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Abstract

To be able to relate the output of an acoustic particle velocity sensor correctly to
the physical quantity, a reliable calibration procedure for this sensor is crucial.
The lack of a standardized procedure and the variations in the calibration curves
obtained with different methodologies encourage the development of a new
procedure. This thesis gives an overview of some calibration methods used so
far and presents a calibration method using a vibrating piston. The pressure
sound field above the piston is measured and analyzed in different layers above
the piston. In a next step, various calculation methods (finite difference and
holography) are tested to obtain particle velocity from pressure measurements.
This velocity can be used as reference for a subsequent calibration. The calcu-
lated reference velocity is analyzed in terms of stability and precision, using
simulated and measured pressure data. In order to perform the calibration in a
fast and stable manner the work finally focuses on the finite difference method.
With the help of measurements and finite difference, a stable vectorial velocity
sound field above the piston is found. There, the acoustic particle velocity sensor
can be calibrated and the influence of position errors is analyzed. In the end, a
guide for calibration within a total precision is presented.
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Kurzfassung

Um die gemessenen Werte eines Schallschnelle-Sensors korrekt mit den physi-
kalischen Größen zu verknüpfen, ist es wichtig, ein zuverlässiges Kalibra-
tionsverfahren zu haben. Da es derzeit noch keinen standardisierten Ablauf
dafür gibt und die Ergebnisse mit verschiedenen Kalibrationsmethoden vari-
ieren, wird eine neue Kalibrationsmethode entwickelt. In dieser Arbeit wer-
den zuerst verschiede derzeit benutze Prozeduren vorgestellt und ein Kalibra-
tionsverfahren mit einem vibrierenden Kolben präsentiert. Die Schalldruck-
verteilung über diesem Kolben wird in verschiedenen Abständen gemessen
und analysiert. Im nächsten Schritt werden unterschiedliche Methoden (Finite-
Differenzen, Holografie) getestet, mit welchen es möglich ist, die Schallschnelle
aus den Schalldruckwerten auszurechnen. Diese berechnete Schallschnelle kann
dann als Referenzschnelle für die Kalibrierung verwendet werden. Die Stabilität
und die Genauigkeit der Referenzschnelle werden mit simulierten als auch
mit gemessenen Schalldruckdaten analysiert. Um die Kalibrierung schnell und
stabil durchführen zu können, liegt das Hauptaugenmerk schlussendlich auf
der Finiten-Differenzen-Methode. Durch Messungen und der Anwendung der
Finiten-Differenzen-Methode kann ein stabiles vektorielles Schallschnellefeld
über dem Kolben gefunden werden. Im Bereich dieses stabilen Feldes kann
nun der Schallschnelle-Sensor kalibriert und Fehler auf Grund unzureichender
Positionierungsgenauigkeit analysiert werden. Am Ende der Arbeit wird ein
Leitfaden für eine Kalibrierung innerhalb einer gewissen Toleranz präsentiert.
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1 Introduction 1

1 Introduction

1.1 Motivation

The area of Noise, Vibration and Harshness (NVH) has become an essential
part of the vehicle development process and sound isolation materials and their
vibro-acoustic properties are getting increasingly important.

Therefore, the international research and development center VIRTUAL VEHI-
CLE developed a trim test rig (Tbox) (see figure 1.1). It is used for experimental
characterization of these vibro-acoustic properties using the patch transfer
function (PTF) coupling scheme (e.g. [1], [2], [3] and [4]). An acoustic liner is
excited by a structural shaker at the lower surface and a speaker on the upper
surface while sound pressure and acoustic particle velocity are measured by a
combination of force transducers and accelerometers on the bottom surface as
well as sound pressure - particle velocity (PU) probes on the top side. The main
focus of this thesis lies on the calibration of the acoustic particle velocity sensor
of the PU probes.

Figure 1.1: Trim test rig (Tbox) for experimental characterization of vibro-acoustic properties of
sound isolation materials [1].
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1 Introduction 2

1.2 PU Probes

The Microflown sensor was invented in 1994. It indirectly measures the acoustic
particle velocity of air, using two heated platinum wires with equal nominal
resistance. The current generates heat in the wires, which is subsequently
dissipated into the surrounding air. The main axis of the sensor is defined as the
normal direction of the wires (see red arrow in the right side of figure 1.2. When
particle velocity is propagating parallel to the direction of the sensor’s main
axis (across the wires), the wire which is reached first, cools down more than
the other, resulting in a resistance difference, from which the acoustic particle
velocity can be derived by means of a calibration curve. In a PU sensor, sound
pressure and a particle velocity vector can be measured in almost the same
spot (see figure 1.2). In general the PU sensor consists of two cylinders. One
is hollow and contains the miniature sound pressure microphone. The other
one is solid and contains the particle velocity sensor on top of it. The package
protects the sensitive wires and amplifies the particle velocity gain.

An introduction to the technology and information about calibration, measure-
ments and applications are given in [5]. This E-book was intended as a snapshot
on ongoing research with the Microflown sensor, but unfortunately has not
been updated since 2009.

Figure 1.2: PU probe [5]; left figure: left cylinder: solid, particle velocity sensor mounted on
side; right cylinder: hollow with enclosed microphone sensor; right figure: zoomed
view of a bridge type Microflown particle velocity sensor, red arrow: main direction.
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1 Introduction 3

1.3 Calibration of Particle Velocity Sensors

The theory presented in this chapter is mainly based on the Microflown E-book
[5].

To be able to relate the sensor output signal correctly to the physical quantity
an accurate, stable and dependable calibration is needed. In comparison with
sound pressure microphones or probes which measure the sound pressure at
2 different positions at a time (PP probes), no standardized calibration method
for PU probes and acosutic particle velocity sensors exists. It is hence necessary
to determine a correction factor between the amplitude/phase responses of the
particle velocity and sound pressure sensor, since these are in general not equal.
Until now, most of the used calibration methods involve a sound field with a
known relationship between sound pressure and particle velocity and therefore
a known acoustic impedance and environment [6].

The theoretical frequency response relates the particle velocity to the sound
pressure and is therefore equal to the acoustic admittance H. The aim is to find
a sound field where the impedance is known. Different methods are presented
on the next pages. The equations for impedance and admittance can be found
in various papers, e.g [5], [6], [7], [8] and [9].

1.3.1 Far Field Calibration in an Anechoic Chamber

For a propagating plane wave the acoustic admittance equals the reciprocal of
the impedance

H =
1
ρc

, (1.1)

where ρ is the density of air and c is the speed of sound.

If the sound field is generated by a loudspeaker, it approximates a simple
spherical field

H′ =
1
ρc

(
1 +

1
ikr

)
, (1.2)

where k is the wave number and r the distance between source an receiver
position.

Far away from the source under free field conditions, kr is considerably larger
than one and the second term in the brackets can be neglected. Although for
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1 Introduction 4

low frequencies, e.g. below 200 Hz the parenthesis factor is not negligible at,
e.g. 5 m distance (kr = 2π f

c r = 2π·200
343 · 5 = 18.3) [6].

Therefore, a correction term H′
H for the finite distance is introduced. For the

amplitudes it is negligible, but for the phase term it is essential. However, the
correction is less than perfect, because different measurement distances lead to
slightly varying corrections. A reason for this is that an enclosed loudspeaker
does not completely act as a monopole at a certain distance [6].

This leads to the conclusion that one shall measure as far away as possible
from the source. But for low frequencies no anechoic room with the neces-
sary size exists and with increasing distance the sound level reduces, thereby
decreasing the signal to noise ratio. This fact makes it hard to acquire high
quality measurements. If the anechoic chamber is too small for the use of an
ordinary loudspeaker a more specific source is needed e.g. a ”coincident source”
loudspeaker mounted in a sphere.

The measured phase response of the particle velocity and sound pressure sensor
in an anechoic chamber should be zero degrees, so the correction equals the
inverse of the measured phase shift.

1.3.2 Near Field Calibration

As shown in the section above it is hard to achieve free field conditions. The
next calibration procedure presented is conducted in the near field, where the
sound levels are high. Thus reflections do not have a significant influence and
the measurements can be carried out in an ordinary room. At a distance of 5 to
70 cm the probe position uncertainties are reduced and the small frequency
dependent placement of the point source does not play an important role. On
the downside, at a close probe position (e.g. 5 cm), the near field only exists for
lower frequencies (transition at approx. kr = 1).

Monopole on a Plane Baffle

If the sound field is generated with a monopole, the acoustic admittance in
equation 1.2 can be used in the near field. A small circular hole in a large
plane baffle and a loudspeaker close to the baffle on the other side serve as a
monopole and generate a spherical sound field in a half space [7].

One of the problems is the increasing particle velocity in the near field relative
to the sound pressure (observable by applying equation 1.2). Therefore, the
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1 Introduction 5

distance between the hole and the transducer must be known exactly. Addition-
ally, the scattering due to the transducer and the reflections of the baffle lead to
further errors [7].

Piston on a Plane Baffle

If the wavelength is much bigger than the hole dimensions, the resulting source
can be regarded as a piston on a plane baffle.

Monopole in a Sphere

The reflections from the finite baffle edges and the loudspeaker reaction are
inevitable. If a spherical baffle is used, there are no edges and it can be made
very stiff. Therefore a loudspeaker is put into a hollow sphere with a small hole.
The specific acoustic admittances in front of the planar baffle and the sphere at
a distance of 5 cm are similar [7].

Piston in a Sphere

The hole cannot be infinitely small to simulate a monopole exactly. Consequently,
one might consider it as a small piston in a sphere [7]. The best calibration
results are obtained in an anechoic room, but the results in an ordinary room
do not deviate much.

Basten and de Bree [8] used a ”real” piston in a sphere for calibration and
extended the methodology for lower frequencies, because the results for low
frequencies are unreliable due to dominant background noise in the measure-
ments and low sound pressure level. The methodology is described on the next
page.

For the calibration, a spherical loudspeaker with known acoustic impedance is
used (see figure 1.3). It can be modeled as a sphere and a moving piston and
therefore, the impedance is known.

For high frequencies, the probe is characterized via the reference microphone
pref, which is positioned at a certain distance in front of the speaker next to
the probe, and the known normalized impedance Z (see figure 1.3 a). For the
absolute value and the angle pressure calibration in the frequency domain
follows [10]:

Martina Kreuzbichler, Calibration of Acoustic Particle Velocity Sensors



1 Introduction 6

|pdiff| =
|pprobe|
|pref|

(1.3)

6 (pdiff) = 6 (pprobe)− 6 (pref) (1.4)

The calibration functions for the particle velocity can be written as [10]:

|vref| =
|pref|
|Z| (1.5)

6 (vref) = 6 (pref)− 6 (Z) (1.6)

|vdiff| =
|vprobe|
|vref|

(1.7)

6 (vdiff) = 6 (vprobe)− 6 (vref) (1.8)

The sound pressure calibration can be used over the whole frequency range (20 -
10000 Hz), because the comparison between reference and probe microphone
used for the calibration is based on omnidirectional signals at the same position.
The background noise has no influence, because it does not matter if the
calibration result relies on the speaker output or on noise. For the particle
velocity this is not true, because the calculation relies on the known impedance
Z due to the loudspeaker.

(a) Setup for high frequencies (b) Setup for low frequencies

Figure 1.3: Measurement setup for piston in a sphere calibration [8].
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Consequently, another method for low frequencies must be used (see fig-
ure 1.3 b). The reference microphone is placed inside the sphere to achieve good
SNR. If the interior sound pressure is known, the particle velocity at a distance
r can be calculated. For more details the reader can refer to [8]. This known
particle velocity is then used as reference velocity for calibration for frequencies
well below the resonance frequencies of the sphere itself.

