires less iterations to calculate the reflection point than BS. This
is because of the lower accuracy required. An interesting thing is that BSSSP
requires the same number of iterations for each reflection point calculation.
This is because of the use of the satellite sub-point calculation. By using this
calculation, the accurateness of the reflection point calculation performed
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Figure 5.22.: Signal path difference SPdi f f vs. latitude, npoints = 1000, maxit =

1, 000 iterations, accuracyBS = 1× 10−4 rd, accuracyBSSSP = 1× 10−3 rd

Figure 5.23.: Signal path difference SPdi f f vs. elevation, npoints = 1000, maxit =

1, 000 iterations, accuracyBS = 1× 10−4 rd, accuracyBSSSP = 1× 10−3 rd
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Figure 5.24.: Signal path difference SPdi f f vs. elevation, npoints = 1000, maxit =

1, 000 iterations, accuracyBSSSP = 1× 10−3 rd

Figure 5.25.: Signal path difference SPdi f f vs. longitude, Closer Look, npoints = 1000,
maxit = 1, 000 iterations, accuracyBS = 1 × 10−5 rd, accuracyBSSSP = 1 ×
10−3 rd
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Figure 5.26.: Number of iterations vs. longitude, npoints = 1000, maxit = 1, 000 iterations,
accuracyBS = 1× 10−4 rd, accuracyBSSSP = 1× 10−3 rd

with BSSSP does not depend on the reflection point location (longitude and
latitude) or the orientation of the plane defined by T, R and S. The accuracy
of the reflection point calculation performed with BS on the other hand
does depend on the location of the reflection point or the orientation of the
plane defined by T, R and S. BS requires maximum 15 iterations and BSSSP
requires 10 iterations.

The calculation of the satellite sub-point BSSSP performs is an iterative
process too. Therefore, BSSSP has additional iterations. According to Kelso
(2014) the satellite sub-point calculation does require a maximum of three
iterations to reach a sufficient accuracy.

Calculation time

Figures 5.29, 5.30 and 5.31 show the calculation time each reflection point
calculation requires related to either the longitude or the latitude of the
true reflection point or the elevation of the satellites. Since, except of a few
outliers, in all three figures the calculation time is somewhat around zero,
Figure 5.32 shows the calculation time zoomed in related to the latitude. As
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Figure 5.27.: Number of iterations vs. latitude, npoints = 1000, maxit = 1, 000 iterations,
accuracyBS = 1× 10−4 rd, accuracyBSSSP = 1× 10−3 rd

Figure 5.28.: Number of iterations vs. elevation, npoints = 1000, maxit = 1, 000 iterations,
accuracyBS = 1× 10−4 rd, accuracyBSSSP = 1× 10−3 rd
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Figure 5.29.: Calculation time vs. longitude, npoints = 1000, maxit = 1, 000 iterations,
accuracyBS = 1× 10−4 rd, accuracyBSSSP = 1× 10−3 rd

can be seen, that the calculation time has no dependency and is somewhat
around 0.5 m for BS and 0.3 ms for BSSSP. To show that the outliers happen
randomly because of some delays produced by the PC, Figure 5.33 shows
another simulation with the same parameters. It is plain to see that it has
not the same outliers.
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Figure 5.30.: Calculation time vs. latitude, npoints = 1000, maxit = 1, 000 iterations,
accuracyBS = 1× 10−4 rd, accuracyBSSSP = 1× 10−3 rd

Figure 5.31.: Calculation time vs. elevation, npoints = 1000, maxit = 1, 000 iterations,
accuracyBS = 1× 10−4 rd, accuracyBSSSP = 1× 10−3 rd
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Figure 5.32.: Calculation time vs. latitude, npoints = 1000, maxit = 1, 000 iterations,
accuracyBS = 1× 10−4 rd, accuracyBSSSP = 1× 10−3 rd, zoomed in

Figure 5.33.: Calculation time vs. latitude for another simulation, npoints = 1000, maxit =
1, 000 iterations, accuracyBS = 1× 10−4 rd, accuracyBSSSP = 1× 10−3 rd
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5.2.4. Histograms of BS vs. BSSSP

To proof, that the result of the Monte Carlo simulation from section 5.2.3
are no coincidence, this section shows three histograms of the signal path
difference SPdi f f of three single simulations. All three histograms reflect
simulation results with the same accuracies and maximum number of
iterations. For a closer look at BSSSP, an additional histogram with a smaller
bin size of the first simulation is shown.

maxit = 1, 000 iterations
accuracyBS = 1× 10−4 rad
accuracyBSSSP = 1× 10−3 rd

Figures 5.34, 5.35 and 5.37 show histograms for npoints = 1, 000 and Figure
5.36 shows a histogram for npoints = 10, 000. In the figures 5.34, 5.35 and 5.36

all reflection points calculated with BSSSP have a SPdi f f lower than 0.5 m.
For BS on the contrary only on third of the calculated reflection points has
a SPdi f f lower than 0.5 m. Figure 5.37 shows a histogram for npoints = 1000
with a smaller bin spacing. It shows that SPdi f f for BSSSP is actually less
than 18 cm. However, for the histogram of BSSSP a similar distribution as for
BS was expected. Instead, the histogram of BSSSP does not show any form
of distribution. Similar to SScalc and SPdi f f , there is no other explanation for
this effect, than a possible implementation error.

5.3. Discussion

The objective of chapter 5 was to evaluate the methods SG, BS and BSSSP
with respect to their performance to calculate a reflection point with the
WGS 84 as earth model. The determining factors for the evaluation are
a short calculation time and to fulfil the accuracy criteria SPdi f f < 10 m.
Already at the beginning of the evaluation, it turned out that SG requires
more calculation time than BS and BSSSP. Additionally, SG has big shortcom-
ings concerning small satellite elevation angles. It is not able, to calculate
them with a reasonable given number of iterations and therefore does not
achieve the required accuracy. A more detailed comparison of BS and BSSSP
showed, that BSSSP is more precise than BS. Additionally BS is not fully
able to fulfil the accuracy criteria. For some reflection points it has a sig-
nal path difference of ≈ 12 m. BSSSP on the other hand, has a maximum
signal path difference of ≈ 18 cm. Additional histogram plots show, that
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Figure 5.34.: First histogram of the signal path difference for 1, 000 calculated reflection
points

Figure 5.35.: Second histogram of the signal path difference for 1, 000 calculated reflection
points
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Figure 5.36.: Third histogram of the signal path difference for 10, 000 calculated reflection
points

Figure 5.37.: First histogram of the signal path difference for 1, 000 calculated reflection
points with smaller bin spacing
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other simulations with the same parameters for accuracy result similar
accurateness of the reflection point calculation for BS and BSSSP. Also for
a higher number of reflection points. Concerning the calculation time, BS
requires ≈ 0.5 ms and BSSSP ≈ 0.3 ms. Since it can not be said, if BS or
BSSSP is faster on-board a satellite, both methods must be tested on satellite
hardware.

In addition to statements on computational accuracy and speed of the
methods, the evaluation showed that the computational accuracies of BS
and BSSSP have certain dependencies. The accuracy of BS shows a latitude
dependency due to the use of a calculation plane defined by T, R and M (see
section 4.7). Therefore, the reflection point calculation of BS is more precise
for reflection points located at the equator or at the poles. The path length
difference for both methods is shortest for small satellite elevation angles.
This is because, the smaller the elevation angle the less is the deviation
between SPd and SPr. For a satellite elevation angle of 0 ◦, SPd would be
equal to SPr. The continuous dependency without variance of SScalc and
SPdi f f of BSSSP can not be explained. The same goes for the histogram of
BSSSP, which does not look like the expected distribution. The reason for
this behaviour might be an implementation error of BSSSP or a rounding
error. Therefore, for BSSSP, despite its good results, further investigation
beyond the scope of this thesis is necessary.
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The objective of this thesis was to find methods to calculate the reflection
point for a snapshot of the measurement constellation with the WGS 84 as
earth model for the GNSS-R mission PRETTY. This was done in order to
investigate, how a real time on board calculation of the reflection point will
perform. Before the actual reflection point calculation, the influence of the
atmosphere on the refraction of an electromagnetic signal was investigated.
This was done in order to clarify, if this influence must be taken into
account for the reflection point calculation. Afterwards, several different
methods for the reflection point calculation have been introduced, described
and investigated concerning their feasibility. Finally, three of the introduced
methods were evaluated with regard to their accuracy and performance. The
conclusion chapter now sums up the results and gives a recommendation
which method should be used for PRETTY. In addition, some points that the
reader should be aware of are noticed and an outlook on how to proceed
with the reflection point calculation is given.

6.1. The calculation of the reflection point

6.1.1. Influence of the atmosphere on the refraction of an
electromagnetic signal and its associated effects on
the reflection point calculation

To investigate the influence of the atmosphere on the refraction of an elec-
tromagnetic signal (see chapter 3), a model of the atmosphere, consisting
of individual layers of atmosphere with certain heights and a constant re-
flection indices for each layer, was created. In order to evaluate how much
the atmosphere influences the refraction of an electromagnetic signal, a
non-refracted and a refracted signal, both reflected at the earth surface,
were simulated and compared for two earth models. The first model was
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an assumed flat Earth with parallel layers of atmosphere and the second
one was a spherical Earth with radially bent layers of atmosphere. The
evaluation for both earth model was done with regard to the position of the
reflection point and the path length difference between the non-refracted
and the refracted signal. Since the spherical earth model is the more realistic
one and therefore has more significance, following the maximum values of
the results for this model for two height step sizes are stated.

Height step size: 0.5 km
Distance between reflection points: ≈ 647 m
Path length difference: ≈ 1.1 m

Height step size: 5 km
Distance between reflection points: ≈ 813 m
Path length difference: ≈ 3.3 m

As can be easily seen, a higher height step size results higher deviations.
Both have maximum path length differences up to the metre range. Since the
maximum allowed path length difference for the reflection points calculation
is 10 m, the impact of the influence of the atmosphere on the refraction
of an electromagnetic signal on the reflection point calculation can only
be clarified in relation to the signal path difference of the results of the
reflection point calculation. Since a higher height step size results less
precise calculations, the results of the calculation with hstep = 500 m are
recommended for the comparison with the results of the reflection point
calculation.

6.1.2. Evaluated methods for the reflection point calculation

The following three calculation methods for the reflection point calculation
were evaluated in chapter 5.

• Ellipsoidal Earth (henceforward: SG), described in section 4.2.3, MAT-
LAB code from Gleason and Gebre-Egziabher (2009)
• Binary Search for an ellipsoid (henceforward: BS), described in section

4.3
• Binary Search for a spheroid enhanced with satellite sub-point calculation

(henceforward: BSSSP), described in section 4.3 and 4.8

The evaluation was done with a Monte Carlo simulation with true reflection
points randomly distributed over the earth surface as start values. Out of
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these start values the satellite positions have been calculated and out of the
satellite positions the calculation methods calculated the reflection points.
The distance between the true and the calculated reflection points, the signal
path differences between the signal path of the calculated and the true
reflection points and the required computing times were evaluated. This
evaluation showed, that SG is not able to reach the same accurateness as BS
and BSSSP for small satellite elevation angles. For higher satellite elevations,
SG achieves the same accurateness as BS does, but SG requires much more
calculation time (SG: > 2 s, BS and BSSSP: ≈ 0.5 ms). Therefore, the main
evaluation was done for BS and BSSSP. However, it cannot be ruled out that
an improved SG algorithm can achieve the same accuracy as BS within the
same calculation time.

The comparison of BS and BSSSP showed that BSSSP is more accurate and
requires a lower accuracy criterion than BS. This means, BSSSP can calculate
a more precise reflection point within a shorter calculation time than BS.
Following, some values of the results of the comparison between BS and
BSSSP are stated. The mean values and the standard deviations of the signal
path differences are calculated out of a simulation consisting of 1, 000 true
reflection points and the parameters of section 5.2.4.

BS:
Maximum distance between reflection points: ≈ 22 km
Mean value of the signal path difference: ≈ 2 m
Standard deviation of the signal path difference: ≈ 2.6 m
Calculation time: ≈ 0.5 ms

BSSSP:
Distance between reflection points: ≈ 2 km
Mean value of the signal path difference: ≈ 10 cm
Standard deviation of the signal path difference: ≈ 5 cm
Calculation time: ≈ 0.3 ms

According to the characteristics of a Gaussian distribution, 95 % of the
reflection points calculated with BS have a signal path difference lower
than ≈ 7.2 m (2 m + 2 · 2.6 m = 7.2 m). Therefore, BS fulfils the required
accurateness for the signal path difference (< 10 m). According to the
histogram, all reflection points calculated with BSSSP are within the accuracy
required for the signal path difference. However, the distance between the
reflection points and the signal path difference of BSSSP show a continuous
behaviour without variance that can not be explained conclusively. There is
no explanation why the histogram of BSSSP does not show a distribution
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neither. According to the mean value and the standard deviation of the
signal path difference, the histogram of BSSSP should look like a declining
exponential function (like the histogram of BS does). It is suspected that the
reason for this behaviour is an undiscovered implementation or rounding
error.

