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Abstract

Detecting the presence of people opens up new applications for different domains. It can
improve the user experience by detecting people’s presence without physical interaction.

Using short range wireless technologies and their transmission ranges for implementing
presence detection, is heavily investigated by researchers. They not only present applica-
tions based on presence detection, but also extend their researches with presence detection
to add more information to it. Different technologies like Bluetooth, Bluetooth Smart or
WiFi are used to generate this presence information. The most common way to identify
the detected devices, is using their hardware addresses.

The aim of this thesis is to substitute this identification, based on hardware addresses,
by cryptographic authentication. Therefore, the opportunities of using Bluetooth Smart
for executing presence detection and combining it with authentication, have been invest-
igated. This resulted in a protocol, which not only supports presence detection, but also
continuously authenticates all detected devices.

An implementation has been provided, showing the practical opportunities of this au-
thenticated presence detection based on Bluetooth Smart. Two applications for Android
perform the presence detection and use the COYERO access environment as basis for the
authentication. This implementation has been verified by conducting extensive experi-
ments, which document its properties and limitations.

Keywords: Bluetooth Smart, Presence Detection, User Authentication, Protocol,
Mobile Devices
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Kurzfassung

Anwesenheitserkennung von Personen eröffnet neue Möglichkeiten von Anwendungen in
verschiedenen Domänen. Diese kann das Nutzererlebnis verbessern, indem Personen erkannt
werden ohne jeglicher Art von physischer Interaktion.

Die Verwendung von Kurzdistanz-Drahtlostechnologien und ihrer Übertragungsreich-
weite, für die Implementierung von Anwesenheitserkennung, wird von diversen Forschern
untersucht. Diese ermöglichen nicht nur eigene Anwendungen die auf Anwesenheitserken-
nung basieren, sondern erweitern ihre Forschungen auch um Informationen die mittels
dieser gewonnen werden können. Unterschiedlichste Technologien, wie Bluetooth, Bluetooth
Smart oder WiFi werden genutzt um diese Anwesenheits-Information zu generieren. Die
Nutzung der Hardwareadressen der Geräte, ist der am weitesten verbreitetste Ansatz um
diese zu identifizieren.

Das Ziel dieser Arbeit ist es, diese Identifizierung mittels Hardwareadressen, durch
eine kryptographische Authentifizierung zu ersetzen. Dafür wurden die Möglichkeiten,
Bluetooth Smart, für eine Anwesenheitserkennung, in Kombination mit einer Authenti-
fizierung zu verwenden, untersucht. Dies resultierte in einem Protokoll, welches nicht
nur eine Anwesenheitserkennung, sondern auch die durchgehende Authentifizierung aller
erkannten Geräte unterstützt.

Eine Umsetzung dieses Protokolls wurde implementiert, welche die praktischen Möglich-
keiten, dieser auf Bluetooth Smart basierenden authentifizierten Anwesenheitserkennung,
zeigt. Zwei Applikationen für Android führen die Anwesenheitserkennung durch und
nutzen die COYERO access Umgebung als Basis für die Authentifizierung. Diese Um-
setzung wurde verifiziert durch die Durchführung mehrerer ausführlicher Experimente,
welche die Eigenschaften und Einschränkung dieser zeigen.

Stichwörter: Bluetooth Smart, Anwesenheitserkennung, Nutzer Authentifizierung,
Protokoll, Mobile Geräte
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Chapter 1

Introduction

Detecting, that certain people are present within a specific area can be used for improving
the performance of services and processes. For instance, a store, which is selling goods to
customers and offering an online pre-ordering tool, could detect the presence of customers
in their store and prepare the pre-ordered good before the customer even interacts with an
employee. This would not only improve the customer’s experience, because they do not
need to wait for their order to be prepared, but also increase the efficiency of the employees.
Another example are attendance systems of all kinds. An organizer of a meeting could get
a notification when all invited employees are present in the meeting room, so that they
know, when they can start the meeting. These examples show the value, which could be
added by extending systems with presence detection.

Indoor presence detection systems are usually implemented by using wireless trans-
mitters and their signal strength for defining a certain area, in which devices are detected.
Many researchers investigate in the possibilities of presence detection with wireless tech-
nologies and try not only to create applications based on presence detection, but also to
add value to their particular researches by extending it with presence detection. Most of
the researchers rely on well established and wide spread wireless technologies, like WiFi,
Bluetooth and Bluetooth Smart. Using WiFi and Bluetooth has the advantage, that
both technologies are wide spread and that there is often an established infrastructure
available. Bluetooth Smart often requires additional hardware in the form of beacons.
However, beacons are very easy to set up and quite cost-effective. Another major advant-
age of Bluetooth Smart is its low energy nature, which makes it very interesting when using
mobile devices that rely on a battery. The amount of mobile devices increases constantly
and they support a variety of wireless technologies, which makes detecting people’s mobile
devices one of the best ways for detecting people themselves. This opens up possibilities
of not only detecting people, but also enables authenticating them during the detection
process, by using an environment like COYERO access, which supports authenticating
people via their mobile devices. An introduction to Bluetooth Smart, state of the art
presence detection research and well established cryptographic authentication systems are
presented in Chapter 2 of this work.

Chapter 3 presents a design, which combines a presence detection via Bluetooth Smart
and a cryptographic authentication for achieving an authenticated presence detection.
This design consists of three phases. Firstly, the recognition of the device is done by re-
ceiving a Bluetooth Smart advertisement. The advertisement’s signal strength defines the

1



CHAPTER 1. INTRODUCTION 2

area, within devices are detected. In phase two, the recognized device is authenticated. A
Public Key Infrastructure builds the basis for the cryptographic authentication procedure.
This authentication uses digital certificates, issued by the Public Key Infrastructure, and
performs a key exchange to create an authenticated session. The last phase is performing
a challenge response protocol, based on the previously created authenticated session. The
challenger continuously broadcasts a challenge, which can be scanned, solved and respon-
ded by nearby devices. Each device, that is already in an authenticated session is able
to solve the challenge. When a device is able to receive a challenge and send a correctly
solved challenge response back to the challenger, this particular device is not only within
a certain range, but also authenticated.

An implementation of the presented design has been carried out utilizing Android
devices and the COYERO access environment. This implementation is shown in Chapter 4.
Two Android applications have been developed, which provide the required functionalities.
One application defines the detection area, when installed on an Android device. This
device is placed in a relevant location, for instance in a shop. It is able to detect people’s
presence in a certain area around the device. To do so, these people have to have the second
application installed on their mobile devices. When both applications recognize each other,
they perform a mutual authentication, create an authenticated session and start to perform
the authenticated presence detection. Additionally, the information about the currently
authenticated and present people is sent to a web server and can be requested by using a
web browser.

The properties of the implementation and the possibilities for using it in a real life
scenario have been investigated by conducting several experiments. The aim of these
experiments was to determine the impact of the separate steps within the design onto the
systems performance. Furthermore, insights into the performance of Android, when it
is used for performing Bluetooth Smart operations, have been gained and device specific
behaviour has been revealed and documented. It has been shown, that an authenticated
presence detection via Bluetooth Smart is possible by only utilizing Android devices. The
results of the experiments and identified limitations are shown in Chapter 5.



Chapter 2

State of the Art

This chapter gives an overview of existing wireless technologies and shows the most im-
portant architectural features of Bluetooth Smart, which is the utilized wireless technology
of the presented design in this work. Afterwards, the different fields of presence detection
in science are presented and proposed systems of other researchers are discussed and com-
pared. The last part of this chapter shows the currently available cryptographic concepts,
which can be used for achieving a user authentication followed by a brief explanation of a
state of the art cryptographic environment, namely COYERO access.

2.1 Overview of Wireless Technologies

Use cases for wireless technologies have different requirements regarding data rates or
transfer distances. Some require high data rates and have to transfer their data over long
distances, where others require low data rates over a small distances. There are various
different wireless technologies available. Small distance applications like remote control
of the TV or getting access to a building can utilize Near-Field Communication (NFC),
Bluetooth, Infra-red or Zigbee. Navigation of ships requires a wide distance support, which
would make satellite communication like Global Positioning System (GPS) a good choice.
For transferring huge data junks Ultra-wideband and Wifi would be a good choice. Fig-
ure 2.1 shows a set of wireless technologies, their typical data rates and transfer distances,
and lets conclude their suitable fields of application.

Wireless technologies are usually allocated with a network category based on their
operational distance. These network types are an artificial construct which enables clas-
sification of use cases. Based on the work of Gupta [37, p. 2], some of the categories are
as follows:

• Body Area Network: A body area network is typically build by devices that are
worn by people like a smart phone, smart watch or heart rate monitor. Represent-
ative technologies are Bluetooth, Bluetooth Smart, NFC.

• Personal Area Network: Generally build by personal devices, which are commu-
nicating within a few meters like smart phones, printers, and cameras. Represent-
atives are Bluetooth, Bluetooth Smart, Zigbee.

3



CHAPTER 2. STATE OF THE ART 4

Figure 2.1: Data Rates and Transmission Distances. Adapted from Gupta [37, p. 3] and
extended by information of Ribeiro [54], Bhandare [13], and Georgakakis et al. [36]

• Local Area Network: Covers networks, which operate within a few hundred
meters. This could be a company building or a campus. A representative tech-
nology is WiFi.

• Metropolitan Area Network: Ranges up to several kilometres are supported.
Could be used in a small town or a metropolis. A representative technology is
Worldwide Interoperability for Microwave Access (WiMAX).

• Wide Area Network: Supports communication up to several thousand kilometres
or in other words, worldwide communication. A representative technology is GPS.

There are more categorisations like a neighbourhood area network as mentioned by
Reiter [53] or a home area network as mentioned by Movassaghi et al. [48]. Most of
the additional network definitions can be classified with one of the previously mentioned
categories as well. However, their name provides often additional domain specific context.

A lot of research is going on to link wireless technologies to different use cases, by
comparing their data rates, transfer distances, power consumptions, and other properties.
Mahmood, Javaid and Razzaq [45] review wireless technologies and their usability for home
area networks and neighbourhood area networks. Other papers focus on comparing the
lower range and low power wireless technologies, like the published works from Movassaghi
et al. [48] and Dementyev et al. [29].

Presence detection is a low range application, which does not require huge data
throughput and usually builds a personal area network. Bluetooth Smart is a suitable
representative which has all these properties.



CHAPTER 2. STATE OF THE ART 5

Name Description Mode

Bluetooth Classic
Supports only Bluetooth Classic connections

Bluetooth specification < 4.0
N/A

Bluetooth Smart
Supports only Bluetooth Smart connections

Bluetooth specification ≥ 4.0
Single-Mode

Bluetooth Smart
enabled

Supports Bluetooth Classic and
Bluetooth Smart connections
Bluetooth specification ≥ 4.0

Dual-Mode

Table 2.1: Types of Bluetooth Devices

2.2 Bluetooth and Bluetooth Smart

Bluetooth Smart, also known as Bluetooth Low Energy (BLE), was first published in the
Specification of the Bluetooth System 4.0. [60] by the Bluetooth Special Interest Group
in 2010. It has extended the already established Bluetooth standard with a low energy
solution, that focuses on long lifetime of devices for transmitting a limited amount of data.
Despite the increasing speed in wireless technologies, as shown by Heydon [39, Chapter 1],
the main target of BLE is low power consumption by sacrificing speed.

The increasing number of available BLE devices, makes it a widely deployed technology.
The article Driven by Standards, in 2016 Wi-Fi Direct and BLE Protocols Will Ship in 2
and 2.9 Billion Devices Respectively [32] states, that about 2.9 Billion devices supporting
BLE, which have been expected to be shipped in 2016. This and the focus on low power
consumption makes BLE a good choice for a various applications.

As mentioned before, BLE has been introduced as a part of the Specification of the
Bluetooth System 4.0. [60]. This BLE Specification has been extended several times since
then. The experiments, which have been conducted in Chapter 5, have used devices with
Bluetooth version 4.1. Therefore, all citations of the Bluetooth Specification that are
carried out from now on, are done for the Specification of the Bluetooth System 4.1. [61].

The extension of classic Bluetooth with BLE resulted in three different types of Bluetooth
enabled devices as shown in table Table 2.1. Bluetooth Classic devices can communicate
with other Bluetooth Classic devices and with Bluetooth Smart enabled device. Bluetooth
Smart enabled devices can communicate with all types of devices. Bluetooth Smart devices
can communicate with other Bluetooth Smart devices and with Bluetooth Smart enabled
devices. [64, pp. 3-4]

2.2.1 Architecture

To get an impression of how BLE is working, its architecture is explained in this section.
This is only an introduction which covers the most important points. All details can be
found the in Specification of the Bluetooth System 4.1. [61].

The architecture of BLE is divided into three parts: a controller, a host, and an ap-
plication layer. The controller represents the lowest layer, that is responsible for receiving
the radio waves and generates interpretable data packets. The host, which is usually
implemented as a software stack, takes this data packets and adds logical management,
like maintaining more than one connections at the same time. The application layer then
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Figure 2.2: BLE Architecture adapted from Heydon [39, Chapter 3] and Townsend, Cuf́ı
and Davidson [64, p. 16].

make use of the host’s software stack to implement a use case. [39, Chapter 3]
Figure 2.2 shows the architecture and the participating layers within the three previ-

ously mentioned parts. These layers are explained in the following paragraphs.

Physical Layer: It handles the conversion of analogous signals to digital signals. To
decrease interference by other radios, BLE works on the 2.4 GHz frequency band and
divides it into 40 channels. Each of these channels has a range of 2MHz on which the data
is transferred. The Transmission (TX) power of BLE is specified in Decibel-Milliwatts
(dBm). The signal shall be transmitted with a dBm value ranging from -20 to +10. [39,
Chapter 5, Section 5.7], [61, Vol. 6, pp. 16-19]

Link Layer: The link layers work flow can be seen as a state machine, which is il-
lustrated in Figure 2.3. Advertising means emitting a signal for all BLE devices in a
surrounding area. A scanning devices is looking for such advertisement signals. When
the hardware supports it, a scanning device can change to the initiating state and start
a connection with the advertising device for exchanging data. For distinguishing advert-
isement and connection signals, the 40 channels of the physical layer are divided into two
logical groups. Three channels become advertising channels and 37 become data chan-
nels. Devices use the three advertising channels for sending advertisements, which can be
scanned by surrounding devices. On the other hand, they use the 37 data channels for
transferring data, when they are in an active connection. The actively used data chan-
nel is specified by an adaptive frequency hopping algorithm. There are two roles within
an established connection. The so called master is always the initiator of a connection,
whereas the slave is the one that has been connected to. A master can be connected to
more than one slaves at the same time and a slave can be connected to more than one
master at the same time. Additionally, a device can be a master and a slave at the same
time. [61, Vol. 6, pp. 32-36]
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Figure 2.3: The Link Layer States, adapted from the Specification of the Bluetooth System
4.1. [61, Vol. 6, pp. 16-19]

(a) Advertising Channel Packet (b) Data Channel Packet

Figure 2.4: Link Layer Packets

For sending any information on either the advertising channels or the data channels a
packet structure is defined by the link layer. The structure is the same for data and ad-
vertising packets. It consists of a preamble which is used for synchronizing the frequency,
an access address for distinguishing between data and advertising packets, a Cyclic Re-
dundancy Check (CRC) for ensuring that all received bits are valid and a Protocol Data
Unit (PDU). The PDU contains either an advertisement or data. Advertising channel
PDUs, as seen in Figure 2.4a, consist of a two byte header, followed by a 6 to 37 byte
payload. This payload is divided into a 6 byte header followed by 0 - 31 bytes of custom
data, which is illustrated in Figure 2.5. This means, a maximum of 31 bytes of custom
data can be transferred with one advertisement. Data channel PDUs consist of a two byte
header, then a 0-27 byte payload and an optional 4 byte Message Integrity Check (MIC).
The message integrity check is only used in an encrypted channel. Figure 2.4b shows the
format of a data channel packet. These data channel PDUs are the basis for the higher
protocol’s data transfer. [61, Vol. 6, pp. 37-39, pp. 45-46]

Host Controller Interface: The host controller interface provides a standardized way
of communication between the host and the controller. This separation is very useful
when deploying one host with controllers of different manufacturers. The host controllers
logical interface definition contains commands plus their expected effects. The physical
interface definition specifies how to physically transport the data on physical channels,
like Universal Serial Bus (USB). [39, Chapter 3, Section 3.1.4]
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Figure 2.5: Undirected Advertising and Scan Response Packets

Figure 2.6: L2CAP PDU

Logical Link Control and Adaptation Protocol (L2CAP): It is basically respons-
ible for two different things. It fragments big data payloads of higher protocol layers and
encapsulates the fragments, so that they are transmittable via the underlying protocols.
Additionally, it serves as a multiplexer, which redirects the received data to higher level
protocols and vice versa. This is done with channels ids, that indicate the corresponding
higher protocol. BLE uses three channels. Id 0x4 is used for the attribute protocol, 0x6
for the security manager, and 0x5 for the L2CAP’s own signalling channel. The signalling
channel is used when a received message can not be identified, is invalid or had a wrong
length. Additionally, it is used when the slave wants to request an update of the connection
parameters. [37, pp. 203-207], [64, p. 25]

The data, which is received by higher protocols is packed into a L2CAP PDU. This
packet can be seen in Figure 2.6. The first two bytes contain the length of the payload,
followed by 2 byte that contain the channel ID, which is used for identifying the endpoint
of the data. This L2CAP PDU is then fragmented and transferred to the link layer via
the host controller interface. [61, Vol. 3, p. 47], [37, p. 205]

The size of the data which is received by the higher protocols is limited to the size
of the Maximum Transmission Unit (MTU). This value informs other BLE devices about
the acceptable maximum size of L2CAP payloads. The default and minimum value of
the MTU is 23 bytes. The theoretical maximum MTU is 65535 bytes. [37, p. 202], [61,
Vol. 6, p. 46]

Security Manager: This paragraph contains security related information which makes
use some terms explained in 2.4. BLE provides the processes of pairing and bonding for
devices. When two devices perform a pairing or a bonding procedure, keys are exchanged
for establishing security features. The security manager is responsible for performing
this key distribution. Pairing means temporary exchanging a secret key, that enables
switching to a secured connection link. Bonding must follow after a completed pairing
procedure and stores secrets permanently. These permanent secrets are then used for
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faster re-establishment of a secured connection. The previously mentioned keys are derived
from a shared secret. This shared secret can be generated with three different modes.
The mode Just Works sets the shared secret to zero, meaning the communication is
not authenticated. This method is used, when at least one of the devices has no input
and output capabilities. The mode Passkey Entry can be used, when one device is able
to display a 6-digit numerical passkey or the user knows the 6-digit numerical passkey
of this device and the second device is able to receive input by the user. This 6-digit
numerical passkey is the basis for an authenticated and secured communication between
the devices. Out of Band is the third mode for exchanging a shared secret. The Out of
Band shared secret is transferred with a different technology, like NFC. This generates a
128 bit shared key, which is then used as basis for the security features. [37, pp. 214-216],
[39, Chapter 3, Section 3.2.2]

Under the premise, that the used channel within an Out of Band pairing can not be
eavesdropped, Out of Band is the only pairing method that is secure. Just Works and
Passkey Entry are vulnerable to an passive eavesdropping attack as shown by Ryan [55].

