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Abstract

This thesis is about analysing return levels of extreme precipitation events
in Austria. Previously, such investigations were made on the basis of a
network of meteorological measuring stations across Austria, some of them
providing data over several decades. However, for the bigger part of these
stations the historical time series is limited to daily precipitation amounts.
Nowadays, radar based technologies allow for measurements with much
higher resolution in time and in space. In turn, however, these augmented
data are only available for a comparably short time span and are less exact
than the ones obtained with a physical measuring device. The question
we are going to pursue in this project, is whether return levels of extreme
precipitation events calculated with this new data lead to satisfactory quality.
To this end we do a comparison between results based on radar and classical
data. We are going to see that there is a quite satisfactory correspondence.
In particular, extremal rainfall levels of longer duration obtained from both
methods are highly correlated. Along with an empirical analysis we provide
the mathematical background from extreme value theory which is used in
this context.
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1. Introduction

In this thesis we investigate extreme rainfall events in Austria. The values
that we analyse are precipitation amounts for a certain duration and return
level at a variety of spatial locations. To be more specific, consider a location
s (described by longitude and latitude), a duration of d units (e.g. 3 hours,
1 day, etc.) and a return level of r > 1 years. For given s,d, r, the goal is to
determine the corresponding extreme rainfall level ¢ = {(s,d,r). If { = x,
it means that the probability, that the maximal amount of rain in one year
within a period of length d at location s (short Rmax(s,d)) to exceed x is
equal to 1/r:

P(Rmax(s,d) > x) =1/r (1.1)
In other words, £(s, d, r) is the 1/r-quantile of the distribution of Rmax (s, d).

Our work was motivated by the existence of two different data sets which
contain estimates for £(s,d,r) on a huge variety of arguments s,d,r. The
first data set was obtained via the so-called OEKOSTRA (Oesterreichweit
koordinierte Starkniederschlagsregionalisierung und - Auswertung) model
and the second by the INCA (Integrated Nowcasting Through Comprehensive
Analysis) model. Both systems use extreme value theory to estimate extreme
rainfall levels throughout Austria. However, they are based on entirely
different raw datasets. Roughly speaking, OEKOSTRA is based on precipitation
measurements on a network of locations for measuring devices based at
fixed spatial locations. Some of the stations collected data over more than a
century. INCA, in contrast, is based on radar data which are available at a
very high resolution (1x1 km). The raw data, however, only date back to
2004, which means that it contains a relatively short period for estimating
the quantiles x in (1.1). The overlap of raw data for INCA and OEKOSTRA
is at most 2 years (depending on the location). Hence, the two estimates
for ((s,d,r) obtained from INCA and OEKOSTRA are expected to be more or
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less independent. So, not surprisingly, this fact will yield some discrepancy
between both models.

The target of this thesis is to compare these differences. In particular, we
would like to answer the question whether they are within a natural range
that can be explained by statistical estimation errors.

Before we outline the content of our work, let us briefly describe how this
problem originated and how it evolved before we were entering the stage.
The starting point is the so-called HORA project, which is an internet plat-
form (www.hora.gv.at) providing Austria-wide maps for risks of different
natural disasters, including hale, storms, earthquakes, floodings, etc. The
platform is implemented by one of Austria’s federal ministries (previously
called BMLFUW) and the Austrian Insurance Association. In connection
with the HORA project, the head of reinsurance of the GRAWE group (Dr.
Thomas Hlatky) requested scientific support from Wegener Center Graz
for comparison of the data. There was a major concern that the extreme
rainfall levels calculated from the two data would be highly inconsistent.
This concern was mainly based on results of the BMLFUW. See Figure 1.1.
Given these large discrepancies it was unclear whether the high resolution
radar-data provided by the ZAMG (Zentralanstalt fiir Meteorologie und
Geodynamik) are realiable enough for this purpose. The reason for the
huge differences seen in this evaluation remained unclear. Despite of the
presumed inconsistency, the study Beck and Zingerle, 2013 concluded that
INCA is an accurate tool to predict precipitation events in Austria.

Given that this problem has a significant statistical component, Prof. Douglas
Maraun from the Wegener Center Graz, decided to pass the request for
scientific support further to the Institute of Statistics of TU Graz. Our goal is
now to make a systematic comparison of the two data and to clarify the situation.

The rest of the thesis is organized as follows:

In Section 2 we give a detailed survey over the datasets which we use
in our analysis. In Section 3 we do an empirical comparison of the two
data sets. We focus on d = 24 hours and d = 3 hours and r = 2 years.
Then, in Section 4 and Section 5 we describe basic methods from extreme
value theory, which provides the mathematical framework for this type of
problem. In Section 6 we show how extremal quantiles as in (1.1) can be
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Figure 1.1.: Discrepancy in extreme rainfall levels are seen in the top two plots.

estimated. A crucial point will be to obtain confidence intervals for ¢(s,d, )
and to subsequently assess whether the two methods are comparable, which
will also be done in Section 6. We conclude the main part of the thesis by
analyzing how sampling effects and sample size impacts the estimation
results. Finally, in Appendix A, we give an overview on how our code and
database is structured.






2. Datasets

As we have explained in the Introduction, we are dealing with two datasets
for extreme rainfall events. We will from now on refer to these datasets as
OEKOSTRA and INCA. In the following we explain these two data in detail.

2.1. The OEKOSTRA data

The OEKOSTRA data has been provided by Dr. Viktor Weilguni from the Bun-
desministerium fiir Nachhaltigkeit und Tourismus. We obtained the data in
dbf format, divided amongst 11 files, 578Kb in size each with 918 rows
and 52 columns. The columns describe mostly metadata, like names, al-
titude, coordinates, etc. and precipitation data for each of the 917 mea-
suring stations in Austria. Each file is related to one return period: r =
1,2,3,5,10,20,25,30,50,75,100 (in years). The return durations are ranging
from 5 minutes up to 6 days. We transformed the files into csv files and
eliminated columns that were of no interest for our analysis.

Besides the corresponding extremal rainfall levels, the variables given in the
csv files are provided in Table 2.1.

As already mentioned above, the OEKOSTRA dataset consists of records from
917 measuring sites over Austria and is based on data which altogether
spans from year 1895 to 2006. The range of available data depends on the
station. There is no case where data is present for the whole range from
1895 to 2006. Most stations span a length of 45 years. See Figure 2.1.

Durations for extreme rainfall events considered in the OEKOSTRA data are
d = 5min, 10min, 15min, 20min, 30min, 45min, 60min, 90min, 2h, 3h, 4h, 5h,
9h, 12h, 18h and 1d, 2d, 3d, 4d, 5d, 6d. Intraday precipitation measurements
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Station
Name
Waters
Land
Owner
Height
Latitude
Longitude
Cone Coord
From

To

Years

unique integer number assigned to the measuring station;
name of the station (in most cases a nearby city);
nearby important lake or river;

province;

owner of the station;

meters above sealevel;

latitudinal GPS coordinate;

longitudinal GPS coordinate;

cone coordinate ( Bessel 1841-Ellipsoid );

first date at which data was recorded;

last date at which data was recorded;

number of years that have recordings;

Table 2.1.: Variables in the OEKOSTRA dataset.

200

100+

30 60 90
Years

Figure 2.1.: Number of years where data is present for a station.

are only available in 221 measuring stations. Hence, extreme rainfall levels
for durations d < 1 day are available in these stations. In the other 696
stations only the accumulated precipitation within a day was recorded



2.1. The OEKOSTRA data
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Figure 2.2.: Histogram of altitude-levels of stations.

and hence for these sites only extreme levels for durations d > 1 day are
available.

It should be stressed at this point that the OEKOSTRA data contain only the
extremal levels and no raw precipitation data. Extremal levels are quantities that
have to be estimated using statistical theory. We will outline the underlying
theory in Chapter 4. Since we have no raw data we cannot judge the quality
of the estimates. We have no information about the estimation procedure
used.

Due to the topological shape of Austria, the altitude of the measuring
devices varies in a wide range from 117 up to 3105 meters above sealevel.
Most of the stations are located between 200m and 7oom. See Figure 2.2.

We observed that a station is more likely to have no intraday data the more
years of data it contains. See Figure 2.4. Note that locations with only a few
years of observations are not necessarily recently established measuring
stations. E.g., the station “Schattendorf” has only 13 years of data ranging
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Stations
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Figure 2.3.: Map of measuring locations for OEKOSTRA. We distinguish between stations
where intraday data available (0), and where no intraday data available (1).

from year 1957 to 1972.

2.2. The INCA data

2.2.1. The raw precipitation dataset

The raw INCA data has been provided by Dr. Heimo Truhetz from the Wegener
Center in Graz. ' We obtained the data as ncdf4 files, which provide a high-
level R interface to data files as binary data files that are portable across
platforms. They also include metadata information. *

The data is 56,9 GB in size, divided among 160 files, each one belonging to
one particular month and year starting from January 2004 until April 2017
and has a very high spatial resolution of 1km x 1km over Austria. Those 160

Thttps:/ /wegcenter.uni-graz.at/
https:/ / cran.r-project.org/web/packages/ncdf4 /ncdf4.pdf
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30 60 90
Years

Figure 2.4.: Observation period in years. Top row: no intraday data available, bottom row:
intraday data available.

files each contain precipitation values on a 1x1km grid over Austria in 15
minutes intervals. The data is complete, meaning that there are no spatial
or temporal missing values on any of the available variables.

The data also includes one file containing the orography of the measuring
points. It is based on the INCA system. 3

2.2.2. The return level estimates

The return level estimates for the INCA data have been provided by Dr. Alexan-
der Beck from the ZAMG 4 and were calculated on the basis of the data de-
scribed in the section above. We obtained this data as a punch of plain txt
files, each belonging to one of the durations d = 3h, 6h, 9h, 12h, 18h, 24h, 48h,

3https:/ /www.zobodat.at/pdf/BerichteGeolBundesanstalt_88_oo07-0016.pdf
+https:/ /www.zamg.ac.at/cms/en
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72h, 96h. They are formatted in a tabular way and contain the return level
estimates for r = 1.1, 2,3, 5,10 years, including 0.95% confidence intervals
for the precipitation levels.

Notice that the data starts with the return period of 1.1 years. As a matter
of fact, since we are considering return times of annual maxima, only return
levels greater than 1 year can be considered.

Given the relatively short time period of about 13 years of available data, it
was only used to predict events up to a return period of 10 years.

The return levels were estimated on the basis of the R-package extRemes. >
Further information on the calculations can be found in Beck and Zingerle,
2013.

Shttps:/ / cran.r-project.org/web/packages/extRemes /extRemes.pdf

10



3. An empirical comparison of the
data

Our data are available for a variety of different durations (from 5 min up
to 6 days) and return periods (from 1 year up to 100 years). Thus there
are 21 x 11 = 231 possibilities to combine those two values. In this thesis
we will limit ourselves to the return period of 2 years and the durations
d = 24h and d = 3h. All our methods are applicable for each other setting
as well and the analysis can be extended in a straight forward way.

The aim of this chapter is to give an empirical comparison of the two
datasets. In essence, the goal is to compare

Uy (s,d,r) and ZOE(S, d,r)

when r = 2 years and d = 3h or d = 24h, over a set of locations s € §. Here
@IN and @OE are the estimated extreme rainfall levels provided by the INCA
and OEKOSTRA data, respectively.

A first problem is that the spatial locations § = S1y from the INCA data and
the locations 8§ = Sgg from the OEKOSTRA data are not identical. OEKOSTRA
data are provided only at locations where there exist physical measuring
devices, while INCA has pseudo-stations on a 1x1 km grid across Austria.
Our approach here was to calculate the nearest INCA pseudo-station for
each of the physical measuring sites from the OEKOSTRA data. Hence our
comparison is basically restricted to Sgg. Due to the high resolution of INCA
data, this approach seems justified.

