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Abstract

As transmitting information by means of wireless digital communication grows more and more
demanding, new possibilities of optimizing data throughput are being explored. In this specific
case, the applicability of blind channel equalization – a certain kind of adaptive technique –
is examined to improve data transmission in RFID systems. The given RFID application is
specified under ISO-14443. Very high bitrate transmission (VHBR) from card to reader is the
main research interest. Classical adaptive equalizers are impractical in this context, as they
require training sequences, whereas blind equalizers do not. A sophisticated RFID system anal-
ysis reveals significant properties about coupling behavior and pole-zero dynamics. Based on
these insights, a discrete-time baseband system model is derived for general equalizer testing.
After a review of potential equalization methods and their attributes, a new blind equalization
algorithm is proposed. A general modification, also suitable for other blind equalizers, is con-
tributed in this thesis: It resolves issues of undesired local minima caused by using real-valued
constellations (like BPSK) in combination with complex-valued channels and/or equalizers. Its
validity is verified by simulation. The performance of the new equalizer (wNCMA) is evaluated
in terms of bit error rate (BER) and compared to the MMSE equalizer (which is theoretically
optimal, but impractical under ISO-14443, and thus used as a simulation benchmark only). The
results place the wNCMA’s performance close to the MMSE’s for a wide range of system cou-
pling values. Propositions to resolve expected practical issues are made. Simulations have been
implemented in MATLAB. In summary, this thesis offers promising new equalization methods
for improving RFID technology at VHBR.

Tags: Digital Communication, Adaptive Channel Equalization, Blind Deconvolution,
Tags: CMA, RFID, VHBR, ISO-14443, Baseband Channel Modeling, MLS, IRS
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Thesis: RFID Channel Equalizer

1
Introduction

”A good engineer is always a wee bit conservative, at least on paper.”
– Montgomery Scott

Technology nowadays is advancing faster than ever before – and communication plays a vital
role, both as an enabler and a hallmark of this progress. Communication around the globe,
immediate and at any time, has become a “natural” part of everyday life. Beyond inter-human
communication, electronic technologies are used increasingly to enable all kinds of devices to in-
teract and exchange information with others of their kind. Our surroundings thus are becoming
more interactive, more intelligent, often more pleasant to live in, as communication technology
makes many of our daily activities less time-consuming and more effective.
A prominent example of such technologies are contactless smart cards or tags. These are ob-
jects small enough to be carried around (like common credit cards) or to be attached to cargo
containers in order to have logistics processes run more smoothly and efficiently. Contactless
payment is made possible by specially secured bank cards, reducing the transaction time at the
checkout counter to less than five seconds. Similar cards are used to grant access to public
transportation “in no time”.
Although various products are readily available and applied in numerous fields (pet tracking
and identification, measures against shoplifting / car theft, security for building access, control
of industrial processes, medical applications), this technology area is still young and full of op-
portunities in research and functional improvement. Is it possible to tweak this technology so
that it becomes even faster, smaller, safer, more robust, less expensive. . . ?1

This thesis explores the just presented question by combining RFID (Radio-Frequency Iden-
tification) technology with advanced digital signal processing techniques subsumed under the
name Blind Equalization. The focus lies in speed: RFID communication, as defined in the
ISO/IEC-14443 standard, includes data rates up to 848 kbits/s. Amendments to define higher
bitrates (called VHBR or VHDR = Very High Bit/Data Rates) are still a matter of open dis-
cussion. System properties such as inductive channel coupling have a significant impact when it
comes to VHBR transmission. Special measures are called for in order to eliminate or at least
reduce the impact of interference and thus to facilitate error-free transmission of information.
This is where channel equalizers surface. The chosen approach of blind equalization – and the
advantages and restrictions that come with it – are described prior to the hypothesis formulation
(Section 1.2) and examined in detail in Chapter 3.

Before the hypothesis can be stated, a short but relevant context about RFID technology is
given, followed by a brief explanation of what “blind” means in conjunction with equalization.

1 Keeping in mind fears and concerns about data abuse and total supervision, research in this field is a delicate
matter. There lies a great responsibility in making sure all data is protected from unauthorized access, and
in educating the public what can or cannot be done with RFID technology. The scope of this thesis within
ISO-14443 norm is not fit for total surveillance (because the range is less than 10 cm), and accomplishing higher
datarates by equalization may even benefit encryption.
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1 Introduction

1.1 Context

The information given below is based on [1], in which additional as well as more detailed infor-
mation about the topic is provided.

1.1.1 RFID - Radio Frequency Identification

RFID technology is usually based on the physical principle of inductive coupling. When electric
current flows through an inductor (coil) L1, a magnetic field builds up in its vicinity. If the
current changes over time, the magnetic field also changes according to the laws discovered by
Faraday and Maxwell. Now, if there is a second inductor L2 close to the first one, the presence of
the changing magnetic field will induce a current in the second inductor, which in turn produces
its own magnetic field. The two fields merge, and the interaction of L1 and L2 is then called
mutual inductance:

M = k
√
L1L2 (1.1)

The parameter k indicates how strong or weak the coupling is, it is a relative measure (k ∈
[0, 1]). Value 0 means L1 and L2 are not interacting at all (either due to infinite distance or
shielding). At value 1, both inductors possess an identical magnetic flux; this special case is the
basis for the ideal transformer. In RFID applications k may approach 1 if the card touches the
reader antenna, but values lower than 1 are the common case. Practical couplings may range
down to 0.01 or even lower.

Figure 1.1: Load modulation process between RFID reader and transponder (card). Direct copy of [1], trans-
lated to English

As long as coupling is just sufficient, energy can be exchanged between the two inductors.
The chip on the card – or similar object, “card” in the following – uses the voltage induced
by the reader as its own power supply. The transponder is then called “passive”. “Active”
transponders include a (miniature) battery as chip power supply, but still require the interactive
power of the reader to be able to transmit its response.

RFID devices use the magnetic field as communication channel. The reader device generates a
carrier frequency, for example a 13.56 MHz sine wave. This electrical wave causes a current flow
in the reader antenna – regularly changing its flow direction, thus producing an electromagnetic
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1 Introduction

field. The wavelength of fcarrier = 13.56 MHz is λcarrier = 22.12 m, which means transmis-
sion takes place in non-radiative (reactive) near-field2, where the magnetic field component is
clearly dominant. Beyond the near-field, inductive coupling is not possible: the radiating elec-
tromagnetic waves have no retroactive inductive effect on what happens in the near-field. This
communication strategy is thus inherently resilient to EM-interference from the outside.

The reader detects if a card enters its field. It then signals the card to establish a commu-
nication link and subsequently requests a response signal from the card. The card responds
via load modulation, which means it changes its own load resistance according to some binary
code signal (using the transistor shown in Figure 1.1). This change influences the card’s an-
tenna current and thus the overall magnetic field. In terms of communication theory, this load
modulation results in the carrier signal being amplitude-modulated according to the card re-
sponse signal. The reader can detect these (subtle) signal variations at its antenna and – as
shown in Figure 1.1 – reconstruct the card message by (bandpass) filtering, amplification, and
demodulation procedures.

1.1.2 ISO/IEC 14443: Overview

RFID applications using 13.56 MHz are standardized in the ISO/IEC 14443 norm. It is labled
Identification cards — Contactless integrated circuit cards — Proximity cards. Proximity indi-
cates operating distances up to 10 cm. The norm currently3 contains four parts, of which the
second is most relevant to this thesis. The contents of the other three are summarized now,
following a more detailed description of Part 2.
Part 1: Physical characteristics [2] describes six classes of card dimensions, antenna locations,
as well as tolerances, and material and robustness demands (bending, breaking, EM radiation);
Part 3: Initialization and anticollision [3] defines rules for a standardized communication pro-
tocol between reader and card (frame format, timing and states);
Part 4: Transmission protocol [4] specifies the activation of the protocol and block transmission.

Part 2: Radio frequency interface [5] defines the range of magnetic field strength (1.5− 18 [A/m])
and introduces two types (A, B) of communication signal interface. Common to both types is
the following quoted requirement (see [5, sec.7]):

The PCD modulates the amplitude of the alternating magnetic field strength with
modulation pulses in order to transmit data from the PCD to the PICC.
The PICC loads the alternating magnetic field with a modulated subcarrier signal
(load modulation) in order to transmit data from the PICC to the PCD.

Bitrate [kbit/s] fsub [kHz] Subcarrier periods (T) per bit

106 848 8
212 848 4
424 848 2
848 848 1
1695 1695 1
3390 3390 1
6780 6780 1

Table 1.1: Type A/B: Subcarrier frequency definitions corresp. to bitrates

2 near-field region boundary defined as distance d < λ/2π = 0.159λ, here d < 3.5 m
3 revised version of 2016
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1 Introduction

PCD means reader, PICC means card. Relevant for this thesis is the PICC to PCD direction
under Type B specification. In initialization phase, every card must respond at rate 106 kbit/s.
Afterwards, the card message may be transmitted at higher rates corresponding to fcarrier- or
fc-fractions of 2 (see first column in Table 1.1). The subcarrier frequency fsub is always at least
848 kHz (fc/16), which means lower bitrates are achieved by stretching the duration of one bit
over several subcarrier periods (see first plot in Figure 1.2) Bitrates higher than 848 kHz are
labled “VHBR”, which stands for very high bit rate.

The subcarrier is BPSK (binary phase shift keying) modulated. The bit representation is NRZ-L
(non-return-to-zero level), i.e., the bits assume states ±1. According to these states, the sub-
carrier phase is either at 0 ◦ (+1) or at 180 ◦ (-1). In VHBR, where bitrate and fsub are equal,
the modulation reduces to a special form of BPSK called Manchester coding. Figure 1.2 shows
examples corresponding to Table 1.1.

Figure 1.2: Type B BPSK modulated subcarrier signals for several bitrates
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Timing is also defined: After a guard time period the subcarrier is generated for at least
80/fsub seconds for synchronization. This is equivalent to continuously sending just logical “1”
during that time interval. Synchronization ends with a transition from logical “1” to “0” (first
occurance of phase change). Then, the message starts.

1.1.3 ISI: Intersymbol Interference

Usually, received message signals do not look like well-behaved square pulses anymore. Traveling
through the “communication channel” distorts them. One effect of this distortion is called ISI:
A pulse is not confined to its own time slot, but instead expands (both directions possible) and
influences neighbouring pulses (see Figure 1.3).

Figure 1.3: The ISI effect

1.1.4 Blind Deconvolution

ISI is undesirable. Equalizers are applied to counter ISI. If such an equalizer is linear, and
the communication channel is also assumed to be LTI4, the process of ISI removal is called
deconvolution. Explanation: The original signal convolved with the channel response results
in a distorted signal. In order to undo this (to restore the original square pulses), a second
convolution with a filter response is applied, which is supposed to offset the effect of the first
convolution – and is thus called deconvolution. To achieve this, the channel response must be
known.

Common adaptive equalizers solve the deconvolution problem as follows: The channel response
is not known, but the input message signal is. It is called training sequence. No information
is transmitted, but now the input and output of the channel are known, so that the channel
response can be identified. The procedure is called system identification. In a final step, the
newly gained knowledge about the channel can be used to design a filter for deconvolution – or
if used in real-time, to continuously adapt a filter to a varying channel.

4 linear and time-invariant
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The adjective blind means that the channel response is not known, neither is the input signal,
but deconvolution is attempted anyway. At this point, the task becomes much more complex.
Proper modelling and statistical assumptions are necessary to – at least partially – compensate
for the unknowns. Details on how to do this are given in Chapter 3.

1.2 Complication

The general transmission concept is well defined by the ISO-14443 standard. There are “grey
areas”, however, which are purposely formulated cursorily and thus allow various approaches for
implementation or invite research for improvement. VHBR is such an area. For each standard
bitrate up to 848 kbit/s, the subcarrier of 848 kHz is used (see table 1.1). It is spaced just far
enough from the carrier to be filtered and demodulated separately, and still close enough to
not run into severe phase distortions. And it is quite a static situation, so the system can be
adjusted to optimally support the 848 kHz subcarrier.

Not so in VBHR. As can be seen in Table 1.1, the subcarrier changes along with the bitrate. The
signal shape is then equal for all VHBR signals (which can be advantageous; see Figure 1.2), but
the channel characteristics are completely different for each new subcarrier. Especially phase
changes around the carrier are an issue. They are related to the coupling between card and
reader (see also Chapter 2). Resonances in the channel are coupling distance-dependent, which
means they can appear in a wide area around the carrier frequency – posing a particularly chal-
lenging situation in terms of equalization.

The “easy way” of a static filter is clearly not an option. The adaptive method briefly mentioned
in Section 1.1.4 seems much better suited, it can track changes in the system, as described in
the previous paragraph. Unfortunately, using training sequences in this context is infeasible,
because (1) the information rate will significantly decrease if every card response additionally
contains the training sequence, (2) activation power and thus transfer times are limited, and
most importantly (3) compatibility becomes impossible: none of the already existing cards will
have that training sequence on it, since the current ISO-14443 protocol does not exhibit training
sequence support.

1.3 Hypothesis

In order to address the challenges outlined in Section 1.2, and building on the inspiration from
literature research (see Section 1.4), this thesis explores if RFID communication (card-to-reader
transmission) can be improved by

I applying a digital blind channel equalizer to the given RFID system

I using insights from system analysis to tune equalizer settings

I using knowledge of input signal properties

and is subject to the following conditions/restrictions:

. compliance with the ISO-14443 standard

. focus on VHBR

. no training sequence

. real-time operability

– 11 –
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. low implementation cost

. AWGN � ISI

More specifically, research shows that the Constant Modulus Algorithm (CMA) is a promis-
ing candidate for this specific application. The focus of studies will thus be on CMA or similar
equalizers. Their convergence behavior is also of interest. Evaluation measures will be based
on bit error rate (BER) in comparison to the (to this case non-applicable) adaptive MMSE
equalizer.

1.4 Present research status

Across the reviewed literature, Yoichi Sato is credited for proposing the first blind equalizer in
1975 [6]. Since then, several other methods have been proposed in [7–11] and have been enthu-
siastically applied first and foremost to wireless communication systems, specifically for chan-
nel equalization, antenna array beamforming, and multi-user detection and separation. Other
application areas include underwater acoustics, seismic data deconvolution, and digital image
restoration to name a few. Recently, blind methods have also been associated with Kalman
filters and neural networks.

The literature review exposed the Constant Modulus Algorithm (CMA) as the most com-
monly used blind method in the context of digital communication. CMA is frequently chosen
due to its general robustness when PSK (intended) or even M-PAM / M-QAM (collateral,
comp. [12]) modulation schemes are used, and due to its simplicity and low computational cost.
It appears in various modified versions, as researchers often go for customizing the basic algo-
rithm to specific use cases. Paper [13] is recommendable for its comprehensive compilation of
information about blind equalization in general.

CMA has been applied to RFID, but in an entirely different context. Ultra-high frequency
(UHF) RFID is the center of interest in [14], based on the “Gen2” standard proposed by EPC-
global5, operating about just below 1 GHz. Given wavelengths around 30 cm, near-field effects
are of no concern. ISI caused by multipath fading is the dominant factor here, since operating
distances range from 1 m (minimum!) up to 15 m or more. Communication channel character-
istics are thus very different in this case. Otherwise, the general structure of the receiver and
HF interface, and the application as equalizer for the received card (tag) signal, show similar-
ities to this thesis. Bit error rate (BER) is used as the main evaluation measure, but there is
no reference to other equalizers; the CMA is merely tested against the unequalized channel (it
obviously performes better).

System modelling has been done in 13.56 MHz-RFID, but limited to the communication di-
rection from reader to card. Research in papers [15, 16] has been encouraged by 2011/2012
amendments in the ISO-14443 standard, which states6:

There is a need for both ASK and PSK methods for all data rates (e.g. fc/8, fc/4,
fc/2, 3fc/4 and fc) in order to optimize for local requirements. Worldwide Interop-
erability shall be achieved by mandating both methods for the PCD and allowing
the PICC to adapt to local requirements with different methods. In order to keep
the specification consistent both technologies ASK and PSK shall be specified in the
same amendment [...]

5 An organisation for standardization (like the ISO), but on a global level and with main interest in global norms
for RFID product identification tags

6 JTC1/SC17/WG8: http://wg8.de/wg8n1854_Disp_of_Comments_on_FCD_14443-4_FPDAM2_VHBR-ASK.pdf
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1 Introduction

Paper [15] states that with the PSK VHBR protocol it is possible to implement training se-
quences, fostering the application of an adaptive DFE7 on the card’s chip. Paper [16] examines
this adaptive equalizer, assumes a linear channel and equalizer, and shows simulation results.
Paper [17] uses a nonlinear channel model (also reader to card direction) and applies a ternary-
state MLSE (Viterbi) method, assuming the channel length is always 4 (taps, coefficients).
Equalization in this direction appears to be easier, because the signal is modulated onto the
carrier directly (not onto subcarriers as in the opposite direction examined in this thesis).

System modeling in card to reader direction has implicitely been done in [18], where a (direction-
independent) state-space representation of a typical 13.56 MHz-RFID circuit is derived. Con-
version to more specific transfer function models (dirction-dependent) is also shown. Insights of
this paper will yield the starting point for the system analysis in Chapter 2.

Studies in the card-to-reader ISO-14443 context have been conducted in [19], which focuses
on increasing the transmission data rates by either increasing the number of modulation states
(M-PSK) or increasing the subcarrier frequency. ISI equalization is also considered, although
both modeling and filtering are done in the passband, which leads to sample rates of up to 32-
times 13.56 MHz. Evaluated methods include a passive filter (analog), an IIR bandstop filter
(digital), a zero-forcing FIR filter (digital, based on model inverse), and adaptive RLS8 (digital,
training sequence). The need for adaptive equalization due to changing channel characteristics
is duly noted. Blind equalization or baseband filtering approaches are not mentioned.

1.5 Rationale

As a conclusion to the findings and researches so far, the significance accompanying this very
specific research topic becomes clear. Apart from the fact that CMA has not been applied or
tested as stated in the hypothesis (see Section 1.3), several other reasons motivate the work of
this thesis, including:

� Research has shown that CMA has been applied successfully in similar, related areas of
communication.

� Investigation of CMA specifically makes sense due to its low implementation cost.

� Analysis of the RFID system can help resolve issues in similar systems or be used to design
even better equalizers in the future.

1.6 Roadmap

Chapter 1 set out to introduce RFID technology, arguing for the necessity for equalization.
The hypothesis has been stated. Chapter 2 presents a detailed system analysis of a typical
RFID schematic, a system identification method to support the analysis, and a system model
based on these insights. Chapter 3 presents blind equalization methods, their properties and
behavior, and requisite theory in digital communication and signal processing. A new algorithm
designed for the given RFID system is proposed, based on a mixture of existing algorithms and
contributing new modifications. Chapter 4 presents details of the implementation and shows
performance results. Chapter 5 summarizes and concludes the thesis.

7 decision feedback equalizer
8 recursive least-squares
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2
System Analysis and Modelling

Communication systems are usually composed of various processing steps, forming a chain in
which the source data is repeatedly “transformed” into different signal representations until it
arrives at the receiving end (see Figure 2.1). Errors occur during transmission over the channel.
Source and channel coding intend to make the transmission most efficient as a trade-off between
information density and redundancy (added e.g., for bit error detection, error robustness towards
specific channel types, or encryption).

source
data

source
coding

channel
coding modulation

channel

received
data

source
decoding

channel
decoding

demodulation

Figure 2.1: Block diagram of a common data transmission process

However, before addressing any notion of efficiency or general improvement, in this chapter we
take a look at what creates those errors in the first place. Specifically the right part of Figure 2.1
will be examined, containing modulation, the channel, and demodulation. These three blocks
in the chain are defined by the underyling physical RFID circuit, which explicitly represents the
high-frequency behaviour (meaning in the passband). This chapter will arrive at an equivalent
representation combining these three blocks in one block. This form of system representation
is more convenient for equalizer evaluation; it is called equivalent baseband representation. The
intention is to pass a binary message input signal through this equivalent system (by convo-
lution → filtering) so that the received output signal is the (already demodulated) message –
distorted by the system (see also Figure 3.1 for an illustration). By this approach, the system’s
influence on the message can be examined in a most distinct way.

Starting with the analysis of the representative electric circuit of the RFID system (section 2.1),
which is given as a state space model (see Section 2.2.2), fundamental insights are attained that
are necessary to proceed from this rigorous state space model to a reduced model adequate for
this thesis’ purposes. Section 2.2 describes the process of deriving the equivalent baseband model
(still based on the state space model) and implies the importance of complex numbers in this
context. In Section 2.2.4, the state space approach reaches its limits regarding its intended base-
band conversion validity. As a consequence, the system needs to be reexamined from a second
perspective: System identification is applied according to the just mentioned “input—system—
output” principle using the MLS and IRS methods (Section 2.3). Similarities and differences
to the original circuit model are established. Finally, a simplified discrete-time baseband model
will be constructed for equalizer testing (Section 2.4), which is based on the system identification
results.
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2 System Analysis and Modelling

2.1 HF Circuit Analysis

The basics of RFID transmission have been summarized in Section 1.1.1. Elements of the system
in Figure 1.1 will be presented below in the form of an electrical network schematic. The analysis
of electrical networks is a mathmatically well established means of determining all currents and
voltages at each component. It is a very detailed and exact way of describing the system in
continuous time.

READER

13.56 MHz

R1
C1

C2

R2

Vout C3 R3

C4

R5
C5

C6

RL1

L1 ← k →

CARD

L2

RL2

C7 RIC Rmod

Figure 2.2: RFID circuit schematic

Figure 2.2 shows the RFID circuit in consideration as a linear system. Linear implies that it
is built of well-behaved components, their interaction is then defined by a system of simple
differential equations. These equations can be found by nodal or mesh analysis, using the laws
of Kirchhoff, the principle of superposition, and the component-specific equations. Another
advantage of linear networks is that one (or a group of) component(s) may be exchanged by
mathmatically equivalent components so that certain features of the circuit can be analysed
more easily (comp. Norton/Thévenin theorems). Advanced (active) components can occasion-
ally be represented by linear elements as well.9

The variable resistor Rmod is such a substitution. In Figure 1.1 the transponder card con-
tained a chip (integrated circuit, IC) and a transistor. These (nonlinear) elements have been
replaced by two resistors (RIC , Rmod), which sufficiently model the system’s behaviour within
the frequency range of interest (13.56 MHz). RIC represents the constant resistive load of the
integrated circuit as it will affect the reader’s side. In parallel, Rmod models the switching be-
haviour of the transistor10. Here, the expression “load modulation” becomes evident once again:
The card changes its own internal resistance – a quantity the reader identifies as a load – and
by changing it in a defined way, for example,

� Rmod = 1kΩ → logic low state (0)

� Rmod = 0.5Ω → logic high state (1),

the reader can detect and demodulate these load changes of the card. As the communication
direction from card to reader is examined in this thesis, these binary state changes are considered
to be the input signal to the system. However, in order to explain the circuit properly, the
process that leads to the appearance of the input signal needs to be outlined first.

9 at least in a simplified context, as an approximation
10 taking out of account the transient behaviour, assuming transition speed is orders of magnitude faster than
Ts = 1/fs = 1/fcarrier
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2 System Analysis and Modelling

2.1.1 Time domain behaviour

It starts with the voltage source on the left end of the schematic, which generates the sinusoidal
carrier frequency of 13.56 MHz. This is quite important to note, because with this source
deactivated the entire circuit is off. Reader and card are completely inactive, no communication
is possible. But as soon as the carrier is activated a current – oscillating at 13.56 MHz – flows
through every network element – most importantly through the reader’s antenna L1 (inductor).
In consequence, a magnetic field is generated, fulfilling the equation (comp. [20, p.347]):

dΦ(t)

dt
= L

di(t)

dt
= v(t). (2.1)

The magnetic flux Φ follows the change of current over time. The flux is related to the field by
(see [21, p.45ff])

dΦ = B · dS ⇒ Φ(t) =

∫
S

B · dS (2.2)

where the generic reference surface S (i.e., the surface spanned by the antenna) is divided
into infinitesimal surface elements dS. Variations in flux and field (over time) are considered
at each of these tiny segments separately. The field B will thus also oscillate at 13.56 MHz,
since the surface is constant. As a side-effect, an electric field E additionally emerges due to the
Maxwell-Faraday Equation (2.3, see [21, p.49f.])); however, it only has an effect in the far field
(d > 3.5 m in this case, see Section 1.1), yet it will still radiate electro-magnetic waves. For this
reason, the ISO standard [5] strictly limits the field strength.