In the end the two calibration functions are connected at approximately 350 Hz
with an amplitude tune for low frequencies and a phase tune for high frequen-
cies.

1.3.3 Impedance Tube Calibration

Another method is the calibration in a standing wave tube, in which the
impedance is known exactly. Unfortunately, it can only be used for frequen-
cies below fg which depends on the diameter of the tube and the speed of
sound [8]

fg =
c

1.71d
. (1.9)

1.3.4 Calibration with a Laser

In [11] an overview and experimental investigation on calibration with a laser
based method is given. An advantage of this method is the absolute calibration
of the particle velocity sensor without a pressure dependency. In the paper
only the amplitude is calibrated over a frequency range of 500 Hz to 8000 Hz.
The calibration process is expensive and time consuming, because it has to be
repeated over discrete frequencies.

1.3.5 Calibration with Near Field Acoustical Holography

In [12] the acoustic impedance of the sound field is calculated with the measured
sound pressure and particle velocity. If the impedance does not have a closed
form solution it is reconstructed with the help of the equivalent source method,
which is based on Near Field Acoustical Holography. At first, the sound pressure
pprobe and the normal particle velocity vprobe are measured. The sensitivity Sp
of pprobe can be determined with the help of a reference pressure sensor pref:
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1 Introduction 8

Sp =
pprobe

pref
Sref (1.10)

Secondly, the sound pressure pr is reconstructed using vprobe and holography.
Thirdly, the acoustic impedance Z = pr

vprobe
is calculated. In the next step the

calibration function (sensitivity) can be computed:

Sv = vdiff =
vprobe

pref
Z Sref =

vprobe

pref

pr

vprobe

pref

pprobe
Sp =

pr

pprobe
Sp (1.11)

The final sensitivity of the particle velocity sensor is computed via the average
of all measurement points.

To be able to use holography, many positions, which cover an area bigger than
the sound source, are needed and the frequency band is limited (for more
details see chapter 2). Jing et al. [12] do two experiments with 196 (experiment
1) and 160 points (experiment 2) in a frequency range from 200 to 3000 Hz with
50 Hz spacing using a dodecahedron source (experiment 1) and a loudspeaker
(experiment 2). The sensitivities obtained with these methods agree with the
data given in the calibration report by the manufacturer.

1.3.6 Calibration with a Vibrating Piston

Metzger and Kaltenbacher use a circular piston for calibration of a 3D particle
velocity sensor [13]. The circular plane produces a reference sound field and
the output of the particle velocity sensor is compared to the acting particle
velocity ~va ·~ndir on the transducer. The particle velocity vector ~va is determined
with FE simulation data of the reference sound field. The orientation ~ndir is
obtained with a 3D acceleration sensor and the local gravity field, which is
pointing in the exact opposite direction (anti-parallel), compared to the surface
velocity of the piston. Using laser vibrometer the velocity on the surface is
determined and used as reference sound field. The particle velocity sensor is
placed at a distance in front of the circular plane’s center. The method presented
by Metzger and Kaltenbacher requires a lot of equipment and even though they
mention that the calibration is performed in an ordinary room without any
anechoic conditions, the propagation region in the FE simulation is surrounded
by a perfectly matched layer to model free radiation. Consequently, a part of
the calibration needs free field conditions.
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1.3.7 Summary of the Introduction

A variety of different acoustic particle velocity calibration methods exist up to
now. In an anechoic room calibration results of good quality are obtained under
free field conditions. However, an anechoic chamber is not available to everyone.
Therefore, near field calibration methods are used as well. The most common
one is known as piston in a sphere and can be used over the full bandwidth. A
disadvantage of this method is, that the results measured in an anechoic room
are still better than in an ordinary room where some corrections for reflections
have to be applied. Furthermore the reference particle velocity depends on the
measured acoustic pressure and the impedance estimated from a closed-form
formula, so no absolute calibration can be carried out and there must be an
extra calibration for low and high frequencies. This is time consuming and the
connection of the two calibration functions is prone to errors. The calibration in
the impedance tube can be performed for low frequencies only and the laser
based method is time consuming and expensive. All methods presented lead to
different calibration functions and some of them calibrate the amplitude only.

The aim of this work is to find a method, where the reference particle velocity
field can be derived in a stable and absolute manner without the need of an
anechoic chamber. In order to do so, the sound field is produced by a piston
(as in [13]) and the sound pressure above the piston is measured in different
layers. In a next step different calculation methods are tested (e.g. holography
methods and finite difference) to obtain the acoustic particle velocity from sound
pressure measurements, which then can be used as reference for the subsequent
calibration. In all those measurements only sound pressure microphones are
used and the particle velocity sensor is only needed in the final step, when
the obtained reference velocity is used to calculate the sensitivity (calibration
curve)

Sv =
vprobe

vref
. (1.12)

Martina Kreuzbichler, Calibration of Acoustic Particle Velocity Sensors



2 Theory 10

2 Theory

The main goal of this thesis is to calculate the particle velocity with data from
sound pressure measurements and use this velocity as a reference to calibrate the
velocity sensor. This chapter presents the theory and shows how the reference
velocity is obtained.

2.1 Planar Near Field Acoustical Holography

Near field Acoustical Holography (NAH) [14] is a tool to characterize radiating
sources and to reconstruct sound fields. The sound pressure distribution is
measured in a planar hologram, very close to the sources and thereby plane
and evanescent waves are captured. With the help of Fourier transforms the
pressure distribution can be expressed as a sum of propagating and evanescent
waves. Once the angular spectrum is known it can be extrapolated to any other
parallel plane in space. Afterwards, in this plane the pressure and / or the
velocity can be obtained.

The following section deals with the derivations of the transformation based on
[14], [15] and [16].

2.1.1 Waves

Plane waves in a homogeneous, source free sound field satisfy the acoustic wave
equation

∇2p(r, t)− 1
c2

∂2p(r, t)
∂2t

= 0, (2.1)

where ∇2 = ∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 , speed of sound c = 343 m
s , position vector r ≡

(x, y, z).
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2 Theory 11

If the method of separation of variables is used and an exponential solution
guessed

p(r, t) = p(r)eiωt, (2.2)

one ends up with one term depending on the position r and one term depending
on the time t.

Insertion of equation 2.2 in 2.1 yields the Helmholtz equation

∇2p(r, ω) + k2p(r, ω) = 0, (2.3)

where the acoustic wave number is k = ω
c = 2π f

c = 2π
λ .

A solution to the Helmholtz equation is

p(r, ω) = P(kx, ky, ω)ei(kxx+kyy+kzz), (2.4)

where P(kx, ky, ω) is the angular spectrum and k2 = k2
x + k2

y + k2
z. Choosing kx

and ky as the independent variables and kz as the depending variable leads
to:

k2
z = k2 − k2

x − k2
y (2.5)

When kx or ky > k the plane waves turn to evanescent waves

kz = ±i
√
−k2 + k2

x + k2
y, (2.6)

which decay in amplitude in z-direction.

Evanescent waves only occur close to the source and therefore care must be taken
to capture them with the measurements. Many evanescent waves with high
amplitudes and measurement noise lead to numerical problems, regularization
(see section 2.1.4) remedies this.

Figure 2.1 shows plane and evanescent waves and the corresponding represen-
tation in k-space.
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2 Theory 12

(a) Plane wave (kx, ky) = (0, 0) (b) Plane wave (kx, ky) = (kx < k, 0)

(c) Plane wave (kx, ky) = (k, 0) (d) Evancescent wave (kx, ky) = (kx > k, 0)

Figure 2.1: Waves and corresponding k-space representation. The circle defines the radiation
circle with radius k [14].

2.1.2 Angular Spectrum

The plane and evanescent waves which form the sound pressure at a point may
have different amplitudes and phases. These are taken into account with the
angular spectrum P(kx, ky).

The general form of the pressure field can be expressed with an inverse 2D
Fourier transform as follows:

p(r) =
1

4π2

∞∫
−∞

dkx

∞∫
−∞

dky P(kx, ky)ei(kxx+kyy+kzz) (2.7)

For simplicity ω is dropped from the equation and assume that from now on
all equations are in frequency domain.

In a plane z = 0 the angular spectrum is defined by a 2D Fourier transform:

P(kx, ky) =

∞∫
−∞

dx
∞∫
−∞

dy p(x, y, 0)e−i(kxx+kyy) (2.8)
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2.1.3 Wave Field Extrapolation

If the angular spectrum in a plane z = 0 is known, the sound field can be
extrapolated in any other plane in space:

P(kx, ky, z) = P(kx, ky)eikzz (2.9)

Or in a more general form propagating from a plane z = z′ to a plane z = z:

P(kx, ky, z) = P(kx, ky, z′)eikz(z−z′) (2.10)

In the plane wave case, the amplitudes only undergo a phase change.

Furthermore with the help of Euler’s equation it is possible to relate the normal
velocity in z-direction to pressure:

iωρυz(r) =
∂

∂z
p(r) (2.11)

2D Fourier transform:

iωρVz(kx, ky, z) = ikzP(kx, ky, z)

Vz(kx, ky, z) =
kz

ρck
P(kx, ky, z′)eikz(z−z′) (2.12)

2.1.4 Inverse Problem

The exponential decay of evanescent waves in positive z-direction leads to
exponential-like amplifications when z < z′. As a consequence, NAH is prone to
instability issues, because inaccuracies and noise in the measurement data ”blow
up”. This behavior leads to an ill-posed inverse problem and the calculations
will lead to disaster. Regularization methods are a way to deal with such a
problem [17], [18]. Tikhonov regularization is chosen in this thesis. The forward
problem in matrix form can be written as [17]:

p = F−1 ρck
kz

eikz(z−z′)Fυz (2.13)

= F−1GFυz

= Hυz
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The diagonal matrix G contains the direct k-space propagators. It is pre-
multiplied by an inverse DFT matrix F−1 and post-multiplied by and DFT
matrix F.

Leading to the inverse problem:

υz = H−1p (2.14)

Tikhonov Regularization

The direct inversion of H would not lead to an appropriate result. Thus, the
regularized inverse Rα is calculated

υz = Rα p, (2.15)

with

Rα = (HHH + αI)−1HH. (2.16)

α = 0 leads to the pseudo inverse of H.

With the help of singular value decomposition (SVD) of the matrix H the
regularization principle may be understood:

H = USVH (2.17)

where U and V are left and right unitary matrices and S is a diagonal matrix
with singular values si.

This leads to

Rα = Vdiag

(
s∗i

|s2
i |+ α

)
UH, (2.18)

with the smallest α value used as a function input being smaller than the
smallest squared eigenvalue.

With Tikhonov regularization the impact of the eigenvalues for increasing
α values (beginning with the smallest ones) is reduced. The shape of a k-
space filter, which eliminates evanescent waves with large wave numbers, is
determined and therefore, the ”blow up” of the noise in the inversion process
is reduced.
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Generalized Cross Validation

Several different methods exist to seek the best α-value for regularization [19].
The used method is generalized cross validation (GCV), because with this
method, the knowledge of the noise variance is not required [17]. It determines
the α-value by minimizing the function

J(α) =
||(I −HRα)p||2
[Tr(I −HRα)]2

. (2.19)

GCV is also called the ”leaving-one-out” method, because it basically removes
a measurement point at the time. It uses this point as a reference for the
reconstruction at the missing data point with the remaining points. The mean
square difference is minimized with the optimal parameter.

The straightforward calculation would take a lot of time, because the inversion
of H for every frequency step and the complete range of α leads to a high
computational effort. In a paper by Williams [17] a much more time-efficient
implementation of this algorithm is described, relying on a fundamental paper
published in 1979 [20].