Attribute Protocol: The attribute protocol is an additional abstraction layer, that
organizes data in attributes. Three things are associated to an attribute. The Attribute
Handle is a 16-bit value which is used for accessing the attributes value. The Attribute
Type is uniquely identified by an 128-bit Universally unique identifier (UUID), as defined
in ITU-T Rec. X.667 [40], and can be specified by anybody without restrictions. The
Attribute Value is the actual value linked to the attribute. Additionally, permissions, which
handle the access, can be linked to an attributes and mark them as readable, writeable,
or both. The attribute protocol defines the roles of a server and a client. When two
devices are in a connection, they can become a client, a server, or both. These roles are
not related to the roles of master or slave of the link layer, which are explained in 2.2.1.
[61, Vol. 3, pp. 482-485]

There are six defined method types which are used for establishing a communication
between server and client. The following list is based on the Specification of the Bluetooth
System 4.1. [61, Vol. 3, p. 488] and contains the six define methods.

• A request is a command that is sent from a client to a server and requires an answer
in form of a response.

• A response is the answer from a server sent to a client following a request.

• A command is send from a client to a server.

• A notification is a server initiated message sent to a client.

• An indication is a server initiated message sent to a client, which requires a confirm-
ation of the client.

• A confirmation is an answer from a client, send after an indication.

There are several operations that are supported by the attribute protocol. All opera-
tions are implemented with one of the previously mentioned methods. The operations are
used to perform server configurations, error handling, finding server information, reading
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and writing values, and notifying clients about updates. A detailed list of these operations
can be found in the Specification of the Bluetooth System 4.1. [61, Vol. 3, pp. 492-524]
and an overview is published by Townsend, Cuf́ı and Davidson [64, pp. 26-28].

Generic Attribute Profile (GATT): GATT it located on top of the attribute pro-
tocol. In contrast to the flat organized attributes of the attribute protocol, where no
conceptual grouping is possible, GATT introduces functions for grouping and achieving
a hierarchical organization. To do so, the concepts of services and characteristics are
introduced. Services and characteristics are implemented via attributes of the attribute
protocol. [64, pp. 32-33]

A service is a collection of data, which is related to the same feature or purpose. It
can either be a primary or a secondary services. Primary services are intended to expose
the main functionality of the devices and can be discovered by GATT defined discovery
procedures, meaning a client can retrieve information about the structure of the service.
Services can be included from other services to add additional context to it. Secondary
services shall be included by other services and can only be discovered, when the client
already knows about the service, which includes the secondary service. [61, Vol. 3, p. 542],
[64, p. 65]

Characteristics represent the actual data that is provided by a service. It consists of
a declaration, a value, and optional descriptors. The declaration holds the information
about the characteristics, like its unique UUID. This UUID is used to identify the charac-
teristic. The value represents the assigned data and the optional descriptors may contain
additional meta data like a user friendly description string. Once a service is discovered,
the characteristics of the service can be discovered as well. After discovering the char-
acteristics, a client can read and write them, if the assigned permissions allow it. [37,
p. 265, pp. 273-274]

GATT defines procedures, which use the operations defined by the attribute pro-
tocol, for enabling convenient usage of services and characteristics. Four different types of
procedures can be distinguished within GATT. Discovery procedures are used for discov-
ering information about service structures and characteristic properties. Client initiated
characteristic procedures are used for reading and writing the servers characteristics and
their descriptors. Server initiated characteristic procedures are used by the server to send
updates about a characteristics to the client. The last are server configurations, which
are used for configuring the server. An example service can be seen in Figure 2.7. [39,
Chapter 10, Section 10.7], [61, Vol. 3, p. 558]

Only one procedure of is available for server configurations. This is the so called
exchange MTU procedure. The client can use this procedure to exchange the MTU with
the server for increasing or decreasing the performance of data transfers. The client is
sending its MTU to the server and the server either responds with an error or with its
own MTU. If the server responds with its MTU, the minimum of the client’s and server’s
MTU will become the MTU of both. [61, Vol. 3, p. 560]

Generic Access Profile (GAP): In contrast to GATT, which defines the data struc-
ture and its procedures, GAP defines how a device discovers other devices, how it connects
to them and how it presents useful information to other devices. Basically it defines how
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Figure 2.7: Example GATT Service

the devices have to use the previously introduced protocol layers and structures for com-
municating wich each other. Furthermore, it provides a naming convention that shall be
used within an User Interface (UI), to enable an easy and unified user experience for all
BLE applications. One of these conventions is that on a UI the term “Bluetooth Passkey”
shall be used for indicating the 6-digit numerical passkey. [37, pp. 305-306]

Devices can take over several roles in BLE. These roles usually come in pairs. Firstly,
broadcaster and observer. A broadcaster is a device which advertises data. An observer,
on the other hand, is scanning for advertisements. When the devices intend to establish
a connection, they are called peripheral and central. A peripheral transmits a signal, like
the broadcaster. However, it is connectable so that a central can initiate a connection to
a peripheral. A central takes over the role of a master and a peripheral takes over the
role of a slave in the link layer (see 2.2.1). The attribute protocol’s roles of a client and a
server are not related to a peripheral and central. This means, a device can be a client or a
server, regardless of the device being a peripheral or central. When the link layer supports
it, devices can act in more than one GAP role at the same time. [61, Vol. 3, pp. 292-294],
[64, p. 37]

When a peripheral or a broadcaster is transmitting data on the advertising channels
of the link layer (see 2.2.1), they are called advertiser. Centrals and observer listening
for such advertisements are called scanner and are able to receive data from advertisers.
Additionally, scanner can send a scan request to an advertiser, which then is answered
with a scan response. This enables sending two advertising packets to other devices
without establishing a connection. Only scanning for advertisements without sending
a scan request is called passive scanning, whereas sending a scan request is called active
scanning. These two behaviours are illustrated in Figure 2.8. [37, p. 309]

The undirected advertising PDUs and the scan response carry the custom data that
shall be send to a scanner. Those two structures are very similar and can be seen in
Figure 2.5. The space for custom data is 31 bytes. GAP defines a format for these
advertising and scan response data. It fills up the remaining 31 byte front to back with
so called AD-structures (see Figure 2.9). These AD-structures have a variable length.
Therefore it may happen that not all of the 31 bytes are used. Unused space is filled with
zeros. AD-structures start with one byte indicating the length. Then there is a one byte
AD-type definition, followed by length-1 bytes of AD-data. [61, Vol. 3, p. 387]
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(a) Passive Scanning

(b) Active Scanning

Figure 2.8: Advertising and Scan Response

Figure 2.9: AD Structure of Advertisement and Scan Response Data
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Figure 2.10: Example GATT Device Profile Structure

Figure 2.11: Advertising Interval

Application Layer: It is the highest layer in the protocol stack and represents applica-
tions, which use the underlying layers for implementing use cases. So called GATT based
profiles are defined for making designing a BLE device easier. If two devices support the
same profile, they are able to perform the required actions for the use case, which the
profile was defined for. Profiles define the behaviour of devices like how to discover other
devices and how to connect to them. Furthermore, they contain a definition of the used
GATT services, a definition of the characteristics, and a detailed description of the use
case. A profile may contain more than one service. However, a GATT service can be part
of more than one profile as well. Additionally, multiple profiles can be supported from
one device. This leads to a structure as illustrated in Figure 2.10. [37, pp. 333-335], [39,
Chapter 3, Section 3.3.3], [64, p. 14], [66]

2.2.2 Customizable Settings

It is possible to customize several settings of the BLE device. This section highlights the
most important ones, which have been used by the presented design in 3.

Advertising Interval: For explaining the advertising interval, the concept of an ad-
vertising event has to be clarified. An advertising event is the process of sending one or
more advertising PDUs on all used advertising channels. This is managed by the link layer.
The length of such an advertising event is the combination of the advertising interval and
a pseudo random delay as illustrated in Figure 2.11. This advertising interval has to be a
value within the range of 20 milliseconds up to 10.24 seconds and it has to be a multiple
of 0.625 milliseconds. [61, Vol. 6, pp. 61-62]
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Figure 2.12: Scan Interval and Scan Window

Figure 2.13: Connection Interval

Scan Interval and Scan Window: The scan interval defines, when the scanner starts
scanning for advertisements. The scan window defines how long the scanner is active.
This is illustrated in Figure 2.12. [39, Chapter 8, Section 8.5.2]

Connection Interval, Slave Latency and Supervision Timeout: The connection
interval defines the length of so called connection events. Within one connection event the
master and slave of the link layer transmit data on one of the data channels. When one
connection event is over, both, master and slave, switch to the next channel and start a
new connection event (see Figure 2.13). However, the slave is not required to listen and
react to every connection event. It can skip as much connection events as defined by the
slave latency setting. This means, when the slave latency is set to zero, the slave has to
listen and react to every connection event. The supervision timeout setting is the indicator
for a connection loss. When either the master or the slave do not recognize a packet for
the time specified in the supervision timeout, it is considered as a loss of connection. [37,
pp. 158-159]

2.3 Presence Detection

The main task of wireless networks is to transfer data from one entity to another without
having the requirement of a physical connection. However, another application, especially
for wireless technologies with a smaller transmission range, like Bluetooth, BLE, and WiFi,
is presence detection of devices.

A network consists of several nodes, that communicate with each other, either one
directional or bidirectional. Presence detection requires only a one directional communic-
ation, meaning one node sends information to another. From now on, a node emitting a
signal is a called Sending Node (SN), whereas a node receiving these signals is called a
Receiving Node (RN). When a RN receives a signal from a SN, it can be concluded, that
the SN and the RN are within a certain range. This range is defined by the maximum
transmission range of the SN’s wireless technology. This maximum transmission range
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Figure 2.14: Wireless Presence Detection

defines the Area of Interest (AoI), in which nodes are able to be detected. It can either be
an explicit or an implicit AoI as illustrated on the left and right in Figure 2.14, respect-
ively. Explicit means that the SN defines it with its transmission range, whereas implicit
means, that a RN defines the AoI. This AoI can be narrowed down by thresholding the
signal strength of the received signal.

Some use cases require location context that is linked to nodes. From now on a node
of this kind is called Location Context Node (LCN). LCNs always define the AoI, because
they can add location context to it. This context can be created in different ways. One
way for adding location context to a node is, when a node is able to retrieve its GPS
coordinates. Another would be deploying nodes at static positions. For instance, a node
placed next to a playground adds the context ‘playground’ to it. A Detectable Node (DN),
on the other hand, is a node, which changes its position and does not have any location
information attached to it. However, when a DN can sense or can be sensed by a LCN, the
location context of the LCN is valid for the DN as well. This is visualized in Figure 2.15.

The categorizations into RN/SN and LCN/DN have no relationship to each other,
meaning a RN can be a LCN or a DN as well as a SN can be a LCN or a DN. These two
categorizations are defined to clarify the following explanations.

2.3.1 Related Work

The knowledge which is generated by presence detection with wireless technologies is useful
in many use cases and is therefore focused by many researchers. Lodha et al. [44] present
a way to use BLE for a student attendance management system. It tracks the attendance
of students in lectures at a university. BLE transmitters are embedded into student cards
and are used as SNs in the presence detection system. Each BLE chip has a unique id
associated, which is linked to the student. A smart phone application, which shall be
installed on the lecturer’s smart phone, is able to scan for the chips inside the student
cards and therefore acts as RN. When the smart phone receives a signal of a BLE chip,
it parses its unique id and sends this id and the information about the current lecture to
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Figure 2.15: Location Context Nodes and Detectable Nodes of Wireless Network

an online system. The online system’s database contains the enrolment information for
each student. After recognizing a student, that is enrolled for that particular lecture, an
attendance time stamp is written to the database. The smart phone can be seen as LCN
that defines the AoI. Students have to enter this AoI with their student cards (DNs) for
being recognized.

The work of Vinay and Savitha [69] proposes a system that can determine unexpected
locations of pupils by tracking their presence in the class room as well as in the school bus.
It is build for concerned parents who want to know where their children are. Each pupil
gets an id card with an embedded BLE chip, which takes over the roles of a SN and a DN.
The unique Bluetooth addresses of the chips are used for identifying the related pupil.
There are three statically installed BLE readers per class room, which are connected to
a server module. The school bus is equipped with an BLE reader, a Global System for
Mobile Communications and a GPS to be able to provide the required location information.
These setting enables tracking of pupils in school and on their way to school. The BLE
readers within the class room and the one from the bus take over the role of RNs and
LCNs. Therefore, they are defining the AoI. When pupils do not attend in class or do not
enter the bus, when they are expected to do, the parents get informed via a smart phone
application.

BLE beacons are BLE sender, which are places statically at a position and continuously
transmit an advertisement. Barapatre et al. [9] present a solution for attendance tracking,
which utilizes BLE beacons and the students smart phones for generating attendance
information. The beacons are placed inside the lecture halls, and an Android application
has to be installed on the students smart phone. This application is scanning for the
beacons and sends the scanned information to a service in the internet. The service can
then be used to look up a students lecture attendance. A similar system was proposed by
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Deugo [30], which also utilizes BLE beacons and an Android application for attendance
detection. In both proposals the BLE beacons become the SNs and LCNs, which define
the AoI. Additionally, the smart phones take over the roles of a RNs and a DNs.

The presented system of Gavade et al. [35] uses Bluetooth classic to track the attend-
ance of employees in a company. Bluetooth access points are placed all over the company
building and scan for nearby Bluetooth devices. These access points define the AoI and
take over the roles of the RNs and LCNs. The smart phones of the employees are acting
as SNs and DNs. The identification of an employee is based on the Bluetooth address
of their smart phone, which has to be registered in the companies infrastructure. Due
to the continuous scanning of the Bluetooth access points, the smart phone get scanned
eventually and its Bluetooth Address is then forwarded to a server. The server has access
to a database where the relation between the employees and the Bluetooth addresses is
stored.

An approach, for sensing crowds on events, using BLE, is presented by Basalamah
[11]. Handing out 600 BLE tags and ten mobile devices to people, enabled tracking of
crowd movements within an event area. The BLE tags were continuously transmitting a
signal which could be identified by the mobile devices. Therefore, the BLE tags represent
the DNs, by acting as SNs. The mobile devices on the other hand are scanning for the
BLE tags, meaning, they were acting as RNs. When an advertisement from a BLE tag
was received by a mobile device, the current coordinates of the mobile device, which were
retrieved with an integrated GPS module, and a current timestamp were send to a server.
Therefore, the mobile devices took over the role of a LCNs. The server stored all the
received data in a database. With this approach, it is possible to make statements about
the occupancy of different areas within the event as well as tracking streams of movements
all over the event area.

All presented approaches so far, have the aim to detect the presence of wireless devices
and assign a location context to them. There are only two different outcomes of a presence
detection. A device is either present or not. LCNs are used for deriving the location context
of DNs. These LCNs have either access to GPS or are placed statically at a known position.
Each SN has an identifier, that is transmitted continuously. When a RN receives signals of
a SN, it forwards the identifier to a server, which then processes or stores the information.
Additionally, they use the LCN to either define the AoI explicitly or implicitly. An explicit
AoI definition, where DNs are the RNs and LCNs are the SNs, is used from Barapatre et al.
[9] and Deugo [30]. This explicit AoI definition is illustrated in Figure 2.16b. An implicit
AoI, where the LCNs are the RNs and the DNs are the SNs, is done by Lodha et al. [44],
Vinay and Savitha [69], Gavade et al. [35], and Basalamah [11]. This implicit definition
is visualized in Figure 2.16a. Furthermore, they have an additional data transfer channel
available on the RNs, which is used for redirecting the gathered information. Vinay and
Savitha [69] use WiFi for storing the data on a server and the system of Gavade et al. [35]
uses laptops, which either have a wired or a WiFi connection to the server, for storing the
data. In cases where RN are not at a fixed location, as in the systems of Lodha et al. [44],
Vinay and Savitha [69], Gavade et al. [35], and Basalamah [11], mobile devices are used for
redirecting the gathered information. Mobile Devices, like smart phones, usually support
many different wireless network technologies and are often used in a presence detection
system.

Adding more LCNs to a network, extends the area, which can be searched for the
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(a) DNs receive Signal from LCNs (Implicit) (b) LCNs receive Signal from DNs (Explicit)

Figure 2.16: Implicit and Explicit AoI Definition

Figure 2.17: Sub-Area Detection

presence of DNs, as done by Basalamah [11]. However, using more than one LCN, enables
a fragmentation of the AoI into sub-areas. The requirement of assigning nodes to such
sub-areas, makes the whole process more challenging, but enables a system to generate
additional knowledge, like the room, where a device is currently located. This is illustrated
in Figure 2.17.