−δB
δt

= ∇×E (2.3)

If the card’s antenna L2 is in range, both system parts become coupled inductively. The
magnetic field B is “attracted” by the arriving antenna, the flux induces the oscillating current
of L1 into the card’s circuit at L2. To quantify the interaction of the two system parts, the
coupling factor k is defined as:

k =
M√
L1L2

k ∈ [0, 1] (2.4)

Since an electric current now flows through the card’s circuit, the card can draw power from
it. The internal chip is activated. To boost the energy transfer, the resonance principle is used:
Adding capacitances with adequate values tunes both circuit parts to have a common resonance
frequency (details about frequency behaviour can be found in next Section 2.1.2):

ωres =
1√
LC

⇐⇒ fres =
1

2π
√
LC

(2.5)

If this frequency is dimensioned to be equal (or close) to the generated carrier frequency, the
oscillating energy is entirely “caught” between inductor and capacitor. In case of the reader
circuit, the significant two elements form a series resonance (mainly L1, C5), the effect of which
is explained in the following: Taking turns, the inductor stores energy into its magnetic field
until no current flows through it anymore. The voltage reaches a maximum (that may well be
magnitudes higher than the one generated by the voltage source). Then the capacitor – due to
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the high voltage – starts building up an electric field between its plates → the capacitor’s way
of storing energy. As the electric field grows, current will again flow and as a result the voltage
decreases until the electric field is complete – and the inductor’s magnetic field vanished. At this
stage, all energy is stored in the capacitor. A maximal current now flows through the circuit
(also magnitudes higher, like the voltage), causing the inductor to build up its magnetic field
again. This recurring energy shift happens at 13.56 MHz. If both card and reader are tuned
to this frequency, the resonance greatly benefits both coupling range and energy transfer to the
card.

The card’s circuit is also a resonant one, but it forms a parallel resonance including L2, C7, and
both RIC and Rmod (see Figure 2.2). As a result, the card’s impedance will be at its maximum
at 13.56 MHz. In turn this means the card acts as a significant load, thus is more likely to
consume the energy provided by the reader.

Currents and voltages can become uncontrollably high in resonant networks. Hardware may
easily be destroyed as a consequence. Protection measures are necessary: The chip (IC) on
the card should be able to compensate possibly harmful currents. So besides changing its own
internal resistance to modulate a message, the IC needs to change its own resistance to absorb
sufficient supply current (or identically, keep the operating voltage steady around 3− 5 V), but
beyond that limit any extra current via a (variable) shunt resistor. This functionality is also
adequately represented by the two resistors RIC and Rmod.

Now the card modulates the binary response signal by switching the resistance of Rmod. The
switching is done in synchronization with the carrier frequency of 13.56 MHz. The chip on the
card can produce clock signals that correspond to fractions of 2 of the carrier frequency. Out of
these signals, the subcarrier (switching) frequency is obtained. Possible frequencies have been
shown in Table 1.1. The message is encoded by changing the phase of the subcarrier according to
a given bit sequence (compare Figure 1.2). Because of the synchonization the switching ideally
happens during the zero-crossing of the carrier frequency. When measuring the oscillating
current anywhere in the circuit, the visible effect will be a small amplitude modulation in the
carrier waveform (bottom trace of Figure 2.3). Amplitude limits of the modulation for each
card class are given in the ISO-14443-2 standard [5] in addition to the minimum modulation
level a reader must be capable to deal with. These limits depend on the magnetic field strength.
The card’s circuitry is required to adapt its internal impedance so that the load modulation
amplitude (see ISO 10373-6) of the response signal is always only slightly above the reader’s
detection threshold.

Figure 2.3: Load modulation process of card signal by subcarrier phase shift, fsub = 848 kHz
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The remaining network of resistors and capacitors in the reader has a filtering effect on the elec-
trical signal. The parallel capacitors C4 and C6 are used for impedance matching in conjunction
with C5 (forming a Π-network with overall capacitance Csum), which intensifies the resonance
at the reader’s antenna. At the node between R2 and C3 the voltage (Vout) is tapped and sent
to post-processing units (more filters, demodulator, DSP or FPGA hardware) to reconstruct the
card’s bit sequence.

2.1.2 Frequency domain behaviour

The interaction of resonance and inductive coupling is best comprehensible in frequency do-
main, i.e, by analyzing the frequency spectrum. The following explanation intends to show the
movement of the resonant peaks in the spectra of Figures 2.4, 2.5 and 2.6. The key events of
this movement are shown out of the perspective of the variable coupling factor k.

When infinitely apart (k = 0), both reader and card have their separate resonance frequencies.
Each individual circuit is tuned to f = 13.56 MHz according to (2.5). Strict equality is practically
unrealistic but a sensible starting point for this explanation:

ωres,1 =
1√

L1Csum

!
= ωres,2 =

1√
L2C7

(2.6)

As the card approaches the reader (e.g., k = 0.001, see Figure 2.4), the coupling is not strong yet
(“loosely coupled”), so the individual resonances dominate over the coupling effect. However,
the presence of the source-generated carrier current/voltage amplifies this coupling effect. So in
spite of a low coupling factor k an energy transfer to the card is possible. On the downside, as
the coupling factor stays nominally low, a change in the card’s resistance (Rmod) will be hardly
noticable on the reader’s side (reader-side load will be indistinguishibly small, regardless of the
value of Rmod). A remark: the bandwidth in which the resonant amplification effect occurs is
very narrow. If the subcarrier frequency is high (as in VHBR, where the frequency peak would
be far away from the dotted line), the resonance will exhibit an opposite effect and instead
attenuate the modulated subcarrier signal response (e.g., if a subcarrier was to lie at 5 MHz in
Figure 2.4, it would be attenuated by 10 dB).

As the coupling grows stronger, the influence of Rmod becomes evident. Looking at the black
dotted graph first (in Figure 2.5), there is a slight movement to higher frequencies. The move-
ment continues (in Figure 2.6) with increasing coupling factor k. The card is a parallel RLC
circuit. If the resistance (in case of the black curve: Rmod = 1.3Ω) is small, the quality Q of the
parallel circuit is low. At resonance, L2 and C7 are equivalent to an open circuit, so the load
detected by the reader circuit merely consists of Rmod. The series resonance on the reader’s
side remains dominant due to the low Rmod of the card, but the increasing load on L1 (due to
increasing k) gradually increases the single resonance in frequency.

Looking at the gray graph of Figure 2.5, the bandwidth of the resonance is higher. This phe-
nonenon is called “critical coupling”, and is explainable only by taking into account the coupling
factor k and the presence of the resonance frequency (carrier source active)11. Rmod increases
to 2kΩ, thus the quality Q of the parallel resonant circuit increases:

Qparallel = R ·
√

C
L (2.7)

11 The phenomenon of under-critical, critial and over-critial coupling occurs exclusively in tuned (resonant)
inductively coupled networks; see [22] for further details.
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Figure 2.4: Bode Diagram: Vout resonances for k = 0.001

Figure 2.5: Bode Diagram: Vout resonances for k = 0.15

Critical coupling is defined by both Q and k. In non-resonant coupled systems, the optimal
coupling is k = 1. In resonant systems, the optimal (critical) coupling is defined as kQ = 1, so
that a high quality resonance may reach the optimum while k is still significantly lower than 1.
In the frequency magnitude spectrum, critical coupling shows a maximally flat response (reso-
nance bandwidth and gain are both maximal then).

However, as the critical coupling is already achieved at a low k, further increasing k at this
point results in what is called “over-critical coupling”. It is defined as kQ > 1 and the effect
can be seen in Figure 2.6: The formerly optimal broad bandwidth falls apart and splits up into
two separate resonance frequencies, one moving towards lower frequencies, the other towards
higher frequencies. An increase in k moves both resonances farther away from the original res-
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Figure 2.6: Bode Diagram: Vout resonances for k = 0.35

onance frequency (fc, dashed vertical line). They have different magnitudes; this is mainly due
to the difference of inductance between L1 and L2

12. As can be seen in the overcoupled case, a
load modulation via subcarrier benefits from a generally wider spectrum bandwidth. The two
resonances are, however, not at all guaranteed to have a positive, amplifying effect, and their
positions vary over an extensive frequency range with varying k. Additionally, the responses for
the two cases of Rmod are now most dissimilar, especially their phase responses. When starting
to switch Rmod for message transmission, severe phase distortions will be the result.

At this point it becomes obvious that equalization does make sense. In the case of low coupling,
the resonance is sharp, which corresponds to a narrow bandwidth. While positively affecting
the energy supply, the resonance causes oscillations (“ripple”) in the time-domain signal (the
message signal), resulting in severe ISI at that end. In the case of high coupling, the oscillating
tails grow shorter (corresponding to a “larger” bandwidth → less ISI), but phase variations
disturb the transmission now.

Equalization in the passband is costly. If analogue circuitry is to be used, many additional,
low-tolerance components will be required; complexity grows and energy efficiency becomes
worse. If digital hardware (DSP/FPGA) were to be used, very high sampling rates would be
required if the equalizer was to be applied in the passband directly. It is thus common practice
to apply the equalizer in baseband – meaning after demodulation. Sampling frequecies may be
chosen much lower, so as to sufficiently sample the subcarrier signal instead.

The following section describes how the analyzed high-frequency network can be translated to
a baseband representation without losing information about its behaviour. This representation
is therefore denoted as “equivalent” baseband.

12 due to antenna dimension, and windings “N”
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2.2 Conversion to Equivalent Baseband

Section 2.2.1 gives an overview of down- and upconversion and necessary related background.
More details can be found in [23,24]. The basic form of the system model – relevant for Chapter 3
– is derived. The following Section 2.2.2 then describes the actual conversion; state space model
and transfer function details are refered to in [24,25].

2.2.1 Conversion principle and objective

The starting point of the translation is the physical signal. It is located around the carrier
frequency of fc = 13.56 MHz. Since there is a sharp resonance of the system, any frequency
content outside this resonance region is attenuated. Because of its bandpass characteristic, a
signal like this is called the passband signal. It is disturbed by the passband system, which is
also having its main effect in the very same frequency region. This is the actual physical process,
so these signals and systems are real-valued. The situation is easily manageable in terms of time-
frequency relations, for the Fourier transform offers a benign symmetry (comp. [24, p.47ff., 56f.]):

� The Fourier transform of a real even function is real.

� The Fourier transform of a real odd function is imaginary.

� The Fourier transform of an even function is even.

� The Fourier transform of an odd function is odd.

In summary, the four theorems imply an overall Hermitian symmetry, meaning g(x) = g∗(−x),
where the ∗ signifies the complex conjugation. This is important to note, because the real signal
or system is composed of the passband spectrum at positive frequencies around +fc (as shown
in Figures 2.4, 2.5 and 2.6, blue curve in Figure 2.7), and also around the negative carrier of
−fc. The rules of symmetry will remain valid, even if the following steps are taken to arrive at
the equivalent baseband representation.

f

H(f)

fc−fc

PassbandBasebandMirror Copy

Figure 2.7: Fourier spectrum symmetry for real-valued signals and systems

1. Remove the mirror copy at −fc

2. Shift the passband at fc to baseband so that it centers around f = 0

The order of steps is interchangeable. If the shift is done first, the mirror copy can still be
removed (only now it is located at −2fc instead). Besides, the process is reversible: The base-
band representation can be shifted back to fc and a mirror copy set up at −fc without any loss
of information (mathmatically). The procedures are denoted downconversion and upconver-
sion respectively.

Figure 2.8 visualizes both procedures as signal flow graphs. The signal s(t) is the real-valued
passband signal, s̃(t) is the complex-valued baseband equivalent. P (f) keeps only positive fre-
quencies and sets all content at negative frequencies to 0. The operation is also known as Hilbert
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s(t)
P (f) =

{
1 f > 0

0 f < 0

e−j2πfc

s̃(t)

e+j2πfc

Re{·} ⇒ S(f)+S∗(−f)

s(t)

Figure 2.8: Signal flow concept of downconversion (left) and upconversion (right)

transform. After this block (and before the multiplier), the signal s(t) is still in the passband, but
has no negative frequency content and is thus non-symmetric in frequency domain – and due to
Fourier’s theorems complex-valued in time domain. In this state, the signal is called “analytic”
signal. The multiplication by the complex exponential e−j2πfc shifts the analytic signal down
to baseband. This operation can be interpreted as a demodulation-like process, yet it contains
more information than an actual demodulated signal (which would be just real-valued). The
resulting signal is, however, similar to a demodulated signal in several aspects, for this reason
it is often called “signal envelope”.

When the envelope signal is written down in Cartesian coordinates (a + jb), the two parts
are named in-phase and quadrature components in the context of communications. This nota-
tion will be important in Chapter 3, but it is convenient to be mentioned right here within the
consistent background description:

s̃(t) = sI(t) + jsQ(t) sI(t) = Re{s̃(t)} sQ(t) = Im{s̃(t)} (2.8)

In reverse (see right figure 2.8), the envelope signal is shifted up again by multiplication with
e+j2πfc , and the negative frequency content can be restored by either taking the real part of
the analytic signal (which generically restores the mirror copy) or (equivalently) by adding the
mirror copy manually (+S∗(−f)) or by using Hilbert transform once again. The concept of
upconversion is the mathematical basis for a modulation, the “exact” solution which practical
modulators are implemented on. The same is true for downconversion and demodulators.

As this chapter is really about systems and not about signals, the downconversion will con-
sequently be applied to systems, the previously analyzed system especially. This is permissible,
because from the signal processing point of view, the terms “signal” and “system” are inter-
changeable – because the convolution operator (∗) is commutative [26, p.31]. The disturbance
caused by the physical high-frequency (passband) system can be modelled as a filter, applied to
the (message) signal s(t) by convolution:

sdist(t) = hpassband(t) ∗ s(t) all ∈ R (2.9)

The filtering shall take place in baseband instead. The filter hbaseband(t) is the downconverted
version of hpassband(t), thus the conversion is already included in the filter response. Obviously
this filter response is complex-valued and will usually not exhibit any symmetry. This fact com-
plicates the analysis and also the equalization later on, because many implemented analysis and
processing tools are based on these symmetry assumptions and do not support more general
(complex-valued) cases of applicattion. But the advantage of this generalization is that every-
thing can be accomplished at low frequencies: The message signals b(t) need not be modulated
onto a high frequency carrier, instead it can be directly passed through the equivalent baseband
system model which already takes into account the effect of modulation and the distortion at
high frequencies. The output is then a baseband representation of the received signal, denoted
r̃(t).
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b(t)

Hpassband(f) P (f) ej2πfc

Hbaseband(f)

r̃(t)

Figure 2.9: Signal flow graph in the equivalent baseband

r̃dist(t) = hbaseband(t) ∗ b(t) s̃, h ∈ C, b ∈ R or C (2.10)

The resultig flow graph as shown in Figure 2.9 yields a simplified structure. Only one com-
pact system Hbaseband(f) remains. The following sections of this chapter deal with finding and
quantifying such a system for the given RFID circuit. Once found, Chapter 3 will explore the
possibilities to equalize baseband systems of this kind.

2.2.2 Downconversion in Laplace and Fourier domain

The circuit in Figure 2.2 has been provided as a state space model for this thesis. As is evident
from the figure, seven capacitors and two inductors form a ninth-order state space model of the
general form:

dx(t)

dt
= Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(2.11)

The state variables forming vector x(t) are the voltages or currents at each of the nine energy-
storing circuit components. That way, the state of the entire network at any given time instant
can be computed by solving the set of differential equations according to (2.11). Matrix A is
the system matrix primarily containing information about how fast (time-unit: s−1) voltage or
current changes occur at each component. The input signal vector u(t) is weighted by the input
matrix B depending on where in the circuit the input is to be initiated. Output y(t) is a (scalar)
time signal, defined by the state x(t) weighted by the output matrix C and occasionally by a
feed-through D of the input (control) signal u(t).

By choosing the states of interest for the input (via B) and the output respectively (via C),
the general model can be reduced to a single-input-single-output state space system13, which
in turn can be converted into a transfer function (that fully characterizes the relation between
input and output). This has been done for the chosen output node of Vout (see Figure 2.2), the
carrier source as tentative input, and keeping two reference systems – for both switch values
of Rmod, which have already been shown during the analysis in Figures 2.4, 2.5 and 2.6. The
transfer function G(s) (see [25, p.49]) is defined in the Laplace (frequency) domain:

G(s) =
Y (s)

U(s)

∣∣∣
x0=0

=
L{y(t)}
L{u(t)}

∣∣∣
x0=0

= cT (sE −A)−1b + d (2.12)

13 B and C become vectors instead of matrices, and u(t) and D are scalar like the output y(t)
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It is closely related to the frequency space of the Fourier transform, in fact, the Laplace domain
is the more general one, because its frequency variable s = σ+jω is a complex variable, reducing
to purely imaginary s = jω in the case of Fourier. The Fourier representation is sufficient if only
the steady state of the system is of interest. In this thesis, however, the fast switching of Rmod
dictates the necessity of transient analysis. In order to shift the transfer function G(s) from
passband to baseband, the Laplace transform property of frequency shift is used. Since the shift
variable α is purely imaginary, this applies equally to the Fourier transform (comp. [24, p.33,65]):

g(t) · eαt c sG(s− α) with α ∈ C and Re{α} = 0 (2.13)

For this specific downconversion α
!

= jωc, where ωc is the carrier frequency in radians: ωc =
2πfc = 8.52 ·107 [rad/s]. The mathematical procedure was done in MATLAB using state-space-
(ss) and transfer-function-objects (tf), and computing the exact analytic result (not evaluated
numerically) via symbolic toolbox14. The Laplace variable s is replaced via subs()-command to
be (s−jωc) instead. After the shift, the new transfer function is evaluated in a relevant frequency
range for spectrum display (see Figure 2.10). This figure shows – exemplarily for all other k –
the shift to baseband only, which corresponds to “step 2” as explained in Section 2.2.1. The
mirror copy has not been removed yet. As can be seen in the figure, the inherent discontinuity
at frequency 0 of the passband system (blue) is still existent, just shifted to −ωc (dashed black
line). The shift operation on its own does not remove the symmetry of the original system, it
rather displaces it by a constant offset ωc. Since the original symmetry is always even around 0
in the magnitude spectrum (because the passband is real-valued), the shift will inevitably result
in an odd spectral symmetry (red curve).

Symmetry also defines the position of the poles and zeros in the Laplace plane. The passband
system (real-valued) can only have zeros and poles on the real axis or in pairs symmetrically
around it, which is denoted complex conjugation (see Figure 2.11, blue and red symbols). After
the shift, this is no longer the case. Rather, the relational axis of symmetry is displaced, so
that it lies on a line parallel to the real (horizonzal) axis (see Figure 2.11, green line). The two
poles – representing the two resonances around the carrier – and one significant zero (pattern in
the gray box) are shifted to come to lie unsymmetrically around the x-axis after the shift (same
pattern turned to green symbols).

Figure 2.10: RFID transfer function model shift (without simplification yet); for k = 0.23

14 MATLAB code for the downconversion of an exemplary RLC series resonance system is contained in Appendix
A. The RFID system downconversion works in the same way (and results are very similar for k ≪), but cannot
be included: system model data files are non-printable and proprietary.
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Figure 2.11: Downconversion by pole/zero shift and selection; k = 0.52 (poles can be clearly distinguished
then). Two procedures in one plot: 1. “Mirror copy” removal before the shift (blue and red
markers are fixed → then remove blue and red markers under the great red cross); 2. Shift
occurs first (all green markers). Either way, the remaining green markers in the figure center
(3 poles, 1 zero) are the final result.

The final step of downconversion is the removal of the “mirror copy”. This can be done either
before the shift (removing the blue and red poles and zeros in the area marked by the red cross)
or after the shift (removing the green symbols on the green line and the ones shifted out of
the plot – one green pole of the group is still visible at the very bottom of the plot). Only
those poles and zeros are kept that come to lie close to the real axis after the shift (previously
mentioned turned-green pattern), the two poles and one zero of the former blue system, and
for the red system just one pole (compare gray box). If the selected poles and zeros are close
enough to the real axis, the baseband behaviour of the system is narrowband, which means the
remaining poles and zeros can be removed without affecting baseband model accuracy. However,
selected poles moving away from the real axis as the overcoupling increases will be more and
more affected by the outlying poles and zeros, and removing them will impair the baseband
model. Figures 2.12 show this issue. Although the resonance frequencies are accurate and the
phase is correct (except the irrelevant 360◦ offset), their magnitudes are out of proportion. The
removal influenced the overall system gain and lifted the attenuation of the lower resonance.

Figure 2.12: RFID transfer function model shift for k = 0.52; shift only (left); poles/zeros removed (right)
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Modelling baseband behaviour of the system by pole and zero placement is thus a convenient
approach, especially for lower values of k where the system is not overcoupled. As overcoupling
increases, other issues arise that render the slight magnitude imbalances of Figure 2.12 insignif-
icant: The received message signal will be sampled, so will be the system distortion in it. The
upper resonance will likely move beyond the Nyquist frequency for k > 0.5, resulting in nastier
effects than a small magnitude change at a well known frequency. So in summary, it does make
sense to hold on to the Zero-Pole-Gain (ZPK) model (2.14). The continuous-time definition is
stated here, a discrete-time variant is used in the final model (see Section 2.4.1).

G(s) = K ·
∏m
i=1(s− zi)∏n
i=1(s− pi)

m ≤ n (2.14)

2.2.3 Discretization and zero/pole analysis

Both the shift-only and the reduced transfer functions are discretized for analysis purposes. The
MATLAB function c2d() converts the continuous-time transfer function model (Laplace domain)
to a discrete-time transfer function model (Z-domain) by sampling it at fs = fc = 13.56 MHz
and using the matched pole-zero method for SISO systems. In case of the shift-only model, the
discretization fails in the sense that the system cannot be used to pass a signal through in any
meaningful way. It is nevertheless useful in order to show that the remaining outlying zeros
and poles are in fact static – they do not change when k changes (see Figure 2.13a). They are
thus not directly important regarding the events at baseband. They can be either removed or
at least simplified. Keeping them is not very practical, because their position is so close to the
unit circle that numerical stability cannot be guaranteed.

(a) Poles and zeros invariant to k (b) Significant poles and zeros changing with k

Figure 2.13: Poles and zeros in z-plane

In case of the reduced transfer function, these static zeros and poles have been removed. The
black (unconnected) sequence of poles in Figure 2.13b stems from the system with Rmod = 1.3Ω.
The two remaining variable poles represent the two system resonances shown before in left
Figure 2.12 (gray, system with Rmod = 2kΩ). There is one variable zero. Figure 2.13b shows
the variation over all k, starting with k = 0.001 and proceding along the arrows. It is of great
value for the analysis, because it conveys a very simple yet elegant way to represent the analyzed
system using just a few parameters. This figure will be refered back to in Section 2.4.3 where
the final system model will be evaluated.
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2.2.4 Differential transfer function

At this point, the desired model of a compact Hbaseband(f) as described in the end of Sec-
tion 2.2.1 is almost at hand. “Almost”, because the conversion to baseband has been completed
– however, there is not a single resulting system model, but in fact two separate models: one
for each state of Rmod. Each model response – on its own – could theoretically be used as a
Hbaseband(f) model. But by using merely one, the other is left out completely. Half the system’s
behaviour is lost. Their – in the right way – united response encourages further investigation.

Attempts were made to combine both systems (revisit Figures 2.4, 2.5 and 2.6) to get a single
transfer function that can be used according to (2.10). The idea of a “differential transfer func-
tion” led to combining the two separate transfer functions by substracting one from the other
in frequency domain: G1(z) − G2(z). The substraction is supposed to represent the difference
of both Rmod states, thus the switching behaviour. However, the result showed three resonances
and the simulated output signals did not resemble the reference signals.

Different approaches of adding or substracting the only magnitude spectra proved futile. A
simple or at least envisionable combination method of those two transfer functions did not
manifest in the given time frame. Therefore, the attempt to directly combine the two transfer
functions has been discontinued. An alternative approach is chosen, involving system identi-
fication methods and the given state space model. This approach does not have to deal with
combination issues, because it identifies a single response for Hbaseband(f) in the first place.

The only way to properly identify the overall system behaviour is by evaluating the state space
differential equations in time domain (i.e., using MATLAB function lsim). The input u(t) of the
state space model is the carrier source signal. In contrast, the message input – the actual input
for the desired model – is incorporated in a rather nonlinear way: The two state space systems
for both Rmod states are precomputed and hard-switched according to the binary message sig-
nal. The internal states x (voltages, currents) of the state space model are, however, exactly
equal in both systems. So by continually tracking those internal states, then – before a switch
of Rmod – saving them, and after the switch using them as initial states for the newly active
system, the load modulation process and especially the system’s distortion during this process
are sufficiently accounted for.

This method is computationally expensive. It is impractical for later equalizer evaluation.
However, system identification becomes viable, if the input is simply assumed to be the bi-
nary message switching signal. This involves a detachment from the classical state space theory.
But since this binary signal can be assigned by choice, it is possible to test the system with
known inputs. System outputs can be computed for these known inputs – the system can thus
be identified: a system which is based on the “consummate” state space model (and thus ex-
hibits properties and behaviour shown in the previous overall system analysis), but which is also
directly fulfills the requirements for Hbaseband(f).

The input signals for system identification are constrained to be binary in this context (two
amplitudes). Common choices of (multi-amplitude) input signals for system identification (e.g.,
sinusoidal sweeps, white noise) are thus not available – unless one is willing to pre-compute a
sufficiently large number of state space systems for all values between 1.3Ω < Rmod < 2kΩ,
which is even more time-consuming. The means of choice are pseudo-random binary sequences
(PRBS), special cases of which are “MLS” and “IRS”.
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2.3 MLS / IRS System Identification

MLS system identification is a method that uses pseudo-random binary sequences (PRBS) of
a specialized kind: “maximum length sequences” (MLS). While PRBS are designed to mimic
random stochastic behaviour in general, MLS try to adopt characteristics of white Gaussian
noise specifically. A Gaussian noise signal is truely random in both amplitude and time. An
MLS signal is completely deterministic and has two amplitude states only (±1). However, with
sufficient length L of the sequence a good approximation is possible.

