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Abstract

This thesis deals with the control of Steering by Torque Vectoring, a redundant steering
concept for a Steer by Wire vehicle. Different driving torques on the front wheels are used
to generate desired steering angles in order to steer the vehicle. Along with a 27 degree
of freedom simulation model, different controller concepts are developed and tested on a
real car. The prototype vehicle is represented by a BMW X5, which was refitted into an
electrical powered car with a Steer by Wire system and individually propelled front wheels.

In the first part of this thesis, a linear representation of the system is derived and validated
with the simulation model and measurement data. With this representation, two different
model-based controller concepts are developed and implemented on the hardware of the
prototype vehicle. On special test tracks, these controller concepts are tested, occurring
problems are identified and investigated. Finally, the breakdown of the steer by wire
system is investigated by disabling the steering actuator and switching to the Torque
Vectoring redundancy.
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Kurzfassung

Die vorliegende Masterarbeit befasst sich mit der Regelung von Steering by Torque Vector-
ing, ein redundantes Lenkungskonzept für ein Steer by Wire Fahrzeug. Durch verschiedene
Antriebsmomente an den Vorderrädern können gewünschte Lenkwinkel eingestellt werden.
Dieser Effekt kann zum Lenken des Fahrzeugs genutzt werden. Zusammen mit einem 27
Freiheitsgrade umfassenden Simulationsmodelles werden verschiedene Regelkonzepte ent-
worfen und am echten Fahrzeug getestet. Der verwendete Prototyp ist ein umgebauter
BMW X5, dessen Vorderräder individuell elektrisch angetrieben werden können. Das
bestehende Lenksystem wurde durch ein Steer by Wire System ersetzt.

Im ersten Teil der Masterarbeit wird ein lineares Modell des Systems abgeleitet, welches
anhand des Simulationsmodelles und Messdaten validiert wird. Anhand dieser linearen
Abbildung werden zwei modellbasierte Regelungskonzepte entworfen und auf der Hardware
des Protoyps implementiert. Auf speziellen Teststrecken werden diese Regelungskonzepte
getestet, auftretende Probleme erkannt und untersucht. Zum Schluss wird der Ausfall
des Steer by Wire Systems durch Abschalten des Lenkaktuators simuliert und dabei der
Übergang auf Steering by Torque Vectoring untersucht.
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1 Introduction

1.1 ThyssenKrupp Presta AG

ThyssenKrupp Presta AG (TKP) is one of the market-leading manufacturer for steering
systems. With about 7000 employees in 16 countries, TKP is part of the ThyssenKrupp
group. By having a wide product range from simple cold forging parts to steering columns,
complete steering systems and just recently also electric drives, TKP supplies nearly all
global automotive manufacturers. The main research and development department is
located in Eschen, Liechtenstein, which is also the head quarter of the company. However,
the expenditures for R&D activities accounts a high rate of the company’s total spending,
which stands for a high level of diversification and innovation. One of the latest topic of
research is the so called Steer by Wire (SbW) System [1].

1.2 Steer by Wire

For a long time, steering systems in automotive vehicles were just mechanical connections
between the steering wheel and the driven wheels. Over the years, comfort and safety got
more important and the automotive industry has been making continuous effort in devel-
oping more advanced steering systems. So called power assisted steering systems (PAS)
had been introduced and are available in many different forms and implementations. With
these systems, the driver is supported in the steering motion, but as there is still a me-
chanical connection, the fixed steering ratio limits their possibilities [2]. The next major
development was active front power assisted steering (AFS), where the steering axle is
decoupled from the steering wheel (e.g. with a planetary gear and a electric motor), but
still has a mechanical connection. This gives the possibility of a variable steering ratio.
AFS offers complete freedom on the response side, but the feedback tuning possibilities
are still limited. To get rid of all limitations, the solution is a full Steer by Wire system
(SbW) [3].

In a SbW system, both the road wheels and the steering wheel torque are controlled
by their own actuator. Both the response of the car and the feedback to the driver are
controlled by software and are completely independent of each other. This offers maximum
functional freedom in both response and feedback, which is only limited by the actuator
performance and dynamics. The main issue with SbW systems is safety, as no mechanical
link is available between the road wheels and the steering wheel [3]. Figure 1.1 illustrates
the main difference between a conventional PAS and a SbW system. Because of the high
safety requirements, two concepts are distinguished:

– Fail-safe system with mechanical back-up: If an error is detected, a clutch can be
closed and a mechanical linkage is established (implemented in the Nissan Infinity
Q50, which is the first SbW production vehicle).

– Fail tolerant system with self controlled redundancies: This layout requires double
actuators, double electrical circuit, double sensors, etc.
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Figure 1.1: Comparison of a conventional PAS to a SbW system [4]. In SbW, the steering
column and shaft is replaced by a fully electrical connection with actuators on both sides.
The steering actuator controls the driven wheels to the desired steering angle, whereas the
feedback actuator delivers a haptic response of the driving state to the driver [2].

The fail-safe system is less expensive and less complicated, but also has the disadvantage
that a steering column is still necessary. This implicates that this solution does not have
the extra flexibility and modularity of a fail tolerant system without a steering column.
Also crash performance is a big advantage in a system without a steering column [3]. For
fail tolerant systems there are many different approaches. Besides the full redundancy of
the actuator, there is also the possibility to use single wheel steering (as shown in [5]), or,
if the wheels can be propelled independently, the use of the so called torque steering effect
[6].

1.3 Steering by Torque Vectoring

In general, torque vectoring (TV) means individual torque distribution on at least one
pair of wheels. In today’s cars, TV is mostly used to stabilize and improve the lateral
dynamics, which means that it can be seen as an extension to the regular steering system.
Since cars with combustion engines require special torque vectoring differentials, which
are very complex and expensive, this feature is reserved for luxury and sports cars. For
vehicles with independent electric drives, TV becomes much more applicable. Especially
in combination with a SbW system, TV on the front axle allows to steer the vehicle with
a non working or even without any steering actuator. This effect is called Steering by
Torque Vectoring (SbTV) and is explained in Figure 1.2.

The success of SbTV is mostly determined by the suspension design. As mentioned in
Figure 1.2, lateral forces and self aligning torques of the tires act against the longitudinal
forces. If this influence is significant, the electric drives have to generate high drive torques
to compensate this effect, which leads to the main limitations of SbTV. On the one hand,
high drive torques require powerful motors, which would increase the costs of the system
tremendously. On the other hand, high torques require enough traction on the wheels to
build up the necessary longitudinal forces. Especially at bad road conditions (e.g. snow,
ice, or gravel), this demand often cannot be fulfilled. To achieve a good performance, this
effect has to be minimized. Figure 1.3 describes some important characteristic steering
kinematic values and their influence on this problem. According to [6], a high normal
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v3

Fx2

Fx1

Tz

CoG
FR

Figure 1.2: Principle of Steering by Torque Vectoring. By applying different driving
torques on the front wheels, two major effects take place. First, the difference of the
resulting longitudinal forces Fx1 and Fx2 causes a yaw-torque Tz around the z-axis. Second,
under a suspension dependent transmission, a longitudinal force generates a torque around
the steering axis that forces the tire to steer. With the steering, the tire builds up lateral
force and self alignment torque that act against the steering movement. At a certain
steering angle, the forces and torques of the tire are at an equilibrium and the steering
movement stops. If the front wheels are connected with a steering rack, also the other tire
influences this behavior. Then, this equilibrium can be described with the force on the
steering rack FR.

steering axis offset at wheel center and a small castor offset at ground is desirable. At
present suspensions, these values are designed to provide the driver a desired feedback,
but since SbW has complete freedom on the response side, these characteristics can be
chosen more widely.

Figure 1.3: Characteristic steering kinematic values according to Matschinsky [2]. For
SbTV, two values are essential. The normal steering axis offset at wheel center ra as the
lever arm for the longitudinal forces and the castor offset at ground rτ ,k as the lever arm
for the lateral forces. Investigations showed that a low ratio of rτ ,k/ra is representative
for a good performance of SbTV [6].
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Besides the possibility of providing redundancy for a fail tolerant SbW system, SbTV
brings additional advantages. In a supportive role, TV can reduce the demands on the
steering actuator, which could reduce the costs of the SbW hardware. Furthermore, TV
still can be used for stabilization of the lateral dynamics. One can see that there is a
high potential to justify the added complexity in the propulsion system. TKP conducted
several research projects in the past and also this thesis deals with the topic of SbTV.

1.4 Motivation

The history of SbTV at TKP started with the master thesis of Marc Zurbuchen [7] in 2013.
He derived a suitable vehicle model based on a Formula Student car and did first theo-
retical investigations with different controller concepts. Sebastian Stracke continued these
concepts in his thesis [6] in 2014, improved the simulation model by a more advanced tire
and steering rack model and developed a LQR controller strategy with gain scheduling for
controlling the position of the steering rack. Due to technical problems at the test vehicle,
also this investigations remained theoretically. In the meantime, TKP and Suncar from
ETH Zürich refitted a BMW X5 into a fully electrical powered vehicle to provide a proper
research prototype for SbTV [8]. In 2016, Cornel Pfister and Jan Reis [9] developed and
validated a complex SIMPAC simulation model based on the BMW X5. They tried differ-
ent controller designs based on the LQR concepts from Stracke, but didn’t get satisfying
results on the real car. In the beginning of 2017, intern engineers at TKP designed a PID
controller with a vehicle speed dependent gain scheduling. They achieved a good perfor-
mance in controlling the position of the steering rack. Nevertheless, also with this solution,
the potential of the system is not fully used. Therefore, further research was commissioned.

Based on a vehicle model from Georg Rill [10], Klaus Esser [11] and Gerald Reiter [12]
validated an advanced simulation model for the BMW X5. With this model as a foundation
for realistic simulations, the performance of SbTV should reach a new level of performance.

1.5 Goal of the Thesis

The goal of this thesis is to develop a strategy to control the position of the steering
rack of the prototype vehicle BMW X5 under the principle of SbTV. With help of the
simulation model [12], the performance of the resulting system should exceed previous
solutions clearly. The new concepts should identify the limits of SbTV and find possible
improvements to exceed these limits. Furthermore, the error handling of the SbW system
has to be investigated. In the case of a breakdown of the steering actuator, SbTV as
the redundant system has to provide a safe and stable transition from the error case to a
normal operating mode of the redundancy.
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2 System Overview

In this chapter, the basis for this thesis is presented. Starting with an overview of the test
vehicle and the used hardware, also the development tools and software are introduced.
Subsequently, the simulation model will be explained in more detail following by the
existing controller concepts for SbTV, which determine the benchmark for this thesis.

2.1 Test Vehicle ”BMW X5 iSUV”

To provide a proper research platform, TKP and Suncar from ETH Zürich developed a
prototype vehicle based on a BMW X5 e70 from 2007 [8]. The car was refitted to an
electrical powered vehicle featuring two independent drives on the front wheels to allow
SbTV. Figure 2.1 shows the car from outside and Figure 2.2 gives some insights to the
reconstruction of the car. Furthermore, the steering system of the car has been replaced
by a fail safe SbW system with a mechanical clutch. In case of an error, this clutch can
be closed.

Figure 2.1: Test Vehicle BMW X5 iSUV [4].

The electrical drives are synchronous motors of type HSM1-10.18.13 from the manufac-
turer Brusa. With a supply voltage of 400 VDC, they can deliver a constant torque of
305 Nm up to a constant power of 93 kW each. To allow higher torques on the wheel
side, every motor has a gearbox with a ratio of 1:5.5 installed. The battery has a nominal
capacity of 85 kWh and comes from a decommissioned Tesla vehicle. The weight of the
battery pack is very high, which raises the overall weight of the car from 2185 kg of the
original X5 to 2659 kg.

Since the car is designed to be a research vehicle, several additional sensors to the stock
version are installed. The essential ones for SbTV are described in Table 2.1.
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2 System Overview

(a) Engine compartment of the refitted BMW
with all the power electronic devices.

(b) Interior of the car with one of the installed
battery packs.

Figure 2.2: The combustion engine with all associated parts had been removed and
replaced by two independent synchronous motors, gearboxes and appropriate inverters.
Instead of the back seats, one part of the battery is installed. The second part of the
battery is mounted at the underbody.

Table 2.1: Essential Sensors for SbTV on the BMW X5.

Physical value Comment

rack position ur The sensor is placed at the input shaft of the steering rack
and has a very high precision. The signal can be seen as
virtually noiseless.

rack velocity u̇r This value is measured with an internal motor sensor of the
SbW power pack The signal can also be used for SbTV,
when the steering actuator is switched off.

steering wheel angle δw To generate a reference, the position of the steering wheel
needs to be known and is measured in the feedback actuator
of the SbW system.

yaw rate ψ̇ This signal comes from a Racelogic VBOX IMU04 sensor.

wheel speeds ω3 and ω4 With an average of the rear wheel speeds, the velocity of the
car can be estimated.

Autobox - ControlDesk

The main processing unit is a Autobox from dSpace, which is a rugged embedded system,
specially designed for prototype vehicles [13]. It consists of a robust casing with a real-
time processor and different I/O cards. Supplied by a separate battery, also the safety
functions, like the mechanical clutch of the SbW system is controlled by this processor.
ControlDesk, which is the software of Autobox, is the interface between hardware and
software, providing a powerful experimental tool for the entire development process of
automotive electronic control devices. As it is directly compatible with Matlab/Simulink,
this system fulfills all requirements for a promising development environment.
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2.2 Simulation model (VTC model)

Usually, making tests on the real prototype car is associated with high costs, as one has
to rent a special test track, organize a transport for the vehicle and in some cases, also
professional test drivers are needed. With realistic simulation models, one can benefit a
lot in terms of costs and development time for new systems. Therefore, TKP arranged
a cooperation with the Graz University of Technology to derive and validate a proper
simulation model for the BMW X5.

The regarding model (VTC model) is based on a multi-body approach from Georg Rill
[10] and was extended and validated by two students. Klaus Esser on the one hand did the
validation of the tire model [11] and Gerald Reiter on the other hand extended the model
with special suspension- and steering rack models [12]. Also the validation of the remaining
parts were done by Gerald Reiter. The model was realized in MATLAB R2013b without
any requirement on special toolboxes. Figure 2.3 gives an overview of the structure.

(a) A general multi-body structure for a
vehicle simulation model by Georg Rill
[10].

27 DOF
vehicle model

drive torques

brake torques Output values

42 states



(b) Input-Output scheme for the VTC model.
The system consists of more states than DOF due
to several 2nd order differential equations.

Figure 2.3: A quick overview of the simulation model for the BMW X5. The whole
system is separated in several single bodies (tires, suspension, chassis, . . . ) which are
modeled separately. For a connection between the single bodies, the principle of Jourdain
and D’Alembert is applied. The result is a model with 27 degrees of freedom (DoF), which
are described in Table 2.2 in more detail. Drive- and brake torques on all wheels are the
input quantities of the model.

Table 2.2: The DoF’s of the model in more detail. Because of the high complexity, this
model is just capable of off-line simulations.

Degrees of freedom (DoF)

3 position of the vehicle (longitudinal, lateral, vertical)

3 orientation of the chassis (roll, pitch, yaw)

4 rotation angles of the wheels

4 suspension deflections

3 × 4 tire states for the TMeasy tire model [10]

1 steering rack position
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2.3 Existing controller concept

In February 2017, internal engineers from TKP tuned a PID-controller for the control
of the rack position ur. Dependent on the vehicle speed, the car changes it’s behavior
clearly, which means that the controller had to be tuned for several velocities. To avoid
discontinuities in the switching process, gain scheduling of the parameters with lookup-
tables was realized. Figure 2.4 shows the structure of the implemented controller and
Figure 2.5 shows the speed dependent parameters of the heuristically tuned controller.

