
Thomas Bohnstingl, BSc BSc

Development of an agent for solving
Markov Decision Processes embedded in

Spiking Neural Networks

MASTER’S THESIS

to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme: Information and Computer Engineering

submitted to

Graz University of Technology

Supervisor:
Em.Univ.-Prof. Dipl.-Ing. Dr.rer.nat. Wolfgang Maass

Institute for Theoretical Computer Science
Graz University of Technology, Austria

Kirchhoff Institute
Heidelberg University, Germany

Graz, February 22, 2018

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than the
declared sources/resources, and that I have explicitly marked all material which has been quoted
either literally or by content from the used sources.

Place, date (signature)

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die
angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und
inhaltlich entnommene Stellen als solche kenntlich gemacht habe.

Ort, Datum (Unterschrift)

Abstract

The present master thesis aims to endow a network of spiking neurons with the capability
to solve Markov Decision Processes. In recent years, this technology has emerged as a potential
alternative to modern computing and can circumvents energy problems or the von Neumann
bottleneck.
To provide the desired learning capability to a network of spiking neurons, a light-weight net-
work structure, which allows for an implementation on a resource limited neuromorphic hardware
device, is proposed. This approach is then combined with well-studied algorithms from rein-
forcement learning, to guarantee a good performance.
The thesis starts with a literature research about related work and the learning algorithms used.
Based on this background, the network structure is introduced, implemented as a pure software
model and finally ported to the dedicated hardware. In addition, the concept of learning to learn
is applied to enable learning an entire family of tasks, rather than only a single one. The last
part is an extensive evaluation on both developed variants in combination with a comparison.
The results of this work indicate that the performance of the software as well as of the hard-
ware model can compete with known reference algorithms and that the network is able to solve
Markov Decision Processes.

Kurzfassung

Die vorliegende Masterarbeit setzt sich zum Ziel, ein Netzwerk aus spikenden Neuronen mit
der Fähigkeit auszustatten, Markov Decision Processes zu lösen. Die genannte Technologie hat
sich in den letzten Jahren, aufgrund der hohen Energieeffizienz und der Vermeidung des von
Neumann Bottlenecks, verstärkt als Alternative zu modernen Computersystemen erwiesen.
Um ein Netzwerk von spikenden Neuronen mit der erforderlichen Lernfähigkeit auszustatten,
wird eine schlanke Netzwerkstruktur, welche auch eine Implementierung auf einer ressourcenlim-
itierten Hardware ermöglicht, vorgeschlagen. Dieser Ansatz wird mit bereits bekannten und
bewährten Algorithmen aus dem Bereich des Reinforcement Learnings kombiniert, um beste
Ergebnisse zu erreichen.
Die Arbeit eröffnet mit einer Literaturrecherche über die Behandlung ähnlicher Probleme und
der verwendeten Lernalgorithmen. Aufbauend auf diesen Grundlagen wird die entworfene Net-
zwerkstruktur vorgestellt, in einem Software-Modell umgesetzt und schließlich auf die neuro-
morphe Hardware portiert. Zudem wird das Konzept von Learning to learn verwendet, um ein
schnelleres Lernen von verschiedenen, ähnlichen Problemen zu ermöglichen. Den Abschluss der
Arbeit bildet eine umfangreiche Auswertung, in Kombination mit einem Vergleich der Ergeb-
nisse beider vorgestellter Varianten.
Das Ergebnis der Arbeit umfasst, dass die Performance sowohl vom Software- als auch vom
Hardware-Modell mit den verwendeten Referenzalgorithmen vergleichbar ist und dass das be-
handelte Netzwerk in der Lage ist, Markov Decision Processes zu lösen.

Danksagung

Diese Arbeit widme ich meiner Freundin Christina, die mich mit viel Kraft und Einsatz durch
schwere Zeiten während der Anfertigung getragen hat.

Ein besonderer Dank gilt Herrn Professor Maass, für die richtungsweisenden Gespräche und
konstruktiven Vorschläge. Des Weiteren gebührt ein großer Zuspruch auch meinem Kollegen
Franz, der durch viele Diskussionen und Anregungen zum Gelingen der vorliegenden Arbeit
beigetragen hat.

Einen großen Dank möchte ich auch meinen Kollegen aus Heidelberg, Christian, David und
Benjamin aussprechen. Ohne ihre Unterstützung bei Anliegen aller Art bezüglich der Hardware
und Kommentaren zur Arbeit, wäre ein Abschluss nahezu unmöglich gewesen. Nicht zu Letzt
möchte ich meiner Familie und allen Menschen in meinem Umfeld für die Entgegenbringung von
viel Verständnis und Hilfe über die gesamte Dauer dieser Arbeit danken.

Spike based agent for MDPs

Contents

Abbreviations 13

1 Introduction 15
1.1 Overview . 15

1.2 Motivation . 15

1.3 Markov Decision Processes . 16

1.3.1 Definition and Notation . 16

1.4 Related work . 17

1.5 Hardware introduction . 18

1.5.1 Neuron model . 19

1.5.2 Synapse model . 20

2 Methods 21
2.1 Bellman equations . 21

2.2 Temporal Difference Learning . 22

2.3 Temporal Difference Learning with eligibility traces 23

2.4 Learning to Learn . 25

2.5 Reference Algorithms . 26

3 Implementation 27
3.1 High-level network structure . 27

3.1.1 Details of update rules . 28

3.1.2 Action selection process . 29

3.2 Software implementation . 30

3.3 Hardware implementation . 31

3.3.1 Framework on host computer . 31

3.3.2 Plasticity Processor . 34

3.3.3 Mailbox . 37

3.3.4 Chip calibration . 37

3.3.5 Limitations . 37

3.4 Learning to Learn framework . 38

3.4.1 Crossentropy . 38

3.4.2 Evolution Strategies . 39

3.4.3 Simulated Annealing . 40

3.4.4 Classic gradient descent . 42

3.4.5 Hyperhyperparameters for Learning to Learn framework 44

4 Experiments 45
4.1 Tasks . 45

4.1.1 MDP . 45

4.1.2 2D Maze . 46

5 Results 48
5.1 Learning to Learn result . 48

5.2 Hardware variability . 49

5.3 Software simulation . 50

5.3.1 Fixed MDP and maze tasks . 50

5.3.2 Random MDPs . 51

5.3.3 Random Maze tasks . 57

– ix –

5.4 Hardware simulation . 58
5.4.1 Fixed MDP task . 58
5.4.2 Random MDPs . 61
5.4.3 Random Maze tasks . 66

5.5 Comparison . 67

6 Discussion and Outlook 69
6.1 Discussion . 69

A Training time 70

Spike based agent for MDPs

Abbreviations

ANN .Artificial neural network
CE . Crossentroy
CPU . Central processing unit
DLS .Digital Learning System
EPSP . Excitatory postsynaptic potential
ES . Evolution Strategies
GD . Gradient descent
HBP . Human Brain Project
HP . Hyperparameters
HHP .Hyperhyperparameters
HICANN . High Input Count Analog Neural Network
LIF .Leaky integrate and fire
LTL .Learning to learn
MDP . Markov Decision Process
QL . Q-Learning with adaptive epsilon
QLF . Q-Learning with fixed epsilon
Rnd . Random policy
SA .Simulated Annealing
SNN .Spiking neural network
VI .Value Iteration
WTA . Winner-take-all

– 13 –

Spike based agent for MDPs

1
Introduction

1.1 Overview

The aim of this master thesis is to endow a neural network consisting of spiking neurons, with the
capability of solving Markov Decision Processes (MDPs). To address this problem, a properly
designed feedforward network is combined with well-studied plasticity rules, providing conver-
gence to an optimal solution, in such a way that efficient learning is achieved. To demonstrate
the progress of current neuromorphic hardware and to speedup training, an implementation on
such a hardware device, developed under the Human Brain Project (HBP), is a sub goal of
this thesis. Consequently, the proposed network structure is designed to run as a pure software
simulation as well as on the hardware, taking present constraints and limitations into account.
Finally, a new aspect of learning is addressed by exploiting the capabilities of Learning to Learn
(LTL). This mechanism enables the network to learn not only a single task, but rather from an
entire family of tasks, where each new task is learned faster than the previous one.

This thesis is divided into several parts. The first introductory chapter as well as the second
chapter provide background information about the problem. After the problem is introduced,
the implementation chapter gives detailed insights into the implementation of the hardware and
software model and discusses present limitations. Tasks used for evaluation are introduced in
the experiment chapter, followed by the result chapter, where results are shown and compared
to state-of-the-art reference algorithms used in the literature of MDPs. Finally, the last chapter
discusses the results, outcomes and problems which occurred throughout this work.

1.2 Motivation

Today, one major limiting part in digital computing is the power consumption and the problem,
that Moore’s law might not be further fulfilled for the next generations of integrated circuits
[Simonite Tom, 2016]. The power dissipation density in a modern processor can already be com-
pared to an electric stove and when shrinking it further, it gets harder to guide it off the chip.
Another problem is the so-called von Neumann bottleneck. There the memory is separated from
the central processing unit (CPU), which limits the performance, since most of the energy and
computing time is spent on transferring data over this bottleneck [Schuman et al.], [Monroe,
2014].
Non von Neumann computing approaches provide a possible alternative to circumvent the prob-
lems encountered by modern processors. An instance for this technique are spiking neural
networks (SNN). They are fundamentally different from artificial neural network (ANN), be-
cause spiking neurons only occasionally emit a spike, whereas in the latter case, the activity of
single neurons is continuous. A network constructed with spiking neurons is much more energy
efficient, produces less amount of data and removes the barrier between data and computation
[Calimera et al., 2013].
The approach of SNNs is inspired by the human brain and uses many neurons interconnected
with synapses to mimic the brain. There is a large literature on spiking neural networks and a
lot of fundamental research has been done [Ahmed et al., 2014].