2.3.1 Relation to Gaussian statistics

White Gaussian noise is widely used as an input to a system that is to be identified. Similarly
to the direct measurement of the system’s impulse response (via a short impulse δ(t)), Gaussian
noise shows a single peak – just like an impulse – in its autocorrelation function (ACF)15. The
single peak is located at lag τ = 0 of the ACF, and all other function values are zero (for
the ideal Gaussian), because comparing the random Gaussian signal to time-shifted versions of
itself (which is what the ACF does) will never show any similarity (correlation) – since it is
random. The only exception is lag τ = 0, in which case two unshifted versions are compared.
The resulting value is equal to the noise variance σ2

n = rnn(0). Assuming the system is LTI (or
almost LTI, at least during the measurement), the input noise (i) is correlated with the output
signal (o), which contains the system influence (h):

rio(τ) =
(
rii ∗ h

)
(τ) (2.15)

This equation simplifies even more for Gaussian noise input, because a convolution with rii(τ) =
σ2
i · δ(τ) merely scales the system response h by a factor σ2. If deliberately set to σ2 = 1, the

desired system response directly results from the crosscorrelation: rio(τ) = h(τ). Otherwise, the
input variance σ2 can easily be measured and divided from h. The system has been identified.

2.3.2 Maximum length sequences

MLS resorts to the same procedure. The sequence is generated using linear-feedback shift
registers. These registers are set up to repeatedly cycle through all states of the register of size
L, yielding N = 2L − 1 possibilities (which is the maximum, hence maximum length sequence;
the all-zero state is excluded, because it breaks the cycle). The cycling is done so that: a) 1’s
and 0’s occur equally often in the output sequence – since the number of possibilites is always
odd, there is one more 1 exactly; b) occurence of consecutive patterns of 1’s and 0’s is unique
(details see [27, p.43]). Consequently, the autocorrelation of such a sequence can be expected to
be quite small for all time lags τ 6= 0. However, the autocorrelation of MLS is not – as opposed
to the Gaussian one – zero everywhere except for the peak at τ = 0. If it were possible to
create infinitely long registers, their autocorrelation would in fact be identical. But since they
are finite, a constant offset term of −1/N remains for all τ 6= 0 (this is due to the excluded
all-zero state). Since the MLS is a binary sequence, the autocorrelation is given in discrete-time
form (τ → l):

rxx[l] =
1

N

N−1∑
n=0

x[n+ l]x[n] =

{
1 if l = 0

− 1
N if l 6= 0

(2.16)

15 Definitions (∈ C):
rxx(τ) =

∫∞
−∞ x(t+ τ)x∗(t)dt (continuous)

rxx[l] =
∑
n∈N x[n+ l]x∗[n] ≈ 1

N

∑N−1
n=0 x[n+ l]x∗[n] (discrete)
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It is evident that the longer the sequence, the closer will its ACF resemble the Gaussian one –
hence becoming a Kronecker delta δ[n] (see Table 2.1). Once settled for an appropriate trade-off
length L, (2.15) can be used for system identification, since it is equally valid in the discrete
time case by changing (τ) to [l].

L ↑ N ↑↑ rxx[l] −→ δ[l]

Table 2.1: Parameter change for the MLS-ACF to approach Kronecker delta

There are some practical considerations that need to be taken into account first. When numer-
ically computing the autocorrelation of a finite discrete signal such as the MLS, it is generically
biased. The bias increases with l moving away from 0, the ACF becomes unreliable approaching
the outer boundaries (see Figure 2.14) because of implicit zero-padding beyond those bound-
aries. A safe way to prevent the bias from influencing the system identification is to let the MLS
cyclically repeat – not just once (as in Figure 2.14), but at least 3 times in a row.16 Then, the
middle spike is free from the boundary effect, because the adjacent sequences pose as natural
extensions. Only the constant offset term −1/N remains, it can be seen in Figure 2.14b, where
the constant line below the middle peak is slightly lower than 0. The low MLS order of L = 6
has been chosen for these example figures to clearly show the offset and the boundary effects.

(a) ACF of 1 MLS, raw & unscaled (b) ACF of 3 repeated MLS, scaled

Figure 2.14: Discrete autocorrelations (MLS)

The identified system impulse response will be located around the middle peak (desired loca-
tion), as well as around the neighbouring peaks (undesired repetitions). In order to get clear
results, the length of the MLS must be chosen such that the tails of the system response de-
cay within the given frame of samples (in the example case of L = 6, the maximal tail length
may be N = 2L − 1 = 63 samples17). Otherwise overlap occurs and irreversibly damages the
measurment. This overlap is called “time-alisaing”. It is recommended in [28] that L be chosen
to at least accomodate double of the expected tail length, because the measurement resolution
increases and so does the SNR. The SNR can additionally be increased by repeating the MLS
more than 3 times (those repetitions will be as clean as the middle peak in Figure 2.14b) and

16 this cyclic extension may be expressed by the modulo operator: xMLS [n mod N ]; also relevant for (2.17)
17 for causal systems
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Figure 2.15: MLS system identification issue: disturbance peaks

averaging over multiple clear measurements. Additive noise is reduced by averaging. Besides
that, MLS is inherently more robust to noise compared to other measurement signals in this
context because of its optimal crest factor / peak-to-average power ratio (PAPR)18 of 1.

The MLS system identification originates in the 1960’s [29], since then it has been applied
in many fields, one of them being audio: Borish [30] and later Vanderkooy [31, 32] explored
the idea of identifying acoustic impulse responses. On their journey of research they came
across “spiky distortions” within the correlation function of MLS sequence with the output.
Dunn and Hawksford [33] measure and study the distortion, and trace it back to nonlinearities.
Wright [34] analyzes MLS reaction to nonlinearities by invoking Volterra series. It is proven
there that MLS system identification is extremely susceptible to even weak nonlinearities in the
measured system.

The higher-order Volterra kernels are having a similar effect on the raw binary sequence as the
ACF: they contain multiplied versions of the sequence with itself. With increasing order, the
Volterra system exhibits nonlinear multi-dimensional convolution, which – like the ACF – im-
plies shifting the sequence over itself. Once passed through a Volterra system, the MLS is thus
superimposed by differently weighted and most importantly time-shifted versions of itself. If
the cross-correlation between the original input and the nonlinear output is now computed ac-
cording to (2.15), the original correlates multiple times because of those superimposed versions.
The result is that several other peaks appear in the crosscorrelation besides the desired one (see
Figure 2.15), which are distributed arbitrarily across the range depending on the nonlinearity.
However, their positions are deterministic, which means those peaks are reproducible, thus their
location may be anticipated to some extent. On the downside, they cannot be averaged out due
to their deterministic location.

Figure 2.15 shows the MLS measurement of the RFID system with high coupling. The dis-
turbance peaks may even be higher than the one containing the actual system response. But
most significantly, the smaller disturbances do influence the area of the desirable peak, rendering
the measurement useless. Figure 2.15 shows the extreme case in the RFID system context. For
lower coupling factors k, the amplitudes of the disturbing peaks decrease – but not gradually;
rather erratic (reduce in one location, but grow briefly in another one). Thus, the impact of
nonlinear disturbance depends on how strong the input amplitude is. Unfortunately, this am-
plitude is not adjustable in the RFID system: The resistor is switched between its two states –
and the output amplitude ultimately depends on the coupling k. These circumstances call for a
refined method able to suppress nonlinearities.

18 Crest factor C =
|xpeak|
xrms

; PAPR =
|xpeak|2

xrms
2 = C2
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2.3.3 Inverse repeat sequence

The simple and straight-forward solution is called inverse repeat sequence (IRS). It is first
mentioned in [35]. According to Stan [28] the new sequence that replaces MLS as the input
signal is actually re-composed of MLS sequences:

xIRS [n] =

{
xMLS [n] if n is even, and 0 ≤ n ≤ 2 ·N
−xMLS [n] if n is odd, and 0 ≤ n ≤ 2 ·N

(2.17)

The IRS sequence has double the period length (2 ·N) of the MLS signal of order L. To clarify
the equation, xIRS is generated by first concatenating two periods of the MLS signal so that
their overall length is 2N = 2 · (2L − 1). In a second step, the sign of every second sample
is inverted. This is important to note here, because (2.17) assumes xMLS to be periodic in N
without explicitly mentioning it (see also 16).

(a) ACF of 1 IRS, scaled (b) ACF of 3 repeated IRS, scaled

Figure 2.16: Discrete autocorrelations (IRS)

The ACF of IRS is shown in figure 2.16. The order L = 5 is chosen so that the length of the
resulting IRS is equal to that of the MLS shown previously in Figure 2.14. Since the underlying
IRS is built of two MLS periods, the ACF shows two additional (besides the one at l = 0) cor-
relation peaks – which are negative because of the alternating sign: For the two sub-periods of
L = 5, N = 31. According to (2.17) all odd samples n are inverted, so the ACF shows negative
peaks at l = ±31. The resulting IRS period is 2N , which will always be an even value, so the
main peak at l = 0 is positive.

Far more significant is the content of Figure 2.16b. Due to the alternating sign, the formerly
constant offset of 1/N transforms into an oscillation at Nyquist frequency (fs/2). The IRS has
even length of 2N and – because of the sign change – both signal amplitudes ±1 now occur
equally often. This means the IRS as well as its ACF are zero-mean, thus far less susceptible
to nonlinearities in the measured system. It has been shown in [33], that the IRS completely
rejects any effects caused by even-order nonlinearities (polynomial powers of 2, 4, 6, etc.), only
odd-order terms have an influence (equal influence as in case of MLS). This property gives IRS
a significant edge over MLS. And it comes merely at the cost of needing a double length input
signal and thus a longer crosscorrelation. Methods that applied to MLS (averaging out noise,

– 31 –



2 System Analysis and Modelling

Figure 2.17: IRS system identification issue: disturbance peaks

cutting out the relevant area around the main peak) also apply to IRS. Just for completeness,
there exists a third alternative using a ternary sequence, which additionally rejects third-order
nonlinearities. This alternative is, however, not applicable here, since the Rmod can only assume
two states.

Both MLS and IRS have been implemented in order to identify the repsonse of the given RFID
system. Sequences of orders 6 - 11 are pre-generated and stored in MATLAB data files, contain-
ing the underlying original binary sequence, a sequence repeating the original up to a limit19,
and this same long bit sequence represented (more compact) as a hexadecimal string. Dur-
ing simulation (as previously described in Section 2.2.4), this hexadecimal string is translated
into the signal controlling the Rmod switch. The system’s output signal is then sampled at
fs = 13.56 MHz as a complex-valued signal (I and Q component). The (complex-valued) cross-
correlation is computed according to (2.15) of this output signal and the underyling original
sequence (real-valued). The exemplary MLS result has been shown in Figure 2.15, a directly
comparable IRS result is shown in Figure 2.17. To the far left and right, the negative peaks
can be observed (comp. Figure 2.16); they also contain the system response, but inverted. The
distortion peaks here are located at similar positions (comp. Figure 2.15) relative to the main
peak. In contrast to the MLS measurement, those distortions are far less severe in close vicinity
to the main peak. Additionally, their position is more stable and thus predictable. Reliable
system identification can be achieved by IRS. The main peak’s vicinity becomes even cleaner
with increasing IRS order. For the final measurement an IRS order of 10 has been chosen.

2.3.4 Postprocessing

A few postprocessing steps are necessary to isolate the impulse response. The peak is easily
identifiable, because it has a deterministic position in the crosscorrelation. In order to au-
tomatically check if the position is correct, a peak finding algorithm is applied. It finds
the index l of the peak based on the maximum of the absolute impulse response (I and Q com-
bined) and uses a threshold relative to that maximum (to account for neighbouring high values).

As a second step the range of relevant samples after the peak has to be defined. Any sam-
ple beyond that range is set to zero, so that only the clean impulse response remains. Since the
RFID system is composed of antenna resonances, the impulse response is theoretically infinitely
long (IIR). It is decaying, however, at a reasonable rate, so the decaying tail of the response

19 The simulation framework constrains the length of the input signal (the message) over the whole communication
process to about 9000 bits. The MLS order 11 (211− 1 = 2047 bits) is the highest possible order for which the
sequence can still be repeated at least three times within this limit.
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Figure 2.18: IRS system identification: Frequency spectra

may be truncated at some point. Examinations showed that the slowest decay occurs at low
coupling factors k ≪. For k = 0.001 the decay can be assumed to encompass at least 40 samples
before truncation is recommended. For increasing k the decay grows gradually shorter until it
spans just 6 − 7 samples at k = 0.55. Based on these observations, the length (in samples) of
the selection window is interpolated for any k between the two mentioned bounds (MATLAB
polyfit and polyval). The value of k is known during each simulation case; so it becomes possible
to automatically cut the impulse response free. Optionally, the rear of the selection window can
have a faded weighting: If hard rectangular truncation is not wanted, the fading window (second
half of a Bowman window) smoothly blends the decay with the following zeros.

Averaging has been implemented as well. Instead of a single response peak, multiple re-
peating peaks are taken into account, which improves SNR in the presence of random noise in
the measurement. But why add noise to the simulation in the first place? That would counteract
a clear system identification. So all additional noise sources are disabled for the measurement
and averaging is thus not necessary. For the noise caused by the nonlinearities in the system it
has been mentioned in the previous sections that it is of deterministic nature. Averaging will
not cancel these disturbances.

The results of the system identification are shown not as individual impulse responses in time
domain, but rather their corresponding amplitude spectra in frequency domain. These spectra
are computed from the postprocessed clean impulse response, via FFT. It is important to note
that both the impulse response and the (overall) FFT result are generally complex-valued. No
symmetry may be expected.

Figure 2.18 shows frequency responses for 100 cases of k linearly spaced between 0.001 and
0.55. Starting from the lowest k, the lines are plotted sequentially and overlay at some point.
The lowest k curves are the ones at the very bottom of the figure. A single resonant shape can
be observed at f = 0, so small that its magnitude is barely noticable by eye. With increasing k
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this magnitude grows, the resonant shape evolves upwards in the plot, still centered at f = 0.
Around an optimal k ≈ 0.15 the single shape reaches its maximum and becomes maximally
wide. Here the overlay starts. Amplitudes decrease again, and at the same time the shape splits
into two resonances drifting apart from f = 0 towards higher and lower frequencies. The upper
resonance shows a greater magnitude compared to the lower resonance. This relation remains
valid; however, for k approaching 0.55 the response spans a wide frequency range – and the
resonances are hardly perceptible as distinct resonances. The spectrum becomes more and more
flat. If zooming in on the y-axis, the upper resonance peak for k = 0.55 lies at the Nyquist
frequency of 6.78 MHz (right plot edge). This is in accordance to previous findings in this thesis
(see Figures 2.4, 2.5 and 2.6). The data of the presented figure is sampled at 2fs, otherwise the
curves for high k would already mirror back into the negative frequncies. The slight ripple on
the right side (f ≈ 6 MHz and amplitudes 1.5 ·10−4) are caused by a small nonlinearity peak
located within the still long decay tail at these particular k-values. The effect is minor. It can
be overcome in the modelling process described in the following section.

2.4 Discrete-Time Zero-Pole-Gain Model

At this point an extensive data set is available. Impulse responses have been sampled for a 100
different k in the range of 0.001 and 0.55. Using these impulse responses as a system model
directly can be cumbersome for several reasons: Loading and managing the data is unwieldy
and takes up memory and processor resources; and furthermore the coupling steps k are fixed to
these 100 cases. For k is the most important parameter, it is sensible to keep it continuous, that
is, fill the gaps in between these 100 cases. By cycling through the range of k, a relationship is
established between consecutive impulse responses. “Neighboring” responses are very similar to
each other due to the already dense grid of k. Impulse responses in between k-values may thus
be reconstructed by comparing the corresponding neighbors and then performing interpolation.
Also, by taking this relationship into account, the nonlinear irregulatities (mentioned in the
previous section) can be compensated for since changes in neighboring responses are expected
to be smooth.

2.4.1 Model definition

A parametric model is chosen to represent the RFID system. Parametric models attempt to
reduce the complexity of evaluating a system by choosing a sufficient set of parameters which
properly represent the system in the given context and – most importantly – are able to accu-
rately predict how the original system would react in that situation, and thus act as a simplified
substitute. Based on the results of the system analysis, the chosen parameters are:

� k: coupling coefficient, k ∈ [0.001 0.55], k ∈ R
� p1: pole of the lower antenna resonance, p1 ∈ C
� p2: pole of the upper antenna resonance, p2 ∈ C
� z1: zero signifying magnitude relation of p1 and p2, z1 ∈ C
� z2: zero needed for model estimate, outside unit circle, z2 ∈ C
� g: model gain, g ∈ C

This neat set of 6 parameters is assumed to sufficiently model the system’s behaviour. The
model is linear and currently time-invariant, but may be extended easily at this point to a
quasi-time-varying scope: Smoothly increasing k can be interpreted as moving the card or tag
towards the reader, and decreasing vice versa.
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The chosen parameters are inherent to a (discrete) zero-pole-gain model, abbreviated as ZPK
model. The continuous ZPK model in Section 2.2.2 (see (2.14) on page 26) has already been
found to be a convenient type of model for this thesis. It is defined in discrete-time as a special
form of a rational transfer function. Usually, transfer functions are represented by numerator
and denominator polynomials (z-domain):

Ĥ(z) =
B̂(z)

Â(z)
=

∑nb
j=0 bjz

−j∑na
j=0 ajz

−j =
b0 + b1z

−1 + b2z
−2 + . . .+ bnbz

−nb

a0 + a1z−1 + a2z−2 + . . .+ anaz
−na (2.18)

The ZPK form is the factorization of this equation. Both polynomials Â(z) and B̂(z) factor
into terms containing the roots of these polynomials – called poles and zeros respectively. Since
all coefficients aj and bj ∈ C, all factored root terms are in fact linear (no square terms as in
conjugate roots). The gain factor g contains b0 and a0 so that the highest-powered z-term equals
1 before factorization.

Ĥ(z) =

∏nb
j=1(z − zj)∏na
j=1(z − pj)

· g =
(z − z1) · (z − z2)

(z − p1) · (z − p2)
· g (2.19)

The two representations are equivalent, they can easily be converted back and forth. The
ZPK form has the advantage that stability can be verified directly (|pj |, |zj | < 1 ∀j). Poles
and zeros as the model parameters are prefered over the coefficients in Â(z) and B̂(z), because
they are more stable numerically: aj and bj are each a product of all poles, respectively zeros
(binomial expansion). In case of the chosen polynomial orders here – that is na = nb = 2 –
the effect is not yet severe, but with longer polynomials it will be. Coefficients will thus have a
far greater value dynamic (depending on the gain as well), while the zeros and poles are mostly
located inside the unit circle (gain factor independent), ranging between 0 < |pj | < 1 ∀j and
0 < |zj | < 1 for most j (see ensuing Figures 2.19 and 2.20 on page 37).

2.4.2 Estimation algorithms

Common estimation algorithms reduce the problem to solving denominator polynomials only
(“all-pole system”) because it becomes a linear problem then. Additionally, symmetry and thus
real coefficients are assumed to constrain the problem. From the filter design perspective, various
methods exist to estimate numerator polynomials only (“all-zero system” or FIR). Given the
following requirements

� estimate both polynomials Â(z) and B̂(z) (equation 2.18)

� estimate them simultaneously

� assume all coefficients to be complex: aj , bj ∈ C
� assume no symmetry = no conjugate roots in the estimated polynomials

� estimate based on impulse response data (or its corresponding FFT),

the list of available methods is quite short. MATLAB offers abstract function layers in the
DSP Toolbox called fdesign.arbmagnphase (arbitrary magnitude and phase design), however, the
underlying methods are not visible to the user. Visible functions supporting complex coefficients
are invfreqz, stmcb and prony, which are documented and explained in [36]. The straight-forward
approach would be to minimize the error when comparing the outputs of reference and estimate
(unit input):
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eout[n] = y[n]− ŷ[n] ⇒ Eout(e
jω) = H(ejω)− Ĥ(ejω) = H(ejω)− B̂(ejω)

Â(ejω)
(2.20)

The corresponding difference equation is nonlinear and thus difficult to solve directly. Prony’s
method linearizes the problem by multiplying the frequency domain equation in (2.20) by Â(ejω)
and solving without the weighting factor term. The error is then called equation error Eeq(e

jω)
(due to its difference equation):

Â(weight)(e
jω) · Eout(ejω) = Â(ejω)H(ejω)− B̂(ejω) (2.21)

Â(weight)(e
jω)· Eeq(e

jω) = Â(ejω)H(ejω)− B̂(ejω) (2.22)

Prony’s method (prony) first solves for Â(ejω) only (neglecting the –B̂(ejω) term in (2.22)), and
then finds B̂(ejω) by minimizing the output error under L2-norm containing the now known
Â(ejω). The missing weighting factor has the effect that the error is spectrally weighted. The
estimate is less reliable in frequency regions where the influence of the poles is prominent.

The Steiglitz-McBride method (stmcb) minimizes the output error equation (2.21) iteratively.
It uses the estimate of the Prony method as a starting point. In each following step, the new es-
timate of Â(ejω) is used as new “countering” weight function (Â−1

(weight)(e
jω)). It thus converges

towards a minimized Eout(e
jω). Both methods solve in time domain (using impulse response

and difference equation).

As opposed to these, the algorithm in MATLAB’s invfreqz solves the minimization of the equa-
tion error in frequency domain. It is faster (because it uses FFT), but numerically less accurate.
With increasing FFT length, however, the result approaches the Steiglitz-McBride solution.
invfreqz needs an explicit declaration for the coefficients to be complex. A MATLAB code ex-
ample is given in Appendix B comparing the three methods. The model parameters have been
estimated using invfreqz.

2.4.3 Model adjustment and validation

When plotting the estimated model parameters each against k separately (see Figure 2.19), it
becomes clear that they are meant to change in a continuous fashion – which makes sense con-
sidering the underlying continuous-time RFID system. However, there are regions of deviation.
These can be identified as errors from the new point of view, and can be corrected.

Figure 2.19 shows the values of all model zeros and poles, split into real and imaginary parts,
for all k in the considered range. At very low k the fluctuation in some pole values are due
to numerical limits: The sampled difference between the Rmod states is close to floating point
underflow, where fine resolution is not possible. This error propagates through all steps up to
this point, where it can be corrected. At k ≈ 0.14 all poles show an abrupt change. This change
marks the point of critical coupling in the system, it is significant and must be retained. In
between 0.20 < k < 0.35, errors occur (best visible in the real part of pole p1, but existent in all
roots) which can be traced back to the nonlinearities discussed in Section 2.3.4 and visualized
in Figure 2.18. This major error region (0.20 < k < 0.35) is corrected by appropriate methods
(mostly fitting of polynomials of orders 3 and 5). One example of such a correction curve is
shown in Figure 2.19b for Re{p1}. At k > 0.5 the system’s spectrum is so wide that the esti-
mation algorithm (invfreqz, see Section 2.4.2) reaches its limits in terms of accuracy. Because
spectral magnitude variations become more subtle with increasing k, poles and zeros (transfer
function coefficients respectively) are harder to estimate by the chosen spectral method.
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(a) Zeros (b) Poles

Figure 2.19: Poles and zeros: Uncorrected variation over k

(a) Full Z-plane view (b) Zoomed to unit circle

Figure 2.20: Poles and zeros: Locations in Z-plane for all k

The final step is to detach the model from the discrete data points (100 values of k), of course
without losing validity, but with the objective of having a more convenient model representation
to work with. To this end, the poles and zeros (curves shown in Figure 2.19) are replaced by
smoothing splines. This is an interpolation method that keeps all original data points of k as
“knots” and that uses piecewise polynomials to produce a smooth, continuous alignment for
the resulting curve(s). The spline representation reduces the “size” of the model and is able
to produce parameters for arbitrary k in the range of 0.001 to 0.55 (and possibly even a little
beyond that). The smoothing splines also compensate for the aforementioned inaccuracies at
low k.
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The poles and zeros of the final model are shown in Figure 2.20 in the complex plane. The
starting point for low k are marked as k ≪, the arrow points towards increasing k values.
Especially the unit-circle-subfigure (Figure 2.20b) bears remarkable resemblance to the previous
Figure 2.13 on page 26 in Section 2.2.3, which showed the poles and zeros of the baseband-
shifted state space model. A comparison to Figure 2.20b reveals the dominant resonance pole
starting close to Re = 1 (on the real axis, which signifies frequency f = 0; start of yellow
stretch), and the other (inferior, violet) pole which – considering Figure 2.13 – should also start
in the real axis. It evidently starts only in the vicinity of the real axis; however, being that
close to the (red) zero, its influence on the model transfer function is entirely negligible (the
yellow pole determines the transfer function for low k), so its exact position is not important
for the resulting model response (for low k). For increasing k, the pole successions are simi-
lar in the two compared figures, until the yellow pole has a shift in direction. At this point,
the pole should proceed on its approximately circular course towards the negative real axis. It
does not so because of the previously mentioned effect of a widened spectrum on the estimation
(invfreqz). Fortunately, the (red) zero cancels the yellow pole at high k, so the impact on the
transfer function is negligible in this case also. As a concluding remark on the comparison let it
be said that these similarities only indicate model validity. They are no proof of it, because the
compared Figure 2.13 merely shows the poles and zeros for the separated states of Rmod, whereas
the conceived model consists of a combination of both states of Rmod. In the end however, the
model is very plausible, because of the conclusions drawn from the system analysis: The state
Rmod = 2kΩ does produce a stronger resonant effect in the card’s circuit (see Section 2.1.2), thus
will determine the combined system’s response in a stronger way than the state Rmod = 1.3Ω.
From the results presented here, it is clear that both approaches to the Hbaseband model are
closely related; however, attributes or defining characteristics (mathmatically) of this relation-
ship cannot be deduced easily. The operation of combination of the two states as examined in
Section 2.2.4 thus cannot be made up for. Findings point to a nonlinear way of combination
that may also depend on k.

