
Rainer Hofmann, BSc

X-Burst: Cross-Technology Communication

for Off-the-Shelf IoT Devices

to achieve the university degree of

MASTER'S THESIS

 Master's degree programme: Information and Computer Engineering

submitted to

Graz University of Technology

Ass.Prof. Dott. Dott. mag. Dr.techn. MSc Carlo Alberto Boano

Institute of Technical Informatics

 Diplom-Ingenieur

Supervisor

Graz, March 2018

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other

than the declared sources/resources, and that I have explicitly indicated all ma-

terial which has been quoted either literally or by content from the sources used.

The text document uploaded to TUGRAZonline is identical to the present master‘s

thesis.

Date Signature

Rainer Hofmann, BSc

X-Burst: Cross-Technology Communication

for Off-the-Shelf IoT Devices

zur Erlangung des akademischen Grades

MASTERARBEIT

 Masterstudium Telematik

eingereicht an der

Technischen Universität Graz

Ass.Prof. Dott. Dott. mag. Dr.techn. MSc Carlo Alberto Boano

 Betreuer

Institut für Technische Informatik

Graz, März 2018

 Diplom-Ingenieur

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst,

andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten

Quellen wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht

habe. Das in TUGRAZonline hochgeladene Textdokument ist mit der vorliegenden

Masterarbeit identisch.

Datum Unterschrift

Abstract

For more than a decade, the number of devices connected to the Internet is exponentially
increasing. Most of these devices communicate wirelessly between each other, forming
the so-called Internet of Things (IoT), and enabling key applications with high societal
relevance such as smart homes, smart grids, smart cities, and smart production. Several
wireless technologies have been developed to satisfy the different requirements of these
IoT applications, such that they can offer the best possible performance. However, this
heterogeneity of wireless technologies makes it impossible for co-existing IoT devices to
communicate with each other or to share information due to the incompatibility of their
physical layers. Giving these heterogeneous devices the ability of communicating with
each other would allow them to autonomously coordinate frequency usage and minimize
cross-technology interference, as well as to synchronize their clocks without the need of
expensive and inflexible gateways.

This thesis presents a cross-technology communication approach called X-Burst, which
uses precisely timed energy bursts to exchange information among off-the-shelf wireless
devices with incompatible physical layers in the 2.4 GHz ISM band. X-Burst has been
implemented on the popular TI CC2650 LaunchPad and integrated into the Contiki oper-
ating system (OS) in a seamless way, i.e., such that no changes to the core functions of the
OS are needed. Furthermore, X-Burst can automatically adapt to the normal behavior
of the OS, i.e., schedule transmissions and receptions whenever the radio is in low-power
mode, by learning the duty cycle schedule of the employed MAC protocol. An experimen-
tal evaluation shows that X-Burst can establish a bidirectional communication between
IEEE 802.15.4 (ZigBee) and Bluetooth Low Energy (BLE) devices with data rates up to
9.23 kbit/s. The evaluation further shows the robustness of X-Burst in the presence of
external interference and its memory footprint.

5

Kurzfassung

Seit mehr als einem Jahrzehnt steigt die Anzahl der Geräte welche mit dem Inter-
net verbunden sind, exponentiell. Dabei kommuniziert der Großteil dieser Geräte draht-
los untereinander und bildet dabei das sogenannte Internet der Dinge. Dies ermöglicht
völlig neue, gesellschaftlich relevante Anwendungen wie intelligente Häuser, intelligente
Stromnetze, intelligente Städte und intelligente Produktionen. Um die unterschiedlichen
Anforderungen dieser Anwendungen zu erfüllen und um die bestmögliche Leistung zu er-
zielen, wurden verschiedene Funktechnologien entwickelt. Dies führte jedoch dazu, dass
viele dieser Geräte nicht miteinander kommunizieren können, da diese, je nach verwende-
ter Technologie, unterschiedliche Bitübertragungsschichten besitzen, was einen Informati-
onsaustausch auf herkömmlichen Weg unmöglich macht. Wäre es diesen Geräten jedoch
möglich untereinander zu kommunizieren, könnten die verwendeten Frequenzen ausge-
tauscht und dadurch technologieübergreifende Störungen verringert werden. Zusätzlich
erlaubt eine solche Kommunikation eine technologieübergreifende Synchronisation der Sy-
stemuhren der Geräte ohne auf teure und unflexible Gateways mit mehreren Funkmodulen
zurückgreifen zu müssen.

Diese Masterarbeit stellt eine technologieübergreifende Kommunikationsmethode na-
mens X-Burst vor, welche zeitlich präzise Energiestöße verwendet, um Informationen zwi-
schen handelsüblichen Geräten, welche unterschiedliche Funktechnologien im 2.4 GHz ISM
Frequenzband verwenden, austauschen zu können. X-Burst wurde auf dem TI CC2650
LaunchPad realisiert und nahtlos in das open source Betriebssystem Contiki integriert,
d.h., ohne Änderungen am Betriebssystem vornehmen zu müssen. Im Weiteren passt sich
X-Burst dem gewöhnlichen Verhalten des Betriebssystems an, indem es die Arbeitsphasen
des MAC-Protokolls lernt. Dadurch ist X-Burst in der Lage, Übertragungen ausschließlich
während des eigentlichen Stromsparmodus durchzuführen um die normalen Kommunika-
tionen des Betriebssystems nicht zu stören. Eine experimentelle Evaluierung hat gezeigt,
dass X-Burst eine Kommunikation zwischen IEEE 802.15.4 (ZigBee) und Bluetooth Low
Energy (BLE) Geräten mit einer Datenübertragungsrate von bis zu 9,23 kbit/s in beide
Richtungen ermöglicht. Die Evaluierung zeigt im Weiteren die Robustheit von X-Burst in
Gegenwart von externen Störungen als auch den zusätzlich benötigten Speicherbedarf.

6

Acknowledgments

This master thesis was written during the year 2017/2018 at the Institute of Technical
Informatics at Graz University of Technology.

First and foremost, I want to thank my supervisor Carlo Alberto Boano for his ex-
cellent support during my work on this thesis. No matter how busy he was, he always
managed to find some time to help me with the problems I faced. This work would not be
at its current scope without his feedback and supervision. Furthermore, I want to thank
Michael Spörk for his help and valuable input during this thesis.

I also want to thank my partner Angela for her understanding and always motivating
me. Finally, I want to thank my parents for giving me complete freedom about my
educational training and for always supporting me. I would certainly not be at this point
in my life without them. I especially want to thank my father for supporting me during
my whole study.

Graz, March 2018 Rainer Hofmann

7

Danksagung

Diese Masterarbeit wurde im Jahr 2017/2018 am Institut für Technische Informatik an
der Technischen Universität Graz durchgeführt.

Zuallererst möchte ich meinem Betreuer Carlo Alberto Boano für seine hervorragen-
de Unterstüzung während meiner Arbeit an dieser Masterarbeit danken. Ganz egal wie
beschäftigt er war, er fand immer Zeit mir bei meinen Problemen zu helfen. Diese Arbeit
wäre ohne sein Feedback und seine Betreuung nicht in diesem Ausmaß möglich gewesen.
Zudem möchte ich auch Michael Spörk für seine Hilfe und Unterstüzung während dieser
Masterarbeit danken.

Ich möchte auch meiner Partnerin Angela für ihr Verständnis und dafür, dass sie mich
immer motiviert hat, danken. Abschließend möchte ich noch meinen Eltern dafür danken
mir völlige Freiheit in der Wahl meiner schulischen Ausbildung gegeben zu haben und
dass sie mich immer unterstützt haben. Ohne sie würde ich nicht an diesem Punkt meines
Lebens stehen. Ich möchte besonders meinem Vater für seine Unterstützung während
meines gesamten Studiums danken.

Graz, März 2018 Rainer Hofmann

8

Contents

1 Introduction 15
1.1 Problem Statement . 16
1.2 Thesis Contributions . 18
1.3 Thesis Structure . 19

2 Related Work 20
2.1 Existing CTC Approaches . 20

2.1.1 B2W2: N-Way Concurrent Communication for IoT Devices 21
2.1.2 FreeBee: Cross-Technology Communication via Free Side-Channel . 22
2.1.3 BlueBee: a 10,000x Faster Cross-Technology Communication via

PHY Emulation . 23
2.1.4 Esense: Communication through Energy Sensing 24

2.2 Limitations of Existing CTC Approaches 25

3 Cross-Technology Communication for Off-the-Shelf IoT Devices 27
3.1 Requirements . 27

3.1.1 Cross-Technology Communication 27
3.1.2 X-Burst . 28

3.2 Concept . 29
3.2.1 Overview . 29
3.2.2 Transmitting Messages . 31
3.2.3 Receiving Messages . 32
3.2.4 Structure of CTC Messages . 33

4 Design Challenges 36
4.1 Generation of Energy Bursts . 36

4.1.1 ZigBee . 37
4.1.2 Bluetooth Low Energy . 39

4.2 Measuring the Duration of Energy Bursts 42
4.2.1 Instantaneous RSSI Measurement 42
4.2.2 Non-Instantaneous RSSI Measurement 43

4.3 Integration into an Existing Operating System 45
4.3.1 With Radio Duty Cycling . 46
4.3.2 Without Radio Duty Cycling . 47
4.3.3 Configuration . 48

9

5 Integration into Contiki 50
5.1 The Contiki Operating System . 50

5.1.1 Network Stack . 51
5.1.2 BLEach . 52

5.2 Seamless Integration into Contiki’s Network Stack 53
5.2.1 ZigBee . 54
5.2.2 Bluetooth Low Energy . 55

5.3 The Contiki CTC Radio Driver . 56
5.3.1 File Structure and Location Within Contiki 56
5.3.2 Configuration . 60
5.3.3 Adaptation to the Duty Cycle . 65
5.3.4 Implementation . 69

6 Evaluation 77
6.1 Experimental Setup . 77
6.2 Validation . 79
6.3 Throughput . 82

6.3.1 Theoretical Evaluation . 82
6.3.2 Practical Evaluation . 85
6.3.3 Summary . 87

6.4 Energy Consumption and Memory Footprint 87
6.5 Adaptation to Different RDC Mechanisms 91
6.6 Changing Configurations . 94
6.7 Robustness to External Interference . 96

7 Conclusion & Future Work 102
7.1 Conclusion . 102
7.2 Future Work . 103

Appendices 105

A Wireless Technologies 106
A.0.1 ZigBee . 106
A.0.2 Bluetooth Low Energy . 107

B Hardware 108
B.0.1 Texas Instrument multi-standard CC2650 LaunchPad 108

C Additional Definitions of Energy Bursts 110

Bibliography 113

10

List of Figures

1.1 Overlapping channels of WiFi, ZigBee, Bluetooth Low Energy (BLE) and
Bluetooth . 17

2.1 Classification of cross-technology communication 20

3.1 Concept of X-Burst. 29
3.2 Format of CTC messages . 33

4.1 Format of a ZigBee PHY frame . 37
4.2 Format of BLE link layer packets . 39
4.3 Format of BLE test packets . 40
4.4 Instantaneous measurement of the received signal strength 42
4.5 Non-instantaneous measurement of the received signal strength. 43
4.6 Determining the duration of an energy burst when a non-instantaneous

measurement of the received signal strength is used 44
4.7 Principle of Radio Duty Cycling . 45
4.8 Adaptation of X-Burst to an operating system which is using Radio Duty

Cycling . 46
4.9 Adaptation of X-Burst to an operating system without Radio Duty Cycling 47
4.10 Adaptation of X-Burst with a policy of three 48
4.11 Changing the priority of X-Burst . 49

5.1 The Contiki network stack . 51
5.2 Architecture of BLEach and the corresponding layers in Contiki’s IPv6-

over-IEEE 802.15.4 stack . 52
5.3 Seamless integration of X-Burst into Contiki’s network stack 53
5.4 Seamless integration of X-Burst into Contiki’s network stack when ZigBee

is used . 54
5.5 Seamless integration of X-Burst into Contiki’s network stack when BLE is

used . 55
5.6 Configuration of the virtual radio in the project-conf.h file of an application 60
5.7 Adaptation of X-Burst to the ContikiMAC RDC mechanism 66
5.8 Adaptation of X-Burst to a connectionless communication of BLE 67
5.9 Adaptation of X-Burst to a connection-oriented communication of BLE . . 68

6.1 Reception of a CTC message on a BLE node 79
6.2 Reception of a CTC message on a BLE node including all optional parts . . 80

11

6.3 Packet reception rate when sending four bytes with identical hex value from
a BLE to a ZigBee device . 81

6.4 Packet reception rate when sending four bytes with identical hex value from
a ZigBee to a BLE device . 81

6.5 Throughput of a transmission from a BLE to a ZigBee device depending on
the payload length for different kinds of payload 85

6.6 Throughput of a transmission from a ZigBee to a BLE device depending on
the payload length for different kinds of payload 86

6.7 Adaptation of X-Burst - without RDC (nullRDC) 91
6.8 Adaptation of X-Burst - ContikiMAC . 92
6.9 Adaptation of X-Burst - BLE connectionless communication 93
6.10 Influence of the policy to the behavior of X-Burst 94
6.11 Influence of the priority to the behavior of X-Burst 94
6.12 Sending one CTC message during the full CTC WINDOW 95
6.13 Packet reception rate when transmitting from BLE to ZigBee in the presence

of different kinds of interference . 97
6.14 Packet reception rate when transmitting from ZigBee to BLE in the presence

of different kinds of interference . 98
6.15 Packet reception rate when transmitting from BLE to ZigBee depending on

the payload length . 100
6.16 Packet reception rate when transmitting from ZigBee to BLE depending on

the payload length . 100

A.1 Channel separation of ZigBee . 107
A.2 Channel separation of BLE . 107

B.1 Texas Instrument LaunchPad . 108

12

List of Tables

2.1 Summary of the discussed CTC approaches and comparison with X-Burst . 26

3.1 Header of a CTC message . 34

4.1 Amount of payload bytes for generating energy bursts to achieve the best
possible throughput for ZigBee . 38

4.2 Amount of payload bytes for generating energy bursts using BLE that are
compatible with the ZigBee mapping shown in Table 4.1 41

5.1 Overview of all X-Burst-specific files and their locations 59
5.2 Configuration of the virtual radio - common values 61
5.3 Configuration of the virtual radio - rx values 62
5.4 Configuration of the virtual radio - auto configuration 62
5.5 Configuration of the virtual radio - manual configuration 63
5.6 Configuration of the virtual radio - without Radio Duty Cycling 63
5.7 Configuration of the virtual radio - with Radio Duty Cycling 63
5.8 Amount of payload bytes necessary to achieve the required energy burst

durations with ZigBee . 72
5.9 Amount of payload bytes to achieve the required energy burst durations

with BLE . 73
5.10 Mapping from hex values to energy burst durations and rtimer ticks 75

6.1 Comparison of the theoretically and practically evaluated throughput achieved
by X-Burst . 87

6.2 Energy and power consumption of different modes of operations for the
CC2650 MCU . 88

6.3 Energy consumption for transmitting different CTC messages depending on
the payload length . 89

6.4 Energy consumption of measuring the RSSI frequently depending on the
duration . 89

6.5 Memory usage of the TI CC2650 LaunchPad in different modes 90
6.6 Memory footprint of X-Burst . 90

C.1 Alternative mapping for X-Burst - Mapping A 110
C.2 Alternative mapping for X-Burst - Mapping B 111
C.3 Alternative mapping for X-Burst - Mapping C 112

13

List of Abbreviations

AFH Adaptive Frequency Hopping

BLE Bluetooth Low Energy

CCA Clear Channel Assessment

CSMA/CA Carrier Sense Multiple Access with Collision Avoidance

CTC Cross-Technology Communication

HAL Hardware Abstraction Layer

IEEE Institute of Electrical and Electronics Engineers

IoT Internet of Things

IP Internet Protocol

ISM Industrial, Scientific and Medical

MAC Media Access Control

MCU Microcontroller Unit

OS Operating System

PRR Packet Reception Rate

RAM Random Access Memory

RDC Radio Duty Cycling

ROM Read Only Memory

RSSI Received Signal Strength Indicator

TI Texas Instrument

WPAN Wireless Personal Area Network

14

Chapter 1

Introduction

Since more than a decade, the number of wireless devices is exponentially increasing. Due
to the emerging Internet of Things (IoT) era, this number will soon increase even further.
More and more everyday objects are becoming smart nowadays, meaning that they can
sense their environment and directly send information to each other or to the Internet wire-
lessly. This opens the possibility for attractive applications such as smart home systems,
where wirelessly-connected sensors and actuators are used for controlling different appli-
ances, measuring the power consumption or increasing the security of inhabitants [1, 2].
Another popular IoT application domain is smart health care, where sensors are used
for monitoring daily activities and exercise, as well as the vital signs of patients [3, 4].
There are also many IoT applications with high societal relevance and impact such as
smart cars (for increasing driving safety and comfort or providing accident and emergency
identification and alert), smart cities (for measuring the air quality or efficiently lighting
up the city), or smart grids (for improving the efficiency of production, distribution and
consumption of energy) [5, 6, 7]. Besides the consumer market, also the industry is using
the advantages of the IoT for controlling and optimizing production processes. Sensors
are, for example, used for monitoring critical values, measuring the produced quantity, or
sending an alert if an engine has stopped working unexpectedly [8]. Because of all these
attractive applications, the number of devices connected to the Internet is now more than
8 billions, with the majority of these devices being wireless sensors embedded in everyday
objects. This number is expected to grow to 20 billions by 2020 [9].

15

CHAPTER 1. INTRODUCTION 16

1.1 Problem Statement

Large number of heterogeneous wireless technologies. As IoT applications are
largely different in nature and requirements (e.g., streaming a movie needs a very high
data rate (MB/s) while measuring the temperature and send it wirelessly to a base station
works fine with a low data rate (KB/s) but needs to be very energy-efficient to ensure a
long lifetime of the device), several wireless technologies have been developed to satisfy
the requirements of different applications and to offer the best performance. Typical re-
quirements for wireless technologies are power consumption, communication range, data
rate, bandwidth, latency or robustness.

Some of the most popular wireless technologies are WiFi (IEEE 802.11), ZigBee (IEEE
802.15.4) or Bluetooth (IEEE 802.15.1) and its evolution Bluetooth Low Energy (BLE).
These standards specify different signal management functions, modulation schemes, data
rates, channel bandwidths and separations, which make them incompatible to each other.
In industrial measurement and data requisition systems, it is often necessary to use het-
erogeneous technologies for measuring the performance of a system or observing the same
event. Without proper synchronization between the different technologies, the timestamps
referring to the same event, measured by heterogeneous devices, would be different and
the collected data would not be useful. Thus, a rational analysis of the collected data
would not be feasible. A proper synchronization can be achieved by using very expensive
multi-radio gateways, which allow communication among heterogeneous networks. Nev-
ertheless, this approach suffers from several drawbacks such as additional hardware costs,
complex network structure and increased traffic overhead. Additionally, a gateway is also
a single point of failure since all communication between different networks is routed over
it. Hence, a better solution for enabling a communication among heterogeneous networks
has to be established.

Large number of IoT devices crowding the same frequencies. Wireless de-
vices often make use of the (unlicensed) Industrial, Scientific and Medical (ISM) frequency
bands. These are freely available portions of the radio spectrum reserved for industrial,
scientific and medical purpose only. As the number of wireless devices is constantly in-
creasing, the congestion of the ISM bands is rising, turning the radio spectrum into an
expensive resource [10]. A well-known example of how crowded a portion of the radio
spectrum can be is the 2.4 GHz ISM band. Its worldwide availability and the fact that
it is free to use made this band one of the most popular choices for a lot of different
technologies. Figure 1.1 shows the four most pervasive technologies operating in the 2.4
GHz ISM band: WiFi, ZigBee1, Bluetooth and its evolution Bluetooth Low Energy.

1When we write ZigBee, we actually mean IEEE 802.15.4

CHAPTER 1. INTRODUCTION 17

Bluetooth

Bluetooth Low
Energy

2402 MHz 2480 MHz

0 79

37 0 1 2 3 4 5 6 7 8 9 10 38 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 39

2402 MHz 2480 MHz

ZigBee

WiFi

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

2405 MHz 2480 MHz

2412 MHz 2462 MHz2437 MHz

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 1.1: Overlapping channels of WiFi, ZigBee, BLE and Bluetooth.

As shown in Figure 1.1, all these technologies employ overlapping frequencies. As a
result, standard-compliant devices need to compete for medium access and may experi-
ence cross-technology interference from surrounding appliances. To avoid collisions, WiFi
is using Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) and ZigBee
is using a Clear Channel Assessment (CCA) to check if the channel is free. Bluetooth
and BLE are using Adaptive Frequency Hopping (AFH) to escape interference from other
wireless technologies. Due to the high number of devices and the consequent congestion
of the radio spectrum, these mechanisms are pushed to their limits and may no longer be
sufficient to avoid collisions.
This leads to an increased packet loss and to a higher number of retransmissions affecting
the latency, throughput and energy efficiency of the involved networks. As result, in non-
critical applications (e.g., home automation), one can often experience packet loss and
bad performance (e.g., higher latency when controlling appliances). In safety-critical ap-
plications (e.g., smart productions and smart grid applications), manual complex network
planning is needed to ensure coexistence while fulfilling the requirements (i.e., throughput,
latency) of applications [11]. Hence, a mechanism for communicating the used channel
among devices with different physical layer is needed to reduce cross-technology interfer-
ence.

An ideal solution to both aforementioned problems would be to allow devices from
heterogeneous technologies to directly communicate with each other, without the need of
additional hardware.

CHAPTER 1. INTRODUCTION 18

1.2 Thesis Contributions

In order to allow heterogeneous devices to communicate seamlessly, we explore Cross-
Technology Communication (CTC), a mechanism that allows direct communication among
wireless devices with incompatible physical layer. This is achieved by encoding data in
such a way, that, independent from the used technology, every device in range is able to
detect and decode it. Existing CTC approaches encode information by using the trans-
mission power of packets [12] or the duration of energy bursts [13]. The information can
be decoded by measuring the Received Signal Strength Indicator (RSSI) which is typically
a feature offered by all IoT technologies. CTC can be used to make networks aware of
each other and to proactively avoid cross-technology interference, as well as to seamlessly
synchronize the clocks of nodes employing heterogeneous technologies.

Exploring cross-technology communication for IoT devices in the 2.4 GHz
ISM band. In this thesis, we have developed a mechanism called X-Burst, which uses
precisely timed energy bursts to exchange information among nodes with incompatible
physical layer. Towards this goal, we have defined 16 different energy burst durations,
each one encoding four bits of information, i.e., representing a different hex value in the
range of 0x0 - 0xF. X-Burst focuses on ZigBee and BLE as they are the most used tech-
nologies for IoT devices. Furthermore, it allows a bidirectional communication without
any hardware modifications or the need of a multi-radio gateway by only using off-the-
shelf devices.

Integration of CTC primitives in Contiki. We have integrated X-Burst into the
Contiki Operating System (OS) in a seamless way, i.e., no changes to the core functions of
the system, the network stack, the radio driver or any other implementation are needed.
Furthermore, we do not affect the normal behavior of the operating system, i.e., if a duty
cycle is detected, X-Burst adapts to it and is only active during the usual off-phases of the
device. Hence, we can guarantee that X-Burst does not violate the normal communication
flow of the operating system. To achieve this, we have written our own radio driver for
Contiki, which is responsible for managing the normal communications of the OS and the
CTC related ones in a non disruptive way.

Evaluation on real hardware. We have evaluated X-Burst in terms of throughput,
power consumption, memory footprint and robustness. Additionally, the behavior of X-
Burst and its adaption to different use cases are shown. As hardware, we used the Texas
Instrument (TI) multi-standard CC2650 LaunchPad, given that its radio supports both,
ZigBee and BLE.

CHAPTER 1. INTRODUCTION 19

1.3 Thesis Structure

This thesis is structured as follows. In Chapter 2, an overview about the most recent
works in the area of CTC is given. Furthermore, the limitations of the presented works
are explained and a short summary, including a comparison with X-Burst, is given at the
end of the chapter. The requirements for establishing a communication between heteroge-
neous devices are listed in Chapter 3. Besides the list of requirements, the overall concept
of X-Burst is presented and the used wireless technologies are explained briefly. The de-
sign challenges, including, the generation and detection of energy bursts, the structure of
CTC messages and the aspects that have to be considered for a seamless integration into
an existing operating system, are explained in Chapter 4. Chapter 5 covers the seamless
integration into the Contiki OS and explains the features of the developed radio driver in
detail. Furthermore, the possible configurations of the new radio driver are explained and
the portability of the implementation is discussed. Additionally, the adaption to differ-
ent duty cycling mechanisms is shown and the implementation is described in detail. An
evaluation of X-Burst is given in Chapter 6. In particular, a validation showing a work-
ing communication between two heterogeneous devices is presented, and the achievable
throughput is evaluated and compared with the theoretical one. Furthermore, an evalu-
ation of the energy and memory consumption, as well as of the robustness of X-Burst in
the presence of interference is given. At the end of the chapter, the adaptation of X-Burst
and its configurable behavior are shown. Finally, Chapter 7 completes the thesis with a
conclusion and an outlook about the future development of X-Burst.