This choice leads to two data vectors x = (x1,...,x,) and y = (y1,...,yn)’,
with n = 917 or n = 221, depending on the duration d. Basic ways to
compare the relation between x and y is to look at correlation between these

11
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vectors or to regress y on x. This is done in Section 3.1. Alternatively, in
order to reduce the impact of noise, we also consider some transformations
based on grouping or smoothing in the subsequent sections. More precisely,
we do the following;:

1. Smoothing within a given radius 6 > 0: x; is replaced by
med{x;: [s; —s;| <4}

Same with y;. Here s; is the spatial coordinate related to x;.

2. Grouping the data within a range of sea-levels: For a given k < n, the
stations x; are divided into k groups according to their sea-level h(x;).
First, we re-index x; with respect to h such that

h(x) < -+ < h(xn)

and then we calculate m := [n/k] as the size for each group. Next
x = (x1,...,x,)" is split into

X1se oo s Xmy Xm41r -7 X2my e« -

and we obtain k groups g1, ..., gk by setting

&i = {X(-1)ymi1s - Xim }

We associate to each group med(g;) and miny;cg,{h(x;)}.

Note that for some choices of k, namely when k is not a factor of n, the last
group might be left with fewer or more stations then the other groups since
n/k ¢ IN.

3. Grouping within a reqular grid: For a given k € IN a regular k x k grid
over Austria is calculated by looking at the longitude lon(x;) and
latitude lat(x;) of each station. Let Ly, := miny lon(x;) and U, :=
maxy lon(x;) and Ly, := miny lat(x;) and Uy, := maxy lat(x;).

This means each grid segment g;; spans a longitude of Sy, := (Ujon —
Lion)/k and a latitude of Si,; := (Ujar — Liat) /k. Hence one station xj
belongs to a grid segment g;; if

iSion < lon(xg) < (i +1)Sjon and jSpa < lon(x) < (j+ 1)Siat.

Each grid segment g;; is then associated with the med{x; : xx € g;j}.
Note that for large values of k many of those grid segments may be empty.

Details are provided in Sections 3.2—3.4.

12



3.1. Comparing the raw data when d = 24h
3.1. Comparing the raw data when d = 24h

We now consider the return period of r = 2 years and the duration d = 24h.
With the above described choice of spatial locations s we plotted maps
of Austria with the corresponding extreme rainfall levels, based on the
INCA and OEKOSTRA data. See Figure 3.1. There are obvious similarities
in both plots, though the OEKOSTRA precipitation levels are in tendency
smaller. A linear relationship between x and y is suggested by a scatter plot
(Figure 3.2). In this figure we have marked the corresponding sea-levels
in order to explore whether they suggest an impact on the regression line.
The linear relationship is furthermore suggested by the regression analysis
(Equation 3.1). Figure 3.3 provides an overview on the distribution of the
measuring stations with respect to the sea-level.

We regressed OEKOSTRA onto INCA and obtained the following model
INCA = 0.599 - OEKOSTRA + 33.524. (3.1)

Here is a summary of the regression analysis.

Estimate Std. Error t value Pr(>ltl)
(Intercept) 33.52376 0.99985 33.53 <2e-16
Oekostra 0.59862 0.01582 37.83 <2e-16

Residual standard error: 6.899 on 915 degrees of freedom
Multiple R-squared: 0.61,Adjusted R-squared: 0.6096
F-statistic: 1431 on 1 and 915 DF, p-value: < 2.2e-16

Additionally we considered a linear model with the altitude of the measur-
ing station as extra explanatory variable. It yields the model

INCA = 0.001% + 0.585 - OEKOSTRA + 33.44, (3.2)

and the following summary of the regression analysis:

Estimate Std. Error t value Pr(>ltl)
(Intercept)  3.344e+01 9.982e-01 33.500 <2e-16

13
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Figure 3.1.: OEKOSTRA and INCA maps.
Oekostra 5.855e-01 1.680e-02 34.851

Height

1.331e-03 5.819e-04 2.288

Precipitation (mm)

(37.8,56.7]
(56.7,75.5]
(75.5,94.4]
(94.4,113]

Precipitation (mm)

(37.8,56.7]
(56.7,75.5]
(75.5,94.4]
(94.4,113]
.+ (113,132]
« (132,151]
e (151,170]

<2e-16
0.0224

Residual standard error: 6.883 on 914 degrees of freedom

0.6114

0.6122,Adjusted R-squared:
p-value: < 2.2e-16

Multiple R-squared:
F-statistic: 721.5 on 2 and 914 DF,
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140

100

Okostra return levels

60

3.1. Comparing the raw data when d = 24h

® 116<=x<=370 © 371<=x<=625 O 626<=x<=890 @ 891 <=x<=3106

R=0.78,p<22e-16

60 80 100
Inca return levels

Figure 3.2.: Correlation (R) between 0EKOSTRA and INCA extremal levels.

which does not suggest a very high impact of the height variable on our

model, but it is still significant at the usual 5% confidence level.

Finally, we considered if there might be an interaction between the two
regressor variables. This gives rise to the model

INCA = —0.0003% - OEKOSTRA + 0.02% + 0.836 - OEKOSTRA + 19.0722,  (3.3)

and yields the corresponding regression table:

(Intercept)
Oekostra
Height
OckostraxHeight

Estimate Std. Error t value

1.907e+01 1.913e+00 9.968

8.364e-01 3.311e-02 25.258
2.012e-02 2.236e-03 9.000
-3.157e-04 3.637e-05 -8.681

Pr(>ltl)
<2e-16
<2e-16
<2e-16
<2e-16

Residual standard error: 6.619 on 913 degrees of freedom
Multiple R-squared: 0.6418,Adjusted R-squared: 0.6406

F-statistic: 545.2 on 3 and 913 DF,

p-value: < 2.2e-16
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3. An empirical comparison of the data

The outcome of the regression analysis suggests clear evidence for an
interaction effect. The R? increased quite notably, suggesting that this model
does a significantly better job as compared to the model which doesn’t use
the variable Height as covariate.

Latitude

49 o |
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“Esslingen Y,

\
lgen-Schwenningen |

N
o

464\

o
.| Heidenheim an der Brenz

*Tabingen ™ Neu-Ulm

, Kempten (Allgu)
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NG

X
i
«:Kn/unich

[ 5 [3 °
° (J
) s Rosenheim 9.5 of C %

Longitude

Figure 3.3.: Sea-levels of measuring stations.

Height

e 116<=x<=370
371 <=x<=625
626 <= x <= 890

e 891 <=x<=3106

We noticed among the OEKOSTRA data two outliers (station 114637 and
113811) with very hight precipitation levels (Figure 3.1) and hence also con-
sidered to remove those. Their overall leverage on the regression, however,
is rather small.
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3.2. A smoothing approach
3.2. A smoothing approach

In this and in the subsequent sections we are trying to remove the effect of
noisy data, by pooling and averaging data with respect to geographical or
topological features.

In the first approach we calculate the median precipitation value over nearby
stations which are in the range of some given radius ¢. The goal is to reduce
noise by profiting from spatial correlation. Since Austria only spans a few
degrees in longitude and even fewer degrees in latitude, said radius had to
be quite small for a meaningful calculation. A station x; is considered to be
within a radius ¢ of a location s if

V/ (at(x;) — lat(s))2 + (lon(x;) — lon(s))2 < 6.

As expected, the correlation-coefficient between the pooled INCA and OEKOSTRA
data rises. The maximal correlation is achieved at § = 0.25. See Figure 3.4.

0.901

0.88

Correlation

0.861

0.84

0.00 0.25 0.50 0.75 1.00
Radius

Figure 3.4.: Correlation (R) between 0EKOSTRA and INCA with data pooling by radius.
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3.

An empirical comparison of the data

@ 116<=x<=370 Q 371<=x<=625 Q 626<=x<=890 @ 891 <=x<=3106

R=091,p<2.2e-16

80

70

60

Okostra return levels

an
o

60 70 80 90
Inca return levels

Figure 3.5.: Correlation (R) between 0EKOSTRA and INCA smoothed with radius o.25.

When fitting a linear model we obtain

INCA = 0.833 - OEKOSTRA + 19.276. (3.4)

The regression table for § = 0.25 indicates a very good fit:

18

Estimate Std. Error t value Pr(cltl)
(Intercept) 19.27575 0.75494 25.53 <2e-16
Oekostra 0.83257 0.01217 68.41 <2e-16

Residual standard error: 3.277 on 915 degrees of freedom
Multiple R-squared: 0.8365,Adjusted R-squared: 0.8363
F-statistic: 4680 on 1 and 915 DF, p-value: < 2.2e-16



3.3. Grouping within a range of sea-levels
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Figure 3.6.: Scatterplot between OEKOSTRA and INCA maps smoothed with radius § = 0.25.
3.3. Grouping within a range of sea-levels

Our next approach is based on grouping different data according to a range
of sea-levels and then calculate the mean of the extreme precipitation levels
within those groups. Grouping the stations into similar height levels might
improve the correlation since sea-levels have an impact on precipitation
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3. An empirical comparison of the data

1.00+

o
©
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0.901
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Number of groups

Figure 3.7.: Correlation (R) between OEKOSTRA and INCA extreme precipitation levels with
the height method.

amounts.

To this end we first sorted the data with respect to ascending sea-levels
and then divided them into k > 0 groups. The first group contains the
m := |n/k] stations with the lowest sea-level, the second group also contains
|n/k] stations with the lowest sea-level among the remaining stations, etc.
We do this for both, OEKOSTRA and INCA data. For both data, we then compute
m corresponding means and compare them as in the previous sections.

Looking at groups where many stations are combined into one group
indeed yields quite strong correlation. And, not surprisingly, this correlation
declines as the number of groups grows, i.e. when we tend towards the raw
data, where each station forms one group. (See Figure 3.7). In Figure 3.8
we grouped data into 50 height levels. Notice that the group of biggest
altitudes are all found below the regression line which suggests that INCA
might systematically overestimate precipitation on higher altitude.
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3.4. Grouping with a rectangular grid

@ 116<=x<=370 @ 371<=x<=625 Q 626 <=x<=890

R=0.85,p=7.3e-15

90

[e]
o
o

Okostra return levels
\‘
o

50

60 70 80
Inca return levels

Figure 3.8.: Correlation (R) between pooled OEKOSTRA and INCA with 50 sea-levels. Note
that the height levels indicating the color code refer to the minimal height of
stations with a group.

3.4. Grouping with a rectangular grid

In this approach we divide Austria into a regular k x k grid and calculate
the median of precipitations within the grid segments, in order to capture
local effects and even out the effect of statistical outliers. Note that in some
segments we may have no stations and therefore the assigned value is 0
or NA, respectively. We selected from 1x1 to 20x20 and 50x50 and 100x100
segments. It is obvious that the greater our grid size, the more empty
segments we obtain. In the 100x100 case the map is already filled with
around 90% of empty segments.

We had a closer look at the gridsize 19x19 since the correlation locally spiked
there. Presumably, this is the ideal size to capture local climate conditions
in specific areas.

A regression here yields similar results as in previous approaches. We obtain
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3. An empirical comparison of the data

0.901

0.85

Correlation

0.801
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Grid Size

Figure 3.9.: Correlation (R) between OEKOSTRA and INCA with the grid method.

the linear model

INCA = 0.732 - OEKOSTRA + 25.283, (3.5)
with
Estimate Std. Error t value Pr(>ltl)
(Intercept) 25.28299 1.81030 13.97 <2e-16
Oekostra 0.73152 0.02894 25.27 <2e-16

22

Residual standard error: 3.277 on 915 degrees of freedom
Multiple R-squared: 0.8365,Adjusted R-squared: 0.8363
F-statistic: 4680 on 1 and 915 DF, p-value: < 2.2e-16



3.5. Measuring stations with intraday data

R=0.87,p<22e-16

100

Okostra return levels

60 80 100
Inca return levels

Figure 3.10.: Correlation with gridsize 19.
3.5. Measuring stations with intraday data

Previously we were considering a return period r = 2 years and a duration
d = 24h. For this setup we had extreme precipitation levels available for
each of the 917 measuring stations in Austria. In the next section we want to
compare our current findings to shorter durations like 4 = 3h. Then, when
intraday data are needed, we can base our analysis only 221 stations.