10

+

+ +

++
+

+-

-

--
ur,ref

ur

ur,ref

.
ur,ref

.

ur

.
ur

.

kD(v)

kP(v)

kI(v)
1
s

ΔT

Figure 2.4: Structure of existing PID-controller [4]. Since the rack velocity u̇r can be
measured, there is no need for additional dynamics in the derivative part. Hence the
controller has 4 input parameters. The only dynamics comes from the integral part. The
feedback of the saturated control signal to the integrator works as a anti-windup principle.

0 25 50 75 100

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1
10

4

0 25 50 75 100

-100

0

100

200

300

400

500

0 25 50 75 100

0.8

1

1.2

1.4

1.6

1.8

2

2.2
10

4

Figure 2.5: Vehicle speed dependent gain scheduling of the existing PID-controller.
Data taken from [4]. The controller was tuned heuristically for several vehicle speeds.
The scheduling of the parameters was implemented via Lookup-Tables.

One drawback of this controller design is, that the tuning was done empirically. This
means, that it had no systematic background and took a lot of time to tune. Also, to
avoid stability issues with the resonances of the system, the parameter gains had to be
kept low, which resulted in a slow time response and big phase delays. These problems
can be seen e.g. in a step steer maneuver, as shown in Figure 2.6.
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Figure 2.6: Step steer maneuver at v = 30 kmh with the existing PID controller. One
can see clearly the delay until the steering rack starts moving. Furthermore, the steering
rack starts to oscillate a little, since the controller was tuned very close to the limits of
stability.

When doing a step experiment for a higher vehicle speed, these oscillations can get even
worse. Figure 2.7 shows the same maneuver as Figure 2.6 with a higher speed of v =
40 kmh.
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Figure 2.7: Step steer maneuver at v = 40 kmh with the existing PID controller. The
system gets very close to the limits of stability. The resulting oscillation is producing a
uncomfortable feeling for the driver.

It’s in the interest of TKP to identify and investigate the source of this resonance prob-
lem. With a more complex controller design, these problems should be avoided and the
performance of the overall system should be increased.

Therefore, the next logical step is to derive a proper mathematical model, that describes
all the important characteristics of the system and build up controller concepts based on
these representations. An optimal basis for common model-based controller theory is a
linear model in state space form, which will be derived in the next chapter.
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3 Linear vehicle modeling

With it’s 27 DoF, the VTC model described in Section 2.2 is far too complex to allow a
model-based controller design. Therefore, the mathematical relations have to be simplified
in a way, that common controller theory can be applied. The modeling approach in
this thesis will be a linear 2-track model for the lateral dynamics, separated from the
longitudinal dynamics. To describe the movement of the vehicle, ISO 70000 standard is
used (see Figure 3.1).

Figure 3.1: Vehicle coordinate system according to ISO 70000 [14]. The origin is located
at the center of gravity (CoG).

The behavior of a real vehicle is strongly nonlinear. Therefore, a linear model of the vehi-
cle does not represent the exact realistic behavior and bring significant errors with it. But
it has to be clear, that the goal of this reduced model is not an optimal representation of
the real car. It is more important, that the tendency, like characteristic frequencies and
dynamics, matches reality properly.

For the validation of this reduced model, the VTC model can be used. This saves a lot
of time, because otherwise, one has to make big efforts in measurements and experiments
on the real car for a proper validation. Nevertheless, the steering rack model of the VTC
model is not very accurate. Therefore, adjustments with measurement data as an addition
will be necessary. Furthermore, the propulsion system of the BMW X5 with the electric
motors and corresponding inverters are not modeled yet and will be taken into account in
this approach.

In the end of this chapter, the derived model is compared to the VTC model as well as
against measurement data from the real car. The resulting system is present in a state
space realization, which is an optimal basis for linear controller theory.
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3.1 Basic two-track model

3.1.1 Tire Forces

As the tire is the only element of a car, which interacts with it’s surrounding, tire modeling
is a very important part to get realistic simulations. There is a big variation of tire models
on the market, beginning from simple mathematical to high level physical approaches. For
example, the used TMeasy model in the VTC model consists of 54 parameters and has a
3rd order dynamic model included [10].

To get a linear tire model, a lot of assumptions have to be made. In Figure 3.2, one can
see, that without a camber angle, all the coordinate systems of the wheel are at same
position in the xy plane and everything is horizontally aligned. Also the static radius rs

is assumed to be constant for different wheel loads.

Fyw

Fxw

vwαw

xw

yw

W

C

W

xc

zc

Fzw

ωr0
C

W

yw

yc

zc

zwrs

Figure 3.2: Illustration of a single wheel, based on ISO 8855 [14]. By neglecting tire
masses and camber angle, the wheel contact point coordinate system W is on the same
position as the wheel center coordinate system C with the static radius as a vertical offset.
This means that all the forces, that act in the contact point W , act at the same value and
direction in the wheel center C.

On real tires, forces are generated only in combination with slips. According to Rill [10],
the longitudinal slip

sx =
− (vxw − rD ω)

rD |ω|
(3.1)

is responsible for a longitudinal force Fxw and the slip angle

αw = tan
vyw

rD |ω|
(3.2)

generates a lateral force Fyw. rD denotes the dynamic rolling radius of the tire. It becomes
more complex, if the longitudinal and lateral forces act in combination, as the tire has
limits in force transmission. The well known friction ellipse describes these limits.
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3 Linear vehicle modeling

As a simplification, the longitudinal and lateral forces are separated from each other.
Additionally, it is assumed that all the drive torque is fully transferred into a longitudinal
force, which means that the slip quantity is not needed. Only a wheel load dependent roll
friction (based on [10]) acts against the movement. Therefore, the longitudinal force can
be written as

Fxw =
Tdw

rs
− Fzw frw

r0

rs
(3.3)

where Tdw is the drive torque, rs the static tire radius, Fzw the wheel load, r0 the unloaded
tire radius and frw the coefficient of roll friction. The lateral tire force is a nonlinear
dependency of the slip angle αw and wheel load Fzw. As depicted in Figure 3.3, the lateral
tire force consists of a linear range until slip angles of |αw| < 3◦ and a saturation range
for higher values. Therefore, we can suppose a linear characteristic if the assumption of
small slip angles holds.

-25 -20 -15 -10 -5 0 5 10 15 20 25

-6000

-4000

-2000

0

2000

4000

6000

F
zw

 = 2000N

F
zw

 = 4000N

F
zw

 = 6000N

Figure 3.3: Lateral force dependent on slip angle αw for different loads Fzw of the tire
used on the BMW X5 from the validated TMeasy tire model. One can see a degressive
behavior of the tire. With rising wheel loads, the lateral force capability gets smaller in a
relative sense.

For this use case, the degressive influence of Fzw on the lateral force does not have any
practical significance and is not further investigated. Therefore a linear approximation
around a nominal load Fzn is sufficient. The resulting lateral force can be calculated by

Fyw = −ca αw
Fzw

Fzn
(3.4)

with ca as the cornering stiffness at the nominal load Fzn. Changes in the wheel loads Fzw

come from load transfer due to lateral accelerations of the vehicle and is discussed later
in Section 3.1.4.
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3.1 Basic two-track model

3.1.2 Model equations around the center of gravity

As a next step, the model equations for vehicle movement around the center of gravity
will be derived. The resulting model is a two track model without vertical movement,
roll and pitch motion and is based on the work of W. Hirschberg [14] and G. Rill [10].
All given vectors are related to the vehicle fixed coordinate system located in the CoG
as shown in Figure 3.4. First, the acceleration vector of the vehicle has to be derived. It

bF
bR

δ1

δ2

α2

α1

Fy4

Fy3

v3

lF lR

α3

α4

β

Fx2

Fx1

Fx

Fx4

Fx3

Fy2

Fy1

Fy

v2

v1

v

v4

CoG

ψ
v3

Figure 3.4: Vector orientation of the two track model, based on [14]. The described
movement is limited to the xy-plane and yaw-movement around the CoG. All angles and
vectors are depicted in positive sense and do not represent a realistic driving state.

consists of two parts, one from the translatory movement of the vehicle and one from the
rotatory momentum around the z-axis, which is also known as centrifugal acceleration.
By calculation of

a = v̇ + ω × v =

v̇x

v̇y

0

+

0
0

ψ̇

×
vx

vy

0

 , (3.5)

the accelerations in x and y direction are given by

ax = v̇x − ψ̇ vy (3.6)

ay = v̇y + ψ̇ vx. (3.7)

According to Newton’s 2nd law, the equations of motion for translatory movements can
now be stated as

m
(
v̇x − ψ̇ vy

)
= Fx1 cos δ1 − Fy1 sin δ1 + Fx2 cos δ2 − Fy2 sin δ2 + Fx3 + Fx4 (3.8)

m
(
v̇y + ψ̇ vx

)
= Fx1 sin δ1 + Fy1 cos δ1 + Fx2 sin δ2 + Fy2 cos δ2 + Fy3 + Fy4 (3.9)

with m as the overall vehicle mass, δ1, δ2 as the steering angles and Fxw, Fyw as the tire
forces on all wheels. The yaw movement can be described via the equilibrium of torques
around the z-axis. With Θ as the overall inertia of the chassis, lf, lr as the distances from
the CoG to front and rear axle and bf, br as the track width’s of both axles, the third
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3 Linear vehicle modeling

equation of motion is given by

Θ ψ̈ = lf (Fx1 sin δ1 + Fy1 cos δ1)− bf/2 (Fx1 cos δ1 − Fy1 sin δ1)

+ lf (Fx2 sin δ2 + Fy2 cos δ2) + bf/2 (Fx2 cos δ2 − Fy2 sin δ2)

− lr Fy3 − br/2Fx3

− lr Fy4 + br/2Fx4.

(3.10)

In a regular vehicle, the steering angles rarely exceed |δi| > 20◦. Therefore, the trigono-
metric functions can be approximated by

sin δ1 ≈ δ1 sin δ2 ≈ δ2

cos δ1 ≈ 1 cos δ2 ≈ 1.
(3.11)

The rear wheels are not driven, and as this model does not consider brakes, the longitudinal
forces F3 and F4 are generating only rolling resistance and are assumed to be at same size.
This means that

Fx4 − Fx3 = 0. (3.12)

Applying these assumptions, the equations of motion simplify to:

m
(
v̇x − ψ̇ vy

)
= Fx1 + Fx2 + Fx3 + Fx4 − Fy1 δ1 − Fy2 δ2 (3.13)

m
(
v̇y + ψ̇ vx

)
= Fy1 + Fy2 + Fy3 + Fy4 + Fx1 δ1 + Fx2 δ2 (3.14)

θ ψ̈ = lf (Fy1 + Fy2 + Fx1 δ1 + Fx2 δ2)

− bf/2 (Fx1 − Fx2 − Fy1 δ1 + Fy2 δ2)

− lr (Fy3 + Fy4) .

(3.15)

As a next step, the side slip angle β is introduced. It describes the position of x-axis
relative to the movement of the vehicle. For small side slip angles, lateral and longitudinal
velocities plus their derivatives can be approximated by

vx = v cosβ ≈ v
vy = v sinβ ≈ v β
v̇x = v̇ cosβ − v sinβ β̇ ≈ v̇ − v β β̇
v̇y = v̇ sinβ + v cosβ β̇ ≈ v̇ β + v β̇

(3.16)

It is assumed, that the vehicle velocity v is changing slowly, which means that v̇ ≈ 0.
Then, the final equations of motion for the lateral dynamics can be stated as

mv
(
β̇ + ψ̇

)
= Fy1 + Fy2 + Fy3 + Fy4 + Fx1 δ1 + Fx2 δ2 (3.17)

θ ψ̈ = lf (Fy1 + Fy2 + Fx1 δ1 + Fx2 δ2)

− bf/2 (Fx1 − Fx2 − Fy1 δ1 + Fy2 δ2)

− lr (Fy3 + Fy4) .

(3.18)
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3.1 Basic two-track model

3.1.3 Tire velocities and slip angles

In order to calculate the slip angles of the tires, the vehicle velocities at each wheel center
have to be determined first. With the actual vehicle speed, yaw rate and distance from
CoG to wheel center, the velocity at the wheel center of the front left tire, depicted in the
vehicle fixed coordinate system (Figure 3.4), can be calculated as

v1,v = v + ω × rvc1,v =

 v
v β
0

+

0
0

ψ̇

×
 lfbf

2
0

 =

 v − ψ̇ bf
2

v β + ψ̇ lf
0

 . (3.19)

By taking the steering angle δ1 into account, this velocity can be transformed into a wheel
fixed coordinate system, which components are given by

vx1 =

(
v − ψ̇ bf

2

)
cos δ1 +

(
v β + ψ̇ lf

)
sin δ1 (3.20)

vy1 =
(
v β + ψ̇ lf

)
cos δ1 −

(
v − ψ̇ bf

2

)
sin δ1. (3.21)

Applying the approximation of the trigonometric functions from equation (3.11), these
relations can be simplified to

vx1 = v − ψ̇ bf
2

+
(
v β + ψ̇ lf

)
δ1 (3.22)

vy1 = v β + ψ̇ lf −
(
v − ψ̇ bf

2

)
δ1. (3.23)

As stated in Section 3.1.1, the longitudinal slip is set to sx = 0. With this assumption and
with an approximation of tanϕ ≈ ϕ for small values of ϕ, the slip angle definition from
equation (3.2) simplifies to

αw ≈
vyw

vxw
. (3.24)

Then, the slip angle of the front left tire can be calculated as

α1 ≈
vy1

vx1
=

v (β − δ1) + ψ̇
(
lf + δ1

bf
2

)
v (1 + δ1 β)− ψ̇

(
bf
2 − δ1 lf

) . (3.25)

Investigating this result, it can be noticed that for velocities v > 5 kmh

1� |δ1 β|

v �
∣∣∣∣ψ̇(bf2 − δ1 lf

)∣∣∣∣
lf �

∣∣∣∣δ1
bf
2

∣∣∣∣ ,
(3.26)

which can be applied to equation (3.25). Then, the slip angle can be approximated by the
linear relation

α1 ≈ β − δ1 + ψ̇
lf
v
. (3.27)
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3 Linear vehicle modeling

Similar to the front left wheel, the slip angles for the remaining wheels can be derived as

α2 ≈ β − δ2 + ψ̇
lf
v

(3.28)

α3 ≈ β − ψ̇
lr
v

(3.29)

α4 ≈ β − ψ̇
lr
v
. (3.30)

For a better straight-line stability and corner entry handling, the wheels of the BMW X5
are orientated with a toe-in angle. As seen in Figure 3.5, toe is an angle formed by the
center line of the wheel and the x axis of the vehicle fixed coordinate system, looking at
the vehicle from above. If the lines meet in front of the car, this is known as toe-in [10].

Figure 3.5: Toe-in angle on the front wheels [10]. This angle improves the straight-line
stability and corner entry handling but increases the tire wear.

This angle also improves the stability of the model and can be easily considered in the slip
angles of the tires. By using dtf as a constant for the toe on the front wheels and dtr for
the rear wheels, the slip angles change to

α1 = β − δ1 + ψ̇
lf
v

+ dtf (3.31)

α2 = β − δ2 + ψ̇
lf
v
− dtf (3.32)

α3 = β − ψ̇ lr
v

+ dtr (3.33)

α4 = β − ψ̇ lr
v
− dtr. (3.34)

3.1.4 Lateral load transfer

Due to the lateral acceleration in cornering situations, the loads of the single wheels
changes. This effect is called lateral load transfer. There is a similar effect for longitudinal
acceleration, but as we consider only lateral dynamics, the longitudinal load transfer will
be neglected.