6.1.3. Conclusion on the reflection point calculation

The method SG is not able to calculate the reflection point within an ac-
ceptable calculation time with a satisfying accuracy. BS and BSSSP require
acceptable low calculation times for the reflection point calculation and
calculate the reflection point within the required accuracy. Since the refrac-
tion of the atmosphere influences the signal path difference within around
1 m, the influence of the atmosphere on the refraction of an electromagnetic
signal can be neglected for BS and BSSSP.

Although, BSSSP delivers very promising results, it is assumed that BSSSP
has problems with an implementation error or a rounding error. Possible
sources for the implementation error could be the algorithm that calculates
the satellite sub-point, the Binary Search algorithm of BSSSP or the calcula-
tion of the satellite positions out of the true reflection points. Since BS seems
to work well, it could also be that some idiosyncrasy of the calculation of
the satellite positions in combination with the BSSSP algorithm results a
rounding error, which only occurs for BSSSP. Since neither an implementa-
tion nor a rounding error could be detected so far, BSSSSP has to be further
investigated.

The method BS is recommended to calculate the reflection point on-board the
PRETTY mission. Because, it is able to calculate the reflection point within
the required accuracy with an acceptable low calculation time. Since satellite
hardware differ strongly to a PC, further testing on satellite hardware with
a special focus on the calculation time is strongly recommended.

6.2. Notes and Outlook

All calculations in this thesis were performed for a spherical Earth or the
WGS 84 as model for the Earth. Since the WGS 84 models the Earth as an
ellipsoid of rotation with a plane surface, but the earth surface is uneven, it
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is mentioned here that other (more precise) models of the Earth are available
too. One for example is the geoid (EGM 96) related to the WGS 84. As stated
in Hofmann-Wellenhof, Lichtenegger, and Collins (2001, chapter 10.2.4),
the geoid is a bumpy surface which should represents the actual shape of
the Earth. Note, the EGM 96 is still a model. To obtain the real altitudes
of the earth surface mission like PRETTY are used. The deviation between
the WGS 84 and the EGM 96 is called geoid undulation and is given in
Department of defense World Geodetic System 1984 (2000, p. 6.2.3) with a
standard deviation of ≈ 30 m and maximum values between ≈ −107 m and
≈ 85 m. Since the calculation of the EGM 96 is very complex using spherical
harmonics and its standard deviation to the WGS 84 is about 30 m, it is not
recommended to use the EGM 96 on board a satellite. However, it would be
well suited for a more accurate estimation of the accuracies achieved by the
reflection point calculation methods evaluated in this thesis. EGM 96 would
also be suitable for the on ground post processing of the measurement data
obtained from PRETTY, to determine the altitudes of the gauged reflection
points. Furthermore, it should be pointed out here that the inaccuracy of
the earth model must be taken into account when performing calculations
using an earth model.

Due to the conclusions and notes mentioned above, the next steps concern-
ing the calculation of the reflection point should be as follows.

• Further investigated concerning the errors generating the unexpected
and unexplainable behaviour of BSSSP is recommended.
• A performance analysis of BS on the satellite hardware.
• Maybe, an investigation of BS with the EGM 96 as earth model to

obtain more precise information on the accuracy of BS.
• The investigation of the delay of an electromagnetic signal caused by

the ionosphere.

When the error of BSSSP has been found, the last three steps can be per-
formed for BSSSP too.
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A. Program codes

A.1. Main program: Influence of atmosphere on
refraction, flat Earth

%% I n f l u e n c e of atmosphere on r e f r a c t i o n , f l a t Earth
% This program c a l c u l a t e s the r e f r a c t i o n of an e lec t romagnet i c

wave propagating trough the ear th atmosphere f o r an assumed
f l a t Earth . The wave i s emitted at a t r a n s m i t t e r s a t e l l i t e ,
r e f l e c t e d by the ear th s u r f a c e and than rece ived from a
r e c e i v e r s a t e l l i t e . The purpose of the program i s to
i n v e s t i g a t e the i n f l u e n c e of the r e f r a c t i o n on the path
length , the s i g a n l emission angle and the p o s i t i o n of the
r e f l e c t i o n point . Therefore , a non r e f r a c t e d s i g n a l with a
given s i g n a l emission angle i s emitted from the t r a n s m i t t e r
s a t e l l i t e , r e f l e c t e d from the ear th s u r f a c e and rece ived from
the r e c e i v e r s a t e l l i t e . Than a r e f r a c t e d s i g n a l i s emitted
from the t r a n s m i t t e r s a t e l l i t e with the same s i g n a l emission
angle as the non r e f r a c t e d s i g n a l . The r e f r a c t e d s i g n a l w i l l
not h i t the r e c e i v e r s a t e l l i t e a t the same p o s i t i o n as the non
r e f r a c t e d s i g n a l . Hence , the s i n g a l emission angle of the
r e f r a c t e d s i g n a l i s changed u n t i l i t h i t s the r e c e i v e r
s a t e l l i t e a t the same p o s i t i o n as the r e f r a c t e d s i g n a l does .
The path length , the s i g n a l emission angle and the p o s i t i o n of
the r e f l e c t i o n point are compared .

%
%
% J o s e f Bauchinger , TU Graz , 01031012

%
% 1 2 . 1 . 2 0 1 8

%
%% Program Code

c l e a r a l l ;
c l o s e a l l ;

% −−−determinat ion of parameters−−−
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h T = 20000 ; % heigth t r a n s m i t t e r
s a t e l l i t e [km]

h R = 6 0 0 ; % heigth r e e i v e r s a t [km]
h natmos = 1 0 0 ; % height of n e u t r a l

atmmosphere [km]
h i o n o s s t a r t = 6 0 ; % s t a r t height of ionosphere

[km]
h ionos end = 2000 ; % height of ionosphere [km]
h 0 = 0 ; % height s u r f a c e ear th [km]
x T = 0 ; % h o r i z o n t a l d i s t a n c e

t r a n s m i t t e r s a t e l l i t e [km]
t h e t a T i n p u t = [ 1 , 2 0 , 4 0 , 6 0 , 8 5 ] ; % s i g n a l emission angle

t r a n s m i t t e r s a t e l l i t e [ degree ]
t h e t a T = deg2rad ( t h e t a T i n p u t ) ; % convert degree to radian
n e l e t h e t a T = numel ( t h e t a T ) ;
nu = 1 .57542 e9 ; % GPS L1−frequency [Hz]

% −−−get e l e c t r o n densi ty d i s t r i b u t i o n−−−
f i l e I D = fopen ( ’ Ne Graz 60km 5km 2000km . t x t ’ , ’ r ’ ) ;

%source : h t tps ://omniweb . g s f c . nasa . gov/vitmo/ i r i 2 0 1 2 v i t m o . html
% f i l e format :
% 1 s t column : atmospheric height [km]
% 2nd column : e l e c t r o n dens i ty [1/mˆ 3 ]
% 3rd column : Ne to NmF2

N e f i l e = f s c a n f ( f i l e I D , ’%f %f ’ , [ 3 i n f ] ) ;
f c l o s e ( f i l e I D ) ;
Ne = ( N e f i l e ( 2 , : ) ) ’ ;

% −−−get height s tep s ize−−−
h step = ( N e f i l e ( 1 , 2 )−N e f i l e ( 1 , 1 ) ) ; % [km]

% −−−c a l c u l a t e the r e f r a c t i o n i n d i c e s f o r the atmosphere
( n atmos ) , the n e u t r a l atmosphere ( n natmos ) and the
ionosphere ( n Gion )−−−

%−−determine the height vector−−
% −ear th s u r f a c e to t r a n s m i t t e r s a t e l l i t e −
% above the ionosphere i s no r e f r a c t i o i n −> only one step to h T
h = [ h 0 : h s tep : h ionos end , h T ] ’ ; % [km]

% −−c a l c u l a t e the r e f r a c t i o n indices−−
[ n atmos , n natmos , n Gion ] = n c a l c u l a t i o n

( h , Ne , nu , h natmos , h i o n o s s t a r t , h ionos end ) ;

% −−−determine v e c t o r s f o r path c a l c u l a t i o n−−−
% t h i s are empty v e c t o r s in which to s t o r e the c a l c u l a t i o n r e s u l t s
% −−height vectors−−
% −t r a n s m i t t e r s a t e l l i t e to ear th surface−
% above the ionosphere i s no r e f r a c t i o i n −> only one step to h T
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h1 = [ h T , h ionos end :−h step : h 0 ] ’ ; % [km]

% −ear th s u r f a c e to r e c e i v e r s a t e l l i t e −
h2 = ( 0 : h s tep : h R ) ’ ; % [km]

% −−r e f r a c t i o n indices−−
% −t r a n s m i t t e r s a t e l l i t e to r e f l e c t i o n point−
% the l a s t element i s only required f o r the s p h e r i c a l ear th
n1 = f l ipud ( n atmos ( 1 : end−1) ) ;

% −r e f l e c t i o n point to r e c e i v e r s a t e l l i t e −
n2 = n atmos ( 1 : numel ( h2 )−1) ;

%% C a l c u l a t i o n f o r the non r e f r a c t e d s i g n a l

% −−−c a l c u l a t e the h o r i z o n t a l d i s t a n c e s −−−
% −t r a n s m i t t e r s a t e l l i t e to r e f e l c t i o n point−
x i n = ( h T−h 0 ) ∗ tan ( t h e t a T ) + x T ; % [km]

% −r e f l e c t i o n point to r e c e i v e r s a t e l l i t e −
x R = ( h R−h 0 ) ∗ tan ( t h e t a T ) + x i n ; % [km]

% −−−c a l c u l a t e the path lengths−−−
% −t r a n s m i t t e r s a t e l l i t e to r e f l e c t i o n point−
PL TS = ( h T−h 0 ) ./ cos ( t h e t a T ) ; % [km]

% −r e f l e c t i o n point to r e c e i v e r s a t e l l i t e −
PL SR = ( h R − h 0 ) ./ cos ( t h e t a T ) ; % [km]

% − t o t a l non r e f r a c t e d path length−
PL = PL TS + PL SR ; % [km]

%% C a l c u l a t i o n f o r the r e f r a c t e d s i g n a l

% −s tep s i z e f o r the v a r i a t i o n of the s i g n a l emission angle−
t h e t a 1 s t e p i n p u t = 0 . 0 0 5 ; % [ degree ]
t h e t a 1 s t e p = deg2rad ( t h e t a 1 s t e p i n p u t ) ;

% −accuracy within the r e f r a c t e d s i g n a l has to h i t the p o s i t i o n
of the cube s a t e l l i t e f o r the non r e f r a c t e d s ignal−

accuracy = 0 . 0 0 1 ; % [km]

% −−−c a l c u l a t i o n of the r a f r a c t e d path−−−
f o r l = 1 : numel ( t h e t a T )

[ x1 ( : , l ) , x2 ( : , l ) , t h e t a 1 ( : , l ) , t h e t a 2 ( : , l ) , PL1 ( : , l ) , PL2 ( : , l ) ,
i t e r a t i o n s ( : , l ) ] = r e f r a c t e d p a t h f l a t e a r t h
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( h1 , h2 , n1 , n2 , x T , t h e t a T ( l ) , t h e t a 1 s t e p , x R ( l ) , accuracy ) ;
end

% −−−c a l c u l a t i o n of required r e s u l t s−−−
% −−h o r i z o n t a l d is tances−−
% −t r a n s m i t t e r s a t e l l i t e to r e f l e c t i o n point−
x S d i f f = abs ( x i n − x1 ( end , : ) ) ;

% −r e f l e c t i o n point to cube s a t e l l i t e −
x R d i f f = abs ( x R − x2 ( end , : ) ) ;

% −−c a l c u l a t i o n of whole path length−−
% −t r a n s m i t t e r s a t e l l i t e to r e f l e c t i o n point−
PL TSrefracted = sum( PL1 ) ;

% −r e f l e c t i o n point to r e c e i v e r s a t e l l i t e −
PL SRrefracted = sum( PL2 ) ;

% −whole r e f r a c t e d path length
P L r e f r a c t e d = PL TSrefracted + PL SRrefracted ;

% −d i f f e r e n c e between non r e f r a c t e d and r e f r a c t e d path length−
P L d i f f = abs ( PL − P L r e f r a c t e d ) ;

A.1.1. Function: Calculation refraction index

%% C a l c u l a t i o n of r e f r a c t i o n i n d i c e s
% This func i ton c a l c u l a t e s the r e f r a c t i o n index of the n e u t r a l

atmosphere and of the ionosphere . As well as i t combines both
r e f r a c t i o n i n d i c e s to the r e f r a c t i o n index of the atmosphere .

