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Abstract

A key challenge for mobile devices is energy consumption. Despite the successes of digital inte-
grated circuitry, devices of the like contribute significantly to the exhaustion of batteries. The
flagship of a low power, high-end computer is the human brain. In this work the properties
of the key components, neurons and synapses, are exploited in order to compose a network of
biologically inspired neurons that can handle the multi-armed bandit problem as a unit. The
synapses in this designed network are altered by the means of specifically developed plasticity
rules that allow the network to interact with the bandit task and learn from reward observations.
The obtained network model is simulated on novel neuromorphic prototype hardware located
at Heidelberg University. Furthermore, the plasticity rules are characterized by a number of
free hyperparameters, each of which adjusts certain aspects. Stochastic optimization methods
are applied to find values for the hyperparameters that work well not only with a single multi-
armed bandit task but instead, work well on an entire family of such tasks. By the process
of hyperparameter optimization, experience at previous bandit tasks is transferred to new in-
stances. The results of this thesis include a spiking neural network scaffold for handling the
multi-armed bandit problem, if equipped with appropriate plasticity rules that are also pre-
sented. Furthermore, the model is developed on neuromorphic hardware and the capability of
the resulting spike-based agent to handle the multi-armed bandit problem is demonstrated. It
is shown that applying stochastic optimization methods to the hyperparameters, characterizing
aspects of plasticity rules and network properties, can significantly improve the agents ability
to solve the multi-armed bandit task. In particular, if structure on the considered task family is
introduced, the hyperparameters absorb the knowledge and equip the spiking agent with priors
about the underlying task family. Another aspect that was considered during this work is to
create a freely parametrized synaptic plasticity rule, optimized to work well with multi-armed
bandit tasks. It is demonstrated that this approach endows the spiking neural network with the
ability to outperform common algorithms on certain families of multi-armed bandit problems.





Kurzfassung

Eine wichtige Herausforderung für mobile Geräte ist der Energieverbrauch. Trotz der Erfolge
digitaler Computerchips tragen Schaltungen dieser Art wesentlich zur Erschöpfung von Bat-
terien bei. Das Paradebeispiel eines energieeffizienten, hoch performanten Computers ist das
menschliche Gehirn. In dieser Arbeit werden die Eigenschaften der Schlüsselkomponenten, dazu
zählen die Neuronen und Synapsen, ausgenützt, um ein biologisch inspiriertes Netzwerk von
Neuronen zu bilden, welches das Multi-Armed Bandit Problem behandeln kann. Die Synapsen
in diesem Netzwerk werden durch speziell entwickelte Plastizitätsregeln verändert, die es dem
Netzwerk ermöglichen mit dem Multi-Armed Bandit zu interagieren und aus Rewards zu lernen.
Das so entworfene Netzwerkmodell wird auf neuartiger neuromorpher Prototyphardware an der
Universität Heidelberg ausgeführt. Die Plastizitätsregeln sind im weiteren durch eine Vielzahl
an Hyperparametern charakterisiert. Stochastische Optimierungsmethoden werden angewen-
det, um Werte für diese Hyperparameter zu finden, die nicht nur an einem einzelnen Multi-
Armed Bandit gut funktionieren sollen, sondern gut für eine ganze Familie solcher Aufgaben.
Durch den Prozess der Hyperparameter Optimierung wird die Erfahrung von vorherigen Bandit
Aufgaben auf neue Instanzen übertragen. Die Ergebnisse dieser Arbeit beinhalten das Design
eines spikenden neuronalen Netzes, dass zur Behandlung des Multi-Armed Bandit Problems
herangezogen werden kann. Dies wird durch entsprechende Plastizitätsregeln erreicht, welche
ebenfalls als Teil dieser Arbeit vorgestellt werden. Darüber hinaus wird das Modell auf neuro-
morpher Hardware entwickelt und es wird die Fähigkeit des resultierenden spike-basierten Agen-
ten, das Multi-Armed Bandit Problem zu lösen, demonstriert. Im Weiteren wird gezeigt, dass
die Anwendung von stochastischen Optimierungsmethoden auf Hyperparameter, die die Plas-
tizitätsregeln charakterisieren und Netzwerkeigenschaften festlegen, die Performance signifikant
verbessern kann. Wenn den Multi-Armed Bandits eine gemeinsame Struktur zu Grunde liegt,
kann durch die Optimierung der Hyperparameter die Performance für Probleme selber Struktur
gesteigert werden. Eine weitere Einsicht dieser Arbeit ist die Erstellung einer frei parametrisier-
baren synaptischen Plastizitätsregel, die auf maximale Performance bei Multi-Armed Bandits
optimiert werden kann. Es wird gezeigt, dass dieser Ansatz dem spike-basierten Agenten die
Fähigkeit verleiht, herkömmliche Algorithmen bei bestimmten Strukturen von Multi-Armed
Bandit Problemen zu übertreffen.
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Spike-based Agents for Multi-armed Bandits

1
Introduction

The human brain is one of the most intriguing systems of our known world. Developed by
evolution, it endowed the species of humankind with cognitive abilities, such as to understand
problems by thought. In fact, the brain is a sophisticated learning machine. Acquisition of
knowledge happens in a continuous process at an early age and, in the ideal case, only stops at
the eventual death.

In order to gain deeper insights into the brains function, tremendous research efforts are being
made. A multitude of scientists in diverse fields, such as computational neuroscience, medicine,
neuromorphic engineering and similar join forces to unravel the mysteries of the human brain.
Novel discoveries in this matter are vital for biological purposes and medicine, for instance to
cure neurological diseases and similar. In addition to the many advantages thereof, uncovering
principles of brain computation paves the way for new computing paradigms in a world eager
for ever faster and more powerful computing machines. More importantly however, one key mo-
tivation of the study of the human brain is to reveal what aspects make it behave intelligently,
in order to build and construct intelligent agents, capable of solving complex problems. For
instance, consider autonomously driving cars. It is a must that such vehicles perceive possible
hazards along the road and act in an appropriate way, which is to be found out by the car
itself. Interest in intelligent systems also comes from the realm of robotics. Industrial robots
often require long teach-in periods, programming the trajectory of the robotic arm into the
system, before any manufacturing can happen. Interestingly, even the slightest savings in pro-
duction time can imply significant improvements in profit. Having industrial robots that learn
autonomously how to do a task in the best way and at the same time learn from experience of
tasks previously done, would have major impacts in industry. Besides medical and economical
interests, the advantages of understanding the brains function also reaches to energy consump-
tion. By a matter of fact, the human brain consumes just a fraction of what a standard home
office computer requires. Computing paradigms based on the human brain therefore, could mit-
igate, to some extent, the waste of energy caused by computers. Mobile devices probably suffer
the most under unnecessary dissipation, as energy coming from a battery is precious. All of the
mentioned use cases justifies investigating principles of brain computation for its own.

1.1 Objective and Delimitation

The intent of this thesis is to clarify the possibility and viability regarding networks of spiking
neurons to deal with the multi-armed bandit problem (described in Section 1.4). One central
point is to find and investigate appropriate update rules of synaptic weights that establish in
such neural networks a capability to handle such a task. In addition, it will be a main part of this
work to realize the designed neural circuit on prototype neuromorphic hardware (Section 1.3.2)
to demonstrate feasibility of this certain application on novel devices.

Another key aspect of this work is then given by exploring possible application of the paradigm
of learning to learn, also known under the names meta learning or transfer learning con-
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1 Introduction

cerning multi-armed bandits. Although precisely described in Chapter 2, the concept is to endow
intelligent systems with a more abstract understanding of the structure of the underlying task
family and thus, leading to a better learning performance by experience in similar tasks. In the
case of multi-armed bandits, task structure can be introduced by making reward probabilities
dependent on each other, as will be explained in Section 1.4.1.

1.2 Background

One of the most accessible approaches to intelligent systems is based on artificial neural net-
works. Well-founded with the theory of backpropagation and backed up by the advent of mighty
parallel processors (e.g.: graphics processing units - GPUs), the field of machine learning has
grown continuously by ever increasing demands from business and industry. Successes of arti-
ficial intelligence involve reinforcement learning by function approximation [Mnih et al., 2015],
asynchronous policy gradient methods [Mnih et al., 2016], image recognition tasks [He et al.,
2016], machine translation [Bahdanau et al., 2014], speech recogition and countless other tasks.
Despite its successes however, machine learning techniques have diverged from its biological
inspiration and it still remains a largely controversial debate if such artificial models work in a
similar way as the human brain does. Recent developments show that innovative approaches are
often inspired by certain aspects of the human mind [Hassabis et al., 2017], which again brings
in the necessity of understanding the brain.

Unlike artificial models, there is also work devoted to harness computational power from bi-
ological inspired neural networks, based on spiking neurons. As opposed to artificial ones, the
celebrated backpropagation rule that led to so many successes is not out of the box applicable
to networks of such spiking neurons. Although modifications thereof have been developed and
found to work in some scenarios [Lillicrap et al., 2016], it is general belief that the human brain
is not solely based on error backpropagation and includes many other mechanisms to guide
learning. In particular, biological plausible learning models emphasize on local learning rules,
operating and influencing components mainly in immediate vicinity of neurons, with some global
signals such as reward, attention or similar. Neurophysiological experiments revealed some key
components of the dynamics happening in the brain. Among other many discoveries, one has to
mention Spike-timing dependent plasticity (STDP), a dynamic model of the weight shift
occuring in neuron-to-neuron connections, synapses. The Hebbian theory already predicted
such weight shifts previously [Hebb, 1949]. STDP can be regarded as a key principle in neural
circuits and is being used to explain learning in many different scenarios.

1.3 New Computing Paradigms

Digital integrated circuits are one foundation of the modern world and are by now ubiquitious.
Chip manufacturers find themselves in a heated competition to fit increasingly complex cir-
cuitry onto the same area of silicon. The number of transistors on a chip, making up the basic
switches in this digital world, approximately doubled every two years since beginning. This ob-
served phenomenon of exponential increase in transistor count is famously known as Moore’s
law [E. Moore, 2006]. Yet this statement hold true for a long time, it is unclear how long it re-
mains valid. At a certain point, the structure sizes on the chip approach the scale of single atoms,
effectively putting a limit to miniaturization of transistors as we know it. Even more worrisome
are some problems that come along with smaller and smaller switches. For instance, reliability
or heat dissipation. One proposed solution that seemingly obviates those problems is given by
Neuromorphic Computing, see 1.3.2. Inspired by the brain, networks of connected neurons
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1.3 New Computing Paradigms

implemented in hardware, perform a highly parallel an asynchronous computation. Incarnations
of this concept typically use a symbiosis of analog and digital components, combining the best
of both worlds.

1.3.1 Networks of Spiking Neurons

Spiking neurons are the key component of computation for every intelligent, concious biological
organism. Critically for most living organisms is the ability to learn. This is particularly true
for humans. Even the memory capacity within the DNA, storage for hereditary information
encoded in genetic sequences, is not large enough to pinpoint the whole network of the spiking
neurons found in a human brain. Thus, basic abilities, for instance communication by language,
have to be aquired by the means of learning. This process of knowledge acquisition happens
continuously and is crucial for individuals to adapt to new situations.

In general, the concept of spiking neurons is characterized by their main communication method:
Spikes, which happen to be sudden events, large voltage peaks that transmit information to
connected neurons. The connections between neurons are called synapses, in which such voltage
peaks get converted to current pulses, induced by the release of neurotransmitters. Subsequent
neurons accumulate spikes, causing an increase in their local cell membrane potential. If a cer-
tain threshold thereof is surpassed, a spike (action potential) is evoked. Many mathematical
models were developed to model the complicated dynamics of the neurons membrane potentials.
One of the biologically most accurate models is the Hodgkin-Huxley model [Hodgkin and Huxley,
1952]. Despite its accurateness, often simpler models are used for the reason of being analyti-
cally more accessible. A simplyfied model would be given by the Leaky integrate-and-fire model
(LIF), which also suffices to describe the essential features of spiking neurons. Consider that
each of the neurons is equipped with a quantity vmem being the membrane potential. Then the
dynamics of vmem, in the LIF model, are governed by a differential equation, following [Gerstner,
2008]:

dvmem(t)

dt
= −vmem(t)− vleak

τ
+

I(t)

Cmem
(1.1)

with t the time, vleak the resting membrane potential, τ the membrane time constant, Cmem the
membrane capacity and I(t) summarizes all input current. If it happens that vmem crosses a
certain threshold θ from below, a spike is emitted and the membrane potential vmem is resetted to
the value of vreset. By integration, and matching the initial conditions, another form is obtained:

vmem(t) = (vreset − vleak)e−(t−t̂)/τ +

∫ ∞
0

Θ(t− t̂− s)e−s/τ I(t− s)
Cmem

ds (1.2)

t̂ denotes the time of the last spike and vreset denotes the membrane potential after a spike

was evoked. Θ(t) =

{
1 t ≥ 0

0 else
is the Heaviside function. The input current may further be

decomposed into a part that originates from synaptic input and some external input current.
To model synaptic input in terms of the LIF model, there exist many alternatives. However,
one commonly uses an exponentially decaying current after occurance of spikes, weighted by the
respective synaptic efficacy:

I(t) =
∑
j

∑
t′j

wje
−(t−t′j)/τsynΘ(t− t′j) + Iext(t) (1.3)
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1 Introduction

with j summing over all presynaptic neurons, t′j summing over all spike times of presynaptic
neuron j, wj the synaptic efficacy of presynaptic neuron j to the considered one (not indexed
here), τsyn the synaptic time constant and Iext an external current.