This knowledge of sub-area assignment, can be used to implement an occupancy de-
tection systems, for improving the energy consumption of heating, ventilation, and air
conditioning in smart buildings, by regulating the different settings of them according to
the detected occupancies. Sentinel, a proposal from Balaji et al. [8], utilizes the exist-
ing WiFi network infrastructure of a building for deriving information about the room
occupancy. The WiFi access points are the LCNs and the RNs in that system, whereas
the smart phones of the employees are the DNs and the SNs. Additionally, they assign
rooms of the building either to so called personal space or shared space. Sentinel can only
make statements about rooms that are personal space like offices, because these rooms are
directly linkable to people, which are usually located in that rooms. An example would
be personal offices. Shared space, like the kitchens, can not be linked to particular people.
The WiFi access points are aware of the personal spaces within their transmission area.
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When a smart phone of a user connects to an WiFi access point that can reach the per-
sonal space of the user, this personal space is marked as occupied. When disconnecting
the occupation is removed.

BLE based occupancy systems, which make use of the beacon technology, are presented
from Conte et al. [26] and Corna et al. [27]. They conclude the occupancy of a room, by
assigning people the rooms. Both systems create a wireless infrastructure by placing BLE
beacons all over the building. This means, the beacons represent the LCNs and the SNs
within the systems. The RNs, which scan for the beacons, are iPhones and Android phones
in the researches of Conte et al. [26] and Corna et al. [27] respectively. The smart phones
parse the unique identifiers of the beacons’ signals and therefore act as DNs. Together
with the current time, the unique identifier is forwarded to a server for further processing.
Both systems utilize a classification algorithm to assign the smart phones to rooms. This
is why both approaches require the execution of a preceding training and data collection.

Another approach, which uses a different classification algorithm for assigning smart
phones to rooms of a building, is from Alhamoud et al. [3]. It uses the same setup as those
from Conte et al. [26] and Corna et al. [27], with the difference of utilizing Bluetooth classic
instead of BLE. They place Bluetooth beacons, acting as LCNs and SNs, in different rooms
and perform periodically scans via smart phones. The smart phones, representing the DNs
and RNs, extract the identifier of the beacons and forward them plus a timestamp, via a
WiFi connection, to a server. The collected data is then analysed and the classification,
which shall deduce the room assignment for the smart phone, is performed.

A system for room assignment without a classification algorithm is presented by Yang,
Li and Pahlavan [79]. This system utilizes BLE beacons, acting as LCNs and SNs, for
detecting smart phones and assigning rooms to them. The smart phones are the DNs
and RNs, which forward the strength of the received signals to a server. The beacons
are placed next to the entrance doors of the rooms. This leads to a peak in the signal
strength, when entering a room. Two different settings have been tested. The first uses
two beacons, where one is placed inside and the other outside of the room, but both of
them next to the entrance door. A BLE device entering a room, creates a peak in the
received signal strengths of both beacons. However, one of them is slightly higher due
to the direct line of sight, which is existing only for one beacon due to the placement.
Therefore, it is possible to conclude, whether a person has entered of left the room. The
second setting uses one beacon, placed inside of the room, next to the entrance door. This
works only with the prerequisite that the person closes the door after entering or leaving
the room. This leads to a measurable difference in the signal strength when leaving or
entering. The recognition, if a smart phone is inside or outside of a room, is done by using
a threshold. When an enter or leave event is detected, the server updates the current room
assignment of smart phone.

A large scale system to generate education related information about the students
attendance at university lectures, by observing WiFi data, is presented by Zhou et al. [80].
The campus that is focused by the experiment, provides over 2700 WiFi access points,
which were used for collecting the required information of nearby devices. These access
points represent the LCNs and RNs. By mapping the hardware addresses of devices, like
laptops, to over 2000 campus accounts of volunteers, information linked to people could be
derived. These devices represent the DNs and SNs. They use the approach of Zhou et al.
[81], to enable the creation of mobility traces for students. Comparing these traces with
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Figure 2.18: Bi Directional Presence Detection

Received Signal Strength Indication (RSSI) fingerprints1 of the lecture rooms, enables
deducing knowledge about the students attendance in lectures.

Another application of presence detection is social science. The fact that many people
are in possession of a smart phone, is used by researchers to transform smart phones into
data gathering devices, which are attached to people. The idea is, that smart phones scan
for other smart phones via a wireless technology. This means, every node in this type of
network takes over the role off a RN, a SN, and a LCN. This is illustrated in Figure 2.18

Miluzzo et al. [47] are presenting an approach, using smart phones, to gather informa-
tion about social networks. They use a wide spread spectrum of data, that is collectable by
smart phones, like acceleration, surrounding audio or location data via GPS. Additionally,
they are generating proximity information by scanning for surrounding Bluetooth classic
devices. The source of identification of the smart phones is the Bluetooth address. All
gathered information is then sent to a server, where the data is processed. Eagle, Pent-
land and Lazer [34] created a similar approach for generating information about social
networks. They utilizes cellular tower transitions of smart phones for generating big scale
location information and Bluetooth classic scans for small scale proximity detection of
people. A more recent paper, using proximity detection for mapping social networks, is
from Boonstra, Larsen and Christensen [24]. Their research utilizes Android phones and
iPhones, by providing an application for each of these platforms. They perform periodic
Bluetooth scans for generating proximity information, as well. However, they only rely on
information gathered by these Bluetooth scans for their research.

Townsend et al. [65], examined, whether smart phones can use BLE for detecting the
proximity of other smart phones, by providing applications for Android and iOS. These
applications continuously transmit and scan for BLE advertisements. They tested smart
phones, two iOS devices and two Android devices, for their ability to detect other smart
phones only by using BLE. They found, that it depends on the type of the phone, meaning
if it is an iPhone or an Android phone, as well as on the phones current state. When
participating smart phones are in an unlocked state, all smart phones, which were tested,
were able to detect each other. The only combination of two smart phones, that were not
able to receive a signal from each other, were two iOS smart phones, when in a locked
state. This showed that iOS limits the BLE capabilities when the devices are locked.

1A RSSI fingerprint is an identifiable combination of RSSI values of different access points used for
localization [78]
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2.3.2 Comparison of Presence Detection Systems

Comparing the presented systems of 2.3.1, provides a good overview of important aspects
of presence detection. There are a lot of things, which have to be considered, when
developing a system for a use case, that requires any kind of presence detection. A
compact comparison, of the presented works, can be found in Table 2.2. The following
paragraphs define the properties of the comparison and explain the values, which are filled
into the table. When no information regarding one of the properties has been found in
the presented works, the table is filled with N/A.

High Level Objectives: A categorization of the related works into three different high
level objectives, can be done.

1. Geographical Presence: The first is detecting a device in an specific geographical
area. The outcome of the systems is a binary classification, to either detected or not
detected.

2. Sub-area Presence: This means, splitting up a bigger area into sub-areas and
assigning devices, which are present within the area, to this sub-areas.

3. Bi-directional Presence: The last category is the detection of presence of an-
other device, independent of the geographical context. This means, the relevant
information is the proximity of two or more devices.

Gateway to another Channel: Each presented system, uses a certain device role
as gateway to another channel, for forwarding the gathered information. When the used
wireless technology for the presence detection is Wifi or Bluetooth classic, all participating
devices are most likely to have the required computational power, for acting as gateway
on their own. When it comes to BLE, most of the time not all of the participating devices
are able to act as gateway, due to low computational power of many BLE devices. The
different gateway systems are illustrated in Figure 2.19. A categorization, of the presented
researches, into one of the following categories can be done:

1. DN is the gateway: The DN, which derives the location information from the
LCN, forwards the data as illustrated in Figure 2.19a

2. LCN is the gateway: The node that provides the location information, forwards
the gathered information to the server as well. This is illustrated in Figure 2.19b
and Figure 2.19c

Up-to-dateness: The information which is collected for the presence detection is not
in all presented approaches real time conform. It depends on the use case, whether up-
to-dateness is important or not. A noticeable fact is that most researchers, using BLE
beacons in combination with an iPhone, note that the iPhones do not detect beacon
advertisings in a sufficient frequency, because the iPhones switch into a sleep mode. Some
of the researchers do not make any statement about their up-to-dateness at all. Definitions
of the assignable values for up-to-dateness are as follows:



CHAPTER 2. STATE OF THE ART 22

(a) DN acts as Gateway (b) LCN acts as Gateway

(c) LCNs act as Gateway as in a bi-directional Context

Figure 2.19: Different Nodes acting as Gateway in a Presence Detection System
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1. High: Everything within a minute is considered as high frequent updates.

2. Low: The data is captured at a low rate, meaning there is a delay of several minutes
between each data acquisition.

3. Event based: The time, when data is captured, is based on events like detecting
the presence or the absence.

Wireless Technologies: The presented approaches use different wireless technologies
to implement their systems. Most of them use BLE, however Bluetooth classic and Wifi
are used as well. Some of the researchers use or extend already available infrastructures,
whereas others build their own infrastructure.

Hardware: Considering real world environments, a Wifi infrastructure is usually already
in place, which reduces the workload to implement a new system. BLE and Bluetooth
classic on the other hand, often require the installation of additional hardware within
the environment. WiFi and Bluetooth classic require all devices to have a solid power
source like hard wired power supplies or a mobile device with a sufficient battery. BLE
on the other hand, is build to be able to work for a long time, with a very small source
of power, like a coin cell. This enables the provision of BLE tags and beacons without a
lot of effort. Mobile devices tend to be a good hardware for presence detection. Due to
the wide spreading of mobile devices and the variety of supported wireless networks, they
are not only used for the presence detection itself, but also for acting as a gateway for
forwarding the gathered information to another channel. The table indicates whether an
additional hardware is required for the RNs or the SNs. Mobile devices are not considered
as additional hardware.

Authentication Level: All of the presented approaches have some kind of identification
of the devices, which are required to be detected. However, this identification is mostly
done by using the unique device address, which is linked to an identity. Especially when it
comes to BLE this is not a good approach for identifying an entity, because BLE provides a
privacy feature which enables randomizing its retrievable Bluetooth address, as explained
in the Specification of the Bluetooth System 4.1. [61, Vol. 3, pp. 381-386]. Additionally,
adversaries could spoof2 the address of a victims device and therefore impersonate them.
None of the presented systems performs an adequate cryptographic authentication. How-
ever, it is important to note, that an secure authentication, during the presence detection
process, is not the focus of any of the presented works. A categorization, which is used in
Table 2.2, is as follows:

1. None: The system can detect devices that are part of the system, however no
distinction between them is possible.

2. Identification: The system can uniquely identify all corresponding devices, based
on either their hardware address or an defined unique Identifier (ID).

2When an entity is masquerading another, by faking data, it is called a spoofing attack. [77]
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3. Authentication: A proper authentication protocol is performed for identifying and
authenticating the devices.

2.4 Cryptographic Authentication

Authenticating a user can be achieved by utilizing cryptographic operations and algorithms.
These cryptographic algorithms are standardised and verified by organisations like the
National Institute of Standards and Technology3, to prevent the usage of faulty and vul-
nerable algorithms. The National Institute of Standards and Technology is part of the
United States Department of Commerce. One of their objectives is to publish standards
that define technology, like cryptography. To do so, they create guidelines and release
algorithm recommendations. [49]

User authentication is usually done by making use of asymmetric cryptography. Asym-
metric cryptography utilizes two different keys, a so called key pair, for encrypting and
decrypting information. When encrypting information with the first key the second key is
required to decrypt it and vice versa. These two keys are generally named private key and
public key. The private key has to be kept a secret, whereas the public key may be pub-
licly available. This enables confidential communication with an entity by encrypting the
messages with the entities public key. This encrypted message can only be decrypted by
the possessor of the corresponding private key. Examples for asymmetric key algorithms
are Elliptic Curve Cryptography (ECC) and the Rivest-Shamir-Adleman cryptosystem
(RSA). [68, p. 11, p. 195, p. 532]

A key pair from asymmetric cryptography can be used for signing a message and
therefore ensuring its authenticity. This signing procedure creates a digital signature.
When an entity signs a message with its private key, everybody who receives the message,
the digital signature, and the entities public key, can verify that the message was send
by the entity, possessing the corresponding private key. When a digital signature of a
document has been created, the party, which has signed the document, can not declined,
that the document has been signed with its private key. [68, p. 171]

A digital signature is usually created by using of a cryptographic hash function, which
generates a so called hash value from a message. Such a hash function shall provide three
properties. Pre image resistance means, when a certain hash value is known, it shall be
very hard to find a message, which would generate this certain hash value when used as
input of the hash function. The second property, second pre image resistance, implies that
for a given message, it shall be very hard finding a second message, which produces the
same hash value, when used as input for the hash function. Collision resistance is the third
property and means, that it has to be hard finding two messages, which would produce
the same hash value, when using both messages as input for the same hash function. [68,
pp. 256-267]

A Public Key Infrastructure (PKI), makes use of digital signatures and asymmetric
cryptography for creating a system, which enables issuing so called digital certificates for
users. These digital certificates link the public key of an asymmetric key pair to an iden-
tity. Therefore, they contain the information, which is required to uniquely identify a

3National Institute of Standards and Technology Website https://www.nist.gov/

https://www.nist.gov/
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Research High Level Gateway Up-to-dateness
Objectives

Lodha et al. [44] Geographical Presence LCN N/A

Vinay et al. [69] Geographical Presence LCN Event based

Barapatre et al. [9] Geographical Presence DN Event based

Deugo [30] Geographical Presence DN Event based

Gavade et al. [35] Geographical Presence LCN N/A

Basalamah [11] Geographical Presence LCN Low

Balaji et al. [8] Sub-area Presence LCN Low

Conte et al. [26] Sub-area Presence DN Low

Corna et al. [27] Sub-area Presence DN N/A

Alhamoud et al. [3] Sub-area Presence DN High

Yang et al. [79] Sub-area Presence DN N/A

Zhou et al. [80] Sub-area Presence LCN N/A

Miluzzo et al. [47] Bi-directional Presence LCN High

Eagle et al. [34] Bi-directional Presence LCN Low

Boonstra et al. [24] Bi-directional Presence LCN Low

Townsend et al. [65] Bi-directional Presence LCN N/A

Additional Authentication
Research Technology Hardware Level

RN SN

Lodha et al. [44] BLE no yes Identification

Vinay et al. [69] BLE yes yes Identification

Barapatre et al. [9] BLE yes no Identification

Deugo [30] BLE yes no Identification

Gavade et al. [35] Bluetooth classic yes no Identification

Basalamah [11] BLE no yes None

Balaji et al. [8] WiFi no no Identification

Conte et al. [26] BLE no yes Identification

Corna et al. [27] BLE no yes Identification

Alhamoud et al. [3] Bluetooth classic no yes Identification

Yang et al. [79] BLE no yes Identification

Zhou et al. [80] WiFi no no Identification

Miluzzo et al. [47] Bluetooth classic no no Identification

Eagle et al. [34] Bluetooth classic no no Identification

Boonstra et al. [24] Bluetooth classic no no Identification

Townsend et al. [65] BLE no no Identification

Table 2.2: Comparison of Related Work in Presence Detection
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Figure 2.20: CA as trusted third Party

user, plus the public key of the user’s key pair. To ensure that an issued digital certificate
is valid, a Certificate Authority (CA) uses a so called root certificate to sign the issued
digital certificates. This creates a trust relation between users, when using digital certific-
ates, which are issued by the same CA. Therefore, when two entities are communicating
with the help of their digital certificates, the CA acts as trusted third party and enables
authenticated communication as illustrated in Figure 2.20. [68, p. 67, p. 488, pp. 628-637]

Such a PKI can be used for performing a key agreement. A key agreement is the process
of creating a shared secret for two or more entities, by using an insecure data transfer
channel, without exposing any sensible information. Algorithms like the Diffie-Hellman
(DH) key exchange utilizes asymmetric cryptography for performing a key exchange. [68,
p. 154, p. 325]

A key agreement is often performed, to enable symmetric cryptography, which is faster
and can use smaller keys than asymmetric cryptography. Symmetric cryptography utilizes
a symmetric key plus a symmetric key algorithm, to transfer information confidential from
one entity to another. The symmetric key can be derived from a shared secret only known
by a defined set of entities. The symmetric cryptographic algorithm can encrypt a plain
text information and decrypt the encrypted information with the same symmetric key.
Therefore, all entities, who know the shared secret and can derive the symmetric key, are
able to participate in a secured communication. Examples of a symmetric key algorithm
are the Advanced Encryption Standard and the Data Encryption Standard. [46, p. 32],
[68, pp. 129-135, pp. 520-524, pp. 602-603], [76]

Symmetric cryptography, not only enables transferring information securely, but also
can be used for authenticating messages with a so called Message Authentication Code
(MAC). A MAC is generated by applying an algorithm that uses a secret key and a message
as input. Considering a set of entities, which share a secret key, all members of that set can
send messages plus the computed MAC to other members of the set. All other members
can recompute the MAC from the received message and compare it to the received MAC.
Doing so, they can verify that the message has been sent by someone, who knows the



CHAPTER 2. STATE OF THE ART 27

shared secret and the message has not been tampered with. These properties enable
building a challenge response protocol, by using a MAC. A challenge response protocol
is executed, when one entity is asking for some kind of information, which can only be
provided by a set of other entities. Therefore, by asking an entity for computing the MAC
of a random number, is performing a challenge response protocol. An example for a MAC
algorithm is the Cipher-based Message Authentication Code, which is recommended by
the National Institute of Standards and Technology and uses the Advanced Encryption
Standard to provide authenticity of a message. [33], [68, p. 73, p. 361]

Many of the previously mentioned algorithms rely on a source of randomness. This
randomness is in software usually achieved by an pseudo random number generator, which
is a deterministic algorithm for generating a sequence of numbers that have almost prob-
abilities of random numbers. However, they are based on a so called seed, which defines
the sequence of numbers during initialization. These pseudo random number generators
are often used in software applications, because they are fast. [68, pp. 485-487]

