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Abstract

Power and phase of low-frequency oscillations are the predominant mea-
sures of cortical excitability. These measures assume that oscillations are
sinusoidal and symmetrical. However, studies have shown that this notion is
not informed by physiological principles, and it has been suggested that the
instantaneous amplitude of a biased alpha oscillation, which does not make
these assumptions, is a better predictor of cortical excitability than either
the power or the phase. The presented thesis characterizes and validates the
instantaneous amplitude as predictor of cortical excitability.

For this purpose EEG signals were recorded from 64 locations in 34 human
subjects while they responded to visual perception-threshold stimuli with a
button press. The recorded signals were used to determine how oscillatory
power, phase, and the instantaneous amplitude in the alpha band predicted
the perception of the visual stimuli.

The results show that instantaneous amplitude explains 35% more of the be-
havioral variance than power or phase, and that it can also predict when the
cortex is most receptive to perceptual input. The validation of instantaneous
amplitude as a predictor of cortical excitability opens up new possibilities
for scientific, clinical and consumer applications that use EEG.

Keywords: Electroencephalography (EEG), alpha, oscillations, phase, visual
perception, instantaneous voltage
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Zusammenfassung

Leistung und Phase niederfrequenter Oszillationen sind die vorherrschen-
den Parameter zur Bestimmung kortikaler Erregbarkeit. Diese Maßnah-
men setzen voraus, dass die auftretenden Schwingungen sinusförmig und
symmetrisch sind. Studien haben jedoch gezeigt, dass diese Ansicht nicht
durch physiologische Prinzipien informiert werden. Es wurde vorgeschla-
gen, die momentane Amplitude einer vorgespannten Alpha-Schwingung,
welche keine Symmetrie annimmt, als einen besseren Prädiktor für kor-
tikale Erregbarkeit zu verwenden. Die vorliegende Diplomarbeit validiert
und charakterisiert die momentane Amplitude als Prädiktor der kortikalen
Erregbarkeit.

Es wurden die EEG-Signale von 64 Elektroden in 34 menschlichen Proban-
den aufgezeichnet, während diese auf visuelle Wahrnehmungsschwellen-
reize mit einem Knopfdruck reagierten. Von diesen Signalen wurden die
oszillatorische Leistung, Phase und die momentane Amplitude im alpha-
Band extrahiert, um deren Einfluss auf die Wahrnehmung unserer visuellen
Reize zu quantifizieren.

Die Ergebnisse zeigen, dass die momentane Amplitude 35% mehr Var-
ianz im Verhalten erklären kann als Leistung oder Phase, und dass es
auch voraussagen kann, wann der Kortex am empfänglichsten für deren
Wahrnehmung ist. Die Validierung von momentaner Amplitude als Prädik-
tor für kortikale Erregbarkeit eröffnet neue Möglichkeiten für wissenschaftliche,
klinische und Verbraucheranwendungen, die EEG verwenden.

Schlüsselwörter: Electroencephalography (EEG), Alpha, Oszillationen, Phase,
visuelle Wahrnehmung, momentane Amplitude
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1 Introduction

Selective attention to external stimuli is a crucial ability to survive in the

environment. Without the capability to weaken or enhance incoming sensory

information (i.e., visual, auditory or tactile information) mundane seeming

tasks like driving a car would be nearly impossible. For example, while

driving, we pay attention to the road, regulate the car speed and most of

the time we also listen to the radio, talk to a person or perform a various

amount of different motor tasks. All this information is processed by the

vast network of neurons in our brain. This ability, that allows us to pay

more attention to one modality than to another, helps us to process only

the information that is relevant for the task at hand. Let us illustrate this

in our car example, if the complexity of the situation increases (i.e., at a

busy intersection), our brain will reduce influences from irrelevant stimuli

(e.g., the song in the radio) to avoid distractions from the more important

task. These shifts in attention happen within seconds and it is therefore

impossible that they are facilitated by structural changes in the anatomy of

the brain, which leads to the conclusion that this capability is a fundamental

property of the cortical activity that governs our brain.
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1 Introduction

The investigation of dynamic changes in cortical activity has a long history

and different techniques have been developed. All these techniques have

their unique advantages and disadvantages. They are reliant on the mea-

surement of different physical and physiological properties that are affected

by cortical activity. For example, active neuronal populations require an

increased blood flow to meet metabolic requirements. This change in blood

flow can be measured by techniques like functional magnetic resonance

imaging (fMRI), positron emission tomography (PET) or single-photon emis-

sion computerized tomography (SPECT) [1]. These investigatory tools are

able to provide information about metabolic changes with a high spatial

resolution in a three dimensional structure. However, the equipment is

expensive in acquisition and maintenance and the temporal resolution of

these techniques is comparably low (i.e., in the range of seconds). Another

approach to investigate cortical activity is the measurement of electrical

signals caused by action potentials propagating along the axons of the nerve

cells. The propagation of these action potentials causes transmembrane

currents which can be measured in the extracellular medium. Although,

synaptic transmembrane currents are the major contributor to extracellu-

lar signals, other signal sources do exist. These sources include Na+ and

Ca2+ spikes, ionic fluxes caused by voltage- and ligand-gated channels and

intrinsic membrane oscillations [2].

There are multiple ways to measure the resulting electrical signals but

their effectiveness varies in spatial, temporal and spectral resolution as well

as signal quality. For example, the measurement of local field potentials
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1 Introduction

(LFP) is achieved by inserting microelectrodes, like the Utah array, in the

extracellular space of brain tissue [3] which is a highly invasive procedure

that can lead to inflammation or tissue damage on the target site [4]. These

microelectrode arrays achieve a high spatial resolution with up to 128

electrode needles spaced in an area of around 13 mm2. The electrodes allow

the measurement of action potentials as well as local field potentials. The

measured local field potentials reflect the activity of a small population of

neurons. It is the result of transmembrane currents, located in the vicinity

of the electrode [5].

Another approach in the acquisition of cortical activity are electrodes at-

tached to the surface of the cerebral cortex. This method, termed electro-

corticography (ECoG) is used for the localization of seizure foci in epilepsy

patients prior to surgical resection [6]. Additionally, due to the proxim-

ity to the cerebral cortex, the signal-to-noise ratio and spatial resolution

is much higher than what can be expected by noninvasive methods like

electroencephalography (EEG).