The GCV does not lead to an appropriate result, if the noise components in the
measurement data are highly correlated [19].

Improved Tikhonov Regularization

Sometimes the standard Tikhonov regularization does not lead to a suitable
result. Williams proposed an improved Tikhonov regularization [17]

Rα = (HHH + αLHL)−1HH, (2.20)

where L = Fα
1 VH and Fα

1 : high pass k-space filter. For more details and exact
filter implementation see [17].
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2.1.5 Errors

Errors, which have to be taken into account are presented and explained in the
following section.

Discrete Measurements and Finite Area

In section 2.1.4 the matrix of the discrete Fourier transform is already used.
Physical measurements cannot measure every pressure value on a plane. Thus,
discrete points over a finite area are measured. The spacing a is constant in x-
and y-direction and at least two spatial samples per wave period are needed
for a correct allocation in the wave number domain. Consequently, the spatial
domain must be sampled twice as often as the highest present waveform
frequency kmax:

a ≤ λ

2
=

π

kmax
(2.21)

kmax ≤ kNyquist =
1
2

ksample =
π

a
(2.22)

This leads to a maximum frequency of:

fmax =
c

2a
(2.23)

With use of a finite measurement area, the sound pressure is assumed to be
equal to zero outside the area leading to a multiplication with a rectangular
window function. Components will be periodically repeated and appear as
aliasing. Furthermore, evanescent waves will leak into the plane wave area and
vice versa. The fact that the pressure drops to zero outside the aperture, when
using an rectangular window, leads to a discontinuity at the edges and thus to
a high concentration of high wave numbers and the ”blow up” in the inverse
problem.

This effect can be reduced by using a smooth window e.g. a Tukey window
[14], [21]. When this window is applied directly to the measurement data, one
must take care that no data containing useful information is lost - e.g. sources
of interest near the border. Therefore, the method of border padding is used.
Samples are added at the edge of the array with the values of the border signals.
Afterwards a Tukey window is applied to the new data set containing the
border-padded as well as the measured part. The constant part of the window
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is placed over the measured region and the cosine-tapered part smooths the
new border-padded area [22].

It is required that the magnitude of the pressure field at the edges of the array is
at least 30 dB lower, compared to the maximum array pressure and as a result,
the array must be about twice as big as the source area[15]. A method which is
trying to circumvent the need for a big array and hence attempts to reduce these
errors is the so called Statistically Optimized Near Field Acoustical Holography
(SONAH see section 2.2).

It has to be mentioned that the convolution procedure of the inverse problem
is localized in space. This means that if the actual sources of interest are far
enough away from the edge, the computed values should not be erroneous.
Only the rim region should be influenced by the generated errors [14].

Measurement Distance

For a correct velocity calculation, evanescent waves are required. Due to their
decaying characteristics and limited signal to noise ratio, these waves must
be captured close to the source (see section 2.1.1). Valdivia and Williams [23]
recommend a distance between a and 2a with a being the microphone spacing.
According to Maynard et al. [24] the minimum resolvable distance is approxi-
mately

R ≡ π

kmax
. (2.24)

With equation 2.21 follows:

R ≥ a (2.25)

For NAH it is necessary to measure evanescent wave components. Therefore
the measurement distance must be close enough, that the amplitude of the
components is still higher than the noise. As a result, the maximum observable
wave number depends on the SNR and the measurement distance d. Assuming
that both the maximum plane and evanescent wave have the same amplitude,
the minimum resolvable distance R is presented in the following equation [22],
with the denominator being the new upper limit for kmax

R =
π√

k2 +
(

SNR·ln(10)
20·d

)2
. (2.26)
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Coupling of the Nyquist criterion and the resolution leads to the following
inequality:

√√√√k2 +

(
SNR · ln(10)

20 · d

)2

> kNyquist (2.27)

If the inequality holds, aliasing occurs. According to this theory a low dynamic
range microphone array can be placed closer to the radiating object than one
with a high dynamic range, because the high dynamic range microphone
retrieves more information about the evanescent waves.

Finally, this knowledge satisfies the sampling theorem. Therefore, one cannot
sample very close to the source where there may be high spatial frequency
components due to evanescant waves [25].

In [15] Williams also gives a formula refering to his book [14] which connects
the required spacing a and the measurement distance d:

a =
27.2
SNR

d (2.28)

Pressure measurements compared to velocity measurements

Jacobsen and Liu [25] compared the performance of particle velocity-based and
pressure-based NAH. Among other things, they have discovered that it is better
to use a velocity sensor than a pressure microphone for velocity calculation.
Especially at the edges of the array the results are better. One reason could be
that inaccuracies are caused by the propagation factor (see equations 2.13 and
2.14) for pressure to velocity holography, because high spatial frequencies are
amplified.

2.2 Statistically Optimized Near Field Acoustical
Holography

Due to the main limitation of classical NAH – requirement for full coverage with
significant sound pressure level – Statistically Optimized Near Field Acoustical
Holography has been developed (see e.g. [26] and [27]). The basic theory given
in this section is also based on these papers.
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The major advantage compared to NAH is the possibility of using a smaller
measurement array (even smaller than the source - patch method) and an
arbitrary measurement grid.

2.2.1 Basic Theory

In a source free homogeneous half space the complex time-harmonic sound
pressure can be written by an infinite sum of wave functions representing plane
propagating and evanescent waves:

Φk(r) = Fei(Kxx+kyy+kz(z−z+)) (2.29)

where F is an amplitude weighting function an z+ represents the virtual source
plane where the wave functions are scaled.

The sound pressure at an arbitrary point r = (x, y, z > 0) can be expressed as a
linear combination of measured pressure data p

p(r) = pTc(r), (2.30)

where the transfer vector c(r) contains the position dependent complex esti-
mation coefficients. This vector is obtained by the requirement that an infinite
set of waves as written in equation 2.29 are projected in z-direction with high
accuracy. In other words p(r) in equation 2.30 is replaced by the value of a wave
function at position r and p which contains the wave function values at the
measurement positions, equation 2.30 must still hold. As a result, one obtains:

α(r) ' Ac(r) (2.31)

with vector α(r) representing the values of the wave functions at the recon-
struction point and matrix A containing the values of the wave functions at the
measurement positions.

This leads to the least-squares solution:

c(r) = (AHA)−1AHα(r) (2.32)

After the insert of equation 2.32 in equation 2.30 the following expression for
the sound pressure at position r is obtained:

Martina Kreuzbichler, Calibration of Acoustic Particle Velocity Sensors



2 Theory 20

p(r) = pT(AHA)−1AHα(r) (2.33)

The equation for the velocity can be derived with the help of Euler’s equation
(see equation 2.11)

ρcυz(r) = pT(AHA)−1AHβz(r), (2.34)

where β(r) represents the scaled particle velocities of the wave functions βz(r) =
kz
k Φ(r).

2.2.2 Inverse Problem and Regularization

In the next step the vector q → qT ≡ pT(AHA)−1 is estimated. With the
definition of matrix C = (AHA)T one gets

Cq = p, (2.35)

and the inverse problem

q = C−1p. (2.36)

Hald [27] uses an eigenvalue/eigenvector expansion of the matrix C to regular-
ize the solution:

C = VSVH (2.37)

where the columns of V contain the eigenvectors and S is a diagonal matrix
with non negative eigenvalues si. With the help of Tikhonov regularization and
General Cross Validation the regularized solution of q can be calculated [17]:

qα = Vdiag

(
s∗i

|s2
i |+ α

)
VHp (2.38)

This leads to the following equations for sound pressure

p(r) = qT
α (A

Hα(r)), (2.39)
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and particle velocity

ρcυz(r) = qT
α (A

Hβz(r)). (2.40)

The advantage of this definition is that the calculation of the pressure and
particle velocity can be done for multiple points r without new regularization.

2.2.3 Virtual Source Plane and Scaling Functions

In equation 2.29 two elements need to be further defined:

• virtual source plane
• scaling function

According to [26], the virtual source plane z = z+ could be on the same z-axis
position as the real source plane z+ = z+0 , but usually it should be placed behind
that plane z+ < z+0 as illustrated in figure 2.2. Optimal accuracy is achieved
when −1.5a ≤ z+ ≤ −a with a representing the measurement grid spacing.

Figure 2.2: Measurement geometry in free field: source plane = vertical line, virtual source
plane = dashed vertical line, Ω = domain for sound field representation [26].

When a unit weighting function

F(kz) = 1 (2.41)

is used, all amplitudes of the plane wave functions have a value of one on the
virtual source plane. Another scaling method is the omnidirectional weighting.
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In this case all directions of plane-wave propagation are equally weighted inside
the radiation circle

F(kz) =

√
k
kz

. (2.42)

When the particle velocity is calculated (see equations 2.34 and 2.40) the evanes-
cent wave components as well as errors and noise are amplified by the factor
|kz|

k and could lead to a failing reconstruction. Therefore, a velocity scaling
F(kz) = k

kz
is defined. To avoid singularities, the velocity scaling function is

modified to

F(kz) =

1 for
√

k2
x + k2

y ≤ k
k√

k2+|kz|2
for
√

k2
x + k2

y > k.
(2.43)

In case of the velocity weighting the virtual source plane can be coincident with
the real source plan and still lead to a stable reconstruction.

2.2.4 Errors

The errors are caused by the discrete spacing, the placement of the virtual
source plane and the use of different scaling functions.

When using a discrete subset in the two-dimensional wave number domain one
obtains

Ψ(r) = κΦkn(r), (2.44)

with κ =
√

∆kx∆ky
2πk2 introducing a smooth transition when using discrete spec-

tra.

With a discrete sample spacing the field in the wave number domain is spatially
periodic and could lead to wrap-around errors (see section 2.1.5) [26].

If the sample spacing goes to zero, the matrix and vector multiplications
AHA, AHαz(r)andAHβz(r) can be calculated with infinite integrals.

Due to the different placements of the virtual source plane and the use of scaling
functions, the accuracy of the reconstruction changes. As a consequence, it is
difficult to verify the precision of the obtained results.
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2.3 Finite Difference Method

With the finite difference (FD) method it is possible to approximate the pressure
gradient from Euler’s equation (see equation 2.11) and obtain the velocity

υz(r) =
1

iωρ

∂

∂z
p(r) =

1
iωρ

p′(z) ≈ 1
iωρ

p(z + ∆z)− p(z)
∆z

, (2.45)

where p(z + ∆z)andp(z) are the measured sound pressures and ∆z is the
spacing in between.

2.3.1 Errors

Determination of the velocity error with Taylor series expansion

The approximation of the gradient with the FD scheme leads to an error for the
velocity which can be determined with a Taylor series expansion:

p(z + ∆z) = p(z) + p′(z)
∆
1!

+ p′′(z)
∆2

2!
+ p′′′(z)

∆3

3!
+ ... (2.46)

Rewriting the pressure p(z) = pe−ikz and reforming the equation leads to:

p(z + ∆z)− p(z)
∆z

= p′(z)− ikp′(z)
∆
2!
− k2p′(z)

∆2

3!
+ ...

= p′(z)

(
1

k∆z

[
k∆z− (k∆z)3

3!
+

(k∆z)5

5!
− (k∆z)7

7!
...

]
+

i
k∆z

[
1− (k∆z)2

2!
+

(k∆z)4

4!
− (k∆z)6

6!
...− 1

])

= p′(z)

(
sin(k∆z)

k∆z
+ i

cos(k∆z)− 1
k∆z

)
(2.47)
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For the absolute value follows:

∣∣∣∣∣ p(z + ∆z)− p(z)
∆z

∣∣∣∣∣ = |p′(z)|
√

2(1− cos(k∆z))
(k∆z)2 (2.48)

= |p′(z)|2

√
1
2(1− cos(k∆z))

(k∆z)2

= |p′(z)|
sin
( k∆z

2

)( k∆z
2

)
The same result for the finite difference velocity error is obtained by Schulz
in [28].