The load transfer is mainly determined by the suspension design and the height of the
CoG. To avoid additional degree’s of freedom coming from suspension deflections, only
the steady state behavior is considered. Mitterrutzner derived a simplified dynamic tire
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3.1 Basic two-track model

load model in his thesis [15]. This model was adapted as followed:

Fz1 =
mg

2
WB − ay

mhCoG

bf
RB (3.35)

Fz2 =
mg

2
WB + ay

mhCoG

bf
RB (3.36)

Fz3 =
mg

2
(1−WB)− ay

mhCoG

br
(1−RB) (3.37)

Fz4 =
mg

2
(1−WB) + ay

mhCoG

br
(1−RB) (3.38)

With no lateral acceleration, the weight of the car is equally distributed to the wheels
according to it’s weight balance WB, which is determined by

WB =
lr

lf + lr
. (3.39)

Proportional to a lateral acceleration ay, load is shifted towards the outer wheel in case
of a cornering situation. The roll balance RB as a constant parameter determines the
load distribution on the front axle relative to the rear axle and is given by the overall
suspension design. Other dependencies come from the height of the center of gravity hCoG

and the track widths bf and br. In steady state, ay can be approximated by

ay ≈ v
(
β̇ + ψ̇

)
≈ v ψ̇. (3.40)

Inserted in the equations above, the final load transfer model is given by

Fz1 =
mg

2
WB − ψ̇

m v hCoG

bf
RB (3.41)

Fz2 =
mg

2
WB + ψ̇

m v hCoG

bf
RB (3.42)

Fz3 =
mg

2
(1−WB)− ψ̇ m v hCoG

br
(1−RB) (3.43)

Fz4 =
mg

2
(1−WB) + ψ̇

m v hCoG

br
(1−RB) . (3.44)

3.1.5 Steering rack model

For SbTV, the rack position ur is an additional degree of freedom and has to be modeled
as well. Dependent on the suspension and steering geometry, the tire forces and torques
generate a force on the steering rack. The resulting force on the rack minus a friction
force Fr is responsible for a movement of the rack. Figure 3.6 shows a illustration of the
steering rack to understand the described relations.

To describe the movement of the rack, a compensation mass for the whole system needs
to be determined. With this mass, all the subsystems, that are moving together with the
rack are considered. Pfister and Reis in [9] did some investigations about this problem
and calculated this compensation mass as

mr = mz + θEM

(
2π ibelt

iBLD

)2

+ θBLD

(
2π

iBLD

)2

+ 2 θwheel

(
1

lsh

)2

(3.45)

where mz is the mass of the steering rack by itself, θEM, θBLD, θwheel the inertias of steering
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x

y

ur

Fx1

Fy1

Fx2

Fy2

Ts1 Ts2

Fr

mechanical
clutch

ball-type 
linear drive

steering actuator

steering rack

steering wheel

Figure 3.6: Schematic drawing of the steering rack. The tire forces generate a torque
around the pivot, where the wheel carrier is connected to the tie rod. The sum of these
torques and the self aligning torque of the wheel generate a force directly on the steering
rack. As there are a lot of components installed from the SbW system (the steering
column, steering actuator and the ball-type linear drive (BLD)), there is a lot of friction
in the system.

actuator, BLD and wheel. ibelt is the transmission between the actuator and the BLD.
iBLD is the transmission between the BLD and the steering rack. lsh is the lever length
for the steering arm. With an equilibrium of forces on the steering rack, the movement of
ur can be described as

mr ür = Fl − Fr(u̇r) (3.46)

with Fl as the sum of forces coming from the tires and Fr(u̇r) as the friction force. The
friction inside the steering rack is quite complex, as it has asymmetric and dynamic be-
havior. Rohrmoser [16] developed a rack friction estimation based on the Lund-Grenoble
friction model for a different SbW vehicle. Because of the complexity, the validation of the
model is very time consuming and therefore inappropriate for the demands of this thesis.
A more basic approach is the one, that Reiter used in his thesis [12], a Coulomb friction
model of form

Fr(u̇r) = fr sign(u̇r) + fd u̇r. (3.47)

Since the sign-function is unsuitable for simulation, it is replaced by a tanh-function which
results as

Fr(u̇r) = fr tanh(u̇r kfr) + fd u̇r. (3.48)

where fr denotes the static friction, kfr the slope of the tanh-function and fd the damping
coefficient of the system.

Usually, the transition of the tire forces to the rack force Fl is nonlinear, dependent on
the suspension deflection and the steering angle. For this demands, this nonlinearities
are neglected and replaced by linear relations. According to Reiter [12], longitudinal and
vertical forces are counteracting, whereas the lateral forces and self alignment torques are
acting in the same direction. With linear constants, the rack force then can be determined
by

Fl = kx (Fx1 − Fx2) + ky (Fy1 + Fy2) + kz (Fz1 − Fz2) + rM (Ms1 +Ms2) . (3.49)
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3.1 Basic two-track model

Supposing, that the lever arm n is constant, the self aligning torques can be described as
a function of the lateral forces by

Ms1 = −nFy1 (3.50)

Ms2 = −nFy2. (3.51)

Then the equation of motion for the rack position ur results as

mr ür = kx (Fx1 − Fx2) + (ky − n rM) (Fy1 + Fy2) + kz (Fz1 − Fz2)

− fr tanh u̇r/kfr − fd u̇r.
(3.52)

In today’s cars, the steering angle of the inner wheel in a cornering situation is higher
than the steering angle of the outer wheel. The most common steering geometry is the
Ackermann Steering geometry [2]. For the demands of this model, however, the steering
geometry is assumed to be linear with the same steering angles left and right. Then, the
steering angle can be described proportional to the rack position as

δ1 = δ2 = kd ur. (3.53)

The steering transmission kd can be determined by an average point of the real steering
geometry. For steering angles up to |δi| < 10◦, this assumption holds pretty good.

3.1.6 Drive train

At the moment, the model has 2 input parameters, the drive torques on the front wheels
Td1 and Td2. Since the average torque of Td1 and Td2 has no influence regarding SbTV,
the torques can be transformed to

Td1 = T + ∆T (3.54)

Td2 = T −∆T (3.55)

with the longitudinal torque T and the delta torque ∆T . According to the assumption
that v̇ = 0, T can be approximated in steady state as a function of the drag- and the
rolling resistance:

T ≈ 1.25

4
rs cdAf v

2 + 2 r0 frw Fzn (3.56)

The system is therefore reduced to 1 input parameter, the delta Torque ∆T . In the real
system, this torque cannot be generated instantly. The inverters with their related motors
are control systems by itself that need time to build up the required torques. The easiest
way to model this behavior is a 1st order dynamics of form

τ∆Ṫ = −∆T + ∆Treq (3.57)

where τ is a time constant and ∆Treq the requested delta torque as input parameter.
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3.2 Validation

The derived model in the previous section needs to be validated. For most of the necessary
parameters, the VTC model in SbW mode can be used. For the other parameters, that
aren’t accessible in a direct way need to be validated through special simulations or with
measurement data from the real car.

3.2.1 General vehicle parameters

The geometric parameters, the vehicle mass and the overall inertia was validated by Reiter
in [12] and can be used directly. The track width of the front axle is about 7 cm wider than
the width of the rear axle, which comes from installed spacers on the front wheel carriers.
This increases the normalized steering offset as mentioned in Figure 1.3 and improves the
performance of SbTV.

For the lateral load transfer model from section 3.1.4 two additional parameters are needed.
The weight balance can be calculated as shown in equation (3.39) to

WB =
lr

lf + lr
=

1.349 m

1.349 m + 1.580 m
= 0.459, (3.58)

which means, that about 46 % of the vehicle mass is laying on the front axle. The roll bal-
ance RB represents the suspension dependent load distribution between the front and rear
axle. This parameter is not directly available and needs to be validated by experiments.
Therefore, a so called ramp-steer-maneuver has been simulated, where the rack position
follows a ramp signal at a constant vehicle speed. With the wheel loads of all 4 tires, the
roll balance then can be calculated by

RB =
Fz2−Fz1

2
Fz2−Fz1

2 + Fz4−Fz3
2

=
Fz2 − Fz1

Fz2 − Fz1 + Fz4 − Fz3
(3.59)

for different lateral accelerations ay and is shown in Figure 3.7.
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Figure 3.7: Ramp steer maneuver at v = 30 km/h to determine the roll balance. One
can see, that the load transfer on the front axle is much higher, than on the rear axle.
This represents a high roll stiffness on the front, which is necessary to guarantee a under-
steering behavior of the car. With the resulting wheel loads, the roll balance then can be
calculated and is shown in the left plot.
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The roll balance is nearly constant for a wide range of ay until the first wheel tips up.
But as tipping up is hardly possible with SbTV (since there is always traction necessary
to generate the delta torque), the roll balance can be considered as constant. An average
value out of Figure 3.9 can be determined as

RB = 0.711. (3.60)

All the general vehicle parameters are summarized in Table 3.1.

Table 3.1: General vehicle parameters. All parameters, except WB and RB, have been
taken from [12].

Param. Value Description

lf 1.580 m Distance from CoG to front axle

lr 1.349 m Distance from CoG to rear axle

bf 1.714 m Track width of front axle

br 1.650 m Track width of rear axle

m 2804.3 kg Overall vehicle mass incl. 2 drivers

θ 6525 kg m2 Inertia of the vehicle around z-axis

WB 0.459 Weight balance

RB 0.711 Roll balance

hCoG 0.585 m Height of the center of gravity

3.2.2 Rack parameters

To analyze the steering geometry and the toe angles, another ramp steer with a very
low vehicle speed has been simulated. The low velocity is needed to avoid deflections in
the suspensions (bump steer effect) and other dynamic effects which could influence this
isolated experiment. In Figure 3.8, the results of this simulation are shown.
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Figure 3.8: Ramp steer with very low vehicle speed to analyze the steering geometry
of the car. In the left plot, one can see the Ackermann steering geometry, where the
inner wheel have a higher steering angle than the outer wheel. For this model, a linear
approximation (as depicted with the red graph) is sufficient. With a zoom around the
origin, the toe angles on the front and rear axle can be determined.

– 21 –



3 Linear vehicle modeling

For rack positions smaller than ur < |4 cm|, the linear approximation

δ1 = δ2 = kd ur = 5.75ur (3.61)

is sufficient. For higher steering angles, this approximation produces some slight errors.
The toe angles are constant for the whole range uf ur and are modeled by

dtf = 0.0012 rad (3.62)

dtr = 0.0014 rad. (3.63)

In order to validate the gains of the tire forces and self aligning torque to rack force,
the suspension model from Reiter [12] can be used. With this model, the gains can be
analyzed for different rack positions and suspension deflections. Figure 3.9 show these
gains for both of the front tires with zero suspension deflection.
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Figure 3.9: Gains of the transition from tire forces and self aligning torque to rack force
with zero suspension deflection [12]. One can see that the rack forces influences these
gains in a non linear way. In the origin, the value for kx and kz have the same value but
opposite sign. This means that the longitudinal and vertical forces are counteracting.

According to equation (3.52), constant gains are necessary to get a linear relation. There-
fore, the gains had been taken out of the data from Figure 3.9 at ur = 0:

kx = −0.440 ky = −0.200

kz = −0.045 rM = 5.775m−1
(3.64)
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With equation (3.45) and the parameters from Table 3.2, Pfister and Reis[9] calculated a
rack compensation mass of mr = 1057 kg, that describes the characteristic frequency of
the rack.

Table 3.2: Parameters for calucation of rack compensation mass from [9].

Param. Value Description

mz 2.3 kg Mass of steering rack

θEM 0.0003 kg m2 Inertia of steering actuator

θBLD 0.0006628 kg m2 Inertia of ball-type linear drive

θwheel 0.8457 kg m2 Inertia of a single wheel

ibelt 2.41 Transmission between steering actuator and BLD

iBLD 0.01 m/U Transmission between BLD and steering rack

lsh 0.18 m Lever length for the steering arm

According to measurements (see Figure 3.10), this frequency lies at frack = 3.2 Hz. To
match the real frequency of the BMW X5, this virtual mass has to be higher than the
calculation from [9]. With

mr = 1900 kg, (3.65)

the model reproduces exactly a resonance frequency of 3.2 Hz.
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Figure 3.10: Resonance effect on the steering rack. At this measurement, a sweep
maneuver caused some characteristic oscillations. The rack compensation mass describes
the frequency of this oscillation.

The parameters for the friction model have been taken from internal engineers at TKP.
They have the values

fd = 5000 Ns m−1 (3.66)

fr = 300 N. (3.67)

In Table 3.3, the parameters from this section are summarized.
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Table 3.3: Parameters of the steering rack.

Param. Value Description

kd 5.75 rad m−1 Transmission of rack to steering angle

dtf 0.0012 rad Toe angle front

dtr 0.0014 rad Toe angle rear

kx -0.440 Gain of longitudinal force to rack force

ky -0.2 Gain of lateral force to rack force

kz -0.045 Gain of vertical force to rack force

rM 5.775 m−1 Gain from self aligning moments to rack force

mr 886 kg Compensation mass of the steering rack

fd 5000 Ns m−1 Damping coefficient of rack

fr 300 N Static rack friction

3.2.3 Wheel parameters

The parameters regarding the tire, can be calculated by the TMeasy validation from Esser
[11] and by the definitions according to Rill [10]. For the nominal vertical load, a 4th of
the overall mass

Fzn =
mg

4
=

2804.3 kg 9.81 m/s2

4
= 6877.5 N (3.68)

has been chosen. Since the tire was parametrized for Fzn1 = 4500 N and Fzn2 = 9000 N,
the parameters need to be interpolated by proper relations [10]. The static radius rs at
the nominal wheel load can be calculated by

rs = r0 −∆z ≈ r0 −
Fzn

cz
= 0.369 m− 6877.5 N

300000 N/m
= 0.346 m (3.69)

where cz is the vertical tire stiffness at Fzn. The cornering stiffness of the tire can be
calculated by

ca =
Fzn

Fzn1

(
2 ca,n1 − 0.5 ca,n2 − (ca,n1 − 0.5 ca,n2)

Fzn

Fzn1

)
= 126160 N/rad. (3.70)

The length of the lever arm n is difficult to calculate, since it is influenced by a lot of effects
such as pneumatic trail, castor offset at ground or some angles of the suspension geometry.
Hence, this parameter was tuned with a least squares error analysis in the simulation to
match the behavior of the VTC model as close as possible. For a value of

n = 0.0835 m, (3.71)

the error of the steady state steering rack position for various step inputs at different
vehicle speeds minimizes. The rolling resistance coefficient was given by the value of

frw = 0.0075. (3.72)

The parameters validated in this section are summarized in Table 3.4.
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Table 3.4: Tire parameters. The lever arm for the self aligning torque was tuned via a
least squares error analysis.

Param. Value Description

r0 0.369 m Unloaded radius of tire

rs 0.346 m Static radius of tire @ Fzn

ca 126160 N rad−1 Cornering stiffness of tire @ Fzn

Fzn 6877.5 N Nominal vertical wheel load

n 0.0835 m Lever arm for self aligning torque

frw 0.0075 Rolling resistance coefficient

3.2.4 Drive train parameters

The drive train with the inverter and motors are not modeled in the VTC model yet.
Therefore, the validation has to be done with measurement data. Internal engineers at
TKP did sweep tests with the existent SbTV controller, one of these tests is shown in
Figure 3.11.
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Figure 3.11: Sweep test with SbTV. The black line depicts the requested differential
Torque ∆Treq, the red line is the estimated actual delta torque ∆T . The estimation is
based on the inverter current and is the only available measurement data for the actual
torque. For higher frequencies, the actual torque has a lower amplitude than the requested
torque. In the zoomed plot on the right side, also a remarkable phase delay is noticeable.

The time constant τ , according to the modeling in Section 3.1.6, has been tuned manually
until the behavior of Figure 3.11 was reconstructed properly. For a value of

τ = 0.06 s, (3.73)

the filtered requested torque matches the actual torque estimate very well. Figure 3.12
shows the results of this validation.

The parameters for the air drag had been taken from [12] and have the values

cd = 0.38 (3.74)

Af = 2.9 m2. (3.75)

Table 3.5 summarizes the validated parameters in this section.
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Figure 3.12: Filtered requested torque against the actual torque estimate for the sweep
test from Figure 3.11. The black line is the filtered requested torque with a 1st order
dynamics and time constant τ = 0.06 s. Now, both signals are matching very good. Also
the phase delay is considered sufficiently with this approach.

Table 3.5: Parameters for the drive train. The time constant τ has been tuned manually
with measurement data from internal TKP engineers.