– 15 –

1 Introduction

However, fundamental questions about how the brain really works are still open and compared
to artificial neural networks (ANN). the number of applications for SNNs is very limited. It
is harder to design a network of spiking neurons which can be used to solve certain problems
compared to a network design of artificial neurons. This is mainly due to the spiking character,
which results in a non-differentiable signal. In addition, it is harder to maintain a proper acti-
vation within the network and to prevent the network activity from either exploding or dying
out. Like the network design it is also more challenging to come up with training algorithms
or learning rules since a gradient information is not present. This leads to the fact that the
prominent gradient descent learning algorithms, which are the driving forces when dealing with
ANNs, cannot be used with spiking neurons. There has been work done, trying to port the
gradient descent approach to a network of spiking neurons with so-called random backpropaga-
tion [Neftci et al., 2017] or even with a backpropagation variant [Lee et al.]. Unfortunately, in
the case of random backpropagation, there is still a rigorous proof missing how this procedure
is working and therefore possible corner cases where the algorithm does not work, may not be
discovered yet.
The present thesis uses the approach of SNNs and aims at implementing an agent capable
of solving MDPs. Already studied learning algorithms for this problem class are ported to
SNNs and combined with a properly designed network structure. Equipped with the new LTL
approach, finally an implementation on a neuromorphic hardware to address the problems of
modern computing is done.

1.3 Markov Decision Processes

MDPs are considered as a model for general decision-making processes. In this thesis, discrete
MDPs, with a discrete state and action space as well as with discrete time are considered. This
means that decisions can only be taken at certain time steps, the agent can only choose an action
from a finite set and the environment is also in a particular state from a finite set. With the
notation of such a MDP the outcome of a decision, even a random one, can be modelled well.
One crucial property of MDPs is that in a sequence of decisions and the corresponding states
{s1, s2, ..., st}, the state at timestep t, st only depends on the state at the former time step
t− 1, st−1. This property is called Markov Property and allows a properly designed feedforward
network of spiking neurons to solve such decision problems.

In addition, the state might not be fully available to the agent or attached with noise. These
scenarios are an extension of the MDP which can be grouped under the term Partially Observable
Markov Decision Process (POMDP). However, such problems will not be discussed here in more
detail (see [Kaelbling et al., 1998]).

1.3.1 Definition and Notation

This section is intended to introduce the notation for MDPs used in this thesis. In general, a
MDP can be described by a tuple (S,A, P,R, γ).

• State space S: At any point in time, the environment is in a particular state s ∈ S. In
general, the state space can either be continuous or discrete, whereas here only discrete
state spaces are considered.

• Action space A: The action space contains all possible actions for all states. In a state
s ∈ S an action a ∈ A can be performed. In this thesis the action space A is the same
for each state from the state space. If actions are not applicable in a particular state, the
transition probabilities for those actions can be set to zero which effectively leads to the
fact that they will not be performed.

– 16 –

1.4 Related work

• Discount factor γ: This discount factor is used to describe how important future rewards
are in contrast to current ones. This value is in the interval [0, 1], where the value 0 means
that only the current reward is relevant and 1 means that each future reward has the same
importance.

• Transition matrix P : This matrix determines the transition given a state-action pair (s, a).
Using the notation that s′ is the next state, the elements of this matrix can be interpreted
as probabilities:

P (a, s, s′) = Pr(s′|a, s) = P as,s′

Note that the matrix P has the shape of (||A|| × ||S|| × ||S||) and Pr() from the above
equation denotes a probability. P (a, s, s′) gives the probability for getting into state s′

when taking action a in state s.
With this transition matrix, uncertain outcomes of a decision can be modelled.

• Reward matrix R: For each transition from one state s to a new state s′ involving an
action a, a reward R(a, s, s′) is given. The reward matrix is also of the same shape
(||A|| × ||S|| × ||S||), where each element represents the reward for the transition from s
to s′ using action a. For consistency reasons, a slightly different notation is used in the
following:

R(a, s, s′) = Ras,s′

Throught this thesis, the reward matrix contains only elements in the interval [0, 1].

One example of a MDP with one action and three states is shown in figure 1.1.

Figure 1.1: Example MDP with ||A|| = 1 and ||S|| = 3. On the left-hand side, the graphical representation of
the MPD is shown. The transitions are drawn as black arrows, where the transition probability
is written in black above the transition arrows. The rewards of a transition are shown as red
arrows with the reward value above. Transitions with a probability of 0.0 or rewards with a value
of 0.0 are not shown. On the right-hand side, the corresponding transition and reward matrices
are shown. Both have a shape of (1 × 3 × 3) and since there is only one action, the matrices
are represented as (3 × 3) matrices.

For the rest of this thesis the term ”state” is used to denote a particular state of the MDP
environment which is then represented to the network. An action-state pair is a tuple, consisting
of a particular state s ∈ S and the selected action a ∈ A for this state. Consistently the term
”state neuron” denotes a particular neuron which is used to express a state of the MDP. The
same notation holds true for the term ”action” and the term ”action neuron”.

1.4 Related work

There exists a broad literature on applications of SNNs, corresponding learning algorithms and
also a lot of biological measured data can be reproduced using certain neuron, synapse and

– 17 –

1 Introduction

network structures [Ahmed et al., 2014], [Brea and Gerstner, 2016].
The main focus in this thesis is on one concrete applications where a network of spiking neurons
is used to implement an agent, capable of learning a reinforcement problem, namely a MDP.
There are few papers in the literature related to a similar problem. One of them was written
by Friedrich et. al. [Friedrich and Lengyel, 2016]. In this paper they tackle different MDPs
with discrete state and action spaces and one task with a continuous state space and a discrete
action space. For a MDP with |S| states and |A| actions they use a SNN which can be split
into |S| different clusters consisting of |A| neurons each. Every cluster represents one particular
state and the neuron within such a cluster represent the actions available for this state. In a
more compact notation, the j-th neuron in the i-th cluster of the network represents the state
action pair (si, aj). The model uses rate coding, where the rates of the neurons within a cluster
represent an approximation of the value function in that state. The neurons coding for the same
state are inhibitory connected to each other to be able to solve the Bellman equation and are
excitatory to the neurons of the other states. Additionally, it also receives an external input
representing the reward for that state-action pair.

A different approach to solve MDP tasks was done by Nakano et. al. [Nakano et al., 2015]. They
focused especially on noisy observations and used similar maze tasks for evaluation. To tackle
those problems, they mimicked a Restricted Boltzmann Machine (RBM) with a SNN where the
binary neurons from the RBM were replaced by Leaky-Integrate and Fire (LIF) neurons. The
overall network was then constructed using state neurons and action neurons in the visible layer,
hidden neurons and additionally ”memory neurons”. To endow the network with the ability of
using past transitions to improve future ones, the newly introduced ”memory neurons” were
used. Those neurons extended the network as an additional layer between the state and the
hidden neurons, whereas the action neurons in contrast were directly connected to the hidden
layer. The memory neurons were recurrently connected to each other with a special weight
distribution to maintain activity patterns depending on the past observation sequences.

In parallel to the development of this work, a master thesis related to similar problems was
composed by Shein [Shein, 2017]. This work also addressed similar approaches to solve MDPs
with spiking neural networks consisting of LIF neurons.
The state-action transition probabilities were encoded into the weights of one population of neu-
rons, the ”State and Action” population. To update the Q values according to those weights,
a second so-called ”Product” population was used which ”multiplies” the transition probabil-
ities with the current best action in each state. In the first part of the thesis, the transition
probabilities as well as the weights of the ”State and Action” and the ”Product” population
were fixed and statically encoded. The second part deals with essentially learning the transition
probabilities and the weights of the two population. For this procedure an error signal between
the predicted and the actual state was used. A two-step task was used in order to test the model
and compare it to human behavior.

1.5 Hardware introduction

The problems of modern computing mentioned in section 1.2 can be avoided by using dedicated
hardware for efficiently implementing SNNs. Such a neuromorphic hardware system was devel-
oped under the HBP as a co-operation with many different universities [Calimera et al., 2013],
[HBP], [Heidelberg].
The so-called ”High Input Count Analog Neural Network - Digital Learning System” (HICANN-
DLS) is a mixed signal hardware system, where the neurons are implemented as analog circuits.
Each neuron circuit can generate a digital signal, a spike, which is then routed over synapse

– 18 –

1.5 Hardware introduction

drivers to the target synapse. At the target synapse this digital signal is converted into an
analog signal again and fed to the target neuron.
To enable more complex and custom plasticity rules, the present hardware incorporates a sepa-
rate dedicated digital processor including a vector unit. This processor has access to the synaptic
efficacies as well as to other different pieces of information about the network and the chip (see
1.5.2 for more details).
When writing this thesis, HICANN-DLS version 2 was available which holds 32 neurons, 32x32
synapses and is designed to operate 1000 times faster compared to the biological equivalent.
This introductory chapter about the hardware is intended to give a brief high level overview of
the mathematical description of the neuron and synapse model, because an entire description
of the hardware alone can fill many papers e.g.: [Friedmann et al., 2017], [Aamir et al., 2016]
or [Aamir et al., 2017]. However, the steps necessary to implement an actual experiment on the
chip are detailed in chapter 3.

1.5.1 Neuron model

The neurons of the hardware are analog circuits and implement the Leaky Integrate and Fire
(LIF) neuron model. From a high-level perspective, the digital spikes from other neurons are
transformed into currents, through the synapse and then charge a capacitor, representing the
current membrane potential. The formulas for the neuron and synapse model are taken from
[Stöckel, 2017]. There are also publications about the verification of the theoretical models and
the differences to the actual hardware [Stradmann, 2016] [Aamir et al., 2016].
Figure 1.2 shows the internal circuit of the synapse on the neuromorphic chip.

Figure 1.2: This figure, taken from [Aamir et al., 2016], shows a gross version of the schematics of the
HICANN-DLS neuron. On the left hand side, a part of the synapse array is shown, where a
black dot represents a created synapse. The neuron has two separate inputs for excitatory and
inhibitory currents. If a spike arrives at a neuron, the digital spike is transformed, with the
corresponding weight, into an electric current which then charges the membrane capacitor. If
the voltage at the capacitor exceeds a preset value, the threshold voltage, a spike is emitted via
a dedicated module (In this figure depicted with ”Spike Gen”). In addition to that, common
mechanisms such as the leak current or the reset voltage are also in place.