Chapter 2

Related Work

This chapter gives an overview about the most important works in the field of Cross
Technology Communication (CTC) in Section 2.1. Thereafter, Section 2.2 discusses the
limitations of the presented works and gives a short summary including a comparison with
X-Burst, the CTC scheme presented in this thesis.

2.1 Existing CTC Approaches

In this section, an overview about four of the most important works in the field of CTC is
given. Cross-technology communication is achieved by encoding data in such a way that
it can be detected independently of the underlying technology. This is usually achieved
by using the transmission power or the duration of transmitted packets, or by shifting
periodic signals. Hence, CTC can be divided into two groups1: time modulation and
energy modulation. The main requirement is that a receiver can detect this information,
e.g., by measuring the quality of a radio channel. Figure 2.1 shows the classification of
cross-technology communication.

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25
Time [ms]

-110
-100
-90
-80
-70
-60
-50
-40
-30

RS
SI

 [d
Bm

]

(a) Time modulation

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
Time [ms]

-110
-100
-90
-80
-70
-60
-50
-40
-30

RS
SI

 [d
Bm

]

(b) Energy modulation

Figure 2.1: Classification of cross-technology communication - the information is encoded
in (a): the timing of packets, (b): the energy of packets.

1In fact, there is also a third group: emulation of legitimate packets. This is in most cases not possible
and usually not used to allow cross-technology communication.

20

CHAPTER 2. RELATED WORK 21

2.1.1 B2W2: N-Way Concurrent Communication for IoT Devices

B2W 2 [12] is a novel communication framework that allows BLE devices to communicate
with WiFi devices while supporting the concurrent BLE to BLE and WiFi to WiFi com-
munications. The authors use the transmission power of BLE packets to form a sine wave
and encode the data into the frequency of the wave. The sine wave is created by directly
adjusting the transmission power level of adjacent BLE packets. Therefore, a so called
“Discrete Amplitude and Frequency-Shift Keying” (DAFSK) converter was developed,
which converts the data into a sequence of symbols. Each symbol represents the transmis-
sion power of a BLE packet. These symbols are then mapped to a subset of channels that
overlap with the target WiFi channel and the transmission power is adjusted accordingly.
For demodulation on the WiFi side Channel State Information (CSI) is used. Therefore,
the WiFi channel is divided into tens of subcarriers with a bandwidth several times nar-
rower than a BLE channel. This allows the detection of the power level of the BLE packets
within the CSI values of the subcarriers. The original message can be reconstructed by
measuring the changes in the CSI values of all subcarriers over a specified time period.
The frequency shift keying technique is used to be able to reconstruct the data even in
dynamically changing environments. Modulating the data directly on the transmission
power level of BLE packets would result in an extremely high Bit Error Rate (BER).
With this approach, a throughput of about 1.5 kbps was achieved without creating ex-
tra traffic or changing the frequency hopping sequence of BLE. For the evaluation, a TI
CC2650 device was used as BLE transmitter and a National Instruments (NI) RF testbed
as WiFi receiver.

One big issue of this approach is the need of collisions. The power level of a BLE
packet can only be detected if it collides with a WiFi packet. Usually, mechanisms are
used to avoid collisions. WiFi uses CSMA/CA to check if the channel is free before sending
a packet. BLE uses AFH which avoids (blacklists) channels with a high Packet Loss Rate
(PLR). If each mechanism works correctly, this CTC approach might not work anymore.
Another drawback of this method is the fact that it only works in one direction, from BLE
to WiFi. There is no possibility for the WiFi device to communicate with the BLE one.

CHAPTER 2. RELATED WORK 22

2.1.2 FreeBee: Cross-Technology Communication via Free Side-Channel

FreeBee [14] is a novel communication framework that allows direct communication among
WiFi, ZigBee and BLE. The authors use the already existing periodic beacon frames of
the three technologies to encode symbols. This technique allows CTC without the need of
additional bandwidth or any impact on the normal communications. The symbols are en-
coded by slightly shifting (advance or delay) the transmission time of the periodic beacon
frame. This is known as Pulse Position Modulation (PPM). To guarantee the detection of
the shifted beacon, it is sent multiple times.
Due to the incompatible PHY layers, the receivers cannot directly detect the beacon frame
of other technologies. Thus, the RSSI of the channel is measured frequently and quantized
to binaries. To detect the periodic beacon frame, the signal processing technique folding
is applied to the captured values. During an initial learning phase, the reference position
of the beacon frame is learned. Afterwards symbols can be decoded from deviations of
the reference position. To get rid of the learning phase, the authors present an extension
called A-FreeBee (Asynchronous FreeBee). Thereby, the reference frame and the shifted
frame are transmitted consecutively. The symbol can be directly interpreted from the
difference of the two beacon streams.
(A-)FreeBee allows demodulation of simultaneous transmissions by choosing the beacon
intervals of neighboring access points to be pairwise co-prime. This is referred as interval
multiplexing. With that, even implicit addressing is possible by setting the demodulation
interval to the corresponding one of the chosen transmitter.
Among all communication directions, WiFi to ZigBee achieves the fastest rate of 31.5 bps
for FreeBee. The rate drops to 14.6 bps for the reverse direction. When sending from
BLE to WiFi and ZigBee the throughput is 17.5 bps and 17.8 bps respectively. The per-
formance of A-FreeBee is slightly less than half of that of FreeBee, due to the doubled
sampling duration. For the performance evaluation, WARP, a wireless research platform,
and various laptops were used as WiFi devices. Further, an off-the-shelf, IOGEAR BLE
USB adapter and 30 ZigBee-compliant MICAz nodes were used.

In the paper, Bluetooth is always mentioned but the authors obviously meant Blue-
tooth Low Energy (BLE), which is something completely different. The proof-of-concept
has only been considered with BLE as a transmitter and never as a receiver. Furthermore,
only the three advertisement channels 37, 38 and 39 can be used for transmitting data.
These channels are chosen in a way to have the least interference with the most common
WiFi channels 1, 6 and 11. As result, CTC between BLE and WiFi will be very restricted.
Another drawback of this scheme is the very low data rate of about 30 bps which might
not be enough for real world applications. Furthermore, FreeBee requires a good channel
to guarantee a reliable communication, thus, it strongly depends on the noise of the used
channel.

CHAPTER 2. RELATED WORK 23

2.1.3 BlueBee: a 10,000x Faster Cross-Technology Communication via
PHY Emulation

BlueBee [15] is the latest published work on CTC. It allows a high data rate communica-
tion from BLE to ZigBee devices. This is achieved by emulating legitimate ZigBee frames
using a BLE radio. Therefore, a ZigBee frame is encapsulated within the BLE packet
payload by carefully selecting the bits of the payload. The emulated ZigBee packet is fully
compatible with legacy devices and is not distinguishable from a normal ZigBee packet
for the receiver. When an emulated frame reaches a receiver, it detects the payload part
via preamble and starts demodulating the frame. The BLE header and trailer are treated
as noise and are naturally ignored. BlueBee does not need any hardware modification of
a BLE sender or ZigBee receiver.
The emulation is only possible due to the similar (de)modulation technique of BLE and
ZigBee. BLE uses Gaussian Frequency Shift Keying (GFSK), which is normally realized
by phase shift over time, and ZigBee uses Offset Quadrature Phase Shift Keying (OQPSK)
combined with Direct Sequence Spread Spectrum (DSSS). ZigBee‘s OQPSK only consid-
ers sign (+ or -) of the phase instead of particular values to indicate symbols (chips). This
offers a high error tolerance for the demodulation which makes BlueBee possible.
BLE uses frequency hopping to minimize the interference with other wireless radios. If
the packet accept ratio of a channel is too low, BLE can use Adaptive Frequency Hopping
(AFH) to mark (blacklist) this channel as bad. Thus, this channel is no longer be used
for communication. BlueBee uses this feature to control the hopping behavior of BLE in
a non-disruptive way to ensure a communication with ZigBee devices.
BlueBee achieves a throughput of 225 kbps which is relatively close to the maximum data
rate of 250 kbps of ZigBee. It was implemented using a GNU radio BLE implementation
called scapy radio with a USRP-N210 platform as transmitter. Furthermore, also a BLE
CC2540 development kit and a commodity smartphone, the Nexus 5X, were used as a
transmitter. For the receiver side, a BLE CC2540 development kit, the ZigBee-compliant
CC2530 and CC2420 (i.e., MICAz and TelosB), as a 802.15.4 implementation on a USRP-
N210 were used.

The authors evaluate that one of the main problem for this approach was the narrower
bandwidth of BLE (1MHz) compared to ZigBee (2 MHz). This is not correct as BLE
and ZigBee both have a bandwidth of 2 MHz. By taking a closer look to the overlapping
channels between these two technologies one can notice that only 50 % of the channels
are overlapping completely. The other channels only overlap in a range of 1 MHz, which
could be an explanation for their statement. BlueBee uses normal BLE data packets to
encapsulate a legitimate ZigBee frame. Due to the BLE specification it is only possible
to send BLE data packets during an already established connection. Hence, an existing
BLE communication between two BLE devices is needed to be able to communicate with
a ZigBee device. Another point is the reverse communication from ZigBee to BLE. The
demodulation of BLE is not as flexible as for ZigBee, which makes the demodulation very
vulnerable to failures. Therefore, a reliable reverse communication would not be feasible.

CHAPTER 2. RELATED WORK 24

2.1.4 Esense: Communication through Energy Sensing

Esense [13] is a communication framework that is based on sensing and interpreting energy
profiles. It enables unidirectional communication from WiFi to ZigBee devices by encod-
ing information into the duration of energy bursts. Therefore, an alphabet set of different
energy burst durations was built, where each burst represents a specific information. The
authors mentioned that the alphabet set strongly depends on the data rate of the WiFi
sender and the measurement granularity of the receiver.
To minimize false positives, the packet size distribution of different WiFi traces was an-
alyzed and all packet sizes whose frequency of occurrence was greater than a specified
percentage were excluded. The authors concluded that the majority of all packets are ei-
ther below 140 bytes (ACKs, beacons or management frames) or around 1500 bytes, which
is the maximum packet length according to the Ethernet MTU. Additionally, a packet is
sent multiple times within a specified time-window. Depending on the configuration, the
packet is only accepted as an Esene one, if it was received a specified number of times
within this time-window.
A receiver frequently measures the energy (noise) on the channel by checking if the RSSI is
above a certain threshold. The duration of each detected energy burst is measured in clock
ticks and afterwards compared to the values in the alphabet set. If the duration is not
valid, it is considered as a regular WiFi packet and discarded, otherwise it is considered
as an Esense packet.
The authors did a theoretical evaluation of the possible throughput of Esense. The best
achievable data rate is about 5.13 kbps in absence of background traffic. In case of in-
volving background traffic, the throughput depends on the mode of operation of the WiFi
transmitter. Using 802.11b, the best achievable throughput is about 1.02 kbps and by
using 802.11g about 1.63 kbps. An evaluation based on a preliminary implementation was
done to determine the reliability of Esense. Towards this goal, a laptop equipped with
an IEEE 802.11b/g WiFi card (with the Linux open-source madwifi driver) was used as
transmitter and a Tmote Sky node as receiver. Depending on the configuration, a false-
positive and negative rate below 5 % were achieved.

One major drawback of this CTC scheme is the lack of flexibility in exchanging data.
Each energy burst duration represents a specified information such as a predefined mes-
sage, commando or value. Hence, it is not possible to exchange arbitrary data. The
authors only mentioned that it would be possible to build a vocabulary out of the values
in the alphabet set to increase the number of possible messages.

CHAPTER 2. RELATED WORK 25

2.2 Limitations of Existing CTC Approaches

All of the previous discussed CTC approaches have similar problems. Most of them only
achieve a unidirectional communication. In the case of B2W 2 and BlueBee, a bidi-
rectional communication is not even possible. FreeBee is the only work that achieves a
bidirectional communication between WiFi and ZigBee, but suffers from a very low data
rate. Another limitation is the need of very special requirements such as the need
of collisions (B2W 2) or an already established connection between two BLE devices
(BlueBee). Esense has the major drawback of being only able to send predefined mes-
sages or commands instead of arbitrary data.

Esense, nevertheless, is the most related work to X-Burst. It is also making use of pre-
cisely timed energy bursts to exchange information between two devices with incompatible
PHY layers. However, in X-Burst instead of WiFi, BLE is used. The main difference is
that X-Burst only needs 16 different energy bursts for representing arbitrary data, in-
dependent of its size. Thus, X-Burst is not limited to send only predefined messages.
Besides that, a bidirectional communication and a much higher throughput is achieved.
Furthermore, X-Burst was fully tested and evaluated on real hardware, whereas Esense
was only partly evaluated.

Table 2.1 summarizes the related works on CTC and compares them with the approach
proposed in this thesis, i.e., X-Burst.

CHAPTER 2. RELATED WORK 26
B

2
W

2
F
re

e
B

e
e

B
lu

e
B

e
e

E
se

n
se

X
-B

u
rs

t

D
ir

e
c
ti

o
n

B
L

E
→

W
iF

i
W

iF
i
↔

Z
ig

B
ee

B
L

E
→

Z
ig

B
ee

B
L

E
→

W
iF

i

B
L

E
→

Z
ig

B
ee

W
iF

i
→

Z
ig

B
ee

B
L

E
↔

Z
ig

B
ee

M
o
d

u
la

ti
o
n

p
ow

er
le

ve
l

of
B

L
E

p
ac

ke
ts

sh
if

ti
n

g
of

p
er

io
d

ic
b

ea
co

n
s

em
u

la
ti

n
g

Z
ig

B
ee

fr
am

es
en

er
gy

b
u

rs
t

d
u

ra
ti

on
s

en
er

g
y

b
u

rs
t

d
u

ra
ti

o
n

s

R
e
c
e
p

ti
o
n

C
h

an
n

el
S

ta
te

In
fo

r-
m

at
io

n
(C

S
I)

R
S

S
I

sa
m

p
li

n
g

n
or

m
al

re
ce

p
ti

on
R

S
S

I
sa

m
p

li
n

g
R

S
S

I
sa

m
p

li
n

g

T
h

ro
u

g
h

p
u

t
1.

5
k
b

p
s

u
p

to
31

.5
b

p
s

22
5

k
b

p
s

u
p

to
5.

13
k
b

p
s

u
p

to
9
.2

3
k
b

p
s

R
e
li
a
b

il
it

y
S

E
R

2
∼

0%
in

F
ar

ad
ay

C
ag

e
S

E
R
<

0.
5

%
F

R
R

3
>

85
%

F
P
4

&
F

N
5
<

5
%

P
R

R
6
>

9
7

%

H
a
rd

w
a
re

P
la

tf
o
rm

W
iF

i:
-

N
I

R
F

te
st

b
ed

B
L

E
:

-
T

I
C

C
26

50

W
iF

i:
-

W
A

R
P

&
L

ap
to

p
B

L
E

:
-

IO
G

E
A

R
U

S
B

ad
ap

te
r

Z
ig

B
ee

:
-

M
IC

A
z

n
o
d

es

B
L

E
:

-
U

S
R

P
N

21
0

-
C

C
25

40
-

N
ex

u
s

5X
Z

ig
B

ee
:

-
U

S
R

P
N

21
0

-
C

C
25

30
&

C
C

24
40

W
iF

i:
-

L
ap

to
p

Z
ig

B
ee

:
-

T
m

ot
e

S
k
y

B
L

E
&

Z
ig

B
ee

:
-

T
I

C
C

2
6
5
0

L
a
u

n
ch

p
a
d

L
im

it
a
ti

o
n

s
-

co
ll

is
io

n
s

n
ee

d
ed

-
re

v
er

se
d

ir
ec

ti
on

n
ot

fe
as

ib
le

-
lo

w
d

at
a

ra
te

-
B

L
E

on
ly

as
tr

an
sm

it
te

r

-
B

L
E

co
n

n
ec

ti
on

n
ee

d
ed

-
re

v
er

se
d

ir
ec

ti
on

n
ot

fe
as

ib
le

-
n

o
ex

ch
an

ge
of

ar
b

it
ra

ry
d

at
a

-
u

n
id

ir
ec

ti
on

al

T
ab

le
2.

1:
S

u
m

m
ar

y
of

th
e

d
is

cu
ss

ed
C

T
C

ap
p

ro
ac

h
es

an
d

co
m

p
ar

is
on

w
it

h
X

-B
u

rs
t.

2
S
y
m
b
o
l
E
rr
o
r
R
a
te

3
F
ra
m
e
R
ec
ep

ti
o
n
R
a
ti
o

4
F
a
ls
e
P
o
si
ti
v
es

5
F
a
ls
e
N
eg
a
ti
v
es

6
P
a
ck
et

R
ec
ep

ti
o
n
R
a
te

Chapter 3

Cross-Technology Communication
for Off-the-Shelf IoT Devices

This chapter describes the general requirements needed to allow a cross-technology com-
munication among heterogeneous devices, as well as the specific requirements that should
be fulfilled by X-Burst in Section 3.1. Section 3.2 presents the overall concept of X-Burst
and explains its working principle in detail. Additionally, the used wireless technologies,
ZigBee and BLE, are described briefly. For more information about the latter, the inter-
ested reader can refer to Appendix A.

3.1 Requirements

In this section, the requirements for X-Burst are listed in two categories. In Section
3.1.1 the general requirements to enable a communication among heterogeneous devices
in general are detailed. Section 3.1.2 describes the requirements that should be fulfilled
by X-Burst.

3.1.1 Cross-Technology Communication

To be able to establish a communication between different wireless technologies, all the
following requirements have to be met.

Operating in the same frequency band. To be able to allow CTC, the different
wireless standards have to operate in the same frequency band.

Wireless channels must overlap. At least one of the wireless channels of the dif-
ferent technologies has to overlap in the radio spectrum. The overlap can only be partial
or complete, but the more is the overlap, the more robust will be the communication.

27

CHAPTER 3. CTC FOR OFF-THE-SHELF IOT DEVICES 28

Agreeing on a common channel. The heterogeneous devices have to agree on a
common channel that is used to carry out cross-technology communication. This is usu-
ally done manually, since the devices cannot communicate upfront to agree on a common
channel.

Sensing information of a channel. To be able to detect and decode CTC messages,
a receiver has to be able to sense information about a wireless channel, e.g., the RSSI.
Furthermore, the transmitter and receiver need to agree on a data rate beforehand, which
is limited by the sampling rate of the RSSI of the receiver.

3.1.2 X-Burst

In addition to the aforementioned requirements, we would like to satisfy also the following
requirements:

Bidirectional communication. Compared to most of the published works on CTC,
which only allow unidirectional communications, X-Burst has to achieve bidirectional
communications among different wireless technologies, do that a complete data exchange
between heterogeneous devices can be established.

Data rate of at least 1.63 kbps. X-Burst has to achieve at least the same through-
put as Esense. The higher the data rate, the more data can be exchanged while reducing
the interference with the usual transmissions by needing less time for the cross-technology
communication.

Independently from other communications. As discussed in Chapter 2, BlueBee
and B2W2 strongly depend on other transmissions, i.e., they need collisions or they require
an already established connection with another device. X-Burst has to be independent
of other communications, so that it can be used even if no other device using the same
technology is in range.

Support for arbitrary data. X-Burst has to be able to transmit arbitrary data,
independent of its size.

Supported by off-the-shelf devices. Often software defined radios or especially
designed hardware are used to demonstrate CTC. X-Burst has to work on any commodity
hardware that fulfills the general requirements. Hence, only standard compliant functions
available in off-the-shelf devices can be used.

No hardware modifications. X-Burst has to support legacy devices. Since no
hardware modifications are needed, CTC can easily be brought on legacy devices through
a firmware-update.

CHAPTER 3. CTC FOR OFF-THE-SHELF IOT DEVICES 29

Easy portability to other hardware platforms. X-Burst should not be limited
to a specific hardware platform. Thus, it has to be designed in such a way that it is easily
portable to other hardware platforms which fulfill the general requirements.

Seamless integration into an open source operating system. X-Burst has to
be integrated seamlessly into an open source operating system, i.e., the normal communi-
cation flow of the OS should not be violated. Furthermore, only minimal changes of the
OS are acceptable.

3.2 Concept

This section describes the working principle of X-Burst in detail. Section 3.2.1 gives an
overview about the principle and briefly describes the used wireless technologies. After-
wards, the encoding and transmission of CTC messages are described in Section 3.2.2.
The reception and decoding of CTC messages are shown in Section 3.2.3 and the struc-
ture of a CTC message is shown in Section 3.2.4. Figure 3.1 shows the concept of X-Burst.

ZigBeeBluetooth
Low Energy

Cross-technology
communication

TX: Time modulationRX: RSSI sampling

TX: Time modulation RX: RSSI sampling

Figure 3.1: Concept of X-Burst.

3.2.1 Overview

To enable a communication between different wireless technologies, a common way to
encode and decode data has to be established. Most of the wireless standards provide
information about the current state of a channel, e.g., they allow to determine the energy
of a channel by reading the RSSI register. This information is typically used to determine
the current noise of a channel and to avoid collisions with other transmission (CCA). Nev-
ertheless, the noise (or energy) level of a channel can be used to detect transmissions from
other devices using heterogeneous technologies.

CHAPTER 3. CTC FOR OFF-THE-SHELF IOT DEVICES 30

In an energy based CTC scheme, energy bursts, i.e., noise, are simply generated by
sending ordinary data packets. Sensing the noise level of a channel allows any device,
independent of the used technology, to detect those bursts. Thereby, three different values
can be distinguished: the intensity of a burst, i.e., the absolute received signal power of a
packet, the gap between two bursts, and the duration of a burst.
Using the intensity of an energy burst to encode data is not a good choice as it strongly
depends on the environmental characteristics, the configured transmission power of a trans-
mitter, and the distance between receiver and transmitter. The gap between two energy
bursts is also not a good parameter, since it can not be fully controlled by the transmit-
ter. Another node could, for example, send a message exactly between two energy bursts,
which will shorten the length of the gap and thus, alter the encoded information. The
third parameter, the duration of an energy burst, seems promising. It is independent of
the environment and can be fully controlled by the transmitter. Thus, the duration of
energy bursts was chosen to build a novel CTC scheme, i.e., X-Burst.

Working Principle

X-Burst is using precisely timed energy bursts to convey information among devices with
incompatible PHY layers, i.e., that are using different wireless technologies. The data
is encoded as the duration of different energy bursts. In particular, 16 different energy
bursts have been defined, where four bits of information is encoded in the duration of each
burst. Hence, every burst is representing a different hex value in the range of 0x0 - 0xF.
Since any message can be represented by consecutively sending different energy bursts,
according to the hex representation of the message, arbitrary data can be transmitted.
The energy bursts can be detected by any device that is capable of reading the RSSI of
a specified channel. The original message is decoded by translating the received energy
bursts into their corresponding hex values and reassembling them correctly.

X-Burst was implemented and tested using the wireless technologies ZigBee and BLE.
These standards were chosen because they are the most prevalent technologies used for
IoT devices. Both are operating in the 2.4 GHz ISM band and employ overlapping chan-
nels. A brief description of both can be found below. For more details, the reader should
refer to Appendix A.
However, X-Burst is not restricted to ZigBee and BLE, it can be used with every technol-
ogy and device that fulfills the general requirements described in Section 3.1.1.

ZigBee

ZigBee is a wireless standard for low-rate Wireless Personal Area Networks (WPANs) that
builds upon the IEEE 802.15.4 physical radio specification [16]. It operates in the 2.4 GHz
ISM band and can use 16 different channels (11-26). Each channel has a bandwidth of 2
MHz and is separated by 5 MHz from the next one. ZigBee achieves a data rate of 250
kbit/s and was designed for low-cost, low power battery operated devices which makes it
a good choice for the IoT domain.

CHAPTER 3. CTC FOR OFF-THE-SHELF IOT DEVICES 31

Bluetooth Low Energy

BLE is a standardized ultra-low-power wireless technology for short-range WPANs. It
achieves a data rate of 1 Mbit/s and is incompatible with Classic Bluetooth. BLE oper-
ates in the 2.4 GHz ISM band and can use 40 channels whereby three (37, 38, 39) are
only used for advertising. Each channel has a bandwidth of 2 MHz and is separated by
2 MHz from the next one, i.e., the channels are directly next to each other in the radio
spectrum. BLE was designed for low-power battery-operated devices with limited hard-
ware resources, making it a good choice for the IoT domain.