One of the most prominent tools to investigate neuronal activity are nonin-

vasive techniques, namely the electroencephalography (EEG) and magne-

toencephalography (MEG). The magnetoencephalography allows the non

invasive measurement of the magnetic field changes caused by neuronal

currents in the brain. These extremely small changes (50fT - 500fT) in the

magnetic field are measured by superconducting quantum interference de-

vices [7]. Although, MEG is costly, its spatiotemporal properties make it an

ideal candidate for research and clinical application.
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1 Introduction

Nevertheless, the most widespread noninvasive method to measure brain

signals is the EEG, because it allows the measurement of cortical activity

with comparatively low costs. The obtained signal can be seen as the spa-

tiotemporally smoothed version of the local field potentials [2] integrated

over a large cortical area of millions of neurons. Electroencephalography has

a long history due to its non-invasiveness and comparably simple instrumen-

tation requirements. In contrast to invasive methods, the measured potential

differences are very small (1-100µV). Therefore, EEG measurements have a

comparatively low signal-to-noise ratio and decreased spatial selectivity due

to the volume conduction between the cortical sources and the electrode.

Additionally, the recorded frequencies are limited as higher frequencies tend

to be more locally specific and are more attenuated than lower frequencies

[8]. Despite these limitations, EEG has become an important tool for research

as well as for clinical and consumer applications.

The first humans EEG recordings were performed by Hans Berger in 1924.

In 1929 he published his paper “On the Electroenephalogram of Man“ [9]

in which he demonstrated that it was possible to measure cortical activity

from the scalp of humans. These investigations of cortical activity showed,

that the signals recorded from the scalp, are composed of different types

and frequencies. Two very prominent distinctions are the division of activity

into stimulus locked responses and ongoing activity [10]. Stimulus locked

respones, like event related potentials (ERP) are measurable responses

that result from specific time locked sensory, cognitive or motor events. In

contrast, ongoing activity describes rhythmic changes in the neural activity

4



1 Introduction

that are not the response to a specific event. One of these oscillations, the

alpha wave (discovered by Hans Berger who termed it the Berger rhythm)

has received a lot of attention since its discovery.

The oscillatory activity of the brain has been linked to different mental

states. For example, relaxation typically induces oscillations in the alpha

band (8− 12 Hz). Alpha has also been associated with shifts in attention [11–

13], thus enabling the dynamic cortical function within the static anatomy

of the brain. For a long period of time, alpha activity has been interpreted

as the result of cortical idling [14]. In principle, if a cortical area is inactive,

its brainwaves are in a synchronous idle state, which causes alpha power to

be high. If a cortical area is active, the brainwaves desynchronize due to the

task demand which results in a decrease in alpha power. As an example,

the power of the alpha wave in the occipital cortex increases when the eyes

are closed and decreases when the eyes are open, reflecting changes in the

workload of visual processing.

Investigations of working memory have challenged this view. In these ex-

periments [15, 16] subjects had to remember items for a short period of time.

As a result alpha power increased during the retention interval in which

they had to memorize the presented items. This finding is contrary to the

believe that high alpha power indicates cortical idling and lead to the theory

that increased alpha power inhibits communication with other areas of the

brain. Based on the observations that alpha power decreases in active areas,

but increases during the retention time in memory experiments Klimesch et

al. formulated the inhibition-timing hypothesis [17]. In their view, alpha is
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1 Introduction

an active phenomenon that helps neurons in different networks to activate

common target cells. They state that alpha could play an important role

in the top-down control of cortical activity. Therefore, cyclic changes in

cortical excitability in the alpha range, phase synchronization, alpha coher-

ence and phase locking could be manifestations of a timing mechanism to

guide information flow. A few years later, Jensen and Mazaheri formulated

their theory, termed Gating-by-Inhibition [13], which is also based on the

observation that alpha power decreases in task relevant areas, and increases

in task irrelevant areas. Their central assumption is based on the idea that

information is routed by inhibiting task-irrelevant pathways. This is sup-

ported by the discovery that task performance was better when alpha power

increased in task irrelevant areas [18]. Another hypothesis, formulated by

Fries, was termed Communication-through-Coherence [19, 20] and is based

on cyclic changes in cortical excitability caused by phasic changes of the

alpha cycle. His theory suggests that active neuronal groups engage in

rhythmic synchronization. These synchronization patterns cause sequences

of inhibition and excitation, creating windows for neuronal communication.

This concept establishes that communication therefore requires coherence

between the neuronal groups. This implies that if a neuronal group receives

information from different presynaptic groups, it primarily responds to the

group to which it has the highest phase coherence.

While the origin of this oscillatory activity is still under investigation, there

is a growing body of evidence suggesting that oscillations in the alpha

band originate from the thalamus [21, 22], modulate cortical excitability
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(i.e., the probability of neuronal firing), and cause variations in behavioral

performance. These changes in cortical excitability are assumed to be a

key mechanism to facilitate (or inhibit) information propagation between

cortical structures and therefore modulate attention.

Several studies have shown that cortical excitability is modulated by power

and phase of oscillatory activity [23–27]. Frequency decomposition (i.e.,

Fast Fourier Transform), as the prevalent investigatory tool for oscillatory

activity, assumes that the measured oscillations are sinusoidal and sym-

metrical. However, studies have shown that this notion is not informed

by physiological principles, and that the shape of oscillatory activity is

actually non-sinusoidal [9, 28, 29] and asymmetric [30–32]. For example, the

mu-rhythm (a 10Hz rhythm in the motor area) can be better described as an

arch, comb or wicket shape [33]. This is especially important for methods

like phase-amplitude-coupling (PAC), which quantifies the correlation be-

tween the phase of one oscillator and the amplitude of a higher-frequency

oscillator. A recent investigation has shown that failing to consider the

non-sinusoidal shape of oscillations can lead to confounding biases in PAC

investigations [34].