All these cryptographic algorithms and systems are used for preventing adversaries
getting access to sensible data. This is required, because there is a variety of known
attacks which can be used for doing so. In a Man-in-the-Middle (MITM) attack, two
parties think that they are communicating with each other, but in fact they do not. This
takes often place when asymmetric key pairs are in use. Considering an example of Alice
wanting to talk with Bob and both of them have an asymmetric key pair. They want to
exchange their public keys and encrypt the information with the public key of the other
party to ensure a secure link. However, the key exchange could be intercepted by an
adversary named Eve. Eve has also an asymmetric key pair and intercepts the public keys
of Alice and Bob. Instead of forwarding the public keys of Alice and Bob, Eve sends her
own public key to the two entities. When she intercepts an encrypted message, she can
decrypt it with her private key, read the plain message, encrypt it with the public key of
actual destination and forward the newly encrypted message. Eavesdropping is done by a
third party, which listens to an ongoing communication of two other parties. This third
party is called an eavesdropper and is able to read the information without the other two
parties knowing about it. Passive eavesdropping is only reading the information, whereas
active eavesdropping is the attempt of exchanging the text before forwarding it. Another
attack is called replay attack. When an adversary is performing a such an attack, they are
recording communication sessions of two or more entities. Later in time, the adversary
uses the recorded messages to replay the whole session, by sending the same messages
again. This could be used to retrieve sensible data. All these attacks are illustrated in
Figure 2.21. [68, p. 169, p. 368, p. 519]

COYERO access: It is a framework, enabling easy set up of a client-server environment,
which supports authentication and authorization of people, using their personal mobile
devices. Its environment consists of three different instances, namely client, kiosk, and
server. The client and the kiosk are available as Software Development Kit (SDK) for
Android and iOS. The server is provided as a hosted cloud service. [28]

The COYERO access Cloud Service provides a RESTful4 Application Programming

4Representational State Transfer (REST) can be used to provide a unified way of interoperability
between web services. [75]
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Figure 2.21: Attacks on a Communication Channel

Interface (API), which can be used for granting authentication rights to users and for
creating authorizations for different tasks, like entering a garage or buying an article in
a shop. Users are identified with a so called authentication token, which is signed by the
COYERO access server. Therefore, the COYERO access server is acting as CA and the
authentication token can be compared to a digital certificate. The authorization rights
for users are issued as so called entitlement tokens. These entitlement tokens contain the
purpose of the authorization, the linked authentication token id for identifying the user,
and it is signed by the COYERO access server’s private key. These tokens are then used
for authenticating the user and verifying the user’s authorizations. [28]

Mobile applications extended with the COYERO access Client SDK, transforms a
user’s personal mobile device into their authentication device, namely a COYERO access
client. The SDK is able to request and store a unique authentication token, by performing
a RESTful call to a COYERO access server. Once a valid authentication token has been
received by the COYERO access client, it can be used to request entitlement tokens for
getting authorization rights for specific goods or services. These tokens are stored on
the user’s mobile device and can later on be used without a connection to the COYERO
access server. With the authentication token, COYERO access clients can authenticate
themselves and redeem entitlement tokens at a COYERO access kiosk. This can be done,
by using different physical channels. Based on the user’s device, BLE, NFC, and QR-Code
scanning are available. [28]

The COYERO access Kiosk SDK can transform a mobile device, which is physically
placed in the area where the authentication or authorization operations are required, into a
COYERO access kiosk, which serves as a validation instance for COYERO access clients.
This means, a COYERO access kiosk can verify authentication tokens and entitlement
tokens of COYERO access clients via BLE, NFC or QR-Code scanning. Additionally
every COYERO access kiosk has its own authentication token, which can be verified by
COYERO access clients to achieve a mutual authentication. [28]

The three instances, COYERO access server, COYERO access client, and COYERO
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Figure 2.22: COYERO access environment, adapted from [28]

access kiosk, enable a COYERO access client to use already obtained authentication and
entitlement tokens without having an active internet connection. This offline capability
is enabled by installing the CA root certificate from the COYERO access server onto the
mobile devices. The concept is illustrated in Figure 2.22. [28]



Chapter 3

Design of Authenticated Presence
Detection

This chapter presents the design of the newly created protocol for authenticated pres-
ence detection using BLE. It starts, by giving a high level overview of the design, where
use cases, requirements and the different architectural views of the design are presented.
Afterwards, the three main parts of the design, namely recognition, authentication, and
Authenticated Presence Detection (APD) are then explained in detail.

3.1 High Level Design

To get a first impression of the designs aim, two use cases are shown. The first is in
the context of a salesman who wants to provide faster services for their customers. A
customer has the possibility of creating an account and then can perform pre-orders with
this account. The salesman’s ambition is to have the pre-ordered good already available
at the cash desk, as soon as the customer is in front of it. The shop’s employees are
able to define the shop as area of interest (AoI). When a customer enters this AoI, an
authentication process is performed, which authenticates the customer. Now that the
shop’s employees know, that the customer is already in the shop, the pre-ordered good
of the customer can be brought to the cash desk, so that the customer is able to obtain
it immediately. When the customer leaves without purchasing their pre-ordered good,
which can be detected as well, the goods can be removed from the cash desk. A second
applications is an attendance system for students in lectures. Students shall have the
possibility of creating an online account, which they can use for enrolling in courses and
checking their attendance information of lectures. These attendance information can be
retrieved by professors as well and be taken into account when it comes to grading of
students. When a professor is giving a lecture, they are able to define the lecture room as
AoI and can therefore detect students, which have entered or left the lecture room. A use
case diagram for these applications can be seen in Figure 3.1.

These use case diagrams have some use cases in common. First of all, some kind of user
account is required, which is the basis of the identification of the user. Defining, entering
and leaving the AoI are functionalities, which shall be provided for detecting the physical
presence of the users within an specific location. Additionally, the user needs to proof

30
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(a) Shop Pre-Order and Preparation

(b) Student Attendance System

Figure 3.1: Use Case Diagrams

who they are by authenticating themselves. Detecting the psychical presence of users and
authenticating them via BLE is covered by the presented design, whereas creating a user
account which contains the users information is a prerequisite. The covered features are
indicated by the subsystem in Figure 3.1. Furthermore, these use case diagrams are the
basis for some identified requirements, which have to be fulfilled to achieve the subsystem’s
functionalities with BLE. These requirements are as follows:

• False positives are the worst: The worst case is when the subsystems claims,
that a user is present, although it is not. These cases are called false positives and
would lead to wrong information and actions. For the shop pre-order and prepare
use case, it would lead to an unnecessary workload for the employees, because they
would assume that a customer is present and they prepare their order, although they
should not. False negatives would simply not improve the user experience, because
the employees would start to prepare the order of the customers, when they were
present at the cash desk. This would be the same behaviour as without the presence
detection in place.

For the attendance system, false positives would improve the grading for students,
which are wrongly detected as present. False negatives, on the other hand, would
only change the required actions of the students from ‘signing an attendance paper’,
to ‘checking the attendance list and notifying the presence personally’.

• Usage of well known authentication methods: It is crucial when it comes
to information technology security related tasks, that well known cryptographic al-
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gorithms are used for authentication. Otherwise, adversaries could fake the presence
of other users, which would lead to additional workload in the use case of Figure 3.1a
and improved grading in the use case of Figure 3.1b.

• Minimal data transfer: For presence detection and the authentication, minimal
data shall be transferred. Minimal data transfer is very important when it comes to
BLE, because BLE is not build for transferring a lot of data.

• Up-to-date information of present devices: All participating users within the
AoI have to announce their presence as often as possible and additionally proof
with every announcement that they are authenticated. This is important because
a wireless presence detection system can only make statements about presence of
users when it receives signals from them.

• Ad-hoc presence detection: The presence detection and authentication shall be
performed without any required actions of the user. When the user enters the AoI,
the authentication and presence detection shall start automatically.

• Offline capability: The whole process of authenticating and detecting the presence
of devices has to be able without the devices, which are required to be detected,
having access to the internet.

These requirements, lead to the high level architecture of the presented design, which
is shown in Figure 3.2. Figure 3.2a shows two entities, which are required to perform
the authenticated presence detection. These two entities, namely the APD-kiosk and the
APD-client, have to perform several actions in a certain order. These actions are recogni-
tion, authentication, and authenticated presence detection. This is shown in Figure 3.2b.
Figure 3.2c shows an exemplary process, which happens, when a user enters or leaves the
AoI.

APD-kiosk: The APD-kiosk is the AoI defining entity. Within this AoI, other entit-
ies, namely the APD-clients, can be detected by either receiving their advertisements or
exchanging messages with them. The APD-kiosk offers three different services via BLE,
which can be used by APD-clients to perform the recognition, authentication and authen-
ticated presence detection.

APD-client: APD-clients are the entities, which are recognized and authenticated after
entering the AoI. The APD-client uses a state machine for performing the required pro-
cedures of recognition, authentication, and authenticated presence detection in the correct
order.

Recognition: The recognition is the first contact between the APD-kiosk and the APD-
client, or in other words, the APD-client entering the APD-kiosk’s AoI. The APD-kiosk
is transmitting a BLE advertisement, which indicates that it offers all the required func-
tionalities to perform authentication and authenticated presence detection. When an
APD-client scans such an advertisement, it has recognized the APD-kiosk and can start
the authentication procedure. More information can be found in 3.2.
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(a) Interacting Entities

(b) Procedure Flow

(c) Exemplarily Process

Figure 3.2: High Level Design
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Authentication: After the APD-client has recognized the APD-kiosk and established a
connection, both party perform an authentication protocol, which verifies the authenticity
of the APD-client and the APD-kiosk. When the authenticity can not be verified, the
ADP-client is disconnected and is not able to perform the authenticated presence detec-
tion. When the authenticity of the APD-client can be verified, an authenticated session
is created. The authentication protocol is performed via a BLE GATT connection, util-
izing a GATT Authentication Service (see 3.3.2). This service provides characteristics to
write and read all the required data for performing the authentication protocol, which is
presented in 3.3.1. The APD-client represents the GATT client and the APD-kiosk the
GATT server. When an authenticated session is established, the BLE GATT connection
is closed and the authenticated presence detection is triggered. The technical details for
this process are carried out in 3.3.

Authenticated Presence Detection: The previous process created an authenticated
session, which is then used to perform an easy and fast challenge response protocol for
verifying the user’s authenticity. This challenge response protocol is simultaneously used
for performing the presence detection. Therefore, the APD-kiosk starts acting as BLE
broadcaster and advertises a challenge, which shall be solved by the APD-client. This
challenge is periodically updated. The APD-client acts as BLE observer and scans for such
challenge advertisements. When an APD-client receives a challenge, it solves the challenge
and responds it by starting its own BLE advertisement. When the APD-kiosk’s challenge
advertisement has been updated, the APD-client’s challenge response advertisement is
updated as well. The APD-kiosk scans for challenge response advertisements and not only
uses them for verifying the authenticity of APD-clients, but also generates the knowledge,
that the APD-client is still present in the AoI. Detailes can be found in 3.4. When a
APD-client leaves the AoI and is not detected by the APD-kiosk anymore, it switches
back the recognition and again starts scanning for an APD-kiosk (see 3.4.4).

3.2 Recognition

The recognition is the first procedure, which is required to be performed. It is the most
trivial one of the three. The APD-kiosk takes over the role of a BLE peripheral and
uses a connectable advertisement which includes the UUID of the GATT Authentication
Service, which can be seen in Table 3.2. This advertisement can be used from APD-clients,
which act as a BLE peripheral, to establish a connection. The APD-client, then has
to discover the available GATT service, which have to include a GATT Authentication
Service, which is defined in 3.3.2. After the GATT Authentication Service has been
successfully discovered, the recognition process is finished and the authentication protocol
can be performed.

The signal strength of the APD-kiosk’s advertisement limits the defined AoI and there-
fore has to be the same as the signal strength from the challenge advertisement of the
authenticated presence detection, which is explained in 3.4.3.
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Notation Meaning

Alice, Bob Entities, which want to perform mutual authentication
and create an authenticated session

Cert Kpub(<entity>) Public key of the certificate from <entity> which is
signed by a CA

Cert Kpri(<entity>) Corresponding private key to Cert Kpub(<entity>)

Cert Kpri,pub(<entity>) Key pair of the certificate from <entity>

Temp Kpub(<entity>) Temporary public key from <entity>

Temp Kpri(<entity>) Corresponding private key to Temp Kpub(<entity>)

Temp Kpri,pub(<entity>) Temporary key pair of <entity>

hash(<data>[, <data>, ...]) Cryptographic hash function that hashes <data>. Op-
tionally the input can be a concatenation of several
input values.

Ses K(<entity1>,<entity2>) Symmetric key only known by <entity1> and <en-
tity2>

Ses ID(<entity1>,<entity2>) Unique identifier which is linked to <entity1> and
<entity2>

sign(<pri key>,<data>) Signature for <data>, generated by a private key
(<pri key>) of an asymmetric key pair

p rng() Pseudo random number generator

Table 3.1: Notation for the Authentication Protocol

3.3 Authentication

When an APD-client has recognized an APD-kiosk, which offers an GATT Authentication
Service, it connects to it, discovers the service, and then starts the authentication. This
section contains a detailed explanation of the used cryptographic authentication protocol
in 3.3.1 and describes the BLE interface, which is used for performing the authentication
in 3.3.2. Table 3.1 contains the notation, which has been used for the explanations.

3.3.1 Authentication Protocol

The precondition for implementing this authentication protocol, is an already in place
PKI, where a CA has issued certificates for each participant, plus all of the participants
are trusting the CA. Considering two parties, from now on called Alice and Bob, have certi-
ficates, which are issued by the CA of the PKI. Both are in possession of the corresponding
private key. Alice acts as APD-kiosk which wants Bob, who is acting as APD-client, to
authenticate himself.

Both, Alice and Bob, have to exchange their digital certificates. In other words, they
exchange their Cert Kpub with each other. The actual validation of the authenticity is
performed, by validating the certificate of the other party with the stored and trusted CA
certificate. After this, Alice and Bob create Temp Kpri,pub(Alice) and Temp Kpri,pub(Bob),
respectively, using ECC. The decision for using ECC is based on several things. ECC
requires a smaller key size than RSA for achieving the same security properties. This has
been shown in the work of Barker [10, p. 53], which indicates the key sizes of algorithms,
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Property Definition

UUID 5b3e4f9e-d685-4458-a3c9-2e2baf0a8513

Characteristic Client Authentication Data (defined in Table 3.3)

Characteristic Kiosk Authentication Data (defined in Table 3.4)

Characteristic Session ID (defined in Table 3.5)

Table 3.2: Properties of the GATT Authentication Service

that provide the same cryptographic strength. To have the same cryptographic strength
as ECC, when using a 256 bit key, a RSA key with 3072 bit would be required. This means
when using ECC, a lot less data transfer is required. Additionally, Gura et al. [38] found,
that ECC outperforms RSA when it comes to speed as well. Therefore, ECC is faster than
RSA and requires fewer data to be transferred, which makes ECC the better fit for the
requirements defined in 3.1. ECC is therefore favoured over RSA. Temp Kpri,pub(Alice)
and Temp Kpri,pub(Bob) shall then be used in a DH key exchange for generating a shared
secret. To do so, both parties are required to have the Temp Kpub of the other party.
Before exchanging their Temp Kpub, both parties sign them with their Cert Kpri. This
enables the other party to verify the authenticity of the Temp Kpub and prevents MITM
attacks. The purpose of using a separate Temp Kpri,pub, is decoupling the protocol from
the already in place PKI.

Alice is now in possession of Temp Kpri,pub(Alice) and Temp Kpub(Bob), whereas Bob
has now access to Temp Kpri,pub(Bob) and Temp Kpub(Alice). Therefore, they can per-
form the DH key exchange. The generated shared secret plus both of the Temp Kpub

are then hashed for deriving a symmetric key, which represents Ses K(Alice,Bob). The
hashing of this values is recommended, due to the work of Langley, Hamburg and Turner
[43, p. 15], because different public keys can create the same shared secret, when using
DH with ECC. The last step of the authentication protocol is Alice generating a unique
session identifier, namely Ses ID(Alice,Bob), with a p rng() and sending it to Bob. The
Ses K(Alice,Bob) and Ses ID(Alice,Bob) form the authenticated session, which is later on
used for performing fast and high frequent authenticated presence updates. The protocol
is illustrated in Figure 3.3.

3.3.2 BLE Interface

The GATT Authentication Service is a custom BLE GATT service offered by an GATT
server running on the APD-kiosk. APD-clients can connect to this GATT server as GATT
client and use the offered GATT Authentication Service for performing the authentication
protocol described in 3.3.1. The authentication protocol requires the possibility of ex-
changing data between both participating parties, which is then used for performing and
verifying the authentication. The GATT Authentication Service defines characteristics
which can be used to write data to and read data from the GATT server. The GATT
Authentication Service definition can be seen in Table 3.2.

Client Authentication Data: APD-clients use this characteristic for transferring their
Cert Kpub, their Temp Kpub, and a signature, which is created by signing their Temp Kpub

with their Cert Kpri, to the APD-kiosk. For this, the data is packed into an authentication
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Figure 3.3: Authentication Protocol
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Name Client Authentication Data

UUID e0628a04-8abc-46b7-b282-d0e0f247f531

Properties Write

Table 3.3: GATT Characteristic Client Authentication Data

Name Kiosk Authentication Data

UUID b305eebb-eac6-4915-82b0-c724fb98659a

Properties Read

Table 3.4: GATT Characteristic Kiosk Authentication Data

data packet, as defined in Appendix A. Transferring the data within one characteristic,
prevents the overhead of multiple write operations. The characteristic is marked as write
only, as there is no need to read it. See Table 3.3 for the characteristic definition.

Kiosk Authentication Data: The authentication data of the APD-kiosk, which in-
cludes the Cert Kpub, the Temp Kpub, and a signature created by signing its Temp Kpub

with its Cert Kpri, is provided by another characteristic. When an APD-client is reading
this characteristic, the APD-kiosk sends its authentication data, which is packed into an
authentication data packet, as defined in Appendix A, to the APD-client. This is done
with one characteristic, to minimize the amount of packets, which are required to be sent.
The characteristic is marked as read only, because APD-clients shall not be able to change
the value. It is defined in Table 3.4.

Session ID: When an APD-kiosk receives a read operation onto the session id character-
istic and the key agreement between the APD-client and the APD-kiosk has been finished
successfully, a unique Ses ID(APD-kiosk,APD-client) generated by using a p rng(), is re-
turned to the APD-client. If the key agreement has not been finished yet, a read operation
will return zero. The definition of the Session ID characteristic can be found in Table 3.5.