3.2.2 Transmitting Messages

As explained in the previous section, X-Burst uses 16 different energy bursts to exchange
information among heterogeneous devices. Each burst is representing a different hex value.
To transmit a message, the data has to be divided into separate bytes and represented as
hex values. For each byte, two energy bursts with the corresponding durations are sent
successively. The burst representing the hex value of the four most significant bit (high
nibble) of a byte is transmitted first, followed by a burst representing the hex value of the
four least significant bits (low nibble).
Energy bursts can simply be generated by sending standard-compliant data packets. In
this way, the duration of the burst, i.e., the time in which the presence of a data packet
in the radio channel is detectable, only depends on two parameters: (i) the data rate of
the transmitter and (ii) the length of the message, i.e., the amount of transmitted bytes.
Some technologies are able to use different data rates for transmitting messages, thus, the
data rate should be fixed for the CTC to prevent decoding errors. If the data rate is fixed,
the duration of a burst only depends on the length of a message. Hence, by changing
the amount of transmitted bytes, the duration of an energy burst will change accordingly.
In particular, only payload bytes in standard-compliant packets are adjusted to generate
energy bursts with the required durations. The generation of the different energy bursts
is described in more detail in Section 4.1.
Using a general mapping from hex values to payload bytes would lead to a major problem.
Heterogeneous technologies are using different data rates for transmission, thus, sending
the same amount of bytes would result in different energy bursts, depending on the under-
ling technology. To solve this problem, a general mapping from hex values to durations
is used among all technologies. Hence, a receiver can always detect a CTC message, in-
dependent of the transmitter of the message. Furthermore, every technology has its own
mapping from durations to the required amount of payload bytes needed for generating
the different energy bursts. The mapping from durations to the amount of payload bytes
has to be done beforehand for each technology. Towards this goal, a number of aspects
have to be considered. First, the various durations have to be clearly distinguishable by
a receiver. Hence, the durations of an energy burst have to be chosen depending on the
measurement granularity of a receiver, otherwise energy bursts could be interpreted falsely.
Another important point is the gap between two consecutive energy bursts: if the gap is
too short, the receiver will not be able to detect it and the two bursts are thus merged
together. If the gap is too long, the receiver will interpret the two related energy bursts
as separate ones, which will result in a wrong decoding of the message.

CHAPTER 3. CTC FOR OFF-THE-SHELF IOT DEVICES 32

3.2.3 Receiving Messages

To detect CTC messages, a receiver measures frequently the received signal strength of the
configured channel. To be able to distinguish between background noise and transmitted
messages, a threshold for the RSSI has to be defined. The stream of measured values is
analyzed and compared to the specified threshold allowing detection and determining the
corresponding duration of energy bursts. The duration measurement of energy bursts is
described in more detail in Section 4.2.
After an energy burst was detected and its corresponding duration was determined, the
duration has to be verified. If it is valid, i.e., there exists a mapping to a hex value, the
corresponding value is saved for further processing, the energy burst will otherwise be ig-
nored. Due to a low measurement granularity of the RSSI or because of interference from
other radios, the durations will always vary by a small factor. Thus, to be more flexible
in decoding energy bursts, a duration is also valid if it is within a specified range around
a defined value, i.e., the defined duration ± ε, where ε depends on the used mapping.
Since one energy burst is only encoding four bits of information, i.e., a hex value, a receiver
has to be able to reassemble more energy bursts together for reconstructing larger mes-
sages. Therefore, a receiver waits for a specified time after receiving an energy burst. If
no other burst is received within the defined time, the receiver assumes that the transmis-
sion has ended and starts reconstructing the original message. Otherwise, each following
energy burst that is detected within the specified time, is treated as one message and,
therefore, saved for further processing.
Since only whole bytes are transmitted, represented by two successive energy bursts, the
information of two bursts is always merged together and the original byte is reconstructed.
Afterwards, all reconstructed bytes have to be interpreted accordingly to reassemble the
original message.
With this approach, a receiver will try to decode every duration that is detectable on the
configured channel. To counteract this problem, a preamble is used that is sent before
every CTC related message. Therefore, a receiver can filter out CTC related messages
among the usual communications caused by other devices in its proximity. The receiver
only listens for the defined preamble and only starts decoding the following durations if
the preamble was detected. The preamble and the format of a CTC message is described
in more detail in Section 3.2.4.

CHAPTER 3. CTC FOR OFF-THE-SHELF IOT DEVICES 33

3.2.4 Structure of CTC Messages

Since each energy burst is representing one hex value, four bit of information is encoded
in each burst. Therefore, every data exchange is measured in symbols, which represents
those four bits. Figure 3.2 shows the format of a CTC message.

Receiver
Address

(16 symbols)

Length Byte
(2 symbols)

Checksum
(2 symbols)

1 Byte 1 Byte Arbitrary Bytes 1 Byte

Transmitter
Address

(16 symbols)

8 Bytes 8 Bytes1 Byte

Network ID
(2 symbols)

Data Payload
(arbitrary symbols)

In
c.

 C
h

e
ks

u
m

In
c.

 P
ay

lo
a

d

Le
n

g
th

A
ck

n
o

w
le

d
ge

R

e
q

u
e

st
e

d

U
n

u
se

d

In
c.

 N
et

w
o

rk
 ID

In
c.

 R
e

ce
iv

e
r

A
d

d
re

ss

In
c.

 T
ra

n
sm

it
te

r
A

d
d

re
ss

U
n

u
se

d

Preamble
(4 symbols)

2 Bytes

Header
(2 symbols)

MSB LSB

Figure 3.2: Format of CTC messages.

As can be seen in Figure 3.2, some fields are brighter and have dashed lines. Those
are optional, i.e., they are not absolutely necessary for a communication. The optional
fields only provide more functionality and allow a better customization of a CTC message.
Each field is described in more detail below.

Preamble
The preamble is used to identify the beginning of a CTC message, i.e., to detect the tran-
sition between background noise and a valid CTC message. The preamble is four symbols
long, i.e., four energy bursts, and is defined as 0x0101. After a preamble was detected,
all following energy bursts are treated as CTC packets and processed accordingly until
a timeout occurs, i.e., the time between two successive bursts is longer than a specified
duration.

Header
The header is two symbols long and used to specify which additional data, i.e., the fields
that are brighter and have dashed lines in Figure 3.2, are attached to the CTC message.
Therefore, a better customization of a CTC message is possible.
Table 3.1 shows each bit of the header and describes its function briefly.

CHAPTER 3. CTC FOR OFF-THE-SHELF IOT DEVICES 34

Bit Part Description

7 Unused -

6 Transmitter Address
If set, the address of the transmitter is attached.
Needed for acknowledgments.

5 Receiver Address
If set, the address of the receiver is attached. The
message will be only accepted by the specified receiver.
Otherwise, the message will be sent as broadcast.

4 Network ID
If set, the network ID is attached. Only receivers with
the corresponding network ID will accept the message.

3 Unused -

2 Acknowledge Requested1 If set, the receiver has to send back an acknowledg-
ment to the transmitter.

1 Payload Length
If set, the payload length is attached. Hence, detect-
ing noise that was falsely attached to the message is
possible.

0 Checksum
If set, a checksum is attached. Used for detecting
transmission errors.

Table 3.1: Header of a CTC message.

To keep the transmission time of the header as short as possible, the bits were chosen
in a specific way. Bits which are representing optional fields that are used to be set more
frequently have a lower significance in the hex representation of the header byte. In partic-
ular, setting only the bits representing the checksum and the network ID, the value of the
header byte will be 0x11. Hence, only two short energy burst with a duration representing
the hex value 0x1 each, have to be transmitted.
Therefore, the time needed for transmitting the header is kept as short as possible, since
the durations are getting longer the higher the value of the transmitted hex value will be.
As can be seen in Table 3.1, two bits are still unused. These bits can be used for future
improvements.

Network ID
The network ID consists of two symbols and is used to distinguish between different net-
works. This is needed when different technologies are used to build a bigger group or
network and the data that is exchanged between these devices should not leave the group,
i.e., should not be received from devices outside the network. If a device receives a CTC
message with a different network ID, the message will be discarded. One concrete exam-
ple would be synchronization of the clock of heterogeneous devices where the devices are
separated into different groups (networks) for measuring different values.

1Not used in the current implementation, reserved for future development of X-Burst

CHAPTER 3. CTC FOR OFF-THE-SHELF IOT DEVICES 35

Length Byte
The length byte is two symbols long and can be used to detect falsely attached data to a
CTC message. It could happen that the receiver still detects and decodes energy bursts
after the actual message was already received. Due to other transmissions, energy bursts
from other communications could be misinterpreted. With the included length byte, the
receiver knows exactly of how many bytes the original message consists and can truncate
the falsely attached noise from the received data.

Receiver Address
The receiver address specifies the receiver of a CTC message. Any other device receiving
the message will discard it. Hence, it is possible to communicate with a single device,
regardless of its technology. If no receiver address is specified, the message will be sent
as broadcast, i.e., to every device in range. For the receiver address, the 64-bit EUI IPv6
address of the device is used, which is represented by 16 symbols.

Transmitter Address
The transmitter address is used to inform the receiver of a CTC message about the sender
of the message. This allows a receiver to send back a response directly to the transmitter.
Therefore, a data exchange between two specific devices is possible. The address is also
needed to send back an acknowledgment to the transmitter if the acknowledge requested
bit was set in the header of the message. For the transmitter address, also the 64-bit EUI
IPv6 address of the device is used, which is represented by 16 symbols.

Data Payload
The payload can be of arbitrary size and contains the actual data.

Checksum
The checksum consists of two symbols and can be used to detect transmission errors of the
received data. It is calculated by simply adding up each byte of the payload modulo 255
(the checksum is only 1 byte, hence, only values up to 255 can be represented). The result
will then be used as checksum. If a receiver receives a message with a checksum attached,
it calculates the checksum of the payload by its own and compares the computed value
with the received one. If they do not match, the message will be discarded.

Chapter 4

Design Challenges

This chapter describes the challenges that need to be addressed when developing X-Burst.
The generation of energy bursts for both wireless technologies used in this thesis, i.e.,
ZigBee and BLE, are described in Section 4.1. How to determine the durations of energy
bursts in a reliable fashion is described in detail in Section 4.2. Section 4.3 describes the
aspects that have to be considered for a seamless integration of X-Burst into an existing
operating system.

4.1 Generation of Energy Bursts

In this section, the generation of precisely timed energy bursts using ZigBee and BLE is
described in more detail. As defined in Section 3.1.2, only standard compliant functions
can be used. Furthermore, different mappings from hex values to durations, i.e., one for
each technology, are unsuitable. Hence, a common mapping among all technologies has to
be found. Therefore, it is always possible for a receiver to decode a received CTC message,
independent of the technology used by the transmitter. The durations have to be chosen
in such a way that they can be generated and detected by each supported technology.

36

CHAPTER 4. DESIGN CHALLENGES 37

4.1.1 ZigBee

To generate the various energy bursts, while fulfilling the requirements defined in Section
3.1.2, only standard data packets of ZigBee are used. The structure of a ZigBee PHY
frame can be seen in Figure 4.1.

Preamble
SFD

(start of frame
delimiter)

Frame Length
(7 bits)

Reserved
(1 bit)

Data Payload
(PSDU)

PHY Protocol Data Unit (PPDU)

4 Bytes 1 Byte 1 Byte 127 Bytes

Synchronization Header PHY Header

Figure 4.1: Format of a ZigBee PHY frame.

Besides the variable payload, additional values are attached for each ZigBee packet.
First, the preamble and the start of frame delimiter (SFD) are sent, which are needed for
synchronization and detection of ZigBee packets. Then, the PHY header, including the
length of the entire frame is transmitted. At the end, a variable payload containing the
actual data is sent.
The different energy burst durations are generated by only changing the amount of bytes
in the payload of ZigBee’s PHY packets. The payload can be varied between 0 and 127
bytes. Since the synchronization and PHY header are fixed and always transmitted, the
minimum amount of data which has to be sent using standard ZigBee packets is 6 bytes.

ZigBee has a data rate of 250 kbit/s. Hence, the theoretical time for transmitting one bit
can be calculated as follows:

δZ =
1

250000
= 4 ∗ 10−6

Therefore, transmitting one bit of information takes 4 microseconds.

The different energy burst durations, by varying the payload in ZigBee’s PHY packets,
can be calculated as follows:

(6 + p) ∗ 8 ∗ δZ = d

where 6 is the minimum amount of bytes of overhead in a ZigBee PHY packet, p is the
payload in bytes, 8 is used to transform the bytes into bits, δZ is the time needed to
transmit one bit in microseconds and d is the total time needed to transmit the entire
packet, i.e., the duration of the generated energy burst, in microseconds.

CHAPTER 4. DESIGN CHALLENGES 38

Therefore, using δZ = 4 µs, the minimum and maximum achievable durations using
ZigBee’s standard PHY packets are:

min : (6 + 0) ∗ 8 ∗ 4 = 192 µs

max : (6 + 127) ∗ 8 ∗ 4 = 4256 µs

Hence, energy bursts with durations between 192 µs and 4256 µs can be generated.

Table 4.1 shows a possible mapping from hex values to energy burst durations and the
corresponding amount of payload bytes for ZigBee. This mapping achieves the highest
data rate by using only standard PHY packets of ZigBee, as the different durations are
represented by changing the payload of a packet by only one byte.
To be able to use this mapping, the receiver has to be able to distinguish between the
different durations properly, i.e., has to offer a high sampling rate of the RSSI of a channel.
In particular, a sampling rate of at least 15 µs is required to distinguish properly between
the durations shown in Table 4.1. Besides the sampling rate, the kind of how the RSSI
is measured is also an important point when defining the durations of X-Burst, which is
discussed in Section 4.2.

Hex value Energy burst duration Payload bytes

0x0 192 µs 0

0x1 224 µs 1

0x2 256 µs 2

0x3 288 µs 3

0x4 320 µs 4

0x5 352 µs 5

0x6 384 µs 6

0x7 416 µs 7

0x8 448 µs 8

0x9 480 µs 9

0xA 512 µs 10

0xB 544 µs 11

0xC 576 µs 12

0xD 608 µs 13

0xE 640 µs 14

0xF 672 µs 15

Table 4.1: Amount of payload bytes for generating energy bursts to achieve the best
possible throughput for ZigBee.

An alternative to the use of standard PHY packets, for generating the various energy
bursts, would be the use of specific test modes of ZigBee. Some radios, e.g., the TI CC2420
[17], offer the possibility to send unmodulated data packets for a specified amount of time.
Hence, the overhead of transmitting the synchronization and PHY header could be reduced
and a faster data rate could be achieved. Since not every radio offers such test modes, the
standard PHY packets of ZigBee were used for X-Burst.

CHAPTER 4. DESIGN CHALLENGES 39

4.1.2 Bluetooth Low Energy

Generating the various energy bursts, while fulfilling the requirements defined in Section
3.1.2, is a little bit more difficult when BLE is used. BLE has two different modes of com-
munication: (i) a connectionless communication for broadcasting and advertising (using
advertisement packets) and (ii) a connection-oriented one, for data exchange between two
devices, using data packets. Both types are using the same link layer packet format, where
only the PDU is slightly different. The format of a BLE link layer packet can be seen in
Figure 4.2.

Preamble
Access

Address
CRC

Data Payload
(PDU)

1 Byte 4 Bytes 2 to 39 Bytes 3 Bytes

Figure 4.2: Format of BLE link layer packets.

Besides the variable payload, additional values are attached for each BLE data packet.
The preamble is transmitted first, which is used for synchronization and detection of BLE
packets. Next, the access address is sent, which is different for each link layer connection
between two devices. Then, the variable payload, containing the actual data, is transmit-
ted. At the end, a 24-bit CRC value for detecting transmission errors is sent.
The different energy burst durations are generated by only changing the amount of bytes
in the payload of BLE’s link layer packets. The payload can be varied between 2 and
39 bytes, i.e., a PDU header is always included within the payload. Because of the fixed
preamble, access address, CRC value and the two payload bytes, the minimum amount of
data that has to be sent using BLE link layer packets is 10 bytes.

BLE has a data rate of 1 Mbit/s. Hence, the theoretical time for transmitting one bit can
be calculated as follows:

δBLE =
1

1000000
= 1 ∗ 10−6

Therefore, transmitting one bit of information takes 1 microsecond.

The different energy burst durations, by varying the payload of BLE’s link layer packets,
can be calculated as follows:

(8 + p) ∗ 8 ∗ δBLE = d

where 8 is the minimal amount of bytes of overhead in a BLE link layer packet (ex-
cluding the two payload bytes), p is the payload in bytes, 8 is used to transform the bytes
into bits, δBLE is the time needed to transmit one bit in microseconds and d is the total
time needed to transmit the entire packet, i.e., the duration of the generated energy burst,
in microseconds.

CHAPTER 4. DESIGN CHALLENGES 40

Therefore, using δBLE = 1 µs, the minimum and maximum achievable durations using
standard BLE link layer packets are:

min : (8 + 2) ∗ 8 ∗ 1 = 80 µs

max : (8 + 39) ∗ 8 ∗ 1 = 376 µs

Hence, energy bursts with durations between 80 µs and 376 µs can be generated.

This is a major problem, as the fastest possible mapping for ZigBee requires energy
burst durations up to 672 µs. Another problem is, that, according to the BLE specifica-
tion, data packets can only be sent during an already established connection between two
BLE devices. Thus, to use CTC, while fulfilling the requirements defined in Section 3.1.2,
only advertising packets can be used. Since those packets can only be sent on specific
advertisement channels, the CTC scheme will be very restricted. Additionally, also the
robustness of the CTC will be lower since those channels are heavily used by other BLE
devices.
Because of the the restriction to the three advertisement channels and the fact that only
very short energy bursts can be generated, a communication with ZigBee devices using
standard BLE link layer packets is not feasible.

To solve the mentioned issues, BLE test packets are used instead of link layer packets.
Since those packets are specified in the BLE specification [18], every standard-compliant
BLE device will be able to send those packets. The format of a BLE test packet can be
seen in Figure 4.3.

Preamble Sync Word CRC
Data Payload

(PDU)

1 Byte 4 Bytes 37 Bytes 3 Bytes

PDU Header PDU Length

1 Byte 1 Byte

Figure 4.3: Format of BLE test packets.

The format is not much different to BLE link layer packets. It also consists of a
preamble and a CRC value. Instead of an access address, a synchronization word is sent.
Additionally, the PDU header is separated from the payload and a PDU length is sent.
Nevertheless, the variable amount of payload bytes is also restricted to 37 bytes. Further-
more, the minimum amount of bytes that can be sent using BLE test packets is the same
as for BLE link layer packets, i.e., 10 bytes. Therefore, the same minimum and maximum
energy burst durations, can be achieved. The big advantage of BLE test packets is, that
according to the BLE specification, the test packets are not restricted to specific chan-
nels. Hence, test packets can be sent on any BLE channel. Additionally, it is possible to
send multiple test packets consecutively without any delay. Thus, any durations can be
achieved, starting from a minimum of 80 microseconds. Some radios, e.g., the TI CC2650,
support BLE test packets with a payload up to 255 bytes. Hence, energy bursts with a
duration up to 2120 µs can be generated by only sending one BLE test packet.

CHAPTER 4. DESIGN CHALLENGES 41

The following table shows the mapping from hex values to energy burst durations and the
corresponding amount of payload bytes for BLE. This mapping can be used to communi-
cate with ZigBee devices that are using the mapping from Table 4.1. The only requirement
is to have devices that can distinguish between the energy bursts properly, i.e., measuring
the RSSI at least every 15 µs.

Hex value Energy burst duration Payload bytes

0x0 192 µs 1*14 (14)

0x1 224 µs 1*18 (18)

0x2 256 µs 1*22 (22)

0x3 288 µs 1*26 (26)

0x4 320 µs 1*30 (30)

0x5 352 µs 1*34 (34)

0x6 384 µs 2*19 (38)

0x7 416 µs 2*21 (42)

0x8 448 µs 2*23 (46)

0x9 480 µs 2*25 (50)

0xA 512 µs 2*27 (54)

0xB 544 µs 2*29 (58)

0xC 576 µs 2*31 (62)

0xD 608 µs 2*33 (66)

0xE 640 µs 2*35 (70)

0xF 672 µs 2*37 (74)

Table 4.2: Amount of payload bytes for generating energy bursts using BLE that are
compatible with the ZigBee mapping shown in Table 4.1.

To generate the needed durations, more than one test packet has to be sent. In Table
4.2, the amount of needed test packets and their length is shown, e.g., 2*37 means that 2
test packets, with 37 bytes each, has to be sent successively. The values in brackets are
the total amount of bytes that have to be sent to generate the corresponding duration of
an energy burst. Since some radios support more payload bytes, these values can be used
to send only one larger test packet.

For this thesis, BLE in the version 4.1 was used. Since BLE version 5.0 is now getting
more widespread, using this version would simplify the implementation of X-Burst. In
the new version, the maximum amount of payload bytes in both the link layer and the
test packets is increased to 255 bytes. Therefore, energy bursts with durations between 80
and 2120 microseconds can be generated by only sending one packet. Another advantage
is the extended advertising, which uses the secondary advertising channels. This allows
advertising on any channel, i.e., also on data channels. Hence, the energy burst genera-
tion can be done by only using one advertising packet, which is not restricted to the three
advertisement channels.

CHAPTER 4. DESIGN CHALLENGES 42

4.2 Measuring the Duration of Energy Bursts

In this section, the detection of energy bursts and especially the correct measurement of
their durations are discussed. Detection of an energy burst is easy, as it can simple be
detected by checking if the RSSI is above a specified threshold. The challenging part is
to determine the exact duration of an energy burst. Towards this goal, we distinguish
between an instantaneous and a non-instantaneous measurement of the received signal
strength of a specified channel.

4.2.1 Instantaneous RSSI Measurement

In an instantaneous RSSI measurement, the obtained value actually represents the current
received signal strength in the specified channel, as shown in Figure 4.4. The top figure
shows the time in which the packet is actually sent on air. The bottom figure shows that
the transition between -107 dBm and -45 dBm happens instantaneously, i.e., within two
consecutive RSSI measurements.

0

1

Pa
ck

et
 o

n
ai

r packet

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700
Time [s]

110
105
100
95
90
85
80
75
70
65
60
55
50
45
40

RS
SI

 [d
Bm

]

rssi

Figure 4.4: Instantaneous measurement of the received signal strength.

As can be seen in Figure 4.4, it takes indeed only one measurement to determine the
signal strength of the currently sent packet. Hence, measuring the duration is as simple
as the detection of a burst. Defining a threshold for the RSSI is enough to measure the
duration of an energy burst. If the threshold is exceeded, the measurement is started and
when the indicator falls back below the threshold, the measurement is stopped.
To obtain Figure 4.4, a TI CC2650 LaunchPad in BLE mode was used, which frequently
measures the received signal strength of the specified channel while a packet was sent. In

CHAPTER 4. DESIGN CHALLENGES 43

particular, the values were measured at a rate of 45 kHz, i.e., every 22 µs. If the threshold
is chosen to be in the gray area, the measurement of the duration will be sufficient. The
measurement will be triggered by the first value above the threshold, i.e., by the value at
154 µs. After the measurement is started, it will be stopped by the first value below the
threshold, i.e., by the value at 616 µs. Since the detection of the beginning and the end of
an energy burst are both delayed by one measurement (in the case of the TI CC2650 one
measurement takes about 22 µs), the measured duration corresponds to the real duration
of the detected energy burst. Hence, the duration of an energy burst can be determined
by only specifying a threshold for the RSSI when an instantaneous measurement is used.

4.2.2 Non-Instantaneous RSSI Measurement

Certain radios measure the RSSI as an average over the x bit symbols [17]. This is the
case for the TI CC2420 radio [17] and for the TI CC2650 in IEEE mode, where the RSSI
returned by the radio actually represents the average of the last seven symbols as can be
seen in Figure 4.5: it takes a certain amount of time (the gray areas in Figure 4.5) to
reach -50 dBm and to go back to -100 dBm.

0

1

Pa
ck

et
 o

n
ai

r packet

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
Time [s]

110
105
100
95
90
85
80
75
70
65
60
55
50
45

RS
SI

 [d
Bm

] duration1

duration2

rssi

Figure 4.5: Non-instantaneous measurement of the received signal strength.

Using the same approach as for an instantaneous measurement of the received signal
strength, i.e., specifying a threshold for the RSSI to determine the real duration of an
energy burst, would lead to a major problem when making use of non-instantaneous RSSI
measurements. The measured duration of an energy burst strongly depends on the used
threshold and the received signal strength of the detected energy burst. In particular, if the

CHAPTER 4. DESIGN CHALLENGES 44

threshold is specified too high, the measured duration will be always too short compared
to the real duration of the energy burst, e.g., duration1 in Figure 4.5. If the threshold
is specified too low, the measured duration will be always too long, e.g., duration2 in
Figure 4.5. As one measurement takes about 22 µs, the measured duration will be about
154 µs too long or too short in the worst case. Hence, the duration cannot be measured
accurately by simply specifying a threshold for the RSSI.

To solve this problem, the energy burst durations could be defined with a separation
of at least 308 µs between each other. Additionally, every duration has to be accepted as
a valid duration in the range of ± 154 µs by a receiver (by setting ε = 154). However, this
approach would significantly decrease the possible throughput of X-Burst.
Another approach would be to measure the real duration of an energy burst with a suf-
ficient granularity. The rise and fall time, i.e., the areas marked in gray in Figure 4.5,
of the RSSI have always the same length if the detected energy burst has a duration of
at least 154 µs, i.e., seven measurements. Therefore, the measurements of the RSSI over
time will be symmetrical which can bee seen in Figure 4.6. Using this characteristic, the
real duration of an energy burst can be determined with a sufficient granularity by mea-
suring multiple durations of the same burst. In particular, multiple thresholds are defined
and a duration is measured for each threshold. The average of the measured durations
corresponds to the real duration of a detected energy burst.