– 19 –

1 Introduction

The time evolution of the membrane potential follows the equation:

τmem
du(t)

dt
= −[u(t)− uleak] +

I(t)

g
(1.1)

Here u(t) denotes the current membrane potential, τmem is the membrane time constant, uleak
is the leak potential, I(t) is the total input current to the neuron and g the conductance of the
membrane.
When a spike is emitted, the neuron remains at the reset potential ureset for the refractory
period τref .

u(t) =

{
ureset t ∈ [tspike, tspike + τref]

u(t) else
(1.2)

1.5.2 Synapse model

The HICANN-DLS chip implements a current-based synapse model. The digital spike and the
weight are combined to the synaptic current:

τsyn
dIij(t)

dt
= −Iij(t) +

∑
tj

wijδ(t− tj) (1.3)

Here Iij(t) denotes the current to neuron i if neuron j fires, τsyn is the synaptic time constant,
wij is the synaptic weight from neuron j to neuron i and tj is the spike time of neuron j.
Since there can be multiple neurons connected to the target neuron i, the currents of them are
added up to form the total current.

Ii(t) =
∑
j

Iij(t) (1.4)

Ii(t) denotes the total current to neuron i

– 20 –

Spike based agent for MDPs

2
Methods

2.1 Bellman equations

MDPs have been studied in literature and many different ways about how to tackle those prob-
lems emerged. Dynamic programming and reinforcement learning algorithms yield best per-
formance in solving such problems [Bellman, 2010], [Sutton and Barto, 1998]. Behind those
algorithmic approaches, a mathematical framework to threat MDPs was developed by Bellman.
The following derivations are similar to the one presented by [Richard S. Sutton and Andrew
G. Barto] or [Singh and Sutton, 1996].
One can define a policy π(a|s) as a probability distribution over actions a in the state s. In
this work, only deterministic policies π(s) are considered. The policy π(s) does not yield a
probability distribution over actions, but rather a single action when being in the state s. This
policy is learned to maximize the expected reward over an episode where an episode in this sense
denotes a sequence of states, actions and rewards, until a final state or a given number of steps
is reached.
Special focus will be set on reinforcement approaches where two key concepts are important,
namely the Bellman equation for the State-Value function or simply Value-Function

Rt =
∞∑
k=0

γkrt+k+1 (2.1)

V π(s) = E{Rt|st = s}

V π(s) = E{
∞∑
k=0

γkrt+k+1|st = s} (2.2)

V π(s) =
∑
a

π(a|s)
∑
s′

P as,s′ [R
a
s,s′ + γV π(s′)] (2.3)

Rt is the total expected reward at time step t, γ is the discount factor
and the second most important concept, the Action-Value function or the so-called Q-Function:

Qπ(s, a) = E{Rt|st = s, at = a} (2.4)

Qπ(s, a) = E{
∞∑
k=0

γkrt+k+1|st = s, at = a} (2.5)

Qπ(s, a) =
∑
s′

P as,s′ [R
a
s,s′ + γV π(s′)] (2.6)

Those equations are following the notation of [Sutton and Barto, 1998]. There is a set of possible
policies π(s) that may result in different values for the Q-Function or the Value-Function. To
determine if a policy π′(s) results in a higher expected reward over an episode compared to π(s),
the Value-Function can be used. If for the policy π′(s) the equation V π′

(s) ≥ V π(s), ∀s ∈ S holds,

– 21 –

2 Methods

it yields a higher expected reward. This can also be written in a shorter form as π′(s) ≥ π(s).
An optimal policy can then be found by searching for a policy π′(s) for which π′(s) ≥ π(s),∀π(s)
[Richard S. Sutton and Andrew G. Barto], [Szepes ari Richard Sutton, 2010].

The solution of the Bellman equations is known to result in an optimal policy for any given
MDP and can be used as a reference method for decision making processes [Bellman, 2010].
However, the solution of those equations requires to solve a system of equations simultaneously
of the size of the state space ||S||. This process can be done iteratively as it is done by a reference
algorithm discussed later 2.5, but requires many steps and a lot of computing effort. Due to
the limited computing power of the hardware system used, this approach cannot be implemented.

2.2 Temporal Difference Learning

To avoid solving the Bellman equations, Temporal Difference Learning (TD-Learning) can be
used. The advantage of TD-Learning comes from the fact that for learning it is not required to
play episodes fully to the end, but it rather learn from every single step. This algorithm emerged
from Monte Carlo Methods which yield an iterative procedure to update the Value-Function or
the Q-Function:

V π(s) = V π(s) + α[Rt − V π(s)] (2.7)

Qπ(s, a) = Qπ(s, a) + α[Rt −Qπ(s, a)] (2.8)

where α denotes learning rate.
TD-Learning improves the Monte Carlo Method in terms of computational effort by evaluating
the total expected reward Rt, from equation 2.7 or 2.8, with only a single step. Although the
same calculations can be applied to the Value-Function as well, in this thesis TD-Learning in
combination with the Q-Function 2.6 is used to endow the network to learn an optimal policy
for any given MDP.
The total expected reward can be formulated as:

Rt =
∞∑
k=0

γkrt+k+1 (2.9)

=
∞∑
k=0

γkrt+k+1

= rt+1 + γ
∞∑
k=0

γkrt+k+2

Rt = rt+1 + γQ(st+1, at+1)

This results in a modified update rule from the Monte Carlo Method:

Q(st, at)← Q(st, at) + α[rt+1 + γQ(st+1, at+1)−Q(st, at)] (2.10)

Q(st, at)← Q(st, at) + α[rt+1 + γ arg max
a

Q(st+1, a)−Q(st, at)] (2.11)

Since the Q-Function is estimated for the current policy π(s), this super script is omitted.
In addition, the time index is reintroduced to emphasize the time relation of the individual
components in equation 2.11. From equation 2.10 it can be observed, that the update procedure

– 22 –

2.3 Temporal Difference Learning with eligibility traces

requires the next action to be selected. To do this, we can remind ourselves that the Q-Function
represents the total expected reward from state s and action a (see equation 2.4). The selection
process can then be done by choosing the action with the highest Q-Value in state s which
effectively leads to 2.11. This update rule is also known under the term Q-Learning in literature
[Watkins and Dayan, 1992].

The pseudocode for TD-Learning can be formulated as:

Algorithm 1 TD-Learning

1: procedure TD(γ, α)
2: Choose at using current ε-greedy policy
3: Take action at, observe rt+1 and st+1

4: Choose at+1 using arg maxaQ(st+1, a)
5: Q(st, at)← Q(st, at) + α[rt+1 + γQ(st+1, at+1)−Q(st, at)]
6: st ← st+1

7: end procedure

An ε-greedy policy π′ does not only take the action proposed by π′(s), but also picks a random
action with a probability of ε ∈ [0, 1].
This pseudocode shows only the weight update rule. The initialization of the Q-Values, the
initialization of the first state and the loop until the maximum number of steps is reached are
not shown.

2.3 Temporal Difference Learning with eligibility traces

The trade-off between Monte Carlo Method using a complete episode for learning and TD-
Learning, using only a single step, is Temporal Difference Learning with Eligibility traces
(TD(λ)-Learning). Convergence speed of TD-Learning can be improved when using more than
just a single step for learning. The update formula can be derived in a similar manner as before.
The sum to compute the total expected reward given in equation 2.1, is expanded for more than
two terms and again the Q-Function of the state st+λ is used to estimate the remaining reward.
How many steps are considered for learning can be specified with a parameter λ ∈ [0, 1], which
also gives rise to the name of the learning algorithm and obeys two limits:

λ =

{
1 A complete episode is considered, resulting in the Monte Carlo approach

0 Only a single step is considered, resulting in the TD-Learning approach

According to the described procedure the total reward expands to:

Rt =
λ∑
k=0

γkrt+k+1

= rt+1 + γrt+2 + ...+ γλ−1rt+λ + γλ
∞∑
k=0

γkrt+(1+λ)+k

Rt = rt+1 + γrt+2 + ...+ γλ−1rt+λ + γλQ(st+λ, a) (2.12)

The resulting expression in equation 2.12, can again be inserted into the Monte Carlo formula
2.8 to obtain the TD(λ)-Learning rule (similar [Szepes ari Richard Sutton, 2010]). However, this
forward view would again require knowledge about future rewards ({rt+2, ..., rt+λ}) collected by
playing a certain amount of steps like in the case of the Monte Carlo algorithm. To overcome

– 23 –

2 Methods

this, a backward view is introduced by so-called eligibility traces et(s, a). There is a separate
eligibility trace per individual state-action pair (s, a) which indicates how important this state
and action is for the previous ones. Using those eligibility traces, the resulting update rule can
be formulated as:

et(s, a) =

{
γλet−1(s, a) + 1 if s = st and a = at

γλet−1(s, a) otherwise
(2.13)

δt = rt+1 + γ arg max
a

Q(st+1, a)−Q(st, at) (2.14)

Q(st, at) = Q(st, at) + αδtet(s, a) (2.15)

One can check the above-mentioned limits for those formulas. If λ = 0, the eligibility trace is 0
for all state-action pairs, except for the one currently considered for updating, where it is 1. In
case of λ = 1, the trace accumulates the visits for the state-action pair (s, a) effectively resulting
in the Monte Carlo method.

The pseudocode for TD(λ)-Learning can be formulated as:

Algorithm 2 TD(λ)-Learning

1: procedure TDLambda(γ, λ, α)
2: Choose at using current ε-greedy policy
3: Take action at, observe rt+1 and st+1

4: Choose at+1 using arg maxaQ(st+1, a)
5: δ ← rt+1 + γQ(st+1, at+1)−Q(st, at)
6: et(st, at)← et(st, at) + 1
7: for all pairs (st, at) do
8: Q(st, at)← Q(st, at) + αδet(st, at)
9: et(st, at)← γλet(st, at)

10: end for
11: st ← st+1

12: end procedure

Again this pseudocode only shows the weight update rule, where the initialization and the loop
over all steps is done outside.