%
% Input :
% h . . . height vec tor of atmosphere ,
% Ne . . . e l e c t r o n densi ty vector ,
% nu . . . frequency of the e lec t romagnet i c wave ,
% h natmos . . . height of n e u t r a l atmosphere ,
% h i o n o s s t a r t . . . s t a r t height of ionosphere ,
% h ionos end . . . end height of ionosphere ,
%
% Output :
% n atmos . . . r e f r a c t i o n index of the atmosphere ,
% n natmos . . . r e f r a c t i o n index of the n e u t r a l

atmosphere ,
% n Gion . . . r e f r a c t i n o indes of the ionosphere ,
%
%
% J o s e f Bauchinger , TU Graz , 01031012
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%
% 1 2 . 1 . 2 0 1 8

%
%% Function code
funct ion [ n atmos , n natmos mod , n Gion mod ] = . . .

n c a l c u l a t i o n ( h , Ne , nu , h natmos , h i o n o s s t a r t , h ionos end )

% −−check the input−−
i f nargin < 6

disp ( ’ n c a l c u l a t i o n ERROR: Not enough input arguments ’ ) ;
re turn

end

% −−−f ind elements of zone boundary−−−
bele natoms = f ind ( h==h natmos ) ;
b e l e i o n o s s t a r t = f ind ( h== h i o n o s s t a r t ) ;
be le ionos end = f ind ( h==h ionos end ) ;

% −−−c a l c u l a t e the r e f r a c t i o n index of the n e u t r a l atmosphere
( n natmos )−−−

% the c a l c u l a t i o n i s done according to ITU recommendations ITU−R
P.453−13 and ITU−R P.835−6

% −−c a l c u l a t e temperature ( T ) , atmospheric pressure ( p ) and water
vapour pressure ( p w )−−

% see ITU−R P.835−6

% −transform geometric he ights to g e o p o t e n t i a l heights−
% u n t i l geometric he ights of 86 km g e o p o t e n t i a l he ights are

required f o r the c a l c u l a t i o n
bele geop = f ind ( h < 8 6 . 0 0 1 , 1 , ’ l a s t ’ ) ;
h geop = 6356 .766∗h ( 1 : bele geop ) . / ( 6 3 5 6 . 7 6 6 + h ( 1 : bele geop ) ) ;

% −f ind elments of c a l c u l a t i o n s teps of T and p−
e le 11 = f ind ( h geop < 1 1 . 0 0 1 , 1 , ’ l a s t ’ ) ;
e l e 20 = f ind ( h geop < 2 0 . 0 0 1 , 1 , ’ l a s t ’ ) ;
e l e 32 = f ind ( h geop < 3 2 . 0 0 1 , 1 , ’ l a s t ’ ) ;
e l e 47 = f ind ( h geop < 4 7 . 0 0 1 , 1 , ’ l a s t ’ ) ;
e l e 51 = f ind ( h geop < 5 1 . 0 0 1 , 1 , ’ l a s t ’ ) ;
e l e 71 = f ind ( h geop < 7 1 . 0 0 1 , 1 , ’ l a s t ’ ) ;
e l e 84 = f ind ( h geop < 8 4 . 8 5 3 , 1 , ’ l a s t ’ ) ;
e l e 86 = f ind ( h geop < 8 6 . 0 0 1 , 1 , ’ l a s t ’ ) ;
e l e 91 = f ind ( h < 9 1 . 0 0 1 , 1 , ’ l a s t ’ ) ;
e le100 = f ind ( h < 1 0 0 . 0 0 1 , 1 , ’ l a s t ’ ) ;

% −c a l c u l a t e T in [K]−
T = zeros ( ele100 , 1 ) ;
T ( 1 : e l e11 ) = 288 .15 − 6 . 5∗ h geop ( 1 : e l e11 ) ;
T ( e le 11 +1 : e l e 20 ) = 2 1 6 . 6 5 ;
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T ( e le 20 +1 : e l e32 ) = 216 .65 + ( h geop ( e l e20 +1 : e l e32 )−20) ;
T ( e le 32 +1 : e l e47 ) = 228 .65 + 2 . 8 ∗ ( h geop ( e l e32 +1 : e l e47 )−32) ;
T ( e le 47 +1 : e l e51 ) = 2 7 0 . 6 5 ;
T ( e le 51 +1 : e l e71 ) = 270 .65 − 2 . 8 ∗ ( h geop ( e l e51 +1 : e l e71 )−51) ;
T ( e le 71 +1 : e l e84 ) = 214 .65 − 2∗ ( h geop ( e l e71 +1 : e l e 84 )−71) ;
T ( e le 84 +1 : e l e91 ) = 1 8 6 . 8 6 7 3 ;
T ( e le 91 +1 : e l e100 ) = 263 .1905 − . . .

s q r t (1− ((h ( e le 91 +1 : e l e100 )−91) /19 .9429 ) . ˆ 2 ) ;

% −c a l c u l a t e p in [ hPa]−
p = zeros ( ele100 , 1 ) ;
p ( 1 : e l e11 ) = 1013 .25 ∗ ( 2 8 8 . 1 5 . / T ( 1 : e l e11 ) ) . ˆ ( −3 4 . 1 6 3 2 / 6 . 5 ) ;
p ( e le 11 +1 : e l e20 ) = 226 .3226 ∗

exp (−34 .1632∗ ( h geop ( e l e11 +1 : e l e20 )−11) ./ T ( e le 11 +1 : e l e20 ) ) ;
p ( e le 20 +1 : e l e32 ) = 54 .7498 ∗

( 2 1 6 . 6 5 . / T ( e le20 +1 : e l e32 ) ) . ˆ ( 3 4 . 1 6 3 2 ) ;
p ( e le 32 +1 : e l e47 ) = 8 .680422 ∗

( 2 2 8 . 6 5 . / T ( e le32 +1 : e l e47 ) ) . ˆ ( 3 4 . 1 6 3 2 / 2 . 8 ) ;
p ( e le 47 +1 : e l e51 ) = 1 .109106 ∗

exp (−34 .1632∗ ( h geop ( e l e47 +1 : e l e51 )−11) ./ T ( e le 47 +1 : e l e51 ) ) ;
p ( e le 51 +1 : e l e71 ) = 0 .6694167 ∗

( 2 7 0 . 6 5 . / T ( e le51 +1 : e l e71 ) ) . ˆ ( −3 4 . 1 6 3 2 / 2 . 8 ) ;
p ( e le 71 +1 : e l e84 ) = 0 .03956649 ∗

( 2 1 4 . 6 5 . / T ( e le71 +1 : e l e84 ) ) . ˆ ( −3 4 . 1 6 3 2 / 2 . 0 ) ;
pa0 = 9 5 . 5 7 1 8 9 9 ;
pa1 = −4 .011801 ;
pa2 = 6 .424731 e−2;
pa3 = −4.789660e−4;
pa4 = 1 .340543 e−6;
p ( e le 84 +1 : e l e100 ) = exp ( pa0 + pa1∗h ( e l e84 +1 : e l e100 ) +

pa2∗h ( e l e84 +1 : e l e100 ) . ˆ 2 + pa3∗h ( e l e84 +1 : e l e100 ) . ˆ 3 +
pa4∗h ( e l e84 +1 : e l e100 ) . ˆ 4 ) ;

% −c a l c u l a t e p w in [ hPa]−
p w rho0 = 7 . 5 ; % [ g/mˆ 3 ]
p w h0 = 2 ; % [km]
p w rho = p w rho0∗exp(−h ( 1 : e l e100 ) /p w h0 ) ;
p w = p w rho .∗T / 2 1 6 . 7 ;

% −−c a l c u l a t e n atmos−−
N natmos = zeros ( numel ( h ) , 1 ) ;
N natmos ( 1 : e l e100 ) = 7 7 . 6 e−6./T . ∗ ( p+4810∗p w./T ) ;
n natmos = 1 + N natmos ;

% −−−c a l c u l a t e the r e f r a c t i o n index of the ionosphere ( n Gion )−−−
N Gion = zeros ( numel ( h ) , 1 ) ;
N Gion ( b e l e i o n o s s t a r t : be le ionos end ) = . . .

40 . 3∗Ne./h ( b e l e i o n o s s t a r t : be le ionos end ) /nu ˆ 2 ;
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n Gion = 1+ N Gion ;

% −−−c a l c u l a t e the r e f r a c t i o n index of the atmosphere ( n atmos )−−−
n atmos = 1 + N natmos + N Gion ;
% the second to l a s t element has to be one , because i t i s theone

between the end of the ionosphere and the GNSS s a t e l l i t e
n atmos ( end−1) = 1 ;

% −−−modify n natmos and n Gion f o r output−−−
n natmos mod = n natmos ( 1 : bele natoms ) ;
n Gion mod = n Gion ( 1 : be le ionos end ) ;

A.1.2. Function: Calculation refracted path for flat Earth

%% C a l c u l a t i o n of r e f r a c t e d path f o r f l a t Earth
% This func i ton c a l c u l a t e s the path of the r e f r a c t e d s i g n a l f o r

the f l a t ear th model
%
% Input :
% h1 . . . he ight vec tor t r a n s m i t t e r s a t e l l i t e to

r e f l e c t i o n point ,
% h2 . . . he ight vec tor r e f l e c t i o n point to r e c e i v e r

s a t e l l i t e ,
% n1 . . . r e f r a c t i o n i n d i c e s vec tor t r a n s m i t t e r

s a t e l l i t e to r e f l e c t i o n
% point ,
% n2 . . . r e f r a c t i o n i n d i c e s vec tor r e f l e c t i o n point to

r e c e i v e r ,
% s a t e l l i t e ,
% x T . . . h o r i z o n t a l p o s i t i o n of t r a n s m i t t e r s a t e l l i t e ,
% t h e t a T . . . s i g n a l emission angle ,
% t h e t a 1 s t e p . . . s tep s i z e to meet required accuracy ,
% x R . . . h o r i z o n t a l d i s t a n c e t r a n s m i t t e r s a t e l l i t e to

r e c e i v e r s a t e l l i t e
% f o r non r e f r a c t e d s ignal ,
% accuracy . . . d i f f e r e n c e between h o r i z o n t a l d i s t a n c e to

r e c e i v e r
% s a t e l l i t e of r e f r a c t e d and non r e f r a c t e d path
%
% Output :
% x1 . . . h o r i z o n t a l d i s t a n c e s vec tor t r a n s m i t t e r

s a t e l l i t e to
% r e f l e c t i o n point ,
% x2 . . . h o r i z o n t a l d i s t a n c e s vec tor r e f l e c t i o n point

to
% r e c e i v e r s a t e l l i t e ,
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% t h e t a 1 . . . r e f r a c t i o n angles vec tor t r a n s m i t t e r
s a t e l l i t e to r e f l e c t i o n

% point ,
% t h e t a 2 . . . r e f r a c t i o n angles vec tor r e f l e c t i o n point to

r e c e i v e r
% s a t e l l i t e ,
% PL1 . . . path lenght vec tor t r a n s m i t t e r s a t e l l i t e to

r e f l e c t i o n point ,
% PL2 . . . path lenght vec tor r e f l e c t i o n point to

r e c e i v e r s a t e l l i t e ,
% i t e r a t i o n s . . . number of i t e r a t i o n s f o r c a l c u l a t i o n ,
%
%
% J o s e f Bauchinger , TU Graz , 01031012

%
% 1 2 . 1 . 2 0 1 8

%
%% Function code
funct ion [ x1 , x2 , theta1 , theta2 , PL1 , PL2 , i t e r a t i o n s ] =

r e f r a c t e d p a t h f l a t e a r t h
( h1 , h2 , n1 , n2 , x T , theta T , t h e t a 1 s t e p , x R , accuracy )