Before we do a similar analysis as above with the shorter durations we first
want to see if the measuring stations which provide intraday data, behave
similar as those with only daily data. To this end we provide a scatterplot of
the precipitation levels where we mark the 221 stations providing intraday-
data. See Figure 3.12.

After repeating our calculations with a return period of 2 years and a
duration of 24h for only the 221 stations with complete datasets we obtained
pretty similar results with all methods. The correlations were in tendency
slightly higher. A possible reason for this might be that a station with
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3. An empirical comparison of the data
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Figure 3.11.: INCA plot with gridsize 19.
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complete datasets has to be monitored more carefully than a station which
only collects data once a day and it might also be better equipped.
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3.6. Analysis of shorter durations

140+

1001

Oekostra return levels

60

60 80 100
Inca return levels

Figure 3.12.: Distinguishing return levels (2 years, 24 hours duration), where red indicates
intraday data is available and blue indicates no intraday data is available.

3.6. Analysis of shorter durations

Now we repeat our calculations for shorter durations. We kept the return
period of 2 years. The initial problem originated from the comparison of the
two maps for a return period of 2 years and a duration of 3h (Figure 1.1)
and that is why we choose to analyse the 3h duration.

There are again similarities in both plots but not as pronounced as in
the d = 24h case. It seems that different hight levels are correlated dif-
ferently, meaning that the regression line would have slopes depending
on the sealevel. A weaker linear relationship is suggested by a scatterplot
(Figure 3.15). The estimated linear model is given by the equation

INCA = 0.403 - OEKOSTRA + 19.579. (3.6)

The regression table looks as follows:
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3. An empirical comparison of the data

@ 116<=x<=370 @ 371<=x<=625 O 626<=x<=890 @ 891 <=x<=3106

R=0.82,p<22e-16

100

75

Okostra return levels

50

60 80 100
Inca return levels

Figure 3.13.: Correlation (R) for the stations with intraday return levels.

Estimate Std. Error t value Pr(>ltl)
(Intercept) 19.57879 1.52994 12.797 <2e-16
Oekostra 0.40281 0.04893 8.232 1.65e-14

Residual standard error: 3.7 on 219 degrees of freedom
Multiple R-squared: 0.2363,Adjusted R-squared: 0.2328
F-statistic: 67.77 on 1 and 219 DF, p-value: 1.646e-14.

The linear relationship is weaker than before and the correlation coefficient
unsurprisingly dropped quite a bit (Figure 3.14). We have repeated our other
approaches in this case and obtained very similar results. Let us point out
that the sea-level method provided most convincing results. The difference
in the baseline-correlation without grouping (R = 0.49) and the correlations
from the sea-level method is quite significant (Figure 3.16).

The regression with height as extra explanatory variable, however, showed
no significant impact and from the analysis without intercept we can confirm
that OEKOSTRA precipitation levels are in tendency again slightly smaller.
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Figure 3.14.: Return levels for 3 hour duration.

INCA = —0.002k + 0.398 - OEKOSTRA + 20.702, (3.7)
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3. An empirical comparison of the data

@ 116<=x<=370 @ 371<=x<=625 O 626<=x<=890 @ 891 <=x<=3106

45 °

R=0.49,p=16e-14 ©

w w B
o (3} o

Okostra return levels

N
al

20

20 25 30 35 40 45
Inca return levels

Figure 3.15.: Correlation (R) for 3 hour duration.

This leads to the following regression table:

Estimate Std. Error t value Pr(>ltl)

(Intercept) 20.7019816 1.5940835 12.987 < 2e-16
Oekostra 0.3979751 0.0485172 8.203 2.02e-14
Height -0.0015751 0.0006929 -2.273 0.024

Residual standard error: 3.666 on 218 degrees of freedom
Multiple R-squared: 0.254,Adjusted R-squared: 0.2472
F-statistic: 37.12 on 2 and 218 DF, p-value: 1.341le-14

Lastly, in view of Figure 3.16, we considered a regression with an interaction
between the sealevel and our response variable. The estimated model is now
give as

INCA = 0.0005% - OEKOSTRA — 0.004% + 0.56 - OEKOSTRA + 46.752.  (3.8)

The regression table is summarized below.
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3.6. Analysis of shorter durations
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Figure 3.16.: Correlation with the height method for duration of 3 hours.

Estimate Std. Error t value Pr(>ltl|)

(Intercept) 46.7518691 8.2956463 5.636 5.38e-08
Oekostra 0.5613296  0.2826970 1.986 0.0121
Height -0.0035898 0.0102594 -0.350 <2e-16
OekostraxHeight 0.0004862 0.0003623  1.342 <2e-16

Residual standard error: 10.15 on 217 degrees of freedom
Multiple R-squared: 0.2623,Adjusted R-squared: 0.259
F-statistic: 23.4 on 3 and 217 DF, p-value: 3.659e-13

The regression here suggests that in fact the interaction with the sealevel is
significant.
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4. Theory

4.1. Introduction and basic results

The following chapter about extreme value theory (EVT) is based on Haan
and Ferreira, 2006. We will describe the basics of EVT and point out some
interesting facts that relate to our problem and its solution.

Let X, X», ..., X, be independent and identically distributed random vari-
ables. The theory of extreme values is concerned with the behavior of the
samples extremes:

M, := max(Xy, X, ..., Xy) n — oo (4.1)

Since the minima formulation can easily be transformed into maxima for-
mulation we will restrict ourselves to the latter.

As an example let us consider precipitation values. We are interested to find
when rainfall exceeds a certain threshold, for example the amount of water
a dam can hold. We can think of extreme rainfall as an extreme observation
that causes failure.

We are interested in finding a limit distribution for maxima of a random
sequence. Assuming that these variables are identically and independently
distributed is in many cases oversimplistic, but will be made for the sake of
simplicity. Let F be the underlying distribution function and x* = sup{x :
F(x) < 1}. We first observe that M,, converges to x* in probability. This is
because

P(M, <x) = P(X3<x,...,X;, <x)

0 x<x¥

=F'(x) — {1 ¥

31



4. Theory

This shows that the limiting distribution function is degenerate. In order
to obtain a nondegenerate limit distribution, a normalisation is necessary.
Hence, we consider
Mn - bn
an
with a,, > 0 and b, € R.

Suppose that the standardised maximum has a limit distribution G(x), i.e.

lim F"(a,x + by) = G(x) (4-2)
n—oo
for every continuity point x of G and G a nondegenerate distribution
function. We call every distribution function G that satisfies the expression
(4.2) an extreme value distribution. Our main aim at this stage will be to
tind the possible limiting distributions.

Let us first reformulate (4.2) by taking logarithms left and right. We obtain
for each continuity point x for which 0 < G(x) < 1 holds that

lim nlog F(a,x + b,) = log G(x). (4.3)

n—oo

It follows that F(a,x + b,) — 1 for each x, and therefore we get

—log F(ayx + by) _1

nh—rgo}o 1—F(ayx+by,)

since loo(1
lim — 1081 —¢)

e—0 €

=1

Thus
lim n(1 — F(ayx + b)) = —log G(x),

n—oo

or equivalently

1 1

i, n(1—F(apx + by)) —logG(x) (4-4)

To proceed further, we need to introduce generalised inverse functions.
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4.1. Introduction and basic results

Definition 1. Let f be any nondecreasing function. We call f the left continu-
ous inverse if
fo(x) = inf{y : f(y) = x}. (4.5)

With the following lemma, whose proof can be found in Haan and Ferreira,
2006, page 5, we can see why inverse functions are useful here.

Lemma 1. Suppose f, is a sequence of nondecreasing functions and g is a nonde-
creasing function. Suppose that for each x in some open interval (a,b) which is a
continuity point of g,

lim f,(x) = g(x). (46)

n—o00

Let £, be the left continuous inverses of f, and g. Then, for each x in the
interval (g(a),g(b)) which is a continuity point of g we also have

lim fo(x) = g" (%) (4.7)

n—o00

Now observe that the left continuous inverse of the right hand side of (4.4)
can be expressed as

1
1 e > =1 tx < =
inf {y “Tog Gy = x} inf{y: x <logG(y)}
<

1 1

inf{y: W ;} :inf{y: —log G(y) < %} —

inf{y :log G(y) > —%} = inf {y :G(y) > eil/"} =G (e V7).

We can now apply Lemma 1 to (4.4) by selecting

1
and considering
: U(nx)—bn _ (- 1/xy .
nh_r)rgoT =G (e ") =:D(x), x>0. (4.9)
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4. Theory

If we assume that x is a continuity point of D, then for t > 1

u([t]x) — byy p U(tx) — by _ U([tx(1+1/]t])) — by < D), (4.10)
ary - apy B ] N , |

for x’ > x with D(x") > D(x). Since D is continuous at x, we obtain

lim M = D(x) (4.11)
t—o0 a[t] ' ’

With our previous observation we can formulate the following theorem that
yields useful alternative formulations of our initial condition on the extreme
value distribution (4.2).

Theorem 1. Let a, > 0 and by, be real sequences of constants and G a nondegen-
erate distribution function. The following statements are equivalent

1.
nlg{}o F"(apx + by) = G(x)

for each continuity point x of G(x)
2.

}Lrglot(l —F(a(t)x+b(t))) = —log G(x) (4.12)

for each continuity point x of G for which 0 < G(x) <1, a(t) := ay, and
b(t) := by (with [t] the integer part of )
3.

O D(x), (4.13)

jl:()r each continuity point x of D(x) = G (e71/%), a(t) := ay), and b(t) :=
[1]-

4.2. Extreme value distributions

We will now try to identify a class of distributions that can occur as a limit
of the relation (4.2), discussed earlier.
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4.2. Extreme value distributions

Theorem 2 (Fisher and Tippet (1928), Gnedenko (1943)). The class of
extreme value distributions is of parametric form G, (ax +b) witha > 0,b € R,
where

_ -1/
G, (x) = { zgg_g}g yx)~1/7) }Yi%x >0 (414)

with v € R.
Definition 2. The parameter 7y in (4.14) is called the extreme value index.

Proof. Let us consider the class of limit functions D in (4.13). First suppose
that 1 is a continuity point of D. Then note that for continuity points x > 0,

— D(x) - D(1) = E(x). (4.15)

Take y > 0 and write

Ultry) —U(t) _ Ultxy) — U(ty) alty) | U(tx) — U(t)
a(t) a(ty) a(t) a(t)

We claim that lim¢_,e (U(ty) — U(t)/a(t)) and lim; e a(ty)/a(t)) exist.
Suppose not. Then there are Aj, Ay, By, By with A; # Ay or By # By,
where B; are limit points of (U(ty) — U(t)/a(t)) and A; are limit points of
a(ty)/a(t)),i=1,2,as t — oo. We find from (4.16) that

(4.16)

E(xy) = E(x)A; + B (4.17)

i = 1,2, for all continuity points x of E(-) and E(-y). For an arbitrary x take a
sequence of continuity points x, with x, T x,n — oo. Then E(x,y) — E(xy)
and E(x,) — E(x) since E is left continuous. Hence (4.17) holds for all
x > 0 and y > 0. Subtracting the expressions for i = 1,2 from each other
one obtains

E(x)(A1—Az2) =By — By (4.18)

for all x > 0. Since E cannot be constant (because G is nondegenerate) we
must have A; = Aj and hence also B; = B;. Therefore

Aly) = lim ") (419)
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exists for y > 0 and for x,y > 0,
E(xy) = E(x)A(y) + E(y)-
Hence for s :=logx, t :=logy (x,y # 1) and H(x) := E(x*), we have
H(t+s) = H(s)A(e") + H(t), (4.20)
which, since H(0) = 0, we can write as

H(t+s)— H(t) _ H(s) — H(O)A(et). (4.21)

Since H is monotone, there is certainly one ¢ at which H is differentiable
and therefore by (4.21) H is differentiable everywhere and

H'(t) = H'(0)A(e"). (4.22)

(e
Write Q(t) := H(t)/H’'(0). Note that H'(0) cannot be zero: H cannot be
constant since G is nondegenerate. Then Q(0) = 0,Q’(0) = 1. By (4.20)
)

Q(t+s) —Q(t) = Q(s)A(e"),

and by (4.21),
Q(t+3s) —Q(t) = Q(s)Q' ().