Both Q-Learning and Q-Learning with eligibility traces are chosen as learning algorithms, be-
cause they are proven to converge to the optimal solution of any given MDP [Dayan and Se-
jnowski, 1994], [Dayan, 1992]. The derived learning rules, in formulas 2.11 and 2.15, provide
different parameters, marked in red, which need to be chosen properly. They can take arbitrary
values between [0, 1], but influence convergence speed or stability behavior of practical imple-
mentations.
For the rest of this thesis, the term TD-Learning or TD(1)-Learning corresponds to Q-Learning
without eligibility traces and TD(λ)-Learning to the version of the Q-Learning with eligibility
traces.

– 24 –

2.4 Learning to Learn

2.4 Learning to Learn

Learning to Learn is a computing paradigm that is inspired by the human brain and was recently
used to yield promising results [Andrychowicz et al., 2016], [Chen et al.], [Duan et al.]. The
human brain is able to learn different tasks efficiently and is able to overtake experiences and
knowledge from previously learned tasks, to new similar ones, which improves learning speed.
The general idea of LTL is to

• define a family of learning tasks which share some common concept.

• define a fitness, indicating how well the agent is able to perform this task.

Humans also face such situations throughout their lives, for example a family of tasks is rid-
ing two-wheeled vehicles, like bicycles and motorcycles. The fitness in this case is how well
the human being is able to ride the vehicle. The essence of LTL is the transfer of knowledge
from one task to another similar one from the same family. In the given example the human
is able to learn how to ride a motorcycle faster, once he has already learned how to ride a bicycle.

From an algorithmically perspective, the agent which should learn a given task is parameterized
with so-called hyperparameters θ. Here, the parameters of the agent can range from learning
rates to more complex parameters of a neural network or of an underlying hardware.
The agent itself is not limited to any particular model and can therefore be implemented as a
software neural network, a hardware chip or any arbitrary model capable of learning a task. In
the case of this thesis, the agent is a neural network in combination with a learning rule, target-
ing to solve MDPs. It learns a given task T from the family F based on the hyperparameters
θ and produces a fitness accordingly. If a new, similar task T ′ ∈ F is given to the agent, the
same hyperparameters might not yield a good performance. The hyperparameters θ must then
be optimized to yield an appropriate performance for both tasks, T , T ′.
Figure 2.1 depicts the described structure of LTL. From a high-level perspective the structure
can be split into two separate parts. The first part is the optimizee which is the agent learning a
given task with the learning rule parameterized by θ. The second part involved is the optimizer
which is in charge of optimizing the hyperparameters of the optimizee, such that learning a new
task from the same family F is improved in terms of learning speed.

– 25 –

2 Methods

Figure 2.1: Structure of the LTL paradigm. The approach consists of two components interacting with each
other. The optimizee (in the lower part of the figure) represents the agent, learning a given
task T . The agent is allowed to be any model with learning capabilities, whereas the applied
learning rule is parameterized by hyperparameters θ. The optimizee receives θ as an input,
draws a new task T ∈ F and produces a fitness value f as an output. This fitness is then fed
into the second part, the optimizer (shown in the upper half of the figure). In this thesis the
optimizer is an optimization algorithm that receives the fitness f as an input and produces a
proper new hyperparameter set θ for the optimizee. This new hyperparameter set should then
improve learning speed for new tasks T ′ from the family F

An often encountered application in machine learning is to optimize parameters θ for a partic-
ular task, which is usually done by hand. Using the introduced notation, this can be achieved
by defining a family F which holds only a single task. The optimizer then tries to optimize the
fitness value of the single task with respect to the parameters θ. However, it has to be mentioned
that this approach allows the agent to learn a whole family of tasks rather than particular single
task.

2.5 Reference Algorithms

The performance of the implemented network structure needs to be evaluated. In order to do
this, the results are compared to three different reference algorithms from literature:

• Value Iteration (VI): Iteratively solves equation 2.6 and produces Q-Values for each
state in each iteration. This algorithm essentially solves the Bellman equation iteratively
therefore converges to the optimal policy and can be seen as the optimal algorithm.

• Q-Learning with fixed epsilon (QLF): Implements Q-Learning as given in equation
2.11. The learning rate stays constant during training and is chosen by hand upfront.

• Q-Learning with adaptive epsilon (QL): Implements Q-Learning in a slightly modified
way. The learning rate is adaptive and changes during training. This mechanism is thought
to provide better performance as the training time evolves.

• Random policy (Rnd): A Random policy algorithm is also implemented in order to
show the performance when only guessing actions. This algorithm chooses a random policy
and does not apply any further learning or update to it.

– 26 –

Spike based agent for MDPs

3
Implementation

The theoretical model of the learning algorithm presented in chapter 2 will be implemented on
two different platforms. The first platform is a pure software simulation and the second aims at
taking the advantages of a neuromorphic hardware into account. To have a unified framework,
the structure of the network is designed under the given requirements and restrictions of the
hardware:

• Operate mainly on the level of single or few spikes

• Operate on deterministic neurons, since the hardware per se has deterministic neurons

• Scale down to the limit of 32 neurons, while still provide the possibility to learn non trivial
tasks

3.1 High-level network structure

From an abstract point of view, the proposed network uses the learning algorithms derived in
section 2.2 or 2.3, because they are known in literature and there exists a proof that those algo-
rithms reach an optimal solution for a given MDP (see [Dayan and Sejnowski, 1994] or [Dayan,
1992] for details).
The network consists of two fully connected layers of spiking neurons. The first layer consists
of n = ||S|| neurons, also called state population, where S denotes the state space. Each neuron
of this layer represents a single state si ∈ S.
The second layer consists of m = ||A|| neurons, also referred to as action population, represent-
ing all possible actions ai ∈ A, where A denotes the action space.
The synapses for each neuron in the first layer can be interpreted as a connection from state si
to all action neurons aj . With this structure, only a total amount of ||S|| + ||A|| neurons are
needed which fulfills the scalability constraint.

When comparing the structure to the Q-Function presented in 2.2 or in 2.3, one can find that
the efficacies of the different synapses could represent the Q-Values Q(si, aj) or a scaled version
of it. To have a consistent notation with literature, the weight of the synapse connecting the
j-th action neuron with the i-th state neuron is denoted by waj ,si . For the rest of this thesis,
this is equivalent to wji, where the first index indicates the action neuron and the second index
the state neuron.

– 27 –

3 Implementation

3.1.1 Details of update rules

The two derived update rules are stated again for convenience:

Q(st, at)← Q(st, at) + α [rt+1 + γ arg max
a

Q(st+1, a)−Q(st, at)] (3.1)

et(s, a) =

γ λ et−1(s, a) + 1 if s = st and a = at

γ λ et−1(s, a) otherwise
(3.2)

δt = rt+1 + γ arg max
a

Q(st+1, a)−Q(st, at) (3.3)

Q(st, at) = Q(st, at) + α δtet(s, a) (3.4)

Where the red marked variables indicate the hyperparameters considered for Learning to Learn.

The term Q(st, at) in both equations is represented by the current synaptic weight wji connect-
ing the state neuron si to the action neuron aj at time step t. The same also holds for the term
Q(st+1, at+1) at timestep t+ 1, whereas this may address a different synaptic weight, since the
tuple (st+1, at+1) can be different from the tuple (st, at).
The reward rt+1 is given as a global signal from the environment and is accessible for all synapses
when needed.
The term arg maxaQ(st+1, a) is nonlinear and responsible for performing the ”off-policy” action
selection by choosing the highest Q-Value for the state st+1 depending on the action a. In the
proposed setup, this operation is carried out by the network itself. This is because the action
neuron aj , whose synaptic weight is the highest, compared to all other action neurons connected
to this state, fires a spike before the other action neurons. Since the action neurons are also
inhibitory connected to each other, a spike from neuron aj reduces the spiking probability for
all other action neurons ai ∈ A, i 6= j effectively resulting in the nonlinear arg maxa operation.
Note that the eligibility traces required for TD(λ)-Learning are not problematic and stored in
memory. It has also to be mentioned that on hardware only 8-bit values for the parameters
of the learning rule can be used. Although the Plasticity Processing Unit (PPU), see chapter
3.3.2, itself is capable of computing with higher precision, the main bottle neck was the available
memory which only allowed for 8-bit parameter values.

The state of the MDP is indicated by a spiking state neuron si which is self-excitedly connected
to itself as well as connected to the action neurons aj ∈ A. Depending on the weight values, one
or multiple action neurons might eventually emit a spike which can be interpreted as the action
for this particular state. In general, such a model would already produce actions depending
on the current state but at arbitrary time steps. To be able to use Q-Learning as introduced,
actions are only read within a defined action selection window to get discrete update times.
Figure 3.1 shows a simple version of the described network with 3 state neurons and 4 action
neurons.

– 28 –

3.1 High-level network structure

Figure 3.1: High-level network structure which operates on the level of few spikes and where Q-Values are
represented as the synaptic efficacies. The red neurons on the left-hand side build up the state
population to represent the current state. The states are one-hot encoded, meaning that for each
state s ∈ S exactly one of the state neurons is active, i.e. if state si is represented, the i-th
neuron from the left population is active, while all others remain silent. The green neurons form
the action population and represent the possible actions a ∈ A. A single or few spikes are emitted
by the current state neuron si to stimulate the action neurons. Depending on the weights, one
the j-th action neuron eventually emits an output spike which is then considered as the taken
action aj in state si.
The action for the state si is selected as the first spike of an action neuron aj within the action
selection time window. The reward from the environment is integrated into the according synaptic
weight update. The action neurons are inhibitory connected to each other to suppress the other
actions. If there is no spike within this time window, a random action is selected.

3.1.2 Action selection process

To better understand the action selection procedure of the network, one considers a general
MDP with a set of states S, whereas the agent is in an arbitrary state si ∈ S and a set of actions
A. To perform an interaction with the environment, the agent must be able to come up with an
action given the state si, which is done in the following way:

1. The current state is presented to the network as a one-hot vector, a zero-vector of length
||S|| with excatly one 1 entry. This means that for each state s ∈ S there is exactly one neu-
ron from the state population active. The one-hot vector for s1 looks like

(
0 1 0 . . . 0

)
T

2. The action of the network is selected as the first output spike produced by the action
neurons within a predefined time window (action selection window). This action selection
window starts after the state neuron spiked and ends at a defined time (maximum wait
time).