3.4 Authenticated Presence Detection

The authenticated presence detection is triggered, when an authentication has successfully
initialized an authenticated session, or in other words the authenticity of the participating
entities has been verified and a shared secret session key plus a unique session identifier
have been created. For the authenticated presence detection, a challenge response protocol
is used, which is explained in 3.4.1. The utilized BLE roles are outlined in 3.4.3. Table 3.6

Name Session ID

UUID 0c811e1e-d244-4c9c-9850-d35a2508f512

Properties Read

Table 3.5: GATT Characteristic Session ID
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Notation Meaning

Charlie Entity in the same role as Bob

mac(<sym key>,<data>) Message authentication code generated with a symmetric
key (<sym key>) of <data>

challenge Challenge, which is generated with a p rng()

chal solved(<entity>) Challenge response computed by <entity>

Table 3.6: Notation Extension for the Challenge Response Protocol

extends the already presented protocol notation of Table 3.1, which is then used for the
following explanations.

3.4.1 APD Challenge Response Protocol

Within this explanations, Alice represents the APD-kiosk, acting as the challenging entity,
whereas Bob and Charlie are representing APD-clients, who are challenged by Alice. Hav-
ing a shared secret session key and the corresponding unique session identifiers for Bob
and Charlie, enables Alice to challenge both with the same challenge value. Therefore, it
is possible for Alice to broadcast the challenge. This challenge is packed into a challenge
packet, as defined in Appendix A. Bob and Charlie can then listen for this broadcasted
packet, extract the challenge, and solve it by computing mac(Ses K(Alice,Bob),challenge)
and mac(Ses K(Alice,Charlie),challenge) respectively. These computed values represent
chal solved(Bob) and chal solved(Charlie). Considering Bob wanting to solve and an-
swer the challenge of Alice, he is required to combine chal solved(Bob) with the unique
Ses ID(Alice,Bob) in an challenge response packet, as defined in Appendix A. This packet
is then broadcasted by Bob, so that Alice can receive it. Alice receives the challenge
response packet of Bob, extracts the Ses ID(Alice,Bob), and uses it to identify Bob as
sender. For verifying that the sender was indeed Bob, or in other words for authentic-
ating Bob, Alice computes mac(Ses K(Alice,Bob),challenge) on her own and compares
it to the received chal solved(Bob). When both values, chal solved(Bob) and the com-
puted value mac(Ses K(Alice,Bob),challenge) from Alice, are equal, Alice can be sure,
that the challenge has been solved by Bob, because he is the only entity that has the same
Ses K(Alice,Bob). Alice does this every time she receives a challenge response packet.
After a defined time period, Alice renews the challenge that is broadcasted to the parti-
cipating entities for mitigating replay attacks, which is explained in 3.4.2. Therefore, Bob
has to listen to the broadcasts of Alice continuously and recompute his challenge response,
when he receives a new challenge. The whole process for the authenticated presence de-
tection is illustrated in Figure 3.4. This challenge response protocol for the authenticated
presence detection has following advantages:

• Using a connectionless broadcast model, for performing the challenge response pro-
tocol, removes the computational costs for organizing connections, which arise when
using connected communication channels.

• The usage of shared authenticated sessions enable Alice to challenge all participating
APD-clients with the same challenge, because APD-clients, which want to authentic-
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Figure 3.4: Challenge Response Protocol for Authenticated Presence Detection

ate themselves, have to solve that challenge, by using the secret session key created
during the authentication process.

• The possibility of authenticating entities by computing a MAC, for instance with
the AES-CMAC algorithm, which requires only 128 bit, as stated in the work of
Song et al. [59], reduces the data of the solved challenge to a few bits, which makes
it faster and more usable for BLE.

• Bob and Charlie are broadcasting their challenge response continuously. This enables
Alice to authenticate Bob and Charlie with every received challenge response packet.
This leads to a high frequently performed authentication. Additionally, the received
challenge response packets are indications for the presence of Bob and Charlie as
well, because their challenge response packets can only be received by Alice, when
Alice is within a certain range of them.
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Figure 3.5: Limited Replay Vulnerability of the Challenge Response Protocol

3.4.2 Vulnerabilities of the Challenge Response Protocol

The presented challenge response protocol in 3.4 is vulnerable to some attacks. An ad-
versary is able to perform a replay attack by eavesdropping the responses of the challenged
entities and retransmitting the recorded messages. This lets the adversary fake the pres-
ence of an entity, even though the entity is already gone. However, the adversary can only
fake the presence of an entity until the challenge is renewed. Therefore, the attack it is
limited to a defined period. This is illustrated in Figure 3.5.

No mitigates regarding relay attacks and denial of service attacks are carried out. A
relay attack is performed, when an adversary uses the APD-clients service in an unauthor-
ized way, by retransmitting the communication between APD-client and APD-kiosk over
another channel. This results in a faked presence of the APD-client. A denial of service
attack could be achieved by jamming the BLE signals or flooding the APD-kiosk with
more requests than the APD-kiosk can handle. This would lead to an APD-kiosk, which
is not working properly. [68, p. 143,519], [74]
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Figure 3.6: Scan Procedure for Challenge Advertisment

Figure 3.7: Scan Procedure for Challenge Response Advertisement

3.4.3 BLE Interface

Both devices, the APD-kiosk and APD-client, take over the role of a BLE broadcaster
and a BLE observer at the same time. This is done to implement the APD challenge
response protocol, explained in 3.4.1. The APD-kiosk advertises the UUID 5584c4d9-
1975-4c7e-9fa8-622428c76aa5, which enables APD-clients to identify it as participating
APD-kiosk. The APD-clients send scan requests to the APD-kiosk, which are answered
by scan responses containing the current challenge. This is shown in Figure 3.6. The
challenge is packed into a challenge packet, which is defined in Appendix A. When the
challenge is updated, which is explained in 3.4.1, the scan responses for scan requests are
updated as well, to transmit the new challenge. APD-clients extract the challenge from
the challenge packet within the scan response and solve it as shown in 3.4.1.

The APD-clients announce their presence by advertising the UUID f6ab35c5-e8f4-
4afc-b3fa-f70896211321. The APD-kiosk sends scan requests to the APD-clients, which
are answered with scan responses, containing challenge response packets. The format of
a challenge response packet is defined in Appendix A and contains the solved challenge.
This process is illustrated in Figure 3.7

3.4.4 Absence Timeout

Detecting the absence of an APD-client, or in other words, detecting, when an APD-client
has left the AoI, has to be done with a timeout, due to the utilization of a broadcaster-
observer architecture for the presence detection. When the APD-kiosk has not received
a signal from an APD-client for a defined period of time, the so called absence timeout,
it is considered as gone. Defining this period of time is not that easy, due to the wireless
nature of the presented design. There are many situations, where a present APD-client is
potentially not detected, due to unfortunate coincidence. For instance the authentication
via the GATT server could be aborted, due to interference signals. Another potential
failing detection could happen, due to an overwhelming amount of APD-clients within the
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AoI and an APD-kiosk which is not able to detect that much APD-clients simultaneously.
5.4 describes an experiment, which has been conducted with the aim of finding such an
absence timeout, based on a experimental setup, that includes a lot of simultaneously
present APD-clients.



Chapter 4

Implementation for Android

The implementation of the authenticated presence detection design, presented in Chapter 3,
has been done for Android mobile devices. This chapter starts of with a brief introduc-
tion of Android and its support of BLE. Then, an overview of the implemented system
is presented, followed by details of the implemented parts and how they work together to
perform the authenticated presence detection. Last, the flow of actions, when performing
two main scenarios is explained.

4.1 Android

Android is an open source operating system, based on the linux kernel, which originated
in 2005. It has been developed by Android Inc. until bought by Google in 2005. [72]

When it comes to market share of mobile operating systems, Android and iOS are the
two big players. Android had in the third quarter of 2016 a global market share of 88%,
whereas Apples iOS had 12.1%, according to an article written by Bhattacharya [14]. A
different article, written by Vincent [70], states a global market share of 81.7% for Android
and 17.9% for iOS in the fourth quarter of 2016. However, the situation is quite different
in the United States. In January 2016, the United States market share of Android was
at 52.8% and the iOS market share at 43.6%, according to the comScore Reports January
2016 U.S. Smartphone Subscriber Market Share [25]. Nevertheless, all of these statistics
indicate that Android and iOS are running on the majority of mobile devices.

An Android device usually comes with a pre-installed software, which enables users
to download and install applications on their device. The most popular one is developed
by Google and called Play Store. The information in the article Number of Android
applications [52] shows, that about 3,171,376 applications are provided by the Play Store
in 2017. However, there are no restrictions to the application’s origin. Users can install
and obtain applications from wherever they want. As a consequence, there exist several
stores, which provide the feature of application installation, as documented by Wikipedia
contributors [73].

The previously mentioned numbers like the market share and the number of available
applications, highlights the importance of Android within the mobile device sector and
indicates why it should be targeted from mobile application developers.

44
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Figure 4.1: Android Build Process, adapted from the documentation for The Build Process
[63]

4.1.1 Application Development

Application development for Android is supported by a huge information base, which is
continuously improved and updated. This page for developers, contains all the informa-
tion required for developing Android applications. A centralized collection of information
is important, due to the high frequently performed extensions and improvements of the
Android operating system and the provided API. The current level of the Android API
is 26. This makes about 2.7 API updates per year and shows the rapidly applied changes
to the operating system. Android distinguishes between Android version and API level.
The Android version is presented to the public and publishes the features to the outside.
The API level, on the other hand, defines the features, which are usable from applications.
Android is forward compatible, however not backward compatible. That means, an ap-
plication which is developed for a specific API does not necessarily work on an older API
as well. [5], [31], [71]

Android Studio1 is the official integrated development environment for Android. An-
droid Studio offers not only an intelligent code editor and an Android device emulator, but
also provides a build chain which lets developers easily transform their project files into a
valid Android Application Package (APK). This build process can be seen in Figure 4.1.
The application module contains the source code and the resource files. The source code
is written in Java and the resources are represented as extensible markup language files.
The dependencies of the application module are external libraries like Java ARchive (JAR)
files, which pack Java files and other resources into one file. Android Archives (AAR) are
similar to JAR files. However, they can contain Android resource files as well. Compilers
transform the files from the application module and the dependencies into Dalvik byte-
codes. This bytecode is later on executed on the phone by the Android Runtime. The
generated bytecode is packed into an debug or release APK. The whole process is managed
by the Gradle2 android plugin. [6], [7], [50, p. 74], [63]

1Android Studio Web Site: https://developer.android.com/studio/index.html
2Gradle Web Site: https://gradle.org/

https://developer.android.com/studio/index.html
https://gradle.org/
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Scan Mode Setting Scan Interval in seconds Scan Window in seconds

Low Latency 5 5

Balanced 5 2

Low Power 5 0.5

Table 4.1: Android BLE Scan Settings for API ≥21, based on Information of [15]

4.1.2 Android and BLE

Due to the focus on mobile devices, Android supports a variety of wireless technologies,
like Bluetooth classic, BLE, Wi-Fi or GPS. These technologies are used for exploring
the opportunities in the fields of presence detection, crowd sensing, and social science as
mentioned in 2.3. Not only the support of BLE, but also the combination of so many
wireless technologies makes Android mobile devices valuable for researchers as well as for
commercial use cases.

BLE Scanning Since API 18, it is possible to scan for BLE advertisements, by using the
Android API. If an advertisement is scanned, the advertising Bluetooth device, in form of
an object, the RSSI value and the advertised data are handed over to a callback. Up to API
20, the data of the scan record had to be parsed by the developer, to retrieve any details of
the advertising packets. As of API 21, the parsing is done by the Android operating system
itself. The callback of the API provides a ScanResult object, that contains the data in a
well prepared form, as seen in Listing 4.1. The scanning itself has been improved by adding
filter possibilities for the advertising packets. The developers can define filter parameters,
which are applied to incoming advertisements by the Android operating system. Filter
options are service UUIDs, names and addresses of remote BLE device and manufacturer
specific data. Additionally, API 20 added the opportunity of choosing a scan mode setting,
which defines the scan interval and the scan window. The three setting options, that were
introduced are listed in Table 4.1. With API 23, an additional opportunistic scan mode
has been added, which listens passively to other scan results without starting its own scans.
Additional settings where added as well, which enables the developer to define the callback
type, the match mode, and the number of matches per filter. The callback type defines,
whether the callback should forward all, only the first, or the last received advertisement.
With the match mode, developers can decide, whether the received advertisements must
have a certain signal strength to be forwarded. The last additional setting, the number of
matches per filter, controls the forwarded advertisements per filter. [17], [18], [57], [58]

1 // API 18−20
2 void BluetoothAdapter . LeScanCallback#onLeScan ( BluetoothDevice device , i n t

r s s i , byte [ ] scanRecord )
3

4 // API 21+
5 void ScanCallback#onScanResult ( i n t cal lbackType , ScanResult r e s u l t )

Listing 4.1: Scan API Callback Difference, based on Information of [18] and [57]

BLE Advertising With API 21 the possibility of performing BLE advertisements has
been introduced. However, not all devices with a matching API level are able to do so.
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Advertise Mode Advertising Interval in Milliseconds

Low Latency 100

Balanced 250

Low Power 1000

Table 4.2: Android BLE Advertising Mode Settings, based on Information of [15]

Advertise TX Power TX Power in dBm

High +1

Medium -7

Low -15

Ultra Low -21

Table 4.3: Android BLE TX Power Settings, based on Information of [15]

There are some preconditions, when using the advertising API. The API offers a function
call, which returns true when BLE advertising is supported. This call can be seen in
Listing 4.2. Not all devices return the correct value, when using this function. [15], [17]

Advertisements can be initialized with different configurations. The developer has
several options for the advertise mode. This setting changes the advertising interval and
can be seen in Table 4.2. Another setting influences the signal strength, or in other words,
the TX power. This can be seen in Table 4.3. [2]

1 boolean BluetoothAdapter#isMult ip leAdvert i sementSupported ( ) ;

Listing 4.2: Call for Checking Advertisement Support, based on Information of [17]

The advertising data and the scan response data can be initializes with an Advert-
iseData object. This object lets the developer define, whether the devices’ name or the
TX power level shall be included. Furthermore, a service UUID, service data, and manu-
facturer data can be added. A downside is, that the developer has to use the AdvertiseData
class and can not define the raw data, which shall be transmitted on its own. [1]

BLE Connection The BluetoothDevice object, which is received after a successful scan
of an advertisement, can be used to establish a GATT connection with the remote BLE
device. This can only be done under the premise, that the advertising remote device is
connectable and running a GATT server instance. Connections with BLE are available
since API 18 and transform an Android device into a GATT client. The call for doing
so is shown in Listing 4.3. This method call requires a BluetoothGattCallback object as
parameter, which receives callbacks, whenever an asynchronous GATT operation has been
finished. The returned BluetoothGatt object can be used for performing GATT operations,
like discovering the services, reading characteristics, and writing characteristics. However,
this object shall not be used until a first callback in the BluetoothGattCallback object has
been received, because this first callback indicates, that the connection has been properly
established. With API 21, methods for setting a connection priority and requesting a
MTU change have been added as well. The default MTU is 23 and the maximum MTU is
517. The call for setting the connection priority lets the developer use one of three different
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Connection Slave Supervision
Connection Priority Interval in Latency Timeout in

Milliseconds Seconds
API 21 API 23+

High 7.5-10 11.25-15 0 20

Balanced 30-50 0 20

Low Power 100-125 2 20

Table 4.4: Android BLE Connection Priority Settings, based on Information of [15]

settings, which define the connection interval, the latency, and the timeout. These settings
can be seen in Table 4.4. However, the call for setting the connection priority has a known
bug on API 21, which leads to not getting callbacks when using this functionality. [15],
[18], [19], [20], [21], [57]

1 BluetoothGatt BluetoothDevice#connectGatt ( Context , boolean autoConnect ,
BluetoothGattCal lback )

Listing 4.3: Connect to a GATT Server, based on Information of [19]

A GATT server can be added to a device, as of API 18. The developer can start
a GATT server on an Android device by calling the method of the BluetoothManager
object, which is shown in Listing 4.4. The BluetoothGattServerCallback object, is the
counter part of the previously mention BluetoothGattCallback from the GATT client. It
gets called, when GATT operations from a GATT client are received. API 18 receives
callbacks, when a new connection is established and the services of the GATT server have
been discovered. Additionally, there are callbacks received, when a GATT client performs
reading or writing operations for characteristics. API 21 adds additional callbacks, which
are triggered, when a notifications or an indication have been sent. With API 22 a callback
for a MTU change request, when requested by a GATT client, has been added as well.
[22], [23]

1 BluetoothGattServer BluetoothManager#openGattServer ( Context ,
BluetoothGattServerCal lback ) ;

Listing 4.4: Open a GATT server, based on Information of [23]

4.2 System overview

Figure 4.2 shows an overview of the implemented system. All parts in green have been
implemented, the ones in blue have already existed. The Android COYERO access Client
SDK for mobile applications has been extended with the APD-client’s functionalities. An
already existing Android demo application, namely COYERO Client, has been adapted,
so that it is using the extended COYERO access Client SDK for showing the functionality
of the newly added APD-client features. An additional demo Android application, namely
COYERO Detector, has been implemented, which offers the APD-kiosk’s features and uses
the authentication functionalities, offered by the COYERO access Kiosk SDK. Therefore,
Android devices with the COYERO Client application installed, are able to perform an
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Figure 4.2: System Architecture

authenticated presence detection with Android devices having the COYERO Detector
application installed. Additionally, COYERO Detector sends the information of detected
nearby devices periodically to the APD Server, where the information is stored. The APD
Server runs a python web server, which offers a web page, consisting of Hypertext Markup
Language (HTML) and JavaScript files. This enables users to easily retrieve the currently
present and authenticated nearby devices with a browser.

The COYERO access environment, which is presented in 2.4, is the foundation of the
implementation. COYERO access offers a framework, which provides a PKI for authentic-
ating COYERO kiosks and COYERO clients. Such a PKI is required for the APD design,
presented in Chapter 3. The COYERO server, is able to issue so called authentication
tokens, which are basically digital certificates issued by a CA. It can do this for COYERO
kiosks and COYERO clients. This authentication tokens are therefore available within the
COYERO Client application and can be used for authentication. The COYERO Detector
application can be seen as a new feature within the COYERO environment. It requests
an authentication token from the COYERO server, by performing a registration process
and a login. Therefore, both, COYERO Client and COYERO Detector, have access to
authentication tokens, which serve as cryptographic basis for performing the authenticated
presence detection.