Param. Value Description

τ 0.06 s Time constant of inverter-motor-model

cd 0.38 Drag resistance of air

Af 2.9 m2 Frontal area of the vehicle

3.3 Frequency domain

For the use of conventional controller theory, the derived model relations need to be
combined and transformed into the frequency domain. Therefore, a state space realization
needs to be derived first.

3.3.1 State space realization

By combining all the model relations of equations (3.1) to (3.57), the behavior can be
described in 4 equations of form

β̇ = A11 β +A12 ψ̇ +A13 ur +A15 ∆T (3.76)

ψ̈ = A21 β +A22 ψ̇ +A23 ur +A25 ∆T +N21 ψ̇ u
2
r +N22 ψ̇

2 ur +N23 β ψ̇ ur (3.77)

ür = A41 β +A42 ψ̇ +A43 ur +A44 u̇r +A45 ∆T +N41 tanh u̇rN42 (3.78)

∆Ṫ = A55 ∆T +B5 ∆Treq (3.79)

with the coefficients Aij , Bi for the linear part of the model and Nij for the non-linear
part. These coefficients are constant with dependency of the vehicle speed. The derivation
of these coefficients can be found in the Appendix. Because of

β, ψ̇, ur � 1, (3.80)

the influence of the non-linearities in equation (3.77) is very small. Thus, the non-linearities
can be omitted without any compromises. Nevertheless, the static friction of the rack,
described by the coefficients N41, N42 in equation (3.78), influences the behavior of the
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steering rack strongly and is impossible to linearize them in a useful way. Therefore, to
get a linear model, the static friction has to be omitted, despite the fact that it represents
a major drawback if it is not considered. By introducing a state vector and the input of
form

x =


x1

x2

x3

x4

x5

 =


β

ψ̇
ur

u̇r

∆T

 (3.81)

u = ∆Treq, (3.82)

the model equations can then be stated as

ẋ =


A11 A12 A13 0 A15

A21 A22 A23 0 A25

0 0 0 1 0
A41 A42 A43 A44 A45

0 0 0 0 A55


︸ ︷︷ ︸

A(v)

x+


0
0
0
0
B5


︸ ︷︷ ︸

b

u, (3.83)

and the steering rack position as output equation of form

y =
[
0 0 1 0 0

]︸ ︷︷ ︸
cT

x. (3.84)

The model is now in the well known state space form

ẋ = A(v)x+ bu (3.85)

y = cT x (3.86)

with a vehicle speed dependent dynamic matrixA(v), a input vector b and a output vector
cT. With 1 input and 1 output, the system is a so called single-input-single-output system
(SISO).

3.3.2 Derivation of the transfer function

With a system in state space notation, the transfer function can be derived easily via

P (s) = cT (s I −A)−1 b. (3.87)

I is the identity matrix of the same size as A. For later use on the embedded hardware of
the BMW X5, this calculation is unsuitable due to the lack of special toolboxes. Therefore,
an alternative derivation has to be found instead. In general, the transfer function has the
form

P (s) =
µ(s)

ν(s)
=

s4 µ4 + s3 µ3 + s2 µ2 + s µ1 + µ0

s5 + s4 ν4 + s3 ν3 + s2 ν2 + s ν1 + ν0
, (3.88)

where µi depict the coefficients of the nominator and νi the coefficients of the denominator.
Since the model has no feed forward action, the degree of the nominator polynomial is
less than the one from the denominator. To get those coefficients of the transfer function,
also a transformation according to [17] can be applied. For the calculation of the so called
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”controllability normal form”, the controllability matrix

Su =
[
b bA bA2 bA3 bA4

]
(3.89)

is necessary. By calculating

t1 =
[

0 0 0 0 1
]
S−1

u , (3.90)

a transformation matrix

T =


t1
t1A

t1A
2

t1A
3

t1A
4

 (3.91)

can be derived. Using this matrix, a state transformation

z = T x (3.92)

can be applied to the original system. This operation rearranges the state space notation
to

ż = TAT−1︸ ︷︷ ︸
Atf

z + T b︸︷︷︸
btf

u (3.93)

y = cT T−1︸ ︷︷ ︸
cTtf

z. (3.94)

Then the matrix Atf and the vectors btf, c
T
tf are in the special form of

Atf =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
−ν0 −ν1 −ν2 −ν3 −ν4

 (3.95)

btf =
[
0 0 0 0 1

]T
(3.96)

cT
tf =

[
µ0 µ1 µ2 µ3 µ4

]
, (3.97)

where the coefficients of P (s) are available as single entries.

3.3.3 Stability Analysis

With the transfer function P (s), stability of the system can be determined by analyzing
the zeros and poles. Furthermore, the characteristics in frequency domain can be investi-
gated with the help of bode-diagrams. Figure 3.13 shows the poles and zeros, Figure 3.14
shows bode diagrams for different vehicle speeds.

The result is a system, which is stable for vehicle speeds up to v < 200 km/h. Moreover,
the system has a minimum phase behavior up to v < 100 km/h. However, this stability
analysis is true for the simplified linear model, but has no validity for the real car.
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Figure 3.13: Poles and Zeros of P (s) for different vehicle speeds. The diagrams are
separated in real and imaginary parts of the poles and zeros. Since the system has 5th
order, also 5 poles are existent. One can see that the real part of the poles are negative
for the whole range of v which is representing for a stable system. At approx. 100 km/h,
one of the two zeros gets positive, which means that system gets a non-minimum phase
behavior for higher speeds.
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Figure 3.14: Bode diagram of P (s) for different vehicle speeds. For higher velocities,
resonance effects are visible. The first resonance at around 1 Hz comes from the chassis,
the second resonance at around 3.2 Hz comes from the steering rack. The phase drop is
−270◦, because of the difference in numbers of poles and zeros in P (s).
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3.4 Analysis of the linear model

As a completion of the modeling part of this theses, the derived and validated model of
the previous sections was compared against the VTC model and real measurement data
for different maneuvers.

3.4.1 Comparison against simulation data

To investigate the steady state behavior, a constant differential torque was applied to
both the VTC model and the derived linear model. With an ascending vehicle speed in
form of a ramp signal, the influence of the velocity was included. Figure 3.15 shows this
maneuver for ∆T = 500 Nm with a velocity range of 20 km/h < v < 100 km/h. For a
better benchmark result, the static friction on the steering rack from equation (3.78) was
included.
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Figure 3.15: A constant differential torque step input of ∆T = 500 Nm for ascending
vehicle speed starting at v = 20 kmh. For low speeds, there are errors in the steering
rack position and in further consequences also in the yaw rate and the side slip angle.
These errors come from the linearisation of the steering rack model and are unavoidable.
As mentioned in section 3.2.2, this linearisation was optimized with a minimization of
these errors. At around 30 km/h, the error is significantly low and matches the simulation
accurately.

In Figure 3.16, the same experiment was done with a higher differential torque of ∆T =
1000 Nm. At this value the linear model matches the results from the VTC model very
good, and the errors described in Figure 3.15 are much smaller.

To compare the models in frequency domain, differential torque in form of a sine sweep
was injected at a constant vehicle speed. Figure 3.17 shows the results.
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Figure 3.16: A constant differential torque step input of ∆T = 1000 Nm for ascending
vehicle speed starting at v = 20 kmh. The errors of the steering rack position are very low
and the behavior matches the VTC model accurately. Errors in the side slip angle come
from linearisation errors of the trigonometric functions.
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Figure 3.17: Sine sweep with an amplitude of 1000 Nm for a constant vehicle speed of
v = 20 km/h with a frequency range of 0.01 Hz < f < 3 Hz. The black lines depict the
results from the VTC model, the red lines the results from the linear model. For small
frequencies, the comparison against the VTC model is very good. For higher frequencies,
errors occur in the amplitudes but the signals are in phase. At very high frequencies, the
resonance characteristic is more dominant in the VTC model.
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3.4.2 Comparison against measurement data

In Figure 3.18 and Figure 3.19, two typical experiments (double lane change and slalom)
were measured with the real car and compared to the linear model. The static friction of
the rack was considered like in the comparisons against the VTC model.
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Figure 3.18: Comparison to measurement data of the BMW X5. The black lines depict
the measurement data, and the red lines the simulation data. The linear model describes
the behavior of the car quite well, especially in the more dynamic maneuvers like the
double lane change starting at t = 15 s, the errors are very small. At less dynamic driving,
errors occur due to complex friction in the rack and linearisation problems.
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Figure 3.19: Slalom maneuver with v = 35 km/h. Like in Figure 3.18, some errors at
less dynamic driving situations but also at the slalom maneuver. This comes from the
gain of the longitudinal tire forces to rack force, which normally increases with increasing
rack position, but is linearized here to the value at ur = 0.
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Model-based Controller Concepts for SbTV

4 Controller Theory

To control SbTV, there are two possible control targets. On the one hand the control of
the steering rack position ur and on the other hand the control of the yaw rate ψ̇. Both
of the targets have their advantages and drawbacks.

A movement of the steering rack is a direct reaction to a delta torque ∆T on the wheels,
which principally enables a good performance. Also, all the sensors of the SbW system
are available, which have very high precision and low noise. Furthermore, especially for
slow vehicle speeds, the control of the rack position works a lot better than the control of
the yaw rate. Whereas a yaw rate target definitely has its advantages in motion control
and autonomous driving. It makes trajectory planning much easier than with a target of
ur. Also, the transition between SbW and SbTV needs no additional target recalculation,
since the yaw rate represents the actual movement of the car. The sensor for the yaw
rate is a gyroscopic acceleration sensor, which bring uncertainties at low values and also
consists of a lot of noise, as the signal is the result from the integrated yaw-acceleration.

For this thesis, the target of choice is the rack position ur. Because of a direct reaction to
the drive torques, the rack is easier to control. More on, the target generation is very easy,
since it is proportional to the steering wheel angle. Two different controller principles have
been implemented and tested.

4.1 State-feedback controller with integral action and anti
windup strategy

One possible controller concept to control the rack position, is the use of a state-feedback
controller. But since the derived model in Chapter 3 is not accurate in a stationary sit-
uation, the controller also needs integral action to guarantee offset-free tracking of the
reference. A very problematic side effect of integral action are windup effects. In terms
of safety and stability these effects can get dangerous and needs to be avoided by proper
anti-windup techniques. Hippe and Wurmthaler introduced a variation for the conven-
tional state-feedback controller, that suits for this kind of problem very well [18].

The base for this controller concept is a plant model in state space notation

ẋ = Ax+ bu

y = cT x
(4.1)

where the state vector x is not (or not fully) measurable. With a standard Luenberger
observer [17], this state vector can be estimated by a dynamic model of form

˙̂x =
(
A− b̂ cT

)
x̂+ bu+ b̂ y. (4.2)

This state estimate is multiplied with the state-feedback-gain kT and fed back to the input
of the system. Figure 4.1 shows the principal structure of a so called control-observer
structure.
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-
+V

kT

ẋ = Ax + bu

y = cTx

x= (A - bcT) x + bu + by
^ ^x̂= (A - bcT) x + bu + by
^ ^^

r
yu

^
.

Figure 4.1: Standard control observer according to [17]. The state estimate x̂ is fed back
to the input via the feedback gain kT. In case of a accurate model, the gain V ensures
offset-free tracking of the reference r.

By introducing the estimation error

e = x− x̂, (4.3)

the whole system can be transformed in a state space model[
ẋ
ė

]
=

(A− bkT
)

bkT

0
(
A− b̂ cT

)[x
e

]
+

[
b
0

]
V r (4.4)

y =
[
cT 0T

] [x
e

]
. (4.5)

The dynamics of this system is determined by the characteristic polynomial of the dynamic
matrix by

∆̃(s) = det

sI− (A− bkT
)

−bkT

0 sI−
(
A− b̂ cT

)
= det[sI− (A− bkT)]︸ ︷︷ ︸

∆(s)

det[sI− (A− b̂ cT)]︸ ︷︷ ︸
∆̂(s)

(4.6)

which can be separated into a controller polynomial ∆(s) and observer polynomial ∆̂(s).
Theses polynomials are dependent on the feedback-gain kT and observer gain b̂ and rep-
resent the tuning parameters of the control observer.

With transfer functions, the input-output behavior of this controller structure can also be
described in frequency domain via

P (s) =
y(s)

u(s)

∣∣∣∣
x0=0

= cT (s I−A)−1 b =
µ(s)

ν(s)
(4.7)

Gu(s) =
v1(s)

u(s)

∣∣∣∣
x̂0=0

= kT
(
s I−

(
A− b̂ cT

))−1
b =

µu(s)

∆̂(s)
(4.8)

Gy(s) =
v2(s)

y(s)

∣∣∣∣
x̂0=0

= kT
(
s I−

(
A− b̂ cT

))−1
b̂ =

µy(s)

∆̂(s)
(4.9)

by a structure depicted in Figure 4.2. The denominator of the observer transfer functions
Gu(s) and Gy(s) are determined by the observer polynomial ∆̂(s).
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Figure 4.2: Input-output behavior of the control observer in frequency domain. The
observer with state-feedback gain can be represented by 2 transfer functions Gu(s) and
Gy(s).

With

Gu(s) =
1

1 +Gu(s)
=

∆̂(s)

∆̂(s) + µu(s)
=

∆̂(s)

νu(s)
, (4.10)

the structure of the system can be transformed to a standard 2-degree-of-freedom controller
as depicted in Figure 4.3.

V
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+
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P(s)
r u y

Gu(s)

__
Gu(s)

__

Gu(s)

__
Gu(s)

__

V(s)

R(s)

Figure 4.3: The control observer transformed to a standard 2DoF controller structure.
By extracting Gu(s) to the outer loop, the closed loop system consists of 2 controller
transfer functions, R(s) and V (s).

The resulting controller transfer functions are then given by

V (s) = V Gu(s) = V
∆̂(s)

νu(s)
(4.11)

R(s) = Gu(s)Gy(s) =
∆̂(s)µy(s)

νu(s) ∆̂(s)
=
µy(s)

νu(s)
(4.12)

Now, the closed loop transfer function of the whole system can be derived by

T (s) =
V (s)P (s)

1 +R(s)P (s)
= V

µ(s) ∆̂(s)

νu(s) ν(s) + µy(s)µ(s)
. (4.13)
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According to [17], the transfer function of the control observer can also be calculated by

T (s) =
y(s)

r(s)

∣∣∣∣
x0,x̂0=0

= cT
(
s I−

(
A− bkT

))−1
bV = V

µ(s)

∆(s)
. (4.14)

Because of the vanishing initial state values, the observer error is zero, which means that
the observer has no influence on the closed loop transfer function. By combining equation
(4.13) and (4.14),

T (s) = V
µ(s) ∆̂(s)

νu(s) ν(s) + µy(s)µ(s)

!
= V

µ(s)

∆(s)
= V

µ(s) ∆̂(s)

∆(s) ∆̂(s)
(4.15)

the following fundamental equation results as

νu(s) ν(s) + µy(s)µ(s) = ∆(s) ∆̂(s). (4.16)

This relation is called diophantic equation and is the foundation for the controller design
of this section.

The idea of Hippe and Wurmthaler [18] was to design the controller with the diophantic
equation, include integral action and transform the result back to the structure shown in
Figure 4.2. In this structure, the consideration of the anti-windup will be very easy. To
allow a systematic design, the algebraic controller synthesis described in [17] was used.