3. If there was no spike within this time window, or all action neurons spiked exactly at the
same time, a random action is selected.

4. The update of the corresponding weight using the reward from the environment is per-
formed.

5. The next state is presented to the network and the action selection process starts again
from point 1.

– 29 –

3 Implementation

3.2 Software implementation

To model the SNN, the neural simulator NEST with a Python binding is used. The network
models the explained structure in a straight forward way and uses LIF neurons for this pur-
pose. The programming language Python was selected for various reasons. First of all, it allows
for fast prototyping with convenient debugging capabilities. Furthermore, it is independent of
the underlying operating system and the platform, which makes it perfectly suitable to create
a portable implementation for the hardware from Heidelberg. Finally the Learning to Learn
framework, explained in a later section 3.4, was also developed in Python and can therefore be
smoothly integrated.

Available libraries for the maze and MDP environments are modified to allow for an easy adap-
tion of the task difficulty. For example, it is possible to generate new random MDPs with
different sizes of state and action spaces, or to generate new mazes with various sizes.

It has to be mentioned that the Q-Learning algorithm cannot be implemented in an online
manner using only the NEST Python binding, without modifying the NEST kernel. To address
this issue a batch mode is used, where the weight update is performed after each action selection
process done by the network. For example, the network is in a particular state si, selects action
aj and gets into the next state sk while receiving the reward r. Before continuing with the next
state, the update rule is applied and the synaptic weights are updated.

– 30 –

3.3 Hardware implementation

3.3 Hardware implementation

When discussing the hardware, additional components beside the HICANN-DLS itself are needed.
In figure 3.2 one can see the overall system architecture and the main components involved in a
hardware experiment.

Figure 3.2: General overview about involved components when performing experiments with the HICANN-
DLS. There are mainly three components involved: A conventional host computer, a FPGA
circuit as well as the HICANN-DLS chip itself. The communication between the different compo-
nents are performed over different channels. The host computer can be programmed in standard
Python 2 and is responsible for the setup of the network structure, the initial synaptic weight
setup as well as the preparation of the mailbox (see 3.3.1). The mailbox is a memory area within
the HICANN-DLS accessible from the host computer and can be used to exchange information
as well as results (blue arrows). The real hardware, the HICANN-DLS, holds basically two com-
ponents. One of them is the digital processor (PPU) used for synaptic plasticity and the other
one is spiking neural network (SNN) part. The PPU (see 3.3.2) implements the environment
for the current task, as well as the plasticity rule and is also able to send spikes to the SNN. In
addition to the host computer and the HICANN-DLS chip there is also a FPGA involved. This
module allows sending spikes to the SNN directly from the host computer (black arrows) and is
also responsible for routing self-exciting spikes of the neurons within the SNN (green arrows)
and recurrent spikes (red arrows). For example, with this module it is possible that neuron i
sends a spike to any other neuron, including itself. In the present hardware version, also spikes
from one neuron i to another neuron j 6= iare routed via the FPGA circuit (red arrows).

3.3.1 Framework on host computer

The implementation on the host computer is needed to prepare the network structure, to set
the initial conditions and to evaluate the results after the experiment on the chip is done. In
contrast to the software model, the network structure is implemented by setting entries in a
so-called synapse array. This is a 32 x 32 matrix, whereas each element (i, j) indicates a synapse
from neuron i to neuron j. In the hardware implementation, a synapse holds a synaptic efficacy
as well as a synaptic address:

• Synaptic efficacy: The weight of the synapse wji is used to represent a scaled version of
the Q-Value Q(si, aj) as in the software model.

– 31 –

3 Implementation

• Synaptic address: The addresses of the individual synapses are used to build network
structures.

The address of the synapse is important when implementing network structures and is new
compared to the NEST software model. Another interpretation of the synapse array is that the
32 rows represent synapse drivers and the 32 columns represent individual neurons. Spikes are
injected by the 32 synapse drivers and might come from the PPU, from the network itself or
from the host computer via the external FPGA circuit.
Figure 3.3 depicts a simple example to illustrate the concept of synapse drivers and synapse
addresses. Every spike transmitted to the network has an address assigned. If this spike address
matches the address of a synapse connected to the same synapse driver, the spike gets translated
into a current, according to the weight of the synapse and finally transmitted to the target
neuron. If the address between the spike and the synapse does not match, or the synapse is not
connected to the same synapse driver, the spike is not transmitted to the neuron.

Figure 3.3: This figure shows two synapse drivers drawn as horizontal lines, four neurons drawn as vertical
lines and two synapses connecting the neurons with the synapse drivers. The one incoming spike
is injected by the synapse driver 0 and has address 20 assigned (blue spike). The two synapses,
connected to the same synapse driver also have a particular weight and an address. Only if the
address of the synapse matches the address of the spike (green synapse), the spike gets scaled and
transmitted to the neuron. The spike injected by the driver 1 is not propagated further to any
neuron, because there is no synapse with the correct address connected to this synapse driver.

Note that the synapse driver additionally controls whether inhibitory or excitatory synapses are
formed. Per default all synapse drivers are set to be excitatory. To use inhibitory connections
with the chosen routing configuration, a synapse driver, corresponding to an entire row in the
weight matrix, must be reconfigured. Effectively this means that a particular neuron can either
have all excitatory or inhibitory outgoing connections.

To enable the full connection matrix, each neuron is per default connected to its dedicated
synapse drivers. This means that neuron i is connected to synapse driver i via an external
FPGA circuit. A spike from neuron i to itself is in this context denoted as a self-exciting spike.
In biology this self-excited synapse is referred to as an autapse [Wang et al., 2017].
The term recurrent spikes is also somewhat differently used in the context of the hardware than
one might expect. The spike from neuron i to any neuron j is already denoted as a recurrent
spike. The reason for this is that both, self-exciting and recurrent spikes are not transmitted
within the chip itself, but are instead routed using the external FPGA. Therefore, the spike
leaves the network and is recurrently fed back by the FPGA circuit. This mechanism introduces
some limitations in terms of the possible connection matrix and the usability of networks which
will be further discussed in section 3.3.5.

In figure 3.4 the network structure network for a MDP problem using 3 states and 2 actions is

– 32 –

3.3 Hardware implementation

demonstrated. One can see the self-exciting connections from the state neurons to themselves
and the connections from the state neurons to the action neurons. The weight of the synapses
used to connect the state and the action neurons are again interpreted as scaled versions of the
Q-Values.

Figure 3.4: Network structure for a simple MDP with ||S|| = 3 states and ||A|| = 2 actions. The network is
arranged as a 32 x 32 matrix whereas each horizontal row represents a synapse driver and each
vertical column represents an actual neuron. The synapse driver, here on the left-hand side,
are responsible for injecting spikes, sent from the PPU or the host computer (indicated by black
arrow on the left-hand side) as well as for injecting self-exciting spikes from the neurons itself
(indicated by dashed lines).
The black bars at the intersections between the synapse driver and the neuron line correspond to
single synapses. Each synapse holds a 6-bit weight value between 0 and 63 as well as an address.
The address can be used to distinguish if the spike approaching from synapse driver i is relevant
for neuron j. If there is no synapse connecting synapse driver i and neuron j, this means that
the weight is zero and no spike will be transmitted.
The PPU uses the synapse driver of the state neurons to indicate the current state of the environ-
ment, in particular this is done via the red synapse drivers and the red synapses. For example,
if the environment is in state zero, the PPU will send a single spike to the synapse driver 1 with
the address of the red synapse. The green synapses are used for the self-exciting connections of
the state neurons. The weight of both, the red and the green synapse, are fixed throughout the
entire run.
The blue marked synapses are used to activate the action neurons when the corresponding state
neuron spikes. These weights are learned during training. Depending on the weights, one action
neuron might fire before the other ones which is then the selected action for the current state.
Finally, the action neurons inhibit both, the state and the other action neurons which is done via
the brown synapses. Note that the synapse drivers of the action neurons are set to inhibitory,
indicated by the brown color.

A detailed step-by-step description of the ongoing processes when selecting an action in a given
state, can be found in section 3.3.2.
In addition to the configuration and the setup of the experiment, the evaluation of the learned

– 33 –

3 Implementation

Q-Values and the achieved results needs to be done on the host computer. Therefore, the spike
times, the weights, the states and the chosen actions are transferred from the chip to the host
part. Based on the initial state, the transition and the reward matrices, the reference algorithms
are trained and compared to the network, based on the cumulative reward.

To give a better overview, the actual hardware and the board are depicted in figure 3.5.

Figure 3.5: Taken from [Hartel, 2016] and [Friedmann et al., 2017]. The left-hand side shows the floor
plan of the HICANN-DLS and the separate modules on the chip. The overall dimensions are
approximately 2mm by 1.5mm. The synapse array is marked in red followed by the neuron array
in violet. The analog synapse parameters are stored in the yellow marked analog parameter area,
whereas the weights are stored inside a digital part in the PPU.

3.3.2 Plasticity Processor

The plasticity processing unit (PPU) is mounted on the HICANN-DLS beside the neural network
and can be used to implement more complex synaptic update rules. It is an open-source digital
processor with an additional vector processing unit capable of processing up to 16 synapses at
once to increase performance [Heidelberg], [Stöckel, 2017]. Since the chip has to interact with the
environments and no dedicated hardware to emulate these environments is available, they are
also emulated by the PPU. A high-level overview of the software structure and the information
flow inside the HICANN-DLS can be found in figure 3.6.

– 34 –

3.3 Hardware implementation

Figure 3.6: An abstract view of the software structure and the information flow inside the HICANN-DLS.
The three main components implemented on the neuromorphic are the neural network structure,
the environment of the different tasks and the learning algorithms. The environment for the
task as well as the learning algorithm are implemented on the PPU. The neural network is con-
structed by the host computer and runs in parallel to the PPU. In the beginning the environment
is initialized to an initial state which is presented as an observation to the network. The neural
network then produces an action according to this state. This action is then selected and per-
formed from the environment. The third step involved is the weight update of the neural network
according to a plasticity algorithm. The base version of this figure is provided by Christian Pehle,
which was then modified to adapt to the current situation.