The equations are reminiscent of the ones describing a capacitor. In fact, in the LIF model, the
membrane is regarded as a simple capacitor which is charged by incoming (synaptic) current.
Thus, the LIF model is convenient for concrete hardware implementations, as the neuron itself
can be instantiated by a capacitor.

1.3.2 Neuromorphic Hardware

Neuromorphic engineering is the concept of implementing hardware that tries to resemble and
mimick key components of the brain in analog hardware. Originally, neuromorphic comput-
ing was coined by scientist and engineer Carver Mead [Mead, 1990]. Since then, an increasing
amount of work was devoted to embrace this novel concept, with resulting devices being referred
to as neuromorphic hardware.

The reasons to be interested in the massive endeavour of hardware implementations of neu-
rological models are numerous, and a few were already mentioned in the beginning. A survey of
neuromorphic systems, conducted by [Schuman et al., 2017], not only lists the main motivations
for developing such systems but also takes the reader on a journey through the history in this
field, models, algorithms and concrete hardware implementations. One of the most important
points that drive publications in this field, is founded by the low power consumption of neu-
romorphic devices as opposed to classical computersimulations of equivalent neuronal network
models. Also, if one attempts to simulate a large portion of spiking neurons, organised in a net-
work, one quickly gets to the verge of what is doable in an economic way. Conventional hardware
faces problems in power consumption and in speed of simulation (required time). Therefore,
to conduct experiments on a large scale, such as in the Human Brain Project [Markram et al.,
2011], neuromorphic hardware is, and continues to become an essential cornerstone [Schemmel
et al., 2010].

1.4 Multi-armed Bandit Problems

Multi-armed bandits (MABs) are a classic example in the realm of reinforcement learning, op-
erations research and computer science. A multi-armed bandit consists of several one-armed
bandits, more commonly referred to as slot machines. The casino player, which will be denoted
as the agent, acting upon those slot machines, is posed with the problem to figure out which
slot machine to play or which arm to pull in order to maximize the cash outcome, his reward.
To do so the agent has to conduct experiments by deciding on which arm to pull and observing
the reward he is given. Using those observations and an appropriate time horizon in which he
intends to play, the decisions of which action to commit to (which arm to pull) will trade off
between exploration and exploitation, the key dilemma in reinforcement learning.

To formalize the notation used throughout this thesis, some key terms are introduced. Let
the multi-armed bandit consist of N arms to pull, then the set of possible actions, which refer
to an arm pull, will be denoted by A = (ai)i∈I , with I = {1, . . . , N} representing an index set
enumerating the arms. At a designated time step n, the agent commits to take the action de-
noted by a(n) and observes a stochastic reward r(n). Therefore, the agent generates a sequence of
taken actions up to time step n: A(n) = (a(1), . . . , a(n)) with the corresponding observed rewards

R(n) = (r(1), . . . , r(n)). Furthermore, let p̃
(n)
i = 1

Ni

∑n
j=1 r

(j) · 1a(j)=ai be the sample average
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of observed rewards from arm i, Ni is the number of times the respective arm was pulled and
1a(j)=ai is the indicator function that the arm pulled at timestep j was the one with index i.

This thesis will particularly target Bernoulli bandits as the underlying problem to solve. This
type of multi-armed bandit is characterized by binary rewards, either win or loss, with a certain
probability pi(n) = P (r(n) = 1|a(n) = ai). In addition, in this thesis, this probability of reward
will be independent of the time step n such that pi(n) = pi.

1.4.1 Dependent Multi-armed Bandits

Another interesting type of bandit problem is given, when there exists an underlying structure
between the reward probabilities in the multi-armed bandit, i.e. they are dependent. For
instance, consider a two-armed bandit in which the reward probabilities sum to one. Thus, if
one bandit arm has a probability of reward of p, then the others is given by 1 − p. Such a
dependent structure was already considered in [Wang et al., 2016]. If this dependence is known
beforehand, more efficient policies for achieving maximum performance can be constructed. This
particular dependency between two bandit arms will be considered as part of learning to learn
later.

1.4.2 Policy Performance Measurements

A stochastic policy pi(a|s) specifies the probability of taking action a if all observations regard-
ing the multi-armed bandit (rewards) are summarized in s.

In order to be able to determine how good a certain multi-armed bandit policy really is, one needs
to define a performance measurement. In the case of multi-armed bandit tasks, an established
performance measurement is given by the expected cumulative regret, which gives the expected
loss in reward by taking suboptimal actions. The expected cumulative regret of a multi-armed
bandit policy π, with regard to a certain instance B of a multi-armed bandit, is defined by:

ExpCumReg(π,B) =

NP∑
n=1

Ea(n)∼π( · |r(n−1),a(n−1),...,r(1),a(1)),r(n)∼B

[
max
m

P
(
r(n) = 1

∣∣am)− P (r(n) = 1
∣∣a(n))]

(1.4)

where the actions are sampled according to the policy π, the rewards are sampled according to
the reward probabilities given in B and NP denotes the number of bandit arm pulls, the agent
has to conduct, the task length.

Thus, the lower the regret, the better the policy is. In later scenarios the negative of the
expected cumulative regret will be regarded as a fitness, desired to be maximized. The ex-
pected cumulative regret is for a certain reason a suitable performance measure. Consider for
example independent bandits. Not every single instance of such a bandit task exhibits the same
chance for expected cumulative reward, when the maximum reward probabilities are different.
Thus, in order compare the performances across a whole family of bandit tasks, the cumulative
regret is viewed to be a more appropriate choice as a performance measure than the cumulative
reward.
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1 Introduction

1.5 MAB Policies in Literature

Multi-armed bandits are an often observed problem in general and not only computer scientists
but also mathematicians dedicated a lot of effort to investigate optimal solutions. Indeed, the
simple structure of such a problem exhibits an excellent surface for theoretical considerations.
In this section common heuristic algorithms, which proved good performance on this type of
problem, are studied. In addition, the optimal strategy in terms of expected cumulative regret,
i.e. the solution for multi-armed bandit problems, Gittins indices are presented.

The fundamental challenge critical for the performance of algorithms in the reinforcement learn-
ing domain in general is efficient exploration. Only having available action choices sufficiently
explored, the acting agent can switch to exploiting the best actions. Multi-armed bandits are
well-suited to discover and determine proper strategies for trading off exploration and exploita-
tion.

1.5.1 ε-Greedy

A common choice is the ε-Greedy strategy. The key advantage responsible for its popularity is
simplicity as well as its applicability to all different sorts of problems. Yet simple, in many cases
also sufficient. The outline of an ε-Greedy strategy is as follows: With probability 1− ε take the
action that is believed to be the best, and in the other case take a random action.

The notion of believed to be the best refers to be a maximum a posteriori value of taking
a certain action. In the case of Bernoulli multi-armed bandits, the value of a specific action
would simply be its associated reward probability. If there exists no a priori information, the
maximum a posteriori reward probabilities at time step n of bandit-arm i, are given by the

sample averages of the corresponding arm: p̃
(n)
i , as defined in Section 1.4. Thus, the next action

a(n+1) is determined by:

i(n) =

{
arg maxi′ p̃

(n−1)
i′ with probability (1− ε)

randomchoice({1, ..., N}) else
(1.5)

a(n) = ai(n) (1.6)

1.5.2 Bayes Upper Confidence Bound

For completeness, and by the importance in history, a very prominent strategy named UCB1 [Auer
et al., 2002] is also presented as part of this introduction. The strategy is based on calculating
priority values of each bandit arm and play at each timestep n the one that maximizes this
priority value. In addition, it is also proven that the policy given by UCB1 obeys an upper regret

bound [Auer et al., 2002]. Recall the reward sample average until timestep n: p̃
(n)
i . Then, the

priority value according to UCB1 to play arm i at timestep n, denoted by UCB1
(n)
i , is given by:

UCB1
(n)
i = p̃

(n−1)
i +

√
2log(n)

Ni
(1.7)

– 16 –



1.5 MAB Policies in Literature

with Ni counting the number of times arm i has been pulled. In the case of Ni = 0 it is set to
one instead (Division). And therefore, the arm pulled according to the UCB1 policy is given by:

i(n) = arg maxi′ UCB1
(n)
i′ (1.8)

a(n) = ai(n) (1.9)

1.5.3 Gittins Indices

Perhaps one of the most celebrated results in theoretical computer science is the discovery of an
optimal index policy regarding multi-armed bandit problems by [Gittins and Gittins, 1979]. In
particular, index policy refers to the fact that for each bandit arm, present in the multi-armed
bandit, one can compute an index value, representing the priority to play the corresponding
arm. The resulting optimal policy, based on such indices, thus chooses to play at each timestep
the bandit arm with the highest priority (index value). In fact, it is this very property that such
a priority value can be computed for each arm seperately that enables an efficient solution in
terms of maximum expected cumulative reward:

Vπ = Eπ

[ ∞∑
n=1

γnr(n)

]
(1.10)

where r(n) is the reward obtained at timestep n, by choosing actions (arm pulls) according to
the policy π. γ ∈ [0, 1) represents a discounting factor.

Consider a single arm of the multi-armed bandit with index i. At every timestep n, a certain
amount of observations regarding arm pulls and obtained rewards are available for respective

bandit arm, which are summarized in a state variable s
(n)
i . Then, the priority to play this arm is

characterized by a function called Gittins index G(s
(n)
i ). Hence, to execute the policy proposed

by Gittins, one is required to compute such a value for every arm i ∈ I and choose the bandit
arm with the maximum index value. So, the computational demands to compute such a policy
scale linearly with N , the number of bandit arms. If instead, the priority to play a specific
arm cannot be expressed by its connected state alone, but would require also the states of other
bandit arms in the problem, computational demands would scale by N · |S|N , as such a priority
value would have a bigger domain.

To express the Gittins index G(s
(n)
i ), following [Mansour and M. Schain, 2011] (economic inter-

pretation), one considers a single bandit arm in state s
(n)
i . Suppose that at each time the bandit

arm i is played, a fixed charge λ has to be paid, basically a negative reward. Then, one can
formulate an expression for a “fair” charge λ∗ that results in zero expected cumulative reward,
if the bandit arm is pulled for a maximal number of times. Thus (taken from [Mansour and
M. Schain, 2011]):

λ∗(s
(n)
i ) = sup

{
λ

∣∣∣∣supτ>0E

[
n+τ−1∑
n′=n

γn
′−n
[
r(s

(n′)
i )− λ

] ∣∣∣∣s(n)i

]}
(1.11)

with r(s
(n′)
i ) representing the random reward of the bandit arm with the state s

(n′)
i .

Then, the Gittins index is defined by this fair charge G(s
(n)
i ) = λ∗(s

(n)
i ). Also presented is
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the more common, but equivalent, formulation:

G(s
(n)
i ) = λ∗(s

(n)
i ) = supτ>0

E
[∑n+τ−1

n′=n γn
′−nr(s(n

′))
∣∣s(n)i

]
E
[∑n+τ−1

n′=n γn′−n
∣∣s(n)i

] (1.12)

Various proofs, regarding the theorem that the Gittins index policy is optimal, were devel-
oped since the publication. The interesting reader hence may be referenced to [Frostig and
Weiss, 1999], where four different proofs are elucidated. A sketch of a proof in [Mansour and
M. Schain, 2011] 7.5 is explained in the following. Reconsider Equation 1.11, representing both
the fair charge and the Gittins index. Now assume that the paid charges for each bandit arm
are set to the fair charges and thus, no reward can be made from pulling any of the bandit
arms. However, set aside the charges that are paid, the rewards obtained (in expectation) by
pulling bandit arms are maximized if the one with highest fair charge, or Gittins index, is played.

The Gittins index policy is thus given by:

i(n) = arg maxi′ G(s
(n)
i ) (1.13)

a(n) = ai(n) (1.14)

1.5.4 Optimistic Gittins Indices

Another interesting development in the area of multi-armed bandits is given in [Gutin and Farias,
2016], where an optimistic variant of Gittins indices is developed. The key principle is that, as
opposed to ordinary Gittins Indices, as in Section 1.5.3, the optimistic variant only looks ahead
one time step. Although this policy will not be used in the later analysis on the actual objective,
it is to be pointed out that an important advantage of this approach is the speed of computation
compared to Gittins indices.