Recently, Function-through-Biased-Oscillations [FBO; 35] has emerged as a

new theory that describes an alternative to power or phase-based measure-

ments. In this theory, a special emphasis is placed on the bias of alpha oscilla-

tions as the driving force behind rhythmic inhibition. This theory is based on

physiological considerations and tries to reconcile the previously established

Gating-by-Inhibition (GBI) and Communication-through-Coherence (CTC)
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1 Introduction

theories. Function-through-Biased-Oscillations (FBO) combines ideas from

GBI and CTC by considering the physiological principles of the ongoing

oscillation. Specifically, the introduction of asymmetry creates a bias in the

oscillation that facilitates information transfer between cortical areas when

the instantaneous voltage amplitude of a biased alpha oscillation is low.

With this, FBO can now reconcile the role of alpha power and alpha phase in

information transfer. In other words, low instantaneous peak-to-peak volt-

age corresponds to low alpha power which facilitates information transfer.

Similarly, the trough of the instantaneous voltage corresponds to a specific

phase. The operating principles of how GBI, CTC and FBO are thought to

modulate cortical excitability and therefore gate the flow of information

throughout the cortex is illustrated in Figure 1.1.

Recent experimental work in electrocorticography (ECoG) has already

demonstrated that the instantaneous amplitude is a better predictor for

cortical excitability than power or phase alone [36]. In this thesis, I in-

vestigated whether these findings extended to the much more prevalent

electroencephalographic (EEG) recordings from the scalp. While ECoG has

numerous advantages including high spatiotemporal resolution, signal fi-

delity, resistance to noise and robustness for continued recordings [37] its

usage in research is limited. To record signals, ECoG electrodes need to be

implanted which requires intracranial surgery. Additionally, the electrode

grid placement is done solely by clinical indication without consideration

for research needs. Therefore, EEG constitutes a much more prevalent tool

for scientific investigations because it is inexpensive, readily available and
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Figure 1.1: Gating mechanisms. Top Row: Illustration of gating mechanisms between corti-
cal areas (a→c and b→c) for alpha power, alpha phase and instantaneous am-
plitude. (A) Inhibitory effect of alpha power. Information is only gated through
the network if alpha power is low. (B) Excitatory effect of phase synchronization.
Information is only gated through the network if phase is synchronized. (C)
Inhibitory effect of instantaneous amplitude. Information is only gated through
the network if the instantaneous amplitude of the biased oscillation is low. Bot-
tom Row: Illustration of alpha power, alpha phase and instantaneous amplitude.
(A) Alpha power as the envelope of the ongoing oscillation. (B) Alpha phase as
the cyclic variation in amplitude of the ongoing oscillation. (C) Instantaneous
amplitude as the biased asymmetric oscillation.
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1 Introduction

provides data with a high temporal resolution. It is of course not with-

out its limitation, especially considering its limited spatial resolution and

comparably low signal-to-noise ratio.

To investigate the instantaneous amplitude as a neural correlate with EEG

recordings, a cortical structure with a good projection onto the electrodes

had to be chosen. The visual cortex represents an ideal candidate for such an

experiment and it has been shown that variability in the behavioral response

to a visual perception threshold stimulus can be used as a proxy for cortical

excitability[38]. I therefore decided to investigate whether the instantaneous

amplitude could be used as an informative neural correlate of behavioral

performance in a visual near-threshold experiment.

In visual near-threshold experiments, subjects respond to a very faint visual

stimulus. Psychophysiological investigations of contrast sensitivity have

shown that the perceived intensity depends on different factors like the

position in respect to the field of vision, temporal properties, the intensity

of the background on which the stimulus is presented or the orientation of

the presented stimulus [39, 40]. In near-threshold experiments, the stimulus

intensity will be decreased until the response to the stimulus changes to a

probabilistic function, the so-called psychometric function. This function

establishes the connection between stimulus intensity and the probability

that the stimulus is perceived. Since the physical properties of the stimulus

are fixed, the variability in the detection rate results from fluctuations in the

cortical excitability of the brain[38].

10
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Numerous studies have applied near-threshold stimuli to investigate the

parameters influencing visual perception. It has been shown that alpha

power [38, 41–46] and alpha phase [47, 48] influence visual perception.

Their results show that a decrease in alpha power is associated with an

increase in perception rate. This is in line with the idea that the perception

of a stimulus is connected to cortical excitability. Similarly, investigations

with alpha phase report that the perception of a near-threshold stimulus is

more likely if alpha is in a certain phase. Research has also shown that the

influence of visual perception can be extended to the confidence with which

the stimulus is perceived [49, 50]. This finding, that alpha power modulates

confidence can also be extended to other modalities [51]. This suggests that

alpha power therefore changes the likelihood that a stimulus is reported as

perceived which is thought to be influenced by cortical excitability.

It also has been hypothesized that the alpha voltage itself influences percep-

tion [52, 53]. The results of this thesis demonstrate that this is indeed the

case.

11



2 Methods

2.1 Subjects and data collection

In this thesis, 34 healthy subjects (12 females, 22 males, 18− 69 years old,

normal or corrected to normal vision) participated in a visual perception-

threshold task. All subjects provided written consent for participating in the

study, which was approved by the Institutional Review Board of the New

York State Department of Health.

EEG signals, eye movements, visual stimulus onset and the behavioral re-

sponse were recorded using the general-purpose BCI2000 (brain-computer

interface) software [54, 55] interfaced with four 16-channel g.USBamp bio-

signal amplifiers (g.tec, Graz, Austria), a Tobii X30 eye tracker (Tobii, Stock-

holm, Sweden), and a g.TrigBox (g.tec, Graz, Austria). The bio-signal am-

plifiers acquired EEG signals from 64 scalp locations using the standard

10/10 montage with the amplifier ground and reference placed on the right

mastoid and ear lobe, respectively. An additional ground cable, fixed onto

12



2 Methods

the subjects forearm was connected to the ground of the amplifier casing, to

further reduce the influence of line noise. Throughout the experiment elec-

trode impedances were kept below 40kΩ and the resulting EEG, eye-gaze,

visual stimulus onset and button response signals was sampled at 512 Hz.

This technique also allowed for an accurate measurement of subject reaction

times.

Since I was interested in the relationship between visual stimulus onset,

behavioral response and the EEG, hardware triggers were used to avoid

any temporal uncertainty (i.e., jitter) between these measures. Specifically,

the onset of the visual stimulus was recorded with an optical sensor (i.e.,

photodiode) mounted on the presenting screen, and the behavioral response

with a push button digitized simultaneously with the EEG signals.