% −−check the input−−
i f nargin < 9

disp ( ’ r e f r a c t e d p a t h ERROR: Not enough input arguments ’ ) ;
re turn

end

% −−−determine v e c t o r s f o r path c a l c u l a t i o n−−−
% t h i s are empty v e c t o r s in which to s t o r e the c a l c u l a t i o n

r e s u l t s in

% −−h o r i z o n t a l d i s t a n c e vectors−−
% −t r a n s m i t t e r s a t e l l i t e to r e f l e c t i o n point−
x1 = zeros ( s i z e ( h1 ) ) ; % [km]
% h o r i z o n t a l p o s i t i o n of t r a n s m i t t e r s a t e l l i t e
x1 ( 1 ) = x T ;

% −r e f l e c t i o n point to r e c e i v e r s a t e l l i t e −
x2 = zeros ( s i z e ( h2 ) ) ; % [km]

% −−r e f r a c t i o n angles−−
% −t r a n s m i t t e r s a t e l l i t e to r e f l e c t i o n point−−
t h e t a 1 = zeros ( numel ( h1 ) −1 ,1) ; % [ rad ]

% −r e f l e c t i o n point to r e c e i v e r s a t e l l i t e −
t h e t a 2 = zeros ( numel ( h2 ) −1 ,1) ; % [ rad ]
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% −−path length vectors−−
% −t r a n s m i t t e r s a t e l l i t e to r e f l e c t i o n point−
PL1 = zeros ( s i z e ( t h e t a 1 ) ) ; % [km]

% −r e f l e c t i o n point to r e c e i v e r s a t e l l i t e −
PL2 =zeros ( s i z e ( t h e t a 2 ) ) ; % [km]

% −−−c a l c u l a t i o n of r e f r a c t e d path−−−
% −s e t s t a r t s i g n a l emission angle−
t h e t a 1 ( 1 ) = t h e t a T ;

% −s e t i t e r a t i o n s to 1−
i t e r a t i o n s = 1 ;

% −−c a l c u l a t e the r e f r a c t e d path−−
while 1

% −t r a n s m i t t e r s a t e l l i t e to r e f l e c t i o n point−
f o r l = 1 : numel ( h1 )−2

x1 ( l +1) = tan ( t h e t a 1 ( l ) ) ∗ ( h1 ( l )−h1 ( l +1) ) + x1 ( l ) ;
t h e t a 1 ( l +1) = as in ( n1 ( l ) ∗ s i n ( t h e t a 1 ( l ) ) /n1 ( l +1) ) ;
PL1 ( l ) = ( h1 ( l )−h1 ( l +1) ) /cos ( t h e t a 1 ( l ) ) ;

end
% c a l c u l a t i o n of x1 ( end ) and PL1 ( end ) because the for−loop
has one
% step too l e s s
x1 ( end ) = tan ( t h e t a 1 ( end ) ) ∗ ( h1 ( end−1)−h1 ( end ) ) + x1 ( end−1) ;
PL1 ( end ) = ( h1 ( end−1)−h1 ( end ) ) /cos ( t h e t a 1 ( end ) ) ;

% −r e f l e c t i o n point to r e c e i v e r s a t e l l i t e −
x2 ( 1 ) = x1 ( end ) ;
t h e t a 2 ( 1 ) = t h e t a 1 ( end ) ;
f o r l = 1 : numel ( h2 )−2

x2 ( l +1) = tan ( t h e t a 2 ( l ) ) ∗ ( h2 ( l +1)−h2 ( l ) ) + x2 ( l ) ;
t h e t a 2 ( l +1) = as in ( n2 ( l ) ∗ s i n ( t h e t a 2 ( l ) ) /n2 ( l +1) ) ;
PL2 ( l ) = ( h2 ( l +1)−h2 ( l ) ) /cos ( t h e t a 2 ( l ) ) ;

end
% c a l c u l a t i o n of x2 ( end ) and PL2 ( end ) because the for−loop
has one
% step too l e s s
x2 ( end ) = tan ( t h e t a 2 ( end ) ) ∗ ( h2 ( end )−h2 ( end−1) ) + x2 ( end−1) ;
PL2 ( end ) = ( h2 ( end )−h2 ( end−1) ) /cos ( t h e t a 2 ( end ) ) ;
% c a l c u l a t i o n of the d i f f e r e n c e between the point where the

non
% r e f r a c t e d and the
% r e f r a c t e d s i g n a l would h i t the r e c e i v e r s a t e l l i t e
x d i f f 2 = x R − x2 ( end ) ;

% check i f the r e f r a c t e d s i g n a l meets the r e c e i v e r s a t e l l i t e
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a t the
% same point as
% the non r e f r a c t e d s i g n a l does ,
i f abs ( x d i f f 2 ) < accuracy

break
e l s e i f imag ( x d i f f 2 ) ˜= 0

t h e t a 1 s t e p = t h e t a 1 s t e p /2 ;
t h e t a 1 ( 1 ) = t h e t a T + t h e t a 1 s t e p ;

e l s e i f x d i f f 2 < accuracy
t h e t a 1 s t e p = t h e t a 1 s t e p /2 ;
t h e t a 1 ( 1 ) = t h e t a T + t h e t a 1 s t e p ;

e l s e i f x d i f f 2 > 0

t h e t a 1 ( 1 ) = t h e t a 1 ( 1 ) + t h e t a 1 s t e p ;
end

% loop counter to prevent i n f i n i t e loop
i f i t e r a t i o n s > 100000

disp ( ’ r e f r a c t e d p a t h f l a t e a r t h ERROR: to much
i t e r a t i o n s ’ ) ;

break
end
i t e r a t i o n s = i t e r a t i o n s + 1 ;

end

A.2. Main program: Influence of atmosphere on
refraction, spherical Earth

%% I n f l u e n c e of atmosphere on r e f r a c t i o n , s p h e r i c a l Earth
% This program c a l c u l a t e s the r e f r a c t i o n of an e lec t romagnet i c

wave propagating trough the ear th atmosphere f o r an assumed
s p h e r i c a l Earth . The wave i s emitted at a t r a n s m i t t e r
s a t e l l i t e , r e f l e c t e d by the ear th s u r f a c e and than rece ived
from a r e c e i v e r s a t e l l i t e . The purpose of the program i s to
i n v e s t i g a t e the i n f l u e n c e of the r e f r a c t i o n on the path
length , the s i g n a l emission angle and the p o s i t i o n of the
r e f l e c t i o n point . Therefore , a non r e f r a c t e d s i g n a l with a
given s i g n a l emission angle i s emitted from the t r a n s m i t t e r
s a t e l l i t e , r e f l e c t e d from the ear th s u r f a c e and rece ived from
the r e c e i v e r s a t e l l i t e . Than a r e f r a c t e d s i g n a l i s emitted
from the t r a n s m i t t e r s a t e l l i t e with the same s i g n a l emission
angle as the non r e f r a c t e d s i g n a l . The r e f r a c t e d s i g n a l w i l l
not h i t the r e c e i v e r s a t e l l i t e a t the same p o s i t i o n as the non
r e f r a c t e d s i g n a l . Hence , the s i n g a l emission angle of the
r e f r a c t e d s i g n a l i s changed u n t i l i t h i t s the r e c e i v e r
s a t e l l i t e a t the same p o s i t i o n as the r e f r a c t e d s i g n a l does .
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The path length , the s i g n a l emission angle and the p o s i t i o n of
the r e f l e c t i o n point are compared .

%
%
% J o s e f Bauchinger , TU Graz , 01031012

%
% 1 2 . 1 . 2 0 1 8

%
%% Begin programm
c l e a r a l l ;
c l o s e a l l ;

% −−−determinat ion of parameters−−−
r 0 = 6371 ; % radius ear th [km]
h T = 20000 ; % height t r a n s m i t t e r

s a t e l l i t e [km]
h R = 6 0 0 ; % height r e c e i v e r s a t e l l l i t e

[km]
h natmos = 1 0 0 ; % height of n e u t r a l

atmmosphere [km]
h i o n o s s t a r t = 6 0 ; % s t a r t height of ionosphere

[km]
h ionos end = 2000 ; % height of ionosphere [km]
h 0 = 0 ; % height s u r f a c e ear th [km]
x T = 0 ; % h o r i z o n t a l d i s t a n c e

t r a n s m i t t e r s a t e l l i t e [km]
t h e t a T i n p u t =

[ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 1 1 , 1 2 , 1 3 , 1 3 . 5 , 1 3 . 9 , 1 3 . 9 5 , 1 3 . 9 7 ] ; %
s i g n a l emission angle t r a n s m i t t e r s a t e l l i t e [ degree ]

t h e t a T = deg2rad ( t h e t a T i n p u t ) ; % convert degree to radian
nele theta GNSS = numel ( t h e t a T ) ;
f = 1 .57542 e9 ; % GPS L1−frequency [Hz]

r T = r 0 + h T ;
r R = r 0 + h R ;

% −−−get e l e c t r o n densi ty d i s t r i b u t i o n−−−
f i l e I D = fopen ( ’ Ne Graz 60km 5km 2000km . t x t ’ , ’ r ’ ) ;

%source : h t tps ://omniweb . g s f c . nasa . gov/vitmo/ i r i 2 0 1 2 v i t m o . html
% f i l e format :
% 1 s t column : atmospheric height [km]
% 2nd column : e l e c t r o n dens i ty [1/mˆ 3 ]
% 3rd column : Ne to NmF2

N e f i l e = f s c a n f ( f i l e I D , ’%f %f ’ , [ 3 i n f ] ) ;
f c l o s e ( f i l e I D ) ;
Ne = ( N e f i l e ( 2 , : ) ) ’ ;

% −−−get height s tep s ize−−−
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h step = ( N e f i l e ( 1 , 2 )−N e f i l e ( 1 , 1 ) ) ; % [km]

% −−−c a l c u l a t e the r e f r a c t i o n i n d i c e s f o r the atmosphere
( n atmos ) , the n e u t r a l atmosphere ( n natmos ) and the
ionosphere ( n Gion )−−−

%−−determine the height vector−−
% −ear th s u r f a c e to t r a n s m i t t e r s a t e l l i t e −
% above the ionosphere i s no r e f r a c t i o n −> only one step to h T
h = [ h 0 : h s tep : h ionos end , h T ] ’ ; % [km]

% −−c a l c u l a t e the r e f r a c t i o n indices−−
[ n atmos , n natmos , n Gion ] = n c a l c u l a t i o n

( h , Ne , f , h natmos , h i o n o s s t a r t , h ionos end ) ;

% −−−determine v e c t o r s f o r path c a l c u l a t i o n−−−
% t h i s are empty v e c t o r s in which to s t o r e the c a l c u l a t i o n r e s u l t s
% −−height vectors−−
% −t r a n s m i t t e r s a t e l l i t e to ear th surface−
% above the ionosphere i s no r e f r a c t i o n −> only one step to h T
h1 = [ h T , h ionos end :−h step : h 0 ] ’ ; % [km]
r1 = h1 + r 0 ;

% −ear th s u r f a c e to r e c e i v e r s a t e l l i t e −
h2 = ( 0 : h s tep : h R ) ’ ; % [km]
r2 = h2 + r 0 ;

% −−r e f r a c t i o n indices−−
% −t r a n s m i t t e r s a t e l l i t e to r e f l e c t i o n point−
n1 = f l ipud ( n atmos ) ;

% −r e f l e c t i o n point to r e c e i v e r s a t e l l i t e −
n2 = n atmos ( 1 : numel ( h2 ) ) ;

%% C a l c u l a t i o n f o r the non r e f r a c t e d s i g n a l

% −−−c a l c u l a t e the inc idence angle−−−
% −a t r e f l e c t i o n point−
t h e t a i n = as in ( s in ( t h e t a T ) ∗ r T/ r 0 ) ;

% −a t r e c e i v e r s a t e l l i t e −
the ta R = as in ( s i n ( t h e t a i n ) ∗ r 0 /r R ) ;

% −−−c a l c u l a t e l o c a t i o n angle−−−
% −f o r r e f l e c t i o n point−
phi S = t h e t a i n − t h e t a T ;

% −f o r r e c e i v e r s a t e l l i t e −
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phi R = phi S + t h e t a i n − the ta R ;

% −−−c a l c u l a t e the h o r i z o n t a l d is tances−−−
% −t r a n s m i t t e r s a t e l l i t e to r e f l e c t i o n point−
x S = r 0 ∗phi S ;

% −r e f l e c t i o n point to r e c e v i e r s a t e l l i t e −
x R = r 0 ∗phi R ;

% −−−c a l c u l a t e the path lengths−−−
% −t r a n s m i t t e r s a t e l l i t e to r e f l e c t i o n point−
PL TS = s q r t ( r T ˆ2 + r 0 ˆ2 − 2∗ r T ∗ r 0 ∗ cos ( phi S ) ) ;