Subtracting the same expressions with t and s interchanged we get

o2 =1 _ Q)

S S

Q'(t) 1),

hence (letting s — 0)
Q(HQ"(0) =Q'(t) — 1.
It follows that Q is twice differentiable, and by differentiation,
Q"(0)Q'(t) = Q"(t).

Hence
(log Q") (t) = Q"(0) = v €R,
for all t. It follows that (note that Q'(0) = 1)

Q(t)=e"
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4.2. Extreme value distributions

and (since Q(0) = 0)

This means that

H = 10"
and
D(t) = D(1) + H’(O)ﬂ; !
Hence y
D™ (x) = <1+7x;,—%()1)) " (4-23)
Now D(x) = G (e~/*), and hence
D) =~ (4:29)

Combining (4.23) and (4.24), we obtain the statement of the theorem. If 1 is
not a continuity point of D, follow the proof with the function U(txg) with
xp a continuity point of D. O

Remark 1. This result shows that the limit distribution functions form a simple
explicit one-parameter (7y) family apart from the scale (a,) and location (by)
parameters. It also shows that it contains subclasses with quite different features.
Consider the subclasses v < 0, v = 0and v > 0

1. For v > 0 clearly G, (x) < 1 for all x and therefore the right endpoint of the
distribution is infinity. Moreover

1—Gy(x) ~y V777, x5 o0,

This means that the distribution has a heavy right tail. Furthermore using
Gy((x —1)/7) and with « = 1/ > 0 we obtain another parametrization
as follows:
0 x <0
Dy (x) := { exp(—x%) x>0 (4.25)

This class is called the Frechet class of extreme value distributions.
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4. Theory

2. For v = O the right endpoint of the distribution equals infinity. The distri-
bution however is rather light-tailed: 1 — Go(x) ~ e~ * as x — oo. Another
parametrisation in this case is obtained selecting

Go(x) =exp(—e™*), xeR. (4.26)

This class is called the double-exponential or Gumbel distribution.

3. For v < 0 the right endpoint of the distribution is —1/y so it has a short tail,
verifying 1 — G (—y~1 — x) = (—yx) "7, as x | 0. The parametrisation
in this case is obtained by using G,(—=1(1+x)/v) and x = =1/ > 0.
Then

¥, (x) = { i"p(_(_x)a) i;g (4.27)

This class is called the reverse-Weibull class of distributions.

This next definition is a way to characterize the domain in which (4.2)
converges.

Definition 3. Let F be a distribution function for which

lim F"(ayx + b,) = G, (x),

n—00

holds for some 7y € R. Then we say F is in the domain of attraction of G,,. We
denote this by F € D(G,)

We conclude this section by a useful criteria to check if a distribution
function is in the domain of G,.

Theorem 3. Let F be a distribution function and x* its right endpoint. Suppose
F"(x) exists and F'(x) is positive for all x in some left neighborhood of x*. If

lim (1 ;F> (t) =1, (4.28)

then F is in the domain of attraction of G,,.
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4.3. Asymptotic distribution of extreme order statistics

We do not give a proof here, but refer to Haan and Ferreira, 2006, page 15.

Until now we have considered the limiting distribution of the sample maxi-
mum. We will consider in the following some asymptotic results for other
order statistics. Recall that the order statistics are defined as the ordered
sample:

Xl,n < XZ,n <. < Xn,n/

where X;, is the i-th largest element of our sample Xj, ..., X,. Hence
M, = X,,,. For fixed k we call Xj , and X,,_j, extreme order statistics. For
k — oo asn — co but k/n — 0 we call Xj , intermediate order statistics.

4.3. Asymptotic distribution of extreme order
statistics

From (4.13) and (4.14) we can obtain the relation for x > 0:

U(tx) — U(F)

iy N TN — 5 (p VX =
tlirglo ) Dy(x) = G5 (e7/7")
. 1/x x7T—1
ity 6, 2 ey = YL (420

The last equality is because Gv(%) = e~1/*, With this condition we can
obtain convergence in distribution for normalized sample maxima as in
(4.2). Moreover, it can be used to obtain convergence for the extreme order
statistics. We begin by outlining the important special case of exponential
distributions.

Let X, ..., X, be independent and identically distributed exponential ran-
dom variables with parameter A and X; , < --- < X, , be the order statistics
of our sample. Rényi, 1953 showed that

. da (1 i Z; .
(Xi,nzlﬁzén):(X2ﬁ51§lﬁn), (4.30)

=1

where Z; are independent and identically distributed standard exponential
random variables.
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4. Theory

For a fixed k < n we can therefore deduce that

Z1 Zy |, D Zk
Xt Xpn) =1 (21,22 e . .
( 1,ns ’ k,n) (7’[, /n+n_1+ +1’l—k+1 (431)
Hence i
n(Xl,n/~~~/Xk,n) — (Z],...,Zl ++Zk)/ (432)
which suggests that the normalised lower extreme-order statistics converges
to a homogeneous Poisson process.

This result can be extended to the high extreme-order statistics as well, with
the assumption of exponential variables dropped.

Theorem 4. Let X3, ..., X, be independent and identically distributed random
variables with distribution function F. Suppose F is in the domain of attraction of
G, for some v € R. Let Xy, < -+ < Xy, be the order statistics. Then with the
normalizing constants a, > 0 and b, € R from (4.2) and fixed k € IN

X_' _b Z_|_..._|_Z. _7—1
ay Y

where Z1, . .., Zy are independent and identically distributed standard exponential
random variables.

Proof. Note that if Z is a random variable with standard exponential distri-

bution, then
1
u(=e)

has distribution function F. Hence

d 1 1
(Xi’l,i’l/"'an—k—Fl,n) = (u (1 —€_Zl'”) - ”’u (1 _e_Zk,n)) )

Next note that

U (=77) — b U (5t ) — U

n—o0 ay n—oo ay
(limpeon(l—e /™)™ 7 -1 x77-1
Y (.
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4.4. Intermediate Order Statistics

And lastly by applying (4.29) and (4.30) and the fact that for x > 0
; _px/n) _
(1) =,

we can conclude the proof. O

4.4. Intermediate Order Statistics

Extreme value theory, is about understanding the tail behaviour of the
distribution underlying the data. If we want to get a better understanding
of the extremal behaviour of our data, we should not solely focus on the
maximum. Rather we should incorporate the information of other large
order statistics, as this also will contain valuable information about the tail.
In particular, if the sample grows, we should take into account more and
more large values in our sample. This gives rise to the following definition.

Definition 4. Let Xy, ..., X, be independent and identically distributed random
variables. The order statistics X,y ,, withn — oo, k = k(n) — oo and k(n)/n —
0 are then called intermediate order statistics.

The following result shows how the intermediate order statistics are asymp-
totically behaving.

Theorem 5. Let X3,..., X, be independent and identically distributed random
variables with distribution function F. Recall that U = (1/(1 — F))*. Suppose
(4.28) holds for an extreme value distribution G.. Then, if k = k(n) — oo
k(n)/n — 0asn — oo,

X, . —U(Z
VEZn ﬂk'&,(ﬂ)(k) 4 N(0,1).
k k

The proof can again be found in Haan and Ferreira, 2006, page 41.
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4.5. Estimation of the extreme value index

Given a sample Xy, ..., X, we would like to estimate the corresponding
extreme value index 7. In this section we show different approaches.

We will next focus on the formulation (4.13) for the purpose of statistical
analysis in the context of extreme value theory. We have a positive function
a such that for all x > 0

U(tx) —U(t) x7-1

tllg}o a(t) oy (433)

We will next have a look at different estimators for the extreme value index
Y.

4.5.1. The Hill Estimator

The Hill estimator is one of the earliest established estimators for the extreme
value index 1. It serves also as the basis for other estimators of ¢ and is
therefore particularly important. We need the following result.

Theorem 6. The distribution function F is in the domain of attraction of the
extreme value distribution G, with v > 0 if and only if x* = sup{x : F(x) < 1}
is infinite and
1—F(t
lim (t)

I S el VA
i ;x>0 (4-34)

The proof of Theorem 6 requires a rather large foundation about the theory
revolving around domains of attraction and will therefore be omitted here.
It can be found in Haan and Ferreira, 2006, page 19.

From (4.34) we know that

1-— F(te) < 6671/7,
T—F() =
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4.5. Estimation of the extreme value index

for any € > 0 and sufficiently large t. Therefore

1—F(te") & 1—F(te) (e-1/
1-Fle)  py 1=F0E) o e1/9m
1—F(f) [T F(tek-1) =€ ’

k=1
and hence for all x > 1 we obtain
_ _ [log x]
1— F(tx) < 1—F(te ) <
1—-F(t) — 1—F(t) -
< ple=1/7M(1+log(x)) _  ,—1/7+e,—ly+e

o(e—1/7)[log]

Applying the theorem of dominated convergence on (4.34) we then have

that 1—F(tx)d d
®]1 - x)dx e X
li S S At —1/yZZ
oo 1 1—F(t) x /1 * x 7

N A GOk
t—o0 1-— F(t)

or

:’)/.

Now partial integration yields

/tw(1 _ F(u))%” _ /too(logv ~log )dF (o).

Therefore we have

i [ (logv —log t)dF(v)
t—o0 1-— F(f)

=7. (4-35)

This asymptotic result motivates the following estimator for .

Definition 5 (Hill, 1975). Let X,,_y , be a intermediate order statistic with k < n
and F, the empirical distribution function of F. The Hill estimator 4y is then
defined as

B f)sz,n (10g U= log Xn—k,n)an (U)
a 1- Pn(Xn—k,n) ’

TH (4-36)

or L1
YH = % Z 108 Xn—i,n - 108 Xn—k,n- (4'37)
i=0
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4. Theory

We will next show that the Hill estimator has some nice asymptotic proper-
ties.

Theorem 7. Let X3, ..., X, be independent identically distributed random vari-
ables with distribution function F. Suppose F € D(G,) with v > 0. Then as
n— oo, k=k(n)— oo, k/n—0

9 =" (4-38)

Proof. For this proof we will use Haan and Ferreira, 2006, Lemma 1.2.9

which states that U( ) )
t
lim — CEEE v > 0. (4-39)

If we combine (4.33) and (4.39) we see that

o U(tx)
tll)ngo uw x7, v>0,FecD(G,), (4-40)
which implies
—e U(tx) /
_ Y—€ N Y+e
(1—e)x" ¢ < 0 <(1+e€)r7e, (4.41)
and thus
log(1—¢€)+ (y—¢€)logx < logU(tx)—logU(t) (4-42)

< log(l1+e)+(y+e)logx. (443)

Let next Y1, Y, ... be independent and identically distributed, with common
distribution 1 — 1/y,y > 1. Since U(Y;) =% X;, it is enough to proof (4.38)

for
k—1

. 1'¢
Yy = E Z lOg U(Ynfi,n) — 10g u(Yn—k,n)'
=0

Wecannowsett =Y, y,and x =Y, _;,/Y,_, and use (4.42) and (4.43)
to obtain

Y,
log(1—€)+ (y—€')log (#) < logU(Yy—in) —logU(Y,—kn)

n—kmn

Yn—in
< log(1+e)+(7+e’)log(y ’ ),

n—kmn
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4.5. Estimation of the extreme value index

fori =0,...,k—1 and therefore

o1 01+ (-0 o (238 5

n kn
/1 ! Yl’l ZTZ
<log(1+e)-|—('y—|-e)E log<Y N )
i= n—kn

The proof then follows from Haan and Ferreira, 2006, Lemma 3.2.3 stating
that

1 = Ynfi,n d
Z ;)108 (ﬁ) = 1. (4.44)

]

4.5.2. A Moment Estimator for v € R

The moment estimator we consider is an extension of the Hill estimator to a
general 7. Notice that previously we required y > 0. The Hill estimator was
not defined for v < 0, since in that case U(c0) < 0 is possible, but then the
logarithm is not defined. By shifting the sample data, it can be assumed that
U(c0) > 0, however, this shift will influence the behavior of the estimator.