The output waveforms of the accurate state space simulation and the conceived model are
compared in Figures 2.21, 2.22 and 2.23 in a second validation effort. The input is an IRS
sequence, same for both systems. The state space response is simulated in (continuous) time-
domain (lsim) and sampled at fs = 13.56 MHz. The model response is already equivalent
to a sampled baseband response, and is provided by a dedicated MATLAB function called
[B,A,h,ZPKm] = AF_generateSplineModel(kc), where kc is the chosen value of k and the
returned variables are either the ZPK model parameter structure (ZPKm), the transfer function
coefficients (B,A) or the (truncated, FIR) impulse response h. Both [B,A] and h can be used to
filter (or convolve with, respectively) the given input IRS sequence. The coefficients (B,A, IIR
response) were used in the plots.

Figure 2.21 represents all cases below critical coupling, for which the model is very accurate.
Above critical coupling the nonlinear effects in the state space simulation start to show, how-
ever, strong similarities are still evident in Figure 2.22. Finally, in Figure 2.23 the nonlinearities
manifest themselves in spiky transient overshoots and a tendency to a clipping-like behaviour
in the state space simulation. The model, on the other side, is “sweet-tempered” and shows an
output that much resembles the IRS input sequence (since model impulse response is very short
at this k). Another detail to notice here is the imaginary part (red), which now has a greater
amplitude than the real part of the signal (blue). The system thus approaches a 90◦ phase shift
with increasing k.
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Figure 2.21: Model validation by output waveform comparison for k = 0.0675

Figure 2.22: Model validation by output waveform comparison for k = 0.2395

Figure 2.23: Model validation by output waveform comparison for k = 0.5278
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2.4.4 Concluding notes on the model

The modeled system is stable and causal. One zero (blue stretch in Figure 2.20a) is located
outside the unit circle, making the modeled system non-minimumphase. The exact term for this
kind of system is “mixed-phase”, because it has zeros both inside and outside the unit circle.
This property is significant when it comes to finding an inverse system – a system that can
undo the effect of the given RFID system channel⇒ an equalizer – because non-minimumphase
systems have an inverse which is unstable (but at least causal). As a major consequence, any
equalizer inserted after such a system will always approximate the inverse.

As explained in Section 2.4.1, the model is linear. It only represents the linear part of the
system. The nonlinear portions are not accounted for. However, equalizing only the linear part
is hypothesized to achieve great improvements in message reconstruction (see Section 3.3.2).
The model validity is very high for lower k and decreases slightly as k approaches 0.55. Linear
equalization is far more efficient in terms of implementation and computational cost compared to
nonlinear equalization. In the given case, the magnitude of impact of nonlinear effects does not
justify these higher costs of a model with higher complexity. Further potential model refinements
concerning the nonlinear effects are thus discussed in the thesis’ outlook (see Section 5.2).
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Thesis: RFID Channel Equalizer

3
Equalization

In the context of communications, the term equalization refers to a process which offsets all neg-
ative effects caused by a given transmission channel. This opening statement is rather general.
The desire to undo such negative effects is encountered in basically every application in the field
of communications. Equalizers appear in many different fields as well – for example in audio
engineering, where they aid in restoring or enhancing certain features in sound signals. The
general scheme of equalization can thus be applied in many contexts. The difference in each
case lies in what is considered the “negative effect”.

In this thesis, this “negative effect” has a name: intersymbol interference. It has been de-
scribed briefly in the introduction (see Section 1.1.3), visualized in Figure 1.3. This figure shows
the effect of the given RFID channel (small coupling k) for a single pulse of the message signal.
The pulse is not confined to its own “time slot” after it has passed through the system. Instead,
it is smeared across several neighboring time slots. Although the peak amplitude is still close to
the original time slot, a significant portion of this pulse’s energy influences subsequent pulses.
Neighboring pulses thus cannot be distinguished clearly at the receiver. Intersymbol interference
(from now on abbreviated as ISI) prevents successful transmission of information.

s[n] H(z)

channel
x[n]

C(z)

equalizer

y[n]
!

= s[n]

Figure 3.1: Signal flow chain of channel and equalizer (zero-forcing idea)

The intention of an equalizer is to reverse the time-smearing so that in the end the single pulse
is confined to its time slot again, as are all subsequent pulses. Figure 3.1 shows the signal flow
of such a cascaded system structure of channel and equalizer. The condition to remove ISI given
at the output y[n] = s[n] is rather strict. It is intended to convey the general idea of the concept
– which ultimately leads to the approach of zero-forcing in Section 3.1.

Another obstacle encountered in practice is noise in the transmission. It is usually consid-
ered an independent factor of disturbance, meaning the overall disturbance can be split into an
ISI component and a noise component. Zero-forcing only addresses the ISI component – and
yields suboptimal results in the presence of noise. The advanced idea of simultaneously equal-
izing both ISI and noise leads to the minimum mean-square error (MMSE) approach discussed
in Section 3.2. This concept is the basis for comprehending – and proceeding towards – blind
equalization, which is a key topic in this thesis. Several famous approaches will be cited and
compared in Section 3.3.1. General remarks on common properties and algorithm convergence
are given in Sections 3.3.2 and 3.3.3. Section 3.4 introduces another perspective on blind equal-
ization based on optimal nonlinear filter theory (Bayesian theory) which leads to the “Wnew”
algorithm [37]. Finally in Section 3.5, a new algorithm is designed which matches the require-
ments posed in this thesis by combining and modifying several of the mentioned equalization
concepts. Its relation to CMA (constant modulus algorithm, see Section 3.3.1) is shown.
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3.1 Zero-Forcing

The term zero-forcing expresses the intention of forcing the transmission error due to ISI to zero
at the output. To this end, the mathematical condition can be formulated in multiple equivalent
ways. The frequency domain (z-Domain) formulation is the most compact one: Given a channel
H(z) with an input signal S(z) (see Figure 3.1), the channel output X(z) is computed by
multiplication

X(z) = S(z) ·H(z). (3.1)

In order to single out the original signal S(z) from this equation again, the factor H(z) needs
to be eliminated. Evidently, division achieves the goal

Y (z) = X(z) · 1

H(z)
= S(z) ·H(z) · 1

H(z)
= S(z) (3.2)

where Y (z) is the output and 1
H(z) = H−1(z) is the inverse of the given channel. This operation

of multiplying the inverse can be seen as appending a second “channel-like” system block after
the channel (analogous to C(z) in Figure 3.1). The zero-forcing condition can thus be stated as
a requirement on the channel H(z)

H(z) ·H−1(z)
!

= 1 (3.3)

This condition may look simple, but there is more to it than meets the eye. First and foremost,
the inverse H−1(z) needs to exist. Oppenheim [38] sets the requirements for the existence of
such an inverse (in the context of LTI systems): Assume the system H(z) has a ZPK form
as stated in (2.19) in Chapter 2. The zeros are defined by the numerator terms, the poles by
the denominator. When the system is inverted, numerator and denominator are swapped. The
former zeros thus become poles, the former poles become zeros respectively.

� For the inverse to exist the regions of convergence in the z-plane of H(z) and H−1(z)
must overlap. This is the general requirement, without putting further constraints on the
inverse.

� For the inverse to additionally be causal (assuming H(z) itself is), the region of convergence
must be chosen to be outside of the circle defined by the zero of H(z) with the greatest
radius.

� For the inverse to additionally be stable, the region of convergence must include the unit
circle.

To summarize the core statement, a linear, time-invariant, stable and causal system H(z) has
a stable and causal inverse only if all zeros and all poles of H(z) lie inside the unit circle. Such
a system is called minimum-phase system. As mentioned at the end of Chapter 2, the modeled
RFID system does not possess the minimum-phase property. As can be seen in Figure 2.20, one
zero lies outside the unit circle. Oppenheim [38] introduces a remedying system decomposition

H(z) = Hmin(z) ·Hap(z) (3.4)

splitting the system into a minimum-phase part Hmin(z) containing those zeros and poles inside
the unit circle, and an allpass part Hap(z) which – in case of the RFID model – takes care of the
zero outside the unit circle. It is important to note that the magnitude frequency spectrum of
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H(z) is identical to that of Hmin(z). The difference lies in the phase of the spectrum, and this
difference is expressed by the allpass part. The inverse of the system can thus be approximated
by inverting only the minimum-phase part (which is invertable by definition) and leaving the
allpass part as it is. Since (in this thesis) this phase difference is due to a single zero, it may be
compensated for by a phase rotation (see Section 4.2.4).

The zero-forcing condition of (3.3) is relaxed usually. The system cascade of H(z) and H−1(z)
does not have to be unity exactly. Instead, it may comprise of a gain constant aZF and may
also be delayed in time by an integer delay of ∆

H(z) ·H−1(z)
!

= aZF · z−∆ (3.5)

Translated to time-domain, the ZF criterion is defined as

h[n] ∗ hinv[n]
!

= aZF · δ[n−∆] (3.6)

where h[n] and hinv[n] are the impulse responses of H(z) and H−1(z) respectively, ∗ denotes
convolution and δ[n] is the Kronecker delta. Set in relation to (3.2), the zero-forcing condition
on the output y[n] is

y[n] = s[n] ∗ (aZF · δ[n−∆]) = aZF · s[n−∆] (3.7)

meaning the input signal s[n] is reconstructed at the output up to a scaling gain factor aZF and
a sample delay ∆.

3.2 Minimum Mean-Square Error

With additive white Gaussian noise w[n] (AWGN) introduced in Figure 3.2, a certain degree of
randomness propagates through the flow graph. Since convolution (∗) is a linear operation, the
influence of w[n] can be singled out as a separate entity w̃[n] at the output:

y[n]
(ZF )
= r[n] ∗ c[n]

(ZF )
= (x[n] + w[n]) ∗ c[n]

(ZF )
= x[n] ∗ c[n] + w[n] ∗ c[n]

(ZF )
= (s[n] ∗ h[n]) ∗ c[n] + w̃[n]

(ZF )
= s[n] ∗ (h[n] ∗ c[n]) + w̃[n]

(ZF )
= aZF · s[n−∆] + w̃[n]

(3.8)

where c[n] is required to be equal to the inverse system hinv[n] in the last equation line. As
can be observed, the additive noise is convolved with the equaizer c[n] (aligned to the right). If
the equalizer is adjusted according to the zero-forcing criterion, the term w̃[n] is very likely to
impair the reconstruction of s[n −∆], because the applied equalizer c[n] = hinv[n] may cancel
the channel ISI perfectly, but the effect on the noise can be arbitrary. In the best case, the
equalizer attenuates the noise while s[n−∆] can be reconstructed. In the worst case, however,
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s[n] H(z)

channel
x[n]

w[n]

r[n]

C(z)

equalizer

y[n]
!

= aZF · s[n−∆] + w̃[n]

Figure 3.2: Signal flow chain of channel and equalizer under AWGN

the noise may be unintentionally boosted by the response of c[n] (at certain frequencies), so that
– even if the s[n − ∆] part is successfully resolved – the noise w̃[n] completely overpowers it,
rendering it unrecognizable.

3.2.1 MSE criterion

The MSE criterion attempts to achieve the just mentioned “best case”. It lowers the require-
ments on c[n] such that the inverse channel needs to be merely approximated (instead of being
exact). This way, the ISI is not forced to zero, but to almost zero, offering an opportunity to find
a similar equalizer cnew[n] which possibly will not enhance the noise, but reduce it to a mini-
mum instead. The MSE approach thus looks for a joint optimal solution regarding ISI and noise.

MSE stands for mean squared error. This error is defined to be the difference between the
equalizer output y[n] and a reference signal d[n] which represents the desired output – i.e., what
y[n] should look like. This error – on its own – can be expected to fluctuate, especially in the
beginning when y[n] and d[n] are still very different. The smart choice is to minimize not the
error directly, but to minimize this fluctuation, which is called variance in probability theory.
It is defined as the expected value (mean value) of the squared error:

Ψ = E
{
e2[n]

}
= E

{
(d[n]− y[n])2

}
(3.9)

In order to find the minimum-MSE solution, the derivative (or gradient) of the MSE cost function
Ψ has to be computed and then set to zero. In the mathematical field of analysis, this is the
standard procedure for finding the minima (and maxima) of the cost function.

copt =
I

arg min
c

E
{
e2[n]

}
⇒ ∂

∂c
Ψ(c)

!
= 0 (3.10)

The cost is minimized with respect to the equalizer response c as indicated in (3.10), and is
further explained in the next section (vector-matrix notation). The foundation for the solution
of this problem was established in 1931 by Wiener and Hopf:20

copt = R−1p (3.11)

Their methodology is clarified in the following section, along with an iterative technique towards
the solution.

20 The optimal equalizer coefficients c are (non-iteratively) computed by direct inversion of the autocorrelation
matrix R. The result is called a “Wiener filter”. If R is not invertible, the Moore-Penrose pseudoinverse is
a popular choice of approximation. It finds the unique solution with the smallest Euclidean norm among all
possible solutions.
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3.2.2 Steepest descent

A neat way to solve the minimization problem numerically is the method of steepest descent. To
this end, the cost function gradient is determined and then computed iteratively until it reaches
the desired minimum. This method works perfectly fine, because the cost function is quadratic
– it always has a single unique extremum; the derivative (or gradient) becomes zero in one point
only.

To demonstrate the steepest descent, it is helpful to introduce vector-matrix notation. This
notation will remain relevant for the stochastic gradient descent (SGD) as well as for the blind
equalizers appearing in Section 3.3. The equalizer is chosen to have a certain number L of
coefficients, which constitute a vector c[n] = [c1 c2 c3 ... cL]T . The [n] indicates that the
coefficients change over time, the T indicates vector transpose if c ∈ R, otherwise (∈ C) it must
be replaced by Hermitian transpose (H). The received signal is also written as a vector, which
contains L “past” samples r[n] = [ r[n] r[n− 1] r[n− 2] ... r[n− (L− 1)] ]T relative to the
current n, so that both vectors have the same length. The convolution sum yielding the output
y[n] at each discrete time instant n can now be expressed as a scalar product of cT [n]r[n].21

Substituting the newly established notation into (3.9) gives

Ψ(c) = E
{

(d[n]− cTr)2
}

= E
{
d2[n]

}
− 2E

{
d[n] · cTr

}
+ E

{
(cTr)2

}
= σ2

d − 2cT · E{d[n] · r}+ cTE
{
rrT

}
c

= σ2
d − 2cT · p + cT R c

(3.12)

where R is the autocorrelation matrix of r[n]. The vector p can be regarded as the crosscorre-
lation between d[n] and all past samples stored in r[n]. The variables p and R are assumed to
be known, exact, and therefore time-invariant (stationary process assumption).22 The gradient
with regard to c is given by

∇cΨ(c) = 0− 2p + 2Rc

= 2(Rc− p)
(3.13)

To find the minimum, the gradient is set to zero. The factor 2 can be omitted. The direct solution
is the Wiener-Hopf equation already stated in (3.11). It requires inversion of the autocorrelation
matrix R. To circumvent this, the steepest descent method can be used. An iterative update
equation is introduced, which adjusts the coefficients in c by taking a “step” in direction of the
negative gradient, yielding the new coefficients c[n+ 1]:

c[n+ 1] = c[n] + µ ·
(
−∇cΨ(c[n])

)
= c[n] + µ ·

(
p−Rc[n]

)
(3.14)

where µ is the stepsize parameter. Figure 3.3 visualizes the process of finding the solution
iteratively, for the case of an equalizer with two coefficients. Starting at some point at the top of
the basin, the coefficients are updated following the black arrows marking the path of steepest
descent. The solution is reached when the bottom of the basin is reached. The axis ticks are
intentionally left blank, because the solution values in each case depend on various parameters.
Detailed information on this topic is found in [26].

21 For the sake of clarity, the time index [n] is omitted after the vector variables c and r in (3.12),(3.13) and
(3.15); it is explicitly stated in (3.14) to emphasize the iterative nature of the steepest descent method.

22 as opposed to (3.15a) and (3.15b), where the instantaneous estimates p̂ and R̂ are in fact time-variant
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Figure 3.3: MSE cost function surface

3.2.3 LMS Algorithm

The LMS algorithm was first used by Widrow and Hoff (1960) in the context of adaptive neural
networks. Since then it has become one of the most widely used adaptive algorithms due to
its simplicity and effectiveness. It is frequently used to compare the performance of rivalling
algorithms – likewise in this thesis with the blind algorithms (see Chapter 4).

The LMS algorithm belongs to the family of stochastic gradient algorithms. It differs
from the steepest descent method stated in the previous section such that the gradient is not
computed deterministically (Rc − p), but is instead replaced by a gradient estimator. Due to
the variance of this estimator, the exact solution is only approximated (excess mean-square
error, comp. [26]). The exact gradient measures R and p are replaced by instantaneous
estimates based on the sample values that are available at each time instant (∈ C, ∗ denotes
complex conjugation, H Hermitian transpose):

R̂ = rrH
?
≈ E

{
rrH

}
(3.15a)

p̂ = d∗[n] · r
?
≈ E{d∗[n] · r} (3.15b)

Computational requirements drop significantly due to this simplification (estimating the true
autocorrelation matrix or crosscorrelation vector would be computationally expensive). In fact,
the computation is feasible in real-time, because few additional operations are needed compared
to a static FIR filter23. The performance of LMS is quite satisfactory, because it is still able
to closely reach the optimum solution – at the cost of a possible “zig-zag” path towards the
solution (comp. Figure 3.3, where the path is straight), and at the cost of hovering around the
minimum forever because of non-vanishing coefficient fluctuation. Still, the LMS solution can
be regarded as very successful. It can achieve the desired joint optimization of ISI and noise.

23 transversal filter structure; modifications like lattices also possible; more information in [26, p.5, 6, 218]
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training/
reference

d[n]

s[n] H(z)

x[n] r[n]
C(z) y[n]

-

w[n] LMS e[n]

Figure 3.4: Signal flow graph of adaptive LMS channel equalization

LMS algorithm

0. Initialize c[n]

1. Filter output: y[n] = cH [n]r[n]

2. Current error: e[n] = d[n]− y[n]

3. Coefficient update: c[n+ 1] = c[n] + µ · r[n] · e∗[n]

Table 3.1: LMS algorithm procedure and equations

Back in the RFID context again, the LMS has a major drawback making it inapplicable as
an equalizer under the ISO-14443 standard: The reference signal d[n] – which is often called
training sequence – needs to be transmitted repeatedly and to be known at the receiver.
The information rate drops to undesirable levels. The short time frame, in which the card can
send its message before energy runs out, turns to the disfavor of LMS. Additionally, every card
already out there would need to be updated to know the training sequence in order to use the
advantages of the LMS equalizer.

The LMS algorithm is put to good use in this thesis after all: First and foremost as a benchmark
for the blind algorithms (see Section 4.3), secondly in an offline manner to pre-compute inverses
of the RFID channel model that has been developed in Chapter 2. The graph shown in Figure 3.4
is therefore changed slightly to facilitate inverse system identification. In the offline case, the
reference sequence d[n] can be chosen optimally to compute quite accurate inverses for all k.
Figure 3.5 shows the zeros of these identified inverses. Comparing it to Figure 2.20, clearly the
zeros cancelling the corresponding channel poles have been found. The remaining two zeros
attempt to make up for the non-minimumphase behaviour of the RFID channel. This is an
important intermediate step: The inverses shown here will be relevant for the initialization of
the devised blind equalizer (see Section 4.2.4).
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Figure 3.5: Zeros of the LMS inverse system approximation

3.3 Blind equalization

Blind equalization is closely related to the classical adaptive methods described previously.
The general intention of equalizing the communications channel (ISI and noise) stays exactly
the same. Actually, there is just this tiny step that makes an equalizer blind : the restriction
that the training sequence d[n] (see Figure 3.4) is not to be used. This means that
the desired output has to be computed without any direct reference to what the perfect out-
put should look like. Merely the signals measurable at the receiver are available to solve this task.

This simple restriction on d[n] opens an entire universe of different approaches. Blind
methods of arbitrary complexity exist in the literature. Blind techniques in neural networks
and machine learning are examples of using massive amounts of data and computationally
expensive algorithms to arrive at a solution. Other approaches make use of explicit higher-order
statistics, which also rely on great sample amounts to be successful. The blind algorithms
considered in this thesis are – in contrast – expected to perform well given a bare minimum of
samples and processing operations. Efficiency, low complexity, and real-time compatibility are
the features of interest here.

Algorithms closely related to LMS are an attractive option. Such algorithms also belong
to the family of stochastic gradient descent (SGD) methods. The steps 1. and 3. in the LMS
algorihm Table 3.1 will thus stay exactly the same for the examined blind algorithms. Merely
step 2. needs to be redefined because of the forbidden d[n]. A new error signal is needed: a
signal that can compensate for the missing d[n] by replacing it with a signal which behaves
similar to d[n], but is composed of the available signals (r[n], y[n]). Incorporating some useful
assumptions on the input signal s[n] (e.g., statistical properties) can also help in this matter.
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The basic idea behind all algorithms listed hereafter is to devise a new cost function
Ψ(y[n]), or equivalently a new error function Ψ′(y[n]) = ∇cΨ(y[n]), which directly defines the
gradient (without revisiting a cost function). By a good choice of such a function, the left part
of (3.14) applies, so that the blind algorithm can take steps in the direction of the negative
gradient – to converge to a solution of successful equalization. Several popular examples of
such cost or error functions will be given now (Section 3.3.1), followed by remarks on why these
functions are able to achieve equalization (Section 3.3.2) and in which situations they do not
work well or not at all (Section 3.3.3). A recommendable overview on blind algorithms and
their properties and behaviour is given by Johnson’s research group in [13].

3.3.1 Famous blind algorithms

Sato algorithm
This algorithm is the first blind equalisation algorithm to be proposed in 1975 by Yoichi Sato [6].
M-level PAM is assumed as input signal (allowing assumption on the input statistics). It is
defined via error function

Ψ′Sato(y[n]) = y[n]− E{ |s[n]|2 }
E{ |s[n]| }

· sgn(y[n]) (3.16)

For binary input (2-level PAM, ±1), the expectation factor is 1, reducing the error to
e[n] = y[n] − sgn(y[n]), which is the same as comparing the output y[n] to the output of a
decision device (slicer) Q(y[n]) = sgn(y[n]). For M-level PAM generally, the algorithm can be
seen as a sort of more sophisticated slicer. The success of this algorithm depends on the slicer
decisions being correct, that is, sgn(y[n]) = s[n] or s[n−∆] for all n – or at least for most n. In
case of severe ISI, this does not necessarily hold, in which case this algorithm runs into trouble.