0

1

Pa
ck

et
 o

n
ai

r

real duration

packet

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800
Time [s]

110
105
100
95
90
85
80
75
70
65
60
55
50
45

RS
SI

 [d
Bm

]

average duration

rssi

Figure 4.6: Determining the duration of an energy burst when a non-instantaneous mea-
surement of the received signal strength is used.

CHAPTER 4. DESIGN CHALLENGES 45

As can be seen in Figure 4.6, the real duration of an energy burst is represented by
the average duration of a detected energy burst. Hence, multiple thresholds are speci-
fied, e.g., every 5 dBm within the gray area shown in Figure 4.6. For each threshold, a
corresponding measurement is started when the threshold is exceeded and stopped when
the indicator falls back below the threshold. Therefore, multiple durations for one energy
burst are measured and the average duration can be calculated. With this approach, the
real duration of an energy burst can be determined sufficiently enough without affecting
the throughput of X-Burst. The only requirement is that the shortest energy burst dura-
tion is at least longer than 154 µs, i.e., seven measurements.

4.3 Integration into an Existing Operating System

In this section, the aspects that have to be considered for a seamless integration into an ex-
isting operating system are described in detail. Furthermore, Radio Duty Cycling (RDC),
a mechanism usually used by IoT devices for saving energy, is introduced and explained
briefly. Additionally, the changes in the integration of X-Burst when a RDC mechanism
is used or not are discussed in Section 4.3.1 and Section 4.3.2, respectively. We then show
in Section 4.3.3 that, for a seamless integration, some specific configurations are needed.

As discussed in Section 3.1.2, the normal communication flow of the operating system
should not be violated. Without a proper management between the CTC-related opera-
tions and the usual communications of the operating system, i.e., data exchange among
other devices, the radio accesses of those two would be arbitrary. As a consequence, both
will interfere each other and in fact, communications will not work properly anymore.
To address this problem, a smart management that is responsible for scheduling the ac-
cesses of the radio between the operating system and X-Burst has to be developed in an
unobtrusive way. Ideally, the behavior of the operating system with respect to RDC has
to be learned and X-Burst has to adapt to it accordingly.
Since the radio consumes typically the most energy of an IoT device, RDC is usually used
for saving energy and thus, increasing the lifetime of a device. RDC is a mechanism which
allows devices to turn off the radio as much as possible, while still being able to receive
and transmit messages. Figure 4.7 shows the principle of duty cycling.

. . .

TimeComplete Cycle

OFF OFFON ONON

P
o

w
e

r

Figure 4.7: Principle of RDC.

CHAPTER 4. DESIGN CHALLENGES 46

As can be seen in Figure 4.7, a duty cycle of 25 % is created, meaning, only a component,
i.e., the radio, or even the whole device, is turned on for only 25 % of the time. During
the remaining 75 % of the time the component or even the whole device is turned off for
saving energy.

For a seamless integration, X-Burst has to know whether RDC is used or not. De-
pending on that, further informations are needed, e.g., the duration of one cycle. In the
following, the differences of integrating X-Burst in an operating system when RDC is used
and when it is not used are explained.

4.3.1 With Radio Duty Cycling

When RDC is used, X-Burst has do adapt to it, i.e., it has to learn the used radio duty cy-
cle and access the radio only during the off-phases i.e., during the time in which the radio
would be normally turned off or in sleep mode. Thus, it is guaranteed that no interference
between the usual transmissions and the cross-technology related ones occurs. Further-
more, the normal communication flow will not be violated, as the CTC operations are
only running in the off-phases. A schematic representation of the adaptation of X-Burst
to an operating system that is using RDC can be seen in Figure 4.8. The OS time slots
in the following figures are representing the usual communications of the operating system.

OSOS

CTCOS OS OSCTC CTC

OS . . .

. . .

Time

Time

R
a

d
io

 A
cc

es
s

R
a

d
io

 A
cc

es
s

ctc window

off-phase

Figure 4.8: Adaptation of X-Burst to an operating system which is using RDC.

As can be seen in Figure 4.8, specific time slots for the CTC related operations are
defined and only assigned within the off-phases of the duty cycle. To guarantee an unob-
trusive integration, the maximum duration of a CTC time slot has to be shorter than the

CHAPTER 4. DESIGN CHALLENGES 47

duration of the off-phase.
The only drawback of this approach is that it will increase the energy consumption of
a device since the radio is turned on for a longer duration. To minimize the increase of
the energy consumption, the CTC time slots has to be kept as short as possible and the
time between two slots has to be maximized. Hence, a configuration of the adaptation
is needed. In particular, by configuring the the ctc window parameter, the duration of a
CTC time slot can be defined. The occurrence, i.e., the period, of the time slots can be
configured by the policy which is explained in more detail in Section 4.3.3.

4.3.2 Without Radio Duty Cycling

In the case that RDC is not used, a schedule of the radio accesses between the operating
system and the cross-technology communication has to be established. Therefore, dif-
ferent time slots for accessing the radio are defined. A schematic representation of the
segmentation of the radio accesses can be seen in Figure 4.9.

CTC OS CTC OS CTC

Operating System (OS)

OS

. . .

. . .

Time

Time

R
a

d
io

 A
cc

es
s

R
a

d
io

 A
cc

es
s

ctc window

ctc interval ctc interval

Figure 4.9: Adaptation of X-Burst to an operating system without RDC.

As can be seen in Figure 4.9, the usual communications and the CTC ones have well
defined time slots to access the radio. Hence, interference between those are no longer
possible.
Since only CTC-related operations can access the radio during a time slot assigned to
CTC, the normal communication flow will be violated, as no other transmissions can be
done in this time. Therefore, the CTC time slots has to be kept as short as possible and
the time between two CTC slots has to be maximized. Thus, the segmentation of the

CHAPTER 4. DESIGN CHALLENGES 48

radio accesses has to be configurable. In particular, the ctc window defines the duration
of the CTC time slots, and the ctc interval defines the occurrence of the CTC assigned
time slots as it can be seen in Figure 4.9, and as detailed in Section 4.3.3.

4.3.3 Configuration

The required configuration options for a seamless and energy efficient integration of X-
Burst into an existing operating system are shown below.

Enable / Disable CTC
To be very flexible and have full control over the impact on the operating system and the
power consumption of a device, it is very important to be able to turn X-Burst on and
off at any time. Hence, using these primitives, X-Burst should be turned off when not
needed to save energy, and back on only when strictly necessary.

CTC Window
The ctc window is needed to define the duration of a CTC time slot (as can be seen in
Figure 4.9 and 4.8). During this time, only CTC-related operations, such as sending a
CTC message or measuring the RSSI of a channel to look after other CTC messages, can
access the radio. Hence, a proper configuration of the ctc window is needed for a good
and energy-efficient integration.

CTC Interval
When no RDC is used, the ctc interval defines the occurrence, i.e., the period, of the CTC
related time slots. The purpose of the ctc interval can also be seen in Figure 4.9.

Policy
The policy is equivalent to the ctc interval, but is used for operating systems that use
RDC. Hence, it also defines the occurrence of the CTC related time slots. Due to the
adaptation of X-Burst to an existing duty cycle, a direct definition as with the ctc interval
is not feasible. Instead, the policy defines which off-phases are really used. For a better
understanding, an example of the policy is shown in Figure 4.10.

CTCOS OS OSCTC CTC . . .

Time

R
a

d
io

 A
cc

es
s

CTCOS OS OSCTC CTC OS CTC

Figure 4.10: Adaptation of X-Burst with a policy of three.

CHAPTER 4. DESIGN CHALLENGES 49

In the example above, the policy was set to three, i.e., only each third off-phase is
really used for sending or receiving CTC messages using X-Burst. Hence, the higher the
policy, the longer will be the time between two CTC time slots.

Priority
When sending or receiving a bigger amount of CTC data, the priority needs to be changed.
Usually, X-Burst adapts to the RDC mechanism used by the OS and will thus never have
more time available as the one provided by the off-phase of the duty cycle. Hence, X-Burst
has the lower priority by default. To be more flexible, however, the priority can be set
to high: this will allow X-Burst to exceed the defined ctc window or even the off-phase
of the duty cycle, so that larger CTC messages can be sent and more time can be used
for scanning incoming CTC messages. For a better understanding, an example of how the
priority parameter works is shown in Figure 4.11. It should be mentioned that this will
violate the normal communication flow of the operating system.

CTCOS OS . . .

Time

R
a

d
io

 A
cc

es
s

CTCOS OS CTC

extended

CTC OS

ctc window

Figure 4.11: Changing the priority of X-Burst.

In the example above, the priority of X-Burst was set to high before the second time
slot. Therefore, it was possible to exceed the assigned time slot and be able to send or
receive a bigger amount of data. As a consequence, the time slot for the operating system
could not be used. Afterwards the priority of X-Burst was set back to low.

The priority of X-Burst can also be changed if no RDC is used. The principle is
exactly the same as the one in which the priority is set to high: X-Burst will exceed the
assigned CTC time slot and will hence be able to send and receive larger messages.

Chapter 5

Integration into Contiki

This chapter describes the integration into the open source operating system Contiki. A
better overview and explanation about the operating system is given in Section 5.1. The
seamless integration into Contiki’s network stack and the differences in the implementation
when using ZigBee or BLE radios are shown in Section 5.2. For the seamless integration
and for managing the radio accesses between Contiki and X-Burst, a special radio driver
was developed. Latter is described in detail in Section 5.3. Furthermore, this sections
details on the creation of an own schedule when no RDC is used, the adaptation to the
ContikiMAC RDC mechanism [19] and to BLE connectionless and connection-oriented
communications are shown.

5.1 The Contiki Operating System

Contiki [20] is an open source operating system for the Internet of Things. It is designed
for low-cost, low-power devices with very limited hardware resources. The OS is imple-
mented in the C language and is available for a wide range of different platforms. The
three primary ones are the TI CC2538, the TI Sensortag and the TI CC2650.
Due to its design, Contiki is highly memory efficient and thus it is even suitable for very
constrained devices with only a few kilobytes of memory. It runs on systems with less
than 10KB of Random Access Memory (RAM) and 30KB of Read Only Memory (ROM).
Although Contiki is a very lightweight OS, it provides a full Internet Protocol (IP) network
stack with support for standard IP protocols such as the User Datagram Protocol (UDP),
the Transmission Control Protocol (TCP) and the Hypertext Transfer Protocol (HTTP).
The IPv6 stack is fully certified under the IPv6 Ready Logo program. Contiki also provides
low-power standards for IPv6 networking such as IPv6 over Low power Wireless Personal
Area Networks (6LoWPAN), Routing Protocol for Low power and Lossy Networks (RPL)
and the Constrained Application Protocol (CoAP).
Besides the IP network stack, Contiki additionally provides a tailored wireless network
stack called Rime that only supports simple operations such as sending data (unicast and
broadcast) or network flooding.
To let developers get a better overview about the power consumption of a device, Contiki
has a built-in software-based power profiling tool called Energest. Hence, it is possible to

50

CHAPTER 5. INTEGRATION INTO CONTIKI 51

get a good estimation about the current power consumption of the system, without any
hardware modifications,. Furthermore, it is also possible to get more insights in which
portion of code or hardware the power is spent.

One of the key features of an operating system for networked embedded systems is to
provide concurrency. For memory-constrained devices, operating systems are rather event-
driven than multi-threaded because of the better memory efficiency (in multi-threaded
systems every thread has its own stack which results in a very high memory consump-
tion). Event-driven systems do not need any looking mechanisms since it is not possible to
run multiple event-handler simultaneously. Unfortunately, it is not always easy to develop
an application in an event-driven way.
To combine the advantages of an event-driven system with a multi-threaded system, Con-
tiki uses a mechanism called protothreads. Thereby, an event-driven kernel is combined
with preemptive threads to provide a sequential flow of control.

5.1.1 Network Stack

The network stack of Contiki consists of four layers: the radio layer, the RDC layer, the
Media Access Control (MAC) layer and the network layer, as shown in Figure 5.1.

Radio

Duty Cycling

MAC

Adaptation

Network, Routing

Transport

Application

Network Layer

MAC Layer

RDC Layer

Radio Layer

Figure 5.1: The Contiki network stack.

The radio layer is the lowest layer in Contiki’s network stack. In this layer, the hard-
ware dependent functionalities, such as sending and receiving data, for the corresponding
radio are implemented.
The RDC layer is responsible for the duty cycling of the radio. It allows energy savings
by keeping the radio off for most of the time. Contiki has four duty cycling mechanisms:
ContikiMAC, X-MAC, Low-Power Probing (LPP) and nullRDC.
The MAC layer provides addressing and channel access control mechanism to allow a
communication with neighbor devices or networks. In Contiki, the access control mecha-
nism CSMA/CA is used.

CHAPTER 5. INTEGRATION INTO CONTIKI 52

The network layer is responsible for data adaptation (IPv6 and UDP header compres-
sion, data fragmentation), provides routing & network functionality as well as transport
logic.

To fulfill the various requirements of different applications, Contiki’s network stack
can be easily configured individually depending on the application. Therefore, a special
configuration file called project-conf.h exists for each application in which the network
stack can be configured. This file is usually located in the root directory of an application.

5.1.2 BLEach

BLEach [21] is the first full fledged IPv6-over-BLE stack that was developed for the Con-
tiki OS. Compared to all other available BLE stacks, BLEach is open source and allows
modification of the BLE radio driver and the link-layer implementation. Due to its flexi-
bility in terms of development, BLEach was used as BLE stack for this thesis.

Contiki was originally designed for IEEE 802.15.4. compatible devices. Therefore, also
the network stack and especially the function of each layer are tailored to the behavior
of IEEE 802.15.4. Nevertheless, BLEach was designed to work with the existing network
stack without any modifications to Contiki. Only the usual behavior of each layer had to
be changed to be able to use BLE. Figure 5.2 shows the architecture of BLEach and the
corresponding layers in Contiki’s IPv6-over-IEEE 802.15.4 stack.

Application
(websocket, http-socket, coap)

Transport
(udp-socket, tcp-socket)

Network
IPv6 support, neighbor discovery, address autoconfiguration

(uip)

MAC layer
Collision avoidance, back-off strategy,

retransmission of packets
(nullmac, csma)

RDC layer
Explicit radio duty cycling and

wake-up of the transceiver
(nullrdc, contikimac, xmac)

Radio layer
Direct access to transceiver and
feedback on issued commands

(cc2420, cc1020, cc2650)

L2CAP layer
Flow control, QoS support,

fragmentation of IPv6 packets
(ble-l2cap, ble-l2cap-qos)

Parametrization layer
Indirect duty cycling, connection mode

 selection and parametrization
(ble-null-par, ble-adapt-par)

BLE link and PHY layer
Decoupled access to the transceiver,

retransmission of packets, duty cycling
(ble-cc2650, ble-cc2650-ext)

IPv6 Compression layer
IPv6 header compression

(6lowble)

Adaptation layer
IPv6 header compression,

fragmentation of IPv6 packets
(sicslowpan)

Contiki s

IPv6 over IEEE 802.15.4

BLEach
IPv6 over BLE

Figure 5.2: Architecture of BLEach and the corresponding layers in Contiki’s IPv6-over-
IEEE 802.15.4 stack. Adapted from [21].

CHAPTER 5. INTEGRATION INTO CONTIKI 53

5.2 Seamless Integration into Contiki’s Network Stack

Integrating X-Burst into Contiki without modifying the structure of Contiki’s network
stack or changing existing implementations, while fulfilling the requirements from Section
3.1.2, was not an easy task. In the following, different approaches and their corresponding
problems are explained.

The first approach was to integrate the scheme completely in the radio layer. This
would require a lot of reprogramming and restructuring of an exiting radio implementation.
Therefore, each implementation of supported radios has to be completely reprogrammed.
Hence, porting the scheme to other hardware platforms would be very difficult and time
consuming. Moreover, requirements regarding the portability and the integration into an
operating system, as discussed in Section 3.1.2, would be violated.

The second approach was to implement a complete new stack besides the original one
of Contiki. This would be a proper solution, as the CTC stack would have several layers
responsible for different functionality. Additionally, no modifications of exiting implemen-
tations would be needed. Nevertheless, this approach has a major drawback. Having two
simultaneously running stacks that access the same radio requires proper coordination.
Without an entity manage the access to the radio, both stacks would interfere each other
and in fact, nothing would work properly anymore. Hence, a coordination has to be imple-
mented. Implementing it into the existing radio layer would result in the same problem as
with the first approach. A proper solution would be to add an additional layer above the
radio layer, which is shared among both stacks. The new layer would be responsible for
managing the accesses of the radio for both stacks. However, this approach would violate
the requirements since Contiki’s network stack has to be modified.

The third and final approach was to create a virtual radio. Instead of including the
actual radio driver, a virtual one is included. This driver is responsible for managing the
coexistence of the usual communications and the CTC related ones, i.e., it schedules the
accesses of the radio in an unobtrusive way between X-Burst and the operating system.
A semantic representation of the final integration can be seen in Figure 5.3.

RDC Layer

MAC Layer

Network Layer

e
ven

ts

ge
t

&
 s

e
t

fu
n

ct
io

n
s

CTC HALRadio Layer Virtual Radio

Application

Figure 5.3: Seamless integration of X-Burst into Contiki’s network stack.

CHAPTER 5. INTEGRATION INTO CONTIKI 54

As shown in Figure 5.3, the new virtual radio was included instead of the usual radio
driver. It contains all the necessary functionality for X-Burst, except the hardware de-
pendent implementations. Therefore, a separate layer, the Hardware Abstraction Layer
(HAL), was created to hide the hardware dependent implementation details from the
virtual radio. Hence, every supported hardware platform has only to provide a hard-
ware specific implementation of the CTC-HAL. Thus, the virtual radio implementation
is hardware independent and stays the same for each supported hardware platform. This
increases the portability since only the CTC-HAL has do be implemented.
The already existing get value(), set value() and set object() functions of the network
stack are used for changing the configuration of the virtual radio from the application
at runtime. Hence, no modifications of the operating system are needed. To notify the
application about a received CTC message, the virtual radio will post an event which can
be detected by the application. More information about the virtual radio and its working
principle can be found in Section 5.3.

5.2.1 ZigBee

The following figure shows the integration of X-Burst when ZigBee is used. Furthermore,
the configuration of each layer of the stack can be seen. In particular, the name of the
corresponding file that is used for each layer is shown. As radio, the TI CC2650 was used.

contikimac / nullrdc

csma

sicslowpan

e
ven

ts

ge
t

&
 s

e
t

fu
n

ct
io

n
s

ctc-ieee-hal-cc26xx ieee-mode ctc-mode

application

Figure 5.4: Seamless integration of X-Burst into Contiki’s network stack when ZigBee is
used.

CHAPTER 5. INTEGRATION INTO CONTIKI 55

5.2.2 Bluetooth Low Energy

The Integration of X-Burst when using a BLE radio is a bit different than the approach
followed for ZigBee nodes as shown in Figure 5.5. Furthermore, the configuration of each
layer of the stack can be seen. In particular, the name of the corresponding file that is
used for each layer is shown. As radio, the TI CC2650 was used.

ble-null-par

ble-l2cap

sicslowpan

e
ven

ts

ge
t

&
 s

e
t

fu
n

ct
io

n
s

ctc-ble-hal-cc26xx

application

ble-mode ctc-mode

duty cycle

ble-hal-cc26xx

Figure 5.5: Seamless integration of X-Burst into Contiki’s network stack when BLE is
used.

The implementation of the BLE stack uses also a hardware abstraction layer, the BLE-
HAL. Hence, the BLE radio (ble-mode in Figure 5.5) is hardware independent as all the
hardware specific code is implemented in the BLE-HAL (ble-hal-cc26xx in Figure 5.5).
Another difference, compared to the integration with ZigBee, is that the radio duty cy-
cling is done in the BLE radio layer. Usually, the duty cycling is done in the RDC layer
of Contiki’s network stack. Since the RDC layer is above the radio layer, the virtual radio
knows when the radio is turned on and when not. This information is needed to guarantee
a proper management between X-Burst and the operating system.
Since the BLE radio layer is below the virtual radio, it does not get any information about
the state of the radio, i.e., if it is turned on or not. To solve this problem, the BLE-HAL
informs the virtual radio about every change of the state of the radio. This is achieved
by using the already existing set value() function of the network stack, which sets specific
values of the virtual radio. Hence, to use X-Burst with BLE, minimal changes of the
hardware abstraction layer of BLE are needed.

CHAPTER 5. INTEGRATION INTO CONTIKI 56

5.3 The Contiki CTC Radio Driver

In this section, the working principle and implementation of the virtual radio are described.
Section 5.3.1 describes the structure of the implementation. Furthermore, the content and
requirements for implementing each file are discussed and their integration into Contiki’s
file structure is shown. In Section 5.3.2, the configuration of the virtual radio is explained
in detail. The adaptation of X-Burst to different radio duty cycles is explained in Section
5.3.3. At the end, in Section 5.3.4, the actual implementation of the virtual radio is shown
in detail. Moreover, how to receive and transmit CTC messages is explained in detail.

5.3.1 File Structure and Location Within Contiki

The implementation of the virtual radio is divided into different files, so that a better
portability can be achieved. Therefore, all hardware specific implementations are shifted
to a separate file which represents the CTC-HAL implementation of a specific hardware
platform. In the following, all files that are needed for the CTC scheme are shown and
their content is explained. Additionally, the integration into Contiki’s file structure is
shown.

Virtual Radio

For a seamless integration of X-Burst, a management of the accesses of the radio between
the OS and X-Burst is needed. As defined in Section 3.1.2, the operating system must
not be modified, i.e., also the structure of Contiki’s network stack can not be altered.
To integrate X-Burst, while fulfilling all the requirements, a new radio driver has to be
developed for Contiki. In particular, a virtual radio was created. The virtual radio is
actually not an implementation of a real radio: instead, this novel radio driver is managing
the coexistence between the transmissions of the operating system and of X-Burst, i.e., it
schedules the accesses of the radio in an unobtrusive way. To be able to include the virtual
radio instead of the usual radio implementation, it has to provide a specific interface for
the upper layers of Contiki’s network stack. The interface, defined in the radio.h file,
specifies 14 different functions that have to be provided by the virtual radio:

• init
Initializes the radio.

• prepare
Prepares the radio with a packet to be sent.

• transmit
Sends the packet that has previously been prepared.

• send
Prepares and transmits a packet.

• read
Reads a received packet into a buffer.

CHAPTER 5. INTEGRATION INTO CONTIKI 57

• channel clear
Performs a CCA to find out if there is activity in the channel.

• receiving packet
Checks if the radio driver is currently receiving a packet.

• pending packet
Checks if the radio driver has just received a packet.

• on
Turns the radio on.

• off
Turns the radio off.

• get value
Gets a radio parameter value.

• set value
Sets a radio parameter value.

• get object
Gets a radio parameter object.

• set object
Sets a radio parameter object.

Most of the functions above will only forward the request to the actual radio driver.
Nevertheless, implementing those functions within the virtual radio allows its inclusion
instead of the actual radio driver. Hence, X-Burst can be used together with Contiki in a
seamless way.

The implementation of the virtual radio is divided into two parts. The actual imple-
mentation is done in the ctc-mode.c file and all needed definitions are implemented in the
ctc.h file. Both files are stored in a new folder (ctc) in the core directory of Contiki. The
full path to the implementation of the virtual radio is: Contiki\core\ctc\.

CTC-HAL

As already mentioned in Section 5.2, a new layer, the CTC hardware abstraction layer, was
introduced to include contains all the hardware-specific implementations that are needed
for the cross-technology communication. Therefore, supporting different hardware plat-
forms is simplified since each supported device has only to provide a hardware-specific
implementation of the CTC-HAL. The hardware abstraction layer is not a separate layer
in Contiki’s network stack, but is rather used by the virtual radio to communicate with
the radio of the used hardware platform.

CHAPTER 5. INTEGRATION INTO CONTIKI 58

Each CTC-HAL implementation has to provide standardized functions in order to
supply the virtual radio with the required hardware-specific implementations and enable
cross-technology communication. The minimum functions that have to be provided are:

• name
The name of the CTC-HAL implementation.

• on
Turns the radio on.

• off
Turns the radio off.

• radio accessible
Checks if the radio is currently in use. Since it is not possible that two processes run
simultaneously in Contiki, the only possibility is that the radio is currently sending
an automatic transmission of an acknowledgment frame. In the case that RDC is
used, this check is not needed because X-Burst accesses the radio only during the
usual off-phases of the radio.

• set channel
Sets the channel to the one used for transmitting and receiving CTC messages.

• restore channel
Sets the channel back to the one used for the usual communications of the operating
system.

• prepare scanning
In the case that the radio has to be prepared to read the current RSSI of a channel.