1.6 Demixed Principal Component Analysis - dPCA

As part of analyzing results obtained in later Sections, the recent method of demixed principal
component analysis, as developed in [Brendel et al., 2011], is used. Plain principal component
analysis (PCA) seeks to find orthogonal projection vectors that maximize variance captured
along those directions. However, PCA does not try to explain which additional labels or param-
eters caused the variance. Demixed principal component analysis (dPCA) on the other hand
tries to maximize the variance captured along projections, while at the same time, finding di-
rections that depend on the smallest number of parameters or labels.

In the later analysis of the results obtained in this thesis, dPCA will be used. In particular,
the interesting label or parameter will be given by a performance measurement that is demixed
from other variations in parameter space, summarized as noise.
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2
Learning to Learn

The goal of learning to learn is, in general, to enhance a learning algorithms performance to
learn. In the same way as humans will get better at driving vehicles as experience at similar tasks
is collected, the concept of learning to learn tries to improve learning algorithms as tasks of a
similar kind are encountered. Hence, one considers a probability distribution over an entire task
family T , on which learning performance is to be maximized. More specifically, one defines a
fitness function F(T,θ) that expresses how good a model, whose learning algorithm depends on
hyperparameters θ, can learn a task T . So, one can formulate the best set of hyperparameters,
performing well on an entire distribution of tasks T , by:

θ = arg maxθ′
{
ET∼pT ( · )

[
F(T,θ′)

]}
(2.1)

where pT (T ) is the probability density of task T in family T . The overall setup of this concept
is depicted in Figure 2.1. An optimizer suggests to evaluate the fitness of new hyperparameters
based on the fitness of previously evaluated hyperparameter settings.

The origins of learning to learn, also known as meta-learning, dates back to [Schmidhuber, 1987].
Later on, in [Hochreiter et al., 2001] supervised meta-learning was performed, using LSTMs on
classification and regression tasks. As the idea grew, also reinforcement learning tasks were
considered, capable of learning to navigate in mazes of a similar type efficiently [Wang et al.,
2016] and [Duan et al., 2016]. Additionally, also optimization of optimization algorithms was
considered by [Andrychowicz et al., 2016].

As this concept will also be applied as a core part of this thesis, an appropriate software frame-
work, carrying out the necessary optimization algorithms, will be used. The Learning to Learn
Framework developed locally at the Institute of Theoretical Computer Science - Graz
University of Technology matches the proposed needs. It is implemented in a modular way,
allowing for a fast integration of learning models. Also, a number of stochastic optimization
algorithms are included, the ones being used in this thesis are presented in Section 2.1. It is
implemented with Python 3 as the programming language and follows the principles as given
in Figure 2.1.
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2 Learning to Learn

Figure 2.1: Outline of learning to learn optimization. Instances of hyperparameter settings θ are evaluated
in the optimizee. Evaluation is performed with regard to some performance measure, for instance
cumulative reward, on sampled task instances. The result of which is fed back to the optimizer
that again tries to come up with new, better hyperparameters. Inner Loop: Learning of a
concrete task instance. Outer Loop: Hyperparameter optimization on the entire task family.

2.1 Optimizers

As optimization algorithms are required to carry out this kind of hyperparameter optimization,
this section will introduce the algorithms that are used in Chapter 7. Fitness values, coming
along with certain hyperparameter settings, have to be considered stochastic because both learn-
ing algorithm and/or task can introduce randomness. Therefore, an optimizer has to be chosen
that can handle the amount of noise present in fitness evaluation. Population-based, stochastic
optimization algorithms are of advantage because evaluating whole populations can average-out
such effects. The negative side of population-based techniques on the other hand is speed. The
more evaluations required, the more time will pass.

Also, each optimizer is again characterized by certain values, for instance learning rates or
similar. Those values will be denoted as hyperhyperparameters and remain to be chosen
manually. The use of unreasonable hyperhyperparameters can result in the failure of the opti-
mization procedure.

Optimization algorithms that were used throughout this thesis are presented in the remain-
der of this Section.
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2.1.1 Cross Entropy Method

The cross entropy method [Rubinstein and Kroese, 2004] uses at its core a parametric prob-
ability distribution over well performing points, in the present case these are hyperparameter
settings. In one iteration, a certain amount of samples are taken from this distribution, yield-
ing a population of points. After evaluation of the fitnesses of those points, the parameters of
respective probability distribution are modified towards well-performing points. Specifically a
maximum likelihood fit of a certain number of best performing points, the elite, is performed.
A common choice for such a probability distribution is a Gaussian, which is also used here. In
addition, noise can be introduced to avoid premature convergence. A problem which is charac-
terized by a sharp sampling distribution in a suboptimal region. Additionally, one may further
add a smooth parameter update of the underlying probability distributions parameters over the
iterations. The procedure is described in Algorithm 1

Algorithm 1 Cross entropy method

Require: p( · ;ψ): Initial population distribution, parametrized by ψ
Require: n: Population size
Require: ρ: Fraction of population considered as elite
Require: s: Parameter smoothing factor

while stopping criterion not met and maximum iterations not reached do
for i ∈ {1, 2, ..., n} do

sample θi ∼ p( · ;ψ)
Fi = F(θi)

end for
pick the bρ · nc best performing samples, giving the set M (elite)
ψ′ = arg maxψ

∑
θ∈M log(p(θ;ψ)) (maximum likelihood)

(optional) widen distribution p( · ;ψ′) to prevent early convergence
ψ ← sψ + (1− s)ψ′ (smoothing)

end while
return θ ∼ p( · ;ψ)

The cross entropy method thus requires the applyer of LTL to chose the hyperhyperparameters
of

• p( · ;ψ), the particular population distribution, which is a parametric distribution and
parametrized by ψ,

• n, the population size,

• ρ, the fraction of the population which is considered as elite at each iteration and

• s, the smoothing factor, which describes how much of the old distribution parametrization
goes into the new one.
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2.1.2 Parallel Simulated Annealing

Simulated annealing describes an optimization procedure conceptually similar to heating and
cooling a metal in such a way that the number of defects in the resulting crystal becomes less
in order to reduce energy.

As a standard stochastic optimization procedure, its main purpose here is to compare to other
methods. Essentially serving as a baseline. In simulated annealing a point in hyperparam-
eterspace is deviated and its fitness is evaluated. If the fitness outcome is better than the
previous, the deviation is kept. Otherwise, depending on a temperature and the fitness differ-
ence, the deviation may be discarded. In the context of simulated annealing, the probability
of keeping a worse performing hyperparameter vector scales as a boltzmann factor, given by
ex/T , when x is the fitness difference and T the temperature, which changed over iterations
according to a schedule. In the parallel version of simulated annealing, there are simply many
simulated annealing procedures operating concurrently and independent of each other. In Algo-
rithm 2 simulated annealing, parallelized as used throughout this thesis, is explained in terms
of pseudocode. The temperature schedule used, can be as simple as a multiplicative decay:
T (n) = T0 · cn, with c ∈ (0, 1) a decay factor, n the current iteration number and T0 the initial
temperature.

Algorithm 2 Parallel Simulated Annealing as it is used in this work

Require: θi, i ∈ {1, 2, ..., n}: Hyperparameter starting points
Require: σ: Exploration step size standard deviation
Require: n: Population size
Require: T (i), i ∈ {1, 2, ...}: Temperature schedule
Fi ← F(θi), ∀i ∈ {1, 2, ..., n}
counter← 0
while stopping criterion not met and maximum iterations not reached do

for i ∈ {1, 2, ..., n} do
εi ∼ N (0, σ · 1)
F ′i = F(θi + εi)
if F ′i ≥ Fi then (keep solution)
θi ← θi + εi
Fi ← F ′i

else (keep solution with a certain probability)
p = exp

(
(Fi − F ′i )/T (counter)

)
if Uniform(0, 1) < p then
θi ← θi + εi
Fi ← F ′i

end if
end if

end for
counter← counter + 1

end while
i = arg maxi′Fi′

return θi

The parallelized version of simulated annealing requires to chose the hyperhyperparameters pop-
ulation size n, σ, which is the standard deviation of the exploration steps and the temperature
schedule T (i).
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2.1.3 Finite Difference Gradient Method

Gradient-based methods work well in many cases, including deep learning. Since the objective
considered here is not to be assumed differentiable, such a method cannot be implemented.
However, an approximated gradient can be found by exploring the fitnesses around a basepoint.
This method is commonly known as taking the finite difference gradient. More precisely, the
strategy is collect samples with a random distance and direction from the basepoint and then
solve a overdetermined equation system in terms of least squares, yielding an approximated
gradient. A problem that occurs in practice is that the objective is noisy and thus, the gradient
is too. The detailed description of the optimizer used is to be found in Algorithm 3.

Algorithm 3 Finite Difference Gradient Ascent

Require: θ ∈ Rd: Hyperparameter starting point
Require: σ: Exploration step size standard deviation for finite difference gradient
Require: n: Number of exploration steps
Require: α: Learning rate

while stopping criterion not met and maximum iterations not reached do
for i ∈ {1, 2, ..., n} do
εi ∼ N (0, σ · 1)
Fi = F(θ + εi)

end for
F ′ = F(θ)
D = (F1 − F ′, F2 − F ′, ..., Fn − F ′)T
M = [ε1|ε2|...|εn]T ∈ Rn×d
g = arg ming′ (Mg′ −D)2

θ ← θ + αg
end while
return θ

This finite difference gradient method requires the hyperhyperparameters of

• n, the number of random exploration steps,

• σ, the standard deviation of the exploration step and

• α, the learning rate.
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2.1.4 Evolution Strategies

Evolution Strategies propose a similar approach to optimization as established, well-known evo-
lutionary methods. However, due to a more sophisticated underlying theory, evolution strategies
lead to a more profound optimization. Originally proposed by [Rechenberg and Eigen, 1971],
many forms of similar ideas were found to work well in optimization. The subclass given by
natural evolution strategies [Wierstra et al., 2008], which is being used in this thesis, already
proved to work well on reinforcement learning tasks [Salimans et al., 2017]. The outline of op-
timization given by the proposed method is sketched in Algorithm 4.

Algorithm 4 Evolution strategies, as used in this thesis.

Require: θ ∈ Rd: Hyperparameter starting point
Require: n: Population size
Require: σ: Exploration standard deviation
Require: α: Learning rate

while stopping criterion not met and maximum iterations not reached do
for i ∈ {1, 2, ..., n} do

if mirror sampling enabled and i ≥ dn2 e then
εi = −εn−i

else
εi ∼ N (0, σ · 1)

end if
Fi = F(θ + εi)

end for
if fitness shaping enabled then

k(i): Index of i-th greatest fitness

ui =
max(0,log(n2+1)−log(k(i)))∑n
j=1 max(0,log(n2+1)−log(j))

− 1
n , ∀i ∈ {1, 2, ..., n}

else
ui = Fi

end if
θ ← θ + α

σn

∑n
i=1 uiεi

end while
return θ

Evolution strategies requires that the hyperhyperparameters of

• n, the number of random exploration steps,

• σ, the standard deviation of the exploration steps and

• α, the learning rate

are chosen.
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3
Spiking Network Architecture

Particular types of spiking neurons exhibit different responses if stimulated. The behaviour
of a network of spiking neurons will in turn also depend on the particular type of neurons
by which the network is composed. The dynamic behaviour of spiking neurons are commonly
characterized by underlying mathematical models. It follows that a neuron description with a
deterministic model will lead to deterministic behaviour of the overall network itself and can be
used to design a deterministic agent for multi-armed bandits.

Addressing such a task requires the agent to decide on a profitable bandit arm when the oppor-
tunity for executing an action, which is pulling such a bandit arm, is given. To signal that an
action choice should be made to a spking neural network, a cue in form of stimulating spikes
is given as input. On the other hand, the agent is designed that its spiking neural network
communicates the decision on which arm to play by single spikes of different neurons. If one
of those neurons, which will be referred by action neurons in the further, emits a spike, the
corresponding bandit arm will be pulled.

Although it is now specified how the spiking neural network interfaces the multi-armed ban-
dit, it is still open to resolve how the input cue is transformed to the particular action output.
The specification of this transform is a design choice that is mostly concerned with network
topology. The essential idea is to enhance signals coming from the stimulating cue towards the
action neurons that represent rewarding bandit arms. And on the other hand, attenuate cue
signals projecting to action neurons representing unprofitable bandit arms. Assuming identical
properties among the action neuron population, it then follows that the action neuron, repre-
senting the most profitable arm, will emit a spike first. Furthermore, if a spike was elicited by
an action neuron, it shall prevent all other action neurons from spiking. This mutual exclusion
of actions requires to add inhibitory neurons to the circuit.