2.2 Behavioral task

Subjects performed the visual perception task in a dark room in front of a

42-inch LCD screen that spanned their entire visual field (65 cm distance,

±36◦ horizontal, ±22◦ vertical). Throughout the experiment this screen

presented a dimmed white noise background (2.0 cd/m2).

The stimuli in this task were large-scale Gabor wavelets presented on top

of the noise background at one of four positions within the foveal field of

vision (i.e., 1◦ of the visual field, see Figure 2.1A). The intensity granularity

13



2 Methods

was limited by the presenting screen which allowed only 255 different

gray-scale values for the full scale from black to white.

First, the subject’s visual perception threshold for these stimuli was de-

termined. For this, subjects responded to a visual staircase procedure in

which visual stimuli at alternating positions within foveal vision were pre-

sented with increasing intensity (21 steps, 10 repetitions, 1.6 sec per step).

To report a visual change the subjects pressed a button as soon as they

perceived the stimulus. This yielded an estimate of the visual perception

threshold. To accurately determine the perceptual threshold, subjects were

presented stimuli at five different intensities, centered around the estimated

perception-threshold in a block randomized sequence (16 repetitions per

intensity). This yielded the parameters of the psychometric function of

visual perception (i.e., the sigmoid function in Figure 2.1B). For the main

experiment, the stimulus with the intensity closest to the visual perception

threshold (i.e., 50% in the psychometric function) was used.

Each trial started with a 2-sec long inter-stimulus interval, during which

a bright masking stimulus was presented to prevent retinal adaptation

(11.2 cd/m2). After a subsequent randomized waiting period (1.625 to 3 sec),

the stimulus appeared in one of the four quadrants within the foveal field

of vision. The visual stimulus disappeared after the subject responded with

a button press, or after a 1.6-sec long time out. Figure 2.1A illustrates this

sequence. A trial was considered as perceived if the button was pressed

between 200ms and 1.6-sec after the stimulus onset. Button presses outside

of this time window were considered erroneous and triggered a repeat of the

14



2 Methods

trial. Similarly, if the subject responded during the prestimulus period the

trial was repeated to maximize the number of trials available for analysis.

Each subject performed 600 trials, structured into 10 blocks. Inbetween

blocks, subjects were allowed to rest for up to five minutes. In total, the

experiment was conducted over a period of one hour and thirty minutes

(including breaks and calibration) and yielded 150 trials for each stimulus

orientation. Throughout the experiment, an additional 60 catch trials with no

stimulus, and 60 catch trials with a high intensity stimulus were presented,

to control for the subject’s task compliance. Each block contained an equal

amount of randomly distributed catch trials.

2.3 Data processing

For the analysis, a notch filter was used to remove line noise at 60 Hz,

and then the EEG signals between 1 and 40Hz were extracted using a 4th-

order Butterworth IIR bandpass filter. Next, the continuous EEG signal was

divided into 4-sec long trials centered around stimulus onset. To remove

the influence of eye-blinks on the analysis, all trials for which the amplitude

during the period of ±300 ms around the stimulus onset exceeded 50µV

at location Fpz were rejected. The signal was further inspected visually to

remove any trials that exhibited EMG- or movement-related contamination.

In the course of this visual inspection, 3 out of 34 subjects were discarded, as

the contamination affected occipital scalp locations (i.e., the area of interest

15
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Figure 2.1: Experimental Design and Calibration. Subjects performed a visual perception-
threshold task in a dark room, calibrated for a 50% behavioral response rate. (A)
At the beginning of each trial, a 2-sec long bright masking stimulus prevented
retinal adaptation. Following a 1.625 to 3-sec long pre-stimulus period, the visual
perception-threshold stimulus appeared at one of the four quadrants within
the foveal vision (i.e., 1◦ of the visual field). The visual stimulus disappeared
when the subject responded with a button press, or after a 1.6-sec long time out.
(B) Calibrated psychometric function averaged across all subjects and aligned
to the perception threshold (monotonic function, ***p � 0.01 , Spearman’s
rank-order correlation). Throughout the experiment, stimulus intensity was set
to the perception threshold.
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in this thesis). For the remaining subjects, between 0 and 70 trials (i.e., less

than 10% of all trials; median: 5 trials) were removed. As the focus of this

thesis were changes in cortical activity in the occipital areas, a Laplacian

filter was applied to increase spatial selectivity as described in section 2.4.

Next, the dominant alpha band frequency was determined by applying

a power spectral density (PSD) estimation on the EEG signals acquired

while the subjects closed their eyes for one minute. Afterwards, a 2 Hz-wide

4th order Butterworth bandpass filter centered around the dominant alpha

band frequency was used to extract the alpha oscillations from the EEG

signals of the main experiment. From these alpha oscillation signals, alpha

power and alpha phase was extracted by using a Hilbert transform, and

the instantaneous amplitude using the procedure described in section 2.5.

To ensure that the temporal relationship between stimulus onset and the

features in the EEG remained constant throughout the analysis, all filters

were implemented with the filtfilt function in MATLAB for zero phase-lag

filtering.

2.4 Calculation of the surface Laplacian

Electroencephalographic measurements on the scalp are potential measure-

ments in respect to a reference electrode, in this case mounted on the right

earlobe. These measurements are highly correlated due to volume conduc-

tion effects between the cortical sources and the position of the electrode
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2 Methods

[56]. The electrical activity of these neuronal populations is measured with

a sensor through biological tissue which causes a superposition of the dif-

ferent sources at the sensor. To reduce the effect of this volume conduction

and therefore increase spatial selectivity, a spatial filter was applied to the

data [57]. This spatial filter, called a surface Laplacian, has the advantage

that it does not require a volume conduction model of the head or specific

information about the cortical sources. To estimate the surface Laplacian

a variation of the finite difference method introduced by Hjorth [58] was

used. The Laplacian estimate for each electrode was calculated according to

Equation 2.1 where Vi
laplace refers to the Laplacian estimation for ith scalp

electrode. The estimation was calculated by subtracting the mean of the

measured voltage of the surrounding electrodes (Vn
e ) from the voltage of

the electrode (Vi
e ). To decide which electrode surrounds a certain electrode,

the three dimensional positions of all sensors was measured and the eu-

clidean distance between the electrodes was calculated. An electrode was

considered as a surrounding electrode if the euclidean distance was smaller

than 30mm.