4.1.1 Systematic Design

The individual polynomials from equation (4.16) can be specified as

νu(s) = an s
n + an−1 s

n−1 + · · ·+ a2 s
2 + a1 s

1 + a0 (4.17)

ν(s) = νn s
n + νn−1 s

n−1 + · · ·+ ν2 s
2 + ν1 s

1 + ν0 (4.18)

µy(s) = bn s
n + bn−1 s

n−1 + · · ·+ b2 s
2 + b1 s

1 + b0 (4.19)

µ(s) = µn−1 s
n−1 + · · ·+ µ2 s

2 + µ1 s
1 + µ0 (4.20)

∆(s) = cn s
n + cn−1 s

n−1 + · · ·+ c2 s
2 + c1 s

1 + c0 (4.21)

∆̂(s) = dn s
n + dn−1 s

n−1 + · · ·+ d2 s
2 + d1 s

1 + d0 (4.22)

with n as the order of the system P (s) (which is the same as the rank of the dynamic
matrix A). Now the polynomials can be inserted in the left side of the diophantic equation,
which results in

νu(s) ν(s) + µy(s)µ(s) = ν0 a0 + µ0 b0

+ s [(ν0 a1 + ν1 a0) + (µ0 b1 + µ1 b0)]

+ s2 [(ν0 a2 + ν1 a1 + ν2 a0) + (µ0 b2 + µ1 b1 + µ2 b0)]

...

+ s2n−1 [(νn−1 an + νn an−1) + (µn−1 bn)]

+ s2n [νn an] .

(4.23)
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This can also be done on the right side of the equation as

∆(s) ∆̂(s) = c0 d0

+ s [c0 d1 + c1 d0]

+ s2 [c0 d2 + c1 d1 + c2 d0]

...

+ s2n−1 [cn−1 dn + cn dn−1]

+ s2n [cn dn] .

(4.24)

Comparing the coefficients of (4.23) and (4.24), 2n+ 1 equations

ν0 a0 + µ0 b0 = c0 d0 (4.25)

(ν0 a1 + ν1 a0) + (µ0 b1 + µ1 b0) = c0 d1 + c1 d0 (4.26)

(ν0 a2 + ν1 a1 + ν2 a0) + (µ0 b2 + µ1 b1 + µ2 b0) = c0 d2 + c1 d1 + c2 d0 (4.27)

... (4.28)

(νn−1 an + νn an−1) + (µn−1 bn) = cn−1 dn + cn dn−1 (4.29)

νn an = cn dn (4.30)

can be stated for 2n+ 2 unknown variables of νu(s) and µy(s). This means, that another
equation is necessary to allow the set of equations a unique solution. This degree of free-
dom is used to give the controller integral action.

A controller with integral behavior is characterized by a pole at s = 0. This pole can be
enforced by

a0 = 0 (4.31)

as an additional condition in the above described set of equations. Now the set is fully
determined and can be stated in a matrix equation of form

K p = f (4.32)

where the Matrix K is the so called resultant and consists of the parameters of ν(s) and
µ(s). p is a vector with the parameters of νu(s) and µy(s), which depict the unknown
quantities in the equation. And f describes the right hand side from equation (4.25) to
(4.31). They are given by

f =



c0 d0

c0 d1 + c1 d0

c0 d2 + c1 d1 + c2 d0

...
cn−1 dn + cn dn−1

cn dn
0


(4.33)

p =
[
a0 a1 . . . an b0 b1 . . . bn

]T
(4.34)
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K =



ν0 0 0 . . . 0 0 µ0 0 . . . 0 0 0

ν1 ν0 0 . . . 0 0 µ1 µ0
... 0 0

ν2 ν1 ν0
... 0

... µ1
. . . 0

... 0
... ν2 ν1

. . . 0
... µn−1

...
. . . µ0 0

...

νn
... ν2

. . . ν0 0 0 µn−1 µ1 µ0 0

0 νn
...

. . . ν1 ν0 0 0
. . .

... µ1 µ0

0 0 νn ν2 ν1 0 0 µn−1
... µ1

0 0 0
. . .

... ν2 0 0 . . . 0 µn−1
...

...
...

... νn
...

...
... . . . 0 0 µn−1

0 0 0 . . . 0 νn 0 0 . . . 0 0 0

1 0 0 . . . 0 0 0 0 . . . 0 0 0



(4.35)

The unknown quantities p can then be calculated by

p = K-1 f . (4.36)

To avoid singularities in the Matrix K it is very important that P (s) does not have poles
and zeros at the same position. If this happens, they have to be shortened beforehand,
otherwise there will be problems calculating the inverse K-1. Now, R(s) of structure from
Figure 4.3 is fully determined.

To allow offset-free tracking the condition

T (s)|s=0 = V
µ(s)

∆(s)

∣∣∣∣
s=0

!
= 1 (4.37)

has to hold. Therefore, the gain factor V is defined as

V =
∆(s)

µ(s)

∣∣∣∣
s=0

=
c0

µ0
. (4.38)

As a next step, the structure of Figure 4.3 is transformed back to the one of Figure 4.2 by

Gu(s) =
νu(s)− ∆̂(s)

∆̂(s)
(4.39)

Gy(s) =
µy(s)

∆̂(s)
. (4.40)

Since ∆(s) and ∆̂(s) are monic polynomials (which means that cn = 1 and dn = 1), also
νu(s) is monic. Therefore, the structure of these transfer function are given by

Gu(s) =
ãn−1 s

n−1 + · · ·+ ã2 s
2 + ã1 s

1 + ã0

sn + dn−1 sn−1 + · · ·+ d2 s2 + d1 s1 + d0
(4.41)

Gy(s) =
bn s

n + bn−1 s
n−1 + · · ·+ b2 s

2 + b1 s
1 + b0

sn + dn−1 sn−1 + · · ·+ d2 s2 + d1 s1 + d0
. (4.42)
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with a common denominator ∆̂(s). Since they share the same dynamics, the controller can
be realized in one dynamic system in form of a state-space realization. First, Gy(s) has to
be split up in a feed trough and a strictly proper part. By partial fraction decomposition,
this can be done by

Gy(s) = bn +
b̃n−1 s

n−1 + · · ·+ b̃2 s
2 + b̃1 s

1 + b̃0
sn + dn−1 sn−1 + · · ·+ d2 s2 + d1 s1 + d0

(4.43)

and

b̃ =



b̃n−1

...

b̃2

b̃1

b̃0


=


bn−1 − bn dn−1

...
b2 − bn d2

b1 − bn d1

b0 − bn d0

 . (4.44)

The final controller can then be stated in observability normal form [17] via

z =


0 . . . 0 −d0

1
. . .

... −d1

...
. . . 0

...

0 . . . 1 −dn−1

 z +


−ã0

−ã1

...
−ãn−1

u+


−b̃0

−b̃1
...

−b̃n−1

 y (4.45)

w =
[

0 . . . 0 1
]
z − bn y + V r (4.46)

with n controller states z, r as the reference, y as the measured target, w as the unsaturated
controller output and u as the saturated controller output. Figure 4.4 shows the structure
of the control system with the input saturation and explains the Anti-Windup technique
of this controller design.

u

y wController Plant

ur,ref

r

urΔTreq

Figure 4.4: Structure of the resulting control system. By saturating the controller output
w and feeding back the saturated quantity u to the controller, the special structure of the
derived controller limits the output to the boundaries of the saturation automatically.
This avoids possible wind-up effects and improves the performance of the controller a lot.
The technique works under the principle of input conditioning. In case of a saturated
signal, a virtual reference signal is generated to limit the controller output [18].
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4.1.2 LQR design for a systematic controller tuning

The tuning parameters for the derived controller concepts are the polynomial coefficients
of ∆(s) and ∆̂(s), which represent the poles for the closed loop system and observer. For
a system of order 5, this means that 10 parameters need to be tuned, which can be a
difficult and time consuming process. To simplify this tuning procedure, also the so called
LQR (Linear Quadratic Regulator) design method can be used [19].

With LQR, a cost function of form

min

∫ ∞
0

(
xTQx+ 2xT S u+ uRu

)
dt (4.47)

with weighting matrices Q,S and weighting factor R is minimized by solving the algebraic
Riccatti equation

0 = Q+ATP + P A− (P b+ S)R−1 (P b+ S)T . (4.48)

According to the LQR cost function, the optimal control law for state-feedback control
then can be calculated by

kT = R−1 (P b+ S)T (4.49)

with P as the solution of the Ricatti equation. The use of LQR theory brings some major
advantages compared to the normal strategy by tuning the poles of the system:

– The design provides an analytic solution

– The resulting controller is always stabilizing

– A guaranteed robustness (in the state feedback case).

For this reasons, LQR is widely used in the industry. But the tuning procedure still needs
a lot of effort, since the weighting parameters need to be chosen properly. With a special
form of LQR, the so called output weighting LQR, this effort can be minimized by setting

Q = cQy c
T. (4.50)

Furthermore, it is very common to set

S = 0 (4.51)

as it is not intuitive to weigh a combination of the vehicle states and the controller output.
Now the tuning process have only two parameters left, Qy and R. According to Adamy
[20], the ratio of Qy and R is determining the resulting performance of the controller. For a
higher Qy, the speed of the control gets faster to the account of bigger controller outputs.
Therefore, the tuning process can be simplified again to only one tuning parameter by
choosing

Qy = kc (4.52)

R =
1

kc
. (4.53)

Then, the cost function from equation (4.47) simplifies to

min

∫ ∞
0

(
xT c kc c

T x+
1

kc
u2

)
dt. (4.54)
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With the result of the LQR design, the controller polynomial ∆(s) can then be derived
by

∆(s) = det[sI− (A− bkT)]. (4.55)

The problem of the observer polynomial tuning ∆̂(s) is very similar to the problem of tun-
ing ∆(s). The tuning method for the so called Kalman Filter uses the same minimization
technique by solving an algebraic Riccatti equation [19]. If the problem is reduced again
to one tuning parameter, like in equation (4.54), the resulting polynomial

∆̂(s) = det[sI− (A− b̂ cT)]. (4.56)

with b̂ as the result from the Kalman filter design is the same as for the LQR design.
Therefore, the same approach as for the controller polynomial can be used with a different
parameter ko which controls the speed of the error dynamics of the observer. With a
higher value of ko, the estimation error converges faster to 0 with the cost of a higher
amplification of process- and measurement noise.

To get an idea, how this single parameter influences the tuning parameters, Figure 4.5
shows the trend of ∆(s) dependent on kc.
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Figure 4.5: Trend of ∆(s) by investigating the poles for a fixed vehicle speed of v =
20 km/h. For small values of kc, the resulting polynomial is exactly the same as ν(s)
from the plant P (s). This means that the slowest possible result is the speed of the plant
itself. For ascending values of kc, the poles travel more into the negative real plane, which
represents increasing speed and aggressiveness of the controller.
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4.1.3 Structure-variable extension for different vehicle speeds

As investigated in Chapter 3, the system changes it’s behavior with the vehicle speed. In
order to consider also this effect, the controller structure was extended with a structure-
variable control according to Adamy [20].

The idea of this non-linear method is to increase the performance by using many con-
trollers for different system states. Here, this changing parameter is the vehicle speed.
To avoid a huge implementation effort by a high number of controllers, it is also possible
to use only two controllers that operate in parallel mode. If the vehicle speed changes,
the controllers continuously get new controller parameters and get resetted in a way, that
doesn’t affect the controller output with any disturbances. In order to allow this kind
of structure, a proper switching logic needs to be developed that controls the operation
modes of the two controllers (Figure 4.6).

u

y

w

Controller 

1r

v reset

u

y wController 

2

r v reset

Switching 

Logic

v1

v2

reset1

reset2

v

g1

g2

+
+

ΔTreqv

ur,ref

ur,ref

ur

ur

Figure 4.6: Structure-variable extension to the latter designed controller concept. A
second controller of same type operates in parallel mode with the other. The switching
logic discretizes the actual vehicle speed and is responsible for the switching and mixing
process of the two controllers. Dependent on this discretized vehicle speed, the controllers
continously get new parameters.

It was decided to design different controllers in a vehicle speed range from 20 km/h < v <
100 km/h with a discretization step of vspace = 5 km/h. Inside of this range, the controller
output will be mixed by two of these designed controllers, depending on the actual and
the discretized vehicle speeds. For vehicle speeds v < 20 km/h or v > 100 km/h , just one
controller is producing the controller output, the one designed at the boundary of this
range.
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The logic, how theses controllers are acting together, is defined in the switching logic (see
Figure 4.6). With the modulus operator,

vmod = mod (v, vspace) (4.57)

the distance to discretized speeds, below and above the actual speed, can be determined.
With this distance, a sliding function

ϕ =
1

2

1 +
tanh

(
8 vmod
vspace

− 4
)

tanh (4)

 (4.58)

was defined to calculate the gains g1 and g2 of the two controller outputs as in Figure 4.6.
With the relations

g1 + g2
!

= 1 (4.59)

g1, g2 ≥ 0, (4.60)

either g1 = ϕ or g2 = ϕ, dependent on the speed slot that is implemented in the 2
controllers. Figure 4.7 shows the strategy that is used in the switching logic.
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Figure 4.7: Switching logic of the structure-variable extension. v1 and v2 depict the
discretized vehicle speeds of both controllers. When one of the controllers switches to
the next discretized speed, the related gain is 0. This means that possible discontinuities
during the switching process do not affect the controller output.

When switching from one discretized speed to the next, the controller gets new paramaters
and needs to be redesigned. These parameters are realized with pre-designed lookup tables
to minimize computational effort during operative service.
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4.2 Cascaded rack position controller

Another possible controller concept, which is very common in robotics and laser posi-
tioning, is the use of a cascaded controller structure. The idea is to split up the control
problem into a subproblem in an inner loop, and the main problem in the outer loop.
Figure 4.8 shows a general structure of a cascaded control system.

P1(s)R1(s)-++
-

ux2,ref x2x1
P2(s)R2(s)

Figure 4.8: General structure of a cascaded control system. R1(s) in an inner loop
controls the quantity x1 which is described by the system P1(s). This subproblem is
designed without any consideration of the outer problem. The outer loop with R2(s) then
controls the desired control target x2. P2(s) describes the behavior from x1 to x2.

A big advantage of this design is the use of multiple sensors. Compared to a single-
measurement controller, like the one from Section 4.1, the control system gets more infor-
mation about the system’s state which can lead to a significantly better performance of
the overall system. But this design has also some drawbacks. According to VanDoren in
[21], a cascaded controller design has to fullfill several requirements:

1. The actions of the inner controller must affect the primary control target in a pre-
dictable and repeatable way.

2. The inner loop has to be faster than the outer loop in order to allow the inner
controller enough time to compensate inner loop disturbances before they can affect
the main process.

3. The disturbances of the inner loop have to be less severe than the disturbances from
the outer loop.

In order to control the rack position ur, the logical inner loop is the control of the rack
velocity u̇r. It directly affects the rack position, as there is no rack movement without
a rack velocity. Moreover, disturbances of the inner loop are attenuated very well, since
P2(s) has the form of a simple integrator. This reasons makes the system particularly
amenable to cascade control.

A further advantage is that there is no need for additional integral action in the outer
loop controller R2(s), since the system already has integral behavior in P2(s). This means
that there is no need for anti windup strategies in the outer loop, which simplifies the
controller design of R2(s) significantly.

To improve the reference tracking behavior, also a feed forward compensation can be
added to the structure. This compensation can be described ideally by a dynamic system
of the inverse of P2(s) with the target reference as input. In most cases, this inverse
is not implementable, which means that the compensation has to be described by an
approximation N(s) ≈ P -1

2 (s). The updated structure is shown in Figure 4.9.
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P1(s)R1(s)-++
-

ur,ref
P2(s)R2(s)

+

N(s)

ΔTreq ur
.

ur

Figure 4.9: Rack position cascade control with feed forward compensation. The compen-
sation is added to the error signal of the inner loop in order to improve the performance
of the reference tracking. N(s) represents an approximate of P -1

2 (s).