3.1 Network Design

To enable such attenuation or enhancement of signals the weights of synapses connecting the
source of the cue, which will be denoted as stimulating cue neuron, and an action neuron are used.

The agent also has to adapt its action choices according to observed rewards from pulling arms of
the multi-armed bandit. Since the next action is effectively determined by the synaptic weights
in the network, it is required that those undergo some dynamic changes: Synaptic plasticity is
therefore a necessary component to endow a network of spiking neurons with the ability to solve
multi-armed bandit problems in this design. In particular, Section 3.2 is dedicated to introduce
specific update rules of the synaptic weights that ultimately lead to a certain algorithm for
multi-armed bandits.

Consider Figure 3.1. The ideas are summarized to the following conceptual network circuit:
Each possible action ai ∈ A will be represented by a certain action neuron, denoted by C(i). If a

– 25 –
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Figure 3.1: The perceived network motif consists of a stimulating cue neuron H that projects to the action
neurons C(i) with weights wi. To achieve competition between action choices, an inhibition
among the action neurons is introduced with the population J .

spike is emitted from such a neuron, the corresponding action will be triggered. For stimulation,
those neurons receive synaptic input by the means of a stimulating neuron H, representing the
cue that triggers action selection. As described, stimulating cue spikes are connected to action
neurons by synapses. In particular, the weight of the synapse that connects H to C(i) will be
denoted by wi. By the previous assumption that each action neuron has identical behaviour, the
projection with having the greatest weight will cause the postsynaptic neuron to elicit a spike
first.

In order to have a single action neuron emitting a spike, an inhibitory population J is in-
troduced to enable a competition among the actions. If synaptic delay is nonzero, multiple
action neurons can still emit a spike if they spike shortly after each other until inhibition takes
place. In such a case, a random action from the respective set of spiking action neurons is taken.
The resulting delay, until inhibition can become effective among action neurons, will be denoted
by τS . An exemplary process of action selection from the viewpoint of spikes in the network is
shown in Figure 3.2.
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Figure 3.2: Network activity in terms of spikes during two action selection processes A and B. Both action
selections are triggered by spikes from the cue neuron H.
A: Cue neuron H elicits action neuron C(1) to emit a spike at time t1. Likewise, C(2) fires a
spike later at t2. The inhibition (J ) that follows the spike of C(1) did not affect C(2) because it
gets effective only after some delay τS. Spikes of other neurons are thus possible before t1 + τS
(t2 < t1 + τS).
B: A modified weight situation causes a different scenario. Action neuron C(1) emits a spike at
time t3. By continous stimulation C(2) would spike at tx. This is prevented by inhibition (J )
caused by the spike of C(1) (tx > t3 + τS).

3.2 Update Rules

So far, the designed network supports action selection based on weights associated to each ban-
dit arm. This section discusses necessary schedules to modify the weights within the network
according to observations of the environment. Mechanisms of such a kind will simply be referred
to as update rules.

Since the weights within the network of spiking neurons will eventually be responsible which
arm of the bandit will be pulled, the weights need to change based on observed rewards, in order
to reinforce viable actions. The extent and the particular schedule of weight changes, i.e. the
update rule, will ultimately be accountable for the performance on such a bandit task. Thus, in
order for the conceived spiking-agent to handle multi-armed bandits well, sophisticated update
rules need to be considered. However, the computations performed per synapse will be expensive
in later considerations, so that we restrict the weight update rules to be computational simple
ones, for the sake of concrete implementations (Chapter 5).

Possible update rules, suitable for Bernoulli bandits, will be explored throughout the remainder
of this section. In principle, arbitray known multi-armed bandit algorithms can be modeled by
a suitable weight update rule.

To aid subsequent implementations of such update rules and to be able to compare the dif-
ferent dynamics, it was decided to consider normalized weights in the interval [0, 1]. This
is justified by the assumption that only relative differences in the weights are relevant for the
first action spike, leading to a specific action choice. In a concrete implementation scenario, one
would map a weight value of 1 to a suitable, realizable high weight and 0 respectively to an
appropriate low weight.

3.2.1 Greedy Update

As the counterpart to the ε-Greedy algorithm presented in Section 1.5.1, a Greedy update rule
for the synaptic weights in the neural network is introduced.

The underlying idea is to take the action that is, by the observations available until the con-
sidered time step, believed to be the most rewarding one. In terms of Bayesian probability, the
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best believed action is the one having the maximum a posteriori reward probability among all
actions. Since the focus in this case are independent multi-armed bandits with fixed reward
probabilities, single rewards for each arm are Bernoulli distributed. In order to make use of
Bayesian inference, while keeping the computational demands small, it is of great advantage to
use the conjugate prior to the Bernoulli distribution, being the Beta distribution. Equipped
with these statistical tools, updating the a posteriori reward probability, as new reward obser-
vations are being made, reduces to a simple parameter update. In fact, the Beta distribution is
fully characterized by 2 parameters, denoted by α(n) and β(n) at a considered timestep n. By
counting the number of rewards and plays of each arm i, the parameter update is obtained by:

α
(n+1)
i = α

(n)
i +

{
1 r(n) = 1 ∧ a(n) = ai

0 else
(3.1)

β
(n+1)
i = β

(n)
i +

{
1 r(n) = 0 ∧ a(n) = ai

0 else
(3.2)

w
(n+1)
i =

α
(n+1)
i

α
(n+1)
i + β

(n+1)
i

(3.3)

Thus, the weights, corresponding to arm i, are set the mean reward that was observed by playing
bandit arm i until the current time step. The initialisations of α and β are hyperparameters,
reflecting prior knowledge of the underlying bandit tasks, which can be optimized by the means
of learning to learn 2. If nothing is known about the reward probabilities of the bandit arms,

the initialization to unform reward probability distribution is given by α
(0)
i = 1 and β

(0)
i = 1.

Altough this update rule appears to be completely greedy, it is not if one considers a nonzero
synaptic delay in the inhibition of the spiking neural network.

3.2.2 Incremental Update

Instead of having additional memory to keep track of every bandit arms reward statistics, a
different approach is to use the current weight value at time step n as a proxy and to modify
this value appropriately.

The presented update rule is, in fact, an exponential filter of the obtained rewards of the con-
sidered bandit arm:

w
(n+1)
i =

(1− ε(n)i ) · w(n)
i + ε

(n)
i r(n) a(n) = ai

w
(n)
i else

(3.4)

ε
(n+1)
i = ε

(n)
i ·

{
d a(n) = ai

1 else
(3.5)

with ε representing a learning rate that may decay by a factor of d ≤ 1 per synapse, to allow
larger updates in the beginning of a bandit task.

3.2.3 Artificial Neural Network Update

In order to be fully flexible at specifying an update rule, one can make use of a general function
approximator such as a multilayer perceptron. The specific input to output mapping of this
approximator is specified by a number of free parameters, which are to be chosen or optimized
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in such a way that a good update rule is obtained. Since the multilayer perceptron is a type
of an artificial neural network (ANN), this update rule will be referred to as ANN update
rule. The design of such a multilayer perceptron is outlined in Figure 3.3. There exists an input

Figure 3.3: Multilayer perceptron as used as an update rule. The single hidden layer has an activation
function given by the sigmoid σ(x) = 1

1+e−x . All lines between the artificial neurons, drawn as
circles, represent weights that are free parameters and thus, subject to an optimization procedure.

layer, a single hidden layer that is equipped with the sigmoid σ(x) = 1
1+e−x as an activation

function and finally an output layer. The single neuron of the ANN output layer is used to
modify the weights, H → C(i), of the spiking neural network in an additive manner and each
weight is updated by the ANN in every timestep. Specifically, the parametrization of the ANN
is the same throughout all connections, i.e. the update function is independent of the particular

connection. Hence, the inputs to the ANN, denoted by E
(n)
i for the connection H → C(i), are

composed of quantities that are necessary or helpful for determining the viability of a bandit
arm. So, the update rule for the weight associated to bandit arm i at timestep n can be specified
by:

w
(n+1)
i = w

(n)
i + fANN(E

(n)
i ;θ) (3.6)

if the output of the ANN is denoted by fANN and the parametrization of the ANN is given by
the vector θ.

As inputs E
(n)
i to the ANN, a set of variables is chosen that would in the further sense also be

required by algorithms in Section 1.5. Thus, the following set of quantities is assumed to be
vital for a well-performing update rule:

• Current timestep: n

• Reward at timestep n: r(n)

• Flag (1 or 0) if assoctiated bandit arm was pulled: 1ai=a(n)

• Current weight of the connection H → C(i): w(n)
i

• Dependent bandits: - Current weight of the other connection: w
(n)
3−i

A visual depiction of this setup is given in Figure 3.4. An additional observations is that the given

setup implements a simple artificial recurrent architecture, with the weight w
(n)
i representing

the recurrent cell.
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3 Spiking Network Architecture

Figure 3.4: Proposed setup of using a parametrized artificial neural network to encode an update rule. At
each timestep the ANN outputs additive changes for a weight in the spiking neural network. The
setup is reminiscent of a recurrent artificial neural network architecture

Optimization/Simulation

To determine the viability of this approach, a software simulation is conducted. As the weights
and biases of the ANN are free parameters, an optimization procedure is required to find an
appropriate setting. The objective chosen to be minimized, in order to obtain the correct
parametrization θ, is the cumulative regret at the end of a particular bandit task instance.
The length of the bandit task, i.e. the number of arm pulls, was decided to be NP = 100.
In addition the size of the multi-armed bandit was set to two bandit arms. One can view the
resulting multi-armed bandit policy, based on this artificial neural network weight update, to be
parametrized by this parameter vector θ: πANN(ai|r(n−1), a(n−1), ..., r(1), a(1);θ). Hence, to find
the best parameter vector, one can formulate an optimization with regard to a whole family of
bandit tasks B, being dependent or independent multi-armed bandits:

θ = arg minθ′EB∼B
[
ExpCumReg(πANN( · |θ′), B)

]
(3.7)

To solve the optimization problem, the learning to learn framework was utilized. An optimization
with cross entropy revealed that the ANN is capable of performing comparable to existing
algorithms, as in Section 1.5 in the case of dependent bandits. It is therefore the case that
the update rule can transfer knowledge about the concrete bandit task family and thus, learning
to learn is achieved. The performance over iterations during this run is depicted in Figure 3.5
for independent bandits and in Figure 3.6 for dependent bandits as described in Section 1.4.
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Figure 3.5: Test optimization with cross entropy and independent bandits. The curve indicates the negative
cumulative regret (fitness objective) obtained after 100 pulls depending on the number of evaluated
individual hyperparameter settings, averaged over the population in the optimization algorithm.
Horizontal lines represent baselines of well-known multi-armed bandit algorithms.

Figure 3.6: Test optimization with cross entropy and dependent bandits. The curve indicates the negative
cumulative regret (fitness objective) obtained after 100 pulls depending on the number of evaluated
individual hyperparameter settings, averaged over the population in the optimization algorithm.
Horizontal lines represent baselines of well-known multi-armed bandit algorithms.
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4
Digital Learning System - HICANN-DLS

The abbreviation HICANN-DLS stands for High Input Count Analog Neural Network
with Digital Learning System and is an incarnation of neuromorphic hardware 1.3.2. It is
being developed as part of the Human Brain Project [Markram et al., 2011] at Heidelberg
University and introduced in [Friedmann et al., 2017]. Currently, the second prototype version
of the chip is available. In the remainder of this chapter an overview of the prototype chip in
its second version, its capabilities and limitations, characteristics as well as the infrastructure
implemented around the chip will be given. Furthermore, for the sake of verbosity, the second
prototype version of the HICANN-DLS chip will simply be referred to as DLSv2.

4.1 Overview

The DLSv2 implements a spiking neurons in analog hardware, as well as hardware synapses
that enable synaptic connections between them. Specifically, 32 neurons are arranged in an line
with a synapse array above. The layout is depicted in Figure 4.1. A particular feature of this
novel design is that there exists a seperate digital processor on the chip, whose computational
capabilities are devoted to compute and execute plasticity rules for the neural network. The
characteristics of this digital coprocessor are described in Section 4.5.

The focus parts of such a neuromorphic chip are the neurons and synapses. Those compo-
nents are implemented in analog circuits and enable the simulation of a spiking neural network.
The neuron model is presented in Section 4.2, whereas the synapse model and the workings of
the whole synapse array are described in Section 4.3. A notable characteristic of the DLSv2 is
that the hardware elements enable dynamics of the membrane voltage and spike times that are
1000 fold faster than their biological counterparts.

To simulate a rich set of neural responses, the behaviour of the single neurons may be altered
by an analog parameter storage. In addition, due to the fact that analog components exhibit
device mismatch even on the same wafer, this parametrization of the single neurons behaviour
enables also the possibility of calibration. The analog parameter storage is described together
with the topic of calibration in Section 4.4.