Stop-and-Go algorithm
This algorithm proposed in [10] attempts to improve the convergence time of the previously
presented approach by imposing a rule about when it is promising to make a step towards
convergence and when it is better to keep the current coefficient vector as it is. This rule takes
advantage of the fact that the direction towards convergence is more likely to be correct if the
signs of two separate error functions are equal at a particular time step n. It thus includes results
of more than one blind method in its convergence process. In the paper, the decision-directed
(DD) approach and the Sato algorithm are combined:24

Ψ′StopGo(y[n]) =
1

2

(
y[n]−Q(y[n]) + |y[n]−Q(y[n])| ·sgn(y[n]− E{ |s[n]|2 }

E{ |s[n]| }
·sgn(y[n])

)
(3.17)

This looks a bit confusing, because the two algorithms are consolidated into one function re-
quiring only one update equation without further condition checking. The rewritten (general)
form looks like this simple coefficient update rule (involving any two error functions Ψ′1, Ψ′2)

c[n+ 1] =

{
c[n]− µΨ′1(y[n])x[n] if sgn(Ψ′1) = sgn(Ψ′2)

c[n] if sgn(Ψ′1) 6= sgn(Ψ′2)
(3.18)

24 Note: Sato and DD are identical in case of 2-PAM input; this algorithm suggests PAM with X > 2 levels
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BGR algorithms
This family of algorithms is considered to be an extension of Sato’s idea. It has been introduced
by Benveniste, Goursat and Ruget [8], hence the name (BGR). Their error function (type) is
given as

Ψ′BGR(y[n]) = f(y[n])− E{ f(s[n]) · s[n] }
E{ |s[n]| }

· sgn(y[n]) (3.19)

where f(x) is the novelty. It is defined to be odd and twice differentiable (except at the origin)
with f ′′(x) ≥ 0 for all x ≥ 0. The Sato algorithm can be deduced by setting f(x) = x,
which fulfills f ′′(x) = 0. Similarly, a certain subset of odd-powered polynomials will fulfill
these conditions on the error function. This train of thought links the BGR family to the
later presented Godard family algorithms. Paper [8] also states the simple extension of BGR
algorithms to the complex signal case (QAM):

y[n] → Re{y[n]}+ j Im{y[n]} (3.20)

Ψ′BGR(y[n]) = Ψ′BGR(Re{y[n]}) + j Ψ′BGR(Im{y[n]}) (3.21)

The coefficient update equation is then modified by a complex conjugation

c[n+ 1] = c[n]−Ψ′BGR(y[n]) · r∗[n] (3.22)

Constant Modulus (Godard) algorithms
Godard starts off with cost functions in his paper [7], not their derivatives as seen in the previous
methods. He denotes his cost functions with a Dp indicating the underlying idea of dispersion of
order p. He points out that for pure phase modulation (M-PSK), it is sufficient to constrain the
equaliser output to possess constant amplitude (constant modulus) for successful equalisation.
The Godard cost function is of the form

ΨGodard(y[n]) =
1

2p

(
|y[n]|p − E{ |s[n]|2p }

E{ |s[n]|p }

)
p = 1, 2, . . . (3.23)

For p = 1, this cost function is equivalent to the the Sato cost function (the integral of the error
function Ψ′Sato):

ΨGodard(y[n])
∣∣
p=1

= ΨSato(y[n]) =
1

2

(
|y[n]| − E{ |s[n]|2 }

E{ |s[n]| }

)2
(3.24)

To be consistent with the presentation of previous algorithms, the error function of the Godard
algorithms shall be stated here as well:

Ψ′Godard(y[n]) =
(
|y[n]|p − E{ |s[n]|2p }

E{ |s[n]|p }

)
· |y[n]|p−2 · y[n] (3.25)

The constant modulus condition has the effect that analysed signal portions not having a
constant modulus (channel influences and noise) are inherently suppressed, while the portion
having a constant modulus is favoured. Another feature of the Godard algorithms is their
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invariance towards the phase of the output y[n], as only its absolute value is considered in
the cost function. Potential phase rotations or synchronizations need to be taken care of
independently. The Godard algorithm for p = 2 is the most popular blind SGD algorithm. It is
often denoted as CMA – “the” constant modulus algorithm – although the algorithms of other
p also exploit the constant modulus property.

Shalvi-Weinstein algorithms
This method [11] is distinguished from the previous algorithms in its explicit use of higher-order
statistics (HOS), specifically the kurtosis. The overall system impulse response o[n] – which
should simply be a single Kronecker delta (fulfilling the zero-forcing condition, see equation 3.6)
– is constrained for constant unity power

o[n] = h[n] ∗ c[n] with
∞∑

n=−∞
|o[n]|2 !

= 1 (3.26)

If this holds (a normalization step or automatic gain control is required), and if the input signal
s[n] is i.i.d., the input and output signal power (variance) are related by

E{|y[n]|2} = E{|s[n]|2} ·
∞∑

n=−∞
|o[n]|2 (3.27)

as are their 4th-order moments (kurtosis)

Ky = Ks ·
∞∑

n=−∞
|o[n]|4 (3.28)

with the kurtosis defined as (Ks similarly)

Ky = E{ |y[n]|4 } − 2E2{ |y[n]|2 } − | E{ y2[n] } |2 (3.29)

The SGD is used in this algorithm as well, but with the intention of maximising the kurtosis
at the output. Most QAM and PAM signals s[n] exhibit nonzero kurtosis (Ks 6= 0), making
this property a sufficient criterion for input reconstruction at the output. The output kurtosis
can be maximised by maximising the overall system kurtosis Ko =

∑
|o[n]|4. For details, refer

to [11].

3.3.2 Bussgang property and higher-order statistics

The last listed blind method uses higher-order statistics (the kurtosis) in a direct way. The
other methods use HOS implicitly – their error functions are inherently nonlinear (absolute
value, signum function, polynomials). They count as static (memoryless) nonlinearities. In
contrast to linear functions, nonlinear functions have the ability to change the probability
distribution of its input (which is considered to be a stochastic process in this case).25 This
implies that by choosing an appropriate nonlinear function, the distribution of a message signal
s[n] can be enhanced at the output to assist reconstruction.

25 see Nonlinear Signal Processing VO scriptum
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This leads to the Bussgang property. It is a kind of guideline for ensuring that s[n] can
indeed be reconstructed for a specific nonlinear function. The original theorem by J. Bussgang
(1952) says the following:

Definition Let X(t) and Y (t) be the input and output random variables (processes)
respectively, of a nonlinear operation (function) g(), such that X is a zero-mean Gaussian
process X(t) ∼ Nt(0, σ2

x) and Y (t) = g(X(t))

Bussgang theorem The cross-correlations of a Gaussian signal – before and after passing
through a nonlinear operation – are equal, up to a constant C which solely depends on g().

rxy(τ) = C · rxx(τ) with C =
1

σ3
x

√
2π

∫ ∞
−∞

u · g(u) · e−
u2

2σ2 du (3.30)

Barrett and Lampard (1955) found that a great number of stochastic processes (beside the
Gaussian ones described here) also possess the Bussgang property and extended the Bussgang
theorem to all stochastic processes with exponentially decaying auto-correlation functions rxx
(as the significant peak is still at rxx(0)). This includes Uniform and Laplace distributions, or
more generally everything in between labeled “sub- and supergaussian distributions”. They
are classified by their kurtosis: The Gaussian distribution has kurtosis 0, the associated
distributions have either smaller or greater kurtosis, respectively.26 The important thing to
note here is that distributions of common signal constellations (like M-PAM, M-PSK, M-QAM)
can be ranked among these extended distributions.

Blind algorithms designed for these constellations are then called “Bussgang algorithms”
because they fulfil (or at least almost fulfil) the Bussgang theorem when convergence is
completed (here in discrete time):

E{y[n]y[n− τ ]} ' E{y[n]g(y[n− τ ])} (3.31)

This implies that, assuming s[n] has been reconstructed successfully (g(y[n]) ≈ ŝ[n − ∆]), the
output signal (process) attains the statistical properties inherent to the particular chosen constel-
lation producing the (unknown) input process. The convergence process can thus be interpreted
as encouraging the distorted signal to transform (via equalizer) into a signal that likely be-
longs to such an underlying constellation. Ding [12] gives details by means of a MAP estimator
approach. He also points out that the blind algorithms (from section 3.3.1) are sub-optimal
versions related to this MAP estimator. This remark is also relevant for the Bayesian approach
in Section 3.4.

3.3.3 Initialization and convergence

The term “sub-optimal” gives the cue for this section, which addresses the challenges inherent to
blind equalizers. The main concern is whether convergence to a valid solution can be guaranteed.
This question arises, because the cost functions of the previously listed algorithms are non-
convex. On the opposite, the LMS cost function is convex, which means its cost surface (see
Figure 3.3) has a single “basin” with a clearly defined bottom (which portraits the minimum,
the point where the solution is achieved). Non-convex cost surfaces show multiple “basins” (see
Figure 3.6) – not all of which correspond to a valid solution (valid = global minimum). If,
during the iterations of the algorithm, a step is accidentally made in the wrong direction (due

26 Table 2 in [13] shows the kurtosis values for all customary constellations.
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Figure 3.6: CMA cost function surface for noiseless 2-PAM over AR(1) channel and a two-tap equalizer
(L = 2 overparametrized) showing length-dependent local minima; the two global minima are
due to the CMA’s phase ambiguity; Direct copy of [12]

to the additive noise, or because the current frame of received samples is particularly distorted
by ISI at this instant), the algorithm may end up in the wrong “basin” (local minimum). In
consequence, the algorithm stops (because it thinks it has converged) and the equalizer keeps
applying coefficients that do not help reconstructing the input message s[n].
Based on findings in [12], [13] and [39], a short summary is given here about how such non-convex
cost surfaces behave and which parameters influence their behavior.

Local minima may appear due to

◦ the cost function and/or error function directly. They appear even if all other param-
eters fit perfectly – i.e., even if a fixed (static) equalizer could do the job. Example:
The Sato cost will show local minima in the situation of 2-PAM (±1) i.i.d. zero mean
input to an AR(n) channel, with an FIR equalizer perfectly achieving the MA(n) pro-
cess that completely cancels the AR(n) channel effect, and no noise (AWGN) present.
Stop-and-Go and BGR algorithms also show this behaviour. These minima are labeled
cost-dependent local minima. CMA and the Shalvi-Weinstein algorithm do not
have minima of this type. They will converge globally in the situation given above.

◦ the FIR filter not having adequate length L. This issue includes consideration about
the invertibility of the channel (given in Section 3.1). In a practical scenario the
channel may be varying over time, the length of the inverse may thus also vary ac-
cordingly. The problem is most prominent for channels predominantly characterized
by zeros (MA-processes) – which is luckily not the case for the modeled RFID chan-
nel (the poles = AR-process are dominant). All of the listed algorithms show these
length-dependent local minima. They vanish only in the theoretical case of the
infinite-order Wiener filter.a

◦ the use of real-valued constellations on complex-valued channels and/or equalizers.
This is a problem crucial to the investigated RFID channel in this thesis. Literature
shows the discovery of this problem but offers no insights in how to combat it. During
the choice of algorithms for the RFID channel in Section 3.5 a heuristic proposal is
made to reduce the influence of these number-set-dependent minima.

a Paper [40] attempts to eliminate length-dependent minima by making use of nonlinearities with memory.
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The following items give an idea of how stochastic gradient family (SGD) algorithms behave
on non-convex cost surfaces. Mentioned extrema can be either minima or maxima. Saddles
are treated separately.

– At any point on the surface far away from an extremum the gradient (first derivative)
at that point determines the speed of convergence.

– In vicinity of an extremum rather the second derivative (local curvature) determines
the speed of convergence.

– Excess steady-state error occurs if the cost function value at an extremum is nonzero.

– Multimodal surfaces may have extrema with different cost function values; convergence
to the correct minimum vitally depends on where on the surface the journey for
convergence starts.

– Starting at different points on the surface may result in different solutions.

– Saddle points complicate convergence. If such a point lies on the path to convergence,
the speed of convergence may become arbitrarily slow, depending on how close the
path passes the saddle. Both first and second derivative approach zero in vicinity of
a saddle (to be more exact, the gradient approaches zero and the Hessian matrix is
indefinite).

The choice of a starting point is called initialization. In contrast to the LMS – which can
converge fine even with all equalizer coefficients set to zero – the performance of blind equalizers
depends on correct initialization. Common tactics found in literature are the “center tap”
initialization, where the equalizer length L is odd and all coefficients are set to zero except
the middle one. Another suggestion is called “tap-anchoring”, where it is attempted to fix the
center coefficient at a specifically chosen delay. Gain estimation and control is needed for this
method. However, these ideas can only be seen as general suggestions for initialization – they
are not universally valid.

Application-specific initialization is likely to perform better. All insights gained in Chapter 2
about the RFID system and especially the potential inverses of it presented in Section 3.2.3
will prove useful in this matter.

Some final selected considerations regarding blind equalizers are presented below:

� In the presence of noise (AWGN), the cost surface becomes more shallow. Locations of
minima (also the global ones) change according to noise intensity, but their regions of
attraction stay similar. Under high noise it is possible to escape from local minima – but
also to be diverted from a global minimum.

� Undermodeling of the equalizer (L too small) results in residual ISI (which is usually
accepted in practice if sufficiently low). However, the residual also causes deformations of
the surface, depending on the magnitude of the residual.

� Channels may vary over time. If this variation is sufficiently slow, the (converged) blind
equalizer is able to track channel changes with a speed depending on the local curvature
(second derivative).

� The stepsize parameter µ needs to be adjusted according to a trade-off between convergence
speed (transient behaviour) and excess error (steady state behaviour). Stepsize µ ≪
means slow convergence but a solution “on-the-spot”, while µ≫ means fast convergence
but never-ending big steps in the vicinity of the solution (see also Section 4.2.1).
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3.4 Bayesian approach

The conclusion on the Bussgang property in Section 3.3.2 implies that equalization is successful
when the input signal statistics match those at the output, and that the “driving force” behind
the Bussgang algorithms encourages this to happen. This has, however, not been proven
universally – it has simply been found that the Bussgang property holds after successful
convergence.

The logical step – to explicitly drive the output towards the correct statistics – has been
explored in [37]. In this section, this approach is summarized, because it is less restrictive
than other blind algorithms that have been short-listed for this thesis, and it has proved to
outperform CMA (in the referenced paper, as well as for the RFID channel, see Chapter 4).

The assumptions made in the approach match the requirements of the RFID application:

1. non-minimumphase LTI channel with zeros |z| 6= 1 only

2. linear transversal equalizer (adaptive FIR)

3. AWGN noise

4. no assumption on the input probability distribution Π(s) (PDF/PMF) except that it has
even symmetry

5. the input is i.i.d. and zero-mean.

Furthermore, the MSE approach is maintained (which includes zero-forcing). The idea is re-
stated from a slightly new perspective: the output is split into three additive terms

y[n] = aZF · s[n−∆] + ξ[n] ∗ s[n] + w̃[n] (3.32)

where the first term is the ZF solution (see (3.6) and (3.7)), the second term denotes the
residual ISI where ξ[n] is the difference (misalignment) of the coefficients ccurrent[n] and copt[n],
and the third term is the shaped noise as in (3.8). Second and third term are intended to vanish
with proceeding convergence.

The closed-form approach in the paper [37] explicitly uses the conditional expectation
integral (which is the optimal point estimator in a statistical sense) and invokes Bayes’ law to
form the true Bayes’ estimator

E{s|y} =

∫∞
−∞ s ·Π(y|s) ·Π(s)ds∫∞
−∞Π(y|s) ·Π(s)ds

(3.33)

where E{s|y} estimates the mean of the true posterior probability distribution Π(s|y), Π(y|s)
is the sampling distribution (also called “measurement distribution” or “likelihood”), which is
based on the measured output samples y, given the input assumptions on s (conditional proba-
bility). The denominator term is called “evidence” or “marginal likelihood”. In the next step,
the prior information (Π(s), the distribution of the input) is assumed to be unknown – which
means no simplifications towards MAP or ML – it is instead approximated by the maximum
entropy method, under the constraint that a sufficient number of moments mi =

∫
si · Π(s)ds

of the input are known. Lagrange multipliers are used to solve the approximation of Π(s).
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With high computational complexity (offline), the full Bayes estimator is applied in the
algorithm error as a sophisticated replacement for d[n] (the reference or training signal):

c[n+ 1] = c[n]− µ ·
(

E{s|y} y[n] · E{s|y}
E{y2[n]}

− y[n]
)
· r∗[n] (3.34)

The advantage of this approach is that the residual ISI is estimated along with the input dis-
tribution. The high-complexity algorithm is then simplified by assuming a low enough level of
ISI and presuming E

{
y2[n]

}
≈ E

{
s2[n]

}
so the output variance does not need to be computed

for each step. Also, the conditional expectation is replaced by instantaneous estimates (comp.
Section 3.2.3). Then the derived algorithm (SGD type) is suited for real-time application –
although it is now suboptimal due to the simplifications.

e[n] =
( y3[n]

E{s2[n]}
− y[n]

)
∈ R (3.35)

or
=
( Re{y[n]}3

E
{

Re{s[n]}2
} + j

Im{y[n]}3

E
{

Im{s[n]}2
} − y[n]

)
∈ C (3.36)

3.5 Proposed new algorithm

The algorithm in the previous Section 3.4 (it is plainly called “Wnew” in [37]; they use the letter
W for the error e[n]) is assessed to be the best choice for the given RFID channel equalization
problem (see Chapter 4). This is mainly due to its clear derivation and its flexibility towards
any chosen constellation.

These attractive features triggered further investigations concerning the challenge of eliminating
number-set-dependent local minima (see Section 3.3.3), which are inherent to the given RFID
task. This detail seems to have attracted no attention of research as of yet. The reason
for this may be explained rather simply: If the application assumed (i.e., implemented) the
channel and/or the equalizer to be complex-valued, it would seem irrational not to choose a
complex alphabet also. Otherwise (if a real-valued alphabet is preferred) the alternative of
omitting complex-valued realizations altogether saves computations, thus increases efficiency,
which is why a purely real-valued solution will then often overrule the more complicated
“mixed-number-set” alternative.

In case of the given RFID system, the purely real-valued alternative is not viable. The
nature of the complex-valued RFID baseband channel (see Chapter 2) prohibits the mere
omission of the imaginary parts. Equalizing the real parts only is bound to fail. Consequently,
the equalizer is required to be complex-valued as well. The feature that makes this RFID
application special is the intentional choice of BPSK (which is real-valued). The ISO-14443
standard endorses this choice. RFID communication is a much more fragile procedure compared
to other communication fields such as digital radio or television. Robustness is of highest
priority – the message must be transmittable, regardless of the type of card(-antenna). And
out of all known constellations, BPSK is the most proficient one in terms of noise distortion
robustness, and power efficiency.

Since the algorithm is blind it has no means of knowing whether the input might be
real- or complex-valued. Because it is necessarily implemented complex-valued in this RFID
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case, it will keep its options open. So if an adverse combination of input plus channel occurs
at any time instant, the blind equalizer tends to interpret the incoming (erratically complex-
valued) signal amplitudes as originating from QPSK or QAM (complex-valued) alphabets
instead of duly real-valued BPSK.

A modification is proposed in this thesis to overcome this detrimental tendency. The
“Wnew” algorithm in (3.36) inspired this modification, because real and imaginary parts are
treated separately.

Modification 1
Following the argument that the received signal r[n] and the equalizer output y[n] are
complex-valued by definition, the error computation should be “made aware” that the
expected output is in fact real-valued. Without mathematical proof, this is heuristically
accomplished by comparing the nonlinear estimator output against the real part of y[n]
instead of a general y[n] ∈ C.

e[n] = g(y[n])− Re{y[n]} (3.37)

Section 4.4 will show experimental verification that this modification fulfils the purpose of
accomodating both number sets.

The obvious complementary modification has been found to be infeasible: omitting or
changing the imaginary part of the nonlinear estimator in (3.36). If omitted, the estimator
deteriorates drastically because the imaginary part is not accounted for in the estimation
anymore. If changed, the given purpose can at least be approached: It is known for BPSK
input that E{Im{s[n]}2} = 0. The denominator of the imaginary term in (3.36) is then 0, which
renders the overall term inifinite. The imaginary infinity is then compared against whatever
(small) imaginary value the current output signal y[n] has – which means the imaginary part
of the whole error signal becomes a constant (close to infinity) rendering those small changes
negligible. Mathematically, the outcome of the error modified this way will approach perfect
BPSK “comprehension” as E{Im{s[n]}2} −−−→ 0. Numerically, this idea is obviously highly
problematic.

The values of E{Re{s[n]}2} and E{Im{s[n]}2} are actually constellation-dependent; they
are fixed constants during algorithm iteration. For BPSK

E
{
s2[n]

}
= E{Re{s[n]}2} = 1

E{Im{s[n]}2} = 0

The proposed Modification 1 circumvents this infinity problem. Instead, a reasonable value
around E{Im{s[n]}2} = 1 is chosen and the comparison of the imaginary part eliminated “at the
other end” by using the−Re{y[n]} expression. The hypothetical effect is that the SGD algorithm
will adjust its output y[n] more likely towards a real-valued BPSK because the imaginary part of
the error will always be higher (because of the too-high-chosen E{Im{s[n]}2} = 1) than the real
part. This way, the algorithm will address any “illegal” rotations in the complex plane towards
the imaginary axis first. The powerful yet simple error has the final form
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emod[n] =
(Re{y[n]}3

1
+ j

Im{y[n]}3

1
− Re{y[n]}

)
(3.38)

Note that Modification 1 can also be applied to the CMA (Godard) error function if it is
re-arranged slightly. Simulations show the same effect as in the “Wnew” case, thus once more
supporting the hypothesis (independent of a specific algorithm). From (3.25) with p = 2 and
BPSK input (expectation-term = 1), the CMA reformulates as follows:

ecma[n] =
(
|y[n]|2 − 1

)
· y[n]

= y[n] · |y[n]|2 − y[n]
mod⇒ y[n] · |y[n]|2 − Re{y[n]} (3.39)

In this form, CMA bears remarkable resemblence to the Wnew error. They both are associable
with a general “power of 3” on y[n]. However, the CMA has a different impact on the imaginary
part of y[n] because of the absolute value – whereas in Wnew the real and imaginary part are
completely separated.

Before the algorithm can be stated in its final version, a second important modification
is introduced. This modification has already been established in literature. It is called
normalization and it is well known in the context of the LMS algorithm. Haykin [26] describes
the normalization of LMS as a stabilizer regarding the coefficient change of the equalizer. This
procedure minimizes the squared Euclidian norm of the change ∆c[n+ 1] = c[n+ 1]− c[n]. The
effect of this is explained to the point by the “principle of minimal disturbance” (Widrow/Lehr,
1990), which states [26, p.436] that in the light of new input data, the parameters of the adaptive
system should only be disturbed in a minimal fashion. Normalization makes the stepsize param-
eter independent of the tap-input power. Otherwise, the input power variation must be studied
and the stepsize chosen accordingly to guarantee convergence. With normalization, stepsizes
of 0 < µ < 2 lead to a convergent algorithm. It has also been observed that the normalized
(LMS) algorithm converges potentially faster than its unnormalized variant. Following LMS
update equation (3.) in Table 3.1, the normalization is inserted as a division of the stepsize by
the squared Euclidian norm of the tap-input vector r[n]:

c[n+ 1] = c[n] +
µ

||r[n]||2
· r[n] · e∗[n] (3.40)

In the implementation of normalization a small constant is usually added in the denominator to
avoid division by values close to zero (if ||r[n]||2 is very small at any instant n).

Modification 2
Choose α > 0 but sufficiently small in order not to bias the norm. Choose 0 < µ < 2,
where µ = 1 theoretically yields optimal convergence speed. However, it is recommended
to choose µ < 1 in this context.

c[n+ 1] = c[n] +
µ

α+ ||r[n]||2
· r[n] · e∗[n] (3.41)

Although this modification has been introduced in the context of LMS, it has been shown in [41]
that common standard adaptive equalizers such as LMS, NLMS, RLS or even the projection
algorithm may be modified to become blind equalizers while keeping the least-squares-specific
advantages, respectively. This is done by invoking a so-called “separation principle”. A remark
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s[n] H(z)

x[n] r[n]
C(z) y[n]

w[n]
blind

algorithm

unknown system
and input signal

Figure 3.7: Signal flow graph of blind adaptive equalization

wNCMA algorithm

0. Initialize c[n]

1. Filter output: y[n] = cH [n]r[n]

2. Current error: emod[n] = Re{y[n]}3 + jIm{y[n]}3 − Re{y[n]}
3. Coefficient update: c[n+ 1] = c[n] + µ

α+||r[n]||2 · r[n] · e∗[n]

Table 3.2: wNCMA algorithm procedure and equations

at this point: The general idea is likely to hold given all of these algorithms belong to the
SGD family. The convergence process of blind equalizers may, however, be more “turbulent” as
opposed to LMS, thus the recommendation for a µ < 1.