• get rssi
Returns the current RSSI of the configured channel.

• send byte
Transmits one byte via CTC.

A CTC-HAL implementation of a specific hardware platform consists of two files: the
c file, which contains the actual implementation, and a corresponding header file used for
definitions, i.e., the amount of payload bytes needed for generating the required energy
bursts. Within the Contiki file system, the implementation of the CTC-HAL has to be
included in the corresponding directory of the used hardware.

Two versions of the CTC-HAL for the TI CC2650 Launchpad were implemented, i.e.,
one for ZigBee (ctc-ieee-hal-cc26xx.c and ctc-ieee-hal-cc26xx.h) and one for BLE (ctc-ble-
hal-cc26xx.c and ctc-ble-hal-cc26xx.h). The files are stored in a new folder (ctc-hal) in
the cc26xx-cc13xx directory. The full path to the CTC-HAL implementations of the TI
CC2650 Launchpad is: Contiki\cpu\cc26xx-cc13xx\rf-core\ctc-hal\.

CHAPTER 5. INTEGRATION INTO CONTIKI 59

NullCTC

In the case of including the virtual radio without defining a CTC-HAL implementation, an
empty implementation, called nullCTC, will be included automatically. Hence, the pro-
gram will compile and the non-CTC related part will still work. NullCTC only provides a
framework of all required functions, but apart from that it will not do anything. It can be
used as a template for new implementations or simply when a CTC-HAL implementation
is not needed, e.g., for testing purposes.
The implementation is located in the same directory as the one of the virtual radio:
Contiki\core\ctc\.

Implemented Files and Location within Contiki’s File System

Table 5.1 gives an overview about all files that were created for the implementation of
X-Burst. Furthermore, the directory within Contiki’s file structure of each file is shown
and a short description about the content of each file is given.

File Directory Description

ctc.h Contiki\core\ctc\ General defini-
tions

ctc-mode.c Contiki\core\ctc\ Virtual radio
implementation

nullctc.c Contiki\core\ctc\ CTC-HAL tem-
plate

nullctc.h Contiki\core\ctc\ CTC-HAL tem-
plate

ctc-ieee-hal-cc26xx.c Contiki\cpu\cc26xx-cc13xx\rf-core\ctc-hal\ CTC-HAL
implementation

ctc-ieee-hal-cc26xx.h Contiki\cpu\cc26xx-cc13xx\rf-core\ctc-hal\ CTC-HAL defi-
nitions

ctc-ble-hal-cc26xx.c Contiki\cpu\cc26xx-cc13xx\rf-core\ctc-hal\ CTC-HAL
implementation

ctc-ble-hal-cc26xx.h Contiki\cpu\cc26xx-cc13xx\rf-core\ctc-hal\ CTC-HAL defi-
nitions

Table 5.1: Overview of all X-Burst-specific files and their locations.

CHAPTER 5. INTEGRATION INTO CONTIKI 60

5.3.2 Configuration

In this section, the configuration of the virtual radio is described in detail. To be able to
use cross-technology communication, the network stack of Contiki has to be configured
accordingly. This can simply be done within the project-conf.h file of the used application.
An example of the configuration is shown in Figure 5.6.

Figure 5.6: Configuration of the virtual radio in the project-conf.h file of an application.

In Figure 5.6, the radio layer, i.e., the used radio implementation, is configured by
setting the NETSTACK CONF RADIO definition accordingly. In the example above, it
is set to the virtual radio (ctc mode driver). Since the virtual radio has to know which
radio and CTC-HAL implementation has to be used, both have to be defined accordingly.
Hence, the usual radio layer is configured by the CTC CONF RADIO definition and the
CTC-HAL is configured by the CTC CONF HAL definition. Two different configurations
can be seen in the figure above. Both are for the TI CC2650 Launchpad and configure the
virtual radio depending on which wireless technology, i.e., ZigBee (ieee mode driver and
ctc ieee hal cc26xx) or BLE (ble cc250 driver and ctc ble hal cc26xx), is used.

The following tables show the configuration options of the virtual radio implementa-
tion. Each configuration is defined in the ctc.h file and has to be adjusted accordingly
before using the virtual radio.
Table 5.2 shows the common definitions of the virtual radio and Table 5.3 shows the re-
quired configurations for detecting and calculating the duration of an energy burst. These
definitions must be configured to use X-Burst.
Additionally, the corresponding default value and a short description of each definition is
given.

CHAPTER 5. INTEGRATION INTO CONTIKI 61

Name Default Description

CTC ENABLED 1
Enables (1) or disables (0) the CTC
scheme.

CTC WINDOW 80
Duration of the CTC window, CTC
related operations are only done
within this window, in milliseconds.

CTC WAITING TIME 3
Time before the process of the vir-
tual radio is started, in seconds.

CTC AUTO CONFIG 1
Enables (1) or disables (0) the auto
configuration.

CTC SEND WHOLE WINDOW 0
If enabled (1), a CTC message will
be sent during the whole CTC win-
dow.

CTC MAX RETRANSMISSIONS 3
The maximum amount of retrans-
missions in the case that a message
could not be sent.

CTC DURATION PLUS 5
Defines the upper bound for a valid
duration.

CTC DURATION MINUS 4
Defines the lower bound for a valid
duration.

CTC RX TIMEOUT 500
Timeout used to distinguish be-
tween not related energy bursts, in
microseconds.

CTC MIN RX TIME 30
The minimum amount of time that
has to be left for starting the receiv-
ing procedure, in milliseconds.

CTC PRIORITY 0
Defines the priority of the CTC op-
erations: high (1) or low (0).

CTC NETWORK ID -
Used to distinguish between devices
of different networks.

CTC MAX PAYLOAD LENGTH 120
Maximum payload that can be sent
via CTC.

CTC CHANNEL IEEE 20
Radio channel used for CTC with
ZigBee.

CTC CHANNEL BLE 22
Radio channel used for CTC with
BLE.

Table 5.2: Configuration of the virtual radio - common values.

When using BLE in connection oriented mode and auto configuration is used, the
CTC WAITING TIME has to be chosen accordingly to make sure that the connection
has already been successfully established. Otherwise, the virtual radio will learn the duty
cycle of the connectionless communication that is used to establish a connection between
two BLE devices.

CHAPTER 5. INTEGRATION INTO CONTIKI 62

Name Default Description

CTC RSSI THRESHOLD MIN -80
Defines the threshold for detecting
energy bursts, in decibel.

CTC RSSI THRESHOLD MAX -35

Defines the upper bound of the
thresholds which are used for cal-
culating the duration of an energy
burst, in decibel.

CTC RSSI THRESHOLD STEPS 5

The gap between the used thresh-
olds for the duration measurement
between the minimum and maxi-
mum threshold.

CTC RSSI MIN DURATION 8
Every detected energy burst with a
duration smaller than this value will
be discarded, in rtimer ticks.

CTC RSSI DURATION RANGE 10

Used for outlier detection. If a mea-
sured duration of a burst is not
within the defined range to the pre-
vious measured duration, it will not
be used for determining the average
duration, in rtimer ticks.

Table 5.3: Configuration of the virtual radio - rx values.

Depending on the configuration of the AUTO CONFIG definition, i.e., if auto config-
uration is used or not, further definitions have to be adjusted. If auto configuration it is
enabled, the definitions of Table 5.4 have to be configured.

Name Default Description

AUTO CONFIG RADIO OFF 0
If set (1), the radio will be turned off
during the duty cycle measurement.

NUMBER OF DC 4
The minimum number of duty cycles
that have at be measured.

DC THRESHOLD 3

Measured duty cycles with a duration
less than the threshold are ignored and
not used for further calculations, in
milliseconds.

DC MEASURING TIME 3
The duration of the duty cycle mea-
surement, in seconds.

Table 5.4: Configuration of the virtual radio - auto configuration.

CHAPTER 5. INTEGRATION INTO CONTIKI 63

If the auto configuration is disabled, all definitions regarding the radio duty cycle have
to be configured manually. Therefore, the definitions of Table 5.5 have to be adjusted.

Name Default Description

WITH DUTY CYCLE 1
Informs the virtual radio whether
radio duty cycling is used or not.

WITH MULTIPLE ON PERIODS 0
Defines the multiple on periods
within a duty cycle.

DUTY CYCLE -
Duration of the used radio duty
cycle, in milliseconds.

Table 5.5: Configuration of the virtual radio - manual configuration.

Depending whether a radio duty cycle is used or not, different definitions have to be
configured additionally. Table 5.6 shows the needed configuration when no radio duty
cycling is used.

Name Default Description

CTC INTERVAL 1000
Duration between two CTC time slots, in millisec-
onds.

Table 5.6: Configuration of the virtual radio - without RDC.

In the case that radio duty cycling is used, the following definitions of Table 5.7 have
to be adjusted.

Name Default Description

CTC POLICY 2
Define the occurrence of the CTC time slots,
e.g., 2 means that only each second off-phase
will be used for CTC.

CTC MIN TIME 50
The minimum amount of time that has to be
left for starting the process of the virtual radio,
in milliseconds.

Table 5.7: Configuration of the virtual radio - with RDC.

To be able to change the configuration of the virtual radio during runtime, additional
radio parameters are defined. Radio parameters in Contiki are defined as enumeration
(enum), which is a user-defined data type that consists of integral constants. Hence, each
parameter is represented by an integer that is automatically incremented if a new param-
eter is added. The standard parameters are represented by integers from 0 to 16 and the
BLE specific parameters from 100 to 123. To avoid conflicts with existing parameters, all
CTC related radio parameters are starting from 200. Thus, even new parameters can be
added without any issues.

CHAPTER 5. INTEGRATION INTO CONTIKI 64

The following CTC-related radio parameters are defined to read or overwrite several of
the described configurations above during runtime:

• RADIO PARAM CTC ENABLE DISABLE

• RADIO PARAM CTC WINDOW

• RADIO PARAM CTC SEND WHOLE WINDOW

• RADIO PARAM CTC MAX RETRANSMISSIONS

• RADIO PARAM CTC RSSI THRESHOLD

• RADIO PARAM CTC RX TIMEOUT

• RADIO PARAM CTC PRIORITY

• RADIO PARAM CTC NETWORK ID

• RADIO PARAM CTC RSSI THRESHOLD MIN

• RADIO PARAM CTC RSSI THRESHOLD MAX

• RADIO PARAM CTC RSSI THRESHOLD STEPS

• RADIO PARAM CTC RSSI MIN DURATION

• RADIO PARAM CTC RSSI DURATION RANGE

• RADIO PARAM CTC INTERVAL

• RADIO PARAM CTC POLICY

Besides the configuration of the virtual radio, some additional radio parameters are needed
for X-Burst :

• RADIO PARAM CTC TX DATA
When this parameter is set, the attached payload is copied to a buffer and a specific
flag is set to inform the virtual radio that a message has to be transmitted via CTC.
This parameter is only writable.

• RADIO PARAM CTC HEADER
Gets or sets the configuration of the header of the CTC messages.

• RADIO PARAM CTC RECEIVER LINK ADDR
Gets or sets the link address of the receiver of the CTC message. If no address is
defined, the message is sent as broadcast to every device in range.

• RADIO PARAM CTC BLE ON
Informs the virtual radio that the radio was turned on. Only needed when BLE is
used. This parameter is only writable.

CHAPTER 5. INTEGRATION INTO CONTIKI 65

• RADIO PARAM CTC BLE OFF
Informs the virtual radio that the radio was turned off. Only needed when BLE is
used. This parameter is only writable.

The introduced radio parameters can be read or overwritten at anytime from the applica-
tion. Therefore, the following (already existing) functions can be used:

• NETSTACK RADIO.set value(radio parameter, value)

• NETSTACK RADIO.get value(radio parameter, *value)

• NETSTACK RADIO.set object(radio parameter, *dest, size)

• NETSTACK RADIO.get object(radio parameter, *src, size)

Depending on the type of data that should be read or overwritten, different functions
have to be used. With the set value and get value functions, only integer values can be
read or overwritten. For each other data types, e.g., arrays and structs, the get object and
set object functions have to be used.

5.3.3 Adaptation to the Duty Cycle

As discussed in Section 4.3, adaptation to an existing radio duty cycle is needed to guar-
antee a proper coexistence between X-Burst and the usual transmissions of the operating
system. In the case that no RDC is used, a schedule between X-Burst and the OS has
to be established. In particular, the adaptation to the RDC mechanisms nullRDC and
ContikiMAC, when ZigBee is used, is shown. Furthermore, the adaptation to the duty
cycle of BLE is discussed. Thereby, it is distinguished between connection-oriented and
connectionless communications.

ZigBee

In the following, the adaptation of the virtual radio when using ZigBee is shown. Thereby,
it is distinguished between using no radio duty cycling, i.e., using nullRDC, and using the
default radio duty cycling mechanism of Contiki, i.e., ContikiMAC.

NullRDC is a RDC implementation of Contiki that works only as a pass-trough layer,
i.e., it only transmits a packet and returns the result of such a transmission. Hence, no
radio duty cycling is done. Therefore, the integration of X-Burst is exactly as described in
Section 4.3.2. Hence, a schedule of the radio accesses between the OS and X-Burst have
to be established.

CHAPTER 5. INTEGRATION INTO CONTIKI 66

To create the schedule of the OS and X-Burst, Contiki’s rtimer is used. Therefore, a
rtimer with the duration of the defined CTC interval is set at the start of a device. After
the rtimer expires, the CTC process of the virtual radio is called and a new rtimer is set
for the next time slot. Thus, a CTC time slot is guaranteed at each CTC interval amount
of time. The duration of each time slot is defined by the CTC window.

ContikiMAC is the default RDC mechanism of Contiki. It uses periodical wake-ups to
listen after transmissions from other devices. During these wake-ups, two inexpensive CCA
checks are done consecutively, where the RSSI of the channel is measured. If the value
is below a specified threshold, the CCA returns positive, i.e., the channel is free. Hence,
the receiver can go back to sleep mode, i.e., turn off the radio. Otherwise, a transmission
was detected and the receiver has to stay awake to be able to receive the full packet. For
transmitting a packet, a sender repeatedly transmits the packet until an acknowledgment
was received. In the case of a broadcast, where no acknowledgments are sent, the sender
transmits the packet during the full duty cycle to ensure that all devices in its proximity
have received it.

As discussed in Section 4.3.1, when RDC is used, X-Burst has to adapt to it, i.e.,
access the radio only in the off-phases of the duty cycle. Since ContikiMAC relies on
precise timings between transmissions, an accurate adaptation of X-Burst is even more
important. The working principle of ContikiMAC and the adaptation of X-Burst can be
seen in Figure 5.7.

C
C
A

. . .

Time

R
a

d
io

 A
cc

es
s

reduced
off-phase

C
C
A

C
C
A

C
C
A

C
C
A

C
C
A

CTC CTC

off-phase

duty cycle

Figure 5.7: Adaptation of X-Burst to the ContikiMAC RDC mechanism.

As shown in Figure 5.7, in the first wake-up period, two CCA checks have not detected
a transmission and thus, the device normally goes back to sleep mode by turning off its
radio. Instead, with X-Burst, the radio is kept on and the CTC time slot starts. After a
time, defined by the CTC window, the CTC time slot ends and the device goes back to
sleep mode.
In the second wake-up period, the device has detected a transmission and thus, stays
awake to receive the packet, which will shorten the duration of the off-phase. Since the
usual transmissions have a higher priority than CTC-related ones, by default, it is possible
that the the CTC time slot is shortened to fit within the remaining time of the current
off-phase. Hence, not the full duration, as defined by the CTC window, will be available

CHAPTER 5. INTEGRATION INTO CONTIKI 67

for transmitting or receiving CTC messages during the current off-phase.
The maximum duration of a CTC time slot is limited by the maximum time in which the ra-
dio is switched off, i.e., until the next CCA checks are done. The amount of checks that are
done within one second are defined by the NETSTACK CONF RDC CHANNEL CHECK-
RATE, which is set to 8 by default. This results in a duty cycle of about 125 ms. Using

the TI CC2650, the two CCA checks, including the time in between, need about 3 ms.
Hence, the maximum off-phase of the standard configuration of ContikiMAC (and, there-
fore, the maximum available time for a CTC time slot) is about 122 ms.

Bluetooth Low Energy

In the following, the adaptation of the virtual radio when using Bluetooth Low Energy
is shown. It is distinguished between connection-oriented and connectionless commu-
nications. When a BLE device changes from a connectionless to a connection-oriented
communication or vice-versa, the virtual radio will not detect it, i.e., it will not adapt to
the changed behavior of the radio duty cycle automatically. Since the configuration of
the virtual radio can be changed at any time, the application is responsible to inform the
virtual radio of the changed behavior and modify it accordingly.

A connectionless communication is the easiest way to exchange data using BLE. It
is mostly used for advertising a device’s presence to other devices in range or to setup a
connection between two BLE nodes. At the beginning of each advertising event (a peri-
odical event defined by the advertising interval), an advertiser broadcasts its advertising
packets to every device in its surrounding. These packets are sent subsequently on all
three advertising channels (37, 38, 39).
Devices that are listening for advertising packets are so called scanners. At the beginning
of each scanning event (a periodical event specified by the scanning interval), a scanner
listens for a time,defined by the scan window for advertising packets. Depending on the
configuration of a scanner, i.e., active or passive, a scan request is sent or not respectively.
The principle of a BLE connectionless communication the adaptation of X-Burst can be
seen in Figure 5.8.

ADV
Data . . .

Time

A
d

ve
rt

is
er

CTC

scan window

Scan
Request

Scan
Response

Sc
an

n
e

r

CTC

ADV
Data

ADV
Data

Scan Window CTC

Time

. . .

CTC

advertising / scanning interval advertising / scanning interval

off-phase off-phase

off-phase

Figure 5.8: Adaptation of X-Burst to a connectionless communication of BLE.

CHAPTER 5. INTEGRATION INTO CONTIKI 68

As shown in Figure 5.8, at the first event, the scanner is scanning actively, i.e., it sends
a scan request back to the advertiser, which responses with a scan response packet. At
the second event, the scanner is scanning passively, i.e., no scan request is sent back and
thus the advertiser can directly go to sleep mode. Instead of allowing the advertiser to
switch off the radio, it is kept on and the CTC time slot starts. The maximum duration
of the off-phase (and, therefore, the maximum time available for the CTC time slots of an
advertiser) is only limited by the advertising interval and the amount af advertising pack-
ets that are sent. The time between the beginning of two consecutive advertising packets
(regardless if a scan request and scan response is sent) shall be less than or equal to 10
ms. Since the maximum amount of advertising packets sent within an event is three, i.e.,
one packet for each advertising channel, the maximum duration needed for transmissions
within an event is 30 ms. Depending on the BLE specification, the advertising interval
shall be a multiple of 0.625 ms and in the range of 20 milliseconds to 10.24 seconds. Hence,
even by using a very short advertising interval of 100 ms, 70 ms are still available for X-
Burst.
A scanner always listens at the start of a scanning event for advertising packets. After
the scan time is expired, the device would usually go to sleep mode, but, instead, the
radio is kept on and the CTC time slot is started. The maximum off-phase and, therefore,
the maximum time available for the CTC time slots of a scanner, is only limited by the
scanning interval and the scan window. Depending on the BLE specification, the scanning
interval and the scan window shall be less than or equal than 10.24 seconds. Hence, find-
ing enough time for X-Burst between two consecutive scanning events should be possible.

A connection-oriented communication is needed to be able to exchange data bidi-
rectionally between two BLE devices. The connection setup is done using the advertising
channels. Thereby, an initiator responds with a connection request to a received adverting
packet that supports connections. After the connection setup is done, the two devices,
i.e., master and slave, are able to exchange data bidirectionally.
At the beginning of each connection event, defined by the connection interval, the master
always sends a data packet to the slave, which has to be responded. After these first
transmissions, further data can be exchanged until the connection event is closed.

Data . . .

Time

M
a

st
e

r

Data

Sl
a

ve

CTC

Time

. . .

connection interval connection interval

off-phaseoff-phase

Data Data

CTC Data

Data CTC

CTC Data

Figure 5.9: Adaptation of X-Burst to a connection-oriented communication of BLE.

CHAPTER 5. INTEGRATION INTO CONTIKI 69

As can be seen in Figure 5.9, at the first connection event, master and slave are ex-
changing several BLE data packets. After the connection event ends, i.e., no more data
packets are transmitted, instead of turning off the radio, the latter is kept on and the
CTC time slot starts. At the second connection event, only the minimum data exchange
between master and slave is done. Hence, more time is available for the cross-technology
communication. The maximum duration of the off phase and therefore, the maximum
available time, for the CTC time slots, is only limited by the connection interval and the
amount of exchanged BLE packets. Depending on the BLE specification, the connection
interval shall be a multiple of 1.25ms in the range of 7.5 milliseconds and 4 seconds. The
number of exchanged BLE packets within a connection event is arbitrary. Nevertheless,
due to the flexibility in configuring the duration of the connection interval, finding enough
time between two consecutive connection events should be feasible.

5.3.4 Implementation

Before the radio is initialized, the configuration of the virtual radio is done, i.e., setting
the CTC window, default header of CTC messages, priority, policy, etc. After the con-
figuration is complete, a new process is started, which is the core element of the virtual
radio. In the following, this process will be called vr-process, i.e., virtual radio process.
Immediately after boot, the vr-process waits for a specified amount of time to make sure
that the device has booted completely and successfully established connections with the
devices in its proximity. Depending on the configuration, i.e., with or without auto con-
figuration, the vr-process will start measuring the duty cycle of the radio or not.

Measuring the Radio Duty Cycle

In case the auto configuration was enabled, the vr-process autonomously determine the
radio duty cycle. Therefore, the virtual radio measures each radio duty cycle for a spec-
ified time. This is done by calculating the duration between two consecutive calls of the
on-function of the virtual radio. Each duration is measured in rtimer ticks and is saved
for further processing. Depending on the configuration, it is possible to turn off the radio
during the measurements since only the information from the upper layers is used to de-
termine the radio duty cycle. Hence, measuring false duty cycles, e.g., receiving packets
change the on and off times of the radio, can be avoided. Some RDC mechanisms will
turn on the radio multiple times within one duty cycle, e.g., the two CCA checks of Con-
tikiMAC. In the following this is called multiple on-periods. Since every duration of two
consecutive calls of the on-function is measured and used for determining the duty cycle,
these additional measurements within a duty cycle have to be filtered out. Otherwise a
wrong duty cycle is calculated. This is done by defining a minimum duration that the
radio has to be turned off before it is turned on again. Hence, each measured duty cycle
that is smaller than the defined duration is discarded and not used for further processing.
After the measurement time is expired, the duty cycle is calculated as the average of all
measured cycles during the specified time. Additionally, also the amount of multiple on
periods within a duty cycle is determined. If no duty cycle was detected and the radio
was turned off during the measurements, it has to be turned on again. In case the auto

CHAPTER 5. INTEGRATION INTO CONTIKI 70

configuration was disabled, the duty cycle has to be manually defined in the ctc.h file, as
described in Section 5.3.2.

After all configurations are complete and the duty cycle was specified, the vr-process
will enter an endless loop. At the beginning of each iteration, the vr-process yields, i.e., it
goes to sleep mode. Hence, other processes can run in the meantime. If there is enough
time for the cross-technology communication, the vr-process gets called, i.e., it gets polled,
and the CTC time slot starts. Depending on the used RDC mechanism, this operation si
carried out differently.

RDC Adaptation

When no radio duty cycle was detected or defined, a schedule between the OS and X-Burst
has to be created. This is done by using Contiki’s rtimer which is set once before the vr-
process enters the endless loop and every time it gets polled. After the rtimer expires,
a function is called to pull the vr-process. Hence, it is guaranteed that the vr-process is
always called in the exact same interval as specified.
In case a RDC mechanism is used, the virtual radio is called differently, since it has to
adapt to the existing mechanism. In Contiki it is not allowed to use multiple rtimer simul-
taneously. Hence, it is not possible to use Contiki’s rtimer for scheduling the CTC time
slots since those are already needed for the periodic wake-ups of the RDC mechanism. To
solve this problem, whenever the radio should be turned off, i.e., when the off-function
of the virtual radio is called, multiple calculations are done to determine if the next off-
phase of the duty cycle is suitable for the CTC time slot. In particular, every time the
off-function of the virtual radio is called, it is checked what kind of RDC mechanism is
used. Depending on the used mechanism, the virtual radio wakes up the vr-process only
if the next off-phase is suitable. For example, ContikiMAC uses two CCA checks within
a duty cycle: if the vr-process is polled whenever the off-function of the virtual radio gets
called, the second CCA check would never be performed. To counteract this problem, the
duration between two consecutive calls to turn on the radio is measured and compared
with a specified threshold. If the duration is shorter than the threshold, the current on-
period has to be the second CCA check. Therefore, the next off-phase will be suitable.
Otherwise, the current on-period is the first CCA check and therefore, the vr-process can-
not be called.
Another issue is that transmitting and receiving CTC messages takes some time. If the vr-
process would be called regardless of the remaining time of the off-phase, it could happen
that a message could not be fully sent or received. Hence, energy is wasted since no useful
information could be exchanged and the radio was kept on unnecessarily. Therefore, the
remaining duration of the off-phase will be checked. If the device has received or sent a
packet, the radio was on for a longer duration and thus, the next off-phase will be shorter.
To avoid waking up the vr-process unnecessarily, i.e., the remaining time for the CTC time
slot is too short for sending or receiving messages, a duration for the minimum amount
of the remaining time of the off-phase can be defined. Hence, the vr-process will only be
called if at least the specified duration is available.