As already mentioned, the PPU implements the MDP and maze environment, the action selec-
tion procedure and the weight update rule. For the action selection process, the following steps
are performed:

1. The environment is in a state s ∈ S.

2. The PPU sends a single spike to the state neuron si (see figure 3.4).

3. The activated state neuron is then self-excitedly connected to itself, causing it to periodi-
cally spike.

4. Eventually, depending on the weights, one or multiple of the action neurons, which are
also connected to the state neuron, will emit a spike as well.

5. The action neurons are inhibitory connected among each other. This inhibition prevents
multiple action neurons from spiking. In addition, the action neurons are also inhibitory
connected to the state neuron and cause the state neuron to stop spiking.

6. Finally the PPU selects the action for the given state as the action neuron which spiked. If
multiple action neurons spiked, a random one among them is chosen. If no action neuron
spiked, a random action is taken as well.

One of the hardware limitations is that the inhibition is not arbitrary fast and it might happen
that multiple action neurons emit a spike, before the inhibition present between the action
neurons becomes active (see 3.3.5).

– 35 –

3 Implementation

In contrast to the software implementation, the hardware faces also the limitation that the exact
spike times are not accessible within the PPU (see 3.3.5). To illustrate the ongoing process from
the network point of view, an exemplar spike raster is shown in figure 3.7.

Figure 3.7: Example sketch to demonstrate the action selection process. Three different situations with two
state neurons and three actions are shown. The rectangles indicate the action selection window
which is considered for selecting an action for a specific state. In the first case, the blue rectangle,
the environment is in state 1 and the state neuron 1 spikes. When this state is presented to the
network, the state neuron 1 receives a single spike from the PPU and emits a spike shortly
afterwards. Since all state neurons are self-excitedly connected, it starts to spike periodically. In
this case three action neurons also emit a spike within the action selection window. The action
neurons are inhibitory connected to each other, but this inhibition has a delay to become active.
This is the reason why it is possible for multiple action neurons to spike. After a defined delay,
the next state is presented to the network. In the second case, marked with the green rectangle,
the environment is in state 0 with state neuron 0 spiking periodically. Only a single action
neuron fires within this window, which is also the selected action. Again, after a pause, the next
state is presented, red rectangle. In this case no action neurons spikes and after a delay time,
the periodic spiking of the state neuron is aborted to allow for the next state to be presented to
the network

To overcome the problem that no action neuron spikes for a particular state, a maximum wait
time is implemented. If no action is chosen within this time window, also a random action is
selected.
An additional limitation of the hardware implementation is that it only uses 8-bit fixed-point
resolution for the parameters of the learning rule. This reduces the granularity of update steps
applicable to the synaptic weights. The memory limitation in combination with the implemented
framework, restricts the parameter values to eight bits. When using more bits for the parameters,
also the granularity of the weight update will increase and result in a better overall performance.

The proposed learning algorithm in this thesis is based on the fact that a higher synaptic weight
results in an earlier spike of the postsynaptic neuron (action neuron) after a spike from the
presynaptic neuron (state neuron) occurred. Since the PPU does not have access to the precise
spike times, a large time difference between spikes of the postsynaptic neurons using different
weights is required for this method. The mentioned inhibition between the action neurons can
improve this time difference, because the first spiking action neurons inhibits all others. However,
if the spike time difference is too small for the inhibition to become active, another mechanism
must be in place to increase the spike time difference.
One possibility is to keep the synaptic weights are within a certain range. On the one hand if
the weights are at the upper limit around 63 the spike time difference for different weights is
too small to perform the action selection based on them. On the other hand, if the synaptic
weights are too low, the postsynaptic neuron does not emit a spike at all if the presynaptic
neuron spikes. To keep the weights in a proper regime, a weight rescaling with three parameters
is implemented:

• Rescale periodicity: The weights are rescaled periodically, which is determined by this pa-
rameter. At fixed times, the weights of each state neuron to all action neurons are rescaled

– 36 –

3.3 Hardware implementation

separately. At the beginning of this process, the current weight interval [mini(wi,sj),maxi(wi,sj)]
for each state sj is linearly transformed to the rescale interval [wlower, wupper]. For a better
understanding this process can be illustrated with the following examples:
Consider for example the following old weights {23, 27, 35, 50} resulting in the interval
[23, 50]. This should be rescaled to the interval new [30, 40]. After rescaling, the new
weights look as follows: {30, 31, 34, 40}.

• Lower weight limit wlower: This is the lower limit of the new rescaled interval.

• Upper weight limit wupper: This is the upper limit of the new rescaled interval.

3.3.3 Mailbox

The mailbox is the interface between the program running on the PPU and the Python code on
the host computer and has a limited storage capacity of 4 kB. The implemented framework uses
this mailbox to exchange configuration information about the MDP and maze problem as well
as the learning rates for the update rule from the host computer to the DLS chip. Information
about the performed actions and occupied states are exchanged in the opposite direction from
the chip to the host computer.

3.3.4 Chip calibration

Since the neuromorphic hardware used contains analog components, there is chip to chip and
also trial to trial variability present. To be able to use similar neuron configurations as in the
software model and to also exchange the hardware, a unified calibration is needed. A student
from the University of Heidelberg investigated the influence of various analog and digital hard-
ware parameters and developed a database, which can be used for calibration, for his bachelor
thesis. When using this database, one can collect values for desired neuron parameters and for
different hardware chips. To mention one example, it is possible to find calibration values for a
desired membrane time constant in biological time for two different hardware chips [Stradmann,
2016]. This is essential, since the hardware resources in Heidelberg are limited and with this
calibration, the implementation is not tailored to one specific chip.

3.3.5 Limitations

The neuromorphic hardware used was in a prototype status when this thesis was carried out.
Therefore, there are some limitations present which limit the proposed algorithm.

• The current version of the HICANN-DLS only holds 32 neurons. However, this neuron
limitation will be improved in future generations.

• Only a Python 2 interface is available per default. This caused issues with the LTL
framework from the Institute for Theoretical Computer Science which was developed in
Python3. To use this framework in combination with the hardware, it must be translated
into Python2 first. However, the software framework is compatible with Python 3, but
was not recommended to use at the moment of conducting the experiments.

• The exact times of the spikes are not accessible within the PPU. This limits the proposed
approach and requires using only spike occurrences to determine which action should be
selected. If more than one action neuron fired within the selection window, a random action
gets selected. However, this mechanism did not destroy the performance of the algorithm
and the results show that the learning rule and the inhibition between the action neurons
can compensate for this limitation (see hardware performance in section 5.4).

– 37 –

3 Implementation

• In the current version of the hardware, all recurrent spikes from neurons to other neurons
are accumulated by the external FPGA circuit. They are sent back in on a periodic basis,
but all with the same address. This means that all spikes from neuron i injected by
synapse driver i have the same address. This has to be taken into account when designing
a network structure.
Future hardware releases will in cooperate on chip routing which should resolve this issue.

• DLS is unavailable if an experiment crashes when operating the PPU. An exception with
the message ”Query does not read or write” occurs if the chip is not available anymore
and no further experiment can be performed until the chip is properly restarted. This
situation can easily occur if the running job is aborted for some reason when executing
on the PPU. At the moment when this thesis was carried out, no proper solution for this
problem was present.

3.4 Learning to Learn framework

The Learning to Learn framework used, was developed at the Institute for Theoretical Computer
Science at Technical University of Graz. This framework is built-up in an abstract and modular
way according to the Learning to Learn methodology introduced in section 2.4. In this thesis,
the optimizee is a neural network used to learn given MDPs, and the optimizer is used to tune
the hyperparameters of this network. Due to the modular structure, the two components are
separated and can be exchanged easily.
Right from the beginning, the implementation of both, the software and the hardware model
was an integral part of this framework to reduce the later effort when applying this concept.
The framework holds a various number of optimization algorithms as optimizers, where for this
thesis, mainly the following four were used.

3.4.1 Crossentropy

A tutorial on Crossentroy (CE) was proposed by [de Boer et al., 2005]. Although there are
modifications available (Fully Adaptive Cross Entropy, FACE), the preset framework uses the
standard version. The following pseudocode sketches the main concepts of the algorithm. How-
ever, for further details, the reader is referred to the tutorial in [de Boer et al., 2005].:

Algorithm 3 Crossentropy

1: procedure Crossentropy(nmax, n, ρ, sc, sm, P)
2: Initialize probability distribution p(· ;φ) from the family P
3: while maximum iterations nmax not reached and sc not met do
4: for i ∈ {1, 2, ..., n} do
5: Sample θi from p(· ;φ)
6: Fi = Fitness of (θi)
7: end for
8: Sort fitnesses Fi in descending order
9: Select the bρ · nc best performing individuals, resulting in the elite set E

10: φ′ = arg maxφ
∑
θ∈E log(p(θ;φ)) (Minimize crossentropy)

11: Optionally perform smoothing φ← sφ+ (1− s)φ′
12: end while
13: return θsampledfromp(· ;φ)
14: end procedure

This algorithm tries to fit a parametric distribution p(· ;φ) on the current best individuals.
It starts out with randomly generated individuals and an initial parametric probability dis-

– 38 –

3.4 Learning to Learn framework

tribution. In subsequent steps, the algorithm samples new individuals from this distribution,
evaluates them and keeps the best performing ones. The new probability distribution is fitted
onto these elite individuals by minimizing the cross-entropy. In the next iteration, individuals
are then sampled from this new distribution.
With this approach, the probability distribution evolves towards a region of individuals with
high fitness values, because with each iteration it becomes more likely to sample better individ-
uals than in the previous iteration.
The algorithm can be improved with a smoothing parameter, enabling a smoother parameter
update of the distribution. In addition, the probability distribution used can be customized
according to the present problem and fitness landscape. In this thesis, a Noisy Gaussian dis-
tribution family is used, which can be seen as a Gaussian distribution attached with noise
components.
The parameters of this optimization algorithms, also called hyperhyperparameters (HHP), are:

• Maximum iteration nmax: This parameter denotes the maximum number of iterations per-
formed. If no other stopping criterion is met, the algorithm will stop if the number of
iterations exceeds this limit.