Lemma 2. Let Xy, ..., X, be independent identically distributed random variables
with distribution function F and suppose F € D(G,),x* = U(o) > 0, i.e., for

x>0,
U(tx) —U(t) x7—1

tlggo a(t) T
Define for j = 1,2,
o ._ 1%
Mn . k Z 108Xn in lOan kn) . (4-45)

Then for k(n) — oo, k/n — 0, n — oo,

]' .
A H l. , (4.46)

with y— = min(0, 7y).

45



4. Theory

This lemma can be used to show that the Hill estimator converges to zero
for negative v and therefore is not very informative. However, the lemma
can also be used to construct a consistent estimator for ¢ < 0.

Definition 6. Let M,gj ) be defined as in (4.45) then the moment estimator is

defined as
-1
(1))
o= MY r1- 1 1——<M"> (
Tm == My 5 @) 4-47)
My

This estimator again has some nice properties.

Theorem 8. Let X1, ..., X, be independent identically distributed random vari-
ables with distribution function F. Suppose F € D(G,) with v € R and x* > 0.
Then as n — oo, = k(n) — o0, k/n — 0

Im =T 7. (4-48)

Proof. Since the moment estimator is a combination of the Hill estimator
and (M,(f))z/ M,(qz), which converges due to Lemma 2, we also know that

-1

(1)?
1) 1 (M) P
My +1-5 [ 1- 25 S,
2 ME
for vy € R. O

We notice that there are several other estimators, like the Probability-
Weighted Moment Estimator for v < 1 and the Negative Hill Estimator
for v < % with similar asymptotic behavior as the estimators described
in Haan and Ferreira, 2006, section 3.6. The probability-Weighted moment

estimator even yields a second estimator for the scale function a(f).
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4.6. Extreme quantile and tail estimation
4.6. Extreme quantile and tail estimation

The simplest estimator for a quantile is obviously via the empirical quantile.
However there are other approaches to estimate the quantile. For this we
have to deal with the estimation U(t) and the scale function a(t).

4.6.1. Scale Estimation

An estimator for the scale function a(-) is obtained similarly to the moment
estimator in Section 4.5.2. Recall the notation

k—1

. 1 . .
M,(q]) = Z(log Xn—in—logX,y_r,), =12,
i=0
and define )
M)\
1y ()
F-=1-5 1" - (4-49)
My

An estimator for the scale then is defined as

O = XMy (1 —42). (4.50)

Note that 9 + Yy = ¥m where ¥, is the moment estimator and 4 is the
Hill estimator.

We can say something about the asymptotic behavior of the scale estima-
tor.

Theorem 9. Let X1, ..., X, be independent identically distributed random vari-
ables with distribution function F. Suppose F € D(G,,) with v € R and x* > 0.
Thenasn — oo, k = k(n) — oo, k/n — 0

oM P
— — 1. (4.51)
a(%)
The proof for the Theorem 9 can again be found in Haan and Ferreira, 2006,

page 130.
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5. The Maximum Likelihood
Method

Moving forward we will have a different view at our problem. Previously
we had an identically and independently distributed sample Xj,..., X;,
namely our precipitation events, where X; ~ F and wanted to infer on the
extreme behavior of this sample.

Now we again have an identically and independently distributed sample
Z1,...,Zn where Z; ~ G,, with the key difference that our observations
Z;,i < m are extreme values of a year. This implies that our sample size is
reduced to only one observation per year, the maximum observed precipita-
tion over a fixed duration in that year.

Since our sample Z;,i < m now only features observations of a few years and
previous methods relied on asymptotic behavior, they are not necessarily
applicable anymore. Thus we will establish a maximum likelihood based
method.

Throughout this section we will refer to the location parameter as b, the
scale parameter as ¢ and the shape parameter as y. Before establishing
the maximum likelihood estimators (MLE) we want to introduce a slightly
different notation for the family of extreme value distributions.

Definition 7. Let a > 0, b € R and v € R, then the generalized extreme value
distribution is given by

exp(—(1+7*3%)) 17 14978 > 0,7 #0

exp(—exp(—*2)) xeR,y=0. (5.1)

Ga,yp(X) = {
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5. The Maximum Likelihood Method

We can now give the log-likelihood function of a sample Zj, ..., Z;, of iden-
tically and independently distributed generalized extreme value variables
for the case v # 0,

1 =z Zi—b
log L(a,vy,b) = —nloga — <§—|—1) Zlog <1+’y Za >

with 1+ 'yZiT_l’ > 0. For the case of v = 0 the log-likelihood function is
then

1 . — m PR
IOgL(ﬂ,O,b):_nloga_Zexp (_Zla b) _Zzla b,
i=1 i=1

Our estimators with this method are then obtained by calculating

(8,%,b) = max log L(a,v,b). (5.2)

a5y,
Since the support of G depends on the unknown parameter values, the usual
regularity conditions underlying the asymptotic properties of maximum
likelihood estimators are not satisfied. However, in the case of ¢ > —%,
the usual properties of consistency, asymptotic efficiency and asymptotic
normality hold. For more details about this we refer to Haan and Ferreira,

2006, section 3.4.
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6. Estimation of return levels

6.1. Introduction

This chapter we will apply some of the theory outlined previously, in order
to obtain return level estimates for I(s,d, r). The sample data used in this
Chapter will be the raw INCA dataset outlined in Section 2.2.1. Although the
data is complete, the major downside is that it only features the years 2004
to 2017, where the last observation year is restricted to the first four months.
Consequently, we have only 13 years of complete data.

We recall that we have precipitation amounts in 15 minutes intervals, mean-
ing that each day has 96 sample points, and therefore each year contains
approximately 96 - 365 = 35040 sampling points at each spatial location.

This dataset is obviously highly correlated, because rainfall usually occurs
over a larger period than 15 minutes. In addition to this, a seasonal trend is
observable. See Figure 6.1.

The theory we have seen above is built around the assumption that the
sample consists of i.i.d. observations, which is definitely not realistic in our
context. Nevertheless, many of the results we have seen can be extended to
a certain extent to more complex settings. See e.g. Tawn, 1988. Motivated
by this, we are hence going to assume that for each year Ry, (sq,)—the
maximum amount of precipitation in year i at location s of duration d—is
distributed according to a generalised extreme value distribution.

The objective is to estimate the unknown parameters of this distribution
from a sample

{Rmax(s,d,i): 1<i< m}
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Precipitation
N

0 10000 20000 30000
15 min intervals

Figure 6.1.: Precipitation in 15 minutes intervals for the year 2010 at the station Kittsee.

Although the spatial locations will be correlated we will treat them inde-
pendently, i.e. we fit a separate model to each spatial location. Later we are
going to fix s and d and then use Z; instead of Ryax(sd,i)-

6.2. Demonstration for the station Kittsee

Since the calculations are completely analogue for each duration and each
station we will choose for the purpose of demonstration a duration of
d = 24h and the station Kittsee, which is the station listed first in our dataset.
(See Figure 6.2.)

We will demonstrate the application of three different approaches to obtain

estimates for the location, scale and shape parameters and therefore also
the return levels on the station Kittsee, with the following three methods:
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Figure 6.2.: (A) Precipitation-levels for each year, (B) histogram of precipitation-levels in
Kittsee for the duration of 24h.

1. The Q@-method - A method based on comparing empirical with theoret-
ical quantiles.

2. The moment-method - A method based on the moment estimator from
Section 4.5.2.

3. The MLE-method - A method based on the Maximum Likelihood estima-
tor from Section 5.

6.2.1. The QQ-method

Let z1,. ..,z be the observed annual maximum precipitation levels. (In our
application m = 13.) We assume they are i.i.d. realisations from random
variables whose distribution (appropriately scaled and centered) is given
as
G (x) = exp(—(1+9x)"Y7) 1+9x>0
7 exp(—e™¥) v=0.
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6. Estimation of return levels

The idea is now to match the quantiles of such a distributions with the
empirical quantiles of our data, in the spirit of QQ-plot. To this end we first
invert G, (x) and obtain the p-quantile by

1

(W)W_l v #£0

% (61)
log(log(1/p)~1) y=0.

Qy(p) =

The corresponding QQ-plot consists of the pairs

1
(D) (o)) v

Note that we did not use the normalized form of the generalized extreme
value distribution as in Definition 5.1, since our estimator of y here is not
depending on a or b. A linear point pattern indicates a good fit of the
distribution. Since the generalized extreme value distribution function is
bounded from above for ¢y < 0 and we did not assume any bounds on
the precipitation levels, we assume that 0 > <. Futhermore we will limit
ourselves to v < 5 to prevent unnecessary long computations. The goal is
hence to tune 0 < ¢ < 5, such that the correlation between empirical and
theoretical quantiles is maximised.

For the station Kittsee this yields the value § = 0.63.

Next, we will use 4 to obtain an estimate for a return level. With our quantile
estimator we obtain an estimation for the return level r with

(—log(1—1/r))" 7T =1

U(r)=0(1-1/r)=b+a 5

, (6.3)

where 4 and b are the slope and intercept of the model fitted in the quantile-
quantile plot. For the station Kittsee this yields the values 4 = 7.54 and
b = 35.6. (Figure 6.4.)

Plugging 4, @ and b into (6.3) we then obtained return level estimates for the
return periods 2, 3,5, 10,100 years, which can be found in Table 6.2.1 under
in row named Estimation-QQ. This table also includes the corresponding
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1.00+

0.95

0.901

Correlation
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0 1 2 3 4 5
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Figure 6.3.: Correlation values for different  values. The maximum is marked by the red

line.
years 2 3 5 10 100
Estimation-QQ 38.711 44.77 54.43 73.04 240.74
Quantile 37.67 44.16 49.82 60.59 82.74
INCA 49.00 57.6 67.21 79.27 -
INCA 95% (38.8,59.2) (44.8,70.4) (50.9,83.5) (58.1,100.5) -
OEKOSTRA 42.1 45.8 50.4 56.7 77.6

Table 6.1.: Return level estimates for Kittsee with empirical quantiles and INCA-estimates
with 0.95 confidence intervals and OEKOSTRA-estimates for comparison.

quantiles, the INCA return levels as well as the provided 0.95 confidence
intervals and the OEKOSTRA return levels.

Note that when estimating the return level for a return period r we are
just estimating the (1 — 1/r)-quantile. For example the return period of 2
years is an estimation for the median of our sample. This simple estimator
is also included in our Table 6.2.1. Estimating the return period r = 100
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Figure 6.4.: The g-g-plot for Kittsee with ¢y = 4.

is questionably when we have only 13 observations, but it was included
nevertheless. In Section 6.7 we are going to assess the impact of the sample
size in the estimation procedure by means of a simulation study.

The newly derived estimates are not within the provided 0.95 confidence
intervals for lower return periods of INCA. What is interesting is that at
this station our estimates compare better with the OEKOSTRA values than the
INCA return levels which were included in the data files. We are going to
further analyse this in Sections 6.4 and 6.5, in order to see if this holds true
more generally, i.e. across stations.

6.2.2. The moment-method

While Our QQ-method seems to produce acceptable results, we have no
theory to support this approach. Thus, we aim to use a method based
on the more established theory from Section 4.5.2. Despite the fact the
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6.2. Demonstration for the station Kittsee

moment estimator relies on asymptotic behavior and applying intermediate
sequences with only 13 observations is rather ill-advised, we tried using it
for our return level calculation nevertheless.

While the results we obtained for the station Kittsee look acceptable at first
glance, we will later show in the simulations from Section 6.7, that indeed
the moment method performs much worse then the other methods. Thus,
we will only show the application of the moment method only for the station
Kittsee and afterwards omit this method for our further computations.