Assuming a maximum error of 1 dB and rewriting p′(z)=̂v(z):

− 1 = Lv,error = 10log
|v(z)| sin( k∆z

2 )

( k∆z
2 )

|v(z)| (2.49)

A graphical solution (see figure 2.3) leads to a value of k∆z = 2.3.
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Figure 2.3: High frequency bias velocity error.

The upper frequency limit is then obtained as follows:

k∆z ≤ 2.3→ 2π f ∆z
c
≤ 2.3→ fv,max =

2.3c
2π∆z

≈ c
3∆z

(2.50)
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Errors using a PP-type sound intensity probe

When using a PP-type sound intensity probe, the generated intensity error
for high frequencies also depends on the finite difference approximation error.
The phase mismatch error at low frequencies occurs due to signal propagation
delay. The derivation of the errors are given in [29], [30] and an explanation and
figures can be found in [31].

For a maximum intensity error of 1 dB the following equation must be true:

− 1 = 10log
sin(k∆z)

k∆z
(2.51)

A graphical solution (figure 2.4) leads to a value of k∆z = 1.15.
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Figure 2.4: High frequency bias intensity error.

The upper frequency limit is then obtained as follows:

k∆z ≤ 1.15→ 2π f ∆z
c
≤ 1.15→ f I,max =

1.15c
2π∆z

≈ c
6∆z

(2.52)

From these calculations it follows that fv,max = 2 f I,max.

Jacobsen et al. [32] demonstrated that scattering and diffraction effects are able
to cancel the finite difference intensity error.

The lower frequency limit, leading to a maximal intensity error of 1 dB is
defined as

fmin =
c

∆z
PM( fmin)

72◦
(2.53)
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with PM representing the phase mismatch (e.g between 0.1◦ − 0.3◦).

As a simple rule of thumb, the phase change between the two microphones
should be more than five times the phase mismatch for an error within
1 dB [31].
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3 Measurements

The following chapter gives some insight into experiments with measured data
using the NAH theory, a SONAH implementation and the FD method.

3.1 Measurement Setup

BMW measured the transfer functions of a baffled circular piston with a diame-
ter of 90 mm with a single microphone positioned in 441 positions. The micro-
phone positions have a spacing of 6 mm and capture an area of 120 x 120 mm
(see figure 3.1). The measurements are performed in three different layers with a
distance of 3, 12 and 24 mm above the piston. For all the calculations, the trans-
fer functions between the measured pressures and a reference signal measured
with an accelerometer on the piston are used, assuming a measured piston
acceleration of one:

H( f ) =
Sap

Saa
=

a∗p
a∗a

=
a∗p
|a|2

!
=

p( f )
a( f )

a( f )=1
=⇒ H( f ) = p( f ) (3.1)

Figure 3.1: Measurement positioning, ST = piston underneath (yellow), U = no piston
underneath.
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The measured pressure in the three hologram planes (3, 12 and 24 mm) can be
seen in figure 3.2.
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Figure 3.2: Measured pressure distribution above the piston for 100, 1000 and 4000 Hz at at
distance of 3, 12 and 24 mm above the piston.

3.2 Measurement Results

In the following section the results of different attempts to determine the
pressure and velocity in various layers in z-direction are presented. Firstly,
results of forward and backward propagation of the measured pressure values
are compared to the real measured pressure values (for NAH and SONAH) to
verify if the propagation methodologies work properly. Secondly, the velocity
is calculated from the pressure values at a layer and propagated back to the
source layer, where the acceleration is known. The velocity at the source can
easily be transformed to the source acceleration and compared to the measured
source acceleration. This way the effectiveness and precision of the methods can
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be examined. For the calibration the calculated velocity is used as a reference
and therefore those calculations need to be as accurate as possible.

3.2.1 Testing of Pressure Propagation

Forward Propagation of Pressure Hologram

To test the implementation of NAH and SONAH the sound pressure planes
are propagated forward and compared to the measured planes using three
different microphone configurations. Firstly, all 21 x 21 measured points are
used for the computation (NAH results – figure 3.3, row 2; SONAH results –
figure 3.5, row 2). To test the limitations of NAH the measurement area and
spacing is reduced. In another step a rectangular configuration (microphone
positions inside red square in figure 3.1 – positions above piston) are used for
the computations (NAH results – figure 3.3, row 3). Thirdly, only every other
microphone of the full array is used leading to 11 x 11 positions with a spacing
of a = 12 mm (NAH results – figure 3.3, row 3). For the 21x21 SONAH case
unit weighting functions, κ = 1 and z+ = 0 are used. Figures 3.3 - 3.6 show the
results for 100, 1000 and 4000 Hz and propagation from 3 to 12 mm and 3 to
24 mm.

Additionally, a spatially averaged squared error is defined as follows:

ε = 10 · log10

(
p̄2

p̄2
0

)
, (3.2)

where p̄2
0 represents the actual measured pressure at this layer. The results of

the error calculations are shown in table 3.1.

NAH NAH NAH SONAH
f [Hz] d [mm] 21 x 21 15 x 15 11 x 11 21 x 21

100 3→ 12 1.25 1.68 1.20 1.26

100 3→ 24 2.68 3.50 2.58 2.77

1000 3→ 12 0.96 1.80 0.88 1.07

1000 3→ 24 2.23 3.67 2.06 2.44

4000 3→ 12 0.78 1.03 0.79 0.38

4000 3→ 24 1.26 0.99 1.30 0.95

Table 3.1: Averaged absolute squared error for forward propagation from 3 to 12 mm (3→ 12)
or from 3 to 24 mm (3 → 25) for different frequencies, microphone configurations
and holography implementations.
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Figure 3.3: Absolute values of the pressure propagated forward from 3 to 12 mm with NAH
for 100, 1000 and 4000 Hz; row 1: measured values at 12 mm, row 2 - 4: forward
propagation of the measured values at 3 mm to 12 mm, row 4: using all measurement
points (N = 21), row 3: using only points above piston (N = 15), row 4: using only
every other microphone position (N = 11).

Analysis of the NAH plots (figures 3.3 and 3.4) and the data in table 3.1 leads
to the following conclusions:

• The average error 3→ 24 is bigger than the average error 3→ 12.
• The average error decreases with increasing frequency.
• There is no significant difference in the results between N = 21 and N = 11

with same array size (see figure 3.3, rows 2 and 4). This leads to the
conclusion that for forward propagation a discrete spacing of 12 mm
would be enough.

• If the array only covers the piston area (see figure 3.3, row 3) the error is
bigger.
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Figure 3.4: Absolute values of the pressure propagated forward from 3 to 24 mm with NAH for
100, 1000 and 4000 Hz; row 1: measured values at 24 mm, rows 2 and 3: forward
propagation of the measured values at 3 mm to 24 mm, row 2: using all measurement
points (N = 21), row 3: using only points above piston (N = 15).

• For a propagation from 3 to 12 mm at 100 and 1000 Hz NAH overestimates
the measured pressure (see figure 3.3, columns 1 and 2). For 4000 Hz NAH
underestimates the results (see figure 3.3, column 3).

• At 100 Hz and propagation from 3 to 24 mm at 100 Hz it is hard to identify
the shape of the source (see figure 3.4, column 1).

• At 1000 Hz and propagation from 3 to 24 mm the difference between the
center and the edges is at least 0.007 Pa and the estimated values above
the source correspond to the measured values. Only for the case N = 15

the result is erroneous (see figure 3.4, column 2).
• At 4000 Hz and propagation from 3 to 24 mm the values above the

source are underestimated and one can clearly see errors from the Fourier
calculations (see figure 3.4, column 3). For N = 11 no appropriate result
can be computed and thus, the evaluated absolute squared error in table
3.1 (ε = 0.99) cannot be used. However, the maximum frequency for a
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microphone spacing a = 0.006 should be:

fmax =
c

2a
=

343
2 · 0.006

= 28583 Hz (3.3)

and for N = 11 and a = 0.012

fmax =
c

2a
=

343
2 · 0.012

= 14290 Hz (3.4)

• If the calculations are repeated for f = 5000 Hz and a propagation from
3 mm to 12 mm as well as to 24 mm is performed, none of the NAH
calculations lead to an appropriate result.
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Figure 3.5: Absolute values of the pressure propagated forward from 3 to 12 mm with SONAH
for 100, 1000 and 4000 Hz; row 1: measured values at 12 mm, row 2: forward
propagation of the measured values at 3 mm to 12 mm using all measurement
points.

Analysis of the SONAH plots and the data in table 3.1 leads to the following
results:

• The average error 3→ 24 is bigger than the average error 3→ 12.
• The average error decreases with increasing frequency.
• The calculation of the pressure at 12 and 24 mm with the data at 3 mm

provides values which are slightly above the measured pressure values at
these planes (see figure 3.5 for the 12 mm case). The computation error is
reduced with increasing frequency.
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• At 100 Hz and for a propagation from 3 to 24 mm the result is erroneous
(see figure 3.6).

If the NAH and the SONAH results for 21x21 are compared, the SONAH results
are more precise and less prone to errors, because the NAH methodology
implies a bigger measurement area than the one used for this measurements.
However, SONAH is used within its valid application range, which puts it in
advantage.
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Figure 3.6: Absolute values of the pressure propagated forward from 3 to 24 mm with SONAH
for 100 Hz; row 1: measured values at 24 mm, row 2: forward propagation of the
measured values at 3 mm to 24 mm using all measurement points.

Backward Propagation of Pressure Hologram

In the next step, it will be analyzed, whether the propagation is also working
for the backward pressure case. In this case the matrix H is inverted to get the
correct results. The matrix is ill-posed due to measurement noise and calculation
errors, resulting from the small measurement aperture, and therefore has to be
regularized. This is done with a Tikhonov regularization scheme in combination
with General Cross Validation (GVC). Due to the errors which are occurring in
the Fourier processing, the regularization sometime does not find a minimum
or has its minimum at the smallest α value. If the GCV is not able to find the
correct minimum, the inverse H matrix ”blows up”.
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When the standard Tikhonov regularization is used and the smallest absolute
diagonal element value of S (smin = min(diag(S)); see equation 2.17) is set
as the minimum value for α (αmin = |smin|), the α values obtained with the
GCV scheme are not satisfying at all. The source cannot be localized. If smin
times 100 is used as the minimum value for α (αmin = 100|smin|), the GCV
has it’s minimum at the smallest α. Additionally, the improved Tikhonov reg-
ularization scheme is applied. When αmin = |smin| is used and the measured
values at 12 mm are propagated back to 3 mm, the shape of the piston can
already be obtained. The values are still noisy and erroneous. Therefore, again
αmin = 100|smin| is used. The propagation from 12 to 3 mm works quite well
for the standard regularization (see figure 3.7 a) as well as the improved method
(see figure 3.7 b).

For the backward propagation from 24 to 3 mm no usable results were attainable
and are therefore not shown in this thesis.

In figure 3.7 d the results with the SONAH implementation for 12 to 3 mm are
shown. A unit weighting function, a factor κ = 1 and a virtual source plane
z+ = 0 are used. The calculation of the pressure at the 3 mm plane with the
data from the 24 mm plane leads to incorrect results and is therefore not shown
in this thesis.

Furthermore, the spatial averaged square error is calculated using equation 3.2.
Table 3.2 shows the calculated error.