% −r e f l e c t i o n point to r e e i v e r s a t e l l i t e
pl SR = s q r t ( r R ˆ2 + r 0 ˆ2 − 2∗ r R∗ r 0 ∗ cos ( ( phi R−phi S ) ) ) ;

% − t o t a l non r e f r a c t e d path length−
PL = PL TS + pl SR ;

%% C a l c u l a t i o n f o r the r e f r a c t e d s i g n a l

% −s tep s i z e f o r the v a r i a t i o n of the s i g n a l emission angle−
t h e t a 1 s t e p i n p u t = 0 . 0 0 5 ; % [ degree ]
t h e t a 1 s t e p = deg2rad ( t h e t a 1 s t e p i n p u t ) ;

% −accuracy within the r e f r a c t e d s i g n a l has to h i t the p o s i t i o n
of the cube s a t e l l i t e f o r the non r e f r a c t e d s ignal−

accuracy = 0 . 0 0 1 ; % [km]

% −−−c a l c u l a t i o n of the r a f r a c t e d path−−−
f o r l = 1 : numel ( t h e t a T )

f p r i n t f ( ’ theta GNSS : %0.2 f \n ’ , t h e t a T i n p u t ( l ) ) ;
[ x1 ( : , l ) , x2 ( : , l ) , t h e t a 1 ( : , l ) , t h e t a 2 ( : , l ) , PL1 ( : , l ) , PL2 ( : , l ) ,

i t e r a t i o n s ( : , l ) ] = r e f r a c t e d p a t h s p h e r i c a l e a r t h
( r1 , r2 , n1 , n2 , x T , t h e t a T ( l ) , t h e t a 1 s t e p , x R ( l ) ,
r 0 , r T , accuracy ) ;

end

% −−−c a l c u l a t i o n of required r e s u l t s−−−
% −−h o r i z o n t a l d is tances−−
% −t r a n s m i t t e r s a t e l l i t e to r e f l e c t i o n point−
x S d i f f = abs ( x S − x1 ( end , : ) ) ;

% −r e f l e c t i o n point to r e c e i v e r s a t e l l i t e −
x R d i f f = abs ( x R − x2 ( end , : ) ) ;

% −−c a l c u l a t i o n of whole path length−−
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% −t r a n s m i t t e r s a t e l l i t e to r e f l e c t i o n point−
PL TSrefracted = sum( PL1 ) ;

% −r e f l e c t i o n point to r e c e i v e r s a t e l l i t e −
PL SRrefracted = sum( PL2 ) ;

% −whole r e f r a c t e d path length
P L r e f r a c t e d = PL TSrefracted + PL SRrefracted ;

% −d i f f e r e n c e between non r e f r a c t e d and r e f r a c t e d path length−
P L d i f f = abs ( PL − P L r e f r a c t e d ) ;

A.2.1. Function: Calculation refracted path for spherical
Earth

%% C a l c u l a t i o n of r e f r a c t e d s i g n a l f o r s p h e r i c a l Earth
% This func i ton c a l c u l a t e s the path of the r e f r a c t e d s i g n a l f o r

the s p h e r i c a l ear th model
%
% Input :
% r1 . . . radius vec tor t r a n s m i t t e r s a t e l l i t e to

r e f l e c t i o n point ,
% r2 . . . radius vec tor r e f l e c t i o n point to r e c e i v e r

s a t e l l i t e ,
% n1 . . . r e f r a c t i o n i n d i c e s vec tor t r a n s m i t t e r

s a t e l l i t e to r e f l e c t i o n
% point ,
% n2 . . . r e f r a c t i o n i n d i c e s vec tor r e f l e c t i o n point to

r e c e i v e r s a t e l l i t e ,
% x T . . . h o r i z o n t a l p o s i t i o n of t r a n s m i t t e r s a t e l l i t e ,
% t h e t a T . . . s i g n a l emission angle ,
% t h e t a 1 s t e p . . . s tep s i z e to meet required accuracy ,
% x R . . . h o r i z o n t a l d i s t a n c e t r a n s m i t t e r s a t e l l i t e to

r e c e i v e r s a t e l l i t e
% f o r non r e f r a c t e d s ignal ,
% r 0 . . . radius of s p h e r i c a l earth ,
% r T . . . o r b i t radius of t r a n s m i t t e r s a t e l l i t e ,
% accuracy . . . d i f f e r e n c e between h o r i z i o n t a l d i s t a n c e to

r e c e i v e r
% s a t e l l i t e of r e f r a c t e d and non r e f r a c t e d path
%
% Output :
% x1 . . . h o r i t o n t a l d i s t a n c e s vec tor t r a s m i t t e r

s a t e l l i t e to
% r e f l e c t i o n point ,
% x2 . . . h o r i z o n t a l d i s t a n c e s vec tor r e f l e c t i o n point

to
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% r e c e i v e r
% s a t e l l i t e ,
% t h e t a 1 . . . r e f r a c t i o n angles vec tor t r a n s m i t t e r

s a t e l l i t e to r e f l e c t i o n
% point ,
% t h e t a 2 . . . r e f r a c t i o n angles vec tor r e f l e c t i o n point to

r e c e i v e r
% s a t e l l i t e ,
% PL1 . . . path lenght vec tor t r a n s m i t t e r s a t e l l i t e to

r e f l e c t i o n point ,
% PL2 . . . path lenght vec tor r e f l e c t i o n point to

r e c e i v e r s a t e l l i t e ,
% i t e r a t i o n s . . . number of i t e r a t i o n s f o r c a l c u l a t i o n ,
%
%
% J o s e f Bauchinger , TU Graz , 01031012

%
% 1 2 . 1 . 2 0 1 8

%
%% Function code
funct ion [ x1 , x2 , theta1 , theta2 , PL1 , PL2 , i t e r a t i o n s ] =

r e f r a c t e d p a t h s p h e r i c a l e a r t h
( r1 , r2 , n1 , n2 , x T , theta T , t h e t a 1 s t e p , x R , r 0 , r T , accuracy )

% −−check the input−−
i f nargin < 11

disp ( ’ r e f r a c t e d p a t h ERROR: Not enough input arguments ’ ) ;
re turn

end

% −−−check i f s i g n a l h i t s the earth−−−
% maximum s i g n a l emission angle of t r a n s m i t t e r s a t e l l i t e , i f

t h e t a T i s higher the s i g n a l misses the earth , theta T max =
13 .9805 degree = 0 . 244 rd

theta T max = asind ( r 0 /r T ) ;
i f t h e t a T >= theta T max

t h e t a T = theta T max − 0 . 0 0 2 ;
% −0.002 to avoid rounding e r r o r s

end

% −−−determine v e c t o r s f o r path c a l c u l a t i o n−−−
% t h i s are empty v e c t o r s in which to s t o r e the c a l c u l a t i o n

r e s u l t s in
% −−r e f r a c t i o n angles−−
% −t r a n s m i t t e r s a t e l l i t e to r e f l e c t i o n point−
beta1 = zeros ( s i z e ( r1 ) ) ; % [ rad ]

% −r e f l e c t i o n point to r e c e i v e r s a t e l l i t e −
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beta2 = zeros ( s i z e ( r2 ) ) ; % [ rad ]

% −−h o r i z o n t a l d i s t a n c e vectors−−
% −t r a n s m i t t e r s a t e l l i t e to r e f l e c t i o n point−
x1 = zeros ( s i z e ( r1 ) ) ; % [km]

% −r e f l e c t i o n point to r e c e i v e r s a t e l l i t e −
x2 = zeros ( s i z e ( r2 ) ) ; % [km]

% −−angles a f t e r r e f r a c t i o n−−
% −t r a n s m i t t e r s a t e l l i t e to r e f l e c t i o n point−
t h e t a 1 = zeros ( numel ( beta1 ) −1 ,1) ; % [ rad ]

% −r e f l e c t i o n point to r e c e i v e r s a t e l l i t e −
t h e t a 2 = zeros ( numel ( beta2 ) −1 ,1) ; % [ rad ]

% −−angles between h o r i z o n t a l d is tances−−
% −t r a n s m i t t e r s a t e l l i t e to r e f l e c t i o n point−
phi1 = zeros ( s i z e ( beta1 ) ) ; % [ rad ]

% −r e f l e c t i o n point to r e c e i v e r s a t e l l i t e −
phi2 = zeros ( s i z e ( beta2 ) ) ; % [ rad ]

% −−path length vectors−−
% −t r a n s m i t t e r s a t e l l i t e to r e f l e c t i o n point−
PL1 = zeros ( s i z e ( t h e t a 1 ) ) ; % [km]

% −r e f l e c t i o n point to r e c e i v e r s a t e l l i t e −
PL2 =zeros ( s i z e ( t h e t a 2 ) ) ; % [km]

% −−−c a l c u l a t i o n of r e f r a c t e d path−−−
% −s e t s t a r t s i g n a l emission angle−
beta1 ( 1 ) = t h e t a T ;
%in a height of 20000 km n1 ( 1 ) = n1 ( 2 ) so t h e t a 1 ( 1 ) = t h e t a T
x1 ( 1 ) = x T ; % h o r i z o n t a l p o s i t i o n of t r a n s m i t t e r

s a t e l l i t e

% −s e t i t e r a t i o n s to 1−
i t e r a t i o n s = 1 ;

% −−c a l c u l a t e the r e f r a c t e d path−−
while 1

% −t r a n s m i t t e r s a t e l l i t e to r e f l e c t i o n point−
f o r l = 1 : numel ( r1 )−1

% c a l c u l a t i o n of r e f r a c t i o n angles f o r r e f l e c t i o n point
and t r a n s m i t t e r s a t e l l i t e

beta1 ( l +1) =
as in ( s i n ( beta1 ( l ) ) ∗n1 ( l ) ∗ r1 ( l ) /( n1 ( l +1)∗ r1 ( l +1) ) ) ;
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% c a l c u l a t i o n of angle a f t e r r e f r a c t i o n
t h e t a 1 ( l ) = as in ( s i n ( beta1 ( l ) ) ∗n1 ( l ) /n1 ( l +1) ) ; %

Snel l ’ s law
% c a l c u l a t i o n of angle between t r a n s m i t t e r s a t e l l i t e and

r e f l e c t i o n point
phi1 ( l +1) = beta1 ( l +1) − t h e t a 1 ( l ) + phi1 ( l ) ;
% c a l c u l a t i o n of h o r i z o n t a l d i s t a n c e between t r a n s m i t t e r

s a t e l l i t e − r e f l e c t i o n point
x1 ( l +1) = r 0 ∗phi1 ( l +1) ;
% c a l c u l a t i o n of path length
PL1 ( l ) = s q r t ( r1 ( l ) ˆ2 + r1 ( l +1) ˆ2 − . . .

2∗ r1 ( l ) ∗ r1 ( l +1)∗ cos ( phi1 ( l +1)−phi1 ( l ) ) ) ; %cos ine
r u l e
end

% −r e f l e c t i o n point to r e c e i v e r s a t e l l i t e −
beta2 ( 1 ) = beta1 ( end ) ;
phi2 ( 1 ) = phi1 ( end ) ;
x2 ( 1 ) = x1 ( end ) ;
f o r l = 1 : numel ( r2 )−1

% c a l c u l a t i o n of r e f r a c t i o n angles f o r r e f l e c t i o n point
and r e c e i v e r s a t e l l i t e

beta2 ( l +1) =
as in ( s i n ( beta2 ( l ) ) ∗n2 ( l ) ∗ r2 ( l ) /( n2 ( l +1)∗ r2 ( l +1) ) ) ;

% c a l c u l a t i o n of angle a f t e r r e f r a c t i o n
t h e t a 2 ( l ) = as in ( s i n ( beta2 ( l +1) ) ∗n2 ( l +1)/n2 ( l ) ) ;

%Snel l ’ s law
% c a l c u l a t i o n of angle between r e c e i v e r s a t e l l i t e and

r e f l e c t i o n point
phi2 ( l +1) = beta2 ( l ) − t h e t a 2 ( l ) + phi2 ( l ) ;
% c a l c u l a t i o n of h o r i z o n t a l d i s t a n c e between r e c e i v e r

s a t e l l i t e − r e f l e c t i o n point
x2 ( l +1) = r 0 ∗phi2 ( l +1) ;
% c a l c u l a t i o n of path length
PL2 ( l ) = s q r t ( r2 ( l ) ˆ2 + r2 ( l +1) ˆ2 − . . .