– 32 –



4.2 Hardware Neurons

Figure 4.1: The layout of the chip, taken from [Aamir et al., 2016]. All major components to this thesis
are observable. The synapse array is described in Section 4.3, the neurons in Section 4.2, the
analog parameter storage in Section 4.4 and especially important to this thesis is the plasticity
processing unit (PPU), described in Section 4.5.

4.2 Hardware Neurons

The neuron model that is implemented in the DLSv2 is Leaky integrate-and-fire (LIF), as de-
scribed in Section 1.3.1. In terms of the hardware, it is practical to write the differential equation
with the leak conductance gleak = Cmem

τ , identical to [Aamir et al., 2016]:

Cmem
dvmem(t)

dt
= −gleak(vmem(t)− vleak) + I(t) (4.1)

In addition, the DLSv2 implements a common extension to the standard LIF model, which is
the introduction of a refractory period of length τref, during which the membrane voltage is
clamped to the reset potential vreset:

∀t ∈ [t̂, t̂+ τref] : vmem(t) = vreset (4.2)

when t̂ denotes the time of last spike of the considered neuron.

The circuit as it is implemented in hardware consists of several components and an overview is
depicted in Figure 4.2. The membrane potential is modelled by a capacitor Cmem that in turn
receives synaptic input current stemming from the synapses in the synapse array (Section 4.3.1).
The capacitor also leaks charge by a connected leakage circuit. If the voltage of capacitor rises
above a value of vthresh, then the “SpikeGen” circuit triggers a spike that is digitally transmitted
to the infrastructure around and can also be fed back into the synapse array. At the same time,
the membrane capacitor is clamped to the reset voltage vreset for a duration τref, representing
the refractory period.
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Figure 4.2: Neuron circuit overview, taken from [Aamir et al., 2016]. The main components are the capac-
itor Cmem that models the membrane voltage, the leakage circuit responsible for the continuous
discharge of the capacitor, the “SpikeGen” circuit that will trigger a spike if the voltage in the
capacitor rises above the threshold voltage vthresh. Simultaneously to emitting a spike the voltage
of the capacitor is clamped to the reset voltage vreset for the duration of the refractory period τref.
Input current is received by the circuits in the synapse array, as described in Section 4.3.1.

4.3 Hardware Synapses

The synapse model chosen for the DLSv2 is of a current-based kind. Each synapse transforms
spikes from neuron j according to the following equation, taken from [Stöckel, 2017], into current
Iij that is in turn input to the postsynaptic neuron i:

τsyn
dIij(t)

dt
= −Iij(t) +

∑
t̂j

wij · δ(t− t̂j) (4.3)

with τsyn the synaptic time constant, t̂j sums over all spikes of neuron j and wij representing
the weight of the projection j → i. Thus, the entire synaptic input to neuron i is given by:

Ii(t) =
∑
j

Iij(t) (4.4)

4.3.1 Synapse Array

All synapses are arranged in a 32 × 32 array, so that a full connection matrix between all the
neurons, self-connections included, is possible. Each column in the matrix is connected to a
single neuron. Hence, input can arrive at a neuron only via 32 different synapses. Each row is
driven by a synapse driver that can be configured to be either excitatory or inhibitory.

A particular feature of the spikes in hardware is that each spike is equipped with an address.
This address can be regarded as an additional piece of information required when such a spike
enters the synapse array. Each synapse in the array is not only characterized by a weight, as
required by Equation 4.3, but also an address can be set for each synapse. Only if the address
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of an incoming spike matches the address of the considered synapse, the synapse will trans-
form the spike into current input for the connected neuron. Otherwise, if the address of the
incoming spike and the address set in the synapse do not agree, the spike will not cause any input.

Spikes are always injected by activating a certain synapse driver (row in the matrix picture).
Then, all synapses in this row compare their address with the address of the incoming spike.
Subsequently, all synapses that match the address of the spike convert the spike to current input
for the connected neuron. To illustrate the process further, Figure 4.3 visualizes the circum-
stances in terms of synapse drivers and connected neurons.

Figure 4.3: Visualization of spikes that are introduced to the synapse array. A spike is sent to the synapse
array by activating a certain synapse driver that can be configured either excitatory (exc) or
inhibitory (inh). Each spike is equipped with a certain address that is compared to the addresses
ai,j stored in each synapse of the row corresponding to the activated synapse driver. If the
address matches, the synapse scales the spike by the stored weight wi,j, if the addresses do not
match, the respective synapse disregards the spike.
For instance a spike with address aα is introduced at synapse driver 0. Neuron 0 will receive
synaptic input, scaled by w0,0, if aα = a0,0. Likewise, neuron 31 will receive synaptic input,
scaled by w31,0, if aα = a31,0.

Important: The weights stored in the synapses, as well as the addresses are 6-bit discrete
values. It must be beared in mind that there exists a quite limited number of weight settings
(64 different values), when it comes to practical implementations.

4.4 Analog Parameters - Calibration

Neuron models in general are characterized by a number of parameters. For example membrane
time constant, threshold potential and leak potential to name a few. The hardware neurons
on the chip are itself parametrized by values stored in the analog memory (Figure 4.1), giving
the associated neuron desired behaviours. However, the neurons are implemented by analog cir-
cuitry, whose components always have diverse properties, even on a single chip. Therefore, the
same set of analog values will result in a different behaviours among the hardware neurons. To
counteract the negative effects caused by this diversity, each neuron can be configured with its
own set of analog values. In particular, there are 18 individual parameters for each neuron
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and in addition, there is 1 global parameter specifying the reset voltage vreset, see [Aamir
et al., 2016]. Each analog value is transferred to the DLSv2 as 10-bit values (the highest of
which, 1023, is reserved) and then, on chip digital-to-analog converted and loaded into the ana-
log memory storage. A special circuit takes care of refreshing the values in this memory.

Finding the correct values for the desired dynamical properties is a non-trivial task and re-
ferred to as calibration. Thorough characterizations of these analog values, as well as methods
to calibrate them, are to be found in [Stradmann, 2016] and [Wunderlich, 2016]. Indeed, the
work of Stradmann is actively used in this thesis to achieve a proper and similar behaviour
among all neurons. The analysis of the effects of calibration are found in Section 5.1.2, as the
requirements are specific to the hardware experiments in this thesis.

4.5 Plasticity Processing Unit - PPU

A novel addition to the predecessors of the DLS is the Plasticity Processing Unit (PPU).
This general purpose digital coprocessor is assigned with the task of computing updates to the
weights of each synapse in the neural network. In the DLSv2 the PPU operates at 100 MHz. To
obtain detailed information to the PPU one is referenced to [Friedmann, 2013] while the main
features that were necessary to this thesis are presented in the remainder of this Section.

The PPU is equipped with 16 kB main memory of which 4 kB are considered as shared memory
between the PPU and external host computers that control the DLS. In particular, this shared
memory is given the name mailbox and its use is further described in Section 4.6. By its very
purpose, the PPU is connected to the so-called synapse ram, which encompasses all weights
and addresses that define the synapse array. Furthermore, the PPU is also equipped with an
additional vector processing unit that can carry out multiple calculations (SIMD) at once, so as
to compute many synaptic updates at the same time.

To create programs for the PPU a C-compiler and other necessary binary tools are provided.

4.6 Infrastructure

To operate the DLSv2 prototype an infrastructure around the silicon chip is required, an overview
of the involved components is given in Figure 4.5. The chip is mounted on a test board, pictured
in Figure 4.4, which itself is equipped with a FPGA, operating at 96 MHz, that serves several
purposes, including

• enabling an USB communication link between the DLS and a host computer,

• controlling and playing back predefined external events for experiments, for instance the
injection of spikes at certain times, or start and stop of the PPU,

• spike-routing, which will also be explained in this Section.

To execute experiments, there exists a Python 2 API that implements the interfacing to the
DLSv2. Via this API, one can, for example, set the weights and addresses in the synapse array,
trigger spike injection at certain times, load a program onto the PPU, start and stop the PPU,
write to or read from the mailbox and similar.

An important task of the FPGA is given by spike routing. Previously, it was mentioned that
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Figure 4.4: The test system, image taken from [Aamir et al., 2016]. It consists of the DLSv2 chip mounted on
the Setup PCB, providing the necessary infrastructure for the chip. A FPGA is also connected to
this board that handles the communication to a host computer (PC) over an USB communication
link.

Figure 4.5: The DLSv2 is controlled through several layers. As the typical experimentator can be located
anywhere, a SSH link over the internet is used to connect to a host computer. This machine
executes a Python 2 script that interfaces via USB with the FPGA mounted on the test board.
The FPGA in turn is not only responsible for communication but also controls the time flow
of a certain experiment. Also, the FPGA receives the spikes emitted by hardware neurons and
re-introduces them to the associated synapse driver in the synapse array.

via the FPGA one can introduce spikes at certain times to the synapse array. Such spikes are
declared as input spikes. However, the FPGA is also required when a hardware neuron emits
a spike and this spike is supposed to be re-injected to the synapse array, which is required if
one wants to build a network of spiking neurons. In the context of the hardware, such spikes
that are emitted by a neuron on the chip and re-introduced to the synapse array, are called
recurrent spikes, despite the actual meaning of recurrent spikes in biology.

There exist several modes for the FPGA to handle recurrent spikes. In the simplest version,
which is used in this work, if neuron i emits a spike it will activate only the i-th synapse driver
and thus only synapses in this row are able to handle spikes of this neuron. Combined with the
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fact that each synapse driver is either excitatory or inhibitory, this leads to the fact that each
neuron can have either excitatory or inhibitory effects on other neurons. Operating the FPGA
in this mode, it is important for the practical use of the DLSv2 that all recurrent spikes (emitted
from hardware neurons and sent to hardware neurons) share the same address. This must
be considered when configuring the synapse array.

It is also possible to let the PPU program send spikes to the synapse array, which are de-
noted as PPU spikes throughout the remainder of this thesis. Such spikes elicited by the PPU
and input spikes can be specified to have any addresses.

4.7 Limitations and Constraints

Compared to a computer simulation, when designing experiments on the HICANN-DLSv2 chip
hardware constraints and problems need to be considered. This Section is intended to highlight
and recall important constraints and characteristics

• The number of hardware neurons on the DLSv2 is 32.

• The synapse array supports 32 synapses for each neuron but each synapse driver (row in
the matrix view) can be configured to be either excitatory or inhibitory

• Recurrent spikes have the same address

• Spike packets can only be introduced to the DLSv2 in distances of 48 FPGA cycles, as
discussed with David Stöckel (FPGA clock: 96 MHz)
If spike packets arrive faster, they get queued and congestion happens. Effectively, this
results in a lower bound of synaptic delay

• The host computer API is Python 2, Python 3 is not supported

• The PPU only supports a fixed point number representation, floating point operations are
unavailable

• It is unadvisable to abort an experiment during execution, as it may leave the test system
in an unusable state, thus rendering a power cycle of the FPGA necessary

• Device mismatch of neurons and synapses must be considered when designing neural cir-
cuits
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5
Implementation

A central point of this thesis is also to implement the designed neural circuit, given in Chap-
ter 3.1, in concrete hardware. More specifically, by hardware is meant the novel prototype
neuromorphic chip HICANN-DLSv2, being developed in Heidelberg, see Chapter 4.

5.1 Hardware Implementation

In order to port the conceived network structure of 3.1 to the hardware system, one needs to
bear in mind all constraints, limitations and special properties that come along with such a
system. For example, the restriction to 32 neurons limits the size of multi-armed bandits that
can be considered. A more important limitation of the current prototype system are the time
distances in which the synapse array can process incoming spikes, either external or reccurent
spikes. In fact, the hard limitation currently present is that each 0.5 ms in biological time a
spike packet, which can target more than one neuron, can be processed by the synapse array
(see Section 4.6). Within this thesis, the setup is chosen in such a way that recurrent spikes
take 1 ms in biological time to serve as input again. Thus, the synapse delay can be specified by
1 ms.

In contrast to software simulations in general, for example carried out by the NEST simula-
tor [Peyser et al., 2017], the analog neurons implemented on chip behave nonhomogeneous and
are subject to noise. Thus, in order for approaches that rely on the absolute comparability of
synapse weights to work, methods to calibrate the single neurons are necessary. Empirically it
was found that the nonhomogeneous behaviour is much more problematic than the noise present
in the system.

5.1.1 Network Mapping

Recalling the proposed architecture of Chapter 3.1, the network model itself is deterministic
and thus, agrees with the hardware neuron model, which is leaky integrate-and-fire (LIF). The
infrastructure of the network of spiking neurons will itself be composed of a stimulating cue
neuron and several action neurons, whose spikes ultimately trigger bandit arm pulls. Part of the
designed structure was also an inhibitory population that introduces competition between action
neurons. However, in order to have as little delay between action spike and mutual inhibition
as possible, action neurons are set themselves to be inhibitory to other neurons. So, one action
neuron has inhibitory connections to every other action neuron and hence, there is no need for
an extra inhibitory population. To visualize the configuration on the neuromorphic chip, the
circuit is shown in Figure 5.1. It demonstrates how the neurons and synapses from the model,
given in 3.1, are mapped to the hardware.