4.3 COYERO Detector Demo Application

COYERO Detector is an Android application, which utilizes the PKI of the COYERO
environment, for implementing the functionalities of an APD-kiosk. These functionalities
are required to perform an authenticated presence detection. An overview of COYERO
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COYERO Detector

Minimum API API 21

Device Requirements BLE Support
Multiple BLE Advertisement Support

Software Dependencies COYERO access Kiosk SDK
Spongy Castle3

Volley4

Table 4.5: Properties of the COYERO Detector Application

Figure 4.3: Logical Architecture of COYERO Detector

Detector’s properties can be found in Table 4.5. COYERO Detector can be seen as service
provider, which is started once and offers the functionalities of the APD-kiosk until it is
explicitly stopped. The supported minimal API is 21, which would cover about 75% of
the Android devices in use, according to the Android Dashboards [4].

The logical architecture represents the separable functional parts within the COYERO
Detector sources. Each of this components is responsible for performing a distinct task.
This logical architecture is visualized in Figure 4.3, by using the notation presented in the
work of Kruchten [42]. This notation has been extended with the colouring of the boxes
indicating, whether the part was already existing (blue) or not (green).

User Interface: The UI provides a login view, which can be used, for entering COYERO
user credentials. When the credentials are valid, the COYERO access Kiosk SDK is
initialized and the application switches to the ‘APD view’. This view provides three
possibilities for the user to interact with it. These are navigating back to the login view,
starting the authenticated presence detection process, and stopping it. The UI can be
seen in Figure 4.4

3Spongy Castle is a newly packet version of the security library Bouncy Castle, which is supported by
Android. [62]

4Volley is a library for making asynchronous RESTful calls. [67]
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Figure 4.4: COYERO Detector Views

COYERO access Kiosk SDK: It is part of the existing COYERO framework and
provides the authentication token, which is used as basis for the authentication protocol.

APD Kiosk Interface: It is the management element for the five components, which
are implementing the APD-kiosk’s functionalities. It provides a simple interface, which is
used from the UI for activating or deactivating this functionalities.

Authentication Service Advertiser: It announces the presence of an APD-kiosk to
the outside. It does this by using a connectable BLE advertisement, which can be used
by nearby APD-clients to establish a connection. It is set to a low latency advertisement
with a medium TX power. These settings define an advertising interval of 100[ms] and
a TX power of +1[dBm] as shown in Table 4.2 and Table 4.3, respectively. The data of
the advertisement is the UUID of the GATT Authentication service, which is specified
in Table 3.2. This component is stopped once a connection to the Authentication GATT
Server is active. It is restarted after the connection has been closed. This prevents more
than one simultaneously active connections to APD-clients. The reason for doing this, is
to have a unified behaviour for all devices running the COYERO Detector application,
because the maximal supported simultaneously connections to GATT clients is potentially
different for devices (see 5.5). Additionally, the restart of the Authentication Service
Advertiser is triggered three seconds after the connection has been successfully closed,
to be able to receive challenge response advertisements, before starting a potential new
connection. This is carried out due to the findings shown in 5.5.

Authentication GATT Server: The Authentication GATT Server implements call-
back functions for the Android GATT Server implementation and provides the GATT
Authentication Service functionality presented in 3.3.2. Therefore, it receives callbacks
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Figure 4.5: Layer System of the Authentication Gatt Server

for all incoming BLE GATT operations, which are related to the Authentication GATT
Server. These BLE operations can be connection attempts, disconnections, discover op-
erations, a request for a MTU change, or read and write operations for characteristics of
the GATT Authentication Service. The Authentication GATT Server is divided into two
layers. The lower layer is responsible for providing a controlled domain specific interface,
by performing following tasks:

• Preventing concurrent connections, by disabling the Authentication Service Advert-
iser, when receiving a new connection attempt, and restarting it, delayed by three
seconds, when the current connection is closed.

• Updating the settings when an MTU change is received.

• Redirecting the BLE read and write callbacks, for characteristics of the Gatt Au-
thentication Service, to domain specific calls of the higher layer.

The higher layer, not only provides calls for reading the authentication data, writing
the authentication data, and reading the session id, but also uses the Authentication
Services for performing the cryptographic operations, which are required for a verified
authentication. This layering is shown in Figure 4.5.

Challenge Advertiser: The Challenge Advertiser registers itself at the Authentication
Services. As a result, it gets notified whenever the challenge has been updated. This
updated challenge is then advertised via BLE as described in 3.4.3. The advertising
interval and TX power settings are the same as for the Authentication Service Advertiser,
because these two advertisements define the AoI with their signal.

Challenge Response Scanner: It scans for challenge response advertisements of APD-
clients as shown in Figure 3.7. The extracted solved challenge is then, together with the
received session identifier, passed over to the Authentication Services and verified. The
BLE scanner is set to a low latency setting, which results, according to Table 4.1, in a
scan interval and a scan window of five seconds.

RESTful Push Information Service: It send periodically updates to the APD Server
of currently present authenticated APD-clients, by using the APD Server’s RESTful API,
which is specified in Appendix B. The update interval is set to one second.
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Figure 4.6: Validity Period of Challenges

Authentication Services: The Authentication Services manage and coordinate all im-
portant cryptographic tasks. They are the interface to the COYERO access Kiosk SDK
and therefore to the COYERO Detector’s authentication token. They do basically three
different things:

1. They are responsible for performing the cryptographic operations, which are required
for creating the shared symmetric session keys with the APD-clients. The differen-
tiation of the APD-clients is either done by the authentication token or the created
session identifier, meaning either the authentication token or the session identifier is
passed to the Authentication Services, when instructing them to verify an authen-
ticity. This enables unambiguous identification and verified authentication of the
APD-client.

2. The Authentication Services periodically update the challenge for the APD challenge
response protocol. The update period is set to 15 seconds, meaning every 15 seconds
there is a new challenge advertised. As of the first time a challenge has been ad-
vertised, it is accepted as solved challenge response for 30 seconds. Therefore, after
the first challenge update, there are always two challenges which are valid simul-
taneously. This is done because it reduces the power consumption of the COYERO
Client application, which is explained in 4.4. This so called validity period of 30
seconds per challenge, is illustrated in Figure 4.6.

3. They keep track of the currently nearby and authenticated APD-clients, or in other
words, they manage the Absence Timeout, which is explained in 3.4.4.

4.4 COYERO SDK Extension and COYERO Client Demo
Application

The COYERO client SDK provides all the functionalities, which are required to perform
the COYERO authentication with their authentication tokens. This SDK has been exten-
ded with the features of an APD-client. The APD-client’s features are usable with a sep-
arate background service, so that the device’s display can be turned off, without stopping
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COYERO Client

Minimum API for the Application API 17

Minimum API for the APD-client’s API 21
features

Device Requirements BLE Support
Multiple Advertisement Support

Software Dependencies COYERO Client SDK
Spongy Castle5

Table 4.6: Properties of the COYERO Client Application

the APD-client’s functionalities. Therefore, acquiring a wake lock is required, to ensure
that the Android device does not stop this background service, because it switches into
a sleep mode, as explained in the article Keeping the Device Awake [41]. The COYERO
Client application, which was already available and uses the COYERO client SDK, has
been extended as well, so that the APD-client features are usable.

This application is the counterpart to COYERO Detector. All BLE interfaces, like
advertisements, scanners, and GATT servers, which are offered by COYERO Detector,
are used by COYERO Client. The properties of COYERO Client can be seen in Table 4.6.
The newly added features of the extended COYERO access Client SDK require a minimum
Android API of 21. However, the minimal supported API of the COYERO access Client
SDK remains 17. The new features are simply not accessible using an API ≥17 and <21.
Therefore the APD-client features would be available for 75% of the currently available
Android devices, according to the Android Dashboards [4].

The logical architecture, shown in Figure 4.7, is like the architecture of COYERO
Detector based on the notation of Kruchten [42], extended with a colouring, which in-
dicates, whether a component was already existing (blue) or has been newly developed
(green). Each component of Figure 4.7 is responsible for providing a distinct feature. As
COYERO Client is the counterpart of COYERO Detector, following correlations between
both logical architectures can be highlighted:

• The Authentication Service Scanner scans the advertisements of the Authentication
Service Advertiser.

• The Authentication GATT Client uses the Authentication GATT Server for per-
forming an authentication, which results in an authenticated session.

• The Challenge Responder scans the periodically updated challenge, which are ad-
vertised by the Challenge Advertiser and additionally advertises the solved challenge,
which is then scanned by the Challenge Response Scanner.

• Both use a COYERO access SDK, which provides the authentication token.

5Spongy Castle is a newly packet version of the security library Bouncy Castle, which is supported by
Android. [62]
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Figure 4.7: Logical Architecture of COYERO Client

Figure 4.8: COYERO Client UI Extensions

User Interface: The UI was already available in the COYERO Client application. It
provides a login, which initializes the COYERO access Client SDK, meaning all required
information, for the authentication, is stored locally on the Android mobile device. The
UI of COYERO Client has been extended with a menu entry, which allows starting and
stopping the APD-client functionality. When this functionality is active, a notification
in the status bar of the Android device is displayed. This UI extensions can be seen in
Figure 4.8.

COYERO access Client SDK: It provides the authentication token of the COYERO
environment, which is the basis for the authentication process.

APD Client State Machine: A state machine is implemented, which manages the
correct order of the required procedures, for achieving an authenticated presence detec-
tion (see Figure 3.2b). It starts of by initializing the Authentication Services Scanner,
which performs the recognition of an APD-kiosk. When an APD-kiosk is found, it uses
the Authentication GATT Client for executing the authentication, which either fails or
succeeds. When failing, it starts performing the recognition again with the Authentication
Service Scanner. In the case of succeeding, it starts the Challenge Responder, which then
performs the authenticated presence detection. When the APD-kiosk is not reachable any-
more, the Challenge Responder is stopped and the recognition with the Authentication
Service Scanner is started again.
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Authentication Service Scanner: This scanner is looking for BLE advertisements
which contain the UUID of a GATT Authentication Service. This UUID is defined in
Table 3.2. An advertising, containing this UUID, indicates the presence of a APD-kiosk.
The scanner settings are set to a low latency mode, which is a five second scan interval
and scan window according to Table 4.1.

Authentication GATT Client: This component is used for performing the authen-
tication protocol from 3.3.1, using a BLE GATT connection. Therefore, it implements a
consecutive chain of small tasks, which depend on each other. Almost all of them are asyn-
chronous and require a timeout mechanism to prevent getting stuck waiting for an answer.
These timeouts have been defined in a way, allowing the attempts to be successful. In
other words, the timeouts are quite high, to prevent aborting unfinished but still running
attempts. When a task times out, the whole task chain is aborted and the authentication
GATT client is closed. The only exception is the change of the MTU, because this task
is optional and only increases the performance of following data transfers. The different
tasks of the task chain, their required execution order and their defined timeouts are as
follows:

1. Connecting [Timeout: 10 sec]: The connectable advertisement, which has been
scanned from the Authentication Service Scanner, provided a Bluetooth address.
This address is used for starting the GATT connection process.

2. Discovering [Timeout: 10 sec]: After a connection is successfully established to
a GATT server, the Authentication GATT Client starts the discovery process, to
retrieve GATT services, which are offered by the GATT server. This usually provides
a GATT Authentication Service and its characteristics.

3. Generating Client Authentication Data [Timeout: N/A]: This is the only syn-
chronous task within the task chain and has no timeout. It requests the required
cryptographic information from the Authentication Services and packs it into the
required packet format (see Appendix A).

4. Requesting MTU change [Timeout: 1 sec]: It is the only task, which does not
terminate the whole task chain, when timing out. It computes the MTU based on
the packet’s size, which has to be transferred. When the packet size, in bytes, is
smaller than the minimum MTU, the MTU is not changed. When it is bigger than
the maximum MTU, the maximum MTU is requested. When it is a value in between
the minimum and the maximum MTU, the newly requested MTU, is the packet’s
size in byte. The minimum and maximum MTU of Android are noted in 4.1.2.

5. Sending Client Authentication Data [Timeout: 10 sec]: By using a character-
istic write operation, this task sends the previously prepared authentication data
packet to the GATT server.

6. Requesting Kiosk Authentication Data [Timeout: 10 sec]: A characteristic
read operation is used, for retrieving the authentication data of the APD-kiosk. The
data is received as a authentication data packet, as defined in Appendix A. This
data is required for performing a key exchange, which creates the symmetric session
key.
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7. Requesting Session ID [Timeout: 2 sec]: The last task in the task chain is request-
ing the unique session id. The receiving of a valid session id marks the authentication
process as successful. When this task is finished, the Authentication GATT Client
is closed.

Challenge Responder: This component scans for challenges as shown in Figure 3.6.
The received challenge is then solved and advertised, as illustrated in Figure 3.7. When
a challenge is scanned, which has not been scanned yet, the advertisement of the solved
challenge is updated. Scanning a new challenge leads to pausing of the BLE scanner for
15 seconds, to reduce the power consumption of COYERO Client. After 15 seconds the
scanning for challenges is restarted. The advertisement of the solved challenge is never
stopped, because a high frequent authenticated presence update is desired. The Challenge
Responder has a timeout of ten seconds. When the challenge scanner is running and no
challenge is scanned for a period of ten seconds, the Challenge Scanner stops scanning for
the challenge and stops advertising the solved challenge. This means the APD-kiosk is
considered as gone.

Authentication Service: It uses the authentication token offered by the COYERO
access Client SDK for performing three cryptographic functions, which are as follows:

1. Authenticating the found APD-kiosk, by verifying the APD-kiosk’s received authen-
tication token.

2. Performing the key agreement for generating the authenticated session.

3. Solving received challenges.

4.5 APD Server

The APD Server has been hosted on an Amazon web service. It is a web service written in
python 2.7, which offers basic functionality for visualizing the information of the currently
authenticated nearby devices. Updating the information is done by the COYERO Detector
application, using the APD Server’s RESTful interface.

4.5.1 Update Authentication Information

It offers a RESTful PUT call, which can be used to update the information of the currently
present and authenticated devices. Therefore, a PUT call to the host’s address with
content type application/json and a JavaScript Object Notation (JSON) representation
of the information as body, stores the JSON body as file on the server. The definition of
this PUT call, with example JSON data, can be seen in Appendix B.

4.5.2 Visualize Information

A HTML page with JavaScript can be retrieved for visualizing the authentication in-
formation, which is stored on the APD server. The JavaScript polls the JSON file from
the web server, which contains the device authentication information, with a RESTful
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Figure 4.9: Web Server Information Visualization

GET call and updates the table in the HTML. Additionally, the JavaScript polls sup-
plementary information for the APD-clients, which are stored on the server as well, with
another RESTful GET call. This supplementary APD-client information, contains the
APD-client’s name and the id of the authentication token. This enables mapping a hu-
man readable name to the authentication token id. The poll frequency is set to one second,
meaning the visualized information are almost available in real-time. The RESTful calls,
which are used from the JavaScript to fetch the data from the APD server, are shown in
Appendix B. An example of the visualization, is shown in Figure 4.9.

4.6 Process Architecture

The process architecture shown in Figure 4.10 is as well based on a notation presented
by Kruchten [42] and extended by a colouring, where green indicates new features and
blue already available ones. This process architecture shows the different concurrently
running tasks for the COYERO Client, the COYERO Detector, the APD Server, and
an arbitrary web browser. The two groupings COYERO Client and COYERO Detector
highlight the different nature of the two processes. COYERO Detector has concurrently
running tasks for almost all of its logical components. It acts like a service provider and is
required to offer all its functionalities to more than one APD-client. These functionalities
shall be concurrently usable. COYERO Client, on the other hand, has only one new task.
This task is running a state machine, which uses the logical components for performing
the required actions. This highlights the ‘client-like’ nature of the COYERO Client, as
well as its responsibility to manage the authenticated presence detection related actions.
The APD Server process is responsible for collecting the data, by offering a RESTful
interface, which is used by the COYERO Detector. The web browser process updates its
visualization of the currently present authenticated devices, by periodically requesting the
current information from the APD Server.

The distribution of the processes onto different hardware platforms is provided by the
process architecture, seen in Figure 4.10, as well. Each mobile device shall have only one
running instance of COYERO Detector or COYERO Client. The APD Server is hosted on
a server which is accessible for retrieving the information. Only the web browser process
does not require a separate device and can be started on any device, which supports web
browser functionalities.
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Figure 4.10: Process Architecture



CHAPTER 4. IMPLEMENTATION FOR ANDROID 60

Figure 4.11: Scenario Entering the AoI

4.7 Scenarios

There are two main scenarios, which are important, when considering the use cases presen-
ted in 3.1. Both scenarios are presented by using a notation proposed by Kruchten [42]
and are as follows:

1. Entering the AoI, which is defined by an Android device running COYERO Detector,
with an Android devices running COYERO Client.

2. An Android devices running COYERO Client leaves the AoI of an Android device
running COYERO Detector.

4.7.1 Entering the AoI

When COYERO Client enters the AoI of COYERO Detector, both have to perform several
tasks in a certain order, for properly performing an authenticated presence detection.
These steps are illustrated in Figure 4.11 and are as follows:

1. When a COYERO Client enters the AoI, it is able to receive the Service Advertise-
ment from COYERO Detector’s Authentication Service Advertiser with its Authen-
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tication Service Scanner.

2. The Authentication Service Scanner informs the APD Client State Machine about
the Bluetooth address of the remote device.

3. Before starting the Authentication GATT Client and delivering the Bluetooth ad-
dress to it, the APD-client stops the Authentication Service Scanner.

4. The Authentication GATT client uses the Authentication Services for preparing the
authentication data of the COYERO Client.

5. The COYERO Client’s authentication data is then sent to the Authentication GATT
Server, by performing a BLE write operation to a characteristic of the GATT server.

6. The Authentication GATT Server of the COYERO Detector uses the Authentication
Services for verifying the received client authentication data, or in other words, for
authenticating the COYERO Client.

7. After the COYERO Client has requested the COYERO Detector’s authentication
data, by starting a GATT read operation, the Authentication GATT Server cre-
ates the COYERO Detector’s authentication data with the COYERO Detector’s
Authentication Services.