2∗ r2 ( l ) ∗ r2 ( l +1)∗ cos ( phi2 ( l +1)−phi2 ( l ) ) ) ;
% cos ine r u l e

end
x R d i f f = x R − x2 ( end ) ;

% check i f the r e f r a c t e d s i g n a l meets the r e c e i v e r s a t e l l i t e
a t the same point as the non r e f r a c t e d s i g n a l does
i f abs ( x R d i f f ) < accuracy

break
e l s e i f imag ( x R d i f f ) ˜= 0

t h e t a 1 s t e p = t h e t a 1 s t e p /2 ;
beta1 ( 1 ) = t h e t a T + t h e t a 1 s t e p ;

e l s e i f x R d i f f < accuracy
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t h e t a 1 s t e p = t h e t a 1 s t e p /2 ;
beta1 ( 1 ) = t h e t a T + t h e t a 1 s t e p ;

e l s e i f x R d i f f > 0

beta1 ( 1 ) = beta1 ( 1 ) + t h e t a 1 s t e p ;
end

% loop counter to prevent i n f i n i t e loop
i f i t e r a t i o n s > 100000

disp ( ’ r e f r a c t e d p a t h s p h e r i c a l e a r t h ERROR: to much
i t e r a t i o n s ’ ) ;

break
end
i t e r a t i o n s = i t e r a t i o n s + 1 ;

end

A.3. Main program: Reflection point calculation
(Monte Carlo simulation)

%% R e f l e c t i o n point c a l c u l a t i o n
% This program c a l c u l a t e s the d i f f e r e n c e between a supposed ture

r e f l e c t i o n point and the c a l c u l a t e d r e f l e c i o n points . Out of
the t rue r e f l e c t i o n points the s a t e l l i t e p o s i t i o n s (R , T ) f o r
given e l e v a t i o n s of the s a t e l l i t e s are c a l c u l a t e d . Out of the
s a t e l l i t e p o s i t i o n s the c a l c u l a t e d r e f l e c t i o n point i s
c a l c u l a t e d by the use of the method Binary Search and the
method of S c o t t Gleason .

%
% J o s e f Bauchinger , 4 . 1 2 . 2 0 1 7

%
%% Program Code
c l e a r a l l ;
c l o s e a l l ;

% −−−parameters−−−
% −−WGS84−−
% def ine the semimajor and the semiminor a x i s f o r the WGS 84

WGS = wgs84Ell ipsoid ;
WGS84 a = WGS. SemimajorAxis ;
WGS84 b = WGS. SemiminorAxis ;
WGS84 eps = WGS. E c c e n t r i c i t y ;
WGS84 f = 1/WGS. I n v e r s e F l a t t e n i n g ;
M = [ 0 , 0 , 0 ] ’ ; % c e n t r e of the Earth
n = 1 8 ; %number of gr id points of the WGS 84 model

136



A.3. Main program: Reflection point calculation (Monte Carlo simulation)

% −−r e f l e c t i o n points−−
% −number of r e f e l c t i o n points−
n points = 1000 ;

% −def ine the o r b i t height of the s a t e l l i t e s −
h R = 600 e3 ; % [m]
h T = 20000 e3 ; % [m]
% def ine semi a x i s of o r b i t s
a R = WGS84 a + h R ;
b R = WGS84 b + h R ;
a T = WGS84 a + h T ;
b T = WGS84 b + h T ;

% −−def ine accuracy of c a l c u l a t i o n−−
% maximum number of i t t e r a t i o n s f o r c a l c u l a t i o n of r e f l e c t i o n

point
maxit = 1000 ;
% accuracy of Binary Search
accuracy BS = 0 . 0 0 0 0 1 ; % [ rad ]
% accuracy of Binary Search
accuracy BSSSP = 0 . 0 0 1 ; % [ rad ]
% accuracy of S c o t t Gleason
accuracy SG = 5 ; % [m]

% −−dec l are s torage space−−
long deg = NaN( 1 , n points , ’ double ’ ) ;
l a t d e g = NaN( 1 , n points , ’ double ’ ) ;
e le deg = NaN( 1 , n points , ’ double ’ ) ;
S t r u e = NaN( 3 , n points , ’ double ’ ) ;
S SG = NaN( 3 , n points , ’ double ’ ) ;
S BS = NaN( 3 , n points , ’ double ’ ) ;
S BSSSP = NaN( 3 , n points , ’ double ’ ) ;

% −−def ine r e f l e c t i o n point ( S ) l o c a t i o n s and the e l e v a t i o n of
the s a t e l l i t e s −−

% The d e f i n i t i o n uses rand to generate randomly d i s t r i b u t e d
r e f l e c t i o n points−

% generate d i f f e r e n t random numbers each time MATLAB i s s t a r t e d
rng ( ’ s h u f f l e ’ ) ;
% longitude 0 − 360 degree , s t a r t a t Greenwich
long deg = rand ( 1 , n points ) ∗360 ; % [ degree ]
% l a t i t u d e +90 degree , s t a r t a t equator , northern hemisphere
l a t d e g = rand ( 1 , n points ) ∗9 0 ; %[ degree ]
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% def ine s a t e l l i t e e l e v a t i o n s between 0 and 15 degree
e le deg = rand ( 1 , n points ) ; % [ degree ]

% −convert degree to rad−
long = deg2rad ( long deg ) ;
l a t = deg2rad ( l a t d e g ) ;
e l e = deg2rad ( e le deg ) ;

% −−−c a l c u l a t e grid nods of modelled ear th and o r b i t s−−−
[ xE , yE , zE ] = e l l i p s o i d ( 0 , 0 , 0 , WGS84 a , WGS84 a , WGS84 b , n ) ;

% −−−c a l c u l a t i o n of coordinates of t rue r e f l e c t i o n point and
s a t e l l i t e

% pos i t ions−−−
[ S true , R , T ,N] = RefPt2SatPosRand . . .

( long , l a t , e le , WGS84 a , WGS84 b , WGS84 eps , a R , b R , a T , b T ) ;

% −−−c a l c u l a t i o n of r e f l e c t i o n point−−−
f o r k = 1 : numel ( l a t )

% −−display c a l c u l a t i o n step−−
f p r i n t f ( ’ c a l c u l a t i o n step : %i of %i \n ’ , k , numel ( l a t ) ) ;

% −−c a l c u l a t e r e f l e c t i o n point with S c o t t Gleason−−
f p r i n t f ( ’SG\n ’ ) ;
t i c ;
[ S SG ( : , k ) , count SG ( k ) ] = Scot tGleason

(R ( : , k ) ,T ( : , k ) ,WGS84 a , WGS84 b , WGS84 f , WGS84 eps ,
accuracy SG , maxit ) ;
time SG ( 1 , k ) = toc ;

% −−c a l c u l a t e r e f l e c t i o n point with Binary Search−−
f p r i n t f ( ’ BS\n ’ ) ;
t i c ;
[ S BS ( : , k ) , count BS ( k ) ] = BinarySearch

(R ( : , k ) ,T ( : , k ) ,WGS84 a , WGS84 a , WGS84 b , accuracy BS , maxit ) ;
t ime BS ( 1 , k ) = toc ;

% −−c a l c u l a t e r e f l e c t i o n point with Binary Searc plus
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S a t e l l i t e Sub
% Point−−
f p r i n t f ( ’ BSSSP\n\n ’ ) ;
t i c ;
[ S BSSSP ( : , k ) , count BSSSP ( k ) , count SSP ( k ) ] =

B i n a r y S e a r c h S a t e l l i t e S u b P o i n t
(R ( : , k ) ,T ( : , k ) ,WGS84 a , WGS84 b , WGS84 eps ,
accuracy BSSSP , maxit ) ;
time BSSSP ( 1 , k ) = toc ;

end

%% Save r e s u l t s
save ( ’ RefPtCalc20180318 x . mat ’ ,

’ S t r u e ’ , ’ S BS ’ , ’ S SG ’ , ’ S BSSSP ’ , ’R ’ , ’T ’ , ’ long deg ’ , ’ l a t d e g ’ ,
’ e le deg ’ , ’ count BS ’ , ’ count SG ’ , ’ count BSSSP ’ , ’ time BS ’ , ’ time SG ’ ,
’ time BSSSP ’ , ’ count SSP ’ ) ;

A.3.1. Function: Scott Gleason

%% S c o t t Gleason
% funct ion [ S ] = RT2S Example1 (R , T )
%
% Input :
% R = Receiver P o s i t i o n ECEF
% T = GPS S a t e l l i t e P o s i t i o n ECEF
% a , b = semi a x i s of spheroid ( J o s e f Bauchinger )
% f = f l a t t e n i n g of spheroid ( J o s e f Bauchinger )
% eps = numerical e c c e n t r i c i t y of spheroid ( J o s e f Bauchinger )
% accuracy = accuracy of c a l c u l a t i o n ( J o s e f Bauchinger )
% maxit = maximum number of i t e r a t i o n s ( J o s e f Bauchinger )
% Output :
% S = specular point p o s i t i o n ECEF
% i t e r a t i o n s = number of i t e r a t i o n s needed ( J o s e f Bauchinger )
%
%
%
% Copyright 2006 S c o t t Gleason , GNU GPL
% Adjusted by J o s e f Bauchinger , 1 3 . 3 . 2 0 1 8

%
funct ion [ S , i t e r a t i o n s ] =

Scot tGleason (R , T , a , b , f , eps , accuracy , maxit )

% −−check the input ( J o s e f Bauchinger )−−
i f nargin < 8

disp ( ’ERROR SG : not enough input arguments ’ ) ;
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re turn
end

% I n i t i a l specular point guess , on the s u r f a c e d i r e c t l y below R
r = e a r t h r a d i u s (R , a , b , f , eps ) ; %( J o s e f Bauchinger )
Rmag = norm (R) ;
Stemp = R∗ ( r/Rmag) ;
S = Stemp ;

% misc
c o r r e c t i o n = 10000 ;

%t o l = 0 . 0 0 1 ; % convergence to le rance , meters
i t e r a t i o n s = 0 ;
rad2deg = 180/ pi ;
K = 10000 ; % c o r r e c t i o n gain

while c o r r e c t i o n > accuracy %( J o s e f Bauchinger )
i t e r a t i o n s = i t e r a t i o n s + 1 ;

% Take d e r i v a t i v e s
S2R unit = (R − S ) ./norm (R−S ) ;
S2T unit = ( T − S ) ./norm ( T−S ) ;
% c a l c u l a t e c o r r e c t i o n d i r e c t i o n
dXYZ = S2R unit + S2T unit ;

% apply raw c o r r e c t i o n
Stemp = S + K∗dXYZ ;

% c o n s t r a i n to Earth s u r f a c e
r = e a r t h r a d i u s ( Stemp , a , b , f , eps ) ;
Stemp = ( Stemp ./norm ( Stemp ) ) ∗ r ;

% watch r e a l c o r r e c t i o n magnitudes , should c o n t i n u a l l y decrease
correc t ion temp = abs ( norm ( S−Stemp ) ) ;
c o r r e c t i o n ( i t e r a t i o n s ) = correc t ion temp ;

% update es t imate of specular point
S = Stemp ;

% a d j u s t gain based on c o r r e c t i o n , i . e . i f we are g e t t i n g
c l o s e r , lower c o r r e c t i o n gain

i f ( correc t ion temp > 10 )
K = 10000 ;

e l s e
K = 1000 ;

end

140



A.3. Main program: Reflection point calculation (Monte Carlo simulation)

i f ( i t e r a t i o n s > maxit )
disp ( ’ERROR SG : more than maxit i t e r a t i o n s ’ ) ; %( J o s e f

Bauchinger )
break ;

end

end

A.3.2. Function: Binary Search for an ellipsoid

%% Binary Search f o r r e f l e c t i o n point c a l c u l a t i o i n
% This program c a l c u l a t e s the r e f l e c t i o n point ( S ) out of two

given s a t e l l i t e p o s i t i o n s (R and T ) and the semiaxis of an
e l l i p s o i d by the use of the Binary Search method f o r a given
accuracy .

%
% Input :
% R . . . p o s i t i o n of the r e c e i v e r s a t e l l i t e
% T . . . p o s i t i o n of the t r a n s m i t t e r s a t e l l i t e
% a . . . 1 s t semiaxis
% b . . . 2nd semiaxis
% c . . . 3rd semiaxis
% accuracy . . . accuracy
% maxit . . . maximum number of i t e r a t i o n s
%
% Output :
% S c a l c . . . c a l c u l a t e d r e f l e c t i o n point
% count . . . number of i t e r a t i o n s
%
% J o s e f Bauchinger , 2 0 . 1 1 . 2 0 1 7

%
%% Program Code
funct ion [ S c a l c , i t e r a t i o n s ] =

BinarySearch (R , T , a , b , c , accuracy , maxit )

% −−check the input−−
i f nargin < 7

disp ( ’ERROR: not enough input arguments ’ ) ;
re turn

end

% −−determinate the p o s i t i o n r i g h t between the two s a t e l l i t e s
( P BS ) and the boundaries f o r Binary Search−−

P BST = T ;
P BSR = R ;
P BS = R + ( P BST−P BSR ) /2 ;
d i r BS = P BS/norm ( P BS ) ;
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% The p o s i t i o n ( P BS ) i s equal to the vec tor between the c e n t r e
of the Earth and the p o s i t i o n in the middle of the two
s a t e l l i t e s and t h e r e f o r e i s equal to the d i r e c t i o n of the
s t r a i g h t l i n e ( dir P BS ) .