Before we continue with the moment estimator we will derive a way to
use the estimator for the shape parameter obtained from this method. To
calculate the return level we need an estimation for the shape and location
parameter but we won’t have a QQ-plot and corresponding intercept or slope
parameters available.

Consider again the alternate formulation of our extreme value condition
(4.33) and rewrite it as

U(x) ~ b(t) + a(t)(x/t)#, x >t (6.4)

which can be used to obtain an estimation for a small p

(-1 1
)—HZ(%)T’ y= v (6.5)

S

U(y) ~ U(

==

where k is an intermediate sequence. This means we need to estimate
our location parameter U(n/k), the scale parameter a(t) and the shape
parameter 7. The location parameter can be estimated by the order statistic
X, —kn, but estimators for the shape and the scale parameter need to be
constructed.

The difficulty here lies with choosing the parameter k. Since k is an interme-
diate sequence it can in practice only be chosen to be k € [1,1n — 1] where n
is the sample size.

Calculating the moment estimations 4, yield different values for all the
possible k values, shows that for very low values of k the parameter is likely
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6. Estimation of return levels

out of range of the real 7 and stabilizes as it approaches higher values.
(Figure 6.5)

gamma
o
*

2 3 4 5 6 7 8 9 10 11 12
k

Figure 6.5.: 7}y for different values of k

Since the 0.95 confidence interval for 4 in the last section was [0.07,0.24],
and from visualizing 4 for different k values, we can assume that k = 9,10
with 4 = 0.21,0.19 are good choices.

Lastly we need to estimate the scale parameter a(t). This is simply done by
calculating the estimator in (Equation 4.50).

Combining all our estimators we can calculate the return level for the return

periods 2,3,5,10 and 100 years.

A (5)7 -1
U(T’) = ank,n + oy~ , k=10,11. (6.6)

For k = 9 and k = 10 the results are very similar as showed in Table 6.2.2
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6.2. Demonstration for the station Kittsee

years 2 3 5 10 100
Estimation k=9 38.97 44.04 51.08 61.94 112.05
Estimation k=10 39.00 44.23 51.40 62.30 110.65
Quantile 37.67 44.16 49.82 60.59 82.74
INCA 49.00 57.6 67.21 79.27 -
INCA 95% (38.8,59.2) (44.8,70.4) (50.9,83.5) (58.1,100.5) -
OEKOSTRA 42.1 45.8 50.4 56.7 77.6

Table 6.2.: Return level estimates with the moment method for Kittsee with empirical quan-
tiles and INCA-estimates with 0.95 confidence intervals and OEKOSTRA-estimates
for comparison.

The return levels for » = 100 in all cases are substantially higher than the
OEKOSTRA estimates, which is no surprise since we only have 13 observations
from whom only one is above 80 for Kittsee. The OEKOSTRA data might have
featured far more observations in a similar magnitude and hence higher
return periods were probably estimated much lower.

6.2.3. The MLE-method

Since our sample size is quite small with m = 13 our third and last approach
will be according to the theory of Section 5. As stated earlier the Maximum
Likelihood estimators do not depend on asymptotic theory, but rather on
solving the equation (5.2). We used the R-package extRemes ' to solve the
equation and obtain the MLE estimators.

The MLE-method produces very similar results as the moment-method for
the station Kittsee, as seen in Table 6.2.3. Note that the MLE-method is the
only one of our three methods, the QQ-method, the moment-method and
the MLE-method, that matches the INCA confidence intervals for every return
period, meaning that the estimators of the MLE-method lie within the INCA
confidence intervals for each considered return period (r = 2, 3,5, 10).

Thttps:/ /cran.r-project.org/web/packages/extRemes/extRemes.pdf

59



6. Estimation of return levels

years 2 3 5 10 100
Estimation-MLE 39.87 45.04 51.68 61.55 107.51
Quantile 37.67 44.16 49.82 60.59 82.74
INCA 49.00 57.6 67.21 79.27 -
INCA 95% (38.8,59.2) (44.8,70.4) (50.9,83.5) (58.1,100.5) -
OEKOSTRA 42.1 45.8 50.4 56.7 77.6

Table 6.3.: Return level estimates with the MLE method for Kittsee with empirical quantiles
and INCA-estimates with 0.95 confidence intervals and OEKOSTRA-estimates for
comparison.

6.2.4. Comparison of all methods

Let us summarize again the results of the different estimation methods for
the station Kittsee. We consider the return periods r = 2,3,5,10. We are
omitting r = 100, since the INCA data files didn’t contain return levels for
r = 100. Now we reference our estimates with the INCA and OEKOSTRA return
levels which were provided in the data files. The results are displayed in
Figure 6.6. On the left hand graph we see the return level estimates for INCA
and OEKOSTRA. And on the right hand side we see the return level estimates
from our 3 estimation methods using the INCA raw data. The main reference
value in both frames are the empirical quantiles (in black).

Despite the QQ-method, which appears to overestimate the return levels
for longer return periods, we observe that the estimates are close to the
empirical quantiles. Surprisingly, the return levels from moment-method,
the MLE-method and the OEKOSTRA dataset are very close to the quantiles,
while INCA seems to be far off. We will see in Section 6.7, that indeed our
estimates match the return level estimates from 0EKOSTRA much better, than
the INCA return levels.

Lastly, while the MOMENT-method seems to produce good results for the
Kittsee station, we will drop this method from further consideration since
our sample size of 13 observations is too small to consider an approach that
relies on asymptotic behavior.
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6.3. Bootstrapping
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Figure 6.6.: Comparison of our three described estimation methods applied to the station
Kittsee. The empirical quantiles are shown in both frames (black, solid). On the
left side we see the INCA return levels (blue, dotted) and the OEKOSTRA return
levels (green, dashed). On the right side we see the QQ-method (red, solid), the
moment-method (green, dashed) and the MLE-method (blue, dotted).

6.3. Bootstrapping

Since we can construct confidence intervals for the moment-method and the
MLE-method from theory but not for the QQ-method, we constructed confi-
dence intervals for the QQ-method by resampling our sample, a procedure
know as bootstrapping.

We draw from our sample at random with replacement T times and repeat
this process B times. In each iteration we calculate 4 as done in the previous
sections. The pseudo-code for the procedure is given by Algorithm 1.

The Algorithm 1 can easily be modified to provide confidence intervals
for the shape parameter 7y, by just skipping the calculation of the return
levels and instead calculating quantiles over the shape parameters of each
step. The resulting 41, ..., ¥, when applying the Algorithm 1 to the Kittsee
sample, are distributed as shown in (Figure 6.7).

A 0.95 bootstrapping confidence interval for v is (0.01,1.28). The estimated
return levels for the return periods 2, 3,5 and 10 years with § = med(§;) =
0.45 are shown in Table 6.4.
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6. Estimation of return levels

Algorithm 1 Bootstrapping algorithm for return levels

1:
20

3:

SARR I o

7:
8:

Given Z = (Zy,...,Zy),B € N
fori =0,i < Bdo
Construct sample Z7, ..., Z;, by drawing from Z with replacement
Calculate 4, 4;, b;
Use 4, d;, b; to calculate the return level r
i++
Calculate the quantiles go25 and go 975 from rj, ..., 75
The return level confidence interval is then given by (4025, 90.975)

years 2 3 5 10 100
Estimate 39.4 46.2 56.0 72.6 180.5
Quantile 37.67 44.16 49.82 60.59 82.74
INCA 49.0 57.6 67.2 79.3 -
INCA 95% (38.8,59.2) (44.8,70.4) (50.9,83.5) (58.1,100.5) -
OEKOSTRA 42.1 45.8 50.4 56.7 77.6

Table 6.4.: Return level estimates with bootstrapping for Kittsee with INCA-estimates with

0.95 confidence intervals and OEKOSTRA-estimates for comparison.

This time our estimate lies within the 0.95 confidence interval of the INCA
return level estimates. This approach estimates lower return periods sim-
ilarly as the OEKOSTRA estimates but overestimates higher return periods.
The return levels for r = 10,100 seem much more reasonable with this
approach.

We will use Algorithm 1 to calculate confidence intervals for the return
levels later. For now we move on to applying our methods seen in this
section for every station in Austria.
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6.4. Comparison with INCA and OEKOSTRA for d = 24h
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Figure 6.7.: Bootstrapping data for 4 with 100 iterations with sample size 13. The red line
represents the median

6.4. Comparison with INCA and OEKOSTRA for
d = 24h

In this section we expand our return level estimation to every station in
Austria and compare the results with the INCA and OEKOSTRA estimates.
We will, as argued in Section 6.2.2 Section 6.2.4 proceed only with the
QQ-method MLE-method and drop the MOMENT-method. The main reasoning
again is that the MOMENT-method on one hand relies on asymptotic behavior
and we only feature 13 observations.

Next, the general idea for calculating the return levels for each station is
provided with the Algorithm 2.

Note that we will focus mostly on the evaluation and interpretation of the
connection between our results, which are calculated from the raw INCA
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6. Estimation of return levels

Algorithm 2 Return level for each station

1: Given stations 1,...,N

2: fori =0,i < N do

3: Calculate yearly maxima Z;j, ..., Z;,
Calculate 4;, 4;, b; from Zi, ..., Zim
Use 4, d;, Bi to calculate the return level 7;
i++

SANR I o

data, and the provided OEKOSTRA return level estimates, which we consider
as our benchmark.

6.4.1. The QQ-method

We compute the return levels INCA™ = {r{,...,ry} from the raw INCA data,
by applying the QQ-method in the 4th step of Algorithm 2. The resulting
return levels r; can be seen in Figure 6.8. For a duration of 4 = 24h and a
return period of r = 2 years we obtain correlation values of R = 0.81 and
R = 0.78 as seen in Figure 6.9 and Figure 6.10 with INCA and OEKOSTRA,
respectively. Hence our estimates perform in this sense equally well as when
INCA was compared to OEKOSTRA.

We again performed regression analysis to obtain the following model
(6.7).

INCA™ = 0.699 * OEKOSTRA + 15.226, (6.7)
with
Estimate Std. Error t value Pr(>lt])
(Intercept) 15.22569  1.12807 13.50 <2e-16
Oekostra 0.69883  0.01791 39.01 <2e-16

Residual standard error: 7.569 on 914 degrees of freedom
Multiple R-squared: 0.6248,Adjusted R-squared: 0.6244
F-statistic: 1522 on 1 and 914 DF, p-value: < 2.2e-16
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6.4. Comparison with INCA and OEKOSTRA for d = 24h
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Figure 6.8.: Estimates for return level 2 years and duration 24h by the QQ-method.
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Figure 6.9.: QQ-estimates vs INCA for return level 2 years and duration 24 hours

This linear model has a much lower intercept, but a bigger slope than
the model from our preliminary evaluations (3.1). Considering that the
return level estimates from the QQ-method correlated quite well with results
from INCA and OEKOSTRA we can conclude that the QQ-method provides an
acceptable way of calculating return levels in this case.
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6. Estimation of return levels

R=0.78,p<2.2e-16
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Figure 6.10.: QQ-estimates vs OEKOSTRA for return level 2 years and duration 24 hours

Including the sealevel in our model (see (6.8)) we observe that it is only
significant with interaction between sealevel and 0EKOSTRA. This could imply
that the return levels are differentiated among sealevels:

1NCA™ = 0.00014  h + 0.6554 « OEKOSTRA + 17.12, (6.8)

Estimate Std. Error t value Pr(>|tl)

(Intercept) 1.712e+01  1.056e+00  16.22 <2e-16
Oekostra 6.554e-01 1.776e-02 36.90 <2e-16
Height 1.044e-04 6.153e-04 0.17 0.865

Residual standard error: 7.278 on 914 degrees of freedom
Multiple R-squared: 0.6285,Adjusted R-squared: 0.6277
F-statistic: 773.1 on 2 and 914 DF, p-value: < 2.2e-16

and

INcA™ = —0.000094/ * OEKOSTRA + 0.0039 * i + 0.234 % OEKOSTRA + 13.97,
(6.9)

Estimate Std. Error t value Pr(>ltl)
(Intercept) 1.397e+01  1.278e+00  10.934 < 2e-16
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6.4. Comparison with INCA and OEKOSTRA for d = 24h

Oekostra 2.234e-01 2.212e-02 10.100 < 2e-16
Height 3.905e-03 1.493e-03 2.615 0.009058
Interaction -9.371e-05 2.429e-05 -3.858 0.000122

Residual standard error: 7.13 on 822 degrees of freedom
Multiple R-squared: 0.6485,Adjusted R-squared: 0.6472
F-statistic: 505.5 on 3 and 822 DF, p-value: < 2.2e-16

6.4.2. The MLE method

Next, we tried applying the the MLE-method from Section 5 to obtain return
level estimations for every station by estimating the parameters of the ex-
treme value functions with the MLE method in the 4th step of Algorithm 2.