NAH NAH SONAH
f [Hz] d [mm] standard Tikhonov improved Tikonov

100 12→3 -1.38 -1.22 -1.47

1000 12→3 -0.36 0.07 -1.11

4000 12→3 0.73 1.00 0.18

Table 3.2: Averaged absolute squared error for backward propagation from 12 to 3 mm (12→ 3)
for different frequencies, microphone configurations, regularization methods and
holography implementations.

Evaluation of the error in table 3.2 and of figure 3.7 leads to the following
results:

• The error values are insignificant. They only show a spatial average.
• For NAH and SONAH only the 12 to 3 mm propagation case leads to an

appropriate result (see figure 3.7 b - d). In the 24 to 3 mm propagation
case the matrix is ill-conditioned, it cannot be regularized properly with
αmin = 100|smin| and therefore, the errors in the result diverge.

• The GCV cannot manage to find a usable α value.
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• The quality of the shape estimate depends on the minimum value of α.
• The standard and the improved Tikhonov regularization with αmin =

αreg = 100|smin| lead to similar results with a slight underestimation
compared to the measured values (see figure 3.7 b and c).

• The regularization in the SONAH scheme leads to appropriate results as
well (see figure 3.7 c).
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(a) measured values at 3 mm-0.06 -0.03 0 0.03 0.06
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(b) Propagated values using NAH, standard Tikhonov regularization
and αmin = 100|smin|-0.06 -0.03 0 0.03 0.06
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(c) Propagated values using NAH, improved Tikhonov regularization
and αmin = 100|smin|
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κ = 1 and virtual source plane z+ = 0

Figure 3.7: Absolute values of the pressure propagated backward from 12 to 3 mm for 100

(column 1), 1000 (column 2) and 4000 Hz (column 3) using all measurement positions.
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Angular Spectra

For a better understanding of the occuring error, the angular spectrum for the
NAH case is analyzed. According to [14, p. 33], the plane waves only undergo
phase changes. So for kx = ky = 0 and kz = k the angular spectrum becomes
P(0, 0)eikz = P(0, 0)eikzz = P(0, 0, z). But when one has a look at figure 3.8 a,
one sees that there is also a change in the measured absolute pressure values
for 3 and 12 mm (figure 3.8 a row 1) at position kx = ky = 0 . This leads to the
error, which is caused e.g. in the forward propagation from 3 to 12 mm (figure
3.8 a, row 2).
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Figure 3.8: Absolute values and phase of the angular spectrum at 1000 Hz; row 1 and column 1:
measured values at 3 mm, row 1 and column 2: measured values at 12 mm; row 2

and column 1: propagated values from 3 to 12 mm; row 2 and column 2: propagation
factor G for a distance of 9 mm.
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3.2.2 Velocity Calculation

The main target of this thesis is to calculate a velocity with the help of measured
pressure data and use this velocity as a reference for calibration. In the next
step the velocity at the source position is calculated to examine how precise
the methodologies are. To verify the correctness of the calculated velocity,
the acceleration is computed by multiplying the received velocity with i · ω.
Comparing to equation 3.1 an acceleration value of 1 should be obtained on the
whole piston.

When using the improved Tikhonov regularization scheme in the NAH case
the shape of the piston cannot be obtained. The result is inaccurate, mostly
random and not plotted in this thesis. The best results for the piston acceleration
are generated by using the pressure values from the 3 mm plane. Scaling and
accuracy of the absolute acceleration values depend on the regularization factor
α of the standard Tikhonov regularization. Figure 3.9 shows the result for
αmin = αreg = 100|smin| with an assumed measurement distance of 3 mm,
which is identical to the distance from the source to the protective grid of the
microphone transducer. The distance of 4.5 mm in figure 3.10 is equal to the
distance from the source to the membrane of the microphone. The errors are
regularized properly, but thereby also the acceleration value is diminished.
Furthermore, due to the strong regularization the acceleration values over the
area of the piston are not equal. They get smaller at the edges, similar to the
shape of a parabola. If αmin = αreg is smaller, then the acceleration value gets
bigger, but more errors occur as well. E.g. for αmin = αreg = |smin| the shape of
the piston cannot be obtained.

The SONAH acceleration calculation is performed with a velocity scaling func-
tion, κ = 1, z+ = 0 and d = 3 mm. Again the used regularization is able to
find an appropriate minimum. Acceleration values are more or less the same
on the whole piston for 100 and 1000 Hz. For 4000 Hz again a parabola shape
is obtained. The piston acceleration values for 100 Hz are smaller than 1, for
1000 Hz around 1 and for 4000 Hz bigger than 1, or more precisely even bigger
than the color bar scaling with values up to 2.12.

In both the NAH and SONAH calculations a significant drop in the acceleration
value at the rim of the piston can be seen. This is due to a small gap between
the piston and the baffle.
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Figure 3.9: Source acceleration using d = 3 mm with NAH for αmin = αreg = 100|smin|; row 1:
absolute values [m/s2], row 2: phase [rad].
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Figure 3.10: Source acceleration using d = 4.5 mm with NAH for αmin = αreg = 100|smin|; row
1: absolute values [m/s2], row 2: phase [rad].
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Figure 3.11: Source acceleration using d = 3 mm with SONAH, velocity scaling function and
κ = 1; row 1: absolute values [m/s2], row 2: phase [rad].

With FD it is not possible to calculate back to the source, so the verification of
an acceleration of 1 is not feasible. It is possible to compute the acceleration
in the middle of two measurement points. Figure 3.12 shows the calculation
results for 7.5/9 mm, 13.5/15 mm, 18/19.5 mm, using the protective grid or
the microphone membrane itself as distance reference. For 100 and 1000 Hz
the calculated values are reasonable with decreasing values for an increasing
distance. However, for 4000 Hz the values increase with increasing distance.
The maximum frequency for the FD scheme is calculated using equation 2.52:

fmax =
c

6∆z
(3.5)

fmax,13.5/15 =
343

6 · 0.021
= 2722 Hz (3.6)

fmax,18/19.5 =
343

6 · 0.012
= 4764 Hz (3.7)

The calculation shows that for 4000 Hz using the 3 and 24 mm planes, the
achievement of a correct result is not guaranteed and when the 12 and 24 mm
planes are used, 4000 Hz is near the maximum limit of 4764 Hz. Thus, the
calculation also could be critical.
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Figure 3.12: Acceleration values obtained with FD; rows 1, 3 and 5: absolute values [m/s2],
rows 2, 4 and 6: phase [rad].
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3.3 Summary of the Measurement Results

The outcome of the experiments is not satisfactory, although the forward propa-
gation leads to appropriate results when the distance is small enough and the
frequency is underneath 4000/5000 Hz. The backward propagation of sound
pressure and particle velocity is error-prone. The GCV in combination with
NAH always determines the smallest α value as regularization parameter. This
leads to a hand tuning of the parameter, which should not be the case if a
GCV scheme is used. If an α value is found which is able to reconstruct the
piston shape, the obtained particle velocity and acceleration is damped heavily,
again leading to errors. With the SONAH implementation, the accuracy of the
results depends on the choice of scaling function, the value κ and the position
of the virtual source plane z+. Especially the acceleration results show a strong
frequency dependence.

One problem in NAH is the pressure discontinuity at the end of the measure-
ment aperture. For a proper use of the Fourier transform, the pressure at the
ends must be zero. In this case this is not true and therefore the discontinuity
represents a space region with many high wavenumbers, which leads to a level
blow up after the inversion. In literature (e.g.[22]) the method of border padding
is introduced. The methodology is explained in the theory error section and
tries to reduce the generated errors.

In the implementation for this thesis every other measurement point is used,
ending up with 11 points in x-direction and 11 points in y-direction. In the next
step 15 samples are added at the edges of the array leading to 41 points in x-
and 41 points in y-direction. Finally, the new array data is processed by the
NAH algorithm, standard Tikhonov regularization and GCV. Unfortunately,
the GCV again has it’s minimum at the smallest α value, so one ends up with
the same problem of finding the correct regularization value. This is due to the
fact that border padding introduces an unreal and artificial field outside of the
array edges, which leads to a wrong near field and errors. Figure 3.13 shows
the result for αmin = αreg = |smin| using a distance of 3 mm. If a measurement
distance of 4.5 mm is assumed the receive source velocity values are slightly
bigger. By increasing the αmin = αreg value, the result is more damped and a
parabola form would appear.

Williams et al. [33], as well as Zhang et al. [34], propose the use of a so called
Patch Near Field Acoustical Holography to continue the pressure field outside
the measurement area, based on the measured field. When applying the theory
from these papers to reconstruct the pressure values outside the measured area,
the results do not improve. This is mainly due to the fact, that the aperture
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Figure 3.13: Source acceleration using d = 3 mm, NAH and border padding.

already covers the complete source area and in theory a patch much smaller
than the source is considered.

If one of the particle velocity values obtained with NAH, SONAH and FD
has to be used as a reference velocity for calibration, the use of the FD results
is recommended. They seem to be stable and less prone to errors due to too
small measurement arrays and Fourier calculations (as in NAH) or the use of
the correct scaling function and positioning of the virtual source plan (as in
SONAH).
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4 Simulations

4.1 Simulation Setup

The array used for the experiments in section 3 is too small to obtain satisfactory
results. Therefore, the propagation of the sound field in a bigger area above a
piston is simulated.

To be able to do the calculations and the regularization properly, Williams [15]
required that the pressure at the measurement aperture’s edges is at least 30 dB
lower compared to the maximum value. The simulations show that 20 dB are
enough. The simulated piston has a diameter of 9 cm and the aperture is 40 cm
wide with 41 simulated points in x- and y-direction. This leads to a spacing a of
1 cm. 41 points are used, because experiments with a higher number of sampling
points in space show better results. In the holography cases the wavenumber
components kx and ky are sampled with a higher rate and higher values are
allowed. For the given measurement grid the maximum frequency is

fmax =
c

2a
=

343
2 · 0.01

= 17150 Hz, (4.1)

leading to a maximum wave number of

kmax =
π

a
=

π

0.01
= 314.16 m−1 (4.2)

The pressure distribution is calculated in 3 planes which have a distance d of
1 mm, 3 mm and 12 mm. The last two have the same distance as measured by
BMW for comparison purposes. The 1 mm plane is simulated for FD purposes.

The simulated piston has a square shape and the sound pressure at the simulated
measurement planes is obtained using the Rayleigh’s first integral formula in a
discretized version. One must be aware that the discretization of the integral
and the truncation could cause errors. Various simulation attempts show that in
order to get correct FD and NAH results, the discretization step of the integral
must be fine enough. For the results presented here, the discretization has a
spacing of 1 mm ending up with 91 x 91 in phase monopoles. An explanation,

Martina Kreuzbichler, Calibration of Acoustic Particle Velocity Sensors



4 Simulations 44

why so many point sources are needed, could be that for point sources the
distance to the measurement system is crucial. The closer the array is positioned
to a point source, the higher the spatial variation. Higher frequency components
are obtained, which could potentially violate the sampling theorem [35].

The simulated pressure values for 100, 1000 and 4000 Hz are plotted in figure
4.1. At 100 and 1000 Hz the on axis pressure value diminishes with increasing
distance, but at 4000 Hz the pressure increases with increasing distance. This
error could be due to the fact that the sampling rate of the discretization is still
too small.
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Figure 4.1: Simulated pressure distribution above the piston for 100, 1000 and 4000 Hz at at
distance of 1, 3 and 12 mm above the piston assuming a piston velocity of one.
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4.2 Simulation without Noise

For a quality examination of the different calculation methods, the simulated
data is used without noise corruption. Therefore, the matrix inversion in the
NAH and SONAH implantation is the pseudoinverse and no regularization
method is applied. The results are plotted and described on the next pages.