% −−i n t e r s e c t the vec tor with the ear th s u r f a c e − f i r s t guessed
r e f l e c t i o n point ( S )−−

[ S1 , S2 ] = CutStraightWithOrbit ( [ 0 , 0 , 0 ] ’ , dir BS , a , b , c ) ;
S c a l c = S1 ;

% The funct ion ” c u t s t r a i g h t w i t h o r b i t ” re turns two p o s i t i o n s
because a s t r a i g h t i n t e r s e c t s a t two p o s i t i o n s with a
r o t a t i o n a l e l l i p s o i d . S1 i s the point of i n t e r s e c t i o n in
p o s i t i v d i r e c t i o n and S2 in negat iv d i r e c t i o n . [ 0 , 0 , 0 ] i s the
c e n t r e of the Earth and the space point of the s t r a i g h t l i n e .

% −−c a l c u l a t e r e f l e c t i o n angles−−
t h e t a r e f = acos ( ( R−S c a l c ) ’∗ ( P BS−S c a l c ) /

( norm (R−S c a l c ) ∗norm ( ( P BS−S c a l c ) ) ) ) ;
t h e t a i n = acos ( ( T−S c a l c ) ’∗ ( P BS−S c a l c ) /

( norm ( T−S c a l c ) ∗norm ( ( P BS−S c a l c ) ) ) ) ;
% t h e t a r e f = abs ( t h e t a r e f ) ;
% t h e t a i n = abs ( t h e t a i n ) ;
% t h e t a i n and t h e t a r e d are the incoming and r e f l e c t e d angle a t

the r e f l e c t i o n point . At the r e f l e c t i o n point , t h i s two angles
have to be equal to f u l f i l Sne l l ’ s law .

% −−determine i f angles are equal , otherwise move S−−
i t e r a t i o n s = 0 ; %s e t i t e r a t i o n counter to 0

while abs ( t h e t a r e f − t h e t a i n ) > accuracy
% The c r i t e r i o n to perform another loop is , t h a t the
d i f f e r e n c e between the incoming and the r e f l e c t e d angle i s
bigger than the accuracy .
i t e r a t i o n s = i t e r a t i o n s + 1 ;

i f t h e t a r e f < t h e t a i n
P BSR = P BS ;
P BS = P BS + ( P BST−P BSR ) /2 ;
% I f the incoming angle i s bigger than the r e f l e c t e d , the

est imated r e f l e c t i o n point has to be moved towards the the
t r a n s m i t t e r s a t e l l i t e .
e l s e i f t h e t a i n < t h e t a r e f

P BST = P BS ;
P BS = P BS − ( P BST−P BSR ) /2 ;
% I f the r e l f e c t e d angle i s bigger than the incoming , the

est imated r e f l e c t i o n point has to be moved towards the
r e c e i v e r s a t e l l i t e .
e l s e

disp ( ’ERROR BS : angles equal ’ ) ;
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break
end

dir BS = P BS/norm ( P BS ) ;
[ S1 , S2 ] = CutStraightWithOrbit ( [ 0 , 0 , 0 ] ’ , dir BS , a , b , c ) ;
S c a l c = S1 ;
t h e t a r e f = acos ( ( R−S c a l c ) ’∗ ( P BS−S c a l c ) /

( norm (R−S c a l c ) ∗norm ( ( P BS−S c a l c ) ) ) ) ;
t h e t a i n = acos ( ( T−S c a l c ) ’∗ ( P BS−S c a l c ) /

( norm ( T−S c a l c ) ∗norm ( ( P BS−S c a l c ) ) ) ) ;
% t h e t a r e f = abs ( t h e t a r e f ) ;
% t h e t a i n = abs ( t h e t a i n ) ;
% The new r e f l e c t i o n point and angles are c a l c u l a t e d .

i f i t e r a t i o n s > maxit
disp ( ’ERROR BS : more than maxit i t e r a t i o n s ’ ) ;
break
% Check i f the c a l c u l a t i o n takes too long .

e l s e
continue

end
end

A.3.3. Function: Binary Search for a spheroid enhanced
with satellite sub point calculation

%% Binary Search f o r r e f l e c t i o n point c a l c u l a t i o i n
% This program c a l c u l a t e s the r e f l e c t i o n point ( S ) out of two

given s a t e l l i t e p o s i t i o n s (R and T ) and the semiaxis of a
e l l i p s o i d by the use of the Binary Search method . Addi t ional ly
a value f o r the accuracy i s added to ensure a f i n i t e
c a l c u l a t i o n .

%
% Input :
% R . . . p o s i t i o n of the r e c e i v e r s a t e l l i t e
% T . . . p o s i t i o n of the t r a n s m i t t e r s a t e l l i t e
% a . . . 1 s t semiaxis
% b . . . 2nd semiaxis
% eps . . . e c c e n t r i c i t y of spheroid
% accuracy . . . accuracy
% maxit . . . maximum number of i t e r a t i o n s
%
% Output :
% S c a l c . . . c a l c u l a t e d r e f l e c t i o n point
% count . . . number of i t e r a t i o n s
%
% J o s e f Bauchinger , 1 5 . 0 2 . 2 0 1 8
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%
%% Program Code
funct ion [ S c a l c , i t e r a t i o n s , count SSP ] =

B i n a r y S e a r c h S a t e l l i t e S u b P o i n t (R , T , a , b , eps , accuracy , maxit )

% −−check the input−−
i f nargin < 7

disp ( ’ERROR BSSSP : not enough input arguments ’ ) ;
re turn

end

% −−determinate the p o s i t i o n r i g h t between the two s a t e l l i t e s
( P BS )−−

P BST = T ;
P BSR = R ;
P BS = R + ( P BST−P BSR ) /2 ;

% −−c a l c u l a t e sub point of P BS −> f i r s t ess t imated r e f l e c t i o n
point ( S )−−

[ long PBS , lat PBS , count SSP ] =
S a t e l l i t e S u b P o i n t ( P BS ( 1 ) , P BS ( 2 ) , P BS ( 3 ) , a , b , eps ) ;

[ S c a l c ] = longla t2xyz ( long PBS , lat PBS , a , eps ) ;

% −−c a l c u l a t e r e f l e c t i o n angles−−
t h e t a r e f = acos ( ( R−S c a l c ) ’∗ ( P BS−S c a l c ) /

( norm (R−S c a l c ) ∗norm ( ( P BS−S c a l c ) ) ) ) ;
t h e t a i n = acos ( ( T−S c a l c ) ’∗ ( P BS−S c a l c ) /

( norm ( T−S c a l c ) ∗norm ( ( P BS−S c a l c ) ) ) ) ;
% t h e t a i n and t h e t a r e f are the incoming and r e f l e c t e d angle a t

the r e f l e c t i o n point . At the r e f l e c t i o n point , t h i s two angles
have to be equal to f u l f i l Sne l l ’ s law .

% −−determine i f angles are equal , otherwise move S−−
i t e r a t i o n s = 0 ; %s e t i t e r a t i o n counter to 0

while abs ( t h e t a r e f − t h e t a i n ) > accuracy
% The c r i t e r i o n to perform another loop is , t h a t the
d i f f e r e n c e between the incoming and the r e f l e c t e d angle i s
bigger than the accuracy .
i t e r a t i o n s = i t e r a t i o n s + 1 ;

i f t h e t a r e f < t h e t a i n
P BSR = P BS ;
P BS = P BS + ( P BST−P BSR ) /2 ;
% I f the incoming angle i s bigger than the r e f l e c t e d , the

est imated r e f l e c t i o n point has to be moved towards the the
t r a n s m i t t e r s a t e l l i t e .
e l s e i f t h e t a i n < t h e t a r e f
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P BST = P BS ;
P BS = P BS − ( P BST−P BSR ) /2 ;
% I f the r e l f e c t e d angle i s bigger than the incoming , the

est imated r e f l e c t i o n point has to be moved towards the
r e c e i v e r s a t e l l i t e .
e l s e

disp ( ’ERROR BSSSP : angles equal ’ ) ;
break

end

[ long PBS , lat PBS , count SSPloop ] =
S a t e l l i t e S u b P o i n t ( P BS ( 1 ) , P BS ( 2 ) , P BS ( 3 ) , a , b , eps ) ;
[ S c a l c ] = longla t2xyz ( long PBS , lat PBS , a , eps ) ;
count SSP = count SSP + count SSPloop ;

t h e t a r e f = acos ( ( R−S c a l c ) ’∗ ( P BS−S c a l c ) /
( norm (R−S c a l c ) ∗norm ( ( P BS−S c a l c ) ) ) ) ;
t h e t a i n = acos ( ( T−S c a l c ) ’∗ ( P BS−S c a l c ) /

( norm ( T−S c a l c ) ∗norm ( ( P BS−S c a l c ) ) ) ) ;
% The new r e f l e c t i o n point and angles are c a l c u l a t e d .

i f i t e r a t i o n s > maxit
disp ( ’ERROR BSSSP : more than maxit i t e r a t i o n s ’ ) ;
break
% Check i f the c a l c u l a t i o n takes too long .

e l s e
continue

end
end

A.3.4. Function: Calculate satellite positions out of true
reflection point

%% Ca l c u l a te S a t e l l i t e p o s i t i o n out of r e f l e c t i o n point
% This program c a l c u l a t e s the p o s i t i o n s of the r e c e i v e r and

t r a n s m i t t e r s a t e l l i t e out of a given r e f l e c t i o n point and the
e l e v a t i o n and o r b i t a l height of the s a t e l l i t e s . The d i r e c t i o n
from the r e f l e c t i o n point to the s a t e l l i t e s i s randomly
c a l c u l a t e d .

%
% Input :
% long . . . longitude , vec tor where each element i s a longi tude
% l a t . . . l a t i t u d e , vec tor where each element i s a l a t i t u d e
% e l e . . . e l e v a t i o n of the s a t e l l i t e s
% aE . . . semimaor a x i s of the ear th model
% bE . . . semiminor a x i s of the ear th model
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% epsE . . . numerical e c c e n t r i c i t y of the ear th model
% aR . . . semimaor a x i s of the o r b i t of the r e c e i v e r s a t e l l i t e
% bR . . . semiminor a x i s of the o r b i t of the r e c e i v e r s a t e l l i t e
% aT . . . semimaor a x i s of the o r b i t of the t r a n s m i t t e r s a t e l l i t e
% bT . . . semiminor a x i s of the o r b i t of the t r a n s m i t t e r s a t e l l i t
%
% Output :
% S . . . post ion of t rue r e f l e c t i o n point , matrix where each row

i s a
% p o s i t i o n
% R . . . p o s i t i o n of the r e c e i v e r s a t e l l i t e , matrix where each

row i s a
% p o s i t i o n
% T . . . p o s i t i o n of the t r a n s m i t t e r s a t e l l i t e , matrix where each

row i s a
% p o s i t i o n
% N . . . d i r e c t i o n of the s u r f a c e normal , matrix where each row

i s a
% d i r e c t i o n
%
% J o s e f Bauchinger , 3 . 1 2 . 2 0 1 7

%
%% Proram Code
funct ion [ S , R , T ,N] =

RefPt2SatPosRand ( long , l a t , e le , aE , bE , epsE , aR , bR , aT , bT )

% −−check the input−−
i f nargin < 10

disp ( ’ERROR: not enough input arguments ’ ) ;
re turn

end

% −−c a l c u l a t i o n of [ x , y , z ] of S out of long and l a t−−
S = longla t2xyz ( long , l a t , aE , epsE ) ;

% −−c a l c u l a t e s u r f a c e normal on r e f e l c t i o n point−−
N = SurfnormEll ipsoid ( S , aE , aE , bE ) ;

% −−c a l c u l a t e d i r e c t i o n to s a t e l l i t e s −−
% −d i r e c t i o n A with zero e levat ion−
dir A = zeros ( s i z e (N) ) ;
dir A ( 2 , : ) = −N( 3 , : ) ;
dir A ( 3 , : ) = N( 2 , : ) ;
% norm DirA
norm dirA = s q r t (sum( dir A . ˆ 2 ) ) ;
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norm dirA = repmat ( norm dirA , 3 , 1 ) ;
dir A = dir A ./ norm dirA ;