CHAPTER 5. INTEGRATION INTO CONTIKI 71

Process Flow

When the vr-process gets polled, the CTC time slot starts. First, the configured channel
of the radio is changed to the one specified for the cross-technology communication. Af-
terwards, the remaining duration of the off-phase is determined. Therefore, the period in
which the radio was turned on within the current duty cycle is measured, and thus, the
remaining duration of the off-phase can be determined. Depending on the configuration,
i.e., the priority of X-Burst, the CTC window may be shortened if it does not fit within
the remaining time. Hence, by setting the priority of X-Burst to low, it is guaranteed
that the CTC time slot ends before the usual transmissions of the OS starts again. If
the priority of X-Burst is set to high, the full CTC window is provided, regardless if the
communication flow of the OS will be violated.
After the available duration for the CTC time slot was determined, it is checked if a CTC
message has to be sent. This is done by checking a given flag, i.e., the tx-flag, of the
virtual radio. If the tx-flag is set, e.g., by the application, the payload of the message is
copied to a specified buffer, i.e., the tx-buffer, of the virtual radio. Hence, when the virtual
radio detects that the tx-flag was set, the procedure for transmitting messages is called
and the data of the tx-buffer is sent. In the case that the message could not be sent, i.e.,
the message was too long to be transmitted within the remaining time, the tx-flag and
tx-buffer will not be cleared. Since it is not possible to overwrite the data of the tx-buffer
as long as the tx-flag is not reset, the same message will be tentatively sent in the next
iteration of the vr-process. After the message was successfully transmitted or the num-
ber of retransmissions exceeded a specified amount, the tx-flag and tx-buffer are cleared.
Hence, a new message can be sent.
The time needed for transmitting the whole message is measured and the remaining time of
the CTC slot is calculated. If the remaining duration is longer than a specified threshold,
the procedure for scanning other CTC messages is started. Otherwise, the vr-process will
go back to sleep mode before the CTC time slot ends to save energy. After the duration
of the CTC time slot is expired, the channel of the radio is set back to the one used for
the usual communications. If RDC is used the radio is turned off to save energy. The
vr-process goes back to sleep mode and waits until it gets polled again. Afterwards the
whole procedure will start again.

Transmitting Messages

Sending messages via cross-technology communication cannot be done at anytime. The
instant of time in which a message will be transmitted is decided by the virtual radio. To
inform the virtual radio that a message has to be sent, the tx-flag of the virtual radio has
to be set and the payload of the message has to be copied to the tx-buffer of the virtual
radio. This can all be done directly from the application by using the already existing
netstack radio.set value and netstack radio.set object function of Contiki.
Depending on the configuration of the header, the CTC message is built differently. The
payload and all the additional data needed for the message, e.g., the network ID, addresses,
checksum, are copied into a new buffer in its transmitting order. After the message is built,
the expected duration of its transmission is estimated. Since each byte is represented by
two consecutively sent energy bursts with a fixed duration, the time needed for the full

CHAPTER 5. INTEGRATION INTO CONTIKI 72

transmission of the message can be estimated. Therefore, for each byte of the message, the
durations of the two corresponding energy bursts are summed up and a specified amount
of time, i.e., simulating the time between sending two energy bursts, is added. The es-
timated transmission time is calculated by summing up the duration of each byte of the
message. If the estimated time is longer than the remaining duration of the CTC slot, the
message will not be sent and a new attempt is made in the next iteration. Otherwise, the
transmission of the message is started, where each byte is sent consecutively by calling
the send byte function of the CTC-HAL implementation of the used hardware. Each byte
is represented as two hex values and the needed amount of payload bytes for generating
the energy burst with the corresponding duration of the hex value is determined. This
is done by using a lookup table that maps each hex value to the correct amount of pay-
load bytes needed for generating an energy burst with the required duration. The actual
value of the payload bytes can be arbitrary since there is no information encoded within
the actual message, only the length of the payload is important. In this implementation,
each payload byte has the value 0x00. Table 5.8 shows the actual used lookup table of
the implementation of the TI CC2650 Launchpad when ZigBee is used, i.e., in IEEE mode.

Hex value Energy burst duration Payload bytes

0x0 192 µs 0

0x1 320 µs 4

0x2 448 µs 8

0x3 576 µs 12

0x4 704 µs 16

0x5 832 µs 20

0x6 960 µs 24

0x7 1088 µs 28

0x8 1216 µs 32

0x9 1344 µs 36

0xA 1472 µs 40

0xB 1600 µs 44

0xC 1728 µs 48

0xD 1856 µs 52

0xE 1984 µs 56

0xF 2112 µs 60

Table 5.8: Amount of payload bytes necessary to achieve the required energy burst dura-
tions with ZigBee.

As shown in Table 5.8, the gap between two successive energy burst durations is
longer than the optimum durations defined in Table 4.1. This is due to the fact that
the TI CC2650 Launchpad in IEEE mode uses an non-instantaneous measurement of the
received signal strength, as described in Section 4.2, and the low measurement granularity
of the RSSI, i.e., with a rate of 45 kHz. Hence, to be able to decode the received energy
bursts correctly, the gap between two successive energy burst durations was extended.

CHAPTER 5. INTEGRATION INTO CONTIKI 73

To achieve the same durations when using the TI CC2650 Launchpad in BLE mode, a
different mapping is needed due to the higher data rate of BLE compared to ZigBee. The
lookup table for BLE is shown in Table 5.9.

Hex value Energy burst duration Payload bytes

0x0 192 µs 1*14 (14)

0x1 320 µs 1*30 (30)

0x2 448 µs 2*23 (46)

0x3 576 µs 2*31 (62)

0x4 704 µs 3*26 (78)

0x5 832 µs 3*31 (94)

0x6 960 µs 3*37 (110)

0x7 1088 µs 4*32 (126)

0x8 1216 µs 4*36 (142)

0x9 1344 µs 5*32 (158)

0xA 1472 µs 5*35 (174)

0xB 1600 µs 6*32 (190)

0xC 1728 µs 6*34 (206)

0xD 1856 µs 6*37 (222)

0xE 1984 µs 7*34 (238)

0xF 2112 µs 7*36 (254)

Table 5.9: Amount of payload bytes to achieve the required energy burst durations with
BLE.

As discussed in Section 4.1.2, BLE test packets are used for generating the required energy
bursts. Depending on the BLE specification, only data packets with a maximum payload
of 37 bytes can be sent. Hence, usually multiple packets have to be sent consecutively
to generate energy bursts with the required durations. This can be seen in Table 5.9.
Nevertheless, the TI CC2650 Launchpad is able to sent BLE test packets with a payload
up to 255 bytes. Thus, only one test packet is sent for generating the required energy
bursts.

To inform a receiver that the following energy bursts identify a CTC message, a pream-
ble is sent before every message. Further, the energy burst representing the high nibble
of a byte, i.e., the four most significant bits, is sent first and only standard compliant
functions are used for sending data packets. After every byte was sent, the remaining
duration of the CTC time slot is checked and the next byte is only transmitted if enough
time is available. Therefore, it is always guaranteed that the given amount of time for the
CTC slot is never exceeded. After the message was successfully transmitted, the device
can scan for other CTC messages, unless specified differently.
To be sure that a receiver will be awake when a CTC message is sent, it is possible to
configure a transmitter to send a message during the whole CTC window. To this end,
the remaining duration of the CTC slot, after a successful transmission, is calculated.

CHAPTER 5. INTEGRATION INTO CONTIKI 74

The message will be transmitted as long as enough time is available within the time slot.
To avoid that two consecutively sent messages will be misinterpreted, i.e., merged, by
a receiver, the virtual radio has to wait some time between sending the messages. if a
transmitter is configured to send a message during the whole CTC window, it will not be
able to receive other CTC messages.

Receiving Messages

After the virtual radio has transmitted a message, the remaining duration of the CTC
time slot is determined. Depending on the configuration and the remaining time available
in this iteration, the vr-process will start the receiving procedure or will go back to sleep
mode.
In the receiving procedure, the RSSI of the configured channel is measured frequently.
Since some radios need to be configured to be able to measure the RSSI (e.g., when using
BLE the radio has to be in scanning mode), the prepare scanning function of the CTC-
HAL implementation is called. Depending on the configuration of the RSSI parameters
shown in Table 5.3, the thresholds needed for determining the duration of an energy burst
as discussed in Section 4.2, are determined. Afterwards, the RSSI is measured frequently
and compared to the different thresholds. If the RSSI exceeds the minimum threshold, an
energy burst was detected and the measurement of its duration started. For each additional
threshold, a separate measurement is started if the threshold is exceeded and stopped if
the indicator falls back below the threshold again. To determine the duration, a times-
tamp is saved, in rtimer ticks, when a measurement is started or stopped. Afterwards,
the duration is determined by calculating the difference between the two timestamps. If
a duration is smaller than the minimum duration that was defined, it will be discarded
and not used for further processing. Additionally, an outlier detection is done by checking
if the measured duration is in a specified range to the previous measured duration of the
energy burst. If the duration is outside the specified range, it will be discarded. This is
also needed to filter out ’peaks’, i.e., interference that occurred during a measurement.
After the RSSI falls back below the minimum threshold, the measurement is stopped and
the real duration of the energy burst is determined. Therefore, the average of all remain-
ing measured durations, for each threshold that was exceeded within this energy burst,
is calculated. This duration is close to the real duration of the detected energy burst
as discussed in Section 4.2. Afterwards, the duration is verified and decoded by using a
lookup table. It is also possible to use only one threshold for determining the duration of
an energy burst, i.e., in the case that an instantaneous measurement of the received signal
strength is used. Towards this goal, the virtual radio has do be configured accordingly.
The mapping from hex value to rtimer ticks can be seen in Table 5.10. Since the mapping
is independent of the used technology, only one lookup table is needed among all tech-
nologies.

CHAPTER 5. INTEGRATION INTO CONTIKI 75

Hex value Energy burst duration rtimer ticks

0x0 192 µs 13

0x1 320 µs 21

0x2 448 µs 29

0x3 576 µs 38

0x4 704 µs 46

0x5 832 µs 55

0x6 960 µs 63

0x7 1088 µs 71

0x8 1216 µs 80

0x9 1344 µs 88

0xA 1472 µs 96

0xB 1600 µs 105

0xC 1728 µs 113

0xD 1856 µs 122

0xE 1984 µs 130

0xF 2112 µs 138

Table 5.10: Mapping from hex values to energy burst durations and rtimer ticks.

If there exists an entry of the measured duration in the lookup table, the measured
duration is considered as a valid part of a CTC message. Due to the low granularity of
the RSSI measurement, as the fact that the TI CC2650 Launchpad in IEEE mode uses
an non-instantaneous measurement of the received signal strength, the duration is always
compared to be in a specified range (defined duration ± ε). If a duration is not within the
specified range of a defined duration in the lookup table, it is rejected.

To avoid decoding actual noise, i.e., not CTC related messages, the virtual radio is
looking only for a specified preamble. In particular, the preamble is represented by four
consecutive energy bursts, i.e., bursts representing the value 0x1010. After a preamble
was detected, each following energy burst that is received will be treated as part of a CTC
message. After each second received energy burst, only whole bytes are sent: the hex
values represented by both bursts are merged together and saved as a byte to a buffer.
To guarantee that the CTC time slot will not be exceeded, the remaining time within the
CTC slot is calculated after each RSSI measurement. In case no time is left, the receiving
procedure will be aborted, regardless on whether a message is currently received. If the
priority of the CTC scheme is set to high and a message needs more time to be successfully
received, the virtual radio will exceed the granted time slot.
Since the duration between two related energy bursts is not too long, a timeout, i.e., the
rx timeout, is specified to detect the end of a message. In particular, if an energy burst
was not received for a specified time, the virtual radio assumes that the transmission has
ended and starts reconstruction the original data. During the measurement of energy
bursts, all encoded values were saved as bytes to a buffer. To reconstruct the original
data, the received bytes have to be parsed accordingly. The first byte of a CTC message
represents the header. Depending on the configuration of the header, the virtual radio will
parse the data accordingly. During the reconstructing of each field of the message, the

CHAPTER 5. INTEGRATION INTO CONTIKI 76

length of the received data is verified. In case the actual length of the data is different
from the expected one, the data is discarded and a corresponding error message is shown.
After the original data was reconstructed, it is posted with all additional informations to
the application. Therefore, the application has to listen to a specific event, which is posted
by the virtual radio in case a message was received.
Afterwards, the virtual radio will determine the remaining duration of the current iter-
ation. If enough time is available, the receiving procedure is repeated. Otherwise, the
vr-process will go back to sleep mode.

Usual Communications

The virtual radio is also responsible for managing the usual transmissions of the operating
system. Therefore, all required functions defined in Section 5.3.1, have to be provided.
These functions are needed for a communication between the upper layers and the radio
layer, i.e., the actual implementation of the radio. For usual communications between the
upper layers and the radio implementation, the virtual radio only operates as a forwarder,
i.e., the corresponding data will only be looped through the virtual radio. Therefore, nei-
ther the upper layers nor the radio implementation will notice the existence of the virtual
radio. Hence, the usual communications, i.e., transmissions, of Contiki will not be affected.

Chapter 6

Evaluation

This chapter shows an experimental evaluation of X-Burst. Section 6.1 briefly describes
the setup used for the evaluation. In Section 6.2, a validation of X-Burst is given, showing
a cross-technology communication between a ZigBee and a BLE device. Furthermore,
the Packet Reception Rate (PRR) depending on the content of the payload of a CTC
message is shown for both communication directions. In Section 6.3, a theoretical and
practical evaluation of the actual achieved throughput is given. Moreover, the best possi-
ble throughput achievable with X-Burst is discussed and compared with the one actually
achieved on real hardware. Additionally, the achieved throughput is shown as a function
of the payload length. The power consumption and the memory footprint of X-Burst
are discussed in Section 6.4. Section 6.5 and Section 6.6 show the behavior of X-Burst
when adapting to different RDC mechanisms, as well the influence of the policy, priority,
and other configurations, respectively. Section 6.7 evaluates the robustness of X-Burst by
computing the PRR for both communication directions in the presence of different kinds
of interference. Additionally, the PRR is shown as a function of the amount of payload
bytes in a CTC message.

6.1 Experimental Setup

For the evaluation, two TI CC2650 LaunchPads1 were used: one as CTC transmitter
and one as CTC receiver. The devices were placed at a distance of one meter between
each other. We evaluated X-Burst in an office environment, i.e., we could not explicitly
minimize the background traffic from other devices. Hence, multiple WiFi access points,
laptops and smartphones were present during the whole evaluation.

1more information about the TI CC2650 LaunchPad can be seen in Appendix B

77

CHAPTER 6. EVALUATION 78

For the configuration of the TI CC2650 LaunchPad in IEEE mode (i.e., the configu-
ration of the virtual radio), the standard values shown in Section 5.3.2 were used.
For the configuration of the TI CC2650 LaunchPad in BLE mode, some values had to be
modified. Due to the instantaneous measurement of the received signal strength in BLE
mode, compared to the non-instantaneous one used in IEEE mode, and the low granu-
larity of Contiki’s rtimer, the measured durations are more likely to be a bit longer than
defined. Hence, the range in which a duration is valid was changed to:

• CTC DURATION PLUS: 6

• CTC DURATION MINUS: 3

Since the TI CC2650 uses an instantaneous measurement of the RSSI in BLE mode,
only one threshold is needed for the measurement of the duration of an energy burst.
Hence, the configuration of the thresholds was changed to:

• CTC RSSI THRESHOLD MIN: -75

• CTC RSSI THRESHOLD MAX: -74

Depending on the role of a device, i.e., if it is used as transmitter or receiver, the
CTC WINDOW and the DUTY CYCLE parameters were changed accordingly.

Due to the common mapping between hex values and energy burst durations among all
technologies, X-Burst can also be used to send CTC messages between two ZigBee or two
BLE devices. Since the focus of this thesis is on the communication between ZigBee and
BLE devices, only cross-technology communication between ZigBee and BLE and vice-
versa were evaluated. Showing a communication between devices using the same PHY
layers using X-Burst is left as future work.

CHAPTER 6. EVALUATION 79

6.2 Validation

In this section, a cross-technology communication between a ZigBee device and a BLE
device is shown to prove the functionality of X-Burst. Furthermore, the PRR depending
on the content of the payload of a CTC message is shown.

Figure 6.1 shows a transmission from a ZigBee device to a BLE device. Therefore,
the detection of the various energy bursts, representing the message, were recorded on
the BLE device. For the transmission of the CTC message, only the necessary parts were
sent: the preamble, the header and the data payload.
The full message is shown in the top Figure 6.1. For a better evaluation of the message, the
different parts were enlarged and illustrated accordingly. Additionally, the background of
the figure was changed for a better separation between the different parts of the message.
The preamble and the header of the message can clearly be seen in the middle of the figure
and the data payload is shown in the bottom. Additionally, the corresponding hex values
of each energy bursts are displayed.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Time [ms]

0

1

Qu
an

tiz
ed

 R
SS

I

Full Message - without Optional Parts
energy bursts

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7
Time [ms]

0

1

Qu
an

tiz
ed

 R
SS

I

0 1 0 1 0 0
Preamble (0x01 0x01) and Header (0x00)

2.6 3.6 4.6 5.6 6.6 7.6 8.6 9.6 10.6 11.6 12.6 13.6 14.6 15.6 16.6 17.6 18.6 19.6 20.6 21.6 22.6 23.6 24.6
Time [ms]

0

1

Qu
an

tiz
ed

 R
SS

I

01 2 3 4 5 6 7 8 9 A B C D E F
Data Payload (0x01 0x23 0x45 0x67 0x89 0xAB 0xCD 0xEF)

Figure 6.1: Reception of a CTC message on a BLE node.

In Figure 6.1, the different durations of the various energy bursts, representing the hex
values in the range of 0x0 - 0xF, can clearly be distinguished.

CHAPTER 6. EVALUATION 80

Figure 6.2 shows the transmission of the same data payload the one seen previously,
but including all optional parts of a CTC message: the preamble, the header, the network
ID, the length byte, the receiver address, the transmitter address, the data payload and
the checksum.
The message was sent again from a ZigBee device to a BLE device and the detection of
the energy bursts were recorded on the BLE device. The full message is shown in the top
of the figure. For a better evaluation of the message, the different parts were enlarged
and illustrated accordingly. Additionally, the background of the figure was changed for a
better separation between the different parts of the message.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
Time [ms]

0

1

Qu
an

tiz
ed

 R
SS

I

Full Message - with all Optional Parts
energy bursts

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5
Time [ms]

0

1

Qu
an

tiz
ed

 R
SS

I

Preamble (0x01 0x01), Header (0x77), Network ID (0xAB) and Length Byte (0x08)

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
Time [ms]

0

1

Qu
an

tiz
ed

 R
SS

I

Receiver Address (0xCC 0x78 0xAB 0xFF 0xFE 0x70 0x68 0x82)

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
Time [ms]

0

1

Qu
an

tiz
ed

 R
SS

I

Transmitter Address (0x00 0x12 0x4B 0x00 0x07 0xB5 0xAE 0x05)

52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
Time [ms]

0

1

Qu
an

tiz
ed

 R
SS

I

Data Payload (0x01 0x23 0x45 0x67 0x89 0xAB 0xCD 0xEF) and Checksum (0xC0)

Figure 6.2: Reception of a CTC message on a BLE node including all optional parts.

CHAPTER 6. EVALUATION 81

It can clearly be seen in Figure 6.2 that the transmission time is significantly longer
compared to when only the necessary parts were sent (Figure 6.1). In particular, if all op-
tional parts are included, 19 bytes were additionally transmitted. Hence, the transmission
time is about 52 ms longer as if only the necessary parts of a CTC message were sent for
the same data payload.

Figures 6.3 and 6.4 show the PRR depending on the content of the data payload
of a CTC message. In particular, 1500 messages including four identical payload bytes
representing the corresponding hex value were sent for each hex value in the range [0x0
- 0xF]. Each CTC message includes the preamble, the header, the four payload bytes
with the same, identical hex value, and the checksum for detecting transmission errors.
Both figures evaluate the correctly received, corrupted and lost messages. Figure 6.3
shows the transmission from a BLE device to a ZigBee device and Figure 6.4 the reverse
communication.

0x00 0x11 0x22 0x33 0x44 0x55 0x66 0x77 0x88 0x99 0xAA 0xBB 0xCC 0xDD 0xEE 0xFF
Payload Bytes

95

96

97

98

99

100

Pa
ck

et
 R

ec
ep

tio
n

Ra
te

 [%
]

received
corrupted
lost

Figure 6.3: Packet reception rate when sending four bytes with identical hex value from a
BLE to a ZigBee device.

0x00 0x11 0x22 0x33 0x44 0x55 0x66 0x77 0x88 0x99 0xAA 0xBB 0xCC 0xDD 0xEE 0xFF
Payload Bytes

95

96

97

98

99

100

Pa
ck

et
 R

ec
ep

tio
n

Ra
te

 [%
]

received
corrupted
lost

Figure 6.4: Packet reception rate when sending four bytes with identical hex value from a
ZigBee to a BLE device.

CHAPTER 6. EVALUATION 82

As shown in Figures 6.3 and 6.4, a very high PRR for both communication directions
was achieved. In particular, the correct reception of a CTC message never falls below 97
%. It can also be seen that the content of the data payload of a message has no influence
on the reception rate for messages with a payload length of four bytes. The small vari-
ations of the PRR are due to the low measurement granularity of the RSSI and to the
interference created by surrounding wireless devices during the evaluation.

6.3 Throughput

In this section, the throughput of X-Burst is evaluated. In particular, we did a theoretical
and practical computation of the achievable throughput. Furthermore, the theoretical
limit of X-Burst is discussed.

6.3.1 Theoretical Evaluation

The throughput of X-Burst strongly depends on the transmitted data, i.e., the higher the
hex value, the longer the duration of the energy burst. Hence, a concrete throughput can
not be determined. Nevertheless, an upper and lower bound for the achievable throughput
can be calculated.
Besides the used mapping between hex values and durations, the throughput also depends
on the time needed by the radio between two consecutive data transmissions. Since the
used durations are fixed, the throughput only depends on the preparation time of the
radio. The preparation time of the TI CC2650 LaunchPad for both modes, i.e., IEEE and
BLE mode, was measured using a mixed signal oscilloscope.

For the following calculations, the overhead of sending the necessary parts needed for a
transmission, i.e., the preamble, the header and the checksum, are not taken into account.
Assuming that only large CTC messages are sent, those parts can be neglected. For the
calculations, the durations from Table 5.10 were used.

When using the TI CC2650 LaunchPad, the preparation time is about 220 µs if the
device is in IEEE mode and about 400 µs in BLE mode. The best data rate is achieved
when only bytes with value 0x00 are transmitted, as those have the shortest durations.
The time needed for transmitting one byte of value 0x00 can be calculated as:

0x00ieee : (192 ∗ 2 + 220) = 604 µs

0x00ble : (192 ∗ 2 + 400) = 784 µs

where 192 is the duration of the energy burst representing the hex value 0x0 and where
220 or 400 represents the preparation time of the TI CC2650 LaunchPad. All values are
in microseconds.

CHAPTER 6. EVALUATION 83

Hence, sending one byte of value 0x00 takes 604 µs for ZigBee and 784 µs for BLE.

The upper bound of the achievable throughput can be calculated by determining how many
bytes can be sent within one second. We must not forget to take again the preparation
time of the radio into account:

upper boundieee :
1000000

604 + 220
= 1213.59 B/s

upper boundble :
1000000

784 + 400
= 844.59 B/s

Therefore, the upper bound is 1213.59 B/s or 9.71 kbit/s for ZigBee and 844,59 B/s
or 6.76 kbit/s for BLE.

The lower bound can be calculated exactly as the upper bound, but instead of sending
only bytes of value 0x00, bytes of value 0xFF are sent. Those bytes have the longest
durations and thus, the lowest data rate is achieved as follows:

0xFFieee : (2112 ∗ 2 + 220) = 4444 µs

0xFFble : (2112 ∗ 2 + 400) = 4626 µs

lower boundieee :
1000000

4444 + 220
= 214.41 B/s

lower boundble :
1000000

4626 + 400
= 198.97 B/s

Therefore, the lower bound is 214.41 B/s or 1.7 kbit/s for ZigBee and 198.97 B/s or
1.59 kbit/s for BLE.