However, we did not obtain results for every station since the underlying
numerical algorithm of finding the solutions of the MLE-equation (5.2) did
not converge for every station. Since finding the solution of (5.2) is not
trivial we choose to omit stations where the MLE-method didn’t converge. As
a short remark we want to point out that we did experiment with supplying
initial values for the parameters to be estimated by the MLE-method, such
as the estimators provided by the QQ-method, which seems to cause the
process to converge for some stations but we did not further investigate this
approach.

We therefore obtain estimations for return levels for 827 stations, which we
denote by INCAMLE,

When we regress 1NCA™® onto OEKOSTRA we get the following results:

MLE

INCA™" = 0.662 * OEKOSTRA + 16.939, (6.10)

Estimate Std. Error t value Pr(>ltl|)
(Intercept) 16.93908 1.10383 15.35 <2e-16
Oekostra 0.66239 0.01749 37.87 <2e-16

Residual standard error: 7.256 on 824 degrees of freedom
Multiple R-squared: 0.635,Adjusted R-squared: 0.6346
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MLE-Estimates
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Figure 6.11.: mle-method estimates for return level 2 years and duration 24 hours.
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Figure 6.12.: MLE-estimates vs INCA for return level 2 years and duration 24 hours.

F-statistic: 1434 on 1 and 824 DF, p-value: < 2.2e-16

The correlation between INCA™™E and OEKOSTRA increased to 0.8, showing
now slightly better correspondence as it was with INCAW.

Again, including the sealevel in our model (see (6.11)) we observe that it does
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6.4. Comparison with INCA and OEKOSTRA for d = 24h
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Figure 6.13.: MLE-estimates vs OEKOSTRA for return level 2 years and duration 24 hours.

not appear to be significant this time. However, if we include the interaction
term (6.12) we obtain indeed strong significance of the variables.

INCA™® = 0.0004 * h + 0.579 * OEKOSTRA + 16.93, (6.11)

Estimate Std. Error t value Pr(>ltl)

(Intercept) 1.693e+01  1.104e+00  15.326 <2e-16
Oekostra 6.579e-01 1.879e-02  35.019 <2e-16
Height 4.379e-04 6.672e-04 0.656 0.512

Residual standard error: 7.259 on 823 degrees of freedom
Multiple R-squared: 0.6352,Adjusted R-squared: 0.6344
F-statistic: 716.6 on 2 and 823 DF, p-value: < 2.2e-16

and
1NCcA™® = —0.00023% * OEKOSTRA + 0.014 11 4+ 0.8390EKOSTRA + 6.53, (6.12)

Estimate Std. Error t value Pr(>ltl)
(Intercept) 6.563e+00 2.153e+00 3.048 0.00238
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6. Estimation of return levels

Oekostra 8.389%e-01 3.737e-02
Height 1.425e-02  2.564e-03
Interaction -2.313e-04 4.151e-05

22.451
5.557
-5.571

< 2e-16
3.71e-08
3.43e-08

Residual standard error: 7.13 on 822 degrees of freedom

Multiple R-squared:
F-statistic: 505.5 on 3 and 822 DF,

6.5. Comparison for d = 3h

0.6485,Adjusted R-squared:
p-value: < 2.2e-16

0.6472

Since the discrepancy between the INCA and the OEKOSTRA return level
estimates for the duration d = 3h is one of the foci of this thesis, we are
now moving on to apply Algorithm 2 to every station in Austria for both
the QQ-method and the MLE-method, for the case that d = 3h.

6.5.1. The QQ-method
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Figure 6.14.: QQ-method estimates for return level 2 years and duration 3 hours.
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6.5. Comparison for d = 3h
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Figure 6.15.: QQ-estimates vs INCA for return level 2 years and duration 3 hours.
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Figure 6.16.: QQ-estimates vs OEKOSTRA for return level 2 years and duration 3 hours.

With a correlation of R = 0.56 Figure 6.16 suggests that our approach to
compute INCAW provides a significantly higher correlation to OEKOSTRA as
compared to INCA, where we had R = 0.49. We computed the regression
models again and obtained similar results as before, for the case d = 3.

1NcA*™ = 0.505 * OEKOSTRA + 11.599, (6.13)
with
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6. Estimation of return levels

Estimate Std. Error t value Pr(>|tl|)
(Intercept) 11.59870 1.57995 7.341 4. 1e-12
Oekostra 0.50512 0.05053 9.997 < 2e-16

Residual standard error: 3.821 on 219 degrees of freedom
Multiple R-squared: 0.3133,Adjusted R-squared: 0.3102
F-statistic: 99.93 on 1 and 219 DF, p-value: < 2.2e-16

As seen in (6.13), a linear regression model with OEKOSTRA yields similar
results as in the preliminary evaluation but fits the data slightly better. We
again included the sea level as response variable.

INcA™ = 0.0014 * K + 0.509 x OEKOSTRA + 10.58, (6.14)
Estimate Std. Error t wvalue Pr(>lt])
(Intercept) 1.058e+01 1.651e+00 6.41 8.87e-10
Oekostra 5.095e-01 5.024e-02 10.14 < 2e-16
Height 1.427e-03 7.175e-04 1.99 0.0479

Residual standard error: 3.796 on 218 degrees of freedom
Multiple R-squared: 0.3256,Adjusted R-squared: 0.3194
F-statistic: 52.62 on 2 and 218 DF, p-value: < 2.2e-16

and

1¥ca™ = 0.00048% « OEKOSTRA — 0.012 % /i + 0.18 * OEKOSTRA + 19.95, (6.15)

Estimate Std. Error t value Pr(>ltl)

(Intercept) 19.95275565 3.0186615 6.610 2.94e-10
Oekostra 0.1776302 0.1028692 1.727 0.08563
Height -0.0120181 0.0037332 -3.219 0.00148
Interaction 0.0004833 0.0001318 3.666 0.00031

Residual standard error: 3.692 on 217 degrees of freedom
Multiple R-squared: 0.3649,Adjusted R-squared: 0.3561
F-statistic: 41.56 on 3 and 217 DF, p-value: < 2.2e-16
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6.5. Comparison for d = 3h

Surprisingly, the model (6.15) shows that the significance of OEKOSTRA
dropped substantially. The overall R-squared increases substantially when
including the sealevel as interaction but is generally low with 0.3649 in the
best case, which suggests that a linear model might not be a good fit.

6.5.2. The MLE-method
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Figure 6.17.: mle-method estimates for return level 2 years and duration 3 hours.

The return levels calculated from MLE-method have a slightly higher min-
imum and maximum precipitation value as can be seen comparing the
legend from Figure 6.14 and Figure 6.17. The correlation with the OEKOSTRA
return levels is with R = 0.55 equally good as the correlation obtained
from the QQ-method and again better then the correlation between INCA and
OEKOSTRA in the preliminary evaluation.

The regression analysis for this method yielded very similar results as for

the QQ-method and did not bring new insights. We therefore chose to omit
them here.
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Figure 6.18.: mle-estimates vs INCA for return level 2 years and duration 3 hours.
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Figure 6.19.: MLE-estimates vs O0EKOSTRA for return level 2 years and duration 3 hours.
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6.6. Confidence intervals for bootstrapped data

Considering that we achieved good results with our methods we will dedi-
cate this section towards constructing confidence intervals for bootstrapped
data as in Section 6.3. We will assume the common « = 0.05 significance
level, resulting in 0.95 percent confidence intervals throughout this section.

The general idea is to repeat Algorithm 1 for every station.
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6.6. Confidence intervals for bootstrapped data

6.6.1. Comparison of confidence intervals from the QQ and
the MLE-method

To create confidence intervals we simply apply Algorithm 6.3 for every
station and obtain the confidence interval (4, §1—4). The methods used in
step 4 of the Algorithm 6.3 are again the MLE or the QQ-method as reflected
in Table 6.6.1.

method duration INCA OEKQOSTRA

MLE 24h 56.1 %  83.5 %
MLE 3h 65.1 %  72.4 %
QQ 24h 321 % 721 %
QQ 3h 52.6 %  63.8 %

Table 6.5.: Amount (in percent) of stations whose 2-year INCA-estimates and OEKOSTRA-
estimates are within the confidence intervals of our estimates.

We observe that the MLE-method overall matches the provided INCA-estimates
and OEKOSTRA-estimates more often than the QQ-method but both provide
acceptable results, especially for OEKOSTRA.

A very important finding here is that we cover OEKOSTRA more often then INCA,
although we use INCA data to construct our confidence intervals.

Additionally we derived the length of the confidence intervals we created
and compared those lengths to the confidence intervals provided by INCA.
The results can be seen in Figure 6.20.

The corresponding mean and median interval lengths can be found in
Table 6.6.1.

MLE QQ INCA

Mean  24.53 17.77 20.90
Median 22.29 16.28 20.58

From this we can deduce that the QQ-method constructs more compact
confidence intervals and therefore also matches less return stations in the
comparison. The MLE-method in contrast constructed the widest confidence
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Figure 6.20.: Interval lengths of confidence intervals for INCA (red), QQ-method (blue) and
the MLE-method (green)

intervals which surely impacted on the fact that they matched the most
return levels. Some of the confidence intervals obtained from the MLE-method
seem unreasonably wide.

6.7. Analysis on the impact of the sample size

In this last section we focus our attention towards simulated data in order
to get a sense of how well our methods perform with different sample sizes.
We revert to our toy data, namely the station Kittsee.

We discussed the estimation of the shape, location and scale parameter
of the extreme value function for the maximized data obtained in Kittsee
in Section 6.2.1. We use the estimators obtained from the bootstrapping
method, 4 = 0.17, 4 = 9.13 and b = 35.83 and generate observations from

the extreme value distribution function G@ a3 see (5.1).
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We then simulate data according to the Algorithm 3.

Algorithm 3 Simulation Algorithm A
1: Given 4,4,b and Ny, N; € N, Ny < Ny
2: fori = Ny,i < N7 do
3: Construct random sample X1,...,X; € G

4,4,b
4 Calculate 4;, d;, b;
5: Use 4, 4;, b; to calculate the return level r}
6: i++

Looking at Figure 6.21 we notice that the QQ method and the MLE method
estimate the location, scale and shape parameter of the given extreme value
distribution G, , ;, quite well, especially with a greater sample size. The
moment-method however overestimates the location and the scale parameter
while it slightly underestimates the shape parameter.

While the estimates for the parameters of the MLE and the QQ method of the
extreme value function vary for smaller sample sizes, they approach the
real parameters as the sample size grows.

Surprisingly, however, every method yields quite good results for the return
level estimates (Figure 6.22). As expected the estimates approach the corre-
sponding know quantile of the extreme value distribution, as the sample
size grows toward the return period r.

Figure 6.22, graph (A) shows that for the return period r = 2 the estimates
are close to the actual value even for smaller sample size while we can
observe from graph (C) and (D) that estimation of higher return levels
performs poorly for smaller sample sizes.

We now fix the amount of how many times we repeat the experiment N =
100 and try estimating the precipitation levels for r = 2, 3,5, 10 with sample
sizes T = 20,50, 100,200, generated from G§ 4 j» according to Algorithm 4.