4.2.1 Testing of Pressure Propagation

As a first step, the pressure is backpropagated towards the source and is
compared to the simulated pressure in this layer. Figure 4.2 shows the backward
propagation from the 12 mm plane to the 3 mm plane, where it is compared
to the the simulation at 3 mm. The differences are smaller than 1%. From this,
one can conclude that the NAH implementation works properly for pressure
propagation.
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Figure 4.2: Absolute values of the pressure propagated backward from 12 to 3 mm for 100

(column 1), 1000 (column 2) and 4000 Hz (column 3) using NAH, row 1: simulated
values at 3 mm, row 2: propagated values.
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4.2.2 Velocity Calculation

In the simulation of the pressure, monopoles with a velocity value of one are
used. So this velocity value shall be obtained when it is recalculated at the
source position with an appropriate velocity propagator and measured pressure
data.

In order to compare the results also with FD the pressure data at 12 mm is used
for a velocity calculation at 7.5 mm with the NAH and SONAH implementation.
The FD results in this plane are computed with the pressure simulation in the
3 mm and 12 mm layer. For SONAH, the velocity scaling function, κ = 1 and
z+ = 0 are used. The results are plotted in figure 4.3.

For 100 Hz the NAH, SONAH and FD absolute values are the same with an
error smaller than 1% between each other (see figure 4.3, row 1).

At 1000 Hz the NAH and FD computations provide results above the piston,
which differ by 2%. The SONAH implementation result for 1000 Hz already
differs from the other results mainly due to the regularization which dampens
a lot of useful values and reduces the shape (see figure 4.3, row 3).

At 4000 Hz every implementation results in different values. A reason for this
is the simulated pressure distribution at high frequencies. E.g. the SONAH
result for x = y = 0 is bigger than the maximum color-bar value (2.245 > 1.5).
Additionally, the FD results in a value bigger than 1 which is unexpected. These
errors result from the simulated pressure propagation at 4000 Hz, where the
pressure increases. Therefore, the values at 12 mm are bigger than the values at
3 mm and this could cause the errors.

Next, the phase is analyzed (see figure 4.3, row 2, 4 and 6 for 100, 1000 and
4000 Hz respectively). The NAH and FD phases above the piston at 100 and
1000 Hz have a value of approximately 0 and for SONAH approximately π

2 for
100 Hz and approximately 1.1 at 1000 Hz. This may be due to an implementation
error in the phase term. At 4000 Hz the NAH and FD angle above the piston
have a maximum value of 0.57 rad. A closer look at the wavelength of 4000 Hz
reveals a value of 0.0858 m:

λ =
c
f
=

343
4000

= 0.0858 m (4.3)

Therefore, at the position of the calculated velocity at 7.5 mm, the wave has
propagated already 10 % of its wavelength. By assuming a total phase change
of 2π for a whole wavelength, 10 % equals 0.63 rad. The calculated value of
0.57 rad is quite close to this theoretical value.
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Figure 4.3: Absolute values (rows 1, 3, 5) and phase (rows 2, 4, 6) of the velocity using NAH
and backward propagation from 12 to 7.5 mm (column 1), SONAH and backward
propagation from 12 to 3 mm (column 2) as well as FD using values of layers at 3

and 12 mm.
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Furthermore, the velocity is calculated at 2 mm out of the 3 mm data with
NAH and SONAH and compared with FD which uses the data at 1 mm and
3 mm. As in the 7.5 mm case, the absolute values at 100 Hz are the same for
all implementations. At 1000 Hz the difference between the NAH and FD is
approximately 3% and at 4000 Hz the results are erroneous, mainly due to the
simulation error. All phase results for NAH and FD above the piston approach
zero. The SONAH calculations show the same effect as in the 7.5 mm case.
Since the conclusion of this calculation is comparable to the outcome of the
calculation at 7.5 mm the results are not plotted.

One noteworthy result is the FD phase calculation at 100 Hz and 7.5 mm as
well as 2 mm. It provides a value of zero over the whole simulated area. This
results from the small phase change between the two simulated microphone
planes. The phase change according to the distance can be calculated with the
formula

∆z · 360◦

λ
, (4.4)

with λ = 3.43 m for 100 Hz, leading to a phase change of 0.79◦ for a distance of
7.5 mm and 0.21◦ for a distance of 2 mm. Both values are much smaller than five
times the phase mismatch due to a time delay between the two measurement
channels of 0.3◦ (5 · 0.3◦ = 1.5◦).

Velocity of the Piston

As a last step, the velocity of the piston is calculated by using the simulated
pressure values at 3 mm. An absolute value of one, a phase of zero and a
rectangular piston shape is expected. The results are plotted in figure 4.4 for
NAH and SONAH for all three simulated frequencies.

SONAH delivers good absolute values at 100 Hz, but at 1000 Hz the obtained
results are too big and at 4000 Hz the rectangular piston shape cannot be
extracted from the plot.

NAH reconstructs the piston very precisely for all three frequencies, but the
values at the rims are slightly higher compared to the other piston values. This
results from the rectangular piston shape and is known as Gibbs phenomenon in
Fourier series expansion. The sharp edges result in high k-values. The rectangle
transforms to a sinc function in k-space which ends abruptly at the ends. It can
be corrected e.g. with a windowing function in frequency or k-space domain or
with a Padé approximation.
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Figure 4.4: Source velocity caluclated with NAH (rows 1 and 2) and SONAH (rows 3 and 4)
for 100 (column 1), 1000 (column 2) and 4000 Hz (column 3); rows 1 and 3: absolute
values [m/s], rows 2 and 4: phase [rad].

4.3 Simulation with Noise

For an examination of the quality of the different calculation methods, the
simulated data is used without noise corruption. A SNR value of 50 dB is
simulated with the following equations:

noisefactor =
1

10
SNR

20
(4.5)

noise = 2(rand(N)− 0.5) (4.6)
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The noisefactor is multiplied with the maximum real and imaginary part from
the 12 mm plane and with random numbers between -1 and 1 (different values
for real and imaginary part). This factor is then added to the simulated real and
imaginary pressure values. The random numbers differ for every layer and for
both, real and imaginary part.

The results are plotted and described on the next pages.

4.3.1 Testing of Pressure Propagation

As in the noisefree case, the pressure from 12 mm is propagated backwards to
3 mm. The standard Tikhonov regularization works fine and the propagated
values are the same as the simulated ones (see figure 4.5).
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Figure 4.5: Absolute pressure values at 3 mm; row 1: simulated values, row 2: backward
propagation of the simulated values at 12 mm to 3 mm using NAH.

4.3.2 Velocity Calculation

As in the noiseless case, the velocity is calculated at distance layers of 7.5
and 2 mm and at the source positions. The results for the velocity calculation
at 7.5 mm are plotted in figure 4.6 and for the obtained velocity at source
position in figure 4.7. The added noise can clearly be seen in the plots, especially
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at positions outside the piston. In NAH and SONAH the inverse matrices
are properly regularized with standard Tikhonov regularization and SVD or
eigenvalue decomposition, respectively.

The NAH results are good for all calculated frequencies and distances and
are comparable to the results obtained with FD. Unfortunately, for the source
velocity case and 4000 Hz the SVD does not converge and therefore no result is
presented. The angle is zero or at least close to zero for the propagation to the
source position and for a distance of 2 and 7.5 mm and low frequencies. The
amplitudes at the source position have a value of approximately 1 in the NAH
case.

As in the noiseless case, the amplitudes obtained with SONAH are appropriate
for 100 Hz, slightly too high for 1000 Hz and for 4000 Hz the shape is wrong
and the values are too high. The obtained angle with SONAH is always shifted
with a factor of π

2 .

In the FD plots the noise can be clearly seen especially outside the piston.

4.4 Summary of the Simulation Results

The simulations show that it is possible to compute back to the array and to
obtain the correct particle velocity for the NAH case. This is due to the fact that
the simulated measurement array is much bigger than the simulated piston.
The SONAH implementation causes wrong amplitudes and a smaller circular
shape. This could be due to the used velocity scaling or due to the fact that the
matrix is ill-conditioned although there is no noise added. Maybe it is possible
to obtain better SONAH results if a regularized inverted matrix is used in the
noiseless case as well. Furthermore, the amplitude values are too high and
the phase value is shifted in the noise case as well. Consequently, the use of
SONAH for particle velocity calibration is not recommended, at least not for
the implementation used in this thesis, which uses a finite number of basic
functions. Very similar values are achieved when comparing the NAH solutions
with the FD results.

The simulation with noise shows that the GCV in combination with the Tikhonov
approach is able to regularize an ill-conditioned matrix properly and that
the values obtained with NAH could be used for the calibration of velocity
sensors, if the measurement area is big enough. Although, if one wants to
ISO standardize the calibration procedure, the documentation of computations
and measurements performed and time requirement for NAH is much larger
compared to FD, because holography needs much more measurement positions.
Therefore, the focus lies on FD for the rest of the thesis.
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Figure 4.6: Absolute values (rows 1, 3, 5) and phase (rows 2, 4, 6) of the velocity using NAH
and backward propagation from 12 to 7.5 mm (column 1), SONAH and backward
propagation from 12 to 3 mm (column 2) as well as FD using values of layers at 3

and 12 mm corrupted with noise.
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Figure 4.7: Source velocity caluclated with NAH (rows 1 and 2) and SONAH (rows 3 and 4) for
100 (column 1) and 4000 Hz (column 2); rows 1 and 3: absolute values [m/s], rows 2

and 4: phase [rad].
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5 Finite Difference Experiments

The last sections have shown that the results obtained with FD are satisfactory
and for a calibration procedure fewer pressure measurement points are needed
compared to holography. Therefore, as a final step in this thesis, measurements
using the Tbox with its baffled square piston as exciter are conducted. The aim
is to use FD to find a stable vectorial sound field where the velocity sensor can
be calibrated and the influence of position errors is minimized.

5.1 Measurement Setup

A sketch of the Tbox can be found in figure 1.1. The 20x20 cm squared piston
of the Tbox in combination with a shaker (Brüel and Kjær vibration exciter
type 4809) is used to excite the sound field. With the help of a piezoelectric
charge accelerometer (Brüel and Kjær type 4384) and a charge amplifier (Brüel
and Kjær type 2635) the acceleration and thereby the velocity of the piston are
measured as reference.

The pressure field above the piston is scanned in 11 layers (with a distance of
5 mm up to 55 mm between the piston and the membrane of the microphone
with a spacing of 5 mm). In every layer 49 measurement positions with a spacing
of 5 mm cover a region of ± 15 mm compared to the center of the piston (see
figure 5.1). Every position is measured with the same microphone, a G.R.A.S.
46AE 1/2” ICP free-field microphone. Furthermore, the velocity is measured
with a Microflown PU Mini probe in approximately 50 positions in the different
layers above the center of the piston and slightly off-centered (± 5 mm in x-
and y-direction). The positioning of the microphone and the velocity sensor is
done with the help of a positioning system, which is able to move in mm steps
in three coordinates (see figure 5.2).

With an LMS system a continuous random white noise in a frequency range of
50 Hz up to 10000 Hz with a level of 5 V is generated and used as excitation
signal. The frequency response functions between the pressure (or velocity) and
the reference acceleration are computed (see equation 3.1) and 100 averages are
performed. A frequency resolution of 5 Hz is used.
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Figure 5.1: Measurement setup: grey area = piston area, blue area = measurement area, yellow
dots = measurement positions.