Vi
laplace = Vi

e −
∑N

n=0 Vn
e

N
(2.1)
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2.5 Extraction of instantaneous amplitude

A central assumption of the FBO hypothesis is that the troughs of the

oscillatory alpha activity are always aligned at the same low voltage level,

creating a biased oscillation (illustrated in Figure 1.1C). The described

procedure for the extraction of this biased oscillation is identical to the one

previously described by Schalk et al. [36]. The unbiased, zero-mean alpha

wave (SAA) was extracted by bandpassing the recorded signals with the

identical filters used for the extraction of alpha power and alpha phase.

The voltage bias (i.e., the minimum voltage value for the troughs of the

oscillation, o f f setbias) was determined individually for each electrode as the

5
th percentile of the voltage values in the bandpass filtered alpha activity. To

calculate the bias corrected alpha activity (i.e., the instantaneous amplitude,

S′AA) from the alpha oscillation, the difference between the negative voltage

envelope (SAE) and the bias offset (o f f setbias) was subtracted from each

time-point, following equation Equation 2.2.

S′AA = SAA − (−SAE − o f f setbias) (2.2)

With this procedure, it was possible to reintroduce the bias which would

otherwise be lost due to the bandpass filter.
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2.6 Statistical analysis

For the statistical analysis, the single trial correlations of alpha power, alpha

phase and instantaneous voltage with the behavioral response (i.e., button

press or no button press) were calculated using a Spearman’s correlation

for alpha power and instantaneous voltage. To take into account the circular

nature of alpha phase the correlation between phase and behavioral response

was calculated with the circular linear correlation implemented in the

CircStat[59] toolbox. This calculation is used to correlate a circular variable

(α) with a linear variable (x), in this case the subjects response to the stimulus.

The value is obtained by calculating the multiple correlation coefficient

r between the correlation of the sine of phase with the linear variable

(rsx), the cosine of phase with linear variable (rcw) and the correlation

between sine and cosine of the phase (rcs) as described in Equation 2.3. As

implemented in the CircStat toolbox, the function c(x, y) is defined as the

Pearsons correlation coefficient. The result of this computation is a multiple

correlation coefficient r which is limited between 0 and 1 and therefore no

information about direction can be obtained.
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rsx = c(sinα, x)

rcx = c(cosα, x)

rcs = c(sinα, cosα)

r =

√
r2

cx + r2
sx − 2rcxrsxrcs

1− r2
cs

(2.3)

In the analysis, I was interested in quantifying the variance in the behavioral

task that was explained by alpha power, alpha phase and instantaneous

amplitude. This entailed determining where (i.e., for which scalp location)

and when (i.e., relative to stimulus onset) this quantification should be

performed. To accomplish this, the most prominent difference in alpha

power between responded and non-responded trials (Figure 3.1A) was

identified (i.e., at which scalp location). To validate the results of this single-

trial analysis, a control analysis was performed, in which alpha power

was divided into four equally spaced bins, which were used to calculate

the perception ratio (i.e., percentage of responded trials) for each bin, as

suggested by others [46, 49, 50]. To prevent the influence of variations across

subjects, the results for each bin was normalized by the subject’s overall

perception ratio. For each subject and each stimulus orientation, this yielded

one normalized perception ratio value per binned alpha power level. Finally,

across all subjects and all orientations, the Spearman’s correlation between

the binned alpha power levels and the normalized perception ratio was

calculated. The p-value was calculated with a randomization test according
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to section section 2.7.

To determine when after stimulus onset the variance in the behavioral

task, that was explained by alpha power, alpha phase and instantaneous

amplitude, should be compared the time when the correlation between

instantaneous amplitude and behavioral response reached its maximum

after stimulus onset was used. In the final step, a paired Wilcoxon Signed

Rank test was used to statistically compare the amounts of variance in

the behavioral task that were explained by alpha power, alpha phase and

instantaneous amplitude at that time point. The p-value was calculated

according to 2.7.

2.7 Randomization Test

In statistical tests, the p-value signifies the probability that an obtained

correlation is due to chance, or in more a more general term signifies the

probability that under the null hypothesis a result is equal or more extreme

than the actually observed result. It is therefore important to calculate

these values correctly. For different statistical tests, an approximation of

the p-value can be performed, but only if the underlying data adheres to

certain statistical properties, which include independence and a certain

a priory distribution of the correlated values. It is not always possible to

know if these criteria are met. To avoid this problem, a randomization test,

although computational costly, was applied to determine the significance of
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the presented results. In this test the data and labels are shuffled multiple

times to create a distribution of correlation values. Since data and label are

shuffled, the obtained distribution of correlation values can be seen as the

probability that a certain correlation value is obtained by chance. With this

distribution it is possible to determine the real p-value by calculating the

probability, that the calculated correlation value was created at random.
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3.1 Verification of behavioral compliance

To verify the subjects compliance to the behavioral task, the response to

the catch trials was analyzed. The results of this verification show that the

subjects responded to almost all of the high-intensity catch trials (median:

100%) and almost none of the non-stimulus catch trials (median: 0%), which

confirms that the subjects performed the task with high accuracy. Further

analysis revealed that the detection for stimuli presented in different quad-

rants is significantly different (p� 0.01, One-Way ANOVA). To account for

this, all subsequent analysis were performed for each quadrant individually.

The analysis revealed that the lower half of the visual field was more recep-

tive to visual inputs than the upper half, and that the lower right quadrant

showed a significantly higher perception rate than lower left quadrant.
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3.2 Location identification

In the first analysis, the scalp locations which exhibit the most stimulus-

induced changes in alpha power were determined. For this purpose, the

correlation between behavioral response and the alpha power at stimulus

onset was calculated. This calculation was performed for each of the four

stimulus orientations, and the resulting correlation averaged across all

subjects (Figure 3.1A). The result of this analysis shows that the location Oz

exhibits the highest stimulus-induced changes in alpha power. This location

(Oz) was therefore used for all subsequent analyses. A control analysis

also shows that the relationship between alpha power and perception ratio

is linear and statistically significant (Figure 3.1B, Spearman’s correlation,

Bonferroni-corrected for 64 channels, ***p � 0.01, binned alpha power,

across all trials and all subjects).