The choice of a name for this algorithm, i.e., wNCMA, may be a bit controversial. Usually,
authors append a combination of new letters to an existing abbreviation to signify their mod-
ification (e.g., MCMA, RD-CMA, FSE-CMA). The name of the underlying algorithm “Wnew”
lacks referential meaning. For this reason, the three letters CMA are chosen instead to signify
that (1.) the underlying algorithm itself fulfils the constant modulus criterion and that (2.) it is
closely related to the original CMA. The capital “N” suggests normalization (see Modification
2) and the lower-case “w” in front hints at the true origin (Wnew) as well as its well-behaved
character concerning the number-set issue (see Modification 1).
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4
Results & Evaluation

This chapter presents simulation results involving the new algorithm introduced in Section 3.5.
Section 4.1 describes the general settings for the simulations. Section 4.2 details equalizer
parameter choices and initialization. The bit error rate is used as a standardized measure for
equalizer performance, and results are presented in Section 4.3. In Section 4.4 the validity of
Modification 1 (see Section 3.5) is experimentally proved and discussed. Finally, Section 4.5
covers the case of a synchronization period in front of the message signal.

bl ISO 14443
coding

xQ

ZOH

H(z) C(z)

decision yQ
ISO 14443
decoding

b̂l

w[n] Algorithm
fsub k

i1[m] s[n] x[n] r[n] y[n] ŝ[n]

ZOH
assumption

i2[m]

Figure 4.1: Signal flow graph of simulation setup

4.1 Simulation setup

The simulation has been designed with a practical orientation. The fundamental premise
is the constant sampling frequency of fs = 13.56 MHz in the receiving device. Since the
ISO-14443 norm [5] defines several subcarrier frequencies along with corresponding baud rates
(see Table 1.1), the simulation becomes implicitly multirate. This fact is indicated by the two
boxes in Figure 4.1 labeled with “Q”, which is an integer upsampling (resp. downsampling)
factor depending on the choice of subcarrier (fsub). Q is set so that the intermediate signal

Signal Sample rate Domain

bl none (binary sequence) {0, 1}
i1[m] chosen fsub {±1} ∈ R
s[n] 13.56 MHz {±1} ∈ R
H(z) 13.56 MHz C
x[n] 13.56 MHz C
w[n] 13.56 MHz C
r[n] 13.56 MHz C
C(z) 13.56 MHz C
y[n] 13.56 MHz C, but ≈ R
ŝ[n] 13.56 MHz {±1} ∈ R
i2[m] chosen fsub {±1} ∈ R
b̂l none (binary sequence) {0, 1}

Table 4.1: Simulation sample rates of each intermediate signal
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i1[m] is converted to an equivalent 13.56 MHz signal (s[n]) using zero-order hold (ZOH). After
the equalizer output (y[n]) the reversed process is applied in order to retrieve ISO-conform
signals. The decision device is assumed to impose rectangular form on the output signal again,
so that the signal ŝ[n] may be decimated without additional filtering. It must be pointed out
that this receiver structure is a very primitive one. Advanced methods do exist (e.g., matched
filtering, Viterbi decoding, see outlook in Section 5.2), however, the channel equalization is
under examination here, not the posterior decoding structure. Using a basic decoding structure
bears clear results regarding the equalizer.

Table 4.1 shows the sample rates for each intermediate signal (or system), and also their
underlying number sets. Apart from the appended coding blocks in Figure 4.1, the center of
the signal flow concept is identical to the one presented in the previous chapter in Figure 3.7.
The lower box is intentionally labeled “Algorithm” to signify that not only the proposed blind
algorithm is simulated, but also other blind algorithms as well as MMSE for comparison. In
the following, each stage in the signal flow is described:

1. The binary messages bl are generated randomly.

2. A subcarrier frequency is selected (0.848, 1.695, 3.39 or 6.78 MHz, comp. Figure 1.2).

3. bl is modulated onto the subcarrier according to ISO-14443 (see figure 2.3, top three
subplots). This intermediate signal is called i1[m].

4. The signal resulting from (3.) is upsampled to fs = 13.56 MHz using zero-order hold. The
factor “Q” is 1 for the highest fsub = 6.78 MHz (no upsampling), Q = 2 for 3.39 MHz,
Q = 4 for 1.695 MHz, and Q = 8 for 0.848 MHz. The upsampled signal is called s[n].

5. Parameter coupling is selected k ∈ [0.01 0.55].

6. The baseband system response H(z) for the selected k is provided by the system model
(see chapter 2) as IIR filter.

7. s[n] is filtered by H(z) yielding x[n].

8. Parameter signal-to-noise ratio (SNR) is selected and normalized by an approximation of
the energy of the channel response to have a measure Eb/N0.

9. Complex Gaussian noise w[n] (AWGN) is added to x[n] according to Eb/N0. The resulting
signal is r[n].

10. In order to simulate automatic gain control (AGC), r[n] is normalized by its RMS.

11. r[n] is filtered by the current equalizer response C(z), which is a transversal FIR filter of
length L. C(z) is iteratively adapted by an “Algorithm” of choice, which employs an error
signal e[n]. The result of the filter operation is y[n].

12. The decision device (slicer) is implemented as a simple signum function: ŝ[n] = sgn(y[n]).
The signum function is defined with regard to complex numbers.

13. The recovered signal ŝ[n] is assumed to have rectangular shape (like s[n]). With respect
to the zero-order hold upsampling in (4.), the signal is downsampled to subcarrier rate
again (using the same factor “Q” as in (4.)) by keeping the first of each q samples. The
intermediate result is called i2[m].

14. The binary message b̂l is reconstructed by demodulating the BPSK signal i2[m] from the
subcarrier.

The simulation is implemented in MATLAB. Specific parameter settings are stated in the re-
spective sections where their variation is studied or their preference explained. It is important
to mention that the synchronization frame specified in ISO-14443 is explicitly not part of the
following simulations. The synchonization frame is treated separately in Section 4.5.
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4.2 Equalizer settings and initialization

The following sections comment on the choice of parameter settings for the blind equalizer. They
apply to wNCMA as well as the standard NCMA; parameters are identical to provide a fair
comparison in Section 4.3. They also apply to all algorithm variants considered in Section 4.4,
since these variants differ in their error definition e[n] only.

4.2.1 Stepsize µ

For conventional LMS (see Section 3.2.3) the choice of stepsize µ is well known to be dependent
on the eigenvalues of the autocorrelation matrix R of the received signal. This effect is
alleviated by normalization (see Modification 2) of the received signal. The choice of µ in
context of LMS is comparatively easy, because the cost surface is unimodal and thus has a fixed
curvature everywhere. Blind equalizers usually have multimodal cost surfaces, which means
the issues discussed in Section 3.3.3 apply – and outweigh – the influence of the stepsize µ. In
an exemplary situation in [13] a CMA equalizer passes a saddle point on the surface during
convergence: Regardless of the chosen stepsize µ, convergence is slowed down arbitrarily. The
convergence rate for blind equalizers is thus not adjustable by a single parameter µ, but is
rather a careful joint selection of µ and the initial coefficient setting (see Section 4.2.4). In
vicinity of a global minimum on the blind equalizer’s cost surface, the choice of µ is, however,
closely related to the LMS strategy. Considerations about eigenvalues and normalization are
valid for blind equalizers under these circumstances.

Normalization of the stepsize (Modification 2) is important with regard to coupling
factor k. Without normalization, the upper bound for a stable stepsize is defined by the largest
eigenvalue λmax of R: 0 < µ < 2/λmax. This eigenvalue directly depends on the shape of the
resonance at each given k, because the power spectrum (PSD) – the Fourier transform of the
autocorrelation – will also exhibit this resonance shape. The maximum eigenvalue is directly
related to the maximum of the resonant peak by λmax ≤ max

(
Pxx(f)

)
(further details in the

solution manual associated to [42]). In other words, µ depends on k. In order to guarantee
the stability of the (unnormalized) algorithm for all k, µ would have to be chosen so small
as to guarantee stability for critical coupling (because the resonance peak is at a maximum
here). However, for all other k the stepsize would be suboptimal. Normalization reduces this
dependence.

The stepsize µ also affects the steady-state behaviour of the algorithm. In LMS it pro-
duces excess error due to remaining fluctuations around the global minimum. Blind algorithms
with multimodal cost surface will behave similarly near a minimum, however, additionally there
is the chance of diverging again from a minimum if the stepsize is too large – especially with
high noise levels when the surface is flattened.

Consequently, the stepsize is set to µ = 0.01.

4.2.2 Equalizer length L

As stated in Chapter 2 the system model has two poles and two zeros. According to system
theory, the two poles can be perfectly equalized using an FIR filter containing the corresponding
two zeros that cancel these poles. The model zeros cannot be perfectly equalized by an FIR
filter. But an approximation is possible. Fortunately, the poles of the channel model are of
greater overall significance compared to the zeros. An equalizer with many coefficients L can
thus be avoided by neglecting the cancellation of the model zeros.
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When noise is present it is advantageous to have spare coefficients, because the equalizer
can use them to compensate for some of the noise. Experiments to compute inverses of the
given system model have been shown in Section 3.2.3. In Figure 3.5 the zeros of these inverses
are plotted. Tests in this context have revealed that the optimal choice for the number of filter
zeros is 4, which translates to an

Equalizer with L = 5 coefficients.

4.2.3 Normalization bias constant α

This parameter is a small constant to avert division by zero during the normalization step
(Modification 2). It depends on the number format used in the calculation. In the simulations
for this thesis, double-precision floating point native to MATLAB is used. The machine epsilon
is used as the bias constant.

α = eps(’double’) ≈ 2.22 · 10−16

4.2.4 Initialization

This section introduces guidelines how to set the initial coefficients c[n] of the blind equalizer.
Many complications arising in the course of this thesis (e.g., Sections 3.3.3 and 4.2.1) suggest a
diligent choice in this matter. Several demands have to be met for properly functioning blind
equalizers in general – and in accordance to the given RFID system in particular. The desired
initialization shall be able to

1. avoid regions of attraction attributed to undesired local extrema or saddles,

2. start off being already close to the correct global minimum,

3. minimize the transient period (convergence time),

4. converge to the correct global minimum regardless of current coupling k, and

5. converge to the correct global minimum regardless of noise level.

These requirements cannot be all fulfilled. The biggest challenge is the combination of the
first with the forth demand: The given range of possible k-values permits a significantly
changing cost surface. Extrema and saddles change dynamically with k. Finding a single
initialization fit for all k has proved unsuccessful. However, a slight reduction of k’s range
(lowering requirements for k ≫) achieves this univeral “single-fit” initialization (comp. figures
in Section 4.3.2).

The natural approach is to start with using the results pre-computed by the LMS algo-
rithm in Section 3.2.3. The best possible approximations of the model system’s inverses for all
k have been presented there (noiseless27 situation; see Figure 3.5). These inverses have been
applied systematically as the initial coefficients c0 of the blind equalizer (wNCMA) and their
effect evaluated by simulation. The inverses related to very low k show successful convergence
for channels up to k ≈ 0.15. This may be attributed to the common single resonance of the
system – or respectively single notch of the equalizer – at f = 0 Hz in the spectrum. Recall
Figure 2.18 on page 33: The model spectra are plotted here. To imagine the inverse spectra,

27 i.e., the pre-computed inverses effectively correspond to an approximated zero-forcing (ZF) solution

– 63 –



4 Results & Evaluation

turn the figure upside down. Evidently, the inverses at low k introduce very high gain to the
filtered output (trying to make up for the weak coupling gain of the channel). This renders
them unfit for initialization, because if the channel is, for instance, at a higher k of 0.3 (already
providing sufficient gain), the starting equalizer may render the output signal unstable.

Initializing on the other end of the k-range has also been found to be problematic: The
inverses in this region are spectrally quite flat and have two distinct notches (canceling the
resonances). Simulations have shown that such initialization either tends to preserve two
arbitrary notches or to diverge to an undesired minimum because the flatness of the initial
spectrum of the equalizer does not clearly indicate where the blind equalizer is supposed to
converge to. The single notch solution needed for the lower-k channels is rarely achieved by
initializations with higher-k inverses.

The optimal choice is found in the middle of the k-range, more specifically in the vicin-
ity of the point of critical coupling k ≈ 0.14. At this point, the gain is maximal so the inverse
initialization will never risk destabilizing the output. Moreover, the spectrum exhibits a single
notch – although the zeros producing this notch are already clearly separable. This choice of
initialization proved to achieve convergence towards both lower-k and higher-k systems (best
trade-off). Requirement bullet number two is accommodated best by this choice (considering
all k).

The last remaining challenge is the minimization of the transient period (3rd requirement).
Obviously, by initializing the equalizer with an already optimal or close-to-optimal setting
the transient period will be eliminated. This is the case around k = 0.14. For all other k
the equalizer will take a (short) time to converge. This is where the “over-modelling” of the
complex domain becomes beneficial: The idea is to shift the convergence activity across the
imaginary part of the output, so that the decision device can correctly clip the equalizer output
to ±1 right from the start for as many different k as possible. This can be achieved by a simple
initial phase rotation appended to the initialization. The reasoning behind this is as follows:
With k increasing from 0.01 upwards, the channel causes an increasing counter-clockwise
rotation in the complex plane (the reason for this being the increasing phase distortions of the
channel). Figure 4.2(a) illustrates this tendency. The values (∈ C) of signal samples are plotted

(a) wNCMA without rotation correction (b) wNCMA with a 68.75◦ clockwise rotation

Figure 4.2: Initial rotation study in complex plane; low k = 0.05, fsub = 6.78 MHz, 40 dB SNR
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at different stages of the signal flow (see Figure 4.1). Signal y[n] (red circles) is of interest here.
The outlying circles mark the start of the equalizer (transient phase) and eventually congregate
close to ±1 (yellow).

With increasing k (pale red arrow and k++ to indicate/imagine an animated series of
similar plots for increasing k) those outlying samples move counter-clockwise around the circle.
The speed of that movement depends on the chosen subcarrier: Higher frequency subcarriers
show greater movement. If the imaginary axis is crossed eventually,28 convergence errors – and
subsequently decision errors – are inevitable. In order to shift (to defer) the crossing event to
the highest possible k value, a fixed clockwise rotation is appended to the initialization of the
coefficients. This rotation can be seen as a manual compensation for the system’s allpass part
discussed in Section 3.1. Depending on the subcarrier, this rotation measures between 60 and
90◦. Figure 4.2(b) shows the effect of a 68.75◦ rotation. The outlying red samples now congre-
gate (approach the BPSK points) from the other direction. A spare range of approximately 90◦

(counter-clockwise) is available as a buffer (green) before the channel-induced rotation reaches
the critical crossing region. The result is a stable operation up to approximately k = 0.4.
Without the rotation, wrong decisions may occur as early as k = 0.2 (worst case, depending on
the subcarrier).

The resulting overall delay of the combined channel plus equalizer system is improved
by the rotation as well. Johnson [13] showed that blind equalizers tend to converge to a
solution which possesses the same group delay as the initial setting. This means that the
choice of initialization determines the delay of the overall system; convergence to different
resulting delay times is most unlikely. Nevertheless, the channel exhibits a gradually changing
delay when approaching greater k values. This delay is, however, shorter than the duration
of 1 sample, which means it manifests itself as a fractional delay – which in this case is just
another expression for the phase rotation discussed above. Associating the delay context to
Figure 4.2, the crossing of the imaginary axis signifies that overstepping samples are linked
to too great a delay time and thus cause wrong decisions. The compensating rotation (green)
ensures that the major part of the k-range remains associated with a fixed chosen delay of 1
sample. Moreover, the compensation leads to a maximally short transient period should the
delay switch to 2 samples yet (which is possible at high subcarrier frequencies and very high k,
comp. Figures 4.6, 4.7 and 4.8(d): inverted signal, BER approaches 100).

The initialization strategy does not lose its legitimacy in the presence of noise. The
notch shape of the equalizer also attenuates the noise spectrum in the notch frequency region.
Apart from the notch, the spectrum is rather flat, so frequency-selective noise amplification
does not occur. A constant noise amplification may occur due to the initial equalizer gain.
However, such a constant noise gain has negligible effect on the overall convergence.

The selected initial coefficients (corresponding to the inverse model of k = 0.14) are

c0 = β ·


−0.425+j0.6
0.4−j0.556

−0.0472+j0.0054
−0.0149+j0.0127
0.0107+j0.0178



fsub (MHz) β

0.848 6ej1.2

1.695 3ej1.2

3.390 1.5ejπ/2

6.780 1.5ejπ/2

Table 4.2: Subcarrier-dependent values for
equalizer initialization

28 around the arrow’s head, when the first red circles would come to lie here
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4.3 BER: Bit error rate evaluation

The bit error rate simulations are based on the settings stated in the previous Sections 4.1 and
4.2. Bit error rates are widely used to evaluate the performance of communication systems.
Such a system is built of a communications channel (here: RFID channel plus AWGN) cascaded
by an equalizer structure (here: wNCMA and others). Performance is measured by counting
the errors that the overall system produces.

The bit error probability is approximated by the Monte-Carlo method: The simulation gener-
ates a random message signal s[n] and calculates the results for the currently fixed parameter
selection. This procedure is repeated for M = 100 times, afterwards results are averaged to yield
a Monte-Carlo approximation. This approximation becomes more accurate for large sample sets
N . The values of N vary29 and are thus stated in the respective figure descriptions.

The signals used to calculate the bit error are the intermediate signals i1[m] and i2[m] (see
Table 4.1). There are two reasons for this choice:

1. The equalizer’s task is to restore the signal at subcarrier rate; the multirate setup (see
Section 4.1) introduces a certain ambiguity if the errors were to be calculated at the
rate of 13.56 MHz (especially for lower subcarriers), thus i2[m] is subject to the strict
downsampling of Rule (13.) given in Section 4.1.

2. Usually the binary digits are used directly for BER calculation; in this case the ISO-14443
endorses a “nested” modulation scheme, where the binary message is first modulated onto a
subcarrier, which is subsequently modulated onto the carrier. Assuming binary bl (b̂l) and
subcarrier signal i1[m] (i2[m]) are merely different representations of a common underlying
information stream, this nested modulation is avoided30 by considering exclusively the
subcarrier signals i1[m] (i2[m]).

The overall system delay is assumed to be 1 sample. This choice accommodates most cases in
the range of k (0.01 up to ≈ 0.4) under the given simulation settings.

4.3.1 Parameter variation: noise

Figure 4.3 cohesively shows performance results of the wNCMA equalizer. Since the equalizer
is optimized for low k (see Section 4.2.4), all four subfigures show similar decreasing curves for
these low k. The shape of the curves resembles the theoretical BPSK BER curve. Assume a
threshold below which the incidence of errors is acceptably low (e.g., BER< 10−2, which means
1 error out of 100 samples, or 1%). The wNCMA achieves this BER threshold (for low k, and
in all four cases) at SNR (Eb/N0) values between 15 and 20 dB.

For curves k > 0.3 the BER does not decrese with increasing SNR. Instead, the curves
approach a constant BER value (which remains the same even if SNR is increased to very high
levels). The cause for this constant BER is the transient behavior of the wNCMA equalizer:
Due to initialization with the “k = 0.14”-inverse, no or negligible transient errors occur at
lower k. As k increases, the equalizer needs to converge from this (single-notch) initialization
to a solution where the two notches are increasingly farther apart. Convergence time increases,
and bit errors occur in the time span between equalizer startup and completed convergence.
The Monte-Carlo average usually assumes the errors to be “evenly”31 distributed. However,

29 due to runtime minimization of the simulation
30 avoided so that the evaluation of the equalizer itself is not further distorted by ambiguous stages in the signal

flow (same reasoning as for using simple, basic decoding methods)
31 meaning spread across a certain range – as opposed to being localized in a certain part of that range
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(a) Channel + wNCMA EQ → fsub = 0.848 MHz (b) Channel + wNCMA EQ → fsub = 1.695 MHz

(c) Channel + wNCMA EQ → fsub = 3.39 MHz (d) Channel + wNCMA EQ → fsub = 6.78 MHz

Figure 4.3: Rigorous BER parameter study of the proposed new wNCMA algorithm. N = 10000. Main vari-
ation is Eb/N0. Several k are plotted (right-side legends correspond to the pairs (a,b) and (c,d)).
Each subcarrier rate is examined separately: (a) 0.848 MHz; (b) 1.695 MHz; (c) 3.390 MHz; and,
(d) 6.780 MHz.

here all the errors accumulating to the constant BER value are localized in the beginning of the
simulated signal time. The first Ne of N = 10000 samples show errors – afterwards no errors
occur,32 just like in all the other cases for lower k.

The constant BER values (flat horizontal ends of lines in the Figures 4.3 (a), (b), and
(c) at Eb/N0 > 25) can be used to guess the approximate length of convergence. The constant
part of the green curve in Subfigure (c) has a BER value of 0.002 (2 · 10−3). Multiplication by
N = 10000 yields an absolute error total of 20. These errors are located in the beginning of
the simulation time. Assuming these errors are slightly spread across the beginning phase, the
convergence is likely to be over after ≈ 20 · 5 = 100 samples (generous estimate), the remaining
N −Ne = 9900 samples are error-free.

32 no errors due to the algorithm — random errors may still occur given low SNR levels
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Figure 4.4: BER benchmark solution, N = 10000. Tested system comprises the RFID channel plus MMSE
inverse equalizer, with a subcarrier of 6.780 MHz. Other subcarrier cases look very similar. This
figure is representative for all subcarrier rates. Acceptable performance is reached slightly before
20 dB Eb/N0 for all k.

When the transient errors are left out of consideration, the wNCMA equalizer achieves close-
to-optimal performance similar to that of the MMSE equalizer in Figure 4.4. For subcarriers
0.848 MHz and 1.695 MHz the wNCMA achieves this performance level for all k; For the re-
maining two subcarriers, there is a limit of k ≈ 0.43 up to which these performance levels are
reached; beyond this limit the equalizer does not converge to the solution favoring the assumed
overall delay of 1 sample. BER values of the grayed-out k curves in the legend (in Figure 4.3)
would be constant around 0.25 to 0.5 (over the entire SNR range). Those curves have been
omitted because they distort the intuitive information content of these figures – showing them
would imply the wNCMA was unable to equalize at these k. This is, however, not true. The
wNCMA equalizer does in fact equalize the message perfectly at such high k – but the overall
signal delay is then 2 samples, and additionally the signal is inverted.33 The question of whether
this feature is of use in a practical implementation is deferred at this point.

4.3.2 Parameter variation: coupling

The critical SNR region for the wNCMA equalizer has been identified between 15 and 20 dB. In
this section, the SNR is the fixed parameter. The BER is plotted against k in order to review
the simulation results from a second perspective.

Caution is advised while studying Figure 4.5(a). The BER results of the unequalized
RFID channel are subject to multiple influencing factors, which stem from model properties
(phase distortion, allpass part) and from the chosen simulation setup (fixed delay of 1, multirate,
simple decoding structure, downsampling with ZOH assumption). A comprehensive explanation
is given in the following paragraph.

Figure 4.5(a) shows the bit errors in the case of no equalizer after the RFID channel.
The violet curve indicates that the RFID system structure (comp. Figure 2.2 on page 15) has
been tuned to favour the 0.848 MHz subcarrier. This is understandable, since all data rates
in the ISO-14443 standard lower than 0.848 Mbit/s still use the 0.848 MHz subcarrier (see
Table 1.1 on page 8). The reason for the low BER at low k for 0.848 MHz is a longer symbol
duration due to oversampling (multirate, see Section 4.1) in conjunction with the chosen simple

33 (−1) · s[n] ≡ 180◦ phase inversion
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(a) unequalized channel BER → Eb/N0 = 15 dB (b) MMSE equalizer benchmark

Figure 4.5: N = 100000. Opposites: (a) unequalized channel errors drop occasionally due to multiple factors;
(b) optimal MMSE equalizer achieving good performance over all k when approaching 20 dB SNR
(Eb/N0), pre-computed [offline], uses training sequences.

decoding structure (see Figure 4.1): One subcarrier period equals 16 samples. Even if ISI is
severe (low k), the interference is allowed to “smear” signal energy over each subsequent 8
samples before it would start degrading the information content.34 For 1.695 MHz (yellow curve
in Figure 4.5(a)) the permitted interference width is already reduced to 4 samples, respectively.
This causes errors at lower k due to ISI. This lower limit is shifted towards higher k as the
oversampling factor (Q) decreases (see red curve in Figure 4.5(a); the blue curve is fully affected
by ISI because there is no oversampling at 6.78 MHz).

Moving on to the discussion of high BER values for k > 0.25 (0.848 MHz) and k > 0.35
(1.695 MHz), the phase rotation of the RFID channel comes into play. These phase distortions
are attributed to the allpass system part (see Section 3.1). Their strength of impact varies
depending on fsub and k. For 0.848 MHz they shift the signal out of the valid “overall 1 sample
delay”-region at k = 0.25 already; for 1.695 MHz the same happens at k = 0.35 and so on (for
3.390 MHz it is beyond the right plot border).

The neighboring figure 4.5(b) shows the achievable35 optimum of equalization. Two
bundles of curves are plotted, for 15 and 20 dB SNR. The area between the bundles is the
critical performance-limiting region. For 15 dB SNR the BER is still high especially at lower k.
With increasing SNR towards 20 dB, the BER will drop below the 10−2 threshold – and show
a steeper decrease towards higher k values.

Following the example of Figure 4.5(b), the results for the wNCMA equalizer are plot-
ted in the same manner. Since here the curve bundles are not as well-behaved as the optimal
MMSE curves, the two presented SNR cases are split into two plots. The general intention of
the four plots on the next page is to show the critical SNR region of wNCMA (Figure 4.6(a)
and (b)) and to subsequently compare the performance of wNCMA to the standard NCMA
(Figure 4.7(a)) and the standard NCMA with Modification 1 (Figure 4.7(b)) for the common
fixed Eb/N0 of 20 dB.

34 because each first sample out of these 8 is kept after downsampling; comp. Rule (13.) in Section 4.1
35 achievable in theory/simulations – not realizable in RFID context because of required training sequences.
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(a) wNCMA BER → Eb/N0 = 15 dB (b) wNCMA BER → Eb/N0 = 20 dB

Figure 4.6: N = 100000. BER of the equalized RFID channel: Transition region from acceptable to good
performance (SNR-wise) of the wNCMA equalizer.

(a) standard NCMA BER → Eb/N0 = 20 dB (b) NCMA + Modific.1 BER → Eb/N0 = 20 dB

Figure 4.7: N = 100000. BER of comparable equalizers: (a) common CMA (normalized); (b) CMA (nor-
malized) and the additional Modification 1 to favor real-valued BPSK output. Both for 20 dB
SNR (Eb/N0).