(a) overview

(b) microphone (c) PU probe

Figure 5.2: Details of the measurement setup.
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The velocity probe’s polar pattern (directionality) has a cos(θ) characteristic or a
figure of eight response (see figure 5.3). So if an angular positioning error of e.g.
10
◦ degrees occurs, the absolute error equals 20log(cos(10

◦)) = 0.133 dB. This
directivity is applied if the probe is rotated around the axis, where it is mounted
(see figure 5.2 c). In this picture one can also clearly see an inclination error of
the velocity sensor positioning. Unfortunately, there is no knowledge about the
errors produced with this inclination, but it is expected that the probe is not
very sensitive to these errors and therefore it does not play an important role.
Furthermore, the packaging with the two cylinders rises the particle velocity
level. This increase is mainly caused by a channelling effect: the particle flow is
forced through the package causing a level increase [5].

Figure 5.3: Polar patterns of a velocity probe at different frequencies (linear scale, only half the
response is measured) [5].

Calibration

The G.R.A.S. microphone is calibrated with a Brüel and Kjær calibrator. For
the calibration of the acceleration sensor the data from the manufacturer’s
calibration sheet is used. A separate dayle calibration of the sensor would be
much effort, because of it being installed inside the box. The manufacturer gives
a value of 1.008 pC

m/s2 .
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Relevant Frequency

The Tbox is used for material characterization up to around 1000 Hz. Up to
this frequency the coherence function is almost unity and the FRF is flat (see
figures 5.4 - 5.7). Above 1000 Hz resonances of the piston appear (e.g. at 1500 Hz
in figure 5.6) and the coherence function collapses (figure 5.4), because the
measured acceleration converges to zero or has an abrupt minimum.

If only use the center points are used for the analysis and calibration, it would
be possible to take specific frequencies where the coherence has a high value
(e.g. at 1700, 2500, 3100, 4000, 4800 and 5300 Hz; see figure 5.4). But if it is
required to use positions up to ± 10 mm away from the central position, it
is hard to find frequencies especially above 5000 Hz, where the coherence is
good for all measurement points (see figure 5.5). Therefore, frequencies from
50 Hz to 1000 Hz are used for the main evaluation in this section, because in
this frequency range, the piston does not have any resonance and the coherence
function is unity (see figure 5.7). The methodology can be expanded to higher
frequencies. Provided that frequencies, where no modes occur and the coherence
function is high, are selected. If a smaller piston is used, the modes are shifted
to a higher frequency range.
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Figure 5.4: Coherence in different layers at center positions.
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Figure 5.6: Absolute value and phase of the FRF at center center positions: 50 Hz - 10kHz.
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Figure 5.7: Absolute value and phase of the FRF at center center positions: 50 Hz to 1000 Hz.

5.2 Using Different Distances for FD Calculation

The first analysis focuses on the obtained velocity in z-direction at specific points
using FD with different spacing. Column 1 of figure 5.8 shows the obtained
absolute velocity with FD vFD relative to the surface velocity of the piston vP
for the center positions computed at layers 20 mm and 40 mm above the piston
using a spacing of 10, 20 and 30 mm for the FD calculations. One can see that
the obtained values are subject to fluctuations.

On the one hand, these can occur from the subtraction of two almost equal
values. It seems that there are not enough digits to be precise enough, which
leads to round off errors. These errors are random and can be removed by using
frequency-band averaged values.

On the other hand, if two almost equal quantities are subtracted, the noise
in the measurements disturbs this subtraction, because the noise is random
and therefore is different in every measurement. High coherence is needed.
Bendat and Piersol [36] provide formulas with which the random error in the
amplitudes of the measured FRFs can be estimated and confidence intervals
can be calculated with the help of the coherence value γ2 and the number of
averages nd.
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The random error ε in the amplitudes and an approximate confidence interval
of 95% are estimated as follows:

ε(|FRF|) = (1− γ2)
1
2

|γ2|
√

2nd
(5.1)

[|FRF| · (1− 2ε) ≤ |FRF| ≤ |FRF|(1 + 2ε)] (5.2)

The coherence function in 5.4 shows that the value is never smaller than 0.99

over the frequency range of 50 Hz to 1000 Hz. As mentioned in the measurement
setup section, the number of averages was set to 100. The following random
error and confidence interval of 95% are obtained:

ε(|FRF|) = (1− γ2)
1
2

|γ2|
√

2nd
=

√
(1− 0.99)√

0.99 · 2 · 100
= 0.0071 (5.3)

[|FRF| · 0.986 ≤ |FRF| ≤ |FRF| · 1.014] (5.4)

From these calculations it follows that the obtained absolute value lies within a
confidence interval of ± 1.4 % with a probability of 95 %.

If the FRF functions shall have a maximum error of 1 dB with a probability of
95 %, the needed coherence value can be calculated using equations 5.1 and
5.2:

FRFerror,max = −1 dB (5.5)

(1− 2ε) = 10
−1
20 = 0.8913 (5.6)

ε = 0.0544 (5.7)

γ2 =
1

ε2 · 2 · nd + 1
=

1
0.0059 · nd + 1

(5.8)

For nd = 100, a coherence value γ2 of 0.63 is obtained. A maximum error of
0.5 dB using nd = 100 leads to a value of γ2 = 0.87 and a maximum error of
0.25 dB using nd = 100 to γ2 = 0.96.
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As a next step the maximum error of the velocity calculation is calculated

(
v + ∆

v

)
max

=

p2(1+2ε)−p1(1−2ε)
d

1
iρω

p2−p1
d

1
iρω

=
p2(1 + 2ε)− p1(1− 2ε)

p2 − p1
(5.9)

=
p2 − p1 + 2(p2 + p1)ε

p2 − p1
= 1 + 2ε

p2 + p1

p2 − p1

= 1 + 2ε

p2
p1
+ 1

p2
p1
− 1

,

where d is the physical measurement distance between p1 and p2.

The maximum velocity error depends on the random error ε as well as on the
amplitudes of p1 and p2. In the beginning, the piston will act a bit more like
a plane wave, where the amplitudes of p1 and p2 are equal. As a worst case
scenario a monopole with spherical propagation is assumed. The amplitude
ratio | p2

p1
| equals r+d

r = 1 + d
r , where d is the measurement distance between p1

and p2 and r the spacial distance between the source and p2.

By using equation 5.9 it follows that:

(
v + ∆

v

)
max

= 1 + 2ε
2 + d

r
d
r

= 1 + 2ε = 1 + 2ε

(
2r
d
+ 1
)

(5.10)

Consequently, the maximum velocity error depends on ε, the measurement
distances and the used FD distance.

FD calculations with 10 mm distance (FD10) have the most fluctuations and FD
calculation with 30 mm (FD30) the least. Therefore, the complex velocity values
are smoothed by using a moving average (ma). A moving average of 5 (ma5)
uses the actual frequency value and 2 frequency values before and 2 afterwards.
From these 5 values the mean is computed and used as result. Consequently,
ma = 19 (ma19) computes the mean from 19 frequency pins (± 45 Hz).

Figure 5.8 also shows that the value at a distance of 20 mm obtained with FD30

is higher compared to the values obtained with FD10 and FD20. This may be
due to the fact that FD30 uses the pressure layers at 5 mm and 35 mm for
the calculations and at 5 mm interference effects can appear and amplify the
pressure. Furthermore, this could also be caused by the near field, for which
more layers may be needed to improve the results.
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When ma = 19 at a distance of 40 mm is used, all FD curves are overlapping. At
a distance of 20 mm the FD10 curve approaches the FD20 curve because the
measurement layers used are already out of the near field.

A problem of moving average is that one must take care that only random
fluctuations due to noise and round off errors are eliminated and fluctuations
which occur due to the system are kept.

If ma = 19 (∆ f = 90 Hz) is used, the small fluctuations are removed properly but
large fluctuations (e.g. the rise of the curve at approx. 530 Hz) can still be seen
clearly. Therefore, ma = 19 is used for all further investigations in this thesis.
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Figure 5.8: |vFD/vP| Amplitude of the particle velocity in z-direction relative to the surface
velocity at center positions for difference FD calculations at a distance of 20 mm
above the piston (row 1), a distance of 40 mm above the piston (row 2), without
smoothing (column 1), smoothing moving average of 5 (column 2) and smoothing
moving average of 19 (column 3).

5.3 Finding the best Position for Calibration

The last section showed that the use of smoothing is recommended before
working on the next steps. Furthermore, using a larger spacing also reduces the
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fluctuations. Therefore, the results obtained with FD20 are used in this section
because the finite differences are also computed in x- and y-direction to check
for lateral velocities and a stable sound field. If FD30 would be used, only one
velocity value per layer could be computed due to the maximum distance of
the measurement points of 30 mm (see figure 5.1) and therefore no comparison
between different layer positions would be possible.
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Figure 5.9: Left: |vFD/vP| amplitude of the particle velocity in z-direction relative to the surface
velocity at center positions using ma19, right: difference between the distance layer
values in dB using ma19.

In order to find the best calibration position the sound field above the piston is
analyzed. In the next pages only the velocity vector in z-direction (normal to
the piston) is used. Metzger and Kaltenbacher [13] simulated the behavior of
the sound field and showed some interesting plots. Some of their analyses are
conducted with our real measurement data.

The amplitudes of the particle velocity in z-direction relative to the surface
velocity at center positions using different ma factors are plotted at the left side
of figure 5.9 and the level difference in of these amplitudes in dB is plotted on
the right side of figure 5.9. It can be seen, that a ma factor of 19, leads to smooth
transitions. Because of the large piston size, interference can occur and lead to
relative amplitude values slightly bigger than a level of one for high frequencies.
Furthermore, the difference between the layers is smaller for high frequencies
and for distances further away from the piston.

During the calibration process, location errors can occur because one must
position the velocity sensor exactly in the middle between the two microphone
positions. Therefore, as a first indicator for positioning, the sum of the level
differences in dB is calculated
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where N is the number of evaluated frequencies and plotted on the right site of
figure 5.10. A small value indicates little change between the layers and therefore
less positioning error. From this point of view a calibration at a distance of 25 -
35 seems to fit best.
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Figure 5.10: Left: |vFD/vP| amplitude of the particle velocity in z-direction relative to the surface
velocity at center positions using different ma factors, right: difference between the
distance layer values in dB.

Moreover, Metzger and Kaltenbacher [13] pointed out that a higher particle
velocity amplitude leads to better SNRs. Thus, as a second step, the summation
over the amplitudes is performed

1
N

N

∑
k=1

∣∣∣vFD

vP
( fk)

∣∣∣, (5.12)

and plotted on the left site of figure 5.10. The summation value decreases with
increasing distance, but due to the large size of the plate the decreasing process
is quite slow and still has a reasonable value at 25 or 35 mm.

In a third step, the difference between the obtained velocity values within a layer
(differences in x- and y-direction) are calculated. The aim of these calculations
is to find out how precise one has to be in x- and y-direction. Therefore, all
obtained absolute velocity results in a layer are compared to the absolute value
at the center positions. The other velocity values lie in a square around the
center position with the size of ± 5 mm. When using a ma of 19, already no
differences greater 0.2 dB are obtained in all layers. This shows that in all the
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layers used, a positioning, within a 5x5-mm-square around the center position
without having an error bigger than 0.4 dB, is possible.

As a fourth analysis, absolute values of positions in a 5x5-mm-square layer (x-
and y-direction), which are ± 5 mm away from the layer in z-direction used
as a reference, are compared to the absolute value at the center position of the
reference layer. With the use of ma19, errors larger than 0.8 dB only occur if the
layers with 20 and 40 mm distance are used as reference layers. When using
layers with 25 - 35 mm distance no errors greater than 0.8 dB are obtained.