3.3 Comparison

Next, I was interested in quantifying the extent to which alpha power, alpha

phase and instantaneous amplitude are informative of visual perception. For

this, the portion of the behavioral variance that can be explained by alpha

power, alpha phase and instantaneous amplitude was compared. Single trial

correlation between each of these three features and behavioral response

were calculated, individually for each orientation. For each feature, this
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Figure 3.1: Relationship between alpha power and visual stimulus perception. (A) Portion
of the variance in the perception of the visual stimulus that is explained by
alpha power. The topography shows that this effect is most dominant at location
Oz (single trials, Spearman’s correlation). (B) Across all subjects and all trials,
alpha power has a significant inhibitory effect on the perception of the visual
stimulus at location Oz (Spearman’s correlation, Bonferroni-corrected for 64

channels, ***p� 0.01, binned alpha power, across all trials and all subjects).

yields 124 correlation values (i.e., 31 subjects x 4 stimuli locations). The

results in Figure 3.2 show that the instantaneous amplitude is indeed a

significantly better neural correlate of visual perception than either power

or phase (p < 0.05, paired Wilcoxon Signed Rank test).

This is further illustrated in Figure 3.3 for single trials in a representative

subject. At the time of the arrival in the visual cortex, either alpha power

(Figure 3.3A) or alpha phase (Figure 3.3B), but not both, can explain the

detection of visual stimuli. In contrast, instantaneous voltage provides a

reconciled explanation for the detection of visual stimuli in both cases

(Figure 3.3A and Figure 3.3B).

The correlation between behavior and alpha power or alpha phase does not
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Figure 3.2: Portion of the variance in the perception of the visual stimulus that is explained
by alpha power, alpha phase and instantaneous voltage. Overall, instantaneous
amplitude is a better predictor for visual perception than either power or phase
(Error bars show SEM, *p < 0.05, ***p � 0.01, paired Wilcoxon Signed Rank
test, N = 124).

change markedly within the first 150 ms of the post-stimulus period. In

contrast, across all subjects, and when temporally aligned to the maximum,

the correlation between behavior and instantaneous amplitude peaks 62.5 ms

after stimulus onset (Figure 3.4). The temporal distribution of this alignment

reveals a standard deviation of 28.5 ms (Figure 3.4B) for the maximum

correlation across all subjects.
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Figure 3.3: Single trial examples of how instantaneous amplitude, power, and phase influ-
ence the detection of visual stimuli at the time when they arrive in primary
visual cortex (V1). (A) Difference in alpha power influences the detection of
visual stimuli. (B) Difference in alpha phase influences the detection of visual
stimuli. (A&B) While the examples in A and B can be explained by either
alpha power or alpha phase, only instantaneous amplitude can explain both
cases. Hence, only the function-through-biased-oscillations (FBO) hypothesis
can provide a reconciled explanation for the detection of visual stimuli.
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after stimulus onset, makes instantaneous voltage a more reliable predictor of
whether and when visual information is gated and consequently will result in
the corresponding behavior. (B) Distribution for time of maximum correlation
with the instantaneous amplitude shows a mean latency of 62.5 ms (standard
deviation: 28.5 ms).
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In this thesis, I investigated the role of oscillatory alpha activity in a visual

near-threshold experiment. Specifically, I quantified the variability of the

response to a visual near-threshold detection task explained by alpha power,

alpha phase and instantaneous amplitude. The results unequivocally show

that the instantaneous voltage explains variability in visual perception better

and at a higher temporal fidelity than alpha power or alpha phase.

Since the early days of EEG, researchers have reported on the role of low-

frequency oscillations in behavior, injury and disease [9, 28, 60–62]. The

earliest reports described low-frequency oscillations as both non-sinusoidal

and asymmetric in nature [9, 28]. However, since the advent of Fourier-based

methods, which are based on the assumption that oscillatory activity is

symmetrically distributed, the non-sinusoidal and asymmetric features of

low-frequency oscillations have been largely ignored. This has led to the

predominant use of power and phase in the investigation of oscillatory

brain activity. For example, power changes in low-frequency oscillations

have been associated with alertness [63], motor activity [14] and different

30



4 Discussion

mental disorders [64–66]. More specifically, changes in alpha power (i.e.,

8-14 Hz) have been associated with shifts in attention [11–13] and cortical

excitability [44, 67, 68]. Experiments have also shown that changes in alpha

power modulates decision confidence [49–51]. These experiments show, that

a decrease in alpha power increases the likelihood that a stimulus is reported

as perceived. Additionally, the usage of transcranial magnetic stimulation

[45] suggests that alpha power indeed causes changes in visual perception.

By stimulating areas of the visual cortex it was possible to modulate the

perception rate in a visual near-threshold paradigm.

Similarly, it has been shown that alpha phase correlates with the probability

of neural firing [47, 48, 69]. Alpha phase has also been shown to represent

cortical connectivity throughout the cortex [70–72]. There has also been evi-

dence for phasic influences in the alpha band causes perceptual differences

in phosphenes induced by single transcranial magnetic stimulation pulses

[73].

These investigations of alpha power and alpha phase have culminated in

two theories about how information transfer is facilitated within the static

anatomy of the brain. The first theory, Gating-by-Inhibition [GBI; 13], is

based on observations that alpha power decreases in task relevant areas

while alpha power increases in task irrelevant areas. Therefore alpha power

gates information by inhibiting irrelevant pathways. The second theory,

Communication-through-Coherence [CTC; 19, 20] is based on observations

that cortical excitability coincides with certain periods of the alpha phase.

31



4 Discussion

Evidence shows that information transfer is facilitated when the oscillations

between cortical areas are synchronized.