To have a more meaningful value of the throughput, the average achievable throughput,
when the values of the transmitted data are equally distributed, is calculated. The average
time necessary to transmit one byte can be calculated as:

average duration (hex) :

∑
durations

16
=

18432

16
= 1152 µs

average duration (byte)ieee : (1152 ∗ 2 + 220) = 2524 µs

average duration (byte)ble : (1152 ∗ 2 + 400) = 2704 µs

CHAPTER 6. EVALUATION 84

Hence, transmitting one byte takes on average about 2.524 ms for ZigBee and about 2.704
ms for BLE. The average throughput is determined by:

averageieee :
1000000

2524 + 220
= 364.43 B/s

averageble :
1000000

2704 + 400
= 322.16 B/s

The average throughput is hence 364.43 B/s or 2.9 kbit/s for ZigBee and 322.16 B/s
or 2.58 kbit/s for BLE.

Apart from the preparation time, the best achievable throughput of X-Burst is
limited by the technology with the lowest data rate that has to be supported, i.e., ZigBee.
The best possible mapping from energy burst durations to payload bytes for ZigBee, when
only standard-complaint packets are used, is shown in Table 4.1. Table 4.2 shows the
corresponding mapping for BLE. If the preparation time of the radio would be reduced,
e.g., through improvements or by using a different hardware, the achievable throughput
would be increased.
Ideally, the preparation time would be reduced to zero. This, however, would be a problem
as a receiver would not be able to distinguish between two consecutive data transmissions
anymore. Hence, some time between sending two consecutive packets is need. Assuming
a receiver with a sampling rate of the RSSI of 1 MHz and the use of an instantaneous
measurement of the received signal strength would allow reducing the preparation time to
a minimum of about 10 µs.
Reducing the preparation time to 10 µs and using the mapping from Table 4.1 would lead
to the following throughput:

• upper bound: 19.8 kbit/s

• average: 9.05 kbit/s

• lower bound: 5.87 kbit/s

CHAPTER 6. EVALUATION 85

6.3.2 Practical Evaluation

To assess the throughput of the actual X-Burst implementation, a practical evaluation
on the TI CC2650 was carried out. In particular, 1500 messages with a variable payload
length were sent for three different types of payload: bytes with value 0x00 or 0xFF only,
or bytes equally distributed among all possible hex values. Each CTC message includes
the preamble, the header, the payload bytes and the checksum for detecting transmission
errors. Additionally, the time needed for transmitting the 1500 messages was measured
and only the correctly received messages were used for determining the throughput. Fur-
thermore, also the overhead of each message, i.e., sending the preamble, the header and
the checksum were also taken into account.

The following two figures show the achieved throughput on real hardware as a function
of the payload length for different kinds of payload. Figure 6.5 shows the throughput of a
transmission from a BLE device to a ZigBee device and Figure 6.5 shows the throughput
for the reverse communication.

4 8 16 32 64 128
Payload Length

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500

Th
ro

ug
hp

ut
 [k

bi
t/s

]

0x00
equal
0xFF

Figure 6.5: Throughput of a transmission from a BLE to a ZigBee device depending on
the payload length for different kinds of payload.

CHAPTER 6. EVALUATION 86

4 8 16 32 64 128
Payload Length

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
7000
7500
8000
8500
9000
9500

Th
ro

ug
hp

ut
 [k

bi
t/s

]

0x00
equal
0xFF

Figure 6.6: Throughput of a transmission from a ZigBee to a BLE device depending on
the payload length for different kinds of payload.

As shown in the Figures 6.5 and 6.6, the achieved throughput increases with the pay-
load length. This is due to the included overhead of each message, i.e., the preamble, the
header and the checksum. The more bytes are sent, the less influence has the overhead
of the message to the achieved throughput. This behavior is only true until the payload
length reaches a specified value, i.e., 64 bytes. Increasing the payload even further would
not increase the achieved throughput significantly. On the contrary, the throughput could
even get worse again. This behavior is due to the decreasing PRR of correctly received
CTC messages when more bytes are sent within one message. As a result, the time needed
for transmitting the message will be increased and thus, the probability of a transmission
error, e.g., through the occurrence of an interference during transmission, is increased.

The following values were achieved by evaluating the throughput of X-Burst on real hard-
ware:

BLE → ZigBee:
upper bound: 6.51 kbit/s, average: 2.54 kbit/s, lower bound: 1.58 kbit/s

ZigBee → BLE:
upper bound: 9.23 kbit/s, average: 2.87 kbit/s, lower bound: 1.7 kbit/s

The achieved throughput when BLE is used as transmitter is significantly smaller as
in the case of ZigBee due to the larger preparation time of the radio when the TI CC2650
is used in BLE mode.

CHAPTER 6. EVALUATION 87

The practical evaluation of the throughput on real hardware confirms the theoretical
calculated throughput in Section 6.3.1.

6.3.3 Summary

The following table compares the theoretically calculated throughput in Section 6.3.1 with
the one evaluated on real hardware in Section 6.3.2. Additionally, the limit of X-Burst is
shown.

Upper Bound Average Lower Bound

Limit 19.8 kbit/s 9.05 kbit/s 5.87 kbit/s

Theoreticalieee 9.71 kbit/s 2.9 kbit/s 1.7 kbit/s

Practicalieee 9.23 kbit/s 2.87 kbit/s 1.7 kbit/s

Theoreticalble 6.76 kbit/s 2.58 kbit/s 1.59 kbit/s

Practicalble 6.51 kbit/s 2.54 kbit/s 1.58 kbit/s

Table 6.1: Comparison of the theoretically and practically evaluated throughput achieved
by X-Burst.

6.4 Energy Consumption and Memory Footprint

In this section, the energy consumption and the memory footprint of X-Burst are evalu-
ated. In particular, the energy consumption of the CC2650 Microcontroller Unit (MCU)
is shown for different modes of operations. Furthermore, the energy consumption of some
specific scenarios are discussed. Additionally, the memory footprint of X-Burst in terms
of RAM and ROM usage is analyzed.

X-Burst only affects the energy consumption when a RDC mechanism is used. In
particular, only the duty cycle of the MCU is modified by X-Burst, i.e., the MCU is kept
on for transmitting or receiving CTC messages. Hence, only the energy consumption of
the MCU is discussed.
The energy consumption of the CC2650 MCU was calculated for different modes of opera-
tions by using the values of the datasheet2. Those values match with the energy consump-
tion determined experimentally on the CC2650 MCU from [21]. The voltage supply of the
TI CC2650 LaunchPad for normal operations is about 3.3 V. Table 6.2 shows the energy
and power consumption for the CC2650 wireless MCU of different modes of operations.

2http://www.ti.com/lit/ds/symlink/cc2650.pdf

CHAPTER 6. EVALUATION 88

Mode Energy Consumption Power Consumption

Active 2.93 mA 9.66 mW

TX at 0 dBm 6.1 mA 20.13 mW

Active & TX 9.03 mA 29.79 mW

RX 5.9 mA 19.47 mW

Active & RX 8.83 mA 29.13 mW

Standby (low power) 1 µA 3.3 µW

Table 6.2: Energy and power consumption of different modes of operations for the CC2650
MCU.

As shown in Table 6.2, it is not distinguished if the TI CC2650 LaunchPad is in IEEE or
BLE mode. This is because the energy consumption is independent of the used technology.

The energy consumption of X-Burst strongly depends on the used configuration.
Hence, a concrete value about the additional energy consumption of a device using X-Burst
cannot be given. The energy consumption strongly depends on the following values:

• CTC WINDOW

• CTC POLICY

• DUTY CYCLE

Hence, the energy consumption will change depending on the configuration of the values
above.

To give a better understanding of the additional energy consumption caused by X-
Burst, the consumption of some specific operations are shown. Table 6.3 shows the energy
consumption of transmitting different CTC messages depending on the payload length.
Therefore, the time needed for transmitting the different CTC messages was measured
and the energy consumption was calculated depending on the values in the datasheet of
the CC2650. For calculating the minimum and maximum energy consumption, messages
with payload bytes of value 0x00 and 0xFF only were sent, respectively. To calculate the
average consumption, messages with payload bytes equally distributed among all possible
hex values were sent.
Each message was sent in IEEE mode and includes the preamble, the header, the payload
bytes and the checksum. The only difference between sending in IEEE and BLE mode is
the preparation time of the radio. In case the device is in BLE mode, the time between two
consecutively data transmissions is about 180 µs longer than in IEEE mode, as shown in
Section 6.3.1. This does not significantly change the energy consumption of transmitting
CTC messages. Therefore, it was not distinguished if the device is in IEEE or BLE mode.

CHAPTER 6. EVALUATION 89

Payload Length Minimum [nAh] Average [nAh] Maximum [nAh]

4 Bytes 17.29 41.5 64.83

8 Bytes 26.14 68.25 110.13

16 Bytes 42.71 121.76 200.72

32 Bytes 75.77 228.84 386.7

64 Bytes 141.9 448.03 758.58

128 Bytes 274.22 886.8 1502.8

Table 6.3: Energy consumption of transmitting different CTC messages depending on the
payload length.

Table 6.4 shows the energy consumption of measuring the RSSI frequently, depending
on the duration, i.e., the configuration of the CTC WINDOW. Since there is no difference
if the device is in IEEE or BLE mode, the energy consumption of measuring the RSSI
frequently is independent of the used technology.

RSSI measurement [ms] Energy Consumption [nAh]

50 125.42

80 200.67

100 250.83

500 1254.17

Table 6.4: Energy consumption of measuring the RSSI frequently depending on the dura-
tion.

Assuming a continuous use of X-Burst, i.e., measuring the RSSI frequently without
using duty cycling, the TI CC2650 LaunchPad would run for a full day by using an ordi-
nary coin cell battery (220 mAh).

CHAPTER 6. EVALUATION 90

The memory footprint of X-Burst was analyzed in terms of RAM and ROM usage. Ta-
ble 6.5 shows the memory footprint of the TI CC2650 LaunchPad in IEEE and BLE mode
with and without X-Burst. The same application was used among all different modes.

RAM used / free [kB] ROM used / free [kB]

BLE mode 14.28 / 1.30 49.58 / 73.30

BLE mode with X-Burst 15.40 / 0.47 58.56 / 64.32

IEEE mode 11.67 / 4.21 45.55 / 77.33

IEEE mode with X-Burst 12.21 / 3.66 56.35 / 66.35

Table 6.5: Memory usage of the TI CC2650 LaunchPad in different modes.

As shown in Table 6.5, the memory usage of RAM and ROM is higher when the
LaunchPad is in BLE mode. Moreover, the additional memory usage caused by X-Burst is
not very high. Table 6.6 shows the additional usage of RAM and ROM caused by X-Burst.

RAM usage [kB] ROM usage [kB]

X-Burst only (BLE) 1.12 8.98

X-Burst only (IEEE) 0.54 10.8

Table 6.6: Memory footprint of X-Burst.

As shown in Table 6.6, the additional usage of RAM and ROM due to X-Burst is
minimal. Hence, X-Burst suits well memory-constrained devices.

CHAPTER 6. EVALUATION 91

6.5 Adaptation to Different RDC Mechanisms

In this section, the adaptation of X-Burst to different RDC mechanisms is shown. We
depict the seamless coexistence of X-Burst besides normal operations of the operating
system by showing the time slots for accessing the radio, of the operating system, and of
X-Burst. Additionally, the time for transmitting and receiving CTC messages is shown.

Figure 6.7 shows the adaptation of X-Burst when no RDC is used. In particular,
a schedule of the accesses of the radio between X-Burst and the operating system is
created. The TI CC2650 LaunchPad was used in IEEE mode and nullRDC was used as
RDC mechanism.

0

1

Ra
di

o

0

1

OS

0

1

CT
C

0

1TX

0

1

RS
SI

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
Time [s]

0

1

RX

Figure 6.7: Adaptation of X-Burst - without RDC (nullRDC).

As can be seen in Figure 6.7, the radio is kept on for the whole time since no RDC is
used. Furthermore, the different time slots for accessing the radio, of the OS and X-Burst
(CTC) can be seen. In particular, the OS and X-Burst have both an assigned time slot of
500 ms. If the assigned time slot of one ends, the slot of the other starts immediately. At
the beginning of the CTC time slot, one message was sent (TX) at time 0.78. Afterwards,
the RSSI was measured frequently to look after other CTC messages until the assigned
time slot has ended. As shown in Figure 6.7, one message was received (RX) at time 1.15.

CHAPTER 6. EVALUATION 92

In case a RDC mechanism is used, X-Burst adapts to the existing duty cycle in an
unobtrusive way. To show the adaptation for ZigBee, the standard RDC mechanism of
Contiki, i.e., ContikiMAC, was used. In the case of BLE, the adaptation to a connection-
less communication is shown. Since the only difference between a connection-oriented and
a connectionless communication is in the duration of the interval and the amount of data
being exchanged, only the adaptation to a connectionless communication is shown.
Figure 6.8 shows the adaptation of X-Burst to the RDC mechanism ContikiMAC. The
adaptation to a BLE connectionless communication is shown in Figure 6.9.

0

1

Ra
di

o

0

1

OS

0

1

CT
C

0

1TX

0

1

RS
SI

0 25 50 75 100 125 150 175 200 225
Time [ms]

0

1

RX

Figure 6.8: Adaptation of X-Burst - ContikiMAC.

The two CCA checks of ContikiMAC can clearly be seen in Figure 6.8 (OS). Since no
transmissions were detected, the radio would normally go back to sleep mode but it is kept
on so that the CTC time slot starts. In this example, the CTC WINDOW was set to 80
ms. In the first time slot, no message was sent and the whole time slot was used to look
after other messages, i.e., measure the RSSI frequently. Within this time, one message
was received (RX). In the second CTC time slot, a message was transmitted (TX) and
the time for measuring the RSSI was reduced accordingly. After each CTC time slot ends,
the radio is turned off until the next two CCA checks of ContikiMAC.

CHAPTER 6. EVALUATION 93

0

1

Ra
di

o

0

1

OS

0

1

CT
C

0

1TX

0

1

RS
SI

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475
Time [ms]

0

1

RX

Figure 6.9: Adaptation of X-Burst - BLE connectionless communication.

Figure 6.9 shows a BLE connectionless communication with a scanning interval of 250
ms and a scan window of 100 ms. The CTC WINDOW was set to 80 ms. As can be seen
in Figure 6.9, the radio is turned off for a few milliseconds before each start of a CTC time
slot. Since in BLE the RDC is done directly in the radio driver, X-Burst has no control
over it. After the time of the scan window has passed, the BLE radio driver turns the
radio off. Hence, X-Burst has to turn on the radio at the beginning of each CTC time slot.
Besides that, the reception (RX) and the transmission (TX) of a CTC message is shown.
After each CTC time slot ends, the radio is turned off until the next BLE scanning event.

CHAPTER 6. EVALUATION 94

6.6 Changing Configurations

In this section, the influence of changing different settings of X-Burst to its behavior is
shown by altering its policy and priority.
Figure 6.10 and Figure 6.11 show the impact to the behavior of X-Burst when the policy
and the priority are altered, respectively.

0

1

Ra
di

o

0

1

OS

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
Time [s]

0

1

CT
C

Figure 6.10: Influence of the policy to the behavior of X-Burst.

As shown in Figure 6.10, not every off-phase is used by X-Burst. In particular, the
policy was set to 3, i.e., only each third off-phase is used. ContikiMAC was used as RDC
mechanism.

0

1

Ra
di

o

0

1

OS

0

1

CT
C

0 50 100 150 200 250 300 350 400 450 500 550 600
Time [ms]

0

1TX

Figure 6.11: Influence of the priority to the behavior of X-Burst.

As shown in Figure 6.11, a CTC message larger as the assigned time slot was trans-
mitted. ContikiMAC was used as RDC mechanism and the CTC WINDOW was set to
30 ms. Usually, only messages with a transmission time lower than the remaining time
of a CTC time slot can be transmitted. Nevertheless, setting the priority of X-Burst to

CHAPTER 6. EVALUATION 95

high, allows exceeding the assigned time slot regardless if the communication flow of the
OS will be violated. In the Figure 6.11, the priority was set to high and thus, a message
with a transmission time of about 77 ms could be sent. Afterwards, the priority was set
back to low again and the normal behavior of X-Burst is restored. Setting the priority to
high also allows the reception of messages with a needed reception time larger than the
remaining time of a CTC slot.

Figure 6.12 shows the possibility of sending one CTC message during a full CTC time
slot. Therefore, the message is sent repeatedly until no time within the current time slot
is left.

0

1

Ra
di

o

0

1

OS

0

1

CT
C

0

1

TX

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75
Time [s]

0

1

RS
SI

Figure 6.12: Sending one CTC message during the full CTC WINDOW.

As shown in Figure 6.12, a message is sent repeatedly during the whole time slot. In
particular, a message with a transmission time of about 32 ms was sent 15 times consec-
utively. As a consequence, scanning after other CTC messages is not possible within this
time slot. The same settings as the ones used to derive Figure 6.7 were used, i.e., nullRDC
and a CTC WINDOW of 500 ms.

CHAPTER 6. EVALUATION 96

6.7 Robustness to External Interference

In this section, the robustness of X-Burst is evaluated. In particular, we evaluate the
PRR in the presence of different kinds of interference. Furthermore, we show the PRR as
a function of the payload length of a CTC message.

The PRR was measured for CTC messages with different types of payload and in the
presence of various types of interference. In particular, we distinguished between correctly
received, corrupted and lost messages when different types of interference were present
during the measurements. In particular, 1500 messages with a fixed payload of eight bytes
were sent for three different types of payload: bytes with value 0x00 or 0xFF only, or bytes
equally distributed among all possible hex values (0x01, 0x23, 0x45, 0x67, 0x89, 0xAB,
0xCD, 0xEF), labelled as EQUAL. Each CTC message includes the preamble, the header,
the eight payload bytes and the checksum for detection transmission errors.
We measured the PRR for four different scenarios. In the first one, no interference was
explicitly generated to have a reference for the other measurements. The second one
evaluated the PRR under the influence of other BLE communications. To this end, a BLE
headset playing music was placed between the two TI CC2650 LaunchPads. For the third
and fourth scenario, the influence of the PRR under ongoing WiFi communications was
evaluated. Towards this goal, the used channels of the two Launchpads were changed to
fully overlap with the WiFi channel 6, i.e., ZigBee to channel 18 and BLE to channel 17. In
particular, the influence of audio and full HD video streaming were analyzed. Towards this
goal, a smartphone was placed between the two devices to generate the desired interference.
Figure 6.13 shows the communication from BLE to ZigBee and Figure 6.14 the reverse
communication.

CHAPTER 6. EVALUATION 97

0x00 0XFF EQUAL
Payload Bytes

0
10
20
30
40
50
60
70
80
90

100

Pa
ck

et
 R

ec
ep

tio
n

Ra
te

 [%
]

None

received
corrupted
lost

0x00 0XFF EQUAL
Payload Bytes

0
10
20
30
40
50
60
70
80
90

100

Pa
ck

et
 R

ec
ep

tio
n

Ra
te

 [%
]

BLE Audio Streaming

received
corrupted
lost

0x00 0XFF EQUAL
Payload Bytes

0
10
20
30
40
50
60
70
80
90

100

Pa
ck

et
 R

ec
ep

tio
n

Ra
te

 [%
]

WiFi Audio Streaming

received
corrupted
lost

0x00 0XFF EQUAL
Payload Bytes

0
10
20
30
40
50
60
70
80
90

100

Pa
ck

et
 R

ec
ep

tio
n

Ra
te

 [%
]

WiFi Video Streaming

received
corrupted
lost

Figure 6.13: Packet reception rate when transmitting from BLE to ZigBee in the presence
of different kinds of interference.

CHAPTER 6. EVALUATION 98

0x00 0XFF EQUAL
Payload Bytes

0
10
20
30
40
50
60
70
80
90

100

Pa
ck

et
 R

ec
ep

tio
n

Ra
te

 [%
]

None

received
corrupted
lost

0x00 0XFF EQUAL
Payload Bytes

0
10
20
30
40
50
60
70
80
90

100

Pa
ck

et
 R

ec
ep

tio
n

Ra
te

 [%
]

BLE Audio Streaming

received
corrupted
lost

0x00 0XFF EQUAL
Payload Bytes

0
10
20
30
40
50
60
70
80
90

100

Pa
ck

et
 R

ec
ep

tio
n

Ra
te

 [%
]

WiFi Audio Streaming

received
corrupted
lost

0x00 0XFF EQUAL
Payload Bytes

0
10
20
30
40
50
60
70
80
90

100

Pa
ck

et
 R

ec
ep

tio
n

Ra
te

 [%
]

WiFi Video Streaming
received
corrupted
lost

Figure 6.14: Packet reception rate when transmitting from ZigBee to BLE in the presence
of different kinds of interference.

The behavior of the PRR under the influence of different types of interference was
as expected. In case no interference was explicitly generated, the PRR for the correctly
received messages was always above 90 % for each type of payload.
The presence of other BLE communications had the least impact to the PRR of X-Burst.
BLE uses channel hopping to avoid interference with other communications. Hence, a
channel is only used for a very short time, which is the reason for the low influence to the
PRR of X-Burst.
In the presence of WiFi communications, the PRR drops significantly. The reasons for
that are the very high transmission power of WiFi (compared to BLE or ZigBee), and
the fact that all data is sent over the specified channel, i.e., WiFi does not use channel
hopping. For full HD video streaming, the PRR is even worse compared to audio stream-
ing. This is because of the higher amount of transmitted data. As can be also noticed in

CHAPTER 6. EVALUATION 99

the figures, the PRR in the presence of WiFi communications is quite different depending
on the communication direction. This is due to the uncontrollable behavior of the used
smartphone as the different data being exchanged. A more reproducible and meaningful
test case, determining the robustness of X-Burst in presence of WiFi communications, will
be done as future work.
In Figure 6.13 and 6.14, it can also be seen that the PRR also depends on the type of
transmitted data. In case bytes with value 0x00 only were transmitted, the highest PRR
was always achieved. The time needed for transmitting such kind of a message is very
short, since the energy burst representing the hex value 0x0 has the shortest duration.
Hence, the probability of a collision with other transmissions is very low. In the case of
sending bytes with value 0xFF only, the lowest PRR is achieved, since this kind of message
has the longest transmission time. However, as shown in the figures, the PRR when the
bytes of the payload are equally distributed among all possible hex values is always a little
bit lower compared to the case were bytes with value 0xFF only were sent. Due to the
various energy bursts, a decoding error because of a low measurement granularity of the
RSSI, is more likely to occur as when only bytes of the same value are transmitted.
The detection of a CTC message was always above 80 % (except in the case of WiFi video
streaming in Figure 6.14 where the decetion of a message was only above 58 %). Hence,
implementing an error correction could significantly improve the PRR and, hence, the
robustness of X-Burst.

The following two figures show the PRR as a function of the payload length for both
communication directions. In particular, 1500 messages with a variable payload length,
were sent for three different types of payload: bytes with value 0x00 or 0xFF only, or
bytes equally distributed among all possible hex values. Each CTC message includes the
preamble, the header, the payload bytes and the checksum for detecting transmission
errors. Figure 6.15 shows the communication from BLE to ZigBee and Figure 6.16 the
reverse direction.

CHAPTER 6. EVALUATION 100

0x00 0XFF EQUAL
Payload Bytes

0
10
20
30
40
50
60
70
80
90

100

Pa
ck

et
 R

ec
ep

tio
n

Ra
te

 [%
]

4 Bytes

received
corrupted
lost

0x00 0XFF EQUAL
Payload Bytes

0
10
20
30
40
50
60
70
80
90

100

Pa
ck

et
 R

ec
ep

tio
n

Ra
te

 [%
]

8 Bytes

received
corrupted
lost

0x00 0XFF EQUAL
Payload Bytes

0
10
20
30
40
50
60
70
80
90

100

Pa
ck

et
 R

ec
ep

tio
n

Ra
te

 [%
]

16 Bytes

received
corrupted
lost

0x00 0XFF EQUAL
Payload Bytes

0
10
20
30
40
50
60
70
80
90

100

Pa
ck

et
 R

ec
ep

tio
n

Ra
te

 [%
]

32 Bytes

received
corrupted
lost

0x00 0XFF EQUAL
Payload Bytes

0
10
20
30
40
50
60
70
80
90

100

Pa
ck

et
 R

ec
ep

tio
n

Ra
te

 [%
]

64 Bytes

received
corrupted
lost

0x00 0XFF EQUAL
Payload Bytes

0
10
20
30
40
50
60
70
80
90

100

Pa
ck

et
 R

ec
ep

tio
n

Ra
te

 [%
]

128 Bytes

received
corrupted
lost

Figure 6.15: Packet reception rate when transmitting from BLE to ZigBee depending on
the payload length.