8. The COYERO Client’s read operation is answered by the Authentication GATT
Server transmitting the generated authentication data back to the Authentication
GATT Client.

9. The Authentication GATT Client verifies the the COYERO Detector’s authentica-
tion data. Furthermore, it performs the key exchange and generates the symmetric
session key by using the Authentication Services.

10. The Authentication Gatt Client performs a BLE read operation, which triggers the
Authentication GATT Server to perform the key exchange and session key genera-
tion.

11. The BLE read operation is then answered by returning the unique session id to the
Authentication GATT Client.

12. The successful authentication process is then notified from the Authentication GATT
Client to the APD Client State Machine.

13. The APD Client State Machine starts the Challenge Responder, which results in a
BLE scan for challenge advertisements.

14. The Challenge Responder is then able to receive the challenge, which is advertised
by the Challenge Advertiser.

15. The received challenge is solved by the COYERO Client’s Authentication Services.

16. Afterwards, the solved challenge is advertised from the Challenge Responder and
scanned by the Challenge Response Scanner.
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Figure 4.12: Scenario Leaving the AoI

17. The Challenge Response Scanner verifies the solved challenge with the Authentica-
tion Services.

18. The RESTful Push Information Service retrieves this successfully performed authen-
ticated presence detection of the COYERO Client from the Authentication Services.

19. This information is finally pushed to the APD Server by the RESTful Push Inform-
ation Service where it is stored.

4.7.2 Leaving the AoI

When a COYERO Client, which is currently performing the APD challenge response
protocol, leaves the AoI, it can no longer detect the challenges, advertised by the COYERO
Detector. This leads to the scenario illustrated in Figure 4.12.

1. The Challenge Responder sends a link lost signal to the APD Client State Machine.

2. The APD Client State Machine starts the Authentication Service Scanner.



Chapter 5

Experiments and Results

The implementation presented in Chapter 4, has been tested and analysed by conduct-
ing extensive experiments, which are presented in this chapter. Tests were carried out,
regarding the overall performance of the implementation. Furthermore, experiments, test-
ing the different parts of the system separately, have been conducted. The results of these
experiments, some Android related pitfalls, and device specific behaviour, have been doc-
umented and are graphically illustrated for getting insights into the properties and limits
of the implementation.

5.1 Components

Several different components were used, for conducting the experiments and collecting the
required data. These include not only Android devices, but also BLE USB dongles and a
web server.

Android devices There were five Android devices available for testing. These devices
are listed in Table 5.1. This is such a low number, because the devices had to support the
central and peripheral role of BLE at the same time. Therefore, a minimal Android API
of 21, had to be supported. Additionally, Android devices are required to support multiple
advertisements, for being able to do advertising at all, as explained in 4.1.2. COYERO
Detector and COYERO Client, which are presented in Chapter 4, have been installed on
all of these devices.

Abbre-
viation

Vendor Type Model Android
Version

API BT
Version

GAS6 Samsung Galaxy S6 SM-G920 7.0 24 4.1

LGG4 LG G4 LG-H815 6.0 23 4.1

SONY Sony Xperia Z5 E6653 7.0 24 4.1

LGNE LG Nexus 5x 7.1.1 25 4.1

HTCN HTC Nexus 9 7.1.2 25 4.2

Table 5.1: Android Devices used for the Experiments

63
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Figure 5.1: Java Swing Tool for controlling BLE112 Donlges

BLE USB dongles As the aim was to test the system under real conditions, simulating
additional traffic was required. Therefore, the APD-client software, which was originally
developed for Android, was ported, to be usable by another hardware platform as well.

This platform is the BLED112 USB Dongle. These dongles support a virtual COM
Port, when connected to a computer, which can be used by programs for controlling the
dongles’ BLE functionalities. [16]

As the Android code for the APD-client is written in Java, a Java program, which
uses the virtual Communication (COM) port of the BLED112, has been written. Only
the Android specific parts of the Android Java code had to be rewritten. This included
the UI and the BLE API.

For using the virtual COM port of the BLED112 dongles, the library bglib1, has been
used. This library wraps the required operations on the COM port and provides a simple
API for using the BLE functionalities of the dongles. [12]

An adapted version of this library acted as new BLE API and a Java Swing UI replaced
the Android UI. This Java Swing application enables users to control multiple BLED112
dongles at once and it was able to start an APD-client for connected BLED112 dongles.
Furthermore, the application supports a feature, which enables starting an APD-client for
all connected dongles, one after another. This application has been used in the experi-
ments, for simulating additional APD-clients, which are detected by the COYERO De-
tector Android application. However, the APD-client implementation, for the BLED112
dongles, has been simplified, meaning there is no automatic restart of the APD-client,
when the link to the COYERO Detector application is lost. Furthermore, the verification
of the COYERO Detector’s authentication token has been removed. A screenshot of the
Java Swing application and a picture of the BLE112 dongle experiment setup, can be seen
in Figure 5.1 and Figure 5.2, respectively.

Server Apart from the BLE devices, a server was uses, which hosted a web service. This
web service served as logging endpoint for the participating Android devices. Therefore,

1bglib GitHub project: https://github.com/SINTEF-9012/bglib

https://github.com/SINTEF-9012/bglib
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Figure 5.2: Experiment setup of the BLE112 dongles

Abbr. Distance

Sd Almost no distance between COYERO Detector and COYERO Client.

Md Roughly half of the Ld distance

Ld COYERO Client is barely receiving the signals from COYERO Detector.

Table 5.2: Different Experiment Distance Contexts

COYERO Client and COYERO Detector have been extended with a simple web logger
module, which uses RESTful calls to store their relevant log and experiment information
on that server. This server was first a laptop, locally connected to the network, but later
on moved to an Amazon web service.

5.2 Basic Performance Measuring

This has been the most extensive experiment, which was conducted for collecting data,
showing the influence of distance between APD-kiosk and APD-client, as well as the
influence of other concurrently authenticating APD-clients. Different distance contexts
are shown in Table 5.2. These distance contexts are defined without any specifications of
distance units, due to the differences in the signal emission strength, which is described in
5.5. The number of concurrently participating APD-clients, or in other words the traffic
context, is specified in Table 5.3. This traffic is simulated, by using BLE112 dongles. These
dongles are not as reliable as the Android implementations. Therefore the two contexts of
no traffic and as much traffic as possible, are carried out. The six possible combinations
of the distance and traffic contexts, define the six experiment contexts, which have been
used within the basic performance measuring experiment.

Each Android device, listed in Table 5.1, has been tested as COYERO Detector, while
the other Android devices were running COYERO Client. These tests have been repeated,
for all six experiment contexts. However, there are no results for the GAS6, because it
does not support the required BLE functionalities, although its data sheet states that
it should. This is explained in 5.5. Therefore, only results for four Android devices are
available.
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Abbr. Traffic

St No other devices than the Android device under test is performing the APD-
client’s process.

Lt As much BLED112 dongles as possible (maximum of 20) are preforming the
APD-client’s process during the data measurements. On average there were
15 BLED112 dongles performing the authenticated presence detection concur-
rently during the tests with a Lt context. The BLED112 dongles are placed
right next to the Android device, which was running COYERO Detector

Table 5.3: Different Experiment Traffic Contexts

Figure 5.3: Basic Performance Measuring Experiment Setup

The setup of the experiment is illustrated in Figure 5.3. The Android device, which
runs COYERO Detector was placed right next to the laptop, which controls the BLE112
dongles. The BLE112 dongles were either active or inactive, depending on current ex-
periment context. The Android devices, running COYERO Client, are placed in position
Sd, Md, or Ld, depending on the current experiment context. Every COYERO Client
performed several authentications via the GATT Authentication Service and the authen-
ticated presence detection for about 50 seconds.

5.2.1 Results for the Authentication Process

The authentication is done by the COYERO Client performing seven consecutive tasks.
The time each of these steps took has been measured, for showing the impact of each
step onto the authentication process. The graph in Figure 5.4 shows the corresponding
measurements of the six different contexts for the experiments. This graph contains meas-
urements for all devices. The bars represent averaged times of each step and the averaged
time of the complete authentication. The red line indicates the standard derivation of the
measured values.

As expected, the time required for a complete authentication, which is shown by the
grey bar, is higher for larger distances and when many APD-clients are concurrently
active. Taking a closer look to the grey bars, shows that the increasing distance has a
bigger influence than the traffic. This can be seen when comparing the contexts StLd and
LtSd with the baseline context StSd. Expanding the distance, increases the time required
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Figure 5.4: Average Times and Standard Derivations of Authentication Steps

for the process, by almost one second, whereas increasing only the traffic has almost no
impact. However, the worst performance can be observed in context LtLd, which has the
highest distance and highest traffic.

The increase of the required time, for performing an authentication process, is mainly
due to the connecting step (blue bar). It is the only one, which significantly increases,
when the distance and traffic are increasing. The other steps are quite constant in all six
experiment contexts. Especially in experiment contexts with Ld, the required time for the
connection step increased a lot and the standard derivation is broader as well. This means
there is a loss in consistency, when a BLE connection attempt is performed with weaker
signals. Furthermore, it can be observed, that steps, which require a lot of BLE operations,
like connecting, discovering, sending authentication data, or requesting authentication
data, have a broad standard derivation. This indicates inconsistent behaviour, when it
comes to performing BLE operations.

There is an additional interesting devices depending behaviour, which is probably
existing due to the build in Bluetooth chips, or custom implementations of the Bluetooth
software stack for Android. When comparing the SONY device with other Android devices,
the SONY device requires about two to three seconds more for transferring data to another
device. This is happening even within the best context, namely StSd. Figure 5.5 shows
this behaviour by comparing the SONY and HTCN devices. When both are acting as
APD-kiosk, there is a huge difference in the step, which requests the kiosk authentication
data. The SONY device requires much more time for sending the data back to the APD-
clients, than the HTCN device does. On the other hand, comparing both devices, when
they act as APD-client, shows that the SONY device requires more time for the step, in
which the client authentication data is send to the APD-kiosk. This lets conclude, that
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Figure 5.5: SONY Performance compared to HTCN Performance

the SONY device is slower than the others, when it comes to sending data to other devices,
using BLE.

The previously shown graphs only include successful attempts of the specific authentic-
ation steps. But there were failing attempts as well. Figure 5.6 includes the measurements
of all devices and shows the error ration of the authentication steps. The connection step,
represented by the blue bar, failed the most during the experiment. The discovering step
and the request MTU step have failed very rarely. All other steps did not fail at all during
the experiment. Failing means, that the timeouts of the steps have been reached. These
timeouts are explained in 4.4. This lets one conclude, that an established connection is
very stable, however establishing one is inconsistent. This is another indicator for the
connection step being the most fragile part of the authentication process. Additionally,
this graph shows that an increased traffic does not make the connection step slower, as it
is the case for an increased distance, but rather prevents it from being successful.

5.2.2 Results for the APD Challenge Response

For the APD challenge response, the delay between successive successful authentications
has been measured. Meaning the frequency of the authentications, received by the APD-
kiosk from an APD-client. The measured values are mainly the delays between successive
scans of challenge response advertisements from APD-clients. However, there is one ex-
ception. The first successful authentication is the verification of the certificates, during
the authentication process. Therefore, the delay between the successfully finished authen-
tication and the first received challenge response advertisement, is included in the analysis
as well. This first measured delay, includes the start up of the whole challenge response
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Figure 5.6: Error Ratio of Authentication Steps

BLE system and is therefore longer than the others. The analysed data is visualized in
Figure 5.7. This graph contains three bars for each experiment context. The bars contain
following information:

1. Initial Delay: Represents the average of all measured initial delays. An initial delay
is the time between a successful authentication and the scan of the first challenge
response advertisement.

2. Challenge Response Delay: This is the average of all delays between successive
challenge response scans for the same APD-client.

3. All Delays: Represents the average of all initial delays and all challenge response
delays.

Additionally the red line, which is visible for all the bars, shows the standard derivation
and serves as indicator for consistency.

The distance has almost no impact onto the performance, when no traffic is active.
All experiment contexts with St have a similar performance. When increasing the traffic,
the distance has an impact. Comparing LtSd with LtLd shows an increase of the average
delay about 100%. The standard derivation is quite high for all measured data, which
indicates inconsistent delays. This could lead to wrong absence assumptions of APD-
clients. The increase of the delays for LtLd is a result of the bad performance of certain
devices. Comparing the LGNE device, acting as APD-kiosk, with other devices acting
as APD-kiosk, shows that the LGNE device performs terribly in the LtLd experiment
context. This behaviour is shown in Figure 5.8 and indicates that the LGNE device has
troubles with finding newly started advertisements in the LtLd context.

All together, it seems that finding newly started challenge response advertisements, is
the task which takes the longest. As this is somehow comparable to the bad performance
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Figure 5.7: Average Authentication Delay of all Measurements

Figure 5.8: Bad Performance of LGNE in LtLd compared to other Devices
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of the initial step of the authentication, one could conclude, that the bottleneck is the
start up of a BLE communication. After this has been done, BLE performs quite well.

5.2.3 Findings

The most important finding is that the implementation works correctly. Android devices,
which are running COYERO Client and enter the AoI, defined by an Android device
running COYERO Detector, are detected correctly. For all tests within an Ld context,
the entering was performed, by physically moving the Android device with an active
COYERO Client, into the AoI. For all Sd and Md contexts, the entering was simulated
by activating COYERO Client on Android devices, which were already placed inside the
AoI.

Furthermore, it has been shown, that there are device dependencies, when it comes to
performance. Different devices running COYERO Client and COYERO Detector perform
differently. This has been shown for the SONY device in the authentication steps and the
LGNE device in the APD challenge response process, as seen in Figure 5.5 and Figure 5.8,
respectively.

The bigger the distance between the COYERO Detector and the COYERO Client,
the worse the performance. Additionally, the higher the number of participating APD-
clients, the worse the performance. However, it is noteworthy, that the initial steps of the
authentication and the authenticated presence detection, meaning the connection step and
the recognition of the first challenge response advertisement, are the biggest contributors
to the bad performance.

It is not possible to control the number of APD-clients within the AoI of the COYERO
Detector, but it is possible to limit the bad impact of the Ld context, by limiting the AoI
with a signal strength based threshold. Defining a threshold based on a certain dBm
value, would eliminate the Ld context and therefore simulate the border of the AoI with
the Md context. The results of the measurements performed in Md are much better, than
those measured in Ld, which can be seen in the high error rates in Figure 5.6 and the bad
performance of devices as visualized in Figure 5.7. This could be done in software, by only
reacting to advertisements, with a signal strength bigger than the defined dBm threshold.

5.3 Simultaneous Entering devices

As the Authentication GATT Server is not connectable during an ongoing authentication
(see 4.3), the behaviour of simultaneously entering devices had to be analysed. The ex-
periment was conducted with the distance context Md and both traffic contexts. This
decision has been made, due to the findings in 5.2.3. Every Android device was running
COYERO Detector once, while the other three Android devices were running COYERO
Client. All Android devices, running COYERO Client, have started the APD-client’s pro-
cess simultaneously and the time between the first COYERO Client application starting
the authentication and the last one finishing the authentication has been measured. This
was repeated several times.

The outcome of this experiment can be seen in Figure 5.9. The bars show the average
of the measured times, required for detecting and authenticating all three COYERO Client
applications. The blue bars contain measurements, done in the context St, whereas the
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Figure 5.9: Average Times of simultaneously entering Devices

green bars contain the ones done in Lt. Dark blue and dark green bars contain only
measurements of specific devices running COYERO Detector. Light blue and light green
are the averages for all devices in the specific traffic contexts. The orange bar is the
average of all measurements and the vertical red lines show the standard derivations,
which indicate the consistency of the measured timings.

Comparing these measurements with the ones from Figure 5.4 shows that the sim-
ultaneous entering, of Android devices running COYERO Client, adds a lot of timing
overhead. This is due to the high timeout of the connection step in the authentication
process. When the COYERO Detectors’s authentication service advertisement is received
by multiple COYERO Client applications at the same time, all of them start the connec-
tion step of the authentication process. This could lead to COYERO Client applications,
getting stuck in the connection step until they time out, because they assume that they
are performing a connection attempt, although the COYERO Detector application has
already turned off the connectable advertisement and does not react to further connec-
tion attempts. This ten second timeout, plus the artificial delay before restarting the
authentication service advertisements, lead to this overhead.

5.4 System Test

This test has been conducted, for analysing the overall performance of the implementation,
when being active for about 15 minutes. The contexts varied during the experiment. The
only context, which has not been tested, due to the findings in 5.2.3, was Ld. Each
Android device was running COYERO Detector for 15 minutes with the other Android
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devices running COYERO Client. Therefore, the whole process was performed four times.
Devices running COYERO Client, were moved within the Sd and Md contexts, meaning
they constantly switched their physical position. The traffic was increased slowly from
St to Lt during the experiment. Due to the instability of the BLE dongles (see 5.1), the
traffic drops and raises within a certain range.

5.4.1 Authentication Frequency

The authentication frequency is a function, which shows the number of successful authen-
tications and received correctly solved challenge response advertisements within a given
interval, received by an APD-kiosk, for a particular APD-client. Comparing this authen-
tication frequency to the information of how many devices are currently participating in
the APD-process, leads to the visual representation in Figure 5.10. Figure 5.10 contains
two graphs for each Android device. The first graph contains a function in black, which
indicates the number of currently participating APD-clients over time. The second graph
contains the authentication frequency function, for an interval of 25 seconds, of the three
participating Android devices, which run the COYERO Client application.

The first thing that can be seen is, that the authentication frequencies drop, when the
number of participating APD-clients increases. This is true for all Android devices running
COYERO Detector. The three authentication frequencies, for individual devices, running
COYERO Detector, look quite similar. However, comparing the authentication frequencies
for different devices, which run COYERO Detector, there is a large gap between the
these measured frequencies observable. The SONY device, running COYERO Detector,
achieves, with the participating COYERO Client applications, a maximum authentication
frequency of 125, whereas the authentication frequency maxima, of the COYERO Client
applications, are values between 25 and 40, when the LGNE device is running COYERO
Detector. Additionally, the function which indicates the number of currently participating
APD-clients, is much more jittery for the LGNE, running COYERO Detector, than for
the other devices. Furthermore, the received authentication frequency is for the LGNE
quite often zero. This lets conclude, that some Android devices are better for acting as a
APD-kiosk, via the COYERO Detector application, than others.