Interestingly, both GBI (i.e., alpha power), and CTC (i.e., alpha phase)

theories are required to explain variability in perception and behavior

[12, 26, 47, 48]. Recently, the reemerging evidence that oscillatory activity

is asymmetric and non-sinusoidal [30, 32, 33] has led to the Function-

through-Biased-Oscillations theory [FBO; 35], which reconciles the GBI and

CTC theories. In the FBO theory, the increase of the instantaneous voltage

amplitude of the biased oscillation reduces cortical excitability. Changes in

alpha power are therefore a measure of the modulation of in the peak-to-

peak voltage of the instantaneous voltage. This would allow communication

between cortical areas when it would not be probable if only the GBI

hypothesis is considered. Mathewson et al. formulated a similar conclusion

[48] during the investigation of phasic influences on visual perception which

they labeled the “α breaking system“. In their framework they suggested

that inhibition is not equal across the alpha cycle but manifests itself as

pulsed inhibition. This pulsed inhibition would only occur if alpha power is

high (i.e., alpha oscillation is present). They therefore proposed two different

mechanisms that influence perception, based on the suppression state of

alpha power. This view is consistent with the single trial results illustrated

in Figure 3.3, if the instantaneous amplitude would not be considered. In

conclusion, only the Function-through-Biased-Oscillations model is able to

explain both cases with a unified theory.

Therefore, the presented results do not only validate the FBO theory in

32



4 Discussion

EEG signals, but give a different perspective on the modulation of cortical

excitability. As previously discussed, if alpha power does indeed modulate

subject confidence, this should also hold true for the instantaneous ampli-

tude. These findings open up new possibilities for scientific, clinical and

consumer applications. This is because instantaneous amplitude can not

only explain 35% more of the behavioral variance than power or phase,

but can also predict when the cortex is most receptive to perceptual input.

Scientific applications could use this information to study the flow of in-

formation throughout the cortex, while clinical applications could use the

instantaneous voltage as a biomarker for neurological disease and injury,

and consumer applications could make use of instantaneous voltage to

determine the user’s receptiveness to information input. Another possible

application would be the usage of instantaneous amplitude as a feature for

brain computer interfaces (BCI). Additionally, applications in the estimation

of subject alertness [63] could be considered. The instantaneous amplitude

might also be able to increase the success of neurorehabilitational devices.

The non-invasive nature of EEG drastically increases the feasibility of all

of these applications. Nevertheless, the benefits of the presented findings

aren’t limited to non-invasive applications. Knowledge about the state of

cortical excitability could be used to increase the efficiency in deep-brain

stimulators that are used in the treatment of Parkinson’s Disease, Essential

Tremor or for Obsessive-Compulsive Disorder.

Another important aspect is that the FBO theory opens up a completely new

perspective on low frequency oscillations in the brain. Gerwin Schalk pre-
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dicted in his initial paper [35], that the Function-through-Biased-Oscillation

hypothesis might be able to explain, in part, phenomenons like the Bere-

itschaftspotential in the motor cortex which occurs before a movement

execution. It might also, at least partly, explain the mechanism that gen-

erates the event related potentials. In his publication he also states that

information routing in the brain is primarily dependent on the cortical

excitability of the involved nodes and that the peak-to-peak amplitude of

the instantaneous amplitude within a neuronal population is predictive of

its involvement in a certain task. Furthermore, he hypothesis that the phase

of the cortical oscillation is modulated by sensory inputs, or the expectancy

of such.

4.1 Spatial and Temporal Fidelity

The results also show that instantaneous amplitude is most predictive

of the behavioral response 62.5 ms after stimulus onset. This constitutes

the time from appearance of the visual stimulus on the screen until the

stimulus arrives at the visual cortex. This pathway starts when the light it

strikes the retina which consists of several layers of neurons interconnected

with synapses. When light strikes the photosensitive photoreceptor cells a

cascade of chemical reactions and electrical events cause an excitation of the

optical nerve [74]. The stimulus travels through the optic nerve to the optic

chiasma. In this X-shaped structure the optic nerve fibers originating from

the eyes partially cross to aid binocular vision. The stimulus then travels
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through the optic tract to the lateral geniculate nucleus (LGN), prectal

nuclei, and superior colliculus. The lateral geniculate nucleus, which is part

of the thalamus acts as the main connection between the optic nerve and

the occipital lobe, specifically the primary visual cortex (V1). The LGN, is

viewed as a gateway for sensory information entering the visual system [75].

The LGN therefore represents the first stage at which cortical processing

could influence visual inputs and seems to be implicated in attentional

response modulation caused by corticothalamic feedback [76]. After the

stimulus has left the lateral geniculate nucleus, it is forwarded through the

optic radiation which are the axons connecting the LGN with the primary

visual cortex. The stimulus then finally arrives at the primary visual cortex.

The retinotopic projections obtained in Figure 3.1 fit together with previously

reported projections of the visual field on the primary visual cortex [77, 78].

Additionally, the reported time it takes the stimulus to arrive in the primary

visual cortex is in line with studies that used MEG and single unit activity

to investigate the arrival time of stimulus-related information in the primary

visual cortex [79–85]. This result also encourages the view that perception

relies on discrete processing epochs. Numerous experiments have been

conducted, supporting a temporal quantization in perception [86–88]. This

perceptual quantization can be observed by modulation of the interstimulus

interval between two stimuli. If the stimuli are present in rapid succession

they are not perceived as individual events. This perceptual window has

been estimated to be around 20-50ms depending on stimulus conditions [89,

90], which could be attributed to the period of time where the instantaneous

amplitude is at the trough. Another experiment discovered, that multiple
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distinct visual events (8 distinct flashing lights) were reported as occurring

together if repeated in a cycle less than 125ms [91]. This quantization could

also affect reaction times, which seem to be periodic with intervals of around

100 ms and 25 ms [92, 93]. This further supports the FBO theory by showing

that variations in behavioral response could be caused by the fluctuations

in cortical excitability due to the instantaneous voltage at stimulus arrival

in the primary visual cortex. The results also indicate that this temporal

specificity cannot be obtained with power or phase based measurements

(Figure 3.4).

4.2 Stimulus Orientation

An analysis of the stimulus orientation showed a significant (p � 0.01,

One-Way ANOVA) impact onto the behavioral response. It was therefore

necessary to correlate each orientation individually with behavior. It seems

that visual perception is biased towards the lower half of the visual field,

and in addition primed for the right hand side. If left handed people would

also be biased towards the right lower quadrant. This does not completely

fall in line with other results [77], but the stimuli used in their experiment

had a fine grating, which was not the case for the stimuli used in this thesis.