• Population size n: This denotes the amount of individuals sampled in each iteration.

• Elite factor ρ: This factor, in combination with the population size, determines how many
individuals are considered during the fitting process of the probability distribution.

• Stopping criterion sc: This is an optional criterion, denoting which fitness value stops the
execution of the algorithm.

• Smoothing parameter sm: This denotes the optional smoothing value. In this case, the
update of the parameters of the probability distribution, is a linear combination of the old
parameters and the newly fitted ones weighted with this smoothing parameter.

• Distribution family P: This parameter denotes the used probability distribution family
used for fitting the elite individuals. As already mentioned a Noisy Gaussian distribution
is used in this thesis.

3.4.2 Evolution Strategies

Evolution Strategies (ES) presented by [Wierstra et al., 2014] is a modification of the well-know
evolutionary strategies and was already successfully used in a recent work by [Salimans et al.,
2017]. Again, the basis outline of the algorithm is sketched in the pseudocode 4 and detailed
information can be obtained from the stated papers.
The algorithm starts out with a randomly generated individual. In each following iteration, this
individual is modified with random perturbations until a population size of n is reached. In case
the extension of ”mirrored sampling” is used, the perturbations are mirrored, meaning that half
of the individuals are modified in one direction and the other half with the same absolute value
in the opposite direction.
Once this perturbation is done, the new individuals are evaluated and linearly combined to yield
the new base parameter set θ which is again perturbated in the next iteration.
The hyperhyperparameters of this optimization algorithms are:

• Maximum iteration nmax: This parameter denotes the maximum number of iterations per-
formed. If no other stopping criterion is met, the algorithm will stop if the number of
iterations exceeds this limit.

• Learning rate α: This denotes the learning rate of the algorithm when updating the base
parameter set θ, which should be perturbated in the next iteration.

– 39 –

3 Implementation

Algorithm 4 Evolution Strategies

1: procedure EvolutionStrategies(nmax, α, σ, ms, n, sc, fs)
2: Randomly generate one individual θ
3: while maximum iterations nmax not reached and sc not met do
4: for i ∈ {1, 2, ..., n} do
5: if ms and i ≥ dn2 e then
6: εi = −εn−i
7: else
8: Sample εi from N (0, σ)
9: end if

10: Fi = Fitness of (θ + εi)
11: end for
12: if fs then
13: k(i)← Index of i-th greatest fitness

14: ui =
max(0,log(n

2
+1)−log(k(i)))∑n

j=1 max(0,log(n
2
+1)−log(j))

− 1
n , ∀i ∈ {1, 2, ..., n}

15: θ ← θ + α
σn

∑n
i=1 uiεi

16: else
17: θ ← θ + α

σn

∑n
i=1 Fiεi

18: end if
19: end while
20: return θ
21: end procedure

• Population size n: This parameter denotes the size of the population which emerges after
the perturbation process

• Noise standard deviation σ: This denotes the standard deviation of the random perturba-
tion applied to the individual.

• Stopping criterion sc: This is an optional criterion, denoting which fitness value stops the
execution of the algorithm.

• Mirror sampling ms: This flag indicates if the perturbations should be mirrored or if the
individuals should be perturbated in only one direction.

• Fitness shaping fs: This flag indicates if the fitness shaping method should be considered
or not. Using this flag the update of the individual to perturbate is not done with the
fitness directly, but with a so-called utility function ui which might yield a performance
improvement as shown in [Salimans et al., 2017].

3.4.3 Simulated Annealing

Simulated Annealing (SA) as presented in [Kirkpatrick et al.] provides a reasonable baseline for
more advanced optimization algorithms. The concept underlying this technique is the annealing
process of metals, where the temperature is precisely controlled to reach a state with low energy
(e.g.: low number of defects inside the metal).
The framework implements a special version of this method, in which several annealing processes
are performed in parallel to increase the chance to find a good fitness maximum. The main idea
of the algorithm is shown in algorithm 5:
Like many algorithms, this one also starts out with randomly generating n individuals. As
the algorithm mimics an annealing process, a temperature exists, which decreases from an
initially high value to a lower value throughout iterations. In each iteration of the algorithm,

– 40 –

3.4 Learning to Learn framework

Algorithm 5 SimulatedAnnealing

1: procedure SimulatedAnnealing(nmax, n, σ, sc, T)
2: Randomly generate individuals θi, ∀i ∈ {1, 2, ..., n}
3: Initialize temperature T
4: cnt← 0
5: Fi ← Fitness of (θi), ∀i ∈ {1, 2, ..., n}
6: while maximum iterations nmax not reached and sc not met do
7: for i ∈ {1, 2, ..., n} do
8: Sample εi from N (0, σ)
9: F ′i = Fitness of (θi + εi)

10: if F ′i ≥ Fi then
11: θi ← θi + εi
12: Fi ← F ′i
13: else
14: p =

exp(−(F ′
i−Fi))

T
15: if U(0, 1) < p then
16: θi ← θi + εi
17: Fi ← F ′i
18: end if
19: end if
20: end for
21: cnt← cnt+ 1
22: T ← T (T, cnt)
23: end while
24: i = arg maxi′ Fi′

25: return θi
26: end procedure

the n individuals are treated separately in the annealing process. For simplicity, n = 1 in this
description.
The individual is perturbated with a random step and evaluated and this new fitness value is
compared with the previous fitness value. If the new fitness value is higher than the previous one,
the perturbated individual is kept and used in the next iteration. On the other hand, if the new
fitness value is lower than the previous one, the perturbated individual is only kept with a certain
probability, which is decreasing when the temperature is decreasing. This approach allows for
exploration at high temperatures and reduces to a greedy approach at low temperatures. Before
the next iteration starts over again, the temperature is decreased according to the given schedule.

The HHPs of this algorithm are:

• Maximum iteration nmax: This parameter denotes the maximum number of iterations per-
formed. If no other stopping criterion is met, the algorithm will stop if the number of
iterations exceeds this limit.

• Population size n: This denotes the amount of parallel simulated annealing processes.
Those individuals are treated separately during the optimization process and can therefore
not be directly compared to a population size as in case of Crossentropy 3.4.1.

• Stopping criterion sc: This is an optional criterion, denoting which fitness value stops the
execution of the algorithm.

• Noise standard deviation σ: This denotes the standard deviation of the random perturba-
tion applied to the individual.

– 41 –

3 Implementation

• Temperature schedule T : The way how the temperature is decreased can be specified with
this temperature schedule. The present framework supports various schedules which pro-
vide different advantages in certain situations. In this thesis the ”Quadratic adaptive”
cooling schedule is used. The behavior of the other schedules was not investigated to a
greater detail, but were already investigated in the literature, e.g.: [Fernando Dı́az Mart́ın
and Riaño Sierra, 1].

3.4.4 Classic gradient descent

The classic gradient descent optimization algorithm (GD) is also a baseline algorithm used as a
reference. In the implemented version, finite differences are used to estimate the gradient around
the current base point. Also, the pseudocode of the last algorithm is depicted here:

Algorithm 6 GradientDescent

1: procedure GradientDescent(nmax, α, n, sc, σ)
2: Randomly generate initial base point individual θ
3: while maximum iterations nmax not reached and sc not met do
4: for i ∈ {1, 2, ..., n} do
5: Sample εi from N (0, σ)
6: Fi = F(θ + εi)
7: end for
8: F ′ = Fitness of (θ)
9: ∆F = (F1 − F ′, F2 − F ′, ..., Fn − F ′)T

10: E = [ε1|ε2|...|εn]T ∈ Rn×d
11: g = arg ming′ (Eg′ −∆F)2

12: θ ← θ + αg
13: end while
14: return θ
15: end procedure

The algorithm starts out with a random individual as the base point. In each following iteration,
the neighborhood of this base point is explored with small perturbations and evaluated. The
gradient is then computed based on the finite fitness differences between the base point and the
neighboring points. Finally, the new base point is computed by taking a step into the direction of
the gradient and the next iteration starts with its exploration. One problem with this approach
is that the base point might not yield a good reference value in noisy fitness landscapes. To
reduce this noise, the base point is evaluated ten times, before the neighborhood is explored.

The HHPs of this algorithm are:

• Maximum iteration nmax: This parameter denotes the maximum number of iterations per-
formed. If no other stopping criterion is met, the algorithm will stop if the number of
iterations exceeds this limit.

• Number of random steps n: This parameter indicates how many points in the vicinity of
the base point should be evaluated and considered for the gradient computation.

• Stopping criterion sc: This is an optional criterion, denoting which fitness value stops the
execution of the algorithm.

• Noise standard deviation σ: This denotes the standard deviation of the random perturba-
tion applied to the individual.

– 42 –

3.4 Learning to Learn framework

• Learning rate α: This parameters denotes the learning rate and control how large the step
into the direction of the gradient will be during the update of the base point.

For the rest of this thesis, the term ”LTL algorithm” refers to the optimization algorithm used
in the optimizer to tune the hyperparameters of the optimizee.

The hyperparameters of the optimizee consist of learning rule and implementation parameters
specific for hardware and software. The two learning rules used are parameterized by the red
marked and circled parameters stated in equations 3.1, 3.2, 3.3 and 3.4 regardless of the under-
lying platform.

For the software implementation the additional parameters are:

• Weight bias: This represents the initial weight between the state and action population.

• Scaling factor: This multiplicative factor is used to scale the Q-Values stored in the synaptic
weights.

• Learning rate decay: The learning rate is multiplied with this factor in each iteration in
order to reduce the learning rate over time.

For the hardware implementation following parameters are used in addition:

• Rescale period: Since the Q-Values modify the weights of the synapses and the spiking
behavior of the network depends on them, the current weights are rescaled with this
periodicity. This allows for a tradeoff between too high weights, where almost all action
neurons spike within the action selection window and too low weights, were no action
neuron spikes.

• Lower weight boundary: This represents the lower weight boundary used for rescaling.

• Upper weight boundary: This represents the upper weight boundary used for rescaling.