The inner loop controller R1(s) has to be designed first without consideration of the outer
loop. The performance can be described with the closed loop transfer function

T1(s) =
R1(s)P1(s)

1 +R1(s)P1(s)
. (4.61)

With a compensatory open loop transfer function

Pc(s) = T1(s)P2(s) =
R1(s)P1(s)P2(s)

1 +R1(s)P1(s)
, (4.62)

the outer controller R2(s) can be designed. The overall input-output behavior of the closed
loop system is then described by

T (s) =
Pc(s) [N(s) +R2(s)]

1 +R2(s)Pc(s)
. (4.63)

4.2.1 Inner rack velocity controller

For determination of essential properties for the inner controller, the plant P1(s) has to
be investigated first. Since the rack velocity is the derivative of the rack position, it is
very easy to derive the transfer function out of the results from Section 3 by a simple
multiplication of

P1(s) = P (s) s. (4.64)

Investigating the poles and zeros from Figure 3.13 and the bode plot from Figure 3.14,
it’s clear that this transfer function in general has the form

P1(s) = cP
s (s+ z1) (s+ z2)

(s+ p1) (s+ p2) (s+ p3) (s+ p4) (s+ p5)
(4.65)

whereas the poles p4 and p5 get a complex pair of poles at around v = 15 km/h which
represents the resonance characteristic of the rack. Around v = 40 km/h, also p2 and p3

get a complex pair of poles, which represents the characteristic frequency of the chassis.
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With this information of P1(s), the requirements for the inner-loop controller can be
defined:

1. Because of the zero at s = 0, the controller will need a double integrator in order to
allow offset-free tracking of the reference.

2. To attenuate possible resonance effects on the steering rack, the controller needs a
complex pair of zeros, tuned to that characteristic frequency.

To fulfill these requirements, a simple controller approch

R1(s) = kr
(s+ zr)

(
s2 + dr s+ ω2

r

)
s2 (s+ pr)

(4.66)

was chosen with a double pole at s = 0 that represents the double integrator. With
ωr = 2π fr, the complex pair of zeros can be tuned to a certain frequency fr. The
damping coefficient dr then determines the attenuation of this frequency. Additionally,
this controller structure is equipped with another pole/zero pair zr, pr to compensate a
pole/zero pair of the plant P1(s). K is the controller gain, which determines the resulting
speed of the control system.

Furthermore, this approach is transformed into a state space realization. By rearranging
equation (4.66), R1(s) has also the form

R1(s) =
s3 kr + s2 kr (dr + zr) + s kr

(
ω2
r + zr dr

)
+ kr zr ω

2
r

s3 + s2 pr

= kr +
s2 kr (dr + zr − pr) + s kr

(
ω2
r + zr dr

)
+ kr zr ω

2
r

s3 + s2 pr
.

(4.67)

Using the observability normal from [17], the inner controller finally can be stated as

ż =

0 0 0
1 0 0
0 1 −pr

 z +

 kr zr ω
2
r

kr

(
ω2
r + zr dr

)
kr (dr + zr − pr)

 (r − y) (4.68)

w =
[
0 0 1

]
z + kr (r − y) (4.69)

with three controller states z, r as the rack velocity reference, y as the measured rack
velocity, and w as the controller output. Similar to the controller of Section 4.1, windup
effects due to the integral action of the controller are a problem. To handle these problems,
R. Hanus introduced in 1987 a general anti-windup method that fits well for this kind of
problem [22]. The base for this method is a controller in state space realization

ż = Ar z + b1r r + b2r y (4.70)

w = cT
r z + d1r r + d2r y (4.71)

whereas the controller output w is saturated by

u =


umax, when w > umax

umin, when w < umin

w, otherwise.

(4.72)
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Then, the saturated controller output u is used as input for the plant P1(s). In the
saturated case w 6= u, the idea of Hanus is to calculate a virtual reference r̃ to ensure
w = u. For a better distinction between the original controller (equations (4.70) to (4.71)),
a copy

˙̃z = Ar z̃ + b1r r̃ + b2r y (4.73)

u = cT
r z̃ + d1r r̃ + d2r y (4.74)

w = cT
r z̃ + d1r r + d2r y (4.75)

that produces the saturated controller output u with the virtual reference r̃ and the
unsaturated controller output w with the actual reference r is made. By subtracting

u− w = d1r (r̃ − r) , (4.76)

the virtual reference can be calculated by

r̃ = r +
1

d1r
(u− w) . (4.77)

Inserting this virtual reference into equation (4.73),

˙̃z = Ar z̃ + b1r r̃ + b2r y

= Ar z̃ + b1r r +
b1r

d1r
(u− w) + b2r

= Ar z̃ + b1r r +
b1r

d1r
u− b1r

d1r
cT

r z̃ −
b1r

d1r
d1r r −

b1r

d1r
d2r y + b2r y

=

(
Ar −

b1r

d1r
cT

r

)
z̃ +

b1r

d1r
u+

(
b2r − b1r

d2r

d1r

)
y

(4.78)

the so called conditioned controller according to Hanus is given by

˙̃z =

(
Ar −

b1r

d1r
cT

r

)
z̃ +

b1r

d1r
u+

(
b2r − b1r

d2r

d1r

)
y (4.79)

w = cT
r z̃ + d1r r + d2r y. (4.80)

In the unsaturated case, this controller behaves exactly the same as the original controller
from equations (4.70) and (4.71), which can be proved by inserting equation (4.80) into
(4.79) by setting w = u. Whereas in the saturated case, the controller avoids windup
effects of the integrator by using a virtual reference as input.

The success of this method depends on the following requirements:

1. The original controller has to provide stability of the closed loop system.

2. The controller parameter d1r

!
6= 0.

3. The eigenvalues eig
(
Ar − b1r

d1r
cT

r

)
must have negative real values.

4. In the saturated case, where w 6= u, w must approach u in finite time.

The last requirement can be verified by the steady state property

−cT
r

(
Ar −

b1r

d1r
cT

r

)−1(b1r

d1r
+

(
b2r − b1r

d2r

d1r

)
P (0)

)
+ (d1r + d2r)P (0)

!
= 1 (4.81)
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Applying this anti windup method to the original controller of equations (4.70) and (4.71),
the related conditioned controller has the form

ż =

0 0 −zrω
2
r

1 0 −ω2
r − zr dr

0 1 −dr − zr

 z +

 zr ω
2
r

ω2
r + zr dr

dr + zr − pr

u (4.82)

w =
[
0 0 1

]
z + kr (r − y) (4.83)

with z as the conditioned controller states, u as the saturated controller output, w as the
unsaturated controller output, r as the reference and y as the measured control target.

4.2.2 Outer rack position controller

As described earlier in this section, a feed forward compensation is added to the reference
signal of the inner controller. This compensation is realized by

N(s) =
100 s

s+ 100
, (4.84)

a filtered differentiator that generates the derivate of the reference rack position ur,ref. If
the inner controller is able to follow this trajectory well enough, the outer rack position
controller only needs to correct control errors from the inner loop controller and possible
disturbances from the outer loop. A design of

R2(s) = kP (4.85)

with the controller gain kP was chosen. With the integral action in

P2(s) =
P (s)

P1(s)
=

1

s
, (4.86)

offset-free reference tracking of ur,ref is guaranteed.
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4.3 Discretization of the controllers

The results of the introduced controller concepts from Sections 4.1 and 4.2 are both in a
state-space realization in continuous time of form

ż = Ar z +Br u (4.87)

w = cT
r z + dT

r u (4.88)

with a general input vector u =
[
r u y

]T
that consists the reference r, the saturated

controller output u and the measured control target y. For the use in embedded hardware
on the real car, continuous time systems cannot be realized and need to be transformed
into discrete time. There are many methods to discretize continuous time systems, one of
them is given by investigating the solution of the inhomogeneous matrix equation (4.87)

z(t) = eArt z0 +

∫ t

0
eAr(t−τ)Br u(τ ) dτ. (4.89)

Introducing a sample time ts, this solution at time t = ts is then given by

z(ts) = eArts z0 +

∫ ts

0
eAr(ts−τ)Br u(τ ) dτ. (4.90)

By holding the input vector

u(t) = u0 for 0 ≤ t < ts, (4.91)

constant, the integral can be solved by

z(ts) = eArts z0 +

∫ ts

0
eAr(ts−τ)Br u0 dτ

= eArts z0 +A−1
r

(
eArts − I

)
Br u0.

(4.92)

Because of linearity and time invariance, this solution is recursive for any timestep t = k ts.
The system can now be described in a discrete time state space notation

zk+1 = Ard zk +Brd uk (4.93)

wk = cT
rd zk + dT

rd uk (4.94)

with

Ard = eArts (4.95)

Brd = A−1
r

(
eArts − I

)
Br (4.96)

cT
rd = cT

r (4.97)

dT
rd = dT

r . (4.98)
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5 Results

In this chapter, the described controller concepts from Chapter 4 will be implemented,
parametrized, validated and verified. As a preparation, these investigations are made first
in simulations. With the pre-tuned controllers from these simulations, tests on the demon-
strator vehicle are made and the tuning of the controller will be adjusted. Furthermore,
upcoming problems will be identified and discussed. Also the transition from SbW to
SbTV will be investigated and tested on the demonstrator vehicle.

5.1 Simulation Results

The idea of using a simulation first, is to gain knowledge about the influence of the con-
troller parameters. A found parameter set that works well in the simulations, will provide
a good starting point for the tuning process on the real car. This will save a lot of time
and costs, since there is less need for making tests on the demonstrator vehicle.

An important aspect of control systems is the stability of the system. Especially for non-
linear systems, the prove of stability is not easy to gain. For this thesis, the stability of
the closed loop system will be guaranteed for the use with the linear model from Chapter
3. The stability of the non-linear system (the real car) can be investigated with different
driving maneuvers.

Also for the simulations, the stability for a set of controller parameters was proved for
the linear model first and investigated for the non-linear simulation by various maneuvers
afterwards. Then, a set that is well below the boundaries of stability has been chosen as
the controller parameters.

5.1.1 State feedback controller

The state feedback controller from Section 4.1 has been designed to provide a easy tuning
by only 2 parameters, kc and ko, which either represent a design parameter for the con-
troller and observer polynomial. The higher these values are, the more negative the roots
of the polynomials get, which increases the speed of either the controller or the observer.

A big advantage of this tuning is that this systematic approach based on LQR provides
always a stable closed loop system regarding the linear model, which is used for the con-
troller design [19]. By trying different pairs of these parameters, the set, which is presented
in Table 5.1, ensured stability of the non-linear simulation for every tried experiment.

Table 5.1: Parameters for the state feedback controller used for the simulations.

Param. Value Description

kc 5 · 105 Design parameter for the controller polynomial

ko 1 · 105 Design parameter for the observer polynomial
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With this set of parameters, the behavior of the closed loop system was investigated in
Figures 5.1 to 5.3. As controlling of SbTV gets more difficult at low speeds, it was decided
to make the experiments at a vehicle speed of v = 20 km/h.

0 1 2 3 4 5 6 7 8 9

-3

-2

-1

0

1

2

3

4

5

reference

actual

0 1 2 3 4 5 6 7 8 9

-16

-12

-8

-4

0

4

8

12

16

20

24

Figure 5.1: Step steer maneuver at different amplitudes and v = 20 km/h using the state
feedback controller.
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Figure 5.2: Sine maneuver at frequency f = 1 Hz and v = 20 km/h using the state
feedback controller.
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Figure 5.3: Sweep maneuver at frequency range from 0.01 Hz < f < 3 Hz and v =
20 km/h using the state feedback controller. With this setup, the controller gain at the
rack resonance is well attenuated and does not produce any problems.
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One can see clearly that the controller produces a significant phase delay between the
reference and the controlled rack position. This problem could not be avoided, as with
higher controller speeds, the resonance of the rack would make the closed loop system
unstable. This lack of performance (even in the simulation) was the main reason, why a
second controller principle, the cascaded rack position controller, was developed.

5.1.2 Cascaded rack position controller

The tuning of the cascaded rack position controller is based on the transfer function of
the linear model P1(s). This transfer function at a vehicle speed of v = 20 km/h is given
by

P1(s) = −0.02231
s (s+ 29.13) (s+ 46.41)

(s+ 2.069) (s+ 16.67) (s+ 29.18) (s2 + 30.81 s+ 415.9)
. (5.1)

By choosing the controller parameters using the poles and zeros from P (s), the controller
is given by

R1(s) = kr
(s+ 2.069)

(
s2 + 30.81 s+ 415.9

)
s2 (s+ 46.41)

. (5.2)

Then, the open loop transfer function can be calculated as

L1(s) = R1(s)P1(s) = −0.02231 kr
(s+ 29.13)

s (s+ 16.67) (s+ 29.18)
≈ −0.02231 kr

s (s+ 16.67)
. (5.3)

According to [17], the stability of the closed loop can be guaranteed by investigating the
phase of the open loop transfer function. If the phase at the cutoff frequency (where

abs(L1(s))
!

= 1) is higher than −180 ◦, the closed loop is stable. For a negative value of
kr, the phase in this situation will be never smaller than −180 ◦, which ensures the closed
loop stability for

kr < 0. (5.4)

Also in the non-linear simulation model, the closed loop remained stable even for very
high values of kr. A value of kr = −7.5 ·104 had been chosen. With the combination of the
feed forward compensation, the quality of the inner loop resulted very good. Therefore,
the P-controller of the outer loop was designed with a low value of kp = 1. The resulting
controller parameters are stated in Table 5.2.

Table 5.2: Parameters for the cascaded rack position controller used for the simulations.

Param. Value Description

kr −7.5 · 104 Gain of inner loop controller

zr 2.069 Controller zero

pr 46.41 Controller pole

dr 30.81 Damping coefficient of complex pair of zeros

ωr 20.394 Normalized frequency of complex pair of zeros

kp 1 Gain of outer loop controller

Different to the state-feedback controller, only one controller for one vehicle speed at v =
20 km/h has been designed. This controller worked also for different speeds very well.
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Figures 5.4 to 5.6 show the same experiments as in Figures 5.1 to 5.3, for a direct com-
parison between the state feedback - and the cascaded controller.
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Figure 5.4: Step steer maneuver at different amplitudes and v = 20 km/h using the
cascaded rack position controller.
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Figure 5.5: Step steer maneuver at different amplitudes and v = 20 km/h using the
cascaded rack position controller.
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Figure 5.6: Step steer maneuver at different amplitudes and v = 20 km/h using the
cascaded rack position controller. The gain at high frequencies is higher as with the state
feedback controller. Some slight resonance characteristics can be seen.

Compared to the state feedback controller, the performance of the cascaded controller is
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much higher. The phase delay got smaller and the rack movement itself got smoother.
There are some slight resonance effects in the sweep, since the controller is much more
aggressive than the state feedback controller. When looking closer to the rack velocity,
one can see discontinuities when passing the origin. This comes from the static friction of
the rack, which needs to be overcome when changing the direction of movement.

5.1.3 Influence of the rack friction

The rack friction (especially the static part of it) does not only produce some slight dis-
continuities when changing direction, there are also some other effects that need to be
discussed.

Having a static friction in a system means that a certain force has to be generated first in
order to allow any movement of the system. In the SbTV system, this force is generated
by the differential torque ∆T . Since the static friction is not considered in linear controller
theory, this effect leads to time-delays, which are unavoidable (Figure 5.7).
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Figure 5.7: A simulated step steer on the closed loop system using the state feedback
controller. One can see on the right plot that it takes about 100 ms to build up enough
torque to overcome the static friction. The result is a significant time delay.

One possible solution to minimize these time-delays is to increase the controller gains in
order to build up the necessary torques faster. But this will be always a compromise
between a minimized time-delay and the stability of the closed loop system (since higher
controller gains tend to make the closed loop unstable).

High controller gains bring additional problems, the effect of limit cycles. They occur when
it comes to steady state conditions like going straight or cornering at constant radius. At
these situations, the control error in these situation between the reference and actual rack
position is very small, the controller just wants to follow the reference exactly. But even for
very small movements, the controller needs to overcome the whole static friction. Because
of the dynamics in between, it takes some time to

”
convert“ the driving torques into a rack

force. Since the controller gets no immediate reaction, too much torque will be built up
and the rack tears off. An overshoot over the reference is unavoidable and the controller
has to face the same problem from the opposite side. Figure 5.8 shows this effect for a
steady state cornering situation.
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Figure 5.8: Simulated limit cycle during a steady state cornering situation using the cas-
caded controller. The increased aggressiveness compared to the state feedback controller
minimized the time delays significantly, to the cost of occuring limit cycles in steady state
situations. One can see in the torque plot that the controller is going up and down the
static friction, because the control target slightly starts to oscillate around the reference.