5.4.2 Absence Timeout

Finding an absence timeout for the APD-kiosk has been another aim of this experiment.
The authentication frequency of the LGNE drops to zero several times, as seen in Fig-
ure 5.10. However, it does not drop to zero for other devices, which lets assume potential
different optimal absence timeouts for different devices acting as APD-kiosk. Analysing
the collected data regarding absence timeouts, confirmed this assumption.

As the Android devices, which run COYERO Client during the experiments, are always
within the AoI of the COYERO Detector application, they should be detected as present
all the time. This means, the COYERO Detector application shall receive a challenge
response advertisement, for each Android device running COYERO Client, within the
absence timeout. This is always the case, when the absence timeout is high enough. Some
of the collected data is visualized in Figure 5.11, Figure 5.12, Figure 5.13, and Figure 5.14.
Within these visualizations, a drop of a line, from 3 to 7, means that the absence timeout
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Figure 5.10: Number of currently participating APD-clients and Authentication Frequen-
cies of the Android Devices running COYERO Client for the different Android Devices
running COYERO Detector
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Figure 5.11: HTCN Absence Timeout Analysis

Device running COYERO Detector LGG4 SONY LGNE HTCN

Optimal Absence Timout 32 sec 43 sec 57 sec 62 sec

Table 5.4: Optimal Absence Timeouts for the Devices

has been reached by the corresponding Android devices at this point in time. The next
scanned challenge response, of the corresponding Android devices, was received at a raise
from 7 to 3. The optimal absence timeouts of the devices, shown in Table 5.4, are the
absence timeouts in seconds, which have never been reached by any of the participating
Android devices, running COYERO Client.

The tests of different absence timeouts for the HTCN device, as shown in Figure 5.11,
highlight the bad performance of COYERO Client running on a LGNE device. The
optimal absence timeout for the other two devices is 28 seconds. However, the LGNE
pushes the optimal timeout up to 62 seconds, making it the highest of all computed
optimal absence timeouts. The performance of the LGNE, running COYERO Client, for
other Android devices, running COYERO Detector, is quite normal, as seen in Figure 5.14
and Figure 5.12. Its performance, when running COYERO Detector, on the other hand, is
the worst of all four devices. It does not have the highest optimal absence timeout, but has
the lowest authentication frequencies and therefore the highest number of absence timeout
exceedances, when assuming a smaller absence timeout. It can not be guaranteed, that
any absence timeout is able to detect the absence of devices with 100% accuracy. However,
the detection rate seems to be very reliable with values for the absence timeouts, bigger
than 60 seconds.

5.5 Unexpected Findings

During the implementation and the experiment conduction, some unexpected findings have
been made. These are mostly related to the different devices and the usage of Android.
These findings are explained within the following paragraphs.
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Figure 5.12: LGG4 Absence Timeout Analysis

Figure 5.13: LGNE Absence Timeout Analysis

Figure 5.14: SONY Absence Timeout Analysis
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Device Max. Number of simultaneous
Advertisements

Max. Number of simultaneous
Connections to GATT clients

LGG4 4 5

SONY 4 5

LGNE 15 3

HTCN 4 5

Table 5.5: Device specific Maxima of simultaneously performed BLE Operations

Device specific BLE capabilities: The first thing that has been observed is that
devices have different properties in regards to the numbers of simultaneously performable
BLE actions. Simultaneously performed advertisements have been analysed as well as the
maximal number of concurrent connections to different GATT clients for a GATT server.
These are not the same numbers for all Android devices. The devices, which were tested
after discovering differences, and the corresponding values are listed in Table 5.5. The
LGNE is able to perform 15 simultaneous BLE advertisements, whereas the others can
only perform four. When acting as a GATT server, the LGNE does only support three
simultaneously active connections to GATT clients. A fourth GATT client can still receive
the connectable advertisement of the LGNE, however is not able to establish a connection
to it. The other three devices support five ongoing simultaneous connections to GATT
clients. A sixth connection is not possible, because the advertisement, which has been
used for establishing the connections, is terminated, when five connections are open. This
makes it hard to implement optimized applications, because using the supported features
of one device to optimize a procedure, makes potentially no difference on other devices.

Samsung Galaxy S6 does not work when running COYERO Client: A very
unexpected behaviour has been shown from the Samsung Galaxy S6, when it is running
the COYERO Client application, although it fulfils all BLE requirements for implementing
the authenticated presence detection, according to its data sheet. [56]

The tests for the Samsung Galaxy S6, running COYERO Detector, have been success-
ful. However, when running the COYERO Client application, it is only able to perform
the authentication. After successfully authenticating as GATT client, by using the Au-
thentication GATT Service, it switches to the APD challenge response protocol and starts
scanning for challenge advertisements, of the device running COYERO Detector. How-
ever, it never receives any advertisements. It has not been clarified why it does not receive
this advertisement, because the COYERO Client application works fine on all other tested
Android devices. The first assumption was that the initially installed Android version 5.1.1
caused the wrong behaviour. However, even updating the Samsung Galaxy S6 to Android
Version 7.0 did not solve the problem. Therefore, the Samsung Galaxy S6 has not been
used for any experiment.

Skip scan of challenge responses: The HTCN device, running COYERO Detector,
does not receive challenge responses from its performed BLE scans, while processing GATT
operations, as used done during an authentication. When many APD-clients want to
establish a connection simultaneously, they used to be processed one after another, by the
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COYERO Detector application, without any delay between finishing one authentication
process and starting the next one. This resulted in exceeding the absence timeout of
APD-clients, when many consecutive authentication processes of APD-clients have been
performed. This behaviour was observed, when many BLE112 dongles have been used
during the experiments. This problem has been solved, by adding a delay of three seconds
between two successive authentications. This is long enough for the HTCN device to scan
the challenge response advertisements of surrounding APD-clients. As the authentication
service advertisement is stopped, when a device has established a connection and restarted,
when the device has been disconnected, the easiest way to implement the delay, was by
delaying the restart of the authentication service advertisement.

Limitations in data transfer size: While executing some performance tests with a
huge amount of data transferred during the authentication process, by using a GATT
server, the data has not been received correctly. Therefore, investigations regarding this
behaviour were carried out with the Android application nRF Connect for Mobile2.

Read and write GATT operations have been performed. The LGG4 was used for being
the GATT client and the LGNE was the GATT server. It was able to write and read up
to 600 bytes correctly. Writing or reading data, which had more than 600 bytes, resulted
in receiving only a truncated data stream of 600 bytes. Testing a read of 4500 bytes, lead
to a restart of the LGNE’s Bluetooth adapter, due to an occurring error.

Therefore an additional functionality had to be added to the implementation. Every
data, which had to be transferred with a read or write GATT operation, was split up into
chunks small enough, that they fit into one read or write operation. For a GATT read
operation this is MTU-1 bytes and for a GATT write operation MTU-3 bytes, as stated
in the Specification of the Bluetooth System 4.1. [61, Vol. 3, p. 570, p. 574]. Each chunk
is then written or read one after another to prevent the previously mentioned errors.

Signal strength differences: During the conduction of the experiments the authen-
ticated presence detection has been aborted unexpectedly. This was due to differences
in the BLE signal strengths of the devices, although they were initialized with the same
BLE signal strength settings. For highlighting the differences, an additional experiment
was conducted. Four devices were placed at fix positions and pairs of them have been
tested. Two devices started to advertise and scan at the same time with the same signal
strength settings for a period of roughly two minutes. The scanned signals, including their
strengths, have been collected, averaged, and visualized. The expected outcome would be,
that both participating devices, receive the signal of the other device, with approximately
the same signal strength. However, the differences of the received signal strength is un-
expectedly high for the SONY device. Those differences are visualized in Figure 5.15.
The bar plot shows the six different combinations of the four devices, which were tested
on the x-axis, and the measured dBm difference on the y-axis, for all four possible set-
tings in Android. The black dashed line indicates the average value of all four Android
settings combined. This graph highlights the higher signal strength of the SONY device,
as all conducted tests, where the SONY is participating, show a higher difference than

2nRF Connect for Mobile is an Android application, which enables performing BLE operations, like
advertising, scanning or GATT connections. [51]
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Figure 5.15: Signal Strength Differences with same Settings

the others. The huge difference of the SONY device, required a different setting for the
conducted experiments, as otherwise the APD-process would not work properly. The data
was collected with the Android application nRF Connect for Mobile3.

Power consumption: Android avoids draining the battery by sending idling devices
into a sleep mode, which reduces the CPU usage to a minimum. There are cases where
a task is required to be done as fast as possible. Therefore, an Android device can be
prevented from switching to the sleep mode by acquiring a so called wake lock. When a
wake lock is acquired, the CPU continues the computations until the wake lock is released
again. [41]

The background service of the COYERO access Client SDK extension, which starts
and performs the APD-client’s functionalities, used to acquire such a wake lock imme-
diately after it has been activated, even when there is no APD-kiosk for performing an
authenticated presence detection available. The recognition of APD-kiosks is done by
continuously scanning for authentication service advertisements. It has been verified that
the BLE scan works, even when no wake lock is acquired. Therefore, acquiring the wake
lock after recognizing a APD-kiosk has been implemented to save battery. This has been
tested on the LGNE, HTCN, and LGG4. All tested devices were still able to start and
perform the APD process correctly.

3nRF Connect for Mobile is an Android application, which enables performing BLE operations, like
advertising, scanning or GATT connections. [51]
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Conclusion

BLE, as state of the art wireless technology, is more and more used for presence detection
systems. The low energy nature of BLE and its different modes for data transfer, makes
it adaptable for different use cases in the field of presence detection. Many researchers are
already focusing on building applications based on presence detection by using BLE, or
extend their research with information gathered from it. However, none of them focuses
on a proper cryptographic authentication within their presence detection.

The proposed design addresses this missing authentication. It uses a basic concept for
detecting the presence of devices, which is inspired by works of other researchers. The in-
novative part of the design, is combining presence detection via BLE with a cryptographic
authentication based on a PKI. This enables not only detecting the presence of devices
continuously, but also authenticating them with every update of their presence. The design
shows, that it is important to use certain communication modes of BLE for certain cryp-
tographic operations. For performing a DH key agreement via BLE, a GATT connection
between two devices is favoured, because a lot of data is required to be transferred. On the
other hand, for executing a challenge response, utilizing BLE broadcasters and observers
is recommended, because it increases the performance of the challenge response procedure
and reduce the required computational resources of devices.

The design has been verified by implementing it for Android devices. This implement-
ation provides all properties to be a reasonable extension for the COYERO access envir-
onment. The provided implementation uses two Android applications, namely COYERO
Detector and COYERO Client. COYERO Detector defines the detection area, whereas
COYERO Client has to be installed onto users mobile devices, which enables COYERO
Detector noticing this mobile devices. Both use the COYERO access infrastructure to au-
thenticated each other during the presence detection. An optional feature of the COYERO
Detector can be activated, which sends information, about the currently present and au-
thenticated devices, to a web server.

This implementation has been evaluated by conducting extensive experiments. The
experiments showed that it is possible to achieve authenticated presence detection by only
installing applications onto Android devices. The information, whether particular people
are present, is updated at least every minute in a real life scenario, enabling potential
service providers to react to this information within a reasonable time. Additionally, it
has been shown that the variety of devices, which are available for Android, could be a
problematic factor. Some of the devices perform worse than others or even do not support
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High Level Gate- Up-to Techno- Additional Authentication
Objectives way dateness logy HW required Level

RN SN

Geographical LCN low - high BLE no no Authentication
Presence

Table 6.1: Embedding of the APD Design

the required BLE features, although they should according to their data sheets. This
would lead to a lot of effort when it comes to building a system for commercial use.

6.1 Comparison to other Researches

An evaluation based on the conducted experiments, which addresses the identified common
properties of the related work (see Table 2.2), is provided in Table 6.1. This table embeds
the presented design and its implementation into the current research field of presence
detection.

• High Level Objectives: The high level object is detecting the Geographical Pres-
ence of devices.

• Gateway to other Channel: It uses the COYERO Detector application, or in
other words the LCN, to forward the information of surrounding COYERO Client
applications, to a web server. However, as the implementation is purely done in
Android, the devices running COYERO Client, would easily be able to forward the
data as well.

• Up-to-dateness: This was heavily focused by one experiment, which is shown in
5.4.2 and is related to the absence timeout explained in 3.4.4. The experiments
showed an update frequency about one minute. Therefore the up-to-dateness is
assigned to low-high.

• Wireless Technologies: Like most of the other presented presence detection ap-
proaches in 2.3, the newly created design uses BLE as well.

• Additional Hardware: Android devices are usually available, and therefore are
not considered as additional hardware.

• Authentication Level: As the aim of this work was to provide an authenticated
presence detection, this is the most important property of the new design’s imple-
mentation. It supports a cryptographic authentication in the context of a presence
detection, which none of the other presented works in 2.3.1 does.

6.2 Future Work

The most important objective for future work is to try splitting the work load of the
presence detection to multiple devices, meaning having two or more devices, which can
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be used for detecting surrounding people. This would not only increase the performance,
but also open up the possibilities, for deriving information about the detected people’s
position within the detection area.

Furthermore, it is planned to exchange the COYERO Detector Android application
with a COYERO communication controller1. This would not only get rid of device de-
pendencies on the APD-kiosk side and potentially increase the performance and stability,
but also lead to a fixed installation of the APD-kiosk, which may be the preferred solution
in many applications.

Finally, it is worth mentioning, that optimizations in the Android implementation itself
will be carried out, like optimizing the timeouts of the GATT authentication process and
adding a threshold for the signal strength to prevent the bad performance, at the border
of the detection area.

1Information about the COYERO communication controller can be found at http://www.coyero.net/
coyero-access

http://www.coyero.net/coyero-access
http://www.coyero.net/coyero-access
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Custom Packet Format

This chapter provides additional information for the custom packet format, which enables
sending multiple parameters in one data block. This is an easy format that shall be used
for packing the different parameters.

Challenge Packet

This packet contains the challenge, which is required to be solved by the receiving entities.
Figure A.1 shows the format for transmitting challenges. The first two bytes are the
identification header of the packet, which is in the case of a challenge packet a 0x0001,
followed by 16 bytes containing the challenge.

Challenge Response Packet

The challenge response packet combines the solved challenge with the session identifier.
This is illustrated in Figure A.2. The first two bytes are the identification of the challenge
response packet, which is 0x0002, followed by four bytes containing the session id and then
16 bytes containing the solved challenge.

Authentication Data Packet

This packet is used for transferring the data, which is required for performing an authen-
tication and a key exchange. It combines three different parameters into one block. These
three parameters are as follows:

• Certificate data: This certificate data is required to authenticate the entity, which
wants to be authenticated. It is a certificate issued by a trusted CA.

Figure A.1: Challenge Packet Format
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Figure A.2: Challenge Response Packet Format

Figure A.3: Authentication Data Packet Format

• Temporary key data: This is the temporary public key of a key pair, which shall
be used for performing the key exchange.

• Temporary key signature data: The signature is created by using the private
key of the certificate and is computed for the temporary key data to ensure that it
has not been tampered with.

To transmit these three parameters, the structure shown in Figure A.3 shall be used.
The authentication data packet starts with a two byte identification header, which is
0x0003, followed by the certificate data the temporary public key data and the signature
of the temporary public key. All of the three appended parameters, have a leading four
bytes, which define the length of the parameter. CDL defines the length of the certificate
data, TKDL the length of the temporary key data, and TKSDL the length of the temporary
key data’s signature.



Appendix B

APD Server RESTful Definition

This chapter provides a definition of the APD Server’s RESTful interface, which can be
seen in Table B.1. There are two different types of JSON files used within the interface.
The first one contains the information of the authenticated and present APD-clients,
detected by the APD-kiosk. The JSON parameters of this information can be interpreted
as follows:

• update time: Contains the time, when the APD-kiosk has sent this update to the
server. This is date is defined by the APD-kiosk, to prevent wrong timing information
due to network latency.

• device auth information: List of present and authenticated APD-clients, which
can contain 0 to n entries. One entry contains following elements:

– remaining time: The remaining time in seconds before the APD-client is
considered to be gone.

– token id: Unique id, of the authentication token from the COYERO access
framework, to identify the APD-clients.

– session id: The unique session id.

The second JSON definition adds information, which is interpretable by users, to
the authentication information of APD-clients. This separation enables the retrieving of
readable information from other sources as well. It is a list which contains 0 to n device
information entries. The JSON keys of the device information entries can be interpreted
as follows:

• device name: Human readable string representation of an APD-client.

• token id: The unique id of the authentication token from the COYERO access
framework, which links the readable string to the authentication information.
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Update Authentication Information

RESTful PUT /

Body

{
”update t ime ” : ”22/08/2017 @ 12 : 19 : 20 . 787” ,
” u s e r au th in f o rmat i on ” :
[
{

” remaining t ime ” : 178 ,
” token id ” : 27711 ,
” s e s s i o n i d ” : 2857688042

} ,
{

” remaining t ime ” : 177 ,
” token id ” : 27716 ,
” s e s s i o n i d ” : 1579531574:

}
]

}

Returns HTTP Status 200 OK

Get Authentication Information

RESTful GET /authentication devices.json

Returns

{
”update t ime ” : ”22/08/2017 @ 12 : 19 : 20 . 787” ,
” u s e r au th in f o rmat i on ” :
[
{

” remaining t ime ” : 178 ,
” token id ” : 27711 ,
” s e s s i o n i d ” : 2857688042

} ,
{

” remaining t ime ” : 177 ,
” token id ” : 27716 ,
” s e s s i o n i d ” : 1579531574:

}
]

}

Get Device Information

RESTful GET /device information.json

Returns

[
{

”device name” : ”Nexus 9−ca56ed4f005e5488 ” ,
” token id ” : 27711

} ,
{

”device name” : ”Nexus 5X−88dcbc0eb34f7 f46 ” ,
” token id ” : 27716

}
]

Table B.1: RESTful Specification of the APD Server’s Interface
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