For action selection the stimulation neuron is excited by an external spike, being sent by the
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PPU. This input is set to be so strong that the stimulating neuron itself spikes subsequently.
To have an ongoing stimulation, the stimulating neuron is recurrently connected to itself by a
strong connection. Therefore, permanent spiking of this stimulating neuron is generated, with a
rate determined by the refractory period and the delay of recurrent spikes. Since the stimulating
cue neuron projects to the action neurons, the ongoing stimulation will eventually trigger a spike
of one action neuron. If an action neuron elicits a spike, inhibitory synaptic connections to the
stimulating cue neuron stop the stimulation. However, since a spike of an action neuron can
not be guaranteed if the weights are too small, there is a mechanism implemented in the PPU
that sets the recurrent self-connection of the cue neuron to zero after a certain time. Given this
scenario that no action neuron spiked in a given time, a random action is chosen.

C(0)
0

C(1)
1

C(2)
2

C(3)
3

H
31

stimulation inhibitionmutual action inhibition

external spikew0 w1 w2 w3

. . .

. . .
...

... excitatory

... inhibitory

Figure 5.1: Shown in the bottom are 32 hardware neurons on the chip. Each action is mapped to a hardware
neuron beginning from index zero. The last neuron is set to be the stimulating cue neuron.
The recurrent connection from the cue neuron causes a permanent spiking of itself while also
stimulating the action neurons. The stimulation is triggered by external spikes and inhibited if
an action was selected. Filled black circles represent excitatory connections as opposed to the
white circles that resemble inhibitory connections.

5.1.2 Used Hardware Calibration

The network design as it is, requires that stimulation of action neurons with similar weights from
the stimulating cue neuron result in similar spike timings of those action neurons. It is therefore
crucial for the ability of handling multi-armed bandit tasks that the considered neurons have
identical behaviour with respect to the first spike time after stimulation. Two main constraints
can therefore be formulated:

1. Stimulation through similar synaptic weights need to result in similar spike times among
action neurons
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2. Stimulation under different weights need to result in a difference in spike times that can
be detected by the means of the PPU

In order to conduct experiments, the chip has to be provided with a file containing the values
for the analog neuron parameters, representing a calibration. By default, the analog values
are set to values that result in a reasonable, but diverse, spiking behaviour among all the neu-
rons. However, this default configuration is not sufficient for the purposes of action selection
by the spike times because both of the above mentioned constraints are violated when stim-
ulating the neurons under a realistic setting. Stimulation takes place by a spike train with
about 3 ms interspike distance (fastest possible recurrent spiking), biological time. To enhance
the time difference between spike times of different weights, in order to improve the number of
distinguishable weights, a certain property of the synapse array was used. Every spike input is
transformed to a voltage pulse which gets converted to a postsynaptic current in a synapse. The
length of this voltage pulse is configurable by the so-called spike pulse length and can be set to
a lower value than the default one. This in turn results in less synaptic input and thus, because
more stimulation is required, more weights can be distinguished. By stimulation with the default
configuration, the times of first spikes are depicted in Figure 5.2 A, as opposed to the desired
homogenious behaviour given in Figure 5.2 B. Two spikes are distinguishable by the PPU if
they have a time difference of approximately 5 ms biological time or 5 µs chip time, which is
clearly not met. More devastating even with this default configuration, a low weight to a partic-
ular action neuron achieves an earlier spike time than a high weight to some other action neuron.

A calibration or optimization of the analog values is therefore required. For this purpose an
optimization objective was constructed, a fitness function, optimized by an appropriate algo-
rithm. Summing up the requirements, homogenetiy across the neurons in terms of spike times
is the most important. Thus, experiments are constructed in the following way: All neurons
are stimulated by identical spike trains and identical weights, resulting spikes of the neurons are
recorded and mapped to a fitness value for maximization. A variety of fitness functions was tried
in order to come up with a good configuration file, fulfilling the required constraints. Several
optimization algorithms, being evolution strategies, crossentropy, gradient descent and variants
were tested. An example result of such a optimization with evolution strategies is depicted in
Figure 5.3. Unfortunately, the optimization of those parameters seems to be difficult and finding
a fitness function that describes best the required homogenity is nontrivial, with only having
access to spike times after stimulation. Since the calibration of the neurons is not the main task
but merely serves as a starting point, the optimization trials, which approximately lasted for
approximately 1-2 hours each, were decided to be stopped, in order to dedicate more time to
other topics.

Luckily, the bachelor thesis of Yannik Stradmann [Stradmann, 2016] was themed by exactly
such a calibration task. Unlike an optimization that solely considers spike times, he used phys-
ical models of the underlying implementation and voltage measurements, to achieve the goal of
a homogenious calibration. Unfortunately, by the time being, only a few chips with such an
existing calibration is online. Figure 5.4 displays the time of the first spikes of all neurons using
the calibration carried out by Stradmann, which proves to be the most promising among the
others.
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Figure 5.2: Stimulation of all neurons by a spike train with interspike distance of 3ms biological time and
mimimal spike pulse length. Each figure consists of several different color codings representing
a digital weight value. The x-axis refers to the different neurons on the chip while the y-axis
represents the time of the first spike after stimulation is applied. Time is given in microseconds
of chip time, equivalently to milliseconds biological. The shaded are represents the standard
deviation in a batch of size 10. A: Default analog parameter configuration B: Desired homogenity
across different neurons

Figure 5.3: Spike timings of different weight settings using the calibration obtained by optimization of single
spike times by the means of cross entropy. Stimulation of all neurons by a spike train with in-
terspike distance of 1 ms biological time and minimal spike pulse length. Each figure consists of
several different color codings representing a digital weight value. The x-axis refers to the differ-
ent neurons on the chip while the y-axis represents the time of the first spike after stimulation is
applied. Time is given in microseconds of chip time, equivalently to milliseconds biological. The
shaded are represents the standard deviation in a batch of size 10. A: Default analog parameter
configuration B: Desired homogenity across different neurons
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Figure 5.4: Spike timings of different weight settings using the calibration carried out by Yannik Strad-
mann [Stradmann, 2016]. Stimulation of all neurons by a spike train with interspike distance
of 3 ms biological time and minimal spike pulse length. Each figure consists of several different
color codings representing a digital weight value. The x-axis refers to the different neurons on
the chip while the y-axis represents the time of the first spike after stimulation is applied. Time
is given in microseconds of chip time, equivalently to milliseconds biological. The shaded are
represents the standard deviation in a batch of size 10.
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5.1.3 Infrastructure Setup

This Section describes the software setup and clarifies which component will execute which code.

As the main point is to come up with an agent for multi-armed bandits, it is necessary to
emulate such a bandit task in the first place. Since, the spiking neural network on the DLSv2
plays the role of the agent, it is advisable to emulate the reinforcement learning environment,
the multi-armed bandit, in a close neighboorhood in terms of communication. Therefore, it
was decided that the PPU will compute the environment. So, the actual purpose of com-
puting synaptic weight updates is, in this case, extended to also simulating the multi-armed
bandit. This is a feasible design decision because a multi-armed bandit is a computational very
undemanding reinforcement learning environment. It is only required to sample binary rewards
(Bernoulli bandits) according to fixed reward probabilities.

Hence, a C-program, executed by the PPU, was developed that encompasses not only the pro-
posed update rules, as in Section 3.2, but also includes procedures to trigger action selection
processes and the computation of binary rewards according to which action was selected by the
spiking neural network. In addition, this program also needs to implement routines to exchange
task information, e.g. reward probabilities, and results of a roll out via the mailbox (shared
memory).

On the host computer, a Python 2 script controls the execution of such experiments and takes
care of proper configuration and calibration. This script passes the specific multi-armed bandit
tasks via the mailbox to the DLSv2 and receives the results of the experiment likewise.

Approximately, the following tasks are executed when conducting a single multi-armed ban-
dit experiment:

1. Host computer: Establish connection to a DLSv2 chip

2. Host computer: Configure synapse array to a valid configuration, network structure is
loaded, initial weights are set

3. Host computer: Spike pulse length is set to the minimal value, the effect of which is
explained in Section 5.1.2

4. Host computer: Calibration file is loaded and the DLSv2 analog parameter storage is set
to the calibrated values

5. Host computer: PPU program is loaded, contains plasticity rules and the environment

6. Host computer: FPGA spike routing for recurrent spikes is enabled

7. Host computer: Mailbox is filled with necessary parameters, such as number of arms,
reward probabilities, hyperparameters

8. Host computer: Trigger the start of the PPU

9. DLSv2: Execute multi-armed bandit environment, run the network of spiking neurons,
apply plasticity rules

10. DLSv2: Write results to mailbox

11. Host computer: Read back results from mailbox for evaluation

12. Host computer: Close connection
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For further experiments regarding learning to learn, an extension to the previous configuration is
made. In the LTL case, the host computer executes the learning to learn framework as described
in Chapter 2. In particular an optimizer executes multi-armed bandit tasks in a loop, trying to
find the set of hyperparameters with the best performance on the considered task family. For a
visual representation of the circumstances one is referred to Figure 5.5.

Figure 5.5: Visual representation of LTL applied to multi-armed bandits on the DLSv2. The figure was
firstly made by Christian Pehle and was adapted to match the situation when executing LTL on
multi-armed bandit tasks.
The PPU performs weight updates via the previously loaded plasticity algorithm and additionally
calculates rewards based on the actions that the spiking neural network in hardware proposed.
Also, to trigger an action selection of the SNN, the PPU needs to stimulate the SNN via spikes.
The LTL algorithm suggests a certain set of hyperparameters, which the DLSv2 computes the
performance for. This value is given by the negative expected cumulative regret, for reasons to
be found in Section 1.4.2.
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6
Approach Validation

This section presents a validation of the proposed approach, as given in Chapter 3, by conducting
experiments on the hardware. Experiments are given by reinforcement learning with independent
multi-armed bandits. An instance of such a task is sampled and passed to the DLSv2. In
particular, multi-armed bandits with 2 arms were considered. The spiking agent was then asked
to interact with the bandit task for NP = 100 arm pulls (task length). To see wether the
approach is valid, the spikes produced in the network are examined and it is evaluated if the
activity is similar to what is anticipated as in Chapter 3.

Figure 6.1: Spike raster of the spiking neural networks activity during a picked-out two-armed bandit task
sample with reward probabilities p1 = 0.413, p2 = 0.09. The spiking neural network is equipped
with the greedy update rule. Top: Spikes within the whole duration of the bandit task. Unsureness
about the probabilities in the beginning and later exploiting the better action choice. Middle:
Zoomed-in view of the learning phase. Blue shaded rectangles indicate that a reward was obtained
in this particular arm pull. Bottom: Stimulation neuron spikes. If no reward was obtained,
the corresponding synapse weight gets lower and as a result, longer stimulation (number of
stimulation spikes) is necessary.
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6.1 Greedy Update Rule

It is investigated on the level of network activity, given by the occured spikes, if the proposed
greedy update rule, see Section 3.2.1 will exhibit the anticipated behaviour. In Figure 6.1 the
network activity, in form of spikes, during a picked-out independent multi-armed bandit task is
displayed. The reward probabilities of this instance are given by: p1 = 0.413 and p2 = 0.09.
It is observable that the agent tries out the different possible actions and ultimately learns,
by observing the given rewards, that bandit arm 1 should be pulled, in order to maximize the
reward (minimize regret).

6.2 Incremental Update Rule

In order to investigate the incremental update rule, as presented in Section 3.2.2, Figure 6.2
shows the network activity, in form of spikes for a two-armed bandit task with reward probabili-
ties of p1 = 0.621 and p2 = 0.07. It visualizes the learning and exploiting phase. As is observable
in the Figure, if no reward is obtained, the weights get decreased which in turn makes more
stimulation necessary to elicit a spike of an action neuron. Thus, the network activity matches
the expectations of what was anticipated when designing the approach in Chapter 3.

Figure 6.2: Spike raster of the spiking neural networks activity. Update rule is the incremental update
rule and activity is recorded during a picked-out two-armed bandit task sample with reward
probabilities p1 = 0.621 and p2 = 0.07. Top: Spikes within the whole duration of the bandit
task. Unsureness about the probabilities in the beginning and later exploiting the better action
choice. Bottom: Zoomed-in view of the learning phase. Blue shaded rectangles indicate that a
reward was obtained in this particular arm pull. Observation: The stimulating neuron has to
produce more and more spikes if no rewards are observed, since the weights to action neurons
get lowered. If at a certain point, no action neuron produces a spike anymore, random actions
are committed as can be seen in the fourth action selection process.