The problem of limit cycles is that they can not be avoided, they can just be minimized
in a way, they don’t disturb the driver. Using linear controller theory, it will be always
a compromise between the time delays and the impact of limit cycles in steady state
situations.

5.2 Measurement Results

After parameterizing with the simulation model, the controllers were tested on the real
demonstrator vehicle. It could be recognized that the found parameter sets in Section 5.1
were too aggressive for the real vehicle, which resulted in unstable behavior.

For the state feedback controller, the biggest problem was the resonance characteristic of
the rack. This effect showed up much stronger than in the simulation. The only way to
keep this problem under control was to lower the parameters of the controller, to the cost
of a worse performance of the overall system. Table 5.3 shows the updated parameters for
the state feedback controller.

Table 5.3: Updated parameters for the state feedback controller used for the experiments
on the real car.

Param. Value old Value new Description

kc 5 · 105 1.3 · 105 Design parameter for the controller polynomial

ko 1 · 105 3.1 · 104 Design parameter for the observer polynomial

Since the inner loop of the cascaded controller was tuned to compensate the rack resonance
characteristic, the controller had no problems with it, even on the real vehicle. However,
with the higher speed of the control system, another (unknown) resonance characteristic at
6.5 Hz occurred. The source for this additional resonance effect is not clearly determined
yet, but it is assumed to come somewhere from the drive train. Nevertheless, also the
parameters of the cascaded controller needed to be adjusted in order to provide a stable
system. Table 5.4 shows the updated controller parameters.
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Table 5.4: Updated parameters for the cascaded rack position controller used for the
experiments on the real car. The controller gain of the inner loop controller had to be
lowered by factor 10 in order to ensure stability of the controlled system. Also the damping
coefficient was adjusted a little bit to increase the attenuation of the rack resonance effects.

Param. Value old Value new Description

kr −7.5 · 104 −7.5 · 103 Gain of inner loop controller

zr 2.069 Controller zero

pr 46.41 Controller pole

dr 30.81 25 Damping coefficient of complex pair of zeros

ωr 20.394 Normalized frequency of complex pair of zeros

kp 1 Gain of outer loop controller

5.2.1 Experiments

With these new sets of controller parameters for both the state feedback controller and
cascaded controller, the same experiments as shown in Section 5.1 were done. Additionally
the experiments were also done with the existing PID controller to provide a benchmark.
In Figure 5.9 slalom maneuvers at v ≈ 25 km/h were done.
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Figure 5.9: Slalom maneuvers at v ≈ 25 km/h using all 3 controllers. On the left plots,
the results of the existent controller are shown to provide a benchmark.

Investigating the result from Figure 5.9, its clear that the PID controller is the slowest
of all. It is not able to follow the reference well and also shows some resonance problems
when looking to the plot of the rack velocity. The reference tracking gets better with the
state feedback controller as it is more aggressive, but the higher controller gains amplify
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also the resonance problems, which can be seen clearly. With the cascaded controller,
the performance is a lot better. The oscillations of the rack velocity are well under con-
trol while providing the same or even a better reference tracking than the other controllers.

In the next experiment, step steer maneuvers were investigated. Figure 5.10 show step
inputs at a vehicle speed of v = 30 km/h for all 3 controllers.
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Figure 5.10: Step steer maneuvers at v = 30 km/h. One can see clearly that the response
of the cascaded controller is significantly better than of the other controllers. Especially
the PID controller start to oscillate a lot.

Same as for the slalom maneuver, the step maneuver shows the advantage of the cascaded
controller that it is faster than the others and is able to keep the resonance effects of the
rack under control. At this experiment, the oscillations with the PID controller were that
high that it caused an uncomfortable feeling for the driver.

As a last experiment for comparing the three controllers, sweep maneuvers have been
made (Figure 5.11). The idea behind this experiment was to stimulate the system at the
resonance frequency of the rack in order to ensure the stability at this frequency. It can
be seen that the system remained stable with all controllers. The cascaded controller is
tuned to attenuate this resonance frequency, hence the performance at this frequency is
better with the other controllers. But to keep in mind, such maneuvers will never happen
in normal driving situations and were just made for a proof of stability.

It can be said that the cascaded rack position controller is clearly the best controller struc-
ture out of these three controllers and will be the reference for all further investigations.
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Figure 5.11: Sweep steer maneuvers at v = 20 km/h. It can be seen that all of the
controllers ensured stability of the closed loop system at frequencies around the resonance
of the rack.

5.2.2 Influence of the rack resonance

With the cascaded controller structure, the rack resonance is well under control. Neverthe-
less, this characteristic limits the performance of the overall system a lot, since controller
outputs at this frequency need to be attenuated. There are several possibilities to improve
the performance regarding this problem.

Two mechanical parameters mainly describe this resonance characteristic physically. The
rack compensation mass mr is one of them and is representing the value of the resonance
frequency. With a lower mass (for example by decoupling the steering actuator of the
SbW system when driving with SbTV), this resonance frequency would get higher. A
higher resonance frequency would allow a more aggressive controller tuning, which would
lead to a better performance.

The second mechanical parameter, that influences this behavior a lot, is the damping
coefficient kd of the rack. This damping effect is responsible for the attenuation of this
resonance characteristic. With a higher damping, it would be possible to eliminate this
problem completely. By installing a mechanical damper on the rack, it would also be
very easy to implement this idea. But a big drawback of a higher damping is the energy
consumption of the rack, which would significantly increase.

The third option is to increase the speed of the controller. If the closed loop system is
significantly faster than the resonance frequency, it is also possible to improve the perfor-
mance by controlling this resonance effect. This was also the idea behind the cascaded
controller, as it was designed in the simulations. But on the real car, a different resonance
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characteristic at higher frequencies occurred.

5.2.3 Influence of the additional resonance characteristic

The physical explanation of this resonance characteristic, which lies around f = 6.5 Hz is
not determined yet. But as the rack has its resonance around fr = 3.2 Hz and the chassis
around fc = 1.2 Hz, this resonance could come from the drive train. In the drive train
there are a lot of mechanical components that have slackness, like the tripods from the
half axle or the gears from the motor unit. Figure 5.12 shows the impact of this resonance
making a step steer using the cascaded controller with a higher controller gain for the
inner loop.
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Figure 5.12: Step steer maneuver with the cascaded controller using a higher controller
gain kr = 2 · 104 for the inner loop. Immediately after the step steer input, the system
starts to oscillate at around f = 6.5 Hz.

However, to further increase the performance of the inner controller, this oscillation has
to be considered in the controller design. This consideration will be stated as an outlook
of this thesis.

Therefore, the cascaded controller, as derived in Chapter 4 and tuned in Table 5.4 is the
final controller used within this work.
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5.3 Transition from SbW to SbTV

A very important requirement of SbTV is the applicability as a redundant steering system
for a SbW vehicle. If the SbW system stops working, for whatever reason, SbTV must
provide a safe possibility to steer the vehicle. For that purpose, the transition from SbW
to SbTV has been investigated for various maneuvers, both in simulations and on the real
car. The controller that was used for these investigations, was the cascaded controller.

5.3.1 Simulation Results

The experiment of choice for these investigations in simulations was the error case of SbW
in a steady state cornering situation. Therefore, a rack position will be held constantly at
a certain vehicle speed by the SbW model of the simulation. At a defined time, the SbW
system will be switched off and at the same time, the SbTV controller will be switched
on. Figure 5.13 shows this experiment for a vehicle speed of v = 20 km/h.
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Figure 5.13: Transition of SbW to SbTV at time t = 5 s with a vehicle speed of
v = 20 km/h. The required torques to hold the desired rack position are generated very
fast. The result is a transition that is hardly noticeable in terms of the rack position.
Looking at the yaw rate, one can see that the yaw rate is higher as it is with SbW,
whereas the rack positions are the same. This comes from the additional yaw torque,
which is generated by SbTV.

This additional yaw torque points out a major drawback of controlling the steering rack
position. With this additional amount of yaw rate, SbTV produces a different driving
situation as SbW. This means, that the driver has to correct the steering wheel angle, if
he wants to follow the same trajectory as with SbW. This effect increases with the speed,
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as the rack positions get smaller with higher speeds but the additional torque remains
the same. Figure 5.14 shows the same experiment as Figure 5.13 with a higher speed of
v = 42 km/h.
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Figure 5.14: Transition of SbW to SbTV at time t = 5 s with a vehicle speed of
v = 42 km/h. In this case, the SbTV system is not able to hold the reference rack position
of 2 cm, whereas the yaw rate is still higher than the one before the transition. This means
that SbTV is still able to follow the trajectory in case of an error. Since the torques are
saturated, the reaction of SbTV at the transition is slower than the one in Figure 5.13.
This can be seen as a yaw rate drop for approximately 0.5 s.

Because of limitations regarding available driving torque or road traction, situations exist,
where SbTV will not be able to follow the trajectory of the SbW system anymore. Then,
SbTV has to provide the best possible solution to help the driver handling the situation.
Figure 5.15 shows the same experiment as Figure 5.14 with a higher speed of v = 55 km/h.

It’s clear that the reference generation for SbTV has to be different to the one of SbW,
especially when it comes to the transition between these 2 systems. An easy solution to this
problem would be to analyze the yaw rate for different vehicle speeds and rack positions
for both the SbW and SbTV system. With lookup tables, the steering angle ratio of SbTV
could be adjusted to allow the same steering behavior as with SbW. However, this strategy
was not realized in this thesis and can be seen as an outlook.
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Figure 5.15: Transition of SbW to SbTV at time t = 5 s with a vehicle speed of
v = 55 km/h. After the transition, the SbTV system is only capable of holding the
rack position at ur =1 cm. In this situation, also the yaw rate after the transition will be
lower than before, which means that the trajectory cannot be hold. This could lead to a
dangerous situation for the driver. Furthermore, it takes nearly 1 s to build up the yaw
rate, which can be seen in the trajectory plot, where the car goes almost straight in the
transition.

5.3.2 Measurement Results

As the last part of this thesis, this transition from SbW to SbTV was also investigated on
the demonstrator vehicle for two different maneuvers.

Figure 5.16 shows the error case at a slalom at a vehicle speed of v ≈ 25 km/h. The
transition happened around 7 s, which can be seen in the torque plot. The car was able
to hold the rack position and enabled the driver to safely steer the car through the rest of
the slalom.

In Figure 5.17 this problem was investigated in a steady state cornering situation at a
higher speed of v ≈ 40 km/h. One can see clearly that the yaw rate rises after the transi-
tion, even with a smaller rack position. As a consequence of this increased yaw rate, the
driver had to correct the maneuver. But it has to be said that the driver was still able to
steer the vehicle safely in this situation.

For all the experiments tried on the real car, SbTV always provided a safe backup solution
of the SbW system.
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Figure 5.16: Transition of SbW to SbTV on the real car in a slalom maneuver. In this
situation, the transition was easy to handle for the controller and the driver could finish
the slalom safely.
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Figure 5.17: Transition of SbW to SbTV on the real car in a steady state cornering
situation. One can see, that the driver had to correct the reference rack position to
compensate the higher yaw rate of the SbTV system. The transition itself was stable and
provided the driver the possibility to pursue the maneuver.
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6 Outlook

SbTV is a promising technology that will definitely have it’s place on the market when
it comes to individually propelled electrical cars. But it has to be further developed first
to exploit all the capabilities it can provide. Some possible topics, which could further
increase the performance of SbTV, came out and can be seen as an outlook of this thesis:

Consideration of the additional resonance characteristic

The additional resonance characteristic around f = 6.5 Hz needs to be understood more
clearly where it comes from. Then, this resonance can be modeled both in the linear model
and in the VTC simulation model as an extension to the existing parts. More on, this
characteristic should also be considered in the controller design. One possible solution for
the cascaded controller structure of the inner loop may be

R1(s) = kr
(s+ zr)

(
s2 + dr1 s+ ω2

r1

) (
s2 + dr2 s+ ω2

r2

)
s2 (s+ pr1) (s+ pr2) (s+ pr3)

, (6.1)

where ωr1 describes the rack resonance as before and ωr2 describes the additional res-
onance characteristic with dr2 as the damping coefficient. The poles pr2, pr3 should be
placed around this additional resonance frequency to allow the overall controller the same
behavior as before.

With this consideration, it may be possible to further increase the performance of the
inner loop controller a lot, which would increase the performance of the overall system.

Reference calculation for SbTV

Another important part would be the reference calculation based on the yaw rate to allow
SbTV the same steering feel as SbW. There are two possible approaches:

– By analyzing the yaw rate of SbW and SbTV for different vehicle speeds and rack
positions. Then, a recalculation of the reference target for SbTV based on lookup
tables and the steering wheel angle would provide the car with the same steering
feel as with SbW. The additional effort of making the experiments can be seen as a
disadvantage of this method.

– A model based approach could calculate the yaw rate of the car in SbW mode based
on the steering wheel angle and use this yaw rate to calculate an equivalent rack
position for the SbTV system.

Especially when it comes to the transition between SbW and SbTV, this reference calcu-
lation becomes very important, otherwise the driver needs to correct the higher yaw rate
to pursue the maneuver.

Yaw rate control for SbTV

When it comes to higher vehicle speeds, the rack positions in SbTV mode gets very small.
At very high speeds, there could be the case, that the system may not be able to move
the rack out of the origin because of the high rack friction. But with the yaw moment
coming from the torque vectoring, there is still the possibility to steer the car, even with-
out any rack movement. This means that at higher speeds the controller principles that
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were derived in this thesis may not be promising anymore or even stop working. For this
purpose, a control based on the yaw rate will be essential.

A control based on the yaw rate may also be necessary when it comes to automated
or assisted driving, since trajectory planning is based on yaw rate. The state feedback
controller can easily be switched to a yaw rate controller by changing the output matrix
of the linear state space model to

cT =
[
0 1 0 0 0

]
. (6.2)

The yaw rate control based on a cascaded controller structure could be realized by using
a third loop around the rack position loop.

Advanced friction modelling with non-linear control

The only way to minimize the response time and phase delays of the system with linear
theory is to increase the controller gain. But this will always be a drawback between
stability of the closed loop system and influence of the friction. A better approach would
be a proper modeling of the rack friction. A good foundation for this modeling is the
thesis of Rohrmoser [16], who used a LuGre friction model for the SbW system. With this
modeling approach, non-linear controller theory in the inner loop of the cascaded structure
could be used to minimize the influence of the friction. Two methods are possible:

– The information of a friction observer could be used to compensate the non-linearities.

– A non-linear controller principle, which uses the information of the friction can be
used. Sliding mode based strategies could be possible candidates for this kind of
problem.

Changing the mechanical parameters of the rack

Since the resonance characteristic of the rack is mainly determined by the compensation
mass mr and the damping coefficient kd, this characteristic could be also influenced by
changing these parameters mechanically. On the one hand, a higher damping coefficient in
form of a mechanical damper on the rack would minimize this resonance effect a lot to the
costs of a higher energy consumption. On the other hand, by decoupling the steering ac-
tuator when using SbTV would decrease the compensation mass. As a direct consequence,
this would increase the resonance frequency significantly. Then, the controller gains could
be also higher, which would result in a better performance.

Modular Research Platform (MRP)

As explained in Chapter 1, the performance of SbTV is mainly determined by the sus-
pension design of a car. The demonstrator vehicle that was used in this thesis has some
disadvantages regarding the suspension, since very high torques are necessary for the
use of SbTV. To experience more with the suspension design, TKP developed a further
demonstrator vehicle, the modular research platform (MRP), Figure 6.1.
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6 Outlook

Figure 6.1: Modular Research Platform (MRP) [4]. Nearly all suspension parameters
can be chosen individually by modular wheel carriers. Active suspensions, brake-by-wire
and 3 electrical with a total power of 420 kW allow a lot of possibilities to investigate and
develop various things in vehicle dynamics.