• Weight bias: Similar to the software implementation, the initial weight for the network is
parameterized.

• Inhibition strength: In contrast to the software implementation, the hardware does not
explicitly implement an ε-greedy policy, where a random action is selected with a proba-
bility of ε. Instead, this explorative behavior is modified by the strength of the inhibition.
A stronger inhibition allows only one action neuron to spike within the action selection
window, while a weaker inhibition may allow multiple action neurons to spike, effectively
increasing the chance of taking an alternative action.

One important aspect when applying different optimization algorithms in the optimizer is that
all hyperparameters are scaled to the same interval, here for simplicity [0, 1]. This is necessary
since optimization algorithms might use the same update step for different hyperparameters and
if they are not scaled properly, this might result in too high or too low updates.

As explained in the background section on LTL 2.4, the optimizee learns a new task from the
family F based on the given hyperparameters, where the fitness landscape might be noisy. To
reduce this noise, the optimizee learns 20 new tasks with the same hyperparameters and the
final fitness is averaged over those tasks.

– 43 –

3 Implementation

3.4.5 Hyperhyperparameters for Learning to Learn framework

This section is intended to state a table (3.1) with the HHPs used for the different LTL algorithms
and for the software and hardware model:

Table 3.1: Hyperhyperparameters used for various Learning to Learn algorithms

LTL algorithm HHP MDP Maze
SW HW SW HW

CE

nmax 75 30 50 30
n 75 50 48 50
ρ 0.2 0.2 0.2 0.2
sm 0.0 0.0 0.0 0.0

SA

nmax 75 30 50 30
n 75 50 48 50
σ 0.03 0.03 0.03 0.03
T Quadratic Adaptive

ES

nmax 75 30 30 30
n 38 25 24 25
α 0.1 0.5 0.1 0.3
σ 0.1 0.1 0.1 0.05
ms True
fs True

GD

nmax 75 30 50 30
n 75 50 48 50
α 0.0001 0.001 0.0001 0.001
σ 0.0001 0.001 0.0001 0.001

– 44 –

Spike based agent for MDPs

4
Experiments

4.1 Tasks

To evaluate the designed network and implementation, two types of MDPs are considered. Since
the network structure is the same for the hardware and the software model, the tasks are also
similar. To be able to compare the results of the software and the hardware model, the tasks
are mainly limited by the capabilities of the neuromorphic hardware. Both types of tasks are
executed using TD-Learning as well as TD(λ)-Learning as the weight update rule.

4.1.1 MDP

The main tasks are MDPs, with randomly generated probability and transition matrices. In
this context the difficulty of the tasks depends on the size (S x A) of the problem.

For Learning to Learn, the family of tasks needs to be defined. In this case the family is defined
by random MDPs with the same size. The transition and reward probabilities are different for
each individual of the family. Different sizes of MDPs are considered for evaluation, which can
be grouped into the following classes:

Table 4.1: MDP classes considered for evaluation. The class ”Fixed” has a fixed transition and reward
matrix and is only used as a proof-of-principle task for the hardware. The classes ”Small” and
”Large” have random reward and transition matrices and present different difficulty levels, as the
state and action space size increase.

Class ||S|| ||A||
Fixed 2 4
Small 2 4
Large 6 8

The class ”Fixed” contains only a single individual with a fixed transition and reward matrix
and a size of 2 x 4. This class is used as a proof-of-principle tasks to demonstrate that the agent
is in principle capable of learning. It is designed such that action 2 in state 0 and action 3 in
state 1 yields a reward. The other actions in the different states do not yield a reward at all.
Figure 4.1 shows an array representation of the reward and transition matrix of this problem.

Figure 4.1: Transition and reward matrix for ”Fixed” MDP. The left-hand side shows the transition matrix
P in an array notation and the right-hand side shows the corresponding reward matrix R. For
this special problem only action a = 2 in state s = 0 and action a = 3 in state s = 1 yield a
positive reward.

– 45 –

4 Experiments

A more difficult task is the ”Small” class, where the same size of MDPs are used, but a random
reward and transition probabilities are drawn at every execution. LTL can be applied here to
learn parameters for the entire family rather than for a single task.
The last class is the largest one, which is usable with the PPU and the implemented framework.
Although the number of neurons would allow for an even larger problem class, the memory of
the PPU is limited and already fully allocated at the size of 6 x 8. Again, a random MDP is
drawn at every execution, allowing for the use of the LTL framework.

4.1.2 2D Maze

The second family of tasks used to evaluate the agent, are slight derivations from normal MDPs,
namely 2D mazes. To generate random mazes, a library is used. In figure 4.2 an example of a
maze setting and the resulting maze is depicted.

Figure 4.2: This figure shows an example maze setting of size 7 x 7 on the left-hand side and the resulting
maze on the right-hand side. The entry ”1” in the maze array represents a wall and a ”0” a
free element. The goal state G, the agent should ultimately reach, is configured separately and
not shown on the left-hand configuration. Note: The represented maze is flipped around the
horizontal axis to be compatible with the used reference library.

The matrix generated by the library contains wall elements, denoted with a ”1” and free ele-
ments, denoted with a ”0”. Each free element is a potential starting point for the agent. At the
beginning of a new maze task, the agent is initialized to a random position among the potential
starting points. Once the goal state is reached, the agent is reset to another random starting
point.
In addition the library creates only connected mazes, where it possible to reach the goal state
from every potential starting point. Mazes which are non-connected, meaning that the goal
state is not reachable from every starting point, are not considered in this thesis.

In this case the size of the action space is fixed to ||A|| = 4 (for moving north, south, west and
east) and the transition probability matrix is designed in a way that a 2D maze environment
is emulated. The size of the state space ||S|| is determined by the size of the maze without the
outermost walls. It is considered for the difficulty level of the problem and is also limited due
to the hardware and computation time (see chapter 5 and A). Similar to the MDP tasks, the
family for applying LTL is defined as the set random mazes with a fixed size where the goal
state can also vary. Two different sizes are used to evaluate the agent:

Similar to the MDP case, the class ”Fixed” contains only a single individual with a fixed transi-
tion and reward matrix. This class is the proof-of-principle tasks to demonstrate that the agent
is capable of learning.

– 46 –

4.1 Tasks

Table 4.2: Maze classes considered for evaluation. The class ”Fixed” has a fixed goal state and is only used
as a proof-of-principle task for the hardware. For evaluating the hardware implementation, a
maze with the size of 3 x 3 and for the software case a maze of size 5 x 5 is used.

Class Maze height Maze width

Fixed 3 3
Hardware 3 3
Software 5 5

Figure 4.3 shows the maze setting and the resulting maze for the ”Fixed” problem class.

Figure 4.3: Maze configuration for the class ”Fixed”. The maze setting with 3 x 3 is shown on the left-hand
side and the resulting maze on the right-hand side. The entry ”1” in the maze array represents
a wall and a ”0” a free element. The goal state, the agent should ultimately reach, is configured
separately and not shown on the left-hand configuration. In the maze representation, the goal
state is denoted by a capital G. Note: The represented maze is flipped around the horizontal axis
to be compatible with the used reference library.

After the learning capability was shown on MDPs, the last class considered for evaluation is
a random maze of such a size that fit onto the neuromorphic hardware, where 13 neurons (9
state neurons and 4 action neurons) are used in total. Similar to the MDP case, the mazes are
randomly generated with a fixed size, but varying goal positions.

– 47 –

Spike based agent for MDPs

5
Results

This section gives an overview about the collected results. Starting with background information
about the LTL plot generation in section 5.1 and the hardware investigation in section 5.2, the
software results 5.3 are then followed by the hardware results in 5.4.

5.1 Learning to Learn result

This section is intended to explain the resulting plots of the Learning to Learn experiments.
The common part of all optimization algorithms used is that they produce hyperparameter
settings, so called individuals, which should increase the overall performance of the agent. The
individuals are clustered, depending on the actual algorithm used.
To explain this more clearly, consider the example of Crossentropy. There, the optimizer creates
a certain number of individuals per generation, according to a population size, evaluates those
individuals and keeps the best of them. Then the next generation of individuals is generated by
the optimizer. The evaluation of this algorithm is then done based on the average fitness value
of individuals within a generation.
For evaluating algorithms which do not use a population size during operation, a similar average
measure is considered:

• Crossentroy: The algorithm in cooperates a population size, which is used to sample indi-
viduals from the current probability distribution. For evaluation, the average fitness over
those individuals is computed.

• Simulated Annealing: The algorithm produces a certain number of new individuals per
iteration, according to the amount of parallel runs (see 3.4). For evaluation, the mean
value is computed as the average fitness over the n individuals for each iteration of SA.

• Evolution Strategies: This algorithm produces a preset amount of individuals in each it-
eration by modifying the components of the old individuals. For evaluation, the average
fitness over those generated individuals in each iteration is used.

• Gradient descent: The algorithm samples new individuals around a base point to estimate
the gradient and then moves into the direction of the steepest ascent of the fitness. In this
case, the average fitness value over the sampled individuals including the basepoint fitness
is considered.

Figure 5.1 shows the individuals of five generations and the corresponding average values.

– 48 –

5.2 Hardware variability

Figure 5.1: Example result of a software simulation using Crossentropy (population size n = 75 and max
iterations nmax = 66) on a random MDP from the class ”Small”. The right-hand side shows
the averaged fitness evolution over the evaluated individuals, where the single individuals are
not shown. The averaging is done over the entire population of each iteration of CE, which
is the reason why a new value is present at every n evaluated individuals. The left-hand side
shows a zoom onto the first 5 iterations, where the evaluated individuals are shown as dots
in the background. The average values of the iterations are connected by the thicker line in
the foreground. As one can see, the average value can be interpreted as a kind of low-pass
filtered version of the single individuals and therefore have a reduced amount of data points. In
the following sections, only the average values are compared and the single individuals are not
shown anymore.

The HHPs used for the different LTL algorithms and for both, for the hardware as well as for
the software model, can be found in table 3.1.

5.2 Hardware variability

To investigate the variability of the underlying neuromorphic hardware, a single random MDP
problem with ||S|| = 6 and ||A|| = 8 was executed 