– 47 –



Spike-based Agents for Multi-armed Bandits

7
Learning to Learn Results

The presented weight update rules in Section 3.2 all incorporate hyperparameters required to
be set to some value. Also, network specific hyperparameters arise, such as the strength of
inhibition between action neurons. Despite educated guesses can be made, the best possible
hyperparameter setting remains unknown beforehand. Therefore, in order to endow the spike-
based agent with the best possible capababilities to handle a certain task family, task dependent
hyperparameter optimization in the fashion of learning to learn, introduced in Chapter 2, is
conducted. The fitness which is being maximized by learning to learn, is given by the negative
expected cumulative regret at the end of the bandit task, averaged over 40 multi-armed bandit
task samples of the considered family. This averaging elimitates some of the noise and is essen-
tial because single sampled bandit tasks are not representative to evaluate a fitness value. The
length of a bandit task is set again to be NP = 100 arm pulls. Indeed, the desired result is that
a certain setting of hyperparameters allows the agent to perform well on a particular family of
tasks, effectively enabling transfer learning.

A common method, yet quite inefficient, is to perform a grid search over an appropriate region
of hyperparameter settings. In a very low dimensional setting of up to 3 dimensions, perhaps
also with a coarse discretization, there are no objections to do so. However, by the curse of
dimensionality, this method becomes intractable by the fact of exponential growth of possible
parameter combinations with an increasing number of hyperparameters. In fact, the problem
turns even more severe if resources are limited, i.e. prototype hardware as in this case. To cir-
cumvent mentioned difficulties, learning to learn is executed to reduce the number of evaluations.

All plots in this Chapter share the same structure: On the left hand side the evolution of
fitness is shown, depending on the number of evaluated hyperparameter settings. In particular,
each of the used optimization algorithms uses in each iteration a number of hyperparameter
settings. Thus, the sample mean of the fitnesses among those is shown as a graph. It must
be kept in mind that the sample average of the fitnesses is not equal to fitness of the sample
averaged parameters.

E[f(x)] 6= f(E[x]) (7.1)

And thus, the actual performance of the hyperparameter settings after optimization is reported
seperately in Section 7.4. On the right hand side is a plot showing the hyperparameter dynamics
as projected to two dimensional space by demixed principal component analysis, see Section 1.6.

Another peculiarity regarding the LTL optimizations is that each hyperparameter was scaled
to live in the range of [0, 1]. The reason for that is that some optimizer do random exploration
steps. However, the size of which is the same in each direction, hence to achieve a uniform
exploration rescaling had to be applied.

It is also important to mention that in the case of dependent bandits, the baseline of Gittins
indices are computed as if they were facing an independent bandit.
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7.1 Incremental Update Rule

This Section investigates hyperparameter optimization of spiking agents based on the incremen-
tal update rule, given in Section 3.2.2. Several hyperparameters control the properties of this
update rule. In addition, there are hyperparameters concerning the spiking neural network itself,
for instance the strength of inhibition. Both kinds of hyperparameters are optimized together
via learning to learn, in order to find the best performing values for the considered multi-armed
bandit family. A summary of the hyperparameters that are subject to optimization is given in
Table 7.1.

Table 7.1: Hyperparameters of the incremental update rule, as in 3.2.2, together with hyperparameters con-
cerning the spiking neural network. All action specific hyperparameters, i.e. if dependent on the
bandit arm i, are set identical among all different arms.

Hyperparameter Description

Initial Learning Rate ε
(0)
i

Controls to which extent existing weights are overwritten
by new information

Learning Rate Decay d Multiplicative factor decreasing the learning rate over time

Stimulation Inhibition Strength
Spikes from action neurons inhibit the stimulating neuron.
Hyperparameter controls the strength

Mutual Action Inhibition Strength of mutual inhibition among action neurons

Initial Weight w
(0)
i

Synaptic weight of the connection from stimulating
neurons to action neurons at start
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7.1.1 Independent Bandits

In the Figures 7.1, 7.2, 7.3, 7.4 the results for LTL optimization of hyperparameters is shown
for the optimizers parallel simulated annealing, cross entropy, finite difference gradient and
evolution strategies respectively. The considered task family is given by independent multi-
armed bandits with the incremental update rule 3.2.2.

Figure 7.1: Hyperparameter optimization by simulated annealing. Left: Mean fitness among the current
population. Horizontal lines show the performance of well-known strategies as baselines. Gray,
dashed lines represent the fitness boundaries of the current population. Gray dots signify the
fitness of single individuals in the population. Right: Demixed principal component analysis of
the hyperparameter setting of every population member evolving the generations.

Figure 7.2: Hyperparameter optimization by the cross entropy method. Left: Mean fitness among the
current population. Horizontal lines show the performance of well-known strategies as baselines.
Gray, dashed lines represent the fitness boundaries of the current population. Gray dots signify
the fitness of single individuals in the population. Right: Demixed principal component analysis
of the hyperparameter setting of every population member evolving the generations. Black thick
line indicates the movement of the population mean parametrization over generations
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Figure 7.3: Hyperparameter optimization by the finite difference gradient method. Left: Mean fitness
among the current population. Horizontal lines show the performance of well-known strategies
as baselines. Gray, dashed lines represent the fitness boundaries of the current population. Gray
dots signify the fitness of single individuals in the population. Right: Demixed principal compo-
nent analysis of the hyperparameter setting of every population member evolving the generations.
Black thick line indicates the movement of the population mean parametrization over generations

Figure 7.4: Hyperparameter optimization by the evolution strategies. Left: Mean fitness among the current
population. Horizontal lines show the performance of well-known strategies as baselines. Gray,
dashed lines represent the fitness boundaries of the current population. Gray dots signify the
fitness of single individuals in the population. Right: Demixed principal component analysis of
the hyperparameter setting of every population member evolving the generations. Black thick
line indicates the movement of the population mean parametrization over generations
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7.1.2 Dependent Bandits

In the Figures 7.5, 7.6, 7.7, 7.8 the results for LTL optimization of hyperparameters is shown for
the optimizers parallel simulated annealing, cross entropy, finite difference gradient and evolution
strategies respectively. The considered task family is given by dependent multi-armed bandits
with the incremental update rule 3.2.2.

Figure 7.5: Hyperparameter optimization by simulated annealing. Left: Mean fitness among the current
population. Horizontal lines show the performance of well-known strategies as baselines. Gray,
dashed lines represent the fitness boundaries of the current population. Gray dots signify the
fitness of single individuals in the population. Right: Demixed principal component analysis of
the hyperparameter setting of every population member evolving the generations.

Figure 7.6: Hyperparameter optimization by the cross entropy method. Left: Mean fitness among the
current population. Horizontal lines show the performance of well-known strategies as baselines.
Gray, dashed lines represent the fitness boundaries of the current population. Gray dots signify
the fitness of single individuals in the population. Right: Demixed principal component analysis
of the hyperparameter setting of every population member evolving the generations. Black thick
line indicates the movement of the population mean parametrization over generations
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Figure 7.7: Hyperparameter optimization by the finite difference gradient method. Left: Mean fitness
among the current population. Horizontal lines show the performance of well-known strategies
as baselines. Gray, dashed lines represent the fitness boundaries of the current population. Gray
dots signify the fitness of single individuals in the population. Right: Demixed principal compo-
nent analysis of the hyperparameter setting of every population member evolving the generations.
Black thick line indicates the movement of the population mean parametrization over generations

Figure 7.8: Hyperparameter optimization by the evolution strategies. Left: Mean fitness among the current
population. Horizontal lines show the performance of well-known strategies as baselines. Gray,
dashed lines represent the fitness boundaries of the current population. Gray dots signify the
fitness of single individuals in the population. Right: Demixed principal component analysis of
the hyperparameter setting of every population member evolving the generations. Black thick
line indicates the movement of the population mean parametrization over generations
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7.2 Greedy Update Rule

This Section in turn lists the results on learning to learn optimizations concerning the greedy
update rule, given in 3.2.1. For this update rule there exist hyperparameters that characterize
the prior belief over the reward probabilities. In the case of independent bandits, when the
reward probabilities are sampled from [0, 1], the prior should be uniform. However, the opti-
mization comes up with different settings for those parameters. The cause for this to happen
is that the weights in the spiking neural network are responsible for the action decision. Thus,
if the resulting weight updates allow the spiking agent, as a whole, to perform better, the LTL
algorithm will prefer this setting. In addition, there are again the hyperparameters concerning
the spiking neural network itself, for instance the strength of inhibition. Both kinds of hyper-
parameters are optimized together via learning to learn, in order to find the best performing
values for the considered multi-armed bandit family. A summary of the hyperparameters that
are subject to optimization is given in Table 7.2.

Table 7.2: Hyperparameters of the greedy update rule, as in 3.2.1, together with hyperparameters concerning
the spiking neural network. All action specific hyperparameters, i.e. if dependent on the bandit
arm i, are set identical among all different arms.

Hyperparameter Description

α
(0)
i

Parameter of the Beta prior distribution,
corresponds to the number of successes
observed prior to the experiment start

β
(0)
i

Parameter of the Beta prior distribution,
corresponds to the number of losses
observed prior to the experiment start

Stimulation Inhibition Strength
Spikes from action neurons inhibit the stimulating neuron.
Hyperparameter controls the strength

Mutual Action Inhibition Strength of mutual inhibition among action neurons
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7.2 Greedy Update Rule

7.2.1 Independent Bandits

In the Figures 7.9, 7.10, 7.11, 7.12 the results for LTL optimization of hyperparameters is shown
for the optimizers parallel simulated annealing, cross entropy, finite difference gradient and
evolution strategies respectively. The considered task family is given by independent multi-
armed bandits with the greedy update rule 3.2.1.

Figure 7.9: Hyperparameter optimization by simulated annealing. Left: Mean fitness among the current
population. Horizontal lines show the performance of well-known strategies as baselines. Gray,
dashed lines represent the fitness boundaries of the current population. Gray dots signify the
fitness of single individuals in the population. Right: Demixed principal component analysis of
the hyperparameter setting of every population member evolving the generations.

Figure 7.10: Hyperparameter optimization by the cross entropy method. Left: Mean fitness among the
current population. Horizontal lines show the performance of well-known strategies as baselines.
Gray, dashed lines represent the fitness boundaries of the current population. Gray dots signify
the fitness of single individuals in the population. Right: Demixed principal component analysis
of the hyperparameter setting of every population member evolving the generations. Black thick
line indicates the movement of the population mean parametrization over generations
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Figure 7.11: Hyperparameter optimization by the finite difference gradient method. Left: Mean fitness
among the current population. Horizontal lines show the performance of well-known strategies
as baselines. Gray, dashed lines represent the fitness boundaries of the current population.
Gray dots signify the fitness of single individuals in the population. Right: Demixed principal
component analysis of the hyperparameter setting of every population member evolving the
generations. Black thick line indicates the movement of the population mean parametrization
over generations

Figure 7.12: Hyperparameter optimization by the evolution strategies. Left: Mean fitness among the cur-
rent population. Horizontal lines show the performance of well-known strategies as baselines.
Gray, dashed lines represent the fitness boundaries of the current population. Gray dots signify
the fitness of single individuals in the population. Right: Demixed principal component analysis
of the hyperparameter setting of every population member evolving the generations. Black thick
line indicates the movement of the population mean parametrization over generations
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7.2.2 Dependent Bandits

In the Figures 7.13, 7.14, 7.15, 7.16 the results for LTL optimization of hyperparameters is
shown for the optimizers parallel simulated annealing, cross entropy, finite difference gradient
and evolution strategies respectively. The considered task family is given by dependent multi-
armed bandits with the greedy update rule 3.2.1.

Figure 7.13: Hyperparameter optimization by simulated annealing. Left: Mean fitness among the current
population. Horizontal lines show the performance of well-known strategies as baselines. Gray,
dashed lines represent the fitness boundaries of the current population. Gray dots signify the
fitness of single individuals in the population. Right: Demixed principal component analysis of
the hyperparameter setting of every population member evolving the generations.

Figure 7.14: Hyperparameter optimization by the cross entropy method. Left: Mean fitness among the
current population. Horizontal lines show the performance of well-known strategies as baselines.
Gray, dashed lines represent the fitness boundaries of the current population. Gray dots signify
the fitness of single individuals in the population. Right: Demixed principal component analysis
of the hyperparameter setting of every population member evolving the generations. Black thick
line indicates the movement of the population mean parametrization over generations
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Figure 7.15: Hyperparameter optimization by the finite difference gradient method. Left: Mean fitness
among the current population. Horizontal lines show the performance of well-known strategies
as baselines. Gray, dashed lines represent the fitness boundaries of the current population.
Gray dots signify the fitness of single individuals in the population. Right: Demixed principal
component analysis of the hyperparameter setting of every population member evolving the
generations. Black thick line indicates the movement of the population mean parametrization
over generations

Figure 7.16: Hyperparameter optimization by the evolution strategies. Left: Mean fitness among the cur-
rent population. Horizontal lines show the performance of well-known strategies as baselines.
Gray, dashed lines represent the fitness boundaries of the current population. Gray dots signify
the fitness of single individuals in the population. Right: Demixed principal component analysis
of the hyperparameter setting of every population member evolving the generations. Black thick
line indicates the movement of the population mean parametrization over generations

– 58 –



7.3 ANN Update Rule

7.3 ANN Update Rule

This section displays the results that were obtained with the ANN update rule, as described in
Section 3.2.3. In contrast to the other update rules, the main task of learning to learn is not
only to find the best set of hyperparameters, but to find a hyperparameter setting that works at
all. In contrast to that, the greedy update rule was not influenced by modified hyperparameters
to a great extent because it is already designed to represent a proper update rule. With the
ANN, the situation is quite different because the hyperparameters really define how the agent
learns and updates the weights of the spiking neural network.