With this vehicle, the suspension can be adjusted to support SbTV in the best possible
way. This means that the motors need less torques, which would be a huge advantage
regarding bad road conditions (where traction could be a problem) and tire wear.

Besides the described topics, also the combination of SbTV and SbW could bring some
advantages regarding safety, comfort, lateral driving performance and a lot more. There
are still further topics that can be investigated and developed in the future.
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7 Conclusion

The goal of this thesis was to develop model-based controller concepts for SbTV. In Chap-
ter 1, the company TKP and it’s newest field of research, Steer by Wire, was introduced.
Then, the principle of Steer by Torque Vectoring and its desired application in the SbW
system as a fallback solution was explained. More on, the motivation for the goal of this
thesis was described. In Chapter 2, the demonstrator vehicle and the VTC simulation
model [12] was explained. Furthermore, also the existing controller concept, which was
seen as a benchmark for this thesis, was presented.

The first part in Chapter 3 covered the modeling part of this thesis. Since the simulation
model described in [12] is too complex for the use in model based controller designs, a
much simpler modeling approach in form of a basic two track model was derived. With
a simple tire model, separated lateral dynamics, linearized slip quantities, a steady state
load transfer model and a linear steering rack model, it was possible to derive a linear
state space model of the car. This linear representation of the demonstrator vehicle was
validated both with the VTC simulation model and measurement data and was then ana-
lyzed in frequency domain. By investigating the poles of the system, stability was ensured
for all vehicle speeds. It resulted that the gain of the systems dropped strongly with in-
creasing vehicle speeds, which means that controlling SbTV with the rack position works
better for low vehicle speeds. Comparisons against the VTC simulation model and real
measurement data showed that the result of the linear modeling represented the behavior
of the car very well regarding resonance characteristics and dynamics.

In Chapter 4, the controller theory was discussed and derived. Instead of the yaw rate, it
was decided to use the rack position as a control target. Better sensors for the rack position
and a better applicability at low vehicle speeds confirmed this decision. With the linear
state space model of Chapter 3, two different controller concepts were derived. First, a
special structure of a state-feedback controller was chosen. This version supports integral
action, which is needed to guarantee offset-free tracking of the reference (since the model
didn’t reproduce the real car’s steady state behavior exactly). To avoid wind-up effects
of the integrator, this state feedback controller also supports a anti windup strategy by
feeding the saturated controller output back. A systematic design based on the algebraic
controller synthesis [17] and the use of LQR tuning scheme provided an easy tuning proce-
dure. A structure-variable extension based on Adamy [20] was added to provide a solution
for different vehicle speeds. As the second controller concept, a cascaded structure had
been chosen. The idea was to split up the control problem into a inner loop and a outer
loop. The controller of the inner loop, with the rack velocity as it’s control target, was
enhanced by an anti windup strategy based on Hanus [22]. With a feed forward compen-
sation of the rack velocity reference, the outer controller was designed as a P-controller.
Both controller concepts were designed in continous time and were discretized afterwards
for the use in the prototype hardware.
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In Chapter 5, these controller concepts were validated and tested both in simulations with
the VTC model and on the demonstrator vehicle. Because of the LQR tuning scheme, the
state feedback controller could be tuned very fast. It was recognized that the controller
had some problems regarding the rack resonance characteristic and tended to oscillate.
In order to control this effect, the controller gains had to be lowered. This resulted in a
slow response time and remarkable phase delays. The cascaded controller structure was
tuned with the poles and zeros from the linear model. Therefore, it was possible to tune
the controller to attenuate the rack resonance characteristic. Hence, this structure had
no problems with oscillations and could be tuned much more aggressive than the state
feedback controller. The quality of the closed loop system with the simulations resulted
much better with the cascaded structure than with the state feedback controller. Investi-
gations showed, that the rack friction is the main reason that causes phase delays and slow
responses, since a certain force has to be generated first in order to allow any movement
of the system. In steady state situations, it could be realized, that the rack friction also
caused limit cycles, slight oscillations around the reference trajectory.

On the real car, the gain of the state feedback controller had to be lowered significantly, as
the real car tended to be more unstable than the VTC simulation model. Especially the
rack resonance characteristic showed up much more on the real car. Similar to the simula-
tion results, the cascaded controller was able to deal with the rack resonance better than
the state feedback controller, which resulted in a higher performance. With the higher
controller gain of the cascaded controller, another (unmodeled) resonance characteristic
at a frequency around f ≈ 6.5 Hz showed up. This additional effect could come from the
drive train and tended the system to oscillate as well. To avoid these oscillations, also the
gain of the cascaded controller had to be lowered.

With the cascaded controller, also the transition from SbW to SbTV was investigated.
In simulations, the transition was performed during a steady state cornering situation for
different vehicle speeds. Because of the additional yaw torque that is generated by SbTV,
the yaw rate of SbTV is higher than the one from the SbW system (for the same rack posi-
tion). This resulted in an unnatural steering feel. The reference generation for SbTV need
to be based on the equivalent yaw rate, which is generated by SbW in order to produce
the same steering feel as SbW. In the tests on the real car, the driver was always able to
safley pursue the maneuvers when it came to the transition to SbTV. The investigations
proved that SbTV is a possible canditate for the redundancy of a fail tolerant SbW system.

Finally, it can be said that the goals of this thesis were achieved. The linear model depicts a
appropriate foundation for model based controller theory, even for more complex concepts
than the ones introduced in this thesis. The state feedback approach provides a very
easy-to-tune solution that results in a same, or even better performance than the existing
PID controller concept. With the cascaded controller, the performance reaches a new
level regarding response time, phase delay and steering feel. Furthermore, the influences
of the rack friction and the rack resonance were investigated and provide an insight to the
limitations of the system.
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List of Symbols

Variables, parameters and constants

a vehicle acceleration vector at CoG

ai i = 0 . . . n, parameters of νu(s)

ãi i = 0 . . . n, parameters of µu(s)

ax vehicle acceleration in x-direction at CoG

ay vehicle acceleration in y-direction at CoG

A dynamic matrix

Af frontal area of vehicle

Aij i, j = 1 . . . 5, parameters of dynamic matrix

Ar dynamic matrix of controller in continuous time

Ard dynamic matrix of controller in discrete time

Atf dynamic matrix in controllability normal form

b input vector

b̂ gain vector of state observer

b1r reference input vector of controller in continuous time

b2r feedback input vector of controller in continuous time

bf track width of front axle

bi i = 0 . . . n, parameters of µy(s)

b̃i i = 0 . . . n, parameters of µy(s) after partial fraction decomposition

br track width of rear axle

btf input vector in controllability normal form

B5 parameter of input vector

Brd input matrix of controller in discrete time

cT output vector

ca cornering stiffness at nominal wheel load

cd drag resistance of air

ci i = 0 . . . n, parameters of ∆(s)

cp gain of the transfer function P2(s)

cT
tf output vector in controllability normal form

cT
r output vector of controller in continuous time

cT
rd output vector of controller in discrete time

C position of wheel center coordinate system
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d1r direct reference feed trough of controller in continuous time

d2r direct output feed trough of controller in continuous time

di i = 0 . . . n, parameters of ∆̂(s)

dr damping factor of inner loop controller R1(s)

dT
rd direct feed trough vector of controller in discrete time

dtf toe angle front

dtr toe angle rear

e estimation error of state observer

f frequency quantity

f right hand side vector of the resultant equation

fd damping coefficient of the steering rack

fr static friction of the steering rack

frw coefficient of roll friction

Fl sum of forces on the steering rack coming from the tires

Fr friction force of steering rack

FR steering rack force

Fx sum of forces in x-direction at CoG

Fxw w = 1, 2, 3, 4, longitudinal tire forces of the single wheels

Fyw w = 1, 2, 3, 4, lateral tire forces of the single wheels

Fzn nominal wheel load

Fzw w = 1, 2, 3, 4, vertical tire forces of the single wheels

g gravity constant

g1 gain for upper state feedback controller

g2 gain for lower state feedback controller

Gu(s) observer transfer function 1

Ḡu(s) modified observer transfer function 1

Gy(s) observer transfer function 2

hCoG height Center of Gravity

ibelt transmission between steering actuator and BLD

iBLD transmission between BLD and steering rack

I identity matrix

kT gain of state feedback controller

kc tuning parameter for the controller polynomial of the state feedback
controller

kd steering transmission between rack position and steering angles

kfr slope of the friction describing function

ko tuning parameter for the observer polynomial of the state feedback con-
troller
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kp gain of P-controller

kr gain of inner loop controller R1(s)

kx transmission of longitudinal tire force to rack force

ky transmission of lateral tire force to rack force

kz transmission of vertical tire force to rack force

K resultant

lf distance between front axle and CoG

lr distance between rear axle and CoG

lsh lever length for the steering arm

L1(s) open loop transfer function of the inner loop controller for stability anal-
ysis

m overall vehicle mass

mr compensation mass of steering rack and actuator

mz mass of steering rack

Msw w = 1, 2, self aligning torques of front wheels

n constant pneumatic trail of a tire

N(s) approximate of the inverse of P2(s)

Nij i, j = 1 . . . 5 parameters for non linearities in the derived model

p parameter vector for the unknown quantities of the state feedback con-
troller

pi i = 1, 2, 3, 4, 5, poles of the transfer function P1(s)

pr pole of inner loop controller R1(s)

P solution of the algebraic ricatti equation

P (s) transfer function of linear model with rack position as output

P1(s) transfer function of linear model with rack velocity as output

P2(s) transfer function between rack velocity and rack position

Pc(s) compensatory open loop transfer function for the design of the outer
loop controller R2(s)

Q weighting matrix for LQR tuning method

Qy weighting factor for output weighting LQR

r reference quantity for the controllers

r̃ conditioned reference quantity according to Hanus [22]

r0 unloaded tire radius

rs static tire radius

rD dynamic tire radius

rM transmission of self aligning torques to rack force

rvc1,v distance from CoG to front left wheel center, depicted in the vehicle
fixed coordinate system
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R weighting factor for LQR tuning method

R(s) feed back transfer function of state feedback controller

R1(s) transfer function of inner loop controller of cascaded controller structure

R2(s) transfer function of outer loop controller of cascaded controller structure

RB roll balance of car

sx longitudinal slip of a not assigned wheel

S weighting matrix for LQR tuning method

Su controllability matrix of state space model

t1 bottom line of controllability matrix

ts sample time for discretized systems

T transformation matrix for controllability normal form

T longitudinal torque

T (s) closed loop transfer function

T1(s) closed loop transfer function of inner loop of cascaded controller

Tdw w = 1, 2, drive torques of front wheels

Tz,TV yaw torque component from Torque Vectoring

∆T delta torque of front wheels

∆Treq requested delta torque

u input quantity of state space realization

umin, umax saturation limits of delta torque ∆T

ur position of the steering rack

ur,ref reference position of the steering rack

u̇r velocity of the steering rack

u̇r,ref reference velocity of the steering rack

ür acceleration of the steering rack

v absolute vehicle velocity

v vehicle velocity vector at CoG

v̇ derivative of vehicle velocity vector at CoG

vmod modulus of absolute speed for discretization of vehicle velocity

vspace discretization step of vehicle velocity

vw w = 1, 2, 3, 4, tire velocities of the single wheels

vx vehicle velocity in x-direction at CoG

v̇x derivative of vehicle velocity in x-direction at CoG

vxw w = 1, 2, 3, 4, tire velocities in x-direction of the single wheels

vy vehicle velocity in y-direction at CoG

v̇y derivative of vehicle velocity in y-direction at CoG

vyw w = 1, 2, 3, 4, tire velocities in x-direction of the single wheels

V gain of state feedback controller

V (s) feed forward transfer function of state feedback controller
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w controller output of state feedback controller

W position of wheel contact patch coordinate system

WB weight balance of vehicle

x state vector of state space realization

x̂ state vector of observer

xc x axis of coordinate system at wheel center C

xw x axis of coordinate system at wheel contact patch W

yc y axis of coordinate system at wheel center C

yw y axis of coordinate system at wheel contact patch C

z state vector in controllability normal form,

controller state vector

z̃ state vector of conditioned controller according to Hanus [22]

zc z axis of coordinate system at wheel center C

zi i = 1, 2, zeros of transfer function P1(s)

zr zero of inner loop controller R1(s)

zw z axis of coordinate system at wheel contact patch C

αw w = 1, 2, 3, 4, slip angles of the single wheels

β side slip angle of vehicle

β̇ derivative of side slip angle

δw w = 1, 2, steering wheel angles

θEM Inertia of steering actuator

θBLD Inertia of ball type linear drive

θwheel Inertia of a single wheel

µ(s), µi i = 0 . . . 4, nominator polynomial and its coefficients

µu(s) nominator polynomial of Gu(s)

µy(s) nominator polynomial of Gy(s)

ν(s), νi i = 0 . . . 4, denominator polynomial and its coefficients

νu(s) nominator polynomial of Ḡu(s)

τ time constant of motor inverter model

ωw w = 3, 4, angular velocities of the single wheels

ωr resonance frequency of inner loop controller R1(s)

ω vehicle rotation vector at CoG

∆(s) controller polynomial of state feedback controller

∆̂(s) observer polynomial of state observer

Θ overall inertia of chassis around z-axis at CoG

ψ̇ yaw rate of vehicle around center of gravity
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Abbreviations

AFS Active Front Steering

BLD Ball type linear drive

CoG Center of Gravity

DOF Degrees of Freedom

PAS Power Assisted Steering

SbTV Steering by Torque Vectoring

SbW Steer by Wire

TKP ThyssenKrupp Presta AG

TV Torque Vectoring

VTC Name of simulation model from Georg Rill [10].
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Appendix

Coefficients for the derived model

A11 = − g ca
v Fzn

(8.1)

A12 = − 1− g ca

v2 Fzn
(lfWB − lr (1−WB))

+ 2
hCoG dtfRB

bf Fzn

(
ca −

r0

rs
frw Fzn

)
+ 2

hCog dtr (1−RB) ca

br Fzn

(8.2)

A13 =
gWB kd

v Fzn

(
ca −

r0

rs
frw Fzn

)
+

2T kd

vmrs
(8.3)

A15 = − 2 dtf

vmrs
(8.4)

A21 =
mg ca

ΘFzn

(
lfWB +

bf
2
dtfWB + lr (1−WB)

)
(8.5)

A22 =
mg ca

vΘFzn

(
−l2f WB +

bf
2
lf dtfWB − l2r (1−WB)

)
+

vm

ΘFzn
2
lf
bf
hCoG dtfRB

(
ca −

r0

rs
frw Fzn

)
+

vm

ΘFzn
hCoGRB

(
−ca d

2
tf −

r0

rs
frw Fzn

)
− vm

ΘFzn

(
2
lr
br
hCog dtr (1−RB) ca

)

(8.6)

A23 =
mgWB kd

ΘFzn

(
lf

(
ca −

r0

rs
frw Fzn

)
− bf dtf ca

)
+

2T lf kd

Θ rs
(8.7)

A25 = − 2

Θ rs

(
lf dtf +

bf
2

)
(8.8)

A41 = −mgWB ca (ky − rM n)

mr Fzn
(8.9)

A42 = − mg ca lfWB

vmr Fzn
(ky − rM n)

+
vm 2hCoGRB

mr Fzn bf

(
r0

rs
frw Fzn kx + ca dtf (ky − rM n)− Fzn kz

) (8.10)

A43 =
mg kdWB ca

mr Fzn
(ky − rM n) (8.11)

A44 = − fd

mr
(8.12)

A45 =
2 kx

mr rs
(8.13)

A55 = −1

τ
(8.14)

B5 =
1

τ
(8.15)
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N21 = −
vmk2

d hCoGRB ca

ΘFzn
(8.16)

N22 =
mkd lf hCoGRB ca

ΘFzn
(8.17)

N23 =
vmkd hCogRB ca

ΘFzn
(8.18)

N41 = − fr

mr
(8.19)

N42 =
1

kfr
(8.20)
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