The eye-catching feature of all four subfigures is the jump to high error rates at k > 0.4.
The previous discussion about the unequalized channel (Figure 4.5(a)) applies here, more
specifically, the part about the phase rotation. The difference now is that the wNCMA (and the
other two algorithms) are capable of redefining the point where the delay shift from 1 to 2 sam-
ples occurs. The delay shift happens around k = 0.43, which is a result of equalizer initialization.

For low k and acceptable SNR levels (see Figure 4.6(b)), the wNCMA equalizer per-
forms very close to optimal (comp. Figure 4.5(b)). However, for critial SNR levels the influence
of AWGN may paralyze the equalizer (see flat violet curve in Figure 4.6(a)). In the region
of 0.3 < k < 0.4, the BER values increase again (all four plots) due to the already explained
transient convergence period which – being simulated in the critical SNR region – is additionally
deteriorated by the increased noise levels.36

36 equalizer misadjustment + random noise = increased likelihood of wrong symbol decisions
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Now the differences between wNCMA (Figure 4.6(b)), standard NCMA (Figure 4.7(a)) and
standard NCMA with Modification 1 (Figure 4.7(b)) will be discussed. Starting with the
standard NCMA (Figure 4.7(a)), the error rate is significantly higher. The main reason are
systematic errors due to the number-set-dependent minima which mislead the CMA to assume
higher-level PSK constellations. The overall curve shapes remain similar to the other two com-
pared equalizers, which can be traced back to the well chosen initialization (which is identical
in all three cases). Enabling Modification 1 within the standard NCMA immediately reduces
the bit error rate by a significant amount (see Figure 4.7(b)). The modified version achieves
BER curves very similar to those of the wNCMA (see Figure 4.6(b)). The difference lies in the
behavior of two algorithms (wNCMA and NCMA+Modification 1) in vicinity of the delay
switch region (k ≈ 0.43). The modified NCMA shows a wider critial zone with ambiguous
convergence behavior, especially for 1.695 MHz (yellow curve). The wNCMA exhibits a more
reliable convergence behavior in this k-region, which counts in favor of the wNCMA. Further
details are presented in Section 4.4.

4.3.3 Summary: wNCMA comparison to NCMA and MMSE

In order to give a concluding perspective on the performance evaluation, Figure 4.8 shows
four subplots which directly compare the wNCMA equalizer to NCMA and MMSE. The four
subplots have been chosen such that they represent the most important stages in the range
of k. The common subcarrier of 3.39 MHz is chosen out of the four possible options for
fsub, because it most fittingly represents the other three fsub parameter studies in the cases
of Subfigures 4.8(a), 4.8(b) and 4.8(c). Additionally, wNCMA’s ability to achieve a valid
(but inverted) reconstructed message signal can be best emphasized for fsub = 3.39 MHz in
Subfigure 4.8(d).

Figure 4.8(a) shows the BER results for k = 0.01. It shows that wNCMA can achieve optimal
MMSE performance for very low coupling k. Moreover, the general placement of the curves
stays approximately the same for all k up to 0.3. The NCMA (light blue) always performs
inferior to wNCMA (dark blue) in this range of k. As an example of the next stage, Fig-
ure 4.8(b) shows the remaining constant BER due to the transients inherent in both NCMA
and wNCMA. Interestingly, their convergence time is similar. Figure 4.8(c) shows the wNCMA
equalizer being able to converge in the critical case of k = 0.43 (delay turning point), while the
NCMA already fails. Figure 4.8(d) zooms in on the region of high BER values. The wNCMA
quickly approaches a BER value of 1. This means that every symbol is wrong, which follow-
ingly implies that inverting the signal that is used in the error computation will result in no
symbol being wrong. The wNCMA equalizer is thus able to reconstruct an error-free message
signal for k > 0.43 – with the little drawback that it is not precisely synchronized anymore,
meaning either a signal inversion (as in the case of fsub = 3.39 MHz) or one additional sample
of delay (delay = 2 as in the case of fsub = 6.78 MHz). Either way, wNCMA performs well over
a wide range of k while obeying the simulated synchronized delay of 1 sample. Concluding the
BER evaluation, the wNCMA equalizer appears to be the best option to counter the effects of
the RFID ISI channel: It outperforms the standard NCMA (and also the modified standard
NCMA), and the supervised adaptive MMSE equalizer is out of consideration because it re-
quires training sequences. The leading role of wNCMA stems from Modification 1, which is
evaluated by simulation in the next section.
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(a) Common parameter k = 0.01 (b) Common parameter k = 0.35

(c) Common parameter k = 0.43 (d) Common parameter k = 0.50

Figure 4.8: Equalizer comparison. N = 40000, fsub = 3.39 MHz. The legend in (a) is valid for all subfigures.
(a) The general alignment of the curves is representative of 0.01 < k < 0.3; wNCMA outperforms
NCMA and is close to the MMSE benchmark;
(b) The (now manifesting) transient convergence period causes bit errors persistent even in
good Eb/N0 conditions > 25 dB (both blind algorithms). When excluding the transient period,
wNCMA generally performs close to the MMSE benchmark, while NCMA is still behind by
≈ 10 dB;
(c) Critical region, wNCMA eventually converges (transient errors), NCMA fails, the unequal-
ized channel (’raw’, red) performs fairly well in this region (due to simulation setup, comp.
Figure 4.5(a) red curve);
(d) Past the critical point, wNCMA can achieve a valid but inverse solution (approaching BER
= 1; signal phase 180◦). The projected result (when taking inversion into account) shows that
wNCMA would perform well, while NCMA fails. Note: The y-axis is zoomed in here to magnify
the BER curves approaching 1 (100).
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4.4 Study of Modification 1

The following simulations show the validity of Modification 1 (see Section 3.5). Modi-
fication 1 drives the convergence process towards a real-valued output signal, assuming a
real-valued input passed through a complex-valued channel before. This verification is of ex-
perimental nature. The modification has been tested using the RFID channel model and two
different blind algorithms – in order to show that the modification can be applied not only to
the proposed new algorithm, but also to other common blind equalizers.

In the following, the classic normalized CMA is compared to the new wNCMA. Both equalizers
are presented with and without the modification. The received signal r[n] (blue) is identical
in all four cases, as are initialization and parameters k, fsub, SNR, and number of samples.
The whole set of equalizer output samples y[n] (red) is plotted; additionally the last 25% of
these samples are plotted again (yellow) to emphasize where the respective algorithms converge
to. The gray square (s[n]) indicates the ideal constellation points for BPSK input (±1+j0).
The critical region around k = 0.43 is chosen intentionally, because there the combination of
channel and equalizer (initialization) leads to a short transient (adjustment) interval. Different
directions of convergence of the contesting algorithms are emphasized this way. For lower k the
differences are less distinct (even shorter or no transient interval).

Figures 4.9(a) and (b) show the change in convergence behaviour of NCMA due to Modifica-
tion 1. The complex-valued channel affects the unmodified NCMA in Subplot (a) in such a way
that it converges towards multiple points spread across the unit circle. The constant modulus
criterion is fulfilled, however, the algorithm assumes a constellation shape resembling an incom-
plete and distorted 8-PSK rather than BPSK. Notice that the yellow points of convergence are
not due to oversampling: fsub = 6.78 MHz means two samples per symbol. Still, as many as four
additional points appear on the circle (additional regarding those two in vicinity of the optimal
BPSK squares). Consequently they have to be attributed to the complex-valued nature of the
channel (in interaction with the equalizer).37

When Modification 1 is applied to NCMA in Figure 4.9(b), the algorithm does not converge
to other points on the unit circle except those in close vicinity to the optimal BPSK squares.
Notice that convergence starts at sample locations identical to the ones shown in (a). In (a),
the initial samples are automatically drawn towards the nearest point on the circle. In (b), they
are instead attracted to ±1+j0 regardless of where they started.

Figures 4.9(c) and (d) show the change in convergence behaviour of wNCMA due to Modifi-
cation 1 analogous to the previous subfigures. The original Wnew algorithm (c) converges to
a QAM-like constellation – which is much more reasonable considering BPSK over a complex-
valued channel. In other words, the Wnew algorithm (in its unmodified form) is already able to
retain some input properties. Additional plots (which cannot be presented here due to space
restrictions) support this observation: They show convergence towards those two vertical lines
intersecting the BPSK squares at ±1+j0. So in spite of the complex-valued channel effect a deci-
sion device would perfectly be able to decode a BPSK signal once the unmodified algorithm has
converged. And exactly here lies the problem: Figure 4.9(c) shows an unnecessary prolongation
the convergence time by resorting to suboptimal paths (first vertical, then horizontal). Further-
more, with decreasing subcarrier frequency the number of samples per symbol increases, which
can cause the unmodified Wnew to assume rather bizarre constellations due to oversampling.38

37 Further evidence shows that the ISO-14443 conform input signal (Manchester coding in principle) also dis-
qualifies as the cause of the additional constellation points. Simulations with random binary input instead
show these additional points as well. Moreover, their positions are even more erratic in this random test case.
Manchester coding appears to mitigate the erraticism to a certain extent (tendency).

38 note that in the derivation of Wnew no assumptions were made on the input constellation
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(a) NCMA without Modification 1 (b) NCMA with Modification 1

(c) normalized Wnew without Modification 1 (d) normalized Wnew with Modification 1 = wNCMA

Figure 4.9: Modification 1 study. Sample values of various signals within the simulation flow graph (Fig-
ure 4.1) plotted in the complex plane. Common parameters: N = 20000 samples, k = 0.43,
fsub = 6.78 MHz, Eb/N0 = 40 dB, same input signal, same equalizer initialisation (L, c0).
Variation: disabled/enabled Modification 1 for NCMA in (a) and (b), and for Wnew in (c)
and (d), where the latter is the one called wNCMA.

When Modification 1 is applied to Wnew – which is then given the name wNCMA – in
Figure 4.9(d), a similar convergence behavior can be observed with respect to (b). The initial
samples are also drawn to ±1+j0. However, there is a difference in the alignment after
convergence (yellow samples): In Figure 4.9(b) the tendency for a circular alignment is still
given (due to the constant modulus criterion). In contrast, Figure 4.9(d) generally favors a
straight vertical alignment.

An additional important observation is made when animating these figures over a gradu-
ally changing coupling factor k.39 The unmodified NCMA is highly susceptible to phase
rotations in the system. The visible yellow dots move counter-clockwise around the circle with
increasing k. Once a yellow dot passes the imaginary axis, the NCMA will converge to the
wrong solution or at least cause severe (regular) decision errors (as is the case in Figure 4.9(a),

39 Since such animations (or image sequences) are impractical to be printed, a description has to suffice here.
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where the diagonal dots at approx. +115◦ and −65◦ have crossed the imaginary axis already).
When animating the modified NCMA over all k, a circular movement of the yellow dots can be
observed, too. However, this time the movement occurs clockwise around small-radius circles
with their center points being the BPSK points ±1+j0!

Analogous animations over all k with the unmodified Wnew algorithm show erratic con-
stellations. The unrestricted input assumption results in arbitrary constellations for each
new k in the increasing sequence (e.g., imagine additional yellow points forming at ±j1 in
Figure 4.9(c)). In this state, the Wnew algorithm is most unsuitable as an equalizer for the
given channel. Modification 1 significantly improves the situation (compare Figure 4.9(d)).
Arbitrary constellations are still possible (although much less frequent), only now they
manifest themselves in very close vicinity to the BPSK points ±1+j0; like in the animated
NCMA, those points are the center points – not of a circle, but of the arbitrary constella-
tions. There is no additional circular movement around these center points like with the NCMA.

In summary, Modification 1 has been validated by simulation. Both modified versions
of the compared algorithms show improved behaviour regarding the real-valued BPSK input
over the complex-valued channel and equalizer. The preference of wNCMA over the variants
presented here is demonstrated in Section 4.3 by means of bit error rates.

4.5 Synchronization time

The ISO-14443 standard [5] defines a synchronization period before the message signal starts.
Synchronization is vital to avoid the inversion ambiguity of BPSK. It is also necessary for the
implementation of more detailed transfer protocols (frames and block structures, see [3,4]). The
relevant excerpt of the norm is quoted in the box below [5, p.32]. Note that PICC is the card,
and PCD is the reader.

� After any command from the PCD, a guard time TR0 shall apply in which the PICC
shall not generate a subcarrier. TR0 shall be greater than 1024/fc (≈ 75,5 µs).

� The PICC shall then generate a subcarrier with no phase transition for a synchroniza-
tion time TR1. This establishes an initial subcarrier phase reference Ø0. TR1 shall
be greater than 80/fs.

� This initial phase state Ø0 of the subcarrier shall be defined as logic “1” so that the
first phase transition represents a change from logic “1” to logic “0”.

� Subsequently, the logic level is defined according to the initial phase of the subcarrier.

Ø0 +180◦ represents logic “1”

Ø0 + 180◦ represents logic “0”

Figure 4.10 shows a simulated situation according to the ISO-14443 text. On the left, the
steady subcarrier signal is evidently correctly synchronized, because the thick green line and the
dashed black line are perfectly aligned here. The wNCMA equalizer has been activated at the
start of TR1, it has had the time to adjust to the subcarrier signal. After 1200 samples, the
synchronization is terminated by the first phase transition (vertical magenta line). Two details
can be observed:

1. The amplitude of the equalizer output signal (red) suddenly increases.

2. Errors occur after the decision device: The thick green and the black dashed line are in
mismatch.
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Figure 4.10: Time signals: TR1 synchronization frame followed by random message. N = 20000. Signal
errors occur at the start of the message.

Observation 1 indicates that the equalizer is reacting to changes in the signal. The synchro-
nization signal is restricted to the subcarrier frequency only, it is thus very narrow-band. With
the change to regular phase transitions the signal becomes broad-band – it excites a broader
frequency range in the spectrum. Since the equalizer is blind, it has to react to signals “as
they come”. During synchronization it converges to a solution which perfectly accomodates
the subcarrier signal. However, at the hard changing point it needs to restart convergence to
accomodate the broad-band message signal.

Figure 4.11: Frequency spectra at different stages of TR1 and the message frame. TR1 signal causes the
blind equalizer to diverge from its initialization.
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The interesting question: Is the blind equalizer able to converge to the intended global minimum,
if convergence starts at the coefficient setting “left behind” by the sychronization period instead
of the tried-and-true initialization (see Section 4.2.4)? Because the reduced excitation of the
TR1 subcarrier only may carry the equalizer away from the global minimum. A visual is given in
Figure 4.11. The blue curve is the channel spectrum (k = 0.43) with the two resonances already
fairly far apart. The yellow line is the initialization of the equalizer. During synchronization,
the coefficients cause a steeper spectral notch (violet curve) and a wavy shape left and right
of the notch. The green curve represents the equalizer setting shortly after the change from
TR1 to message period. It is nowhere near the optimal setting (yet), however, it closely passes
the initial setting (yellow line) on its way towards a valid message signal setting. The thick red
curve is the final equalizer setting. It roughly equalizes the channels resonances and additionally
suppresses some noise around ±fs/2. The overall system response (dashed cyan curve) does not
have a flat magnitude spectrum,40 which means remaining ISI has been traded for some noise
compensation. But more importantly, the phase spectrum shows the correct linear phase shape
– which means the equalizer is eventually successful – after a convergence time prolonged by the
coefficient deviation due to the TR1 synchronization period.

(a) enabled TR1 synchronization before message

(b) disabled TR1 synchronization (message starts directly)

Figure 4.12: MSE history of wNCMA with and without TR1 synchronization period before the message.
N = 20000. (a) shows a longer (exponential) decay time than (b) which decays linearly.

The impact on the convergence time is made visible by plotting the mean square error (MSE)
over time. Figure 4.12 compares the two cases of (a) enabled TR1 and (b) disabled TR1. In the
first case, it is evident that the initial equalizer setting of Section 4.2.4 is not well suited for the
incoming narrow-band excitation of the TR1 subcarrier. The equalizer takes several hundred
samples to re-adjust. At the changing point (magenta line), the MSE instantly increases and

40 which is responsible for the remaining ISI > 0 dB
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decays exponentially – taking thousands of samples before reaching the noise floor. In contrast,
the MSE decreases more rapidly and linearly in the case of a disabled TR1 (see Figure 4.12(b)).
This simulation proves experimentally that TR1 causes a deviation in the equalizer settings
which lead to a change in convergence behavior and time.

The question posed two paragraphs ago can be answered with a “yes”. The equalizer is
able to converge to the global minimum in spite of the TR1 deviation. Simulations over all k41

under different noise levels have confirmed this.

A remaining challenge is to reliably detect the “first phase transition” required in the
ISO-14443 quotation. This phase transition causes the MSE to jump instantaneously and the
equalizer to re-adjust: The most important spot in the entire signal (in terms of successful
synchronization and message polarity) is simultaneously the one spot in which the error (MSE
and e[n]) will be highest.

Last but not least, an idea to resolve this issue shall be given here. Simulations or tests
of this idea cannot be conducted due to the time limitations of this thesis’ work. The proposed
approach is to re-initialize the equalizer shortly before the first phase transition occurs. The
few subcarriers remaining before the message then cause only minor deviations in the equalizer
settings. The proper initialization stated in Section 4.2.4 is designed for the broad-band
excitation case and will thus more likely reconstruct the first phase transition correctly. Looking
into the future to anticipate this phase change beforehand sounds “magical”, but can be
implemented by means of a delay line. Two streams of the received signal r[n] need to be
captured in parallel, one of them undelayed, the other one delayed by some samples (known
amount). When the undelayed stream reaches the changing point, signal changes occur that
are detectable by a (newly designed) change point detector (this detector could resort to change
in amplitude measures of r[n] or y[n] for instance). As soon as this detector robustly indicates
that the changing point is reached, the equalizer is re-initialized and its input signal switched
to the delayed stream. The delayed stream is just about to reach the changing point – and is
now well-prepared for the incoming first phase transition.

41 up to k ≈ 0.43
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Thesis: RFID Channel Equalizer

5
Conclusion

This thesis explores and evaluates the applicability of blind adaptive equalization within
the specific context of 13.56 MHz RFID systems defined by the ISO-14443 standard. The
communication is directed from card to reader (PICC to PCD), and very high bit rates (VHBR)
of ≥ 848 kbit/s are of key interest, as are real-time capabilities. The hypothesis postulates that
it is possible to improve the transmission performed in this context by means of compatible
blind channel equalization methods.

In order to research the validity of this claim, appropriate steps taken included a thorough
system analysis, resulting in a system model for equalizer testing, followed by a selection process
of suitable blind equalizers. Modifications are suggested and evaluated alongside the discussion
of general viability of blind equalizers. The following section recapitulates and summarizes the
most important insights of each chapter, reviews the findings critically and discusses the key
results. Finally, an outlook points to remaining open issues and potential future research.

5.1 Summary & Discussion

The first chapter introduces the basics of RFID technology. Inductive (magnetic) coupling
between the card’s and reader’s antennas serves as transmission channel as well as a means of
energy transfer. The operating distances are thereby limited to max. 10 cm. The ISO-14443
standard is introduced as a requisite for the hypothesis: possible signal shapes, bitrates, and
modulation schemes are stated. Complications that arise from these conditions so far are
a) intersymbol interference (ISI) occuring in the given RFID transmission channel – which
is b) distance-dependent (coupling) – and last but not least c) an upper limit for increasing
data rates (VHBR, comp. Shannon-Hartley theorem, channel capacity). Current equalization
methods include matched-filter correlators (sequence detection) and static filters (either analog
or ditigal) – which perform well up to 848 kbit/s, but not beyond. Blind equalizers have not
been considered in this specific RFID context prior to the research done in this thesis, however,
based on the existing knowledge on blind equalization and its successful application in similar
contexts, the main expectation here is that the given RFID system will also benefit from such
equalization methods.

The second chapter encompasses the analysis of the RFID system. An exemplary circuit
schematic is used to explain details of functionality on an electrical level. The internal
impedance of the card (PICC) switches between two logic states. These changes are message
signals and can be “picked up” by the reader (PCD). The distance between the antennas is the
one factor with greatest impact on the system’s general dynamic behavior. It is equivalently
defined as the coupling factor k (2.4), which indicates the strength of mutual magnetic coupling.
The coupling effect is intensified via resonance: Both components (card & reader) are tuned to
a common resonance frequency (of 13.56 MHz). Coupling strength thus depends on k as well as
the shape of the resonance – definable by the quality factor Q. The point of critical coupling
is commonly defined as kQ = 1. A study of the RFID system (simulation framework provided
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by NXP) shows that matching resonances occur at infinite antenna distance. As the antennas
close in on each other, their common resonance first becomes maximally wide (point of critical
coupling), and then splits up into two separate resonances – one increasing in frequency, the
other decreasing (see Figures 2.4 to 2.6). The resulting distortions (frequency-dependent signal
gain or attenuation, phase variations around the resonance frequency) are the most important
defining properties of the RFID system.

Equalization is very costly in terms of implementation (hardware) if done in the passband, i.e.,
using the signal in a form in which it is still modulated onto the carrier frequency (of 13.56 MHz).
The equivalent baseband representation is applied instead (with the view of being less costly).
Usually, signals are translated between these two representations – here, the RFID system is
subject to this translation. In the baseband (centered around f = 0 Hz), the translated RFID
system becomes complex-valued (C) while retaining the general behavior that occurs in the
passband. Translation without further model simplifications is successful. A pole-zero analysis
of the system reveals that merely three poles and one zero are dynamically changing with respect
to k. Reducing the model order based on this insight leads to successful translation in terms
of the phase spectrum, however, slight deviations occur in the magnitude spectrum (Figure 2.12).

Since the RFID system model is given as two systems actually – one state space model,
but two switchable states of the card’s internal impedance – attempts have been made to
combine the two in order to gain a single, compact system model, to which arbitrary message
signals could be applied for testing purposes. These attempts (“differential transfer function”)
have proven not successful and thus have been discontinued. Instead, the focus shifts to the
MLS and IRS system identification methods, which are able to yield such a single, compact
system model directly (Figure 2.18). This new model (see Section 2.4) is of the well-known
ZPK form. It profits from the reduction of the amount of poles and zeros – compared to the
former model – but without noticable deviations in this case. A simulation sequence of 100
linearly spaced values of k provides a sufficiently dense grid for a model that covers all dynamic
changes in the range of 0.001 < k < 0.55. Based on the “smoothness” assumption with respect
to changing k, IRS measurement errors can be corrected in postprocessing steps (Figure 2.19).
Important model properties are summarized in Section 2.4.4. The model validity is discussed
in Section 2.4.3: For low k, the model produces accurate signal distortions, identical to those of
the original HF simulation (Figure 2.21). With increasing k, weak nonlinear distortions start
to occur in the original HF simulation. These nonlinear distortions are not accounted for in
the new model. Since nonlinear system modeling rapidly increases in complexity, studies in
this direction have been deferred to future research (see Section 5.2). It is, however, assumed
that the occuring nonlinear effects are weak enough so that equalizing only the linear portion
will not lead to a significant loss of validity at higher k. Moreover, the range of k is later
recommended to be constrained to approximately k < 0.43 anyway (due to insights gained
during equalizer evaluation). The overall achievement of Chapter 2 is the detailed knowledge
about the system’s behavior, as well as a new, simplified system model that is faster, more
flexible and designed for the task at hand: studying the performance of various equalizers.

The third chapter examines these equalizers. It starts with the basic concept of a channel-
equalizer system cascade (Figure 3.1) and continues with theoretical background on the method
of zero-forcing (ZF) equalization, and then the advanced method using the MSE criterion –
which leads to the well-established adaptive LMS algorithm. This theoretical information is of
vital didactic value for understanding the mechanics of blind equalizers. In fact, the algorithm
structure of the blind equalizers presented in Chapter 3 is almost identical to the one inherent
to LMS. Moreover, LMS is used as a benchmark for evaluation in Chapter 4. Fixed system
inverse solutions are pre-computed (offline) via LMS as a reference for achievable optimum
equalization. The LMS equalizer – in spite of all its advantages – is itself not an option due
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to the restrictions in the ISO-14443 standard, which prohibit the use of the training sequences
required for LMS. This circumstance motivates the use of blind equalizers – which do not
require training sequences. Several existing blind algorithms are presented in Chapter 3, which
accommodate the additional requirements posed in the hypothesis, i.e., low implementation
cost, real-time operability, efficiency, and robustness. Two candidates are singled out: The
constant modulus algorithm (CMA) and an algorithm based on Bayesian inference and
maximum entropy (“Wnew”). After a review of blind algorithm behavior (influences of various
parameters on their error function surfaces), a modification (Modification 1) is contributed
(Section 3.5), which leads to a new algorithm called wNCMA. This new algorithm is specifically
designed to match all given requirements (RFID channel, ISO standard, implementation) in the
best conceivable way. It is based on the remaining two candidate algorithms (predominantly
Wnew) and includes the modifications described in Section 3.5. Noteworthy is its capability to
suppress errors during message reconstruction that stem from the complex-valued nature of the
channel-equalizer cascade.