In Figure 7.17, a learning to learn optimization is reported, with the cross entropy method
used as the optimizer and independent multi-armed bandits as the task family. As one can
extract from the fitness evolution on the left panel, the weights of the ANN are changed in such
a way that the resulting update rule performs better than random. However, it is not able to
approach the performance of well known bandit algorithms.

Figure 7.18 reports on the learning to learn results regarding dependent bandits. Cross en-
tropy was used as the LTL optimizer.

Another learning to learn result concerning a modified version of dependent bandits is given
in Figure 7.19. Again cross entropy was used as the underlying LTL optimizer. The consid-
ered task family of dependent bandits is modified compared to Section 1.4.1. One important
difference was made to the task family to make learning easier for the agent: The reward prob-
ability of the first arm p1 is not sampled uniformly from [0, 1], but instead from the interval
[0,0.3] ∪ [0.7,1]. As can be seen from the Figure, the spiking neural network equipped with
an artificial neural network as a synaptic update rule, is able to handle this special case of
multi-armed bandits comparable to existing algorithms, even outperforms them. This is only
made possible by the use of an LTL optimizer, which requires in this case approximately 2000
individual hyperparameter evaluations to get to a stable solution.

Figure 7.17: Hyperparameter optimization by the cross entropy method. Task family are independent
bandits. Left: Mean fitness among the current population. Horizontal lines show the perfor-
mance of well-known strategies as baselines. Gray, dashed lines represent the fitness boundaries
of the current population. Gray dots signify the fitness of single individuals in the population.
Right: Demixed principal component analysis of the hyperparameter setting of every population
member evolving the generations. Black thick line indicates the movement of the population
mean parametrization over generations
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Figure 7.18: Hyperparameter optimization by the cross entropy method. Task family are dependent ban-
dits. Left: Mean fitness among the current population. Horizontal lines show the performance
of well-known strategies as baselines. Gray, dashed lines represent the fitness boundaries of
the current population. Gray dots signify the fitness of single individuals in the population.
Right: Demixed principal component analysis of the hyperparameter setting of every population
member evolving the generations. Black thick line indicates the movement of the population
mean parametrization over generations

Figure 7.19: Hyperparameter optimization by the cross entropy method. Task family are dependent ban-
dits, in the simplified version. Left: Mean fitness among the current population. Horizontal
lines show the performance of well-known strategies as baselines. Gray, dashed lines represent
the fitness boundaries of the current population. Gray dots signify the fitness of single indi-
viduals in the population. Right: Demixed principal component analysis of the hyperparameter
setting of every population member evolving the generations. Black thick line indicates the
movement of the population mean parametrization over generations
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7.4 Comparison

The result of the learning to learn optimizations are values for the considered hyperparameters.
In this section, the hyperparameters were obtained by the various runs are now evaluated. Eval-
uation is done by examining a sample mean and standard deviation of the expected cumulative
regret on multi-armed bandit tasks, either dependent or independent. The sample size is given
with 400 instances of multi-armed bandits. The expected cumulative regret is computed after
the agent has conducted 100 arm pulls, hence at the end of a task.

Consider the independent multi-armed bandit family. The results of learning to learn opti-
mizations, using various optimizers and update rules for the spiking neural network, are listed
in Table 7.3. As one can observe, the spike-based agent is not able to surpass the performance
of the ε-Greedy policy with ε = 1%. It was found that the hyperparameter settings found by
evolution strategies work the best among others. The artificial neural network update rule, as
proposed in Section 3.2.3, performs comparably to the software simulation but does not come
close to other performances.

Table 7.3: Expected cumulative regret on the indepenedent multi-armed bandit problem. Bold values mark
the best performances across well known algorithms or update rules for the spiking agent.

Update Rule Optimizer (LTL)
Expected Cumulative Regret
on Independent Bandits

Incremental

Cross Entropy 2.390± 3.545
Parallel Simulated Annealing 2.706± 4.070
Finite Difference Gradient 5.124± 4.322
Evolution Strategies 2.146± 3.836

Greedy

Cross Entropy 2.376± 4.226
Parallel Simulated Annealing 2.837± 4.878
Finite Difference Gradient 2.861± 4.677
Evolution Strategies 2.187± 3.725

ANN Cross Entropy 6.021± 3.395

Gittins Indices - 1.799± 2.449

ε-Greedy - 2.838± 6.148

Random - 16.545± 11.882

Likewise, Table 7.4 summarizes the same results obtained for dependent bandits. Interestingly,
the cross entropy optimizer is now responsible for providing the best performing hyperparame-
ters. Again, the hardware implemented spiking agent fails to reach a better performance level
other than the random strategy, comes close however. The expected cumulative regret is in the
same range of well performing algorithms in the literature. However, it is observable that the
spiking agent exhibits a lower variability than the ε-Greedy strategy for instance.

In addition to the previously handled tasks, a modified version of the dependent bandit prob-
lem was introduced. One reward probability is in this new version sampled from the interval
p ∈ [0, 0.3]∪ [0.7, 1], the other is then given by 1−p and therefore, the task is easier. The results
for optimizing the ANN update rule compared to reference policies are depicted in Table 7.5.
In this special case, the spiking agent outperforms the Gittins index policy. Note: The Git-
tins index policy is optimal in the sense of expected cumulative regret but in this evaluation
the Gittins indices are computed as if the reward probabilities of the multi-armed bandits were
independent.
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Table 7.4: Expected cumulative regret on the depenedent multi-armed bandit problem. Bold values mark the
best performances across well known algorithms or update rules for the spiking agent.

Update Rule Optimizer (LTL)
Expected Cumulative Regret
on Dependent Bandits

Incremental

Cross Entropy 2.342± 3.472
Parallel Simulated Annealing 2.630± 4.044
Finite Difference Gradient 4.514± 4.343
Evolution Strategies 2.707± 3.229

Greedy

Cross Entropy 2.340± 4.181
Parallel Simulated Annealing 2.448± 4.330
Finite Difference Gradient 2.452± 3.708
Evolution Strategies 2.523± 4.330

ANN Cross Entropy 1.760± 2.981

Gittins Indices - 1.469± 2.454

ε-Greedy - 2.232± 5.131

Random - 25.159± 14.596

Table 7.5: Expected cumulative regret on the dependent multi-armed bandit problem with the independent
reward probability sampled from the interval [0, 0.3] ∪ [0.7, 1]. Bold values mark the best perfor-
mances across well known algorithms or update rules, composed to handle multi-armed bandits.

Update Rule Optimizer (LTL)
Expected Cumulative Regret

on Dependent Bandits with pi ∈ [0, 0.3] ∪ [0.7, 1]

ANN Cross Entropy 0.842± 1.441

Gittins Indices - 1.155± 0.861

ε-Greedy - 2.002± 4.075

Random - 35.001± 9.208
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8
Regret Evaluation

This Chapter visualizes the expected cumulative regret during multi-armed bandit tasks. The
evolution of expected cumulative regret, depending on the conducted arm pull, allows to see in
which parts of the experiment exploration happens and when the agent, or bandit algorithm,
focuses on exploitation. In addition, the effects of applying learning to learn, or hyperparameter
optimization in this case, become visible at the level of task execution, i.e. one is able to observe
how the expected cumulative regrets of the optimized and non-optimized agent diverge as the
agent continues to interact with the multi-armed bandit.

For evaluation, a total of 100 bandit tasks is sampled to investigate the agents performance
averaged over different tasks of the same family. Task length was set to be NP = 100 and
the size of the multi-armed bandit is again given by two arms. Expected cumulative regret, as
explained and reasoned by in Section 1.4.2, characterizes how much the agent could have done
better up until the considered time step and is the performance measure used here.

Because the effects of hyperparameter optimization is to be demonstrated, the best hyper-
parameters obtained in Chapter 7 are used here for the optimized agent. For the non-optimized
agent, reasonable hyperparameters, were guessed. For comparison, baseline multi-armed bandit
algorithms are included in the evaluation.

All figures share the same structure: The expected cumulative regret, averaged over 100 task
instances of the same bandit family, is plotted as the multi-armed bandit task proceeds. When
the number of arm pulls has reached 100, the task is stopped. Section 8.1 investigates the greedy
update rule and Section 8.2 evaluates the incremental update rule.
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8.1 Greedy Update Rule

Figure 8.1 shows the expected cumulative regret of the greedy update rule, both optimized and
non-optimized, together with baseline algorithms as the multi-armed bandit task evolves. The
task family is given with independent multi-armed bandits. Figure 8.2 shows the same with the
difference that the task family is given with dependent multi-armed bandits. It is observable
that the optimized agent performs by far better than the non-optimized agent.

Figure 8.1: Expected cumulative regret depending on bandit task time steps. The task is given by indepen-
dent multi-armed bandits with 2 arms. Averaging happens over 100 different instances. The
considered update rule is the greedy update rule, given in Section 3.2.1. Shown is the performance
of an update rule with LTL hyperparameter optimization and also without hyperparameter op-
timization. For comparison, also the expected cumulative regret of baseline policies, performing
on the same instances of bandit tasks, are shown.

Figure 8.2: Expected cumulative regret depending on bandit task time steps. The task is given by dependent
multi-armed bandits with 2 arms. Averaging happens over 100 different instances. The consid-
ered update rule is the greedy update rule, given in Section 3.2.1. Shown is the performance of
an update rule with LTL hyperparameter optimization and also without hyperparameter opti-
mization. For comparison, also the expected cumulative regret of baseline policies, performing
on the same instances of bandit tasks, are shown.
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8.2 Incremental Update Rule

Figure 8.3 shows the expected cumulative regret of the greedy update rule, both optimized and
non-optimized, together with baseline algorithms as the multi-armed bandit task evolves. The
task family is given with independent multi-armed bandits. Figure 8.4 shows the same with the
difference that the task family is given with dependent multi-armed bandits. It is observable
that the optimized agent performs better than the non-optimized agent, particularly in the
independent bandit case.

Figure 8.3: Expected cumulative regret depending on bandit task time steps. The task is given by indepen-
dent multi-armed bandits with 2 arms. Averaging happens over 100 different instances. The
considered update rule is the incremental update rule, given in Section 3.2.2. Shown is the
performance of an update rule with LTL hyperparameter optimization and also without hyper-
parameter optimization. For comparison, also the expected cumulative regret of baseline policies,
performing on the same instances of bandit tasks, are shown.

Figure 8.4: Expected cumulative regret depending on bandit task time steps. The task is given by dependent
multi-armed bandits with 2 arms. Averaging happens over 100 different instances. The consid-
ered update rule is the incremental update rule, given in Section 3.2.2. Shown is the performance
of an update rule with LTL hyperparameter optimization and also without hyperparameter op-
timization. For comparison, also the expected cumulative regret of baseline policies, performing
on the same instances of bandit tasks, are shown.
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9
Conclusion

In this work it was shown that networks of spiking neurons can be utilized to handle the famous
multi-armed bandit problem. Proper update rules of the weights in connecting synapses were
developed and investigated. In particular, it is to emphasize that a freely parametrizable update
rule, in the form of an artificial neural network, was also used.

An essential component was given by the concept of learning to learn, in order to find the
best set of hyperparameters that work well on the considered task family. Especially in the case
of the parametrized update rule, an optimization of the hyperparameters, given by the weights
in the artificial neural network, was absolutely necessary in order to obtain a working update rule.

It was also demonstrated that this approach can be implemented on novel neuromorphic pro-
totype hardware, the HICANN-DLS in the second version. As the update rules are customized
to the needs of solving such a problem, it was a requirement for the hardware to be flexible
enough for programming specific update rules into the hardware. Thus, the plasticity proces-
sor of the HICANN-DLS was actively used, also to simulate the multi-armed bandit environment.

Future work may be devoted to develop parametrized update rules that establish learning of
more complicated reinforcement environments in spiking neural networks. Indeed, it is conceiv-
able that learning rules arise that work independent of the hardware variabilities, or even more
desirable, make use of the diversity of available neurons to accomplish a task faster.
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