Finally, also the error due to the estimation of the FRF is included using equation
5.10 and d = r = 0.02 for FD20 and a calculation distance of 30 mm.:

(
v + ∆

v

)
max

= 1 + 2ε

(
2 · 0.002

0.002
+ 1
)
= 1 + 2ε(2 + 1) = 1 + 6ε (5.13)

Assuming a maximum error of the velocity in dB verror,max,dB, ε can be calculated
with the following equation:

ε =
10

verror,max,dB
20 − 1
6

(5.14)

The result is then inserted in equation 5.8 to get a minimum coherence value.
Results for different maximum velocity errors in dB are shown in table 5.1.

verror,max [dB] ε γ2

0.2 0.0039 0.997

0.25 0.0049 0.995

0.3 0.0059 0.993

0.35 0.0069 0.991

Table 5.1: Values for the random error ε and the coherence γ2 for different maximum velocity
errors in dB.

The coherence functions for all obtained pressure measurements over a fre-
quency range of 50 to 1000 Hz show a coherence higher than 0.991. Subsequently,
an error of 0.35 dB must be added to the value of 0.8 dB.

Accordingly, when the calibration is performed in one of the three layers
between 25 and 35 mm above the piston, it is possible to position the probe
within a 5x5x5-mm-cube around the center position, without having an error
bigger than 1.15 dB.
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Up to this point, only the amplitudes of the velocity vector in z-direction are
analyzed. Therefore, in the fifth step the FD is calculated in x- and y-direction
as well and the absolute value of the obtained velocity value is compared to
a vector pointing only in z-direction. The angle between these two vectors
gives information, if the measured velocity is mainly pointing in z-direction (as
assumed) or if there are lateral velocities as well (e.g. due to reflections in the
measurement environment). It can be seen that for most of the frequencies at
all positions the angle between the z-axis and the calculated velocity vector is
smaller than 10

◦. This results from the fact that the velocity vectors in x- and
y-direction are only up to 15 % of the size of the velocity vector in z-direction.
Ideally the vectors in x- and y-direction should be zero.

However, for frequencies between 565 and 625 Hz the velocity vector in x-
direction has about 60 % of the length of the velocity vector in z-direction.
A way to explain this value could be a reflection due to the z-axis of the
positioning system. The axis is 25.5 cm wide and extends 70 cm beyond the
Tbox. This leads to a problem in case both pressure and velocity transducers
should be calibrated. Then, the velocity probe measures a wrong resulting
vector. The vectors in x- and z-direction lead to an amplitude of the resulting
vector which is longer/higher than the amplitude of a vector only having a main
component in z-direction. However, the polar pattern of the velocity sensor has
a figure of eight response (cosinusoidal directionality) and therefore dampens
the amplitude of vectors which are not exactly coming from z-direction. The
error is thus eliminated. In principle the velocity probe is insensitive to lateral
fields. So on the one hand the velocity sensor is insensitive to lateral field,
having a cross sensitivity of 0.05. The value of 5 % was previously determined
at VIRTUAL VEHICLE with experiments. But on the other hand, if the pressure
sensor needs to be calibrated as well, the lateral field is of importance, because
the pressure sensor has no directivity.

The resulting velocity vectors at 595 Hz and at a distance of 30 mm are plotted in
figures 5.11 and 5.12 . At 595 Hz the vectors point to the direction of the x- and
the z-axis and in comparison at 500 Hz the vector in z-direction is dominant.
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Figure 5.11: Elevation plots of the velocity vectors at a distance of 30 mm for 500 and 595 Hz
with automatically scaled length to fit within the grids.
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Figure 5.12: Outline plots of the velocity vectors at a distance of 30 mm for 500 and 595 Hz with
automatically scaled length to fit within the grids.
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5.4 Calibration Curves

in order to obtain a calibration curve, the voltage output obtained with the PU
probe at a certain location is divided by the velocity in z-direction calculated
with FD (from the measured pressure data) in the same location.

In figures 5.14 and 5.13 the calibration results obtained with the measurement
data using the distance layer at 30 mm are shown. The red lines display the
results with the calibration method presented in this work. Moreover, the blue
line represents the sensitivity model given by the manufacturer Microflown. For
the results in figure 5.14 only the calculated FD velocity at the center position is
used (x = 0, y = 0, z = 30). In rows 1 and 2 of figure 5.13 the calculated velocity
is a mean value of all 9 obtained values at the 30 mm layer and in rows 3 and 4

of figure 5.13 the mean of 27 obtained values (layers 25, 30 and 35 mm) is used
as calculated velocity.

It should be pointed out that the obtained sensitivities differ from the ones given
by Microflown. The real values between 95 and 150 Hz and 475 and 1000 Hz
obtained with the red calibration are lower compared to the blue correction
curve of Microflown. For frequencies between 150 and 475 Hz the values are
larger. The imaginary values are smaller than the ones from the sensitivity
model, with an exception from 120 to 220 Hz, where the values match.

As mentioned in the last section, there is a reflection in x-direction between 565

and 625 Hz, which can also be seen in the calibration curves (especially in the
absolute value plot). The reflection influences the measured velocity as well. In
order to get a clean calibration curve the obtained values must be corrected with
a curve which refits the values between 565 and 625 Hz using the values before
525 Hz and after 625 Hz and uses a logical continuation. Another method would
be correcting the measured velocity curve beforehand or correct the calculated
measurement curve by using the calculated length of the vector instead of using
the absolute value of the velocity vector in z-direction only.
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Figure 5.13: Calibration curve obtained at a distance of 30 mm using the mean values of all 9

obtained positions of the calculated velocity in this layer (top) / the mean values
of 27 obtained positions of the calculated velocity in layers 25 - 35 mm (bottom)
compared to the curve given by Microflown.
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Figure 5.14: Calibration curve obtained at a distance of 30 mm using the center position of the
calculated velocity compared to the curve given by Microflown.

5.5 Summary of the Finite Difference Experiments

The results obtained with the FD experiments show that it is possible to calibrate
a particle velocity probe with a piston in an appropriate manner. The calibration
is done at positions above the center of the piston because there the velocity
field turned out to be stable and the main component of the 3D velocity vector
is pointing into z-direction. The calibration in this thesis is executed over a
frequency range from 50 Hz to 1000 Hz, because the Tbox measurements are
also performed only up to 1000 Hz. For higher frequencies the structural modal
properties of the piston have significant influence on the measurement and
calculation results and thereby on the stability of the field and the calculated
sensitivity. In order to obtain a reasonable calibration curve on top of the
effective applicable frequency range of the Tbox, the frequencies used above
1000 Hz would have to be picked carefully at frequency positions where no
resonances and antiresonances appear in the FRFs and where the coherence
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function is close to unity (e.g. at 1700, 2500, 3100, 4000, 4800 and 5300 Hz; see
figure 5.4).

For a verification of the procedure the calibration and field analysis should be
done with pistons of different sizes as well, because for smaller pistons the
frequencies where modes occur are shifted to higher frequencies and the field
analysis and calibration could be done e.g. up to 5000 Hz without the need of
picking specific frequencies in the higher frequency area.

The following steps have to be performed for the calibration procedure with a
total precision of 1.15 dB presented in this thesis:

• Choose a calibration distance of 30 mm.
• To avoid an error larger than 0.35 dB due to the estimation of the FRF:

Use 100 averages and control that the coherence value is bigger than 0.991

over the whole frequency range used for calibration.
• Smooth the curves with a moving average factor, which reduces the round

off errors (e.g. ma19).
• Analyze the velocity field above the piston: Verification that the changes

of the absolute velocity vectors in z-direction inside a measurement cube
are smaller than 0.8 dB. Therefore, calculate the velocity at the center
position (x = y = 0, z = 30 mm), where the velocity sensor is calibrated
and at the edge positions of the cube. 18 pressure positions are needed.
The measurement positions are shown in table 5.2 for FD20.

v(x[mm], y[mm], z[mm] p1(x[mm], y[mm], z[mm] p2(x[mm], y[mm], z[mm]
vref(0, 0, 30) pref,1(0, 0, 40) pref,2(0, 0, 20)

vedge1(5, 5, 25) pedge1,1(5, 5, 35) pedge1,1(5, 5, 15)
vedge2(−5, 5, 25) pedge2,1(−5, 5, 35) pedge2,2(−5, 5, 15)

vedge3(−5,−5, 25) pedge3,1(−5,−5, 35) pedge3,2(−5,−5, 15)
vedge4(5,−5, 25) pedge4,1(5,−5, 35) pedge4,2(5,−5, 15)
vedge5(5, 5, 35) pedge5,1(5, 5, 45) pedge5,1(5, 5, 25)

vedge6(−5, 5, 35) pedge6,1(−5, 5, 45) pedge6,2(−5, 5, 25)
vedge7(−5,−5, 35) pedge7,1(−5,−5, 45) pedge7,2(−5,−5, 25)
vedge8(5,−5, 35) pedge8,1(5,−5, 45) pedge8,2(5,−5, 25)

Table 5.2: Measurement and calculation positions needed for the calibration procedure with
FD20; column 1: positions, where velocity is calculated, columns 2 and 3: positions,
where the pressure must be measured to calculated the velocity in column 1.
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6 Conclusion and Outlook

This thesis started with a brief introduction on PU probes and motivates the
need for a development of a calibration procedure for the acoustic particle
velocity sensor. A vibrating piston has been chosen as exciter and different
methodologies to obtain a reference velocity are presented in chapter 2.

The accuracy of the obtained reference velocities are the matter of the research
conducted in chapters 3 and 4. In chapter 3 it was shown that Near Field
Acoustical Holography (NAH) is suitable for the characterization of a field,
but if the measurement area is too small, no reliable velocity values can be
calculated. When using a larger measurement area, as shown in chapter 4,
the velocity values computed with NAH have a high accuracy and therefore
could be used for calibration. The calculations using Statistically Optimized
Near Field Acoustical Holography (SONAH) in chapters 3 and 4 showed that
further research concerning the correct use of the scaling functions and a proper
implementation of the integrals would be needed to get reliable results for
calibration.

The results obtained in chapters 3 and 4 with the Finite Difference method (FD)
seem to be promising. Since the complexity of FD in terms of measurement ef-
forts and calculation time is by far smaller compared to NAH, FD has be chosen
for the investigations in chapter 5. The calibration method using the FD scheme
is promising. A validation of the simulations and theoretical assumptions is
performed with measurements conducted at VIRTUAL VEHICLE. Analysis of
these measurements show that it is possible to calibrate a velocity probe in an
appropriate manner. A positioning error within a cube with the size of 1x1x1 cm
of 0.8 dB maximum and a maximum overall error of 1.15 dB is obtained.

The following tasks have to be evaluated in further research:

• Identification of stable calibration points above 1000 Hz using the piston
of the trim test rig (Tbox).

• Extension of the presented calibration curve to higher frequencies.
• Verification of the calibration procedure with different pistons (e.g. using

a piston with smaller dimensions).
• Determination of the most appropriate moving average (ma) factor.
• Influence of the inclination error due to the positioning.

Martina Kreuzbichler, Calibration of Acoustic Particle Velocity Sensors



Bibliography 73

Bibliography

[1] Christopher G. Albert, Giorgio Veronesi, Eugène Nijman, and Jan Rejlek.
Prediction of the vibro-acoustic response of a structure-liner-fluid system
based on a patch transfer function approach and direct experimental
subsystem characterisation. Applied Acoustics, 112:14–24, 2016.

[2] Morvan Ouisse, Laurent Maxit, Christian Cacciolati, and Jean-Louis
Guyader. Patch transfer functions as a tool to couple linear acoustic
problems. Journal of vibration and acoustics, 127(5):458–466, 2005.

[3] Mathieu Aucejo, Laurent Maxit, Nicolas Totaro, and J-L Guyader. Con-
vergence acceleration using the residual shape technique when solving
structure–acoustic coupling with the patch transfer functions method. Com-
puters & Structures, 88(11-12):728–736, 2010.
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