The fourth chapter describes the simulation setup for the evaluation of the equalizer(s).
Details are given about how to initialize the new equalization algorithm properly. Bit error
rates (BER) are a widely used means of evaluation in the context of communication systems.
Parameter studies have been simulated, relating BER to the normalized signal-to-noise ratio
(Eb/N0), and to the coupling coefficient (k). Results show that acceptable performance of
wNCMA in terms of BER is starting in the region of Eb/N0 ≈ 15 to 20 dB, depending on the
subcarrier frequency (Figure 4.3). The variation over k is quite different for all four subcarriers.
Results show that the combined effect of high subcarrier frequency and high k > 0.4 leads
to increased bit error rates (Figure 4.6). For k < 0.4 the wNCMA equalizer performs well,
and above k = 0.5 it is able to produce a correct but phase-inverted message signal. The
region of k < 0.10 is more error-prone due to weaker coupling, resulting in a (channel-induced)
lower signal gain. This can be seen in all compared equalizers (MMSE, wNCMA and
NCMA). An overall performance overview is given in Figure 4.8: The wNCMA outperforms the
NCMA in all cases. The wNCMA is very close to the benchmark solution (achievable optimum).

The introduced modification leading to the wNCMA algorithm is also evaluated. Sec-
tion 4.4 verifies, by a series of simulations, that equalizers with the modification enabled clearly
favor BPSK output, while their unmodified versions tend to favor arbitrarily complicated – and
most importantly false – underlying constellations, which are a sign of ill-convergence and lead
to increased bit errors. Modification 1 thus maximizes signaling robustness by assuming a
simple, real-valued BPSK signal as input and output, while allowing the received signal (I/Q)
and the equalization to be complex-valued (increased accuracy).

Finally, the influence of the TR1 synchronization period specified in ISO-14443 on the
convergence behavior of the equalizer is evaluated. It is shown that the equalizer coefficients
diverge slightly due to narrow-band (non-persistent) excitation of the TR1 signal, but are able
to re-converge to the correct coefficient setting in all cases of k < 0.4 and sufficiently high
Eb/N0 > 20 dB. The duration of the transient period is, however, generally longer when TR1
is active. Since – in practice – it will always be active (it is a part of the ISO-14443 protocol),
a proposal is made in Section 4.5 on how to deal with this issue.

All in all, this thesis contributes new perspectives and approaches on RFID system modeling,
on blind equalizers, and finds a new algorithm for the given application. The hypothesis holds
true in the face of the evaluation results. Blind equalization proves successful as an outcome
of a prudent fine-tuning process of equalizer parameters. Finally, let it be noted that, when
dealing with blind equalizers, the first and foremost objective is precise, contextual adjustment:
There is no universal blind equalizer — providing the equalizer with auxiliary means in order
to make it less blind is inherently the task to focus on.
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5.2 Outlook

Some of the ideas developed in the course of this thesis could not be pursued (yet). The first
one is about the system model: It has been mentioned in Section 2.4.4 that it is a linear
model, however, evidence shows weak nonlinear effects in the underlying high-frequency model.
Nonlinear system models have not been investigated, because the estimated additional effort
would dwarf the benefits of having such a model. Nevertheless, research in this direction may
be of interest if the nonlinearities occuring in a hardware implementation are more significant
than assumed in this thesis. Some keywords in nonlinear modeling are “Volterra Series”,
“Hammerstein”- and “Wiener”-systems.

As soon as the system (the channel) is assumed to be nonlinear, the equalizer is recom-
mended to be nonlinear, too. In this context, “nonlinear” refers to nonlinear coefficient terms
(higher-order kernels) – not to the nonlinear methods inherently present in the adaptive
algorithms of all blind equalizers. This equalization strategy rapidly increases the implemen-
tation complexity (exponential increase in hardware computations and memory). Since this
characteristic contradicts the restrictions stated in the hypothesis, such equalizers have not
been pursued further.

Another opportunity for possible improvement by nonlinearities has been mentioned in
Section 3.3.3. All blind equalizers with a number of coefficients L < ∞ suffer from length-
dependent local minima. Attempts to eliminate such minima involve the extension of blind
equalizers to use nonlinearities with memory in their cost function (as opposed to memoryless
cost functions so far). Paper [40] is the first to deal with this topic, the CRIMNO criterion is
introduced. The ideas presented there are a recommended reading: The increasing implementa-
tion complexity prevails, but this approach offers possibilities to directly influence and regulate
the convergence behavior on the algorithm’s cost function surface in return.

One (theoretically considered nonlinear) attempt on equalization has been made: The
maximum-likelihood sequence estimation (MLSE) approach and especially the deduced, more
light-weight Viterbi algorithm are a widely used benchmark for other equalizers, because they
achieve statistically optimal results and can thus be interpreted as an upper performance
bound. A Viterbi equalizer has initially been considered as reference solution within this thesis
(not as a valid alternative to blind equalizers, because the channel response needs to be known
for this algorithm to work), but has been discontinued: The computational complexity increases
exponentially with the length of the channel response.42 Since the RFID channel response
ranges from about 80 taps43 down to about 10 taps,44 these constraint lengths are still to high
to be practical ([17] stops at a constraint length of 4). The computation time rapidly grows
to hours and days for a short, single-pass simulation. Multiple runs for BER Monte-Carlo
simulations are beyond question. Nevertheless, a maximum-likelihood detector after the
proposed blind equalizer may be an attractive alternative to the (basic) slicer implemented in
Section 4.1. The recommended reference on MLSE is [23, Ch. 7].

The tracking characteristics (dynamic time-variant RFID system behavior due to chang-
ing k) of the proposed blind equalizers have not been evaluated in this thesis. The rate of
change is assumed to be sufficiently slow in relation to the sampling frequency (processing speed
of the equalizer), so stationarity follows for sufficiently long “blocks” of samples. Paper [13]
associates the tracking capability of any SGD-type algorithm with the local curvature of the
cost surface. Since the channel’s impulse response has been shown to change smoothly with

42 usually called “constraint length”; 2(constraint length−1) states per sample are checked
43 “significant” samples; for very low k; still truncated — the true response is infinite (IIR)
44 for very high k −→ 0.55
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5 Conclusion

k (comp. Figure 2.19), the position of the global minimum on the cost surface also changes
its position smoothly. SGD-type blind equalizers are thus assessed as likely being able to
track time variations in the channel, provided that the equalizer is already close to the global
minimum, and provided that the rate of change is sufficiently low. Evidence or simulations are
pending.

Recommended topics of investigation during a possible hardware implementation of the
proposed scheme are a) double-checking the validity of the RFID system model,45 and b) should
the need arise, re-adjusting the initialization parameters of the equalizer.

45 changes in reader or card circuitry may have significant impact on the blind equalizer’s initialization
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Acronyms & Abbreviations
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A System matrix of a general-form state space model
ACF Auto-Correlation Function

AGC Automatic Gain Control (circuit regulating the input gain at the receiver)

AR(X) Autoregressive process or model of order (X)

AWGN Additive White Gaussian Noise (channel disturbance model)
bj Numerator coefficients of a polynomial system model

bl Binary sequence (see also l)

b(t) Continuous-time message signal (associated with binary sequences)

B Input matrix (or vector) of a general-form state space model

B Magnetic field (vector field)
BER Bit Error Rate

BGR Algorithm familiy named after their inventors (Benveniste, Goursat, Ruget)
BPSK Binary Phase Shift Keying

c[n] Equalizer coefficients (also in vector notation: c, copt, c[n])

C(z) Z-domain representation of the equalizer
C Crest factor

Ci Capacitance (network theory)

C Output matrix (or vector cT ) of a general-form state space model
C Highlighted constant within the Bussgang theorem
CMA Constant Modulus Algorithm

CRIMNO CRIterion with Memory NOnlinearity (proposition for blind equalizers)

d[n] Discrete-time training (reference) signal (in MMSE equalizers)

D Feed-through vector (or scalar d) of a general-form state space model

dB Decibel (logarithmic measurement unit)

DSP Digital Signal Processor (hardware) or Processing (method)

e[n] Discrete-time algorithm error signal (in adaptive equalizers)

Eb/N0 Energy of one bit normalized by noise spectral density (“SNR per bit”)

E Electric field (vector field)
EM Electro Magnetic . . .
EQ Equalizer
fc Carrier Frequency
fsub Subcarrier Frequency

fs Sampling Frequency (of DSP unit)
FFT Fast Fourier Transform

FIR Finite Impulse Response (finite in length, comp. IIR)

FPGA Field-Programmable Gate Array (hardware)

g System gain (ZPK model)

g(·) 1. Nonlinear function substitute (context: blind equalizers, Bussgang theorem)
2. Function used to demonstrate symmetry properties of the Fourier transform

G(s) Laplace domain representation of a system G

h(t) Continuous-time impulse response of a system h

h[n] Discrete-time impulse response of a system h

H(f) Fourier spectrum of a system H

H(z) Z-domain representation of a system H
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HOS Higher-Order Statistics (e.g., moments, cumulants, ...)

Hz Hertz (derived SI frequency unit)

i(t) Continuous-time electric current

i1;2[m] Intermediate signal used for BER computation; discrete-time; fsub rate [m]

I 1. Current (network theory)

2. In-phase component (communication signalling context)
IC Integrated Circuit
IEC International Electrotechnical Commission

i.i.d. Independent and identically distributed (property of random variables)

IIR Infinite Impulse Response (infinite in length, comp. FIR)
IRS Inverse Repeat Sequence
ISI Inter-Symbol Interference
ISO International Standardization Organization

j 1. Imaginary unit (j2 = −1)

2. also used as index (
∑

-formulas)
k Coupling factor

K 1. Kurtosis (4th standardized moment; see Section 3.3.1)
2. Gain parameter within the continuous ZPK model

l Position or rate index
L Represents an integer number indicating a length

Li Inductance (network theory)

LMS Least Mean Squares (algorithm)

LTI Linear, Time-Invariant (system properties)
M 1. Mutual inductance

2. Number of Monte-Carlo repetitions (during BER simulation)
M-PAM see PAM, “M” specifies the alphabet order

MA(X) Moving-Average process or model of order (X)

MAP Maximum a posteriori (probability estimation method, Bayesian statistics)

MATLAB Numerical computing programming language (software)

MHz Megahertz (derived SI frequency unit, mega = 106)

ML Maximum Likelihood (probability estimation method, Bayesian statistics)

MLSE Maximum Likelihood Sequence Estimation / Estimator

MLS Maximum Length Sequence (not to be confused with MLSE)

MMSE Minimum Mean-Square Error (minimized MSE, also name of minim. technique)

MSE Mean-Squared Error (error definition, criterion)
N Represents an integer number indicating a length
NRZ-L Non-Return-to-Zero Level

NCMA Normalized CMA (see Modification 2)

NLMS Normalized LMS (see Modification 2)

o[n] Discrete-time impulse response assoc. with the overall system (see (3.26))
p Exponent index in Section 3.3.1

pi/pi System pole (ZPK model)

p Crosscorrelation vector (see MMSE equalizers)

P (f) Hilbert filter (in the Fourier frequency domain)

PAM Pulse Amplitude Modulation (digital modulation method)
PAPR Peak-to-Average-Power Ratio

PCD Proximity Coupling Device (Reader)

PDF Probability Density Function (continuous random variables)
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PMF Probability Mass Function (discrete random variables)
PICC Proximity Integrated Circuit Card
PRBS Pseudo-Random Binary Sequence

PSD Power Spectral Density (also as Pxx(f) = PSD of x)

PSK Phase Shift Keying (digital modulation method)

Q 1. Quality (attribute of resonant networks)

2. Quadrature-phase component (communications signaling context)

3. Function representing a decision device (slicer) operation: Q(·) (Section 3.3.1)

Q Integer up-/downsampling factor (see Figure 4.1 and Section 4.1)

QAM Quadrature Amplitude Modulation (digital modulation method)

QPSK Quadrature Phase Shift Keying (digital modulation method)

rxx(·) Autocorrelation function/sequence of the signal x

r[n] Discrete-time channel output (“received”) signal (including additive noise)
Rmod Resistor switchable between two states for modulation purposes

R Autocorrelation matrix (associated with r[n], resp. r[n])
RFID Radio Frequency Identification

RLS Recursive Least-Squares; variant of LMS (adaptive algorithm)

RMS Root-Mean-Square (derived approximate measure of signal power)

s Laplace variable (complex-valued)

s(t) Continuous-time signal (general)

s̃(t) Continuous-time, complex-valued signal envelope (up-/downconversion)

s[n] Discrete-time channel input signal

ŝ[n] Estimated/reconstructed version of s[n]

S Reference surface (to calculate the magnetic flux Φ)

S∗(−f) Highlighted spectral mirror copy (context: up-/downconversion)

SGD Stochastic Gradient Descent (optimization method)

SISO Single-Input-Single-Output (system property)
SNR Signal-to-Noise Ratio
T Signal period
TF Transfer Function

TR0 Guard time interval (defined in ISO-14443)

TR1 Synchronization time interval (defined in ISO-14443)

UHF Ultra High Frequency (decimeter band: 300 MHz – 3 GHz)

v(t) Continuous-time electric voltage

V Voltage (network theory)

VHBR Very High Bit Rate(s)

VHDR Very High Data Rate(s)

w[n] Discrete-time AWGN signal

w̃[n] Discrete-time filtered AWGN signal (post-EQ shaped noise)

Wnew Algorithm name originating from [37]; transl. nomenclature: Wnew[n] −→ e[n]

wNCMA well-behaved (Wnew-/CMA-related) normalized algorithm (thesis proposition)

x[n] Discrete-time channel output signal (without noise added yet)

y[n] Discrete-time equalizer output signal

zi/zi System zero (ZPK model)

ZF Zero-Forcing (equalization approach)

ZOH Zero-Order-Hold (upsampling strategy)

ZPK Zero-Pole-Gain (model)
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List of Tables

α 1. Shift variable (Laplace transform frequency shift property)

2. Small, non-negative, constant offset (see Modification 2 and Section 4.2.3)

β Phase rotation factor (equalizer initialization)

δ 1. Dirac delta (continuous) or 2. Kronecker delta (discrete)

∆ 1. Integer delay (context: ZF equalization)

2. Difference operator (as in ∆c)

µ Stepsize (parameter of SGD-type algorithms)

ξ[n] Misalignent of equalizer coefficients (math. ISI representation during convergence)

Π 1. (as Π(·)) distribution function (PDF/PMF)

2. [Product formula] (ZPK model)

σ 1. (as σ2) variance of random variable or process (e.g., Gaussian)

2. (as in s = σ + jω) real part of Laplace variable s

τ Lag (shift) parameter in the correlation function
Φ Magnetic flux

Ψ Cost function (of SGD-type algorithms)

Ψ′ Error function (of SGD-type algorithms); gradient/derivative of Ψ

ω Angular frequency [rad/s]

Ω Ohm (physical unit of resistance)
C Symbol for the set of complex numbers
N Symbol for the set of natural numbers
R Symbol for the set of real numbers

∗ Convolution operator symbol (asterisk)

∇ Nabla operator ⇒ grad (gradient)
∇c Gradient with respect to c

∇× Nabla operator & cross product ⇒ curl (see Maxwell equations)

E{·} Expectation operator

F{x(t)} Fourier transform operator

F−1{H(jω)} inverse Fourier transform operator

L{s(t)} Laplace transform operator

L−1{G(s)} inverse Laplace transform operator

sgn(·) Signum function

Re{·} Real part of a complex variable

Im{·} Imaginary part of a complex variable

(·)∗ Complex conjugation

(·)T Vector/Matrix transpose

(·)H Hermitian vector/matrix transpose

(·)−1 Matrix inversion (or system inverse)

| · | Absolute value operator

·̂ Estimated entity

≪ very small (number / comparison)

≫ very large (number / comparison)
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Appendix A

1 close all; clear; clc;

2 %% Downconversion of RLC model

3 % using symbolic variables , transfer functions and zero/pole selection

4 % Choose: A) Shift NON -reduced (reduce == 0)

5 % B) Shift reduced (1-pole simplified baseband model)

6 reduce = 1;

7
8 %% Transfer Function for RLC series resonant circuit , for output u_R

9 R = 10;

10 L = 1e-3; % 3 mH

11 C = 1e-7; % 100 nF

12
13 % Free resonance

14 w0 = 1/sqrt(L*C);

15
16 % Damping influence on resonance

17 delta = R/(2*L);

18 wE = sqrt(w0^2 - delta ^2);

19
20 % Definition: s is a "tf" object used to declare transfer functions in s

21 s = tf(’s’);

22 Gs = R/L * s/(s^2 + R/L * s + 1/(L*C));

23
24 figure; bodeplot(Gs); grid on;

25 title(’Bode Plot: Serial RLC Circuit , u_R’);

26
27
28 %% Conversion to symbolic variables

29 clear s; syms s

30
31 % Re -definition: s is now a "sym" variable object

32 G = R/L * s/(s^2 + R/L * s + 1/(L*C));

33
34
35 %% Shift to equivalent baseband

36 % Substitute s = s - jw0

37 G_new = simplify(subs(G, s, s + 1i * w0));

38
39 % Evaluate numerator and denominator after the shift

40 [num , den] = numden(G_new);

41
42 SYMpoles = solve(den); % analytic solution (exact)

43 poles = double(solve(den)); % solution converted to double

44
45 SYMzeros = solve(num);

46 zeross = double(solve(num));

47
48
49 %% Select the poles and zeros that are to be kept

50 % Poles: The RLC passband is symmetric , thus has 2 conjugated poles.

51 % Keep only the one pole that was shifted to DC.

52 relevant_poles = sort(poles(imag(poles) ~= -w0));

53 keep = min(relevant_poles);

54 remove = max(relevant_poles);

55
56
57 %% Re-Write as transfer function again

58 if reduce == 0

59 % NONREDUCED: directly uses all evaluated poles and zeros

60 gain = R*1e3;

61 G_baseband = tf(zpk(zeross ,transpose(poles),gain)); % WORKING!

62 else

63 % REDUCED: uses only the remaining pole; compensates gain

64 G_baseband = tf([0 (R*1e-2)*zeross /2], [1 -keep]);

65 % Shift the phase -90 degrees (see Hilbert transform)

66 G_baseband = G_baseband * exp(1i*pi/2);

67 end

68
69 G_baseband

70
71 %% Several plots

72 figure; pzmap(G_baseband); xlim ([1.2* real(poles (1)) 1000]);

73 title(’Pole -Zero Map (Laplace plain) of system after the shift’);

74
75 % - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

76 wvec = -2*w0:1e2:2*w0;

77
78 [mag , phase] = bode(G_baseband , wvec);

79 mag = mag(:);

80 phase = phase (:);

81
82 [mag1 , phase1] = bode(Gs, wvec);

83 mag1 = mag1 (:);

84 phase1 = phase1 (:);

85
86
87 f1 = figure;

88 h1 = subplot (211);

89 semilogy(wvec , mag1); hold on

90 semilogy(wvec , mag);

91 plot(gca ,[-w0 -w0],[1e-3 1e3],’--k’);

92 plot(gca ,[w0 w0],[1e-3 1e3],’--k’);

93 plot(gca ,[0 0],[1e-3 1e3],’--’,’color’ ,[0.6 0.6 0.6],’linewidth ’ ,0.8);
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List of Tables

94 hold off

95 grid on

96 str1 = ’Frequency Response of G(s) $\rightarrow$ G(s-j$\omega_0$)’;

97 str2 = ’(equiv. baseband $\in$ C)’;

98 title(h1,str1 ,’interpreter ’,’latex’,’fontsize ’ ,14)

99 ylim ([0.05/R*max([max(mag) max(mag1)]) 1.1* max([max(mag) max(mag1)])])

100 ylabel(’Magnitude (dB)’)

101 legend(’|G(s)|’,’|G(s-j\omega_0)|’,’location ’,’southeast ’);

102 h2 = subplot (212);

103 plot(wvec , phase1); hold on

104 plot(wvec , phase);

105 plot(gca ,[-w0 -w0],[-360 500],’--k’);

106 plot(gca ,[w0 w0],[-360 500],’--k’);

107 plot(gca ,[0 0],[-360 500],’--’,’color’ ,[0.6 0.6 0.6],’linewidth ’ ,0.8);

108 hold off

109 title(h2,str2 ,’interpreter ’,’latex’,’fontsize ’ ,14)

110 grid on

111 ylim ([ -220 220]);

112 yticks ([-180 0 180 360]);

113 ylabel(’Phase (deg)’)

114 xlabel(’Frequency (rad/s)’)

115 legend(’arg(G(s))’,’arg(G(s-j\omega_0))’,’location ’,’southeast ’);

116 all_ha = findobj( f1, ’type’, ’axes’, ’tag’, ’’ );

117 linkaxes( all_ha , ’x’ );

118 set(gcf ,’PaperPosition ’ ,[0.25 0.25 18 12]);

119
120 % - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

121
122 %% Discretize: G(s) to G(z)

123 fs = w0/2/pi;

124 Ts = 1/fs;

125 G_z = c2d(G_baseband , Ts, ’matched ’); % ’tustin ’

126
127 G_z

128
129
130 [B,A] = tfdata(G_z);

131 B = B{:};

132 A = A{:};

133
134 figure;

135 zplane(B, A);

136 xlim([-1 1])

137 ylim([-1 1])

138 titlstr = strcat(’Pole -Zero Map (Z-plane) of the baseband region\n’, ...

139 ’sampled at fs = %.2f [Hz] / Ts = %.4f [ms]’);

140 title(sprintf(titlstr ,fs ,Ts *1000));

141
142
143 %% Impulse Response

144 imp = [1; zeros (40 ,1)];

145
146 IR = filter(B,A,imp);

147
148 figure;

149 plot(real(IR)); hold on;

150 plot(imag(IR)); hold off;

151 if reduce == 1

152 title(’Complex Impulse Response of simplified Metrics Model ’);

153 else

154 title(’Complex Impulse Response of non -reduced Metrics Model’);

155 end

156 legend(’Re’,’Im’)

157 grid on;

158 xlim ([0 numel(imp)]);

MATLAB script for downconversion of RLC series resonance circuit
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Appendix B

1 close all; clear; clc;

2 %% Complex transfer function estimation example

3 % generic complex MATLAB data sample (unsymmetric frequency response)

4 load cpxbp.mat

5
6 % turn to complex impulse response (for prony & stmcb)

7 h = ifft(H1,’nonsymmetric ’);

8
9 % polynomial orders

10 na = 4;

11 nb = 4;

12
13 % methods

14 [B1 ,A1] = prony(h,nb,na);

15 [B2 ,A2] = stmcb(h,nb,na ,20); % 20 iterations

16 [B3 ,A3] = invfreqz(fftshift(H1),F1*pi,’complex ’,nb,na);

17
18 [z1 ,p1,g1] = tf2zpk(B1,A1);

19 [z2 ,p2,g2] = tf2zpk(B2,A2);

20 [z3 ,p3,g3] = tf2zpk(B3,A3);

21
22 % compare coefficients or poles and zeros:

23 B_compare = [B1; B2; B3];

24 A_compare = [A1; A2; A3];

25 z_compare = transpose ([z1 z2 z3]);

26 p_compare = transpose ([p1 p2 p3]);

27 g_compare = transpose ([g1 g2 g3]);

28
29 figure;

30 s1 = subplot (211);

31 plot(F1+1,abs(H1)); hold on; grid on;

32 ylabel(’Magnitude ’);

33 s2 = subplot (212);

34 plot(F1+1,unwrap(angle(H1))/pi*180); hold on; grid on;

35 xlabel(’normalized frequency (full circle)’);

36 ylabel(’Phase’);

37 [H1 ,W1] = freqz(B1,A1 ,1024 ,’whole’ ,2);

38 [H2 ,W2] = freqz(B2,A2 ,1024 ,’whole’ ,2);

39 [H3 ,W3] = freqz(B3,A3 ,1024 ,’whole’);

40 subplot(s1);

41 plot(W1 ,abs(H1));

42 plot(W2 ,abs(H2),’g--’);

43 plot(W3/pi,abs(H3),’k:’);

44 legend(’H_{Original}’,’H_{Prony}’,’H_{Steiglitz}’,’H_{invfreqz}’,’interpreter ’,’latex’);

45 subplot(s2);

46 plot(W1 ,unwrap(angle(H1))/pi *180);

47 plot(W2 ,unwrap(angle(H2))/pi*180,’g--’);

48 plot(W3/pi,unwrap(angle(H3))/pi*180,’k:’);

49 linkaxes ([s1 s2], ’x’);

50
51 figure;

52 [HZ ,HP,Hl] = zplane ([] ,[]); hold on;

53 hasbehavior(HZ ,’legend ’,false);

54 hasbehavior(HP ,’legend ’,false);

55 hasbehavior(Hl ,’legend ’,false);

56 scatter(real(p1),imag(p1),’xr’);

57 scatter(real(p2),imag(p2),’xg’);

58 scatter(real(p3),imag(p3),’xk’);

59 scatter(real(z3),imag(z3),’ok’);

60 scatter(real(z2),imag(z2),’og’);

61 scatter(real(z1),imag(z1),’or’);

62 legend(’Prony’,’Steiglitz ’,’invfreqz ’);

63 title(sprintf(’Pole (x) Zero (o) Map’));

MATLAB code comparing prony, stmcb and invfreqz in complex-coefficient transfer function estimation
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