0x00 0XFF EQUAL
Payload Bytes

0
10
20
30
40
50
60
70
80
90

100

Pa
ck

et
 R

ec
ep

tio
n

Ra
te

 [%
]

4 Bytes

received
corrupted
lost

0x00 0XFF EQUAL
Payload Bytes

0
10
20
30
40
50
60
70
80
90

100

Pa
ck

et
 R

ec
ep

tio
n

Ra
te

 [%
]

8 Bytes

received
corrupted
lost

0x00 0XFF EQUAL
Payload Bytes

0
10
20
30
40
50
60
70
80
90

100

Pa
ck

et
 R

ec
ep

tio
n

Ra
te

 [%
]

16 Bytes

received
corrupted
lost

0x00 0XFF EQUAL
Payload Bytes

0
10
20
30
40
50
60
70
80
90

100

Pa
ck

et
 R

ec
ep

tio
n

Ra
te

 [%
]

32 Bytes

received
corrupted
lost

0x00 0XFF EQUAL
Payload Bytes

0
10
20
30
40
50
60
70
80
90

100

Pa
ck

et
 R

ec
ep

tio
n

Ra
te

 [%
]

64 Bytes

received
corrupted
lost

0x00 0XFF EQUAL
Payload Bytes

0
10
20
30
40
50
60
70
80
90

100

Pa
ck

et
 R

ec
ep

tio
n

Ra
te

 [%
]

128 Bytes

received
corrupted
lost

Figure 6.16: Packet reception rate when transmitting from ZigBee to BLE depending on
the payload length.

CHAPTER 6. EVALUATION 101

As shown Figures 6.15 and 6.16, the PRR is inversely proportional to the payload
length, i.e., the more bytes are transmitted, the lower is the PRR of a CTC message. The
probability of a transmission error, e.g., through the occurrence of interference during the
transmission, increases with the transmission time of a CTC message. Hence, the PRR of
a message where bytes with value 0x00 only were transmitted was higher than the one of a
message with bytes of value 0xFF. Usually, the PRR when sending a payload consisting of
bytes equally distributed is lower than the one measured when sending only bytes of value
0xFF. This is not true for some measurements of Figure 6.16. The reason for that was a
problem with the test case. It was not possible to let the receiver frequently measure the
RSSI. In particular, the receiver had to pause the measurements for a few milliseconds
each second. As result, the longer the transmission time of a message, the more messages
were corrupted due to the breaks in the RSSI measurements. Since transmitting a message
with payload bytes of value 0xFF only takes the longest time, those messages were affected
the most by the problem with the use case.

Chapter 7

Conclusion & Future Work

This chapter concludes the thesis with a summary of the contributions of this thesis in
Section 7.1 and an outlook about the future development of X-Burst in Section 7.2.

7.1 Conclusion

In this thesis, we presented X-Burst, a novel cross-technology communication approach
for off-the-shelf IoT devices operating in the 2.4 GHz ISM band. Compared to most of the
other works in the field of CTC, X-Burst enables a bidirectional communication between
ZigBee (IEEE 802.15.4) and BLE devices with an average throughput of about 2.9 kbit/s.
This is achieved by using precisely-timed energy bursts to convey information among de-
vices with incompatible physical layer. The data is encoded as the duration of different
energy bursts: in particular, 16 different energy bursts have been defined, where four bits
of information is encoded in the duration of each burst. The data can be decoded by
measuring the RSSI, which is typically a feature offered by all IoT devices.
X-Burst was integrated into the open source operating system Contiki, such that no
changes to existing implementations are needed. Furthermore, a new radio driver for
Contiki was written, i.e., the virtual radio, which manages the coexistence between the
operating system and X-Burst in an unobtrusive way. Hence, the normal communication
flow of the operating system is not affected by X-Burst.
X-Burst was evaluated on real hardware, showing a working cross-technology communi-
cation between a ZigBee and a BLE device. The evaluation showed that a PRR of more
than 97 % for a payload length of four bytes could be achieved in an office environment
with background interference. Furthermore, the robustness of X-Burst was evaluated in
the presence of different kinds of interference, i.e., other BLE and WiFi communications.
As a result, the PRR drops up to 80 % in the presence of other BLE communications and
up to 15 % in the case of WiFi. Additionally, a correlation between the PRR and the
payload length of a CTC message could be noticed.
Since no special hardware is required, X-Burst can easily be ported to other hardware
platforms, enabling CTC among various IoT devices.

102

CHAPTER 7. CONCLUSION & FUTURE WORK 103

7.2 Future Work

In the following, an outlook about the future development of X-Burst is given.

Adding WiFi support. X-Burst was designed to be independent of the used tech-
nology or hardware platform. Hence, it will work on every device that fulfills the general
requirements shown in Section 3.1.1. In the future, we also want to enable a bidirectional
communication with WiFi devices, to obtain a CTC scheme allowing a bidirectional com-
munication among the three most used wireless technologies: ZigBee, BLE and WiFi. The
main challenge of using X-Burst on WiFi devices is the ability of reading the RSSI of a
channel. Furthermore, the bandwidth of a WiFi channel is 22 MHz, i.e., it is relatively
large compared to ZigBee’s and BLE’s 2 MHz channels. Hence, the WiFi channels have
to be divided into smaller subcarriers to enable a proper communication.

Clock synchronization. We are planning to use X-Burst for synchronizing the clocks
of heterogeneous devices. In industrial measurements and data acquisition systems, it is
necessary to use heterogeneous devices for observing the same event. Hence, a proper
synchronization among these devices is required to give sense to the measured data. Oth-
erwise, a rational analysis of the collected data would not be feasible due to different
timestamps referring to the same event.

Channel management. To reduce cross-technology interference between devices op-
erating in the same ISM band, a proper channel management among heterogeneous devices
is necessary. If the used channels are communicated among all devices in close proximity,
the channels could be adjusted to reduce cross-technology interference. Hence, we are also
planning to build a proper channel management that uses X-Burst to communicate the
used channels among different technologies.

Porting X-Burst to another hardware platform. To show the portability of
X-Burst, we will port it to another hardware platform supported by the Contiki OS, e.g.,
to the Tmote Sky which uses an IEEE 802.15.4 capable radio (TI CC2420).

Optimizing the throughput. Due to the low measurement granularity of Contiki’s
rtimer and the inaccurate duration measurement, the achieved throughout of X-Burst is
not optimal. A better throughput could be achieved by implementing a better measure-
ment of energy burst durations. Furthermore, reducing the time between transmitting
two successive data packets would also increase the throughput of X-Burst. Additionally,
developing an encoding scheme tailored to X-Burst could also increase the data rate. Since
the duration of bursts increases with the value of the transmitted data, i.e., the higher
the value, the longer the duration of the burst will be, the throughput strongly depends
on the transmitted data. Hence, developing an encoding scheme that minimizes the value
of a byte, i.e., that minimizes the bits which are one, would have a positive effect on the
data rate.

CHAPTER 7. CONCLUSION & FUTURE WORK 104

Splitting CTC messages. In case the assigned CTC time slots are very short, larger
messages can only be sent or received by changing the priority of X-Burst, which will vi-
olate the normal behavior of the operating system. Another possibility would be to allow
fragmentation of messages, so that each fragment can be sent in a very short time. A re-
ceiver has to reassemble each received part correctly and reconstruct the original message.

Appendices

105

Appendix A

Wireless Technologies

The used wireless technologies ZigBee (IEEE 802.15.4) and BLE are described in more
detail below.

A.0.1 ZigBee

ZigBee is a standard for low-rate WPANs that builds up on the IEEE 802.15.4 physical
radio specification that defines the MAC and physical layer of the network stack. Zig-
Bee is responsible for the higher two layers, the network and application layer. It is an
open standard and was defined by the ZigBee Alliance. ZigBee is designed for low-cost,
low-power battery-operated devices that does not require a high bandwidth. Compared
to other WPANs, e.g., BLE or WiFi, it has a very low complexity. The standard supports
different network topologies such as mesh, tree, star or peer-to-peer networks, whereby
usually a multi-hop mesh network topology is used.
ZigBee operates in the unlicensed ISM bands including the 2.4 GHz (global), 868 MHz
(Europe) and 915 MHz (USA & Australia) bands. Usually the 2.4 GHz band is used which
is separated into 16 channels (11-26) where each channel has a bandwidth of 2 MHz and
is 5 Mhz apart of the next channel. This can be seen in figure A.1.
The standard delivers low latency communication and achieves data rates between 20
kbit/s (868 MHz band) up to 250 kbit/s (2.4 GHz band). It can handle networks with
thousands of nodes that are distributed over a large area. Since each node can be sepa-
rately addressed from the Internet, ZigBee can also participate in the IoT. It also supports
low duty cycle, which allows even battery operated devices to have a very long lifetime.
The communication range is restricted to the environment characteristics and power out-
put. Typical distances are between 10 and 100 meter.
Uses for ZigBee are low-power low-bandwidth monitoring and controlling applications such
as home automation or medical device data collection.

106

APPENDIX A. WIRELESS TECHNOLOGIES 107

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

2405 2410 2415 2420 2425 2430 2435 2440 2445 2450 2455 2460 2465 2470 2475 2480 [MHz]

2 MHz 3 MHz

Figure A.1: Channel separation of ZigBee.

A.0.2 Bluetooth Low Energy

BLE, or sometimes also marketed as Bluetooth Smart, is a standardized ultra-low-power
wireless technology for short-range WPANs. Compared to Classic Bluetooth, BLE is de-
signed for low-power battery operated devices with limited hardware resources. BLE and
Classic Bluetooth are not interoperable. It supports star (piconet) and mesh network
topologies, thus it can also be used for multi-hop communications. BLE operates in the
unlicensed 2.4 GHz ISM band which is separated into 40 channels (0-39) with a bandwidth
of 2 Mhz. The channel separation can be seen in figure A.2. Three out of those 40 chan-
nels are so called advertisement channels (37, 38, 39) and are used for device discovery,
connection establishment or data broadcasting. Therefore a very fast connection setup
is possible compared to Classic Bluetooth. The remaining 37 channels are data channels
used for bidirectional communication between two already connected devices. An adap-
tive frequency hopping scheme is used to counteract interference problems. BLE achieves
data rates up to 1 Mbit/s by a maximum transmission power of 10 mW. Since BLE was
designed with focus on a very low power consumption, BLE devices can operate for years
by only using a coin cell battery. This is achieved by switching the transceiver off as
long as possible. The widespread use of BLE and the fact that it can handle networks
with a huge number of devices makes it also a good participant in the IoT domain. The
communication range is in the scope of a few tens of meters, which strongly depends on
the power output and the environmental characteristics.
Typical applications for BLE are low-power monitoring and controlling within a short
communication range. It is mostly used in the area of healthcare, automotive, sport and
home automation.

37 0 1 2 3 4 5 6 7 8 9 10 38 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 39

2
4

04
 M

H
z

2
4

02
 M

H
z

2
4

06
 M

H
z

2
4

08
 M

H
z

2
4

10
 M

H
z

2
4

12
 M

H
z

2
4

14
 M

H
z

2
4

16
 M

H
z

2
4

18
 M

H
z

2
4

20
 M

H
z

2
4

22
 M

H
z

2
4

24
 M

H
z

2
4

26
 M

H
z

2
4

28
 M

H
z

2
4

30
 M

H
z

2
4

32
 M

H
z

2
4

34
 M

H
z

2
4

36
 M

H
z

2
4

38
 M

H
z

2
4

40
 M

H
z

2
4

42
 M

H
z

2
4

44
 M

H
z

2
4

46
 M

H
z

2
4

48
 M

H
z

2
4

50
 M

H
z

2
4

52
 M

H
z

2
4

54
 M

H
z

2
4

56
 M

H
z

2
4

58
 M

H
z

2
4

60
 M

H
z

2
4

62
 M

H
z

2
4

64
 M

H
z

2
4

66
 M

H
z

2
4

68
 M

H
z

2
4

70
 M

H
z

2
4

72
 M

H
z

2
4

74
 M

H
z

2
4

76
 M

H
z

2
4

78
 M

H
z

2
4

80
 M

H
z

Advertisement Channels

2 MHz

Figure A.2: Channel separation of BLE.

Appendix B

Hardware

The hardware used for this thesis is described in more detail below.

B.0.1 Texas Instrument multi-standard CC2650 LaunchPad

Figure B.1: Texas Instrument LaunchPad1.

1Figure taken from: http://pablocorbalan.com/img/cc2650_lp_explained.png

108

http://pablocorbalan.com/img/cc2650_lp_explained.png

APPENDIX B. HARDWARE 109

The Texas Instrument LaunchPad (figure B.1) is an ultra-low-power development plat-
form. It uses the CC2650 wireless microcontroller unit that operates in the 2.4 GHz ISM
band. Due to its very low current consumption, the CC2650 provides excellent battery
lifetime even on a small coin cell battery. As wireless technologies BLE and IEEE 802.15.4
(ZigBee) are supported. The main processor is a 32-bit ARM Cortex-M3 which runs at
48 MHz and provides 128KB of flash memory and 20KB of RAM. The IEEE 802.15.4
MAC and the BLE controller are embedded into a ROM and partly running on a separate
ARM Cortex-M0 processor. This design allows a very effective power management as
the packet reception and transmission can run autonomously from the rest of the system.
Additionally this also improves the overall system performance and frees up flash memory
for the application.
The Launchpad provides a good range of peripherals including a 12-bit analog to digital
converter, four general purpose timer modules and many more. Over the air firmware
updates are also supported. It is closely related to the Texas Instrument Sensortag which
is one of the three primary supported platforms of the Contiki OS. Thus the Lauchpad
also came with a good support of the Contiki OS.
Because of the support of both wireless technologies BLE and ZigBee and the good inte-
gration into Contiki, the Lauchpad was chosen for this thesis.

Appendix C

Additional Definitions of Energy
Bursts

In the following, alternative mappings from hex values to energy burst durations for X-
Burst are shown. Furthermore, the throughput that would be achieved by using the
respective mapping is shown. In particular, the upper and lower bound as the average
throughput are determined. For the calculations, the preparation time of the TI CC2650
Launchpad was used (IEEE mode: 220 µs, BLE mode: 400 µs).

Table C.1 shows the fastest possible mapping for ZigBee. Unfortunately this mapping
can not be used with the TI CC2650 LaunchPad because of a to low measurement gran-
ularity of the RSSI and the duration of energy burst. Nevertheless, it could be used with
a different hardware.

Hex value Duration rtimer ticks Payload bytesieee Payload bytesble
0x0 192 µs 13 0 1*14 (14)

0x1 224 µs 15 1 1*18 (18)

0x2 256 µs 17 2 1*22 (22)

0x3 288 µs 19 3 1*26 (26)

0x4 320 µs 21 4 1*30 (30)

0x5 352 µs 23 5 1*34 (34)

0x6 384 µs 25 6 2*19 (38)

0x7 416 µs 27 7 2*21 (42)

0x8 448 µs 29 8 2*23 (46)

0x9 480 µs 31 9 2*25 (50)

0xA 512 µs 34 10 2*27 (54)

0xB 544 µs 36 11 2*29 (58)

0xC 576 µs 38 12 2*31 (62)

0xD 608 µs 40 13 2*33 (66)

0xE 640 µs 42 14 2*35 (70)

0xF 672 µs 44 15 2*37 (74)

Table C.1: Alternative mapping for X-Burst - Mapping A.

110

APPENDIX C. ADDITIONAL DEFINITIONS OF ENERGY BURSTS 111

IEEE: upper bound: 9.71 kbit/s, average: 6.13 kbit/s, lower bound: 4.48 kbit/s
BLE: upper bound: 6.76 kbit/s, average: 4.81 kbit/s, lower bound: 3.73 kbit/s

The mapping of Table C.2 could be used for the communication from ZigBee to BLE.
Since the TI CC2650 LaunchPad in IEEE mode uses a non-instantaneous measurement of
the received signal strength, the measured durations will always vary a little bit. Hence,
using this mapping would result in a lot of decoding errors due to the small gap between
the different durations. Nevertheless, in the case that the TI CC2650 Launchpad will only
act as a receiver in BLE mode, this mapping could be used because of the more accurate
measurement of the received signal strength when using the LaunchPad in BLE mode.
We do not chose this mapping because we wanted a common mapping among both tech-
nologies.

Hex value Duration rtimer ticks Payload bytesieee Payload bytesble
0x0 192 µs 13 0 1*14 (14)

0x1 256 µs 17 2 1*22 (22)

0x2 320 µs 21 4 1*30 (30)

0x3 384 µs 25 6 2*19 (38)

0x4 448 µs 29 8 2*23 (46)

0x5 512 µs 34 10 2*27 (54)

0x6 576 µs 38 12 2*31 (62)

0x7 640 µs 42 14 2*35 (70)

0x8 704 µs 46 16 3*26 (78)

0x9 768 µs 50 18 3*29 (86)

0xA 832 µs 55 20 3*31 (94)

0xB 896 µs 59 22 3*34 (102)

0xC 960 µs 63 24 3*37 (110)

0xD 1024 µs 67 26 4*30 (118)

0xE 1088 µs 71 28 4*32 (126)

0xF 1152 µs 75 30 4*34 (134)

Table C.2: Alternative mapping for X-Burst - Mapping B.

IEEE: upper bound: 9.71 kbit/s, average: 4.48 kbit/s, lower bound: 2.92 kbit/s
BLE: upper bound: 6.76 kbit/s, average: 3.73 kbit/s, lower bound: 2.58 kbit/s

APPENDIX C. ADDITIONAL DEFINITIONS OF ENERGY BURSTS 112

Table C.3 shows a possible mapping that achieves, in theory, a slightly higher through-
put compared to the actual one used in this thesis (Table 5.10). It can be used for the TI
CC2650 LaunchPad in IEEE and in BLE mode.
We do not chose this mapping because it is not as robust as the actual one used in this
thesis due to the smaller gaps between the durations.

Hex value Duration rtimer ticks Payload bytesieee Payload bytesble
0x0 192 µs 13 0 1*14 (14)

0x1 288 µs 19 3 1*26 (26)

0x2 384 µs 25 6 2*19 (38)

0x3 480 µs 31 9 2*25 (50)

0x4 576 µs 38 12 2*31 (62)

0x5 672 µs 44 15 2*37 (74)

0x6 768 µs 50 18 3*29 (86)

0x7 864 µs 57 21 3*33 (98)

0x8 960 µs 63 24 3*37 (110)

0x9 1056 µs 69 27 4*31 (122)

0xA 1152 µs 75 30 4*34 (134)

0xB 1248 µs 82 33 4*37 (146)

0xC 1344 µs 88 36 5*32 (158)

0xD 1440 µs 94 39 5*34 (170)

0xE 1536 µs 101 42 5*36 (182)

0xF 1632 µs 107 45 6*32 (194)

Table C.3: Alternative mapping for X-Burst - Mapping C.

IEEE: upper bound: 9.71 kbit/s, average: 3.53 kbit/s, lower bound: 2.16 kbit/s
BLE: upper bound: 6.76 kbit/s, average: 3.05 kbit/s, lower bound: 1.97 kbit/s

Bibliography

[1] Nest Labs, “Nest.” https://nest.com/, April 2018.

[2] Nuki Home Solutions, “NUKI.” https://nuki.io/en/, 2017.

[3] H. N. Saha, S. Auddy, S. Pal, S. Kumar, S. Pandey, R. Singh, A. K. Singh, P. Sha-
ran, D. Ghosh, and S. Saha, “Health monitoring using Internet of things (IoT),” in
2017 8th Annual Industrial Automation and Electromechanical Engineering Confer-
ence (IEMECON), pp. 69–73, Aug 2017.

[4] SAMSUNG, “Samsung health.” https://health.apps.samsung.com/, 2015-2017.

[5] Waymo, “The Google self-driving car project.” https://waymo.com/, 2015-2017.

[6] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet of things for
smart cities,” IEEE Internet of Things Journal, vol. 1, pp. 22–32, Feb 2014.

[7] M. Erol-Kantarci and H. T. Mouftah, “Energy-efficient information and communi-
cation infrastructures in the smart grid: A survey on interactions and open issues,”
IEEE Communications Surveys Tutorials, vol. 17, pp. 179–197, Firstquarter 2015.

[8] LineMetrics GmbH, “LineMetrics - Asset monitoring.” https://www.linemetrics.

com/en/, 2018.

[9] Gartner Inc., “Gartner report.” https://www.gartner.com/newsroom/id/3598917,
2017.

[10] G. Zhou, J. A. Stankovic, and S. H. Son, “Crowded spectrum in wireless sensor
networks,” in Proc. of the 3rd Workshop on Embedded Networked Sensors (EmNets),
2006.

[11] U. Wetzker, I. Splitt, M. Zimmerling, C. A. Boano, and K. Rmer, “Troubleshooting
wireless coexistence problems in the industrial Internet of things,” in 2016 IEEE
Intl Conference on Computational Science and Engineering (CSE) and IEEE Intl
Conference on Embedded and Ubiquitous Computing (EUC) and 15th Intl Symposium
on Distributed Computing and Applications for Business Engineering (DCABES),
pp. 98–98, Aug 2016.

[12] Z. Chi, Y. Li, H. Sun, Y. Yao, Z. Lu, and T. Zhu, “B2W2: N-way concurrent commu-
nication for IoT devices,” in Proceedings of the 14th ACM Conference on Embedded
Network Sensor Systems CD-ROM, SenSys ’16, pp. 245–258, ACM, 2016.

113

https://nest.com/
https://nuki.io/en/
https://health.apps.samsung.com/
https://waymo.com/
https://www.linemetrics.com/en/
https://www.linemetrics.com/en/
https://www.gartner.com/newsroom/id/3598917

BIBLIOGRAPHY 114

[13] K. Chebrolu and A. Dhekne, “Esense: Communication through energy sensing,” in
Proceedings of the 15th Annual International Conference on Mobile Computing and
Networking, MobiCom ’09, pp. 85–96, ACM, September 2009.

[14] S. M. Kim and T. He, “FreeBee: Cross-technology communication via free side-
channel,” in Proceedings of the 21st Annual International Conference on Mobile Com-
puting and Networking, MobiCom ’15, pp. 317–330, ACM, 2015.

[15] W. Jiang, R. Liu, L. Liu, Z. Li, and T. He, “BlueBee: 10,000x faster cross-technology
communication from Bluetooth to ZigBee,” Novmeber 2017.

[16] “IEEE standard for low-rate wireless networks,” IEEE Std 802.15.4-2015 (Revision
of IEEE Std 802.15.4-2011), pp. 1–709, April 2016.

[17] C. A. Boano, T. Voigt, C. Noda, K. Römer, and M. Zúniga, “JamLab: Augmenting
sensornet testbeds with realistic and controlled interference generation,” in Proceed-
ings of the 10th ACM/IEEE International Conference on Information Processing in
Sensor Networks, pp. 175–186, April 2011.

[18] SIG Bluetooth, “Specification of the Bluetooth system - covered core
package version: 4.1..” https://www.bluetooth.com/specifications/

bluetooth-core-specification/legacy-specifications, December 2013.

[19] A. Dunkels, “The ContikiMAC radio duty cycling protocol,” tech. rep., SICS, De-
cember 2011.

[20] A. Dunkels, B. Grönvall, and T. Voigt, “Contiki - A lightweight and flexible operating
system for tiny networked sensors,” in 29th Annual IEEE International Conference
on Local Computer Networks, pp. 455–462, November 2004.

[21] M. Spörk, C. A. Boano, M. Zimmerling, and K. Römer, “BLEach: Exploiting the full
potential of IPv6 over BLE in constrained embedded IoT devices,” November 2017.

https://www.bluetooth.com/specifications/bluetooth-core-specification/legacy-specifications
https://www.bluetooth.com/specifications/bluetooth-core-specification/legacy-specifications

	Introduction
	Problem Statement
	Thesis Contributions
	Thesis Structure

	Related Work
	Existing CTC Approaches
	B2W2: N-Way Concurrent Communication for IoT Devices
	FreeBee: Cross-Technology Communication via Free Side-Channel
	BlueBee: a 10,000x Faster Cross-Technology Communication via PHY Emulation
	Esense: Communication through Energy Sensing

	Limitations of Existing CTC Approaches

	Cross-Technology Communication for Off-the-Shelf IoT Devices
	Requirements
	Cross-Technology Communication
	X-Burst

	Concept
	Overview
	Transmitting Messages
	Receiving Messages
	Structure of CTC Messages

	Design Challenges
	Generation of Energy Bursts
	ZigBee
	Bluetooth Low Energy

	Measuring the Duration of Energy Bursts
	Instantaneous RSSI Measurement
	Non-Instantaneous RSSI Measurement

	Integration into an Existing Operating System
	With Radio Duty Cycling
	Without Radio Duty Cycling
	Configuration

	Integration into Contiki
	The Contiki Operating System
	Network Stack
	BLEach

	Seamless Integration into Contiki's Network Stack
	ZigBee
	Bluetooth Low Energy

	The Contiki CTC Radio Driver
	File Structure and Location Within Contiki
	Configuration
	Adaptation to the Duty Cycle
	Implementation

	Evaluation
	Experimental Setup
	Validation
	Throughput
	Theoretical Evaluation
	Practical Evaluation
	Summary

	Energy Consumption and Memory Footprint
	Adaptation to Different RDC Mechanisms
	Changing Configurations
	Robustness to External Interference

	Conclusion & Future Work
	Conclusion
	Future Work

	Appendices
	Wireless Technologies
	ZigBee
	Bluetooth Low Energy

	Hardware
	Texas Instrument multi-standard CC2650 LaunchPad

	Additional Definitions of Energy Bursts
	Bibliography