It could be that the obtained results are different due to the nonspecific

orientation within the presented quadrant.
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4.3 Reaction Time

Simple reaction times (i.e., the response to a single stimulus) are comprised

of multiple factors which include a stimulus registration time, a choice

reaction time and the time to construct and execute a movement to respond

(i.e., pressing a button) [94]. The analysis of the reaction times showed no

significant correlation with either alpha power, alpha phase or the instan-

taneous amplitude, but there have been sporadic reports in the past that

reaction time is correlated with alpha phase [95]. While reaction times to

salient visual stimuli are around 330ms [96] our measurements show a

mean reaction time of about 500ms. This is consistent with other experi-

ments [97, 98] showing that the reaction time increases if stimulus intensity

decreases.

4.4 Potential Confounds

In this thesis, I controlled all confounding factors that could potentially

have affected the behavioral response or the EEG signals. One potential con-

founding factor was the subject’s ability to predict the time and location of

the stimulus. To prevent this, the pre-stimulus period and stimulus location

was randomized. Another potential confounding factor was the variability

in performance throughout the experiment. To counter this variability, a

bright masking stimulus at the beginning of each trial was used to prevent
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retinal adaptation, practice runs to familiarize the subjects with the task, and

breaks in-between blocks to prevent fatigue. The success of this approach

was supported by the subjects’ high compliance to the catch trials.

Further, stimuli were only presented after the subjects fixated gaze and did

not blink for the duration of the entire pre-stimulus period. This measure en-

sured that the subjects perceived the stimulus within foveal vision and at the

time of presentation. It also prevented the confounding effects of eye-blinks

and ocular artifacts on the EEG. This precaution, together with rejecting all

trials affected by EMG- or movement-related artifacts, ensured that only

EEG signals that relate to neural activity, caused by the perception-threshold,

task were analyzed. However, to account for the unlikely possibility that I

might have failed to reject trials affected by artifacts, the outlier-resistant

Spearman’s rank-order correlation was used whenever possible.

To avoid electrical artifacts on the EEG signal, an additional ground cable

connected the subject with the amplifier case to reduce the overall influence

of 60 Hz noise. Together with the Laplace filter, which also reduced noise

from common sources, all necessary measures were taken to ensure signal

quality. This included a strain relief for the EEG cables from the subject

to the amplifier, measurement of the elecrode impedance and it was also

ensured that the reference electrode, positioned on the earlobe, did not

move.

Another concern was that the subjects could have potentially responded

to the presence of the stimulus instead of its onset. I considered this to be
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an unlikely possibility, because the stimuli were embedded in a dimmed

white noise background, making them virtually impossible to detect if their

onset was missed. Nevertheless, I performed a control analysis to determine

whether subjects responded to the presence or to the onset of the stimulus.

For this, the distribution of reaction times to the perception-threshold stimuli

was compared to that of a salient stimulus [99]. This analysis unequivocally

rejects the possibility that subjects responded to the presence and not to the

onset of the perception-threshold stimuli.

To account for other confounding factors regarding the stimulus itself, the

stimulus intensity and background intensity was considered. It is known

[100] that the background intensity on which the stimulus is presented

influences the ability to perceive the stimulus itself. Due to the limited

granularity of the presenting screen (255 steps maximum), the background

intensity was kept low to increase the perceived difference for the subject.

Since the subjects were in a dark room, in front of a dark screen for a long

time, it is probable that their eyes would adapt to the darkness over time. To

avoid this retinal adaption, which would influence their perception, every

trial ended with a long bright masking stimulus. This masking stimulus re-

sets the visual system to provide consistent experimental conditions during

the whole length of the experiment. I also considered the use of backward

masking as done by others. In this type of experiment, the likelihood that a

presented stimulus (the target) is detected is reduced by another stimulus

(the mask) [101]. In this interesting concept, a mask which is presented

after the stimulus influences the perception of the target. This is thought

39



4 Discussion

to be achieved by the masks ability to erase visual information or interrupt

its further processing. This concept was not used because of the concern

that the measured reaction times would be due to the mask instead of the

stimulus.

Although single trial correlations between power and behavioral outcome

are small, the control analysis (Figure 2.1) confirmed that the results are

in line with previously published results [42, 46, 49, 50, 102]. The analysis

also revealed that the detection of stimuli presented in the quadrants was

significantly different. This may have been due to the retinotopic represen-

tation of the visual field, and its mapping onto different functional areas of

the visual cortex. Consequently, the electrode Oz may have been affected

differently by each visual field. To ensure that this did not influence the

results, all analyses were performed for each quadrant individually. The

results confirmed that the retinotopic representation of the visual field did

not affect the outcome of this study. Specifically, the average across all quad-

rants, as well as each quadrant itself, yielded the same conclusion, i.e., that

instantaneous voltage explains variability in visual perception better, and at

a higher temporal fidelity, than alpha power or alpha phase.

To avoid any influence due to the signal processing, I used identical filter

parameters for all features. An additional analysis was performed to check

the influence of the filter parameters on the results, but the results did not

markedly change favor a certain feature. The alpha frequency was chosen

in a way to ensure reproducibility and consistency over all subjects. I also

tried different spatial filter configurations, as well as other methods like
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current source density estimation, neither showed significant changes in

the result. Only if no filter, or a common average filter was used the results

changed, most likely due to the loss in spatial selectivity. The results were

reported with the Laplacian filter because it is a well established but simple

technique to increase spatial selectivity.

4.5 Conclusions

In conclusion, I propose the usage of instantaneous voltage as an informa-

tive neural correlate, and advocate for a different perspective on neural

oscillations. The results support the important realization that the asym-

metric and non-sinusoidal nature of oscillations are informative of brain

function [9, 28–33]. This valuable information should lead to more studies

using measures that take into account the physiological nature of oscillatory

activity (e.g., amplitude fluctuation asymmetry [AFA; 32], lagged coherence

[103], and physiologically-inspired base functions [104]). The instantaneous

amplitude provides a simple but powerful interpretation of the physiological

mechanisms that control cortical excitability and perceptual phenomenons.

These measures could also be the basis for uncovering new biomarkers of

neurological function, injury or diseases. The presented findings show that

the FBO hypothesis provides new insight about gating mechanisms in the

brain, and might prove as a valuable tool in the investigation of phenomena

that involve multiple cortical areas.
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