As expected we notice in Figure 6.23 that the boxes shrink with growing
sample size, as the estimation is less prone to sampling errors. Additionally
we observe that the QQ-method indeed tends to overestimate the precipitation
in all cases.
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Figure 6.21.: Line-charts of parameter estimates for location (A), scale (B) and shape
(C). The different methods are distinguished as QQ-method (blue, solid), as
moment-method (red, dashed) and MLE-method (green, dotted). The known
location, scale and shape parameters are marked by the horizontal lines. The
x-axis shows the sample size of the randomly generated sample.

Lastly we conducted a similar simulation where we fix the amount of how
many times we repeat the experiment N = 100 and try estimating the
location, scale and shape parameters for r = 2,3,5,10, with sample sizes
T = 20,50, 100,200, generated from G&,ﬁ,@'

Again we observe in Figure 6.24 that with growing sample size our estima-
tions are within a smaller interval. We can also see that the overestimation
of the QQ-method is due to an overestimation of the location parameter, since
the shape and scale parameter do not differ much between the QQ-method
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Figure 6.22.: Line-charts of return-level estimates for return periods r = 2 (A), r = 5 (B),
r =10 (C) and r = 100 (D). The different methods are distinguished as QQ-
method (blue, solid), as moment-method (red, dashed) and mle-method (green,
dotted). The corresponding quantiles of the known extreme value distribution
are marked by the horizontal line. The y-axis shows the precipitation levels
and the x-axis the sample size of the randomly generated sample.

and the MLE method.
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Algorithm 4 Simulation Algorithm B

1: Given 4,4,b and T,N € N
2: fori=0,i < N do
3: Construct random sample Xy, ..., Xt € Gw,l?

A~

4 Calculate 4;, 4;, b;

5 Use 4, 4;, b; to calculate the return level r

6: i++

7: Calculate the boxplot from either ;' or one of the parameters
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for return levels r=2,3,5,10 repeated N = 100 times with sample sizes n =
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Figure 6.24.: Location, shape and scale boxplot-pairs for the MLE method (left,red) and
the QQ-method (right, green) repeated N = 100 times with sample sizes n =
20,50,100,200.
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7. Conclusion

In this thesis we have looked at several different approaches to compare the
precipitation return levels from INCA with levels from OEKOSTRA and then
to generate and assess our own estimates with raw data obtained from the
INCA system. Contrary to our first assumption we were able to show that
the maps and return levels provided to us were not as badly correlated
with each other as expected. Even for smaller durations, where estimation
is more prone to errors, the maps were fairly similar.

Next we approached the estimation of the return levels on our own and
obtained comparable results. Our estimates correlated very well with both
the INCA and the OEKOSTRA and we even obtained a higher correlation
between OEKOSTRA and our return level estimates for the duration d = 3h,
than the correlation from the given INCA return level estimates.

We choose a bootstraping approach to construct confidence intervals for our
estimates in order to validify our results. To our surprise the intervals we ob-
tained covered INCA estimates less often than the return level estimates from
OEKOSTRA. Considering that our estimators are based on the raw data from
INCA and not from OEKOSTRA, this is an intriguing finding and something
that should be investigated further.

Lastly, we showed with simulations and bootstrapping, that our methods
for calculating the return levels are indeed performing reasonably well, even
for smaller sample sizes, but we also saw that the precise estimation of
the real parameters of the underlying extreme value functions can be quite
difficult with the short observation period of 13 years.
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Appendix A.

Code documentation

A.1. Overview

This chapter will give an overview of the R code used to perform all
the calculations in the previous chapters. For ease of use the code was
split into several R-script files, where each such file aims to encapsulate
only one method of calculation/evaluation. Additionally a utility file for
miscellaneous helper functions was created and a main file where the rest
of the files are imported and then executed.

The code is highly dynamic and can be executed for every duration d or
return level r that can be specified in the Main.R file and will automatically
generate and export all according plots.

The R-scripts are as follows:

e Muain.R: The entry point for all calculations. It imports all the other
scripts and functions and executes them. Important variables such as
the return period r and the duration d are defined here.

e BasicPlots.R: Provides maps, scatterplots, regressionplots and his-
tograms that have been used in the beginning of our empirical analysis.

e Util.R: Contains helper functions for importing the map of Austria,
importing libraries, importing all other R-scripts and server small
helpful features.
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e Stations.R: Calculates the closest INCA points to all the stations from
the OEKOSTRA data and, since the calculation takes several minutes,
exports it into a txt file. (See Section 2.1)

e StationsFromOrography.R: Calculates the closest INCA points from the
the orography file (See Section 2.2.1) to all the stations from the
OEKOSTRA data and is again exported into a txt file. Note that this was
necessary since the raw precipitation data was organized differently
then their respective return level estimates.

o IncaReturnLevels.R: Imports return level estimates from the data ex-
plained in Section 2.2.2, given duration and return period.

o RadiusAnalysis.R: Smooths the data for a given radius as described in
Section 3.2.

o ClusterAnalysisHeight.R: Groups data into sea-level groups as described
in Section 3.3.

o GridAnalysis.R: Constructs a grid over Austria as described in Sec-
tion 3.4

A.2. Code examples

A.2.1. Empirical analysis

The Main.R script defines parameters such as colors, exportPaths, duration
and returnLevel and generates plots with the help of the other files

.| df = loadData(oekoFilePath, incaFilePath , duration, returnPeriod)

df.complete = df[complete.cases(df), ]

s| durations = ¢c(3,9,12,18,24,48,72,96)

for (duration in durations) {
print(p(”Plots for: [”, returnPeriod, ”,”, duration, ”"]”))
df = basicPlots(duration, returnPeriod)

}
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After the basic plots the main script continues with the approaches from
Section 3.1.

groups = 200

exportHeightCorrelationPlot (df.complete, exportPath, p(”
completeHeightMethod” ,returnPeriod ,”]_.” ,duration,”h_",groups,”
grp”), groups)

for (group in 1:groups) {
customHeightPlot (df.complete, exportPath, p(”
completeHeightMethod” ,returnPeriod ,”] .”,duration ,”h_" ,groups

,"egrp”), group)

max = 1
step = o.01

.| exportRadiusCorrelationPlot (df, exportPath, p(”

completeRadiusMethod” ,returnPeriod ,”] _.”,duration ,” _max” ,max, " _
step”,step), max, step)

for (i in 1:(max/step)) {
current = i * step
customRadiusPlot (df, exportPath, p(”completeRadiusMethod”,
returnPeriod ,”]."”,duration,” _max” ,max,” _step” ,step), current)
customRadiusMap (df, exportPath, p(”completeRadiusMethod”,
returnPeriod ,”] .”,duration ,” _-max” ,max,” _step” ,step), current)

The core of the radius analysis is calculating the stations within range, which
is done by this method:

getClosest <— function(radius, col, df) {
lat <— df$Latitude
lon <— df$Longitude
res <— c()
for (i in 1:length(lat)) {
closest <— c()
for (j in 1:length(lat)) {
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9 eval <— (((lat[j] — lat[i])"2 + (lon[j] — lon[i])"2) <=

radius)
10 if (eval) {
1 closest <— c(closest, col[j])
12 }
13 }
14 res <— c(res, mean(closest))
15 }

16 return(res)

!

The core of the sea-level analysis is calculating the groups, which is done by
the method:

| getCluster <— function(df, n, col) {

5 len <— length (df$Height)

s/ step <— len/n

cluster.df <— data.frame(min = integer (), mean = integer (), max
= integer () , minHeight = integer (), maxHeight = integer())

o/ for (i in o:(n—1)) {

7 clusterPre <— c()

8 clusterHeight <— c()

9 for (j in (step * i):(step * (i+1))) {

10 if (j !'=0) {

1 clusterPre <— c(clusterPre, col[j])

12 clusterHeight <— c(clusterHeight, df$Height[j])

13 }

1 }

15 newRow <— data.frame(min = min(clusterPre), mean = mean(

clusterPre), max = max(clusterPre), minHeight = min(
clusterHeight), maxHeight = max(clusterHeight))

6 cluster.df <— rbind (cluster.df, newRow)

17 }

8] return(cluster.df)

The core of the grid analysis is calculating the grid-segments, which is done
by the method:
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getGridPoint <— function(i, j, n, df) {
res <— c()
lonDomain <— range(df$Longitude)
latDomain <— range(df$Latitude)
lonStep <— (lonDomain[2] — lonDomain[1]) / n
latStep <— (latDomain[2] — latDomain[1]) / n

lowerLon <— lonMin + lonStep * i
upperLon <— lonMin + lonStep * (i+1)
lowerLat <— latMin + latStep x j
upperLat <— latMin + latStep x* (j+1)
for (k in 1:length(df$Station)) {

lon <— df$Longitude[k]

lat <— df$Latitude[k]

if (lon <= upperLon && lon >= lowerLon) {
if (lat <= upperLat && lat >= lowerLat) {

res <— c(res, k)

1

¥

}

return(res)

A.2.2. Estimation of return levels

The code for the estimation of the return levels was mostly decoupled from
the main.R and all its inherent scripts, because it uses the raw data described
in Section 2.2.1. We only needed the other datasets in a final step to compare
our results to the given INCA and OEKOSTRA estimators.

The core functionality for estimating return levels, that is implementing the
estimators is done in the Estimators.R and the QQPIot.R script.

Building on those two files the ReturnLevelFunctions.R contains more com-
plex routines that calculate all the return levels and confidence intervals
that we described in Section 5.
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Everything is then put together in the ReturnLevels.R script where functions
from Estimators.R, QQPIlot.R and ReturnLevelFunctions.R are executed.

One of the most important and most expensive steps is to calculate the
maximum precipitation that occurred during a year over a specified duration

d.

getPrecipitationWithDuration <— function(durationMin, data) {
k = durationMin / 15
n length (data)

res = o
for (i in 1:k) {
res = res + data[i]

}

curr _sum <— res
for (i in (k+1):n) {

curr _sum = curr _sum + data[i] — data[i — k]
res <— max(res, curr_sum)
return(res)

The functions to calculate the moment estimator simply implement the
formulas stated in the theory Section 3.

M <— function(data,n,k,j) {

sum <— o

for (i in o:(k—1)) {
x1 <— getOrderStatistic (n—i, data)
x2 <— getOrderStatistic (n—k, data)
sum <— sum + (log(x1) — log(x2))"j

}

res <— 1/kxsum

return(res)

}

getMomentEstimator <— function (data,k) {
n <— length(data)
m1 <— M(data,n,k,1)
m2 <— M(data,n,k,2)
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est<—m1 +1—1/ 2 % (1 — (m1"2) / m2)"(—1)
return(est)

}

The qg-method was calculated by the following piece of code

getExtremeQuantile <— function (gamma,p) {
if (gamma == o) return(log(1/log(1/p)))
return ((( 1 / log(z / p) ) gamma — 1) / gamma)

}

getQQPlotQuantiles <— function(n, gamma) {
res <—c()
for (i in 1:n) {
p <— i/(n+1)
res <— c(res,getExtremeQuantile (gamma,p))
}

return(res)

}

A.2.3. Simulation

The code for the simulation is separated into two files, Simulation.R and
SimulationFunctions.R. The structure here is similar as before, main steps
are executed in the Simulation.R and helper functions are loaded from
SimulationFunctions.R.

Most functions here build on existing ones, for example to calculate return
levels and estimate the parameters and are only there to rearrange the data
in a useful way for our simulations. The only main addition is the generation
of simulated data from an extreme value distribution, for which we used
the extRemes package and its revd function.
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A.2.4. Database

In order to work with around 60 GB worth of precipitation data, we had to
introduce some helpful files to speed up our calculations. We have therefore
extracted the raw 15 minutes interval precipitation data into folders named
"yyyymm”, where "yyyy” is a year from 2004 to 2017 and “mm” is a month
from 01 to 12. Each of those folders contains 917 csv files that enlist the
precipitation that occurred at a specific station in the year "yyyy” and the
month “mm”.

We have also exported data into several files that contain data such as
the nearest INCA points to each station, the maximum precipitation over
a duration d for each year, return level estimates with different methods,
bootstrapped data and so on.
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