
Mathis Hesse, BSc

Secure Authentication
based on Qualified Identities

to achieve the university degree of

MASTER'S THESIS

 Master's degree programme: Computer Science

submitted to

Graz University of Technology

Brenner, Eugen, Ao.Univ.-Prof. Dipl.-Ing. Dr.techn.

Institute for Technical Informatics

 Diplom-Ingenieur

Supervisor

Faculty of Electrical and Information Engineering

Graz, October 2017

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other

than the declared sources/resources, and that I have explicitly indicated all ma-

terial which has been quoted either literally or by content from the sources used.

The text document uploaded to TUGRAZonline is identical to the present master‘s

thesis.

Date Signature

Abstract

Nowadays a high number of security-critical processes are performed online. To execute
these kind of processes it is necessary to assure a person’s identity through an authen-
tication mechanism. For physical authentication a person can provide a photographic
identification. Over the network it is not feasible to perform a full validation process of
such an identification every time a security-critical resource is accessed.

As an alternative to assure one’s identity online, it is necessary to provide an automated
and secure authentication mechanism. In this thesis the development process of such a
mechanism in form of a prototype is documented. To achieve this goal, relevant protocols
and frameworks have been analyzed and compared to each other. Based on the insights
from this analysis, a prototype has been designed and architectural details as well as the
implementation decisions are explained. The secure authentication which this prototype
provides is based on qualified electronic identities, which offer the same legal attributes as
physical identification documents.

The result is a fully functional prototype based on OAuth 2.0, that offers secure au-
thentication for users and is easily integrable for service providers.

Keywords:
Secure Authentication, Qualified Identities, OAuth 2.0

i

Acknowledgement

Diese Diplomarbeit wurde im Jahr 2017 am Institut für Technische Informatik an der
Technischen Universität Graz durchgeführt.

An dieser Stelle möchte ich mich gerne bei meinem Betreuer Ao.Univ.-Prof. Dipl.-
Ing. Dr.techn. Eugen Brenner bedanken, der mich während des Entstehungsprozesses der
Masterarbeit begleitet und aktiv untersttzt hat.

Ein großes Dankeschön geht außerdem an die XiTrust GmbH. Hier gebührt mein Dank
dem gesamten, großartigen Team, auf dessen Rat ich mich stets verlassen konnte. Ganz
besonders möchte ich an dieser Stelle DI Gerhard Fließ hervorheben, der viel Zeit und
Ressourcen aufgewandt hat, um mich bestmöglich bei allen anfallenden Themen und Fra-
gen zu betreuen. Vielen Dank!

Ein riesiges Dankeschön richte ich hiermit auch an meine Familie und Freunde, die
für die notwendige Unterstützung und auch Ablenkung gesorgt haben. Ganz besonders
möchte ich Christina danken, die mir während dem Schreiben der Arbeit und vor allem
im Endspurt eine groß Stütze und Hilfe gewesen ist.

Allen voran aber danke ich meinen Eltern, Werner und Gerhild, ohne die die Ab-
solvierung meines Studiums in dieser Form nicht möglich gewesen wäre.

Vielen, vielen Dank!

Graz, Oktober 2017 Mathis Hesse

ii

Contents

1 Introduction 1
1.1 Introduction . 1
1.2 Motivation . 1
1.3 Goals . 2
1.4 Outline . 3

2 Overview And Current Situation 4
2.1 XiTrust . 4
2.2 Qualified identities and eIDAS . 5
2.3 Authentication vs. Authorization . 5
2.4 Multi Factor Authentication . 6
2.5 Relevant Protocols . 6

2.5.1 OAuth in General . 7
2.5.2 OAuth 2.0 . 8
2.5.3 OAuth 1.0 . 11
2.5.4 SAML . 13
2.5.5 OpenID . 13
2.5.6 OpenID Connect . 14
2.5.7 MOA-ID . 15

3 Related Work 16
3.1 Existing implementations . 16

3.1.1 Facebook . 16
3.1.2 Twitter . 19
3.1.3 Google . 20

3.2 Threat Model . 21
3.2.1 Client . 21
3.2.2 Authorization- and Resource-Server 21

4 Details Of Research 23
4.1 Components of the prototype . 23
4.2 Use Cases . 23
4.3 Framework decisions . 24

4.3.1 Token . 24
4.3.2 Token Store . 28
4.3.3 User ID Obfuscation . 30

iii

5 Experimental Evaluation 32
5.1 User Authentication . 32

5.1.1 Obtaining the SAML-Artifact . 32
5.1.2 Getting the SAML Assertion via the SOAP Interface 37
5.1.3 Processing the SAML-Assertion . 38

5.2 OAuth 2 Flow: Communication between Client and API 39
5.2.1 Spring Client . 40
5.2.2 PHP Client . 42
5.2.3 Postman . 44

6 Conclusion And Future Work 46
6.1 Conclusion . 46
6.2 Future Work . 46

6.2.1 Extend to OpenID Connect . 47
6.2.2 Extend the API for additional tasks 47
6.2.3 Legal audit . 47
6.2.4 Security audit . 48
6.2.5 Developer Portal . 48

Nomenclature 50

Bibliography 52

iv

List of Figures

1.1 Identity- and Access Management with components in relation 2

2.1 Google Authenticator provides one-time tokens 7
2.2 Abstract flow of an OAuth Authentication 9
2.3 Detailed Authorization Code flow . 10

3.1 Continue with Facebook Button . 16
3.2 Process of activating external login for already existing account 18
3.3 Process of merging two already existing accounts 19
3.4 Sign in with Twitter Button . 20
3.5 Sign in with Google Button . 20

4.1 Components of the Prototype . 24
4.2 Passing the user ID to the different clients without obfuscation 30
4.3 Passing the user ID to the different clients with obfuscation 31

5.1 Login . 33
5.2 StartAuthentication interface between components 34
5.3 Standard template of the first step in MOA authentication step 34
5.4 Login prompt for Handy-Signatur . 35
5.5 TAN prompt for Handy-Signatur . 36
5.6 GetAuthenticationData between components 37
5.7 SAML response to redirect URL . 38
5.8 Endpoints used by clients . 39
5.9 Minimal UI of the PHP client . 43
5.10 User data is returned and blank UI fields are filled 43
5.11 Getting new access token via Postman . 44

6.1 Extending the prototype for additional tasks 47
6.2 Developer portal in context . 48

v

CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

1.1 Introduction

In modern times people don’t only have one identity, they have many. Online there
are different kinds of identities that are used for different services. First of all the term
’identity’ needs to be defined. There are many different definitions of the word. In the
introduction of the book Electronic Identity the author refers to articles, where the term is
defined in 14 different ways. For their purpose, which matches the purpose of this thesis,
the author decides to define identity as ’sameness’ [dACA+14][p.3]. That means, that an
individual can be identified at one point and recognized as the same person at a later point
in time. Therefore in the context of this thesis users should be identifiable when logging
into a portal. They should also be recognized again, when authenticating themselves at a
later point in time.

As seen in figure 1.1, there is the term ’Identity and Access Management’ (IAM). It
consists of access management and identity management. This thesis will focus mainly on
the topic of authentication, which is a subcategory of access management.

1.2 Motivation

As stated in the introduction, there exist different kinds of identities. The motivation
is, to provide the users one, which is based on a qualified identity. This identity can be
used to perform security-sensible actions online and can replace multiple identities within
different portals. The currently existing alternatives are not sufficient, because they are
often bound to certain registers. Therefore it is hard to acquire them, because often they
are managed by government institutions and must fulfill strict requirements.

The Austrian Handy-Signatur as an example is bound to a specific person via the ’ZMR
number’, which correlates to an entry in the central register (also known as ’Zentrales
Melderegister’). This means, that you have to be residing (or resided within the last 30
years) in Austria. Another way of using this service as a person not living in Austria, is
to register at the ’Supplementary Register for Natural Persons’ (ERnP) [Cen].

On the one hand this is an advantage, because the data is mostly up-to-date, but on
the other hand users have to be registered in the ZMR or ERnP, when they want to use the
Handy-Signatur service. Also when it comes to interactions between different countries,

CHAPTER 1. INTRODUCTION 2

Figure 1.1: Identity- and Access Management with components in relation

the acceptability of electronic identities is a controversial topic.
The motivation is, to offer users an easy way to login with their qualified identity

without the restrictions of being citizen of a certain state or participate in a registration
process which would take up a lot of time.

1.3 Goals

The Goal of this thesis is, to implement a working prototype for providing an application
programming interface (API) for a secure login mechanism to companies and their users.
This secure login mechanism should be based on qualified identities. The challenge is, to
fulfill all necessary security prerequisites and still keep the system simple to integrate and
use. To achieve this, the thesis was carried out together with an identity provider, which
can provide the qualified identities our system is based on. In this case these identities are
provided by the company XiTrust through their product ’XiDentity’, which they created
in cooperation with the company A-Trust.

The outcome is a working and functional prototype. It demonstrates, that users are
able to use the implemented service to login to portal with their qualified identities. There-
fore also sample clients are implemented to demonstrate the communication with the
prototype.

CHAPTER 1. INTRODUCTION 3

1.4 Outline

First of all an overview of the current situation is provided. In this overview important
terms are defined and relevant topics are discussed. Several protocols and frameworks are
introduced, which will be considered to be part of the implementation of the practical part
of this thesis.

The advantages and disadvantages of the highlighted methods will influence the deci-
sions which are necessary, when planning the architecture of the prototype. The details
of this architecture are explained in chapter 4. Here the decisions for the implementation
phase are explained and the blueprints for the prototype are made.

In chapter 5 the actual progress of the implementation is transcribed. The interaction
of the outlined components will be implemented and documented. Interfaces are explained
and the flow of an authentication process is divided in smaller modules to provide a clean
overview of the prototype.

As there already exist similar implementations, they have been investigated in chapter
’Related Work’. Former mistakes which occurred in the handling of said implementa-
tions are evaluated and solutions are extracted. Additionally different threat models are
analyzed and taken into account.

In the last section the findings of our research, as well as the discoveries of the imple-
mentation process are concluded. Certain steps are outlined to improve the implementa-
tion and convert it into a product. Finally the directions in which further research could
go, are listed in this chapter.

CHAPTER 2. OVERVIEW AND CURRENT SITUATION 4

Chapter 2

Overview And Current Situation

In this chapter the current situation in the field of Identity Management and authentica-
tion/authorization mechanisms is discussed.

Furthermore the company XiTrust is introduced. An overview over the existing prod-
ucts with the main focus on XiDentity is given, which is important for the scope of this
thesis.

2.1 XiTrust

The company XiTrust exists since 2002 as successor of the former Xicrypt GmbH. XiTrust
offers their customers the possibility, to apply a framework for streamlining electronic
processes.

The main idea is, that a lot of companies rely on a form of document processing,
that is not up-to-date, because there is a media disruption in the process. Meaning, that
when signing or archiving documents, the companies first print the documents, then sign
them, only to have them digitalized afterwards. This is not necessary in modern times
and XiTrust offers the following products, to optimize these processes [Gmb]:

XiTrust Moxis is a product for signing and maintaining digital documents. The signa-
ture is legally equivalent to a handwritten signature. Moxis is a web-based system
which is integrated in the IT infrastructure, so no document has to leave the cus-
tomers ecosystem.

XiTrust Business Server is centrally entered into the customers IT infrastructures to
offer a broad range of services. With the XiTrust Business Server (XBS) companies
can sign, check and archive their documents. Furthermore secure email commu-
nication can be applied by integrating encryption and digital signatures into the
email-infrastructure. It is also possible to create workflows for automating business
procedures and integrate E-Government within the processes of the company.

XiTrust Time Stamp Server is a service, that offers the generation of electronic time
stamps / time signatures in the data center of the customer. Therefore time stamps
can be requested and produced to secure documents and files.

CHAPTER 2. OVERVIEW AND CURRENT SITUATION 5

XiDentity is a product with which it is possible, to obtain a qualified, digital identity.
This digital identity is eIDAS-compliant (for details see next section). For this
process, the user has to sign up at XiDentity. A so called registration officer (RO)
has to confirm the identity of the registrant. This process is done in person, where the
registered RO issues the user a certificate after crosschecking the user’s data from
a photographic identification document. This certificate represents your qualified
digital identity.

It has recently become possible to complete the registration procedure online. For
this scenario the registration officer will induce a video-chat with the users and check
their identity via specified methods remotely.

2.2 Qualified identities and eIDAS

eIDAS (electronic IDentification, Authentication and trust Services) is an EU regulation
which contains a set of standards concerning electronic identification and trust services for
electronic transactions in the internal market. This regulation with the number 910/2014
from 2014 ensures, that trust services like electronic signatures and website authentication
mechanisms work across borders of EU countries and have the same legal status as their
paper based equivalents. Most of the contained provisions came into effect in July 2016
[PtCotEUb].

Users, who obtained such an electronic identity (in our case through the process de-
scribed in the previous section) should be able to make use of it in several different places
on the internet. For this to work, operators of service portals need an easy way of integrat-
ing an authentication mechanism to their sites. Right now it is rather hard to integrate
such an mechanism into a portal, but with the aid of the prototype developed within the
scope of this thesis, the effort and costs of the integration are minimized.

2.3 Authentication vs. Authorization

It is important for further understanding to distinguish authentication and authorization.
These terms are often mixed up in the field of identity access management (IAM) but it
is crucial to know the differences and synergies when implementing an API for an identity
provider (IdP), to separate the responsibilities between the involved parties [BKE14].

Authentication is the process of ascertaining if a user really is who he or she claims to
be. So for an Identity Provider the task is, to authenticate and identify the users
rather than authorizing rights to them. This goal can be achieved in many different
ways with various authentication mechanisms and protocols, which will be covered
in the following sections.

Authorization on the other hand, goes one step further. Users can be granted certain
rights to perform actions or access resources depending on their role within a system.
That means, that as a first step of authorization, the user usually is already authenti-
cated. Sometimes authorization mechanisms are utilized to perform authentication,
as often seen with OAuth 2.0 (for details see section 2.5.2).

CHAPTER 2. OVERVIEW AND CURRENT SITUATION 6

2.4 Multi Factor Authentication

Another important term in this context is multi-factor authentication. Todays authenti-
cation mechanisms are based on following factors [dB12][BKE14]:

• Something you know

• Something you have

• Something you are

• Something you do

Basic authentication by username and password is based on the factor ’Something you
know’. For sensible accounts and operations this often does not suffice, therefore additional
factors have to be added to the authentication process. When using two of these factors,
it is called ’Two Factor Authentication’ (2FA).

The factors ’Something you are’ and ’Something you do’ are getting more and more
popular. Examples for the first mentioned factor would be biometric attributes like fin-
gerprints or iris patterns. The factor ’Something you do’ would recognize one’s voice,
handwriting or typing patterns. These factors are somehow problematic, as it is hard to
revoke or reissue templates that rely on a persons attributes [JNN08].

The ’Something you have’ factor is the most common additional factor when it comes
to 2FA. Special hardware-tokens can be provided, that generate one-time keys that can be
used as additional authentication mechanism. Often these hardware tokens are outsourced
to software emulated hardware tokens e.g. as applications on smartphones. An example for
such an application is the ’Authenticator’ from Google. One-time tokens are continuously
generated for each added application, as seen in figure 2.1.

This is an easy way to distribute tokens, as a mobile phone is something most users
nowadays own. Therefore it is also common to verify an authentication process via a
person’s mobile phone number e.g. as short message or automated call. When using the
phone as additional factor for authentication, the user should be aware, that once the
device is compromised and used for the login process, it could lever out the 2FA. This
happens when using the same device for entering the password and receiving the token for
the additional authentication step.

2.5 Relevant Protocols

As Phil Zimmermann, creator of PGP stated:

’Anyone who thinks they have devised an unbreakable encryption scheme either
is an incredibly rare genius or is naive and inexperienced.’ [Zim91]

This principle not only holds for encryption schemes, but can also be applied to security
implementations in general. So as usual in the field of IT security the solution is based
on standardized protocols instead of implementing a proprietary solution. There exist
various established and widely accepted protocols for authentication and authorization,
which will be discussed below.

CHAPTER 2. OVERVIEW AND CURRENT SITUATION 7

Figure 2.1: Google Authenticator provides one-time tokens

2.5.1 OAuth in General

There exist two versions of OAuth: Version 1.0 and Version 2.0. As the version number
suggests, 2.0 is the successor of 1.0, but they are completely different in means of how
they are working. This is also the reason that they are not compatible. Also OAuth 2.0
hasn’t fully replaced OAuth 1.0, as some companies still rely on it (e.g. Twitter) [Twi].

The main improvements between version 1.0 and 2.0 are, that OAuth 2.0 offers more
flows, which allows better support for non-browser based applications, e.g. smartphone
apps. It is also no longer required to support cryptography as a service provider, as
the security of OAuth 2.0 relies on a secure connection based on SSL/TLS. There exist
specifications for OAuth 1.0 [HL10] as well as OAuth 2.0 [Har12][JH12], which were used
to gather the following information.

CHAPTER 2. OVERVIEW AND CURRENT SITUATION 8

2.5.1.1 Roles

In the terminology regarding OAuth, there are so called ’two legged’ and ’three legged’
implementations. By having a look at the ’two legged’ implementations, only the server
and the client are involved in the flow, which is not sufficient for our field of application.
Whereas our focus will be on the ’three legged’ implementations, where also the resource
owner is part of the flow. The roles used in the process are defined as followed:

Resource Owner is usually the user, who grants an application access to the account
they own (therefore the term ’Resource Owner’). This access can be limited to the
scope of the granted rights (e.g. read, write, ...).

Authorization Server verifies the users identity and handles the authentication tokens.
The authorization server is also responsible for maintaining clients. So for requesting
data from the user, the application has to be registered. This means that the autho-
rization server has to create and manage the API keys and secrets for several clients,
which are necessary for the authentication of the client itself. Also the redirect URLs
for each client are stored here.

Resource Server holds protected resources, which can be accessed via an access to-
ken. Often the Authorization- and the Resource-Server are combined in one server
instance.

Client is the application, that wants to authenticate the Resource Owners and access
their resources.

Details of the two different versions are introduced in the following sections. At first
OAuth 2.0 is explained in detail, as it is more relevant for our field of application.

2.5.2 OAuth 2.0

As OAuth 2,0 is an important protocol when it comes to the use-case that are applicable
in this context, the details of it are highlighted in the following section.

The OAuth 2.0 authorization framework enables a third-party application to
obtain limited access to an HTTP service, either on behalf of a resource owner
by orchestrating an approval interaction between the resource owner and the
HTTP service, or by allowing the third-party application to obtain access on its
own behalf. This specification replaces and obsoletes the OAuth 1.0 protocol
described in RFC 5849. [Har12]

2.5.2.1 OAuth 2.0 Flow

To understand the OAuth authentication itself, an abstract flow of an authentication
process is displayed. In Figure 2.2 the interaction between the introduced roles is shown.

CHAPTER 2. OVERVIEW AND CURRENT SITUATION 9

Figure 2.2: Abstract flow of an OAuth Authentication

The following steps are necessary:

1. The Client application wants to access resources from the user and asks for permis-
sion.

2. The User can decide, if the application is trustworthy. If so, the user accepts the
request and the application gets an authorization grant.

3. The application proceeds by sending the obtained authorization grant together with
the identity of the application to the authorization server.

4. If the received data is correct and verified, the authorization server generates an
access token and sends it back to the application. After this step, the authentication
is completed.

5. For accessing a protected resource, the application sends a request, that includes the
access token, to the resource server.

6. After the resource server validated the access token, the application is granted access
to the resource.

2.5.2.2 Authorization Grant

As seen in Figure 2.2, the authorization grant is sent between the participating roles.
As for now, the concept of an authorization grant was kept abstract, because there are

CHAPTER 2. OVERVIEW AND CURRENT SITUATION 10

different types of authorization grants. Depending on the scenario, it is important to
choose a reasonable grant type for the situation.

Authorization Code is the most common version of authorization grant. A condition
for using this type is, that the application is able to keep the API secret save, which is
the case when working with server-side applications. In Figure 2.3 the detailed flow of the
authorization code grant type is visualized.

Figure 2.3: Detailed Authorization Code flow

• After visiting the application link through the browser, the user gets a link, which
includes the endpoint of the authorization server, the API key, a callback URL for
redirection and other parameters like the response type and the scope of the request.

• When the user clicks on this link, he or she is asked to login at the authorization
server. After login, the user normally is presented with a prompt, in which he or she
can decide if access to certain data should be granted to the application.

CHAPTER 2. OVERVIEW AND CURRENT SITUATION 11

• If everything went successful, the user is now redirected to the specified redirect
URL including an authorization code.

• The application can now send a request to obtain an access token to the authorization
server. This request contains the API- key and secret, the authorization code and a
callback URL.

• If the request is valid, the authorization server sends back a response containing
an access token with other details (like an expiration date, and optionally a refresh
token, which can be used to obtain a new access token when expired). Now the
application can use this access token (until expired or revoked) to access protected
resources.

Implicit as authorization grant type works similar to an authorization code grant. The
main difference is, that the authorization server does not return an authorization code,
which can be exchanged for an access token. Instead it returns the access token directly.
This is particularly useful, because the application does not have to include the API secret
in the request, which is interesting, when the application is e.g. an app on a mobile phone
or a web-application, where the API secret can not be stored safely, because the user could
gain access to it. Different from the authorization code grant, the implicit authorization
grant does not support refresh tokens.

Resource Owner Credentials is rarely used, because it requires total trust in the
application. The resource owners give away their private credentials to the application,
which uses them to further get an access token. This access token can be utilized to obtain
resources or functionalities that require authentication. The application has full control
to the resource owners account and may exploit their power. Also if the user reuses the
credentials on other sites, the application might also be able to login to these services if
they have malicious intentions.

Client Credentials are used, when the application needs access to certain functionality
or resources, that are not related to a resource owner. This is the case, if it is enough,
that only the application needs to be authenticated. The authentication usually happens
by presenting the authorization server the applications API- key and secret.

2.5.3 OAuth 1.0

OAuth 1.0 was stabilized at version 1.0 in October 2007. In June 2009 it was revised
(Revision A) and thereby referenced as OAuth 1.0a (for simplicity reasons we will reference
to the revised version as OAuth 1.0 throughout this thesis). As OAuth 2.0 is based on
OAuth 1.0, there are a lot of similarities like the basic idea of the flow. One of the main
differences is, that there is a signing mechanism in place for requests.

OAuth provides a method for clients to access server resources on behalf of a
resource owner (such as a different client or an end- user). It also provides a
process for end-users to authorize third- party access to their server resources

CHAPTER 2. OVERVIEW AND CURRENT SITUATION 12

without sharing their credentials (typically, a username and password pair),
using user- agent redirections. [HL10]

The roles correspond to the roles used in OAuth 2.0. Unlike in OAuth 2.0 the
authorization- and resource server are not treated separately, but simply called ’server’.
Also in prior versions of the specification another terminology was used, where the client
was called ’consumer’, the resource owner was stated as ’user’ and the (resource) server
was known as ’service provider’.

2.5.3.1 OAuth 1.0 Flow

The first step in OAuth 1.0 is to obtain a request token. For this a request to the
request token endpoint is made. This request looks different than the one in OAuth
2.0 because it includes completely different parameters:

oauth consumer key is the equivalent to the API key / client id from OAuth 2.0.

oauth timestamp is a unix timestamp, which has to be greater than the one in the last
request.

oauth nonce is a random string, which is generated for each request. In combination
with the timestamp it helps to prevent replay attacks which would be possible when
the requests are made over a non-secure channel.

oauth signature is the signed request. For Details see section 2.5.3.2.

oauth signature method specifies the algorithm used, for creating the
oauth signature. There are three methods defined (HMAC-SHA1, RSA-SHA1, and
PLAINTEXT) but the service provider can implement their own methods as well.

oauth version defines the version of OAuth used. This parameter is optional, but if
present, is has to be the value ’1.0’.

oauth callback is the redirect URL, where the resource owner is redirected by the server
after the authorization step.

optional parameters exist, but are not relevant for the context of this thesis.

After successfully completing this step, a request token (oauth token) and a
oauth token secret are returned. The user is then redirected to the authorization URL
using the retrieved oauth token. After an successful authentication, the users grant access
to the client and are then further redirected. Using the oauth token, another signed
request is sent to exchange the request token for an access token, which can be used to
access protected resources on the server (in combination with the oauth token secret

used to sign the requests).

CHAPTER 2. OVERVIEW AND CURRENT SITUATION 13

2.5.3.2 Signing process

The signing process is the main difference between the two OAuth versions. It is simulta-
neously the reason, why OAuth 1.0 is still used in some cases and why it got replaced by
OAuth 2.0.

The process helps, to keep the consumer secret safe, even if operating over a non-
secure channel like HTTP. But at the same time the implementation is error-prone. Every
request must be signed by the client and verified by the server in order to prevent parties
from making unauthorized requests. To sign the request, the client has to follow very
specific steps. Every key value pair (excluding the oauth signature that is created in
this step) from the request, as listed in the prior section, has to be percent encoded and
listed lexicographically by the key in a so called ’parameter string’. To get a full ’signature
base string’, the HTTP method used (GET or POST) and the URL have to be included
beside the parameter string. They have to be conjoint by percent encoding all the three
parameters and append it with a ’&’ character in between.

To obtain the key for signing this signature base string, the client has to join the
consumer secret and the oauth token secret (again by appending them via the ’&’
character) and use it to sign the string with the specified algorithm. If the
oauth token secret does not exist yet, an empty string is appended to the consumer
secret. After this, the oauth signature is created and can be further used as BASE64
encoded string.

2.5.4 SAML

The first version of SAML with version number 1.0 was adopted as a standard in November
2002 by OASIS. A year later a newer version with minor changes was introduced as
SAML 1.1. In March 2005 OASIS ratified SAML 2.0 as a standard. The newer version
is a convergence of SAML 1.1, the Identity Federation Framework (ID-FF), which was
donated to OASIS by the Liberty Alliance and Shibboleth 1.3. SAML 2.0 is incompatible
with its predecessors. It is defined as follows:

The OASIS Security Assertion Markup Language (SAML) standard defines an
XML-based framework for describing and exchanging security information be-
tween on-line business partners. This security information is expressed in the
form of portable SAML assertions that applications working across security
domain boundaries can trust. The OASIS SAML standard defines precise syn-
tax and rules for requesting, creating, communicating, and using these SAML
assertions [RHPM06].

SAML is mainly used for single sign on (SSO) inside enterprise infrastructures. It is
not meant to be used for mobile- or native applications. In comparison to other protocols
like OAuth it lacks in in flexibility and is rather hard to implement. Some parts of SAML
are still used in chapter 5, as it is part of MOA-ID (see section 2.5.7).

2.5.5 OpenID

OpenID is an open and decentralized protocol for authentication. The protocol is still
rarely applied in existing websites. Therefore it is shortly explained for the sake of com-

CHAPTER 2. OVERVIEW AND CURRENT SITUATION 14

pleteness, even if it is declared obsolete by the OpenID foundation, because of its successor
OpenID Connect, which will be discussed in the next section [Foua].

For authentication, users have to create an account at a OpenID provider of their
choice. After successful registration the users receive an authentication URL, also called
’OpenID identifier’. This identifier can be used at online applications (in the OpenID con-
text they are called ’relying parties’), which support OpenID authentication. As an exam-
ple, when the user ’exampleuser’ registers at OpenID provider ’exampleopenidprovider’,
the identifier could be assembled the following way:

www.exampleuser.exampleopenidprovider.com

The user can now try to access a protected resource at the relying party and therefore
enter the identifier, after being asked for a login. After entering the URL at the relying
party, the user is required to authenticate at the OpenID provider. In the following step,
the user is asked if he or she trusts the relying party and which information should be
provided to them. The user is now redirected back to the relying party with the result of
the authentication process, which can either be the information of the authenticated user
or an error message.

2.5.6 OpenID Connect

OpenID Connect is the successor of OpenID. The protocol was completely renewed and
is explained by the OpenID foundation as follows:

OpenID Connect 1.0 is a simple identity layer on top of the OAuth 2.0 pro-
tocol. It allows Clients to verify the identity of the End-User based on the
authentication performed by an Authorization Server, as well as to obtain ba-
sic profile information about the End-User in an interoperable and REST-like
manner.

OpenID Connect allows clients of all types, including Web-based, mobile, and
JavaScript clients, to request and receive information about authenticated ses-
sions and end-users. The specification suite is extensible, allowing partici-
pants to use optional features such as encryption of identity data, discovery
of OpenID Providers, and session management, when it makes sense for them.
[Foub]

As mentioned above, OpenID Connect is based on OAuth 2. Therefore the detailed
flow will not be part of this section, as it is already discussed in section 2.5.2. In addi-
tion to OAuth 2, OpenID Connect provides an so called ’ID Token’, besides the already
known token types. This token is a JWT (for details see section 4.3.1.3) which contains
information about the authenticated user. A disadvantage of OpenID Connect is, that
because the specification is relatively young, it lacks of implementations and libraries for
integrating it. It will take time for it to become widely used and to be integrated in
different programming languages in the form of stable libraries.

CHAPTER 2. OVERVIEW AND CURRENT SITUATION 15

2.5.7 MOA-ID

The Austrian E-Government is providing ’Modules for Online Applications’ (MOA) to
access and integrate their tools and services. MOA-ID is one of these modules and is used
for authentication, as stated in the official description:

This module facilitates the secure and unique identification and authentication
of users who process online procedures with a Citizen Card. The authentication
is carried out by using the qualified signature as well as the identity link of
the Citizen Card and therefore has the highest level of security. With it, a
login with the Citizen Card is possible to areas that have sensitive data stored.
Examples of this are inspecting files and accounts, banking and transaction
systems, as well as other areas in which personal data is stored. [EGICEI]

This explanation only addresses authentication with citizen cards, but it is also possible
to use MOA-ID in combination with XiDentity. This will be our main scenario for the
prototypical implementation. While MOA-ID is not considered as interface between the
prototype and the client, it is still an important framework as we use it to integrate the
authentication process into our implementation. The exact flow is described in chapter 5.

CHAPTER 3. RELATED WORK 16

Chapter 3

Related Work

In this chapter existing implementations for similar use cases like our prototype supports
are discussed. Also different papers regarding OAuth 2 security are examined for a fur-
ther understanding which security flaws may be exploited in the implementation of the
prototype.

3.1 Existing implementations

As the idea of an external login mechanism has become popular among users and service
providers, a lot of different implementations for this use case exist. Dominant in this area
are the social network providers like Facebook, Twitter and Google, as many people use
their services and already own an account on these sites. These accounts can then be used
on many sites for authentication. Nevertheless, the provided identities in these cases are
not qualified identities. It is highlighted, how the most popular providers of external login
modules implement their services. As a next step they are analyzed and compared to each
other. Also if the documentations provide useful information relevant to our prototype,
they will be discussed at this point.

3.1.1 Facebook

Facebook is the most used social network worldwide. Statistics show, that in the second
quarter of 2017 there are 2 billion monthly active users (users, that logged in to Facebook
during the last 30 days) [Por]. Facebook offers their external login for service providers
via ’Facebook Login’, formerly known as ’Facebook Connect’ [Fac]. Buttons, like the one
shown in figure 3.1 show, that the external login via Facebook is available on a portal.

Figure 3.1: Continue with Facebook Button1

CHAPTER 3. RELATED WORK 17

Facebook mainly uses a proprietary SDK for their login mechanism. Their documen-
tation of the external login does not mention OAuth 2 in the higher level articles. But
when taking a closer look at it or after implementing their login, it is obvious that the
implementation fulfills the OAuth 2 specification and is therefore also compatible with it.

Some valuable information can be found in the security- and advanced section of the
documentation. It is stated, that the application secret should never be included in
client-side code (e.g. JavaScript), or code that could be decompiled (e.g. native appli-
cations). This also holds for implementing OAuth 2 as a client. In these scenarios the
implicit flow must be used.

Also when it comes to combining the Facebook Login with a conventional login (con-
sisting of username and password), there are useful tips of merging the accounts of users
using both variants. This is highly relevant to our case, as the prototype is integrated in
existing environments, where another form of authentication could already be in place.
There are different possible scenarios when it comes to merging accounts.

First of all the user could already possess an conventional account and wants to enable
the external login. In this case, that is visualized in figure 3.2, the already authenticated
user should be provided with an option to additionally login via the external method.
This way the system has to merge the two accounts into one. Facebook suggests to create
a new table with the Facebook specific data in the existing database, as it is easier to
maintain and also to add other external login providers afterwards. After linking the two
accounts it will be possible for the user to login either via conventional- or external-login
in the future, as the system has mapped both variants to one account.

1https://developers.facebook.com/docs/facebook-login/best-practices (accessed September
04, 2017)

CHAPTER 3. RELATED WORK 18

Figure 3.2: Process of activating external login for already existing account

Another case is, when the user has created an account via the conventional method as
well as via the external method. In this case, two accounts exist, that aren’t connected.
This scenario, as visualized in figure 3.3, is complex and requires an explicit section for
account merging (which data should be used from which account etc.). As this case is not
so common (as the users usually know, that they already created an account on the site)
not many service providers offer such a merging functionality but rather suggest to delete
one account and then link the account again via the method discussed above.

CHAPTER 3. RELATED WORK 19

Figure 3.3: Process of merging two already existing accounts

Of course also the scenario exists, where the user initially logged in via the external
authentication mechanism and then wants to add a conventional login. This case is similar
to the first discussed scenario (see figure 3.2) and can be handled accordingly.

3.1.2 Twitter

Twitter is another large social network, that provides external authentication via their site.
Usually service providers use the officially provided ’Sign in with Twitter’2 (see figure 3.4)
button to express, that the external login via twitter is available.

2https://dev.twitter.com/web/sign-in (accessed September 04, 2017)

CHAPTER 3. RELATED WORK 20

Figure 3.4: Sign in with Twitter Button3

Twitter is one of the larger providers for external authentication, that still uses
OAuth 1, as already mentioned in the previous section 2.5.1. The documentation is well
structured and comprehensive. As OAuth 1 was considered, but ruled out as protocol
for our implementation, details for the implementation itself are negligible. Still, when it
comes to the documentation and visualization for the developers, Twitter could serve as
role model.

3.1.3 Google

Google offers different ways to implement an external authentication with their accounts,
therefore they provide the most flexible solution of the mentioned companies. If external
login is the only module, that is required, developers can use the client library ’Google
Sign-In’4. It is based on OpenID Connect and widely used on different websites (these
implementations can be found by the distinctive button shown in figure 3.5). Google Sign-
In is a part of the Google Identity Platform. There are guides to integrate this mechanism
into native mobile applications as well as websites and other devices.

Figure 3.5: Sign in with Google Button5

Google also offers plain OAuth 2 to access their APIs. A exhaustive documentation is
in place and there even is a ’OAuth 2.0 Playground’6, with which developers can dynam-
ically test the interaction with Google’s OAuth 2 interface. An important sentence in the
documentation states, that:

One of the advantages of using OAuth 2.0 for authentication is that your
application can get permission to use other Google APIs (such as YouTube,
Google Drive, Calendar, or Contacts) at the same time as you authenticate
the user.

The consideration, that the authentication mechanism comes along with the authorization
process shows, that authorization protocols can be used for authentication. This way the
resulting implementation is also very easy to extend.

3https://dev.twitter.com/web/sign-in (accessed September 04, 2017)
4https://developers.google.com/identity/ (accessed September 06, 2017)
5https://developers.google.com/identity/branding-guidelines (accessed September 06, 2017)
6https://developers.google.com/oauthplayground/ (accessed September 06, 2017)

CHAPTER 3. RELATED WORK 21

On top of this OAuth 2 implementation a OpenID Connect layer is present, on which
Google Sign-In is based. This layer is not only accessible through the mentioned client
libraries, but also as standardized OpenID Connect endpoints.

The documentation also includes implementation guides and example libraries for var-
ious fields of applications and programming languages.

3.2 Threat Model

As OAuth 2 is a popular protocol, many researchers spent time and resources on analyzing
the security aspects of it. A lot of the gathered information from related papers is presented
in a document which discusses the threat model and security considerations regarding
OAuth 2 [LMH13]. Also the threat model and the different attack vectors are discussed,
while omitting obvious attacks like keyloggers, device theft, phishing and others.

3.2.1 Client

The most common threat model regarding clients concerns the client secret. It should
always be kept secret, as it can be used by an attacker to bypass client authentication at
the authorization server. This is not a security risk for the user, as the user authentication
is not affected by the client secret, rather than for the client. Leaking of the client secret
often happens, when the client implements the wrong grant for the application. When the
implementation can keep the secret safe and the connection is secure, the secret should not
leak. However if the client stores the secret in a decompilable application or a client-side
implementation, the secret can be exposed. Also if the connection is insecure, the client
secret can be intercepted during transmission. When the secret was leaked, the client
should have the possibility to reissue the secret for the application.

Another scenario is, that the attacker has additionally overcome some of the applica-
tions security controls and obtains user related data, which may include stored access or
refresh tokens of users. The attacker can use the access token directly, to access resources
on the resource server or in case of authentication, to impersonate the user. In combina-
tion with the client secret the refresh tokens can be used to request a new access token
and therefore the attacker is also able to execute above mentioned actions. To prevent
this, it should be possible to revoke issued tokens.

3.2.2 Authorization- and Resource-Server

The authorization server should always require the client to enter a full redirect URL. It
is possible to rely on the URL the server gets as parameter via requests, but hereby no
validation is in place. This way the attacker could gain access to authorization codes or
access tokens by manipulating the redirect parameter to a URL, which leads to a malicious
server.

If the attackers have access to the authorization- or resource server, they are able
to add new access tokens, access all the already issued tokens or just freely access the
resources of the users. This way it would be easy to compromise the whole system. This
is why it is very important to keep the servers safe in general. In the case of our prototype,
there are no user resources stored on the resource server. The data of the users which

CHAPTER 3. RELATED WORK 22

is used for authentication is volatile and only available as session information, when the
user is authenticated. This way a compromised resource server would not have such severe
consequences, like it would have in the situation, where the user data is stored permanently.

CHAPTER 4. DETAILS OF RESEARCH 23

Chapter 4

Details Of Research

After reflecting upon the different protocols and frameworks in chapter 2, and learning
about existing implementations in chapter 3, OAuth 2 was chosen as protocol for the
prototype. The decision was mainly made between OAuth 2 and OpenID Connect. The
reason, why OAuth 2 was chosen is, that at this point in time there exist more libraries
for it and it has a broader community. OpenID Connect has some features which would
make the authentication a little bit more convenient, but as we do not need to support
multiple identity providers or have flexible identity attributes, a lot of OpenID Connect’s
advantages are negligible. Another reason why OAuth 2 is a good choice as protocol is, that
it is easily extensible to support other tasks than authentication, as it is an authorization
protocol. So in the future the server where the authentication prototype is hosted, could
support other tasks where a qualified identity is required.

For the architecture of the prototype inside the scope of OAuth 2 had to be made, as
the specification is relatively open for interpretation. For this decisions the use-cases of
the prototype are very important and are emphasized in this context.

4.1 Components of the prototype

As the architecture of the prototype includes many distributed components, they are
visualized it in figure 4.1 for better understanding.

It represents an overview of the components and how they are related to each other.
Some of them are discussed in section 2.5.2, when OAuth 2 was explained. Details regard-
ing the implementation and structure are found in the upcoming chapter 5.

4.2 Use Cases

The main use case for the prototype is the authentication process. A service provider
should be easily able to integrate the interaction to the prototype’s interface in its client.
This way they can be sure to only have users with qualified identities logged in to their
services.

There is no need to support multiple identity providers or flexible entity attributes at
this time, as the attributes available to us are already limited. Therefore it does not make

CHAPTER 4. DETAILS OF RESEARCH 24

Figure 4.1: Components of the Prototype

sense to constrain them any further. For the same reason the OAuth 2 scope will not be
used, as there is only the authentication use case present at this point in time.

For further extension the scope parameter can easily be activated and the prototype
can be expanded for additional use cases.

4.3 Framework decisions

We will discuss certain decisions that were made in the process of planning the implemen-
tation of the prototype.

4.3.1 Token

In OAuth 2 there is the decision to make, which kind of access token is used for access-
ing resources - the so called ’Authenticator’. In the OAuth 2 core specification there is
no particular token type specified [Har12]. Therefore in this section we will discuss the
decision, which type of token to use in the prototypical implementation.

4.3.1.1 Bearer Token

Bearer Token is the most used form of token regarding OAuth 2. If no specific type
of token is specified, most implementations use bearer token as default. This type of
token simply means, that the bearer of it has the right to access resources owned by

CHAPTER 4. DETAILS OF RESEARCH 25

the authenticated user, who has received the token. There is no need for any further
cryptographic operations, therefore it is necessary to transport the token over a secure
channel. Here is an example of a bearer token used by the Spring Security framework:

{
” ac c e s s t oken ” : ”ab12c345−d6ef−7891−23gh−45 i j6k7l89mn” ,
” token type ” : ” bearer ” ,
” r e f r e s h t o k en ” : ”98 z7y654−3xwv−2ut1−9876−54sr3qp2198o ” ,
” e x p i r e s i n ” : 3600 ,
” scope ” : ” read ”

}

So one of the reasons, why OAuth 2 strongly relies on a secure connection over SS-
L/TLS is, that the plain access token field can be used for further requests as it is
transported in the HTTP Authorization request header or directly in the URL - in plain
text. If transported over a insecure connection, the token could be intercepted during
a man-in-the-middle attack and used for further requests to the resource server by the
attacker. Also while storing the tokens as a client, it is crucial that they are kept se-
cure, otherwise the same attack-scenario could be applied by getting the tokens from a
unsecured database.

There are optional recommendations for the usage of bearer tokens in the official
specification [JH12], as it is not very restrictive. So it is not recommended, to store
the token inside cookies, as the default transmission mode for cookies is not secure. If
nevertheless the decision is made to store the token in the cookies, precautions must be
made to prevent cross-site request forgery.

As the access token can be transmitted electively via page URLs (e.g. as GET pa-
rameter: https://[...]?access_token=ab12c345-d6ef-7891-23gh-45ij6k7l89mn) or
in the HTTP message itself, the client has to make this choice. The recommendation is, to
transmit the access token in the Authorization field of the header, as opposed to passing
it as URL parameter. Involved software could inadequately process these URLs (including
the sensitive parameter) by i.e. storing it in the browser history or writing it to server
logs, where the token could be leaked.

Following the principle of least privilege, the bearer token should also contain a scope
and the lifetime should be rather short-lived. That means, that it should not be valid
more than one hour and only valid for specified resources. These steps help to prevent the
malicious impact, if the token should be leaked contrary to expectations.

4.3.1.2 Message Authentication Code (MAC) Token

There is also the possibility to use a MAC Token as token type. The advantage is,
that when using mac tokens, no sensitive data has to be transported every time when
requesting a resource from the resource server [Sir]. Additionally to the Bearer Token, the
MAC Token has three more fields:

CHAPTER 4. DETAILS OF RESEARCH 26

{
” ac c e s s t oken ” : ”ab12c345−d6ef−7891−23gh−45 i j6k7l89mn” ,
” token type ” : ”mac” ,
” r e f r e s h t o k en ” : ”98 z7y654−3xwv−2ut1−9876−54sr3qp2198o ” ,
” e x p i r e s i n ” : 3600 ,
” scope ” : ” read ” ,
” kid ” : ”0s9jdfAMLD/Aa0j8s9S0F=” ,
”mac key” : ”394 tvn4zn34ct7 ” ,
”mac algorithm” : ”hmac−sha−256”

}

For the MAC Token there is no complete standardized specification yet, but a expired
draft in its fifth version exists from 2014 [RMTH14] (work in progress) which also has
recommendations for the usage. The new parameters are explained there as following:

kid The key id (kid) is used as an identifier. It is recommended, that it is computed by
hashing over the access token and encoding it in BASE64.

mac key This key is a session key, which is created by the authorization server. The
lifetime of the access token, which is specified in expires in applies also to the
mac key. This parameter is to be held secret, as it is used to sign further requests.

mac algorithm As the name suggests, this parameter specifies the MAC algorithm which
is used to calculate the MAC for further requests.

The data which has to be send each request by the client contains more parameters
than for the bearer token, where it is just the access token. For mac tokens following
parameters in the Authorization field are required:

Authorization:

kid="0s9jdfAMLD/Aa0j8s9S0F=",

ts="670593600",

mac="7h1515mY81r7HDAy="

There are more optional parameters, which are left out in this scope. The presented
parameters above are sufficient, to make a valid request to the resource server. The
mentioned parameters are computed the following way:

kid The key id (kid) that was obtained by the initial MAC Token, to map the request to
the user.

ts A (unix) timestamp of the current request.

mac The generated message authentication code (MAC) which is generated by using
the defined mac algorithm as algorithm, the mac key as key and a predefined
concatenation of several HTTP header fields as input.

CHAPTER 4. DETAILS OF RESEARCH 27

When receiving the request the resource server can also compute the MAC by using
the stored mac key. By comparing the ts field with the local time, replay attacks can also
be avoided. If all the checks pass, the resource server is granting access to the requested
resource.

4.3.1.3 JSON Web Token (JWT)

A JSON Web Token works in a similar way like the MAC Token does. It is also a popular
standard regarding security tokens. There is a handbook, which describes JWT very well
[Pey16]. A token consists of three parts, namely the header, the payload and the signature.

The header defines, which type of token we are looking at and also the algorithm,
which was used to create the signature. There are different choices of algorithms like RSA,
HMAC and SHA256. This leads to the fact, that the algorithm decides, if the process will be
performed by using either symmetric- or asymmetric keys for the cryptographic part.

The payload is the body of the token, which can be customized by so called ’claims’.
There are reserved claims, that are part of the majority of implementations, like informa-
tion about the issuer, the expiration time, the subject and others. Additionally there are
also public and private claims. The public claims are defined in a registry to avoid colli-
sions between already existing claims. Private claims are completely proprietary claims,
that can be used between the parties, that share the specific JWT definition. Here is an
example of a JWT:

Header:

{
” a lg ” : ”HS256” ,
” typ” : ”JWT”

}

Payload:

{
”sub” : ”ID0301” ,
”name” : ” F i r s t Last ” ,
”myclaim” : t rue

}

These two nodes are then base64Url-encoded. The cryptographic algorithm can now
take them additionally to the secret key, as input (concatenated by a dot) for the signing
operation. In this case it would look like this:

DefinedCryptoAlgorithm (
”ewogICJhbGciOiAiSFMyNTYiLAogICJ0eXAiOiAiSldUIgp9”
+ ” . ”
+ ”ewogICJzdWIiOiAiSUQwMzAxIiwKICAibmFtZSIJGa [. . .] ” ,
s e c r e t)

CHAPTER 4. DETAILS OF RESEARCH 28

The output of the signature algorithm is then again base64Url-encoded and concate-
nated to header and payload with another dot, which gives us our final JWT token. There
exists a proposed standard, which is rather comprehensive [JCM15].

4.3.1.4 Own implementation

There is the possibility to define an own mechanism for issuing and using access tokens.
We will not further look into this topic, because proprietary algorithms will only have
security drawbacks and the clients won’t be able to understand the tokens without an
proprietary implementation on their side.

4.3.1.5 Conclusion

As for the prototype, the decision was made to use Bearer Tokens. This choice is justified
by the ease of use and the compatibility among clients. This is an important argument,
because of the requirement, that the service should be easy to implemented for the service
providers who are using it.

Even if the MAC Token, as well as the JWT seem to have the same properties but
advanced security features opposed to the Bearer Token, these features can be neglected
[Gol]. There is no additional security benefit by using MAC Tokens over Bearer Tokens,
because if SSL/TLS is used, which is mandatory for the OAuth 2 protocol, the attack
vectors for both types are the same. If the SSL/TLS layer is compromised, the MAC
Token would have an additional step towards security, but in total the whole protocol and
therefore the prototype implementation would fail.

When using bearer tokens the clients must ensure the secure storage of the access
tokens. One could argue, that this step is also a drawback when compared to mac tokens.
But with mac tokens the clients also have to store the mac key, they share with the server,
so the secure storage infrastructure is needed anyway. Another important argument for
bearer tokens is, that they can be easily revoked. For revoking a bearer token it just
has to be deleted from the storage. When using tokens, that contain all the information
inside the token itself, we don’t store them and therefore the reference to this token
can’t be deleted. There is no standardized way of revoking these kind of tokens, but if
controlling both, the resource- and authorization server there is a way to implement it. To
achieve this, references to revoked tokens for the period of their validity have to be stored.
This mechanism is not standardized, so it is another possible source for implementation
mistakes.

In conclusion there are no major advantages by using any other token type than the
standard bearer token in the implementation.

4.3.2 Token Store

Another design decision concerns the token store. Following possibilities exist, to choose
from:

CHAPTER 4. DETAILS OF RESEARCH 29

4.3.2.1 In-Memory Token Store

The InMemoryTokenStore is easily explained. The details of the client and other infor-
mation (like created tokens) are stored in volatile memory of the server. The clients are
statically configured before starting the server. So this kind of token store is inflexible,
when we want to allow clients to dynamically add their API keys at runtime. Also it is
hard to keep an overview over the currently existing access tokens.

When using distributed systems, there is no way to access the token store remotely
from another server than the one, which has the token stored in memory. This makes it
impossible to implement an architecture, with redundant servers. This also means, that
when restarting the server, all information is lost without a possibility to back it up.

So this kind of token store is great for testing the implementation while developing, as
there is no additional database or structure needed. In conclusion it is not meant to be
used in a productive environment.

4.3.2.2 JDBC Token Store

The Java Database Connectivity (JDBC) token store is much more advanced and flexible
than the InMemoryTokenStore. JDBC is an API for accessing databases, which means it
is possible to use any relational database in the background. Thus the databases can be
easily exchanged and hosted externally, which means that different server instances can
access it.

As there is a predefined database schema for the Spring OAuth 2 implementation
clients can be manually added at runtime. The process of client creation can also be
automated via an interface.

The schema includes, among others, following tables [Sye]:

oauth client details contains all the information for a client. This includes the API key
and secret, the redirect URL and other important information.

oauth access token stores the actual access tokens of the users.

oauth refresh token holds the refresh tokens (if configured) of the users, with which
the user can request another access token after expiration of the same.

oauth approvals contains the user approvals. Every time a client requests a resource of
a user from the resource server, the user is asked (if the field autoapprove is not
activated in client details), if they grant the client permission to this resource.
This approval is then stored for later reference.

4.3.2.3 JWT Token Store

As explained in subsection 4.3.1 there is no specific store in the backend for Java Web
Tokens, as the information is encoded directly in the token. So when choosing this token
store, Spring stores the information directly in the tokens itself.

This is not an option for the implementation of the prototype, as we chose to use
Bearer Token as token type, which is incompatible with the JwtTokenStore.

CHAPTER 4. DETAILS OF RESEARCH 30

4.3.2.4 Conclusion

For the implementation of the prototype we chose to use the JdbcTokenstore. There
is no real alternative to it, as we need the advanced functionality a external token store
provides.

4.3.3 User ID Obfuscation

When users register at a website or a service through our prototype, they are identified
by a unique ID. A user always has the same ID when authenticating via our service.
When this ID now gets passed to the clients without any obfuscation, the users would be
trackable across providers like visualized in figure 4.2.

Figure 4.2: Passing the user ID to the different clients without obfuscation

For privacy reasons there should be a mechanism in place, that obfuscates the ID of
the user for different clients. This obfuscation can be achieved by using a cryptographic
hash function like SHA-256. As input for this one-way function we need three parameters:

• User ID

• Client ID

• Constant

This way we can assure, that the user ID stays consistent for every client. The constant,
is hard-coded and specific for the instance of the prototype. Thus different instances can
provide different IDs for the users, which is useful when e.g. offering a testing environment
for developers. With this added obfuscation step, the linking of the same user between
different clients is prevented, as seen in figure 4.3.

CHAPTER 4. DETAILS OF RESEARCH 31

Figure 4.3: Passing the user ID to the different clients with obfuscation

CHAPTER 5. EXPERIMENTAL EVALUATION 32

Chapter 5

Experimental Evaluation

In this chapter the implementation of the actual prototype is discussed. At first, a version
of the prototype was created where different approaches were tested and reviewed for
feasibility. This first project had no claim to be exhaustive and was used as proof on
concept.

The second prototype only contains the certain parts of the first prototype, which were
proven to be beneficial. This implementation is structured and contains all the pieces for
deployment in a testing environment.

For testing purposes the server runs locally on the development machine and for sim-
plicity it does not use SSL/TLS for a secure connection. In an productive environment the
use of a secure connection is indispensable. In the following chapter the implementation
process is divided into the different stages of the authentication process.

5.1 User Authentication

First of all the user who uses the service has to be authenticated. Thus for authenticating
the users with their qualified identity, a connection between our API and an identity
provider has to be established. In this case this identity provider is a citizen card server
(BKS), that has access to registered XiDentity users. A-Trust provided us access to their
test environment ’a.sign BKS’ which is reachable via the URL

https://test1.a-trust.at/

including a documentation [Hag15], based on which most of the following steps are per-
formed.

5.1.1 Obtaining the SAML-Artifact

The communication between our API and this citizen card server is crucial for the imple-
mentation, because in this part we obtain the qualified identity of the users who want to
authenticate themselves via our API as seen in figure 5.1.

CHAPTER 5. EXPERIMENTAL EVALUATION 33

Figure 5.1: Login

For an authentication with the BKS a connection to the MOA interface (for more
information see section 2.5.7) has to be established. Two variants exist for connecting to
the interface:

1. Authentication via browser forwarding

2. Authentication without browser forwarding

Authentication via browser forwarding is the faster way to implement the func-
tionality, but the flexibility to adapt the design of the login form is not given. As a first
step and for a fast result this method is implemented, to test if everything works as it
should. With this method the website of the BKS is shown to the user in the browser. To
reach the server the connection to

https://<server>/ASignBuergerkartenServer/

StartAuthentication.aspx?OA=<url>

has to be made, where OA stands for ’online application’. With this parameter the BKS
can be notified where to redirect the user’s browser after the successful authentication
process. The MOA server first has to register the URL of the online application, which is
used to perform the authentications. In our case this parameter is

http://xitest.ddns.net:8096/MoaRedirect/

CHAPTER 5. EXPERIMENTAL EVALUATION 34

which, in combination with the BKS URL leads to the compound URL

https://test1.a-trust.at/asignBuergerkartenServer/StartAuthentication.aspx?

OA=http://xitest.ddns.net:8096/MoaRedirect/

which corresponds to the connection between the components as illustrated in figure 5.2.

Figure 5.2: StartAuthentication interface between components

By implementing this HTTP-GET request, represented by the URL, into a sample
application and showing the resulting page to the user, it was possible to reach the first
page of the authentication process - the standard template as seen in figure 5.3.

Figure 5.3: Standard template of the first step in MOA authentication step

After clicking the Login button, the A-Trust login prompt was supposed to be dis-
played. Unfortunately the connection is not established as the browser tries to connect to
the local address

https://127.0.0.1:3496/https-security-layer-request

CHAPTER 5. EXPERIMENTAL EVALUATION 35

which refuses the connection, because we don’t have a Bürgerkartenumgebung running
on the local development machine. As stated in the documentation, there are further
optional parameters for the initial authentication request which can be passed. One of
them is the parameter BKU=<bku>, where <bku> can be either local for a locally installed
BKU, online for a BKU that is reachable online or handy for login via Handy-Signatur.

As we want to use Handy-Signatur for our authentication mechanism BKU=handy is
appended to our URL which now looks like follows:

https://test1.a-trust.at/asignBuergerkartenServer/StartAuthentication.aspx?

OA=http://xitest.ddns.net:8096/MoaRedirect/&BKU=handy

With this approach the login prompt is successfully displayed, which is illustrated in
figure 5.4.

Figure 5.4: Login prompt for Handy-Signatur

Now when entering valid credentials the system is expected to be forward the browser to
the next step. This next step would be a TAN based two factor authentication mechanism
of the A-Trust login. After entering a valid phone number and the signature password,
an error occurs. This error predicates, that the entered credentials are wrong. After
inspection of the browser’s redirection address, this time no a local address is found, but
the following:

https://test1.a-trust.at/mobile/https-security-layer-request/

identification.aspx

When checking back with A-Trust, the instructions were received that in that case the
URL to the desired BKU has to be entered explicitly. This is done through the parameter
BKUUrl=<url>, which overrides BKU=<bku>. So the BKU URL that corresponds to the
proper Handy-Signatur service is requested, which is located at

https://www.handy-signatur.at/mobile/https-security-layer-request/

default.aspx

With all components combined the final URL is merged, which looks like this:

CHAPTER 5. EXPERIMENTAL EVALUATION 36

https://test1.a-trust.at/asignBuergerkartenServer/StartAuthentication.aspx?

OA=http://xitest.ddns.net:8096/MoaRedirect/&BKUUrl=https://www.handy-

signatur.at/mobile/https-security-layer-request/default.aspx

After entering this new URL as destination in the demo application, the login prompt
visualized in figure 5.4 is displayed again. This time the entered credentials are accepted.
Thus the browser is redirected to the next step of the login, which is the TAN mechanism
as shown in figure 5.5.

Figure 5.5: TAN prompt for Handy-Signatur

The TAN is entered, after comparing the reference value from the prompt with the
one in the SMS, which was received immediately after the prompt is shown. Subsequently
the browser is successfully redirected to the specified URL, that was passed as the OA

parameter.
The core functionality is working as it should. As subsequent step, the variant where

the first step regarding browser forwarding is skipped.

Authentication without browser forwarding is the way, the MOA-Login should be
integrated to our API. For the integration of this mechanism, one additional step is needed
at the beginning of the process. For the first version of the prototype a dynamic HTML
form is used, which is filled with values retrieved via a REST call to the familiar URL

https://test1.a-trust.at/asignBuergerkartenServer/StartAuthentication.aspx?

OA=http://xitest.ddns.net:8096/MoaRedirect/&Format=JSON

At the end of the URL the parameter Format=JSON is appended. This signalizes, that
the data needed for our HTML form as a JSON response is expected. The dynamic HTML
form is filled with the following values

<form act i on=”{BKUUrl}” enctype=” app l i c a t i on /x−ww−form−ur lencoded ”
method=”post ” name=”{formName}”>

<input type=”hidden” name=”XMLRequest” value=”{XMLRequest}” />
<input type=”hidden” name=”DataURL” value=”{DataURL}” />
<input type=”submit” text=” Star t Login” />

</ form>

CHAPTER 5. EXPERIMENTAL EVALUATION 37

For the second version of the prototype the HTML representation of the form is skipped
and the needed data is directly sent to the server via a HTTP POST request. This way the
user is automatically redirected to the login prompt without needing to click any button.

After an successful authentication, the redirect to the specified URL happens in which
also the HTTP GET parameter SAMLArtifact is received. This value is used to obtain
the data of the authenticated user. To get this data it is necessary to communicate with
yet another interface - a SOAP interface.

5.1.2 Getting the SAML Assertion via the SOAP Interface

For further communication it is necessary to obtain the SAML Assertion, which can be
achieved by sending the received SAML Artifact via the SOAP interface, which is located
at

https://test1.a-trust.at/asignBuergerkartenServer/

GetAuthenticationData.asmx

The first step for communicating with the SOAP Service is, to get the WSDL file, by
attaching the parameter WSDL to the above URL as seen in figure 5.6.

Figure 5.6: GetAuthenticationData between components

With this file as input for the maven-jaxb2-plugin1 the Java classes are created,
which are needed for the following step. This process has to be performed only once
before runtime.

1https://java.net/projects/maven-jaxb2-plugin/pages/Home

CHAPTER 5. EXPERIMENTAL EVALUATION 38

Now, by sending the SAML-Artifact, which was obtained in step 5.1.1 to the available
GetData operation available at

http://www.a-trust.at/aSignBuergerkartenServer/GetData

a XML response is received as illustrated in figure 5.7. This XML response is, if the
previous steps were successful, a valid SAML-Assertion that contains the data of the
authenticated user.

Figure 5.7: SAML response to redirect URL

5.1.3 Processing the SAML-Assertion

After successfully obtaining the SAML-Assertion, there is a lot of information to process.
There are two ways, how a user can currently use the MOA login: via Handy-Signatur
and via XiDentity. Dependent on the method used, the SAML-Assertion looks different.
The information also has to be verified and checked for validity.

5.1.3.1 Parsing the user information

As mentioned above, there is a structural difference regarding the SAML-Assertion be-
tween the two methods of authentication.

The Handy-Signatur SAML-Assertion is containing the given name, the last name
and the date of birth of the authenticated user. It also contains a unique id to identify
the user to our service. This identifier does not change over time or after the certificate
of the user is changed.

CHAPTER 5. EXPERIMENTAL EVALUATION 39

The XiDentity SAML-Assertion does not contain the same information as the Handy-
Signatur SAML-Assertions. They are missing the date of birth of the user and as an id
A-Trust provides the serial number of the attached certificate. This turned out to be a
problem in the long run, because when revoking the certificate (i.e. when the user for-
gets the signature password) or extending the lifetime of it before it expires, the unique
identifier of the users would change. Therefore the toolkit could no longer map the au-
thenticated user to the old identity and the user would be recognized as completely new
individual. This would lock the users out of all their accounts which are connected to
the old id. In cooperation with A-Trust a concept was developed to solve this problem,
which is currently implemented. The serial number of the first created certificate is used as
unique id. Every further revocation or renewal of certificates is protocoled at the A-Trust
data center. This way the new certificates can be mapped to the old identities.

By using and configuring a XML parser, the information for both assertion types can
be extracted. Thus the defined tags inside the document have to be accessed, which
include the needed information.

5.1.3.2 SAML-Assertion Validation

For additional security, certain aspects of the SAML-Assertion are checked and validated.
Inside the assertion, a X.509 certificate of the authenticated user is attached. After

parsing the BASE64 encoded certificate, a check can be carried out, if the certificate is
still in its validity range and therefore not expired. Also if the issuer of the certificate is
valid, can be reviewed.

The whole SAML-Assertion is signed with the certificate’s private key at the A-Trust
trust center. We can verify, that the content was not subsequently modified by verifying
the XML signature with the public key of the transmitted certificate.

5.2 OAuth 2 Flow: Communication between Client and
API

After successfully authenticating the user at the prototype, the client can initialize the
OAuth 2 flow. The endpoints which are used in this step are highlighted in figure 5.8.

Figure 5.8: Endpoints used by clients

CHAPTER 5. EXPERIMENTAL EVALUATION 40

To validate the functionality of the prototype, two different clients are implement to
test the API. For the first client an Java implementation with the aid of the Spring-Boot-
Framework is created. The other client is written in the script language PHP. As one
requirement for the API was, that is should be easy to integrate in an environment, the
creation of said lightweight clients is not very complex.

Additionally to the showcase clients the application ’Postman’ will be introduced, as
it helped to test the prototype during the implementation process.

As for special cases, where the API is integrated when there are already other authenti-
cation mechanism in place, useful hints can be found in the Facebook Login documentation
discussed in section 3.1.1.

5.2.1 Spring Client

For the first client, which is written in Java, the frameworks ’Spring Boot’ 2 and ’Spring
Security’ 3 are used. With the aid of the available built-in components it is fairly simple
to create an OAuth 2 client.

With the Annotations @SpringBootApplication and @EnableOAuth2Client the project
is specified as an Spring-Boot application that contains the functionality of an OAuth 2
client. Furthermore he client has to be configured with the following parameters

• client id

• client secret

• The authorization endpoint

• The token endpoint

• The user information endpoint

The configuration of these parameters is defined in the application.yml file, which
looks like follows:

pro to type l og in :
c l i e n t :

c l i e n t I d : KA8NIJSY5QKBPEWXW55IV5HU6PJC6XPM
c l i e n t S e c r e t : ZXIJBHZWQZS4WIJ55PWENBMU4QLU2GTC9JISCLEL
accessTokenUri : http :// x i t e s t . ddns . net :8096/ auth/oauth/ token
use rAuthor i za t i onUr i : http :// x i t e s t . ddns . net :8096/ auth/oauth/

autho r i z e
r e s ou r c e :

u s e r In f oUr i : http :// x i t e s t . ddns . net :8096/ auth/me

For the first step it is necessary, to be authenticated at the API. To achieve this, a
redirect to the /oauth/authorize interface of the authorization server we specified in the
configuration is needed. This can be accomplished, by registering a Spring-Security filter
that handles the access management in our Spring client:

2https://projects.spring.io/spring-boot/ (accessed July 26, 2017)
3https://projects.spring.io/spring-security/ (accessed July 26, 2017)

CHAPTER 5. EXPERIMENTAL EVALUATION 41

@Override
// In t h i s method we s e t the ac tua l f i l t e r we c r e a t e f u r t h e r down
protec ted void con f i gu r e (HttpSecur i ty http) throws Exception {

http . antMatcher (”/∗∗”) . author i zeReques t s ()
. antMatchers (”/” , ”/ l o g i n ∗∗”) . permitAl l () . anyRequest ()
. authent i ca ted ()
. authent i cat ionEntryPo int (new LoginUrlAuthent icat ionEntryPoint (”/”))
. and ()
. addF i l t e rBe fo r e (oau thF i l t e r () , Ba s i cAuthen t i c a t i onF i l t e r . c l a s s) ;

}

@Bean
@Conf igurat ionProper t i e s (” p ro to type l og in ”)
//We use a Java Bean , to get the Cl i entResource s with our con f i gu r ed data as

c on f i gu r a t i on p r op e r t i e s . These Cl i entResource s c o n s i s t o f
Author izat ionCodeResourceDeta i l s and ResourceSe rve rProper t i e s

pub l i c C l i entResource s p ro to type l og in () {
re turn new Cl i entResource s () ;

}

//This method i s c a l l e d with the Cl i entResource ob j e c t c r ea ted v ia the above
func t i on pro to type l og in () and the path the f i l t e r should be app l i ed (e . g

. ”/ l o g i n / pro to type l og in ”)
p r i va t e F i l t e r oau thF i l t e r (C l i entResource s c l i e n t , S t r ing path) {

//Creat ion o f the OAuth2Cl i entAuthent i cat ionProces s ingFi l t e r
OAuth2Cl i entAuthent i cat ionProces s ingFi l t e r

oAuth2Cl i entAuthent i ca t i onF i l t e r = new
OAuth2Cl i entAuthent i cat ionProces s ingFi l t e r (path) ;

// I n i t i a l i z e the OAuth2RestTemplate with the data from our
Cl i entResource s ob j e c t to make REST c a l l s to the API

OAuth2RestTemplate oAuth2RestTemplate = new OAuth2RestTemplate (
c l i e n t . g e tC l i en t () , oauth2Cl ientContext) ;

//Connect the c rea ted OAuth2RestTemplate to the
oAuth2Cl i entAuthent i ca t i onF i l t e r

oAuth2Cl i entAuthent i ca t i onF i l t e r . setRestTemplate (oAuth2RestTemplate)
;

//Create the User In foTokenServ ices ob j e c t we need to obta in the user
i n f o data from the s p e c i f i e d u s e r In f oUr i i n t e r f a c e at the API

User In foTokenServ ices t okenSe rv i c e s = new User In foTokenServ ices (
c l i e n t . getResource () . ge tUse r In foUr i () , c l i e n t . g e tC l i en t () .
g e tC l i en t Id ()) ;

//Connect the OAuth2RestTemplate a l s o to the User In foTokenServ ices
t okenSe rv i c e s . setRestTemplate (oAuth2RestTemplate) ;
//Connect the c rea ted User In foTokenServ ices to the

OAuth2Cl i entAuthent i cat ionProces s ingFi l t e r
oAuth2Cl i entAuthent i ca t i onF i l t e r . s e tTokenServ i ce s (t okenSe rv i c e s) ;
// F ina l l y re turn the c reated f i l t e r
re turn oAuth2Cl i entAuthent i ca t i onF i l t e r ;

}

After defining that filter, the redirect to the login prompt is active. After a successfull
authentication, the user agent establishes the connection back to our client. The next steps
are handled automatically, because the relevant class of our implementation is remarked
with the @EnableOAuth2Client annotation:

CHAPTER 5. EXPERIMENTAL EVALUATION 42

@SpringBootAppl icat ion
@EnableOAuth2Client
pub l i c c l a s s So c i a lApp l i c a t i on extends WebSecurityConfigurerAdapter {
[. . .]
}

So the client performs the request for the access token via /oauth/token as a next step
and then sets the session authentication to an so called OAuth2Authentication. With this
authentication in place it is possible to access the user info endpoint at /me and with these
steps the authentication process is finished. As a result we are able to access the authen-
tication data of the authenticated user by reading it from the OAuth2Authentication.
Therefore we created a REST interface URL for the client at /printuserdata, which
returns the mentioned data as a JSON file:

@RequestMapping ({ ”/ pr in tu s e rda ta ” })
pub l i c Map<Str ing , Str ing> user (P r i n c i pa l p r i n c i p a l) {

//Get the p r i n c i p a l and authen t i c a t i on o f the authent i ca ted user
OAuth2Authentication oAuth2Authentication = (OAuth2Authentication)

p r i n c i p a l ;
Authent i cat ion au then t i c a t i on = oAuth2Authentication .

getUserAuthent i cat ion () ;
//Parse them as JSON
Map<Str ing , Str ing> d e t a i l s = (Map<Str ing , Str ing >) au then t i c a t i on .

g e tDe t a i l s () ;
JSONObject d e t a i l s a s j s o n = new JSONObject (d e t a i l s) ;
map . put (” id ” , d e t a i l s a s j s o n . g e tS t r i ng (” id ”)) ;
map . put (” f i r s tname ” , d e t a i l s a s j s o n . g e tS t r i ng (” f i r s tname ”)) ;
map . put (” lastname” , d e t a i l s a s j s o n . g e tS t r i ng (” lastname”)) ;
map . put (”dob” , d e t a i l s a s j s o n . g e tS t r i ng (”dob”)) ;
r e turn map ;

}

5.2.2 PHP Client

For the PHP client we could implement a simple client by ourselves. In practice developers
would utilize external libraries, as they are often more extensive and already implement
convenient tasks like session- and exception handling. Thus to simulate the usage of our
API in a real world scenario, we rely on a external OAuth 2 client library under MIT
licensing 4.

The first step is the same as for the Spring client. We need to configure the client
details and endpoint URLs. As we can see in figure 5.9, the minimal UI shows us the
configured client details:

4https://github.com/vznet/oauth_2.0_client_php (accessed July 26, 2017)

CHAPTER 5. EXPERIMENTAL EVALUATION 43

Figure 5.9: Minimal UI of the PHP client

After clicking on the authorize button, the client redirects the user to the known login
prompt (as already visualized in figures 5.4 and 5.5). Following the OAuth 2 flow, the redi-
rect back to the client happens after an successful authentication and the /oauth/token

interface is called with the according parameters. Now the missing data is automatically
filled into the blank UI fields. The last step missing is to access the /me interface of the
API. This is achieved by clicking the request API button. As seen in figure 5.10 the
request returned the data of the authenticated user as expected:

Figure 5.10: User data is returned and blank UI fields are filled

After this last step the authentication process is concluded. This shows, how easy the
integration of OAuth 2 is and how fast it is to include in an application.

CHAPTER 5. EXPERIMENTAL EVALUATION 44

5.2.3 Postman

Postman5 is an application, for developing and testing APIs. It was frequently used during
prototyping and has a build-in OAuth 2 authentication method. When requesting tokens
via this method, a prompt is shown, that can be seen in figure 5.11. Via this module a
full OAuth 2 flow can be executed.

Figure 5.11: Getting new access token via Postman

After connecting to the authorization endpoint of the prototype the user is prompted
with a web-view containing the login prompt for the user. Following the login the applica-
tion is contacting the token endpoint with the gained authorization code and exchanging
it against an access token. When the flow was successful, the newly gained access token
is stored manually and available to the user. It now can be decided, if the token should
be used in the header of a request to the resource server or as URL parameter. If used
directly in the URL, Postman appends the access token to the resource server URL the
following way:

5https://www.getpostman.com/apps (accessed September 11, 2017)

CHAPTER 5. EXPERIMENTAL EVALUATION 45

http://xitest.ddns.net:8096/me?access_token=44553eb5-f438-4a74-9162-

502457050d23

When choosing ’Add token to Header’, the token is added to the HTTP Header in the
request to the resource server. In plain text it looks like this:

Authorization:Bearer 44553eb5-f438-4a74-9162-502457050d23

As we learned in section 4.3.1.1, in productive environments the second method should be
preferred.

This fast, transparent and dynamic way of testing the API while in development
helped, to locate errors, with the certainty that the error is not part of a faulty client
implementation.

CHAPTER 6. CONCLUSION AND FUTURE WORK 46

Chapter 6

Conclusion And Future Work

In this last chapter we will discuss the outcome of the thesis and further steps that can
be made in order to extend the prototype or make it ready for production.

6.1 Conclusion

The initial requirements were fully met by the second version of the implemented proto-
type. In cooperation with the company XiTrust the creation was performed from scratch
and resulted in an operational application which already is in use for proof of concept
showcases. First of all the requirements were evaluated and an analysis of the current
situation in the field of authentication mechanisms was performed. Based on this analysis
and in line with the requirements and use-cases the protocols and frameworks that are
eligible for an implementation were chosen.

The architecture and details for the prototype were defined and the decisions made in
this process were used to implement a first prototype. This implementation showed, that
the authentication process could be realized with the chosen architecture. However, there
were parts of the implementation, that were unnecessary and the configuration was more
complicated than it needed to be.

Based on this first prototype and the lessons learned from implementing it, further
development started to improve it. The second prototype was also started from scratch.
This way only the necessary components were included into this new implementation. The
configuration is user friendly and well documented.

With a test instance in place, the service can already be used with client side imple-
mentations.

6.2 Future Work

As the prototype is technically finished, it can be used as foundation for a future product
or further research purposes. However as it was build to be flexible and easily expandable,
there are multiple options for extending it as we will learn in the following sections.

CHAPTER 6. CONCLUSION AND FUTURE WORK 47

6.2.1 Extend to OpenID Connect

By using OAuth 2 as protocol for the prototype, the system is open for various enhance-
ments.

As we learned in chapter 4 we did not use OpenID Connect because of usability and
distribution reasons. If the tradeoff from usability to security is desired, the possibility
exists to extend the OAuth 2 base framework for an additional OpenID Connect layer. This
enhances the security a small step further. This would mean, that the bearer tokens could
be exchanged for JWT tokens and the client would have to perform signature validations.
Also additional ID tokens would be in place.

6.2.2 Extend the API for additional tasks

Clients which use the service of the prototype can offer their users a secure way of authen-
ticating themselves. As the prototype is based on OAuth 2 there is also a authorization
protocol in place. Thus it has all the prerequisites to implement other tasks that authenti-
cated users could benefit from. To accomplish this, the user-role- and scope-management
has to be defined and new interfaces have to be created for various additional tasks. The
extension of the API is visualized in figure 6.1. These tasks could be offered without
implementing another interface in the client.

Figure 6.1: Extending the prototype for additional tasks

6.2.3 Legal audit

The prototype is a technical proof of concept of how the authentication via a qualified
identity can be easily integrated in applications. The legal situation was taken in con-
sideration while planning the prototype but has not been revised by experts in this field.
Before the authentication service is used in an productive environment, the framework
should be reviewed by legal professionals.

Also in respect to the upcoming EU regulation 2016/679, on the protection of nat-
ural persons with regard to the processing of personal data and on the free movement
of such data, and repealing Directive 95/46/EC (General Data Protection Regulation)
[PtCotEUa], the legal framework should be evaluated on further prototypes or products.

CHAPTER 6. CONCLUSION AND FUTURE WORK 48

6.2.4 Security audit

In chapter 3 we got to know attack vectors regarding the prototype and OAuth 2 in general.
These attack vectors often correspond to client-side implementations and responsibilities,
therefore they cannot be prevented on the server side implementation level. A way to
mitigate them is to educate developers how to implement and use the service. The place
for documentation which helps developers with these issues is the developer portal, which
will be mentioned in the next section.

When it comes to server-side implementation issues, they were taken into account
while implementing the prototype. Not every issue is known at the moment of planing
and implementing, so there may exists unknown weaknesses. An security audit should
be performed to guarantee the security for the prototype in a broad area of application.
These security audits often happen in the form of penetration tests, to find weak spots in
the implementation.

6.2.5 Developer Portal

As an important step for using the prototype as authentication provider, it is necessary to
provide a convenient developer portal for customers. This developer portal is integrated
into the system as seen in figure 6.2.

Figure 6.2: Developer portal in context

As for now, it is not possibly to maintain registered clients or change data in a conve-
nient way. The clients can be created and deleted via a REST-API. These two available

CHAPTER 6. CONCLUSION AND FUTURE WORK 49

commands show, how to handle the clients. Thus a foundation for the developer por-
tal can be created by adding further commands to said REST-API. Additionally it will
be necessary to offer an appealing front-end to the customers, which communicates with
this REST-API. That way they will be able to easily maintain their applications and the
corresponding data like API keys and other details.

Nomenclature

2FA Two Factor Authentication, page 6

API Application programming interface, page 2

BKS Bürgerkarten Server (citizen card server), page 32

eIDAS electronic IDentification, Authentication and trust Services, page 5

ERnP Ergänzungsregister für natürliche Personen (Supplementary Register for Natural
Persons), page 1

IAM Identity and Access Management, page 1

ID-FF Identity Federation Framework, page 13

IdP Identity provider, page 5

JDBC Java database connectivity , page 29

JWT Java web token, page 14

MAC Message authentication code, page 25

MOA Module for Online Applications, page 15

OA Online application, page 33

PGP Pretty Good Privacy, page 6

REST Representational state transfer , page 36

RO Registration officer, page 5

SAML Security Assertion Markup Language, page 13

SOAP Simple Object Access Protocol, page 37

SSL Secure sockets layer, page 7

SSO Single sign on, page 13

TLS Transport layer security, page 7

UI User interface, page 42

50

CHAPTER 6. CONCLUSION AND FUTURE WORK 51

WSDL Web services description language, page 37

XBS XiTrust Business Server, page 4

ZMR Zentrales Melderegister (Central Register of Residents), page 1

Bibliography

[BKE14] Seymour Bosworth, M. E. Kabay, and Whyne E. Computer Security Hand-
book, volume 1. John Wiley & Sons, Incorporated, New York, USA, 6th
edition, 2014.

[Cen] A-SIT Secure Information Technology Center. Faq about the mobile phone
signature. Online: https://www.buergerkarte.at/en/faq-mobile.html

(accessed May 24, 2017).

[dACA+14] Norberto Nuno Gomes de Andrade, Lisha Chen-Wilson, David Argles,
Michele Schiano di Zenise, and Gary Wills. Electronic Identity. Springer
Briefs in Cybersecurity. Springer, 2014.

[dB12] Duncan de Borde. Two-factor authentication. Insight Consulting, 2012.

[EGICEI] TU-Graz E-Government Innovation Center EGIZ IAIK. Moa-id.
Online: https://www.egiz.gv.at/en/schwerpunkte/13-moaspssid (ac-
cessed March 10, 2017).

[Fac] Facebook. Add facebook login to your app or website. Online: https:

//developers.facebook.com/docs/facebook-login/ (accessed Septem-
ber 04, 2017).

[Foua] OpenID Foundation. Specifications. Online: https://openid.net/

developers/specs/ (accessed August 11, 2017).

[Foub] OpenID Foundation. Welcome to openid connect. Online: https://openid.
net/connect/ (accessed March 08, 2017).

[Gmb] XiTrust Secure Technologies GmbH. Xitrust secure technologies gmbh. On-
line: http://www.xitrust.com/xitrust-secure-technologies-gmbh (ac-
cessed February 20, 2017).

[Gol] Rahul Golwalkar. Pros and cons in using jwt (json web
tokens). Online: https://medium.com/@rahulgolwalkar/

pros-and-cons-in-using-jwt-json-web-tokens-196ac6d41fb4 (ac-
cessed October 08, 2017).

[Hag15] Patrick Hagelkruys. a.sign Bürgerkarten Server. A-Trust Gesellschaft für
Sicherheitssysteme, The address of the publisher, 0.3 edition, 11 2015.

52

BIBLIOGRAPHY 53

[Har12] D. Hardt. The oauth 2.0 authorization framework. RFC 6749, RFC Editor,
October 2012.

[HL10] E. Hammer-Lahav. The oauth 1.0 protocol. RFC 5849, RFC Editor, April
2010.

[JCM15] M. Jones, B. Campbell, and C. Mortimore. JSON web token (JWT) pro-
file for OAuth 2.0 client authentication and authorization grants. Technical
report, May 2015.

[JH12] M. Jones and D. Hardt. The OAuth 2.0 authorization framework: Bearer
token usage. Technical report, RFC Editor, October 2012.

[JNN08] Anil K. Jain, Karthik Nandakumar, and Abhishek Nagar. Biometric template
security. EURASIP J. Adv. Signal Process, 2008:113:1–113:17, January 2008.

[LMH13] T. Lodderstedt, M. McGloin, and P. Hunt. Oauth 2.0 threat model and
security considerations. RFC 6819, RFC Editor, January 2013.

[Pey16] Sebastin E. Peyrott. The JWT Handbook. Auth0 Inc., 10900 NE 8th Street,
Suite 700, Bellevue, WA 98004, 0.11.0 edition, 2016.

[Por] Statista The Statistics Portal. Number of monthly active
facebook users worldwide as of 2nd quarter 2017 (in mil-
lions). Online: https://www.statista.com/statistics/264810/

number-of-monthly-active-facebook-users-worldwide/ (accessed
September 04, 2017).

[PtCotEUa] The European Parliament and the Council of the European Union. Regula-
tion (eu) no 2016/679 of the european parliament and of the council of 27
april 2016 on the protection of natural persons with regard to the process-
ing of personal data and on the free movement of such data, and repealing
directive 95/46/ec (general data protection regulation) on electronic identi-
fication and trust services for electronic transactions in the internal market
and repealing directive 1999/93/ec.

[PtCotEUb] The European Parliament and the Council of the European Union. Regula-
tion (eu) no 910/2014 of the european parliament and of the council of 23 july
2014 on electronic identification and trust services for electronic transactions
in the internal market and repealing directive 1999/93/ec.

[RHPM06] Nick Ragouzis, John Hughes, Rob Philpott, and Eve Maler. Security as-
sertion markup language (saml) v2.0 technical overview. Technical report,
October 2006.

[RMTH14] J. Richer, W. Mills, H. Tschofenig, and P. Hunt. OAuth 2.0 message authen-
tication code (mac) tokens (work in progress). Technical report, jul 2014.

[Sir] Prabath Siriwardena. Oauth 2.0 bearer token profile vs mac token profile.
Online: https://dzone.com/articles/oauth-20-bearer-token-profile

(accessed October 08, 2017).

BIBLIOGRAPHY 54

[Sye] Dave Syer. spring-security-oauth. Online: https://github.

com/spring-projects/spring-security-oauth/blob/master/

spring-security-oauth2/src/test/resources/schema.sql (accessed
October 08, 2017).

[Twi] Inc. Twitter. Authentication - send secure authorized requests to the twitter
api. Online: https://dev.twitter.com/oauth (accessed August 11, 2017).

[Zim91] Phil Zimmermann. An Introduction to Cryptography, chapter Phil Zimmer-
mann on PGP, page 54. Network Associates, Inc., 1991.