% −d i r e c t i o n B orthogonal to d i r e c t i o n A and N−
dir B = c r o s s (N, dir A ) ;
% norm DirB
norm dirB = s q r t (sum( dir B . ˆ 2 ) ) ;
norm dirB = repmat ( norm dirB , 3 , 1 ) ;
d i r B = dir B ./ norm dirB ;

% −c a l c u l a t e random d i r e c t i o n vec tor Dir out of DirA and DirB−
% c a l c u l a t e random length in d i r e c t i o n A and B
leng A = −1 +(1+1 ) . ∗ rand ( 1 , numel ( dir A ( 1 , : ) ) ) ;
leng A = repmat ( leng A , 3 , 1 ) ;
leng B = −1 +(1+1 ) . ∗ rand ( 1 , numel ( d i r B ( 1 , : ) ) ) ;
leng B = repmat ( leng B , 3 , 1 ) ;
% c a l c u l a t e d i r e c t i o n vec tor Dir
d i r = leng A . ∗ dir A + leng B . ∗ dir B ;
% norm Dir
norm dir = s q r t (sum( di r . ˆ 2 ) ) ;
norm dir = repmat ( norm dir , 3 , 1 ) ;
d i r = d i r ./ norm dir ;

% −d i r e c t i o n with given e levat ion−
e l e = repmat ( e le , 3 , 1 ) ;
d ir R = N.∗ s in ( e l e ) +d i r . ∗ cos ( e l e ) ;
d i r T = N.∗ s in ( e l e )−d ir . ∗ cos ( e l e ) ;

% −−c a l c u l a t e p o s i t i o n of s a t e l l i t e s −−
[ R1 , R2 ] = CutStraightWithOrbit ( S , dir R , aR , aR , bR ) ;
[ T1 , T2 ] = CutStraightWithOrbit ( S , dir T , aT , aT , bT ) ;

R = R1 ;
T = T1 ;

A.3.5. Function: Satellite sub point

%% Ca l c u l a te the s a t e l l i t e sub point vers ion 1

% This funct ion c a l c u l a t e s the s a t e l l i t e sub point f o r a spheroid
given by a and b .

%
% Input :
% xS , yS , zS . . . c a r t e s i a n coordinates of s a t e l l i t e
% a . . . 1 s t semiaxis
% b . . . 2nd semiaxis
% eps . . . e c c e n t r i c i t y of spheroid
%
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% Output :
% longSP , la t SP . . . longi tude and l a t i t u d e of the s a t e l l i t e

subpoint
% in [ rad ]
%
% J o s e f Bauchinger , 2 5 . 0 1 . 2 0 1 8

%
%% Program Code
funct ion [ longSP , latSP , i t e r a t i o n s ] =

S a t e l l i t e S u b P o i n t ( xS , yS , zS , a , b , eps )

% −−check the input−−
i f nargin < 6

disp ( ’ERROR: not enough input arguments ’ ) ;
re turn

end

% −−−c a l c u l a t e longitude−−−
longSP = atan2 ( yS , xS ) ;

% −−−c a l c u l a t e l a t i t u d e−−−
% see ht tps ://www. c e l e s t r a k . com/columns/v02n03/
R = s q r t ( xS ˆ2+ yS ˆ 2 ) ;

l a t s t = atan2 ( zS , R) ;

l a t i = l a t s t ;
accuracy = deg2rad (5 e−6) ;
i t e r a t i o n s = 0 ;

C = 1/ s q r t (1−eps ˆ2∗ s in ( l a t i ) ˆ 2 ) ;
l a t S P = atan ( ( zS+a∗C∗eps ˆ2∗ s in ( l a t i ) ) /R) ;
while abs ( latSP− l a t i ) > accuracy

i t e r a t i o n s = i t e r a t i o n s + 1 ;
l a t i = l a tS P ;

C = 1/ s q r t (1−eps ˆ2∗ s i n ( l a t i ) ˆ 2 ) ;

l a t S P = atan2 ( ( zS+a∗C∗eps ˆ2∗ s i n ( l a t i ) ) ,R) ;

i f i t e r a t i o n s > 100

disp ( ’ERROR satsubpt1 : too many i t e r a t i o n s ’ ) ;
break

end
end
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A.3.6. Function: Cut straight with orbit

%% I n t e r s e c t i o n of a s t r a i g h t l i n e and an e l l i p s o i d
% This funct ion c a l c u l a t e s the i n t e r s e c t i o n point of a s t r a i g h t

l i n e and the s u r f a c e of an e l l i p s o i d . The maths behind t h i s
func i ton i s to i n s e r t the equation of s t r a i g h t l i n e i n t o the
equation of the e l l i p s o i d .

%
% Input :
% S . . . space point of s t r a i g h t l i n e , matrix where each column i s

a space
% point
% r . . . d i r e c t i o n of s t r a i g h t l i n e , matirx where each column i s a
% d i r e c t i o n vec tor
% a . . . 1 s t semiaxis
% b . . . 2nd semiaxis
% c . . . 3rd semiaxis
%
% Output : coordinates of i n t e r s e c t i o n point [ x , y , z ]
%
% J o s e f Bauchinger , 4 . 1 2 . 2 0 1 7

%
%% Program Code
funct ion [ I1 , I2 ] = CutStraightWithOrbit ( S , r , a , b , c )

% −−check the input−−
i f nargin < 5

disp ( ’ERROR c u t s t r a i g h t w i t h o r b i t : not enough input
arguments ’ ) ;
re turn

end

% −−check f o r row or column vector−−
s i z e S = s i z e ( S ) ;
s i z e r = s i z e ( r ) ;
i f s i z e S ( 1 ) ˜= 3

disp ( ’ERROR c u t s t r a i g h t w i t h o r b i t : wrong s i z e of space point
matrix S ’ ) ;

end
i f s i z e r ( 1 ) ˜= 3

disp ( ’ERROR c u t s t r a i g h t w i t h o r b i t : wrong s i z e of d i r e c t i o n
matrix r ’ ) ;

end

% −−in termedia te c a l c u l a t i o n−−
A = b ˆ2∗ c ˆ2∗ r ( 1 , : ) . ˆ 2 + a ˆ2∗ c ˆ2∗ r ( 2 , : ) . ˆ 2 + a ˆ2∗b ˆ2∗ r ( 3 , : ) . ˆ 2 ;
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B = 2∗b ˆ2∗ c ˆ2∗S ( 1 , : ) .∗ r ( 1 , : ) + 2∗a ˆ2∗ c ˆ2∗S ( 2 , : ) .∗ r ( 2 , : ) +
2∗a ˆ2∗b ˆ2∗S ( 3 , : ) .∗ r ( 3 , : ) ;

C = b ˆ2∗ c ˆ2∗S ( 1 , : ) . ˆ 2 + a ˆ2∗ c ˆ2∗S ( 2 , : ) . ˆ 2 + a ˆ2∗b ˆ2∗S ( 3 , : ) . ˆ 2 −
a ˆ2∗b ˆ2∗ c ˆ 2 ;

k1 = (−B + s q r t ( B.ˆ2−4∗A.∗C) ) /(2∗A) ;
k2 = (−B − s q r t ( B.ˆ2−4∗A.∗C) ) /(2∗A) ;

% −−c a l c u l a t e coordinates−−
% The i n t e r s e c t i o n point with index 1 i s the one in the p o s i t i v

d i r e c t i o n .
% The i n t e r e s c t i o n point with index 2 i s the one in the negat iv

d i r e c t i o n .
% For both i n t e r s e c t i o n points the d i r e c t i o n i s s p e c i f i e d from

the space
% point .
x1 = S ( 1 , : ) + k1 .∗ r ( 1 , : ) ;
y1 = S ( 2 , : ) + k1 .∗ r ( 2 , : ) ;
z1 = S ( 3 , : ) + k1 .∗ r ( 3 , : ) ;
I1 = [ x1 ; y1 ; z1 ] ;

x2 = S ( 1 , : ) + k2 .∗ r ( 1 , : ) ;
y2 = S ( 2 , : ) + k2 .∗ r ( 2 , : ) ;
z2 = S ( 3 , : ) + k2 .∗ r ( 3 , : ) ;
I2 = [ x2 ; y2 ; z2 ] ;

A.3.7. Function: Calculate surface normal

%% Surface normal on e l l i p s o i d
% This funct ion c a l c u l a t e s the s u r f a c e normal on a given point

( S ) on an e l l i p s o i d .
%
% Input :
% S . . . po ints on e l l i p s o i d , each column i s a p o s i t i o n vector
% a . . . 1 s t semiaxis
% b . . . 2nd semiaxis
% c . . . 3rd semiaxis
%
% Output :
% N . . . normed s u r f a c e normal ( d i r e c t i o n of s u r f a c e normal )
% to p l o t i t regarded to S don ’ t f o r g e t to add S to N

( l i k e Nplot = S + N)
%
% J o s e f Bauchinger , 4 . 1 2 . 2 0 1 7

%
%% Begin Code
funct ion [N] = SurfnormEll ipsoid ( S , a , b , c )
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% −−check the input−−
i f nargin < 4

disp ( ’ERROR: not enough input arguments ’ ) ;
re turn

end

% −−check s i z e of S−−
s i z e S = s i z e ( S ) ;
i f s i z e S ( 1 ) ˜= 3

disp ( ’ERROR: wrong s i z e of p o s i t i o n matrix S ’ ) ;
re turn

end

% −−c a l c u l a t e s u r f a c normal−−
% generate Matrix with gradient funct ion f o r e l l i p s o i d
gradientMatr ix = repmat ( [ 2 / a ˆ 2 ; 2 / b ˆ 2 ; 2 / c ˆ 2 ] , 1 , numel ( S ( 1 , : ) ) ) ;
% c a l c u l a t e s u r f a c e normals
N = S .∗ gradientMatr ix ;
% norm the s u r f a c e normals
normN = s q r t (sum(N. ˆ 2 ) ) ;
normN = repmat (normN, 3 , 1 ) ;
N = N./normN ;

A.3.8. Function: Convert longitude and latitude to x, y and
z

%% Transform longitude and l a t i t u d e i n t o c a r t e s i a n coordinates
% This funct ion c a l c u l a t e s the [ x , y , z ] p o s i t i o n of a point on a

spheroid s u r f a c e by input of the geodet ic longi tude and the
l a t i t u d e .

%
% Input :
% long . . . longitude , vec tor where each element i s a longi tude
% l a t . . . l a t i t u d e , vec tor where each element i s a l a t i t u d e
% a . . . 1 s t semiaxis
% eps . . . numerical e c c e n t r i c i t y
%
% Output :
% S . . . p o s i t i o n of r e f l e c t i o n point in c a r t e s i a n coordinates

[ x , y , z ]
%
% J o s e f Bauchinger , 4 . 1 2 . 2 0 1 7

%
%% Program Code
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A. Program codes

func t ion [ S ] = longla t2xyz ( long , l a t , a , eps )

% −−check the input−−
i f nargin < 4

disp ( ’ERROR: not enough input arguments ’ ) ;
re turn

end

% −−check f o r row or column vector−−
s i z e l o n g = s i z e ( long ) ;
s i z e l a t = s i z e ( l a t ) ;
i f s i z e l o n g ( 1 ) ˜= 1

long = long ’ ;
end
i f s i z e l a t ( 1 ) ˜= 1

l a t = l a t ’ ;
end

% −−c a l c u l a t e the c o e f f i c i e n t s C1 and C2−−
C1 = 1 ./ s q r t (1−eps ˆ 2 . ∗ s in ( l a t ) . ˆ 2 ) ;
C2 = C1 .∗(1− eps ˆ 2 ) ;

% −−c a l c u l a t e x , y , z and S−−−
x = a . ∗C1 .∗ cos ( l a t ) .∗ cos ( long ) ;
y = a .∗C1 .∗ cos ( l a t ) .∗ s i n ( long ) ;
z = a .∗C2 .∗ s i n ( l a t ) ;

S = [ x ; y ; z ] ;
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¯C2,0 normalized second degree zonal gravitational coefficient
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µ Earth’s gravitational constant

ν frequency of the GNSS signal

ωE truncated angular velocity of the Earth

−−−→
MScalc vector between the centre of the Earth and the calculated reflection

point

−→
MS vector between the centre of the Earth and the true reflection point

−−−→
ScalcR vector between the calculated reflection point and the receiver satel-

lite
−→
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−→
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φ and λ angles used to perform a coordinate transformation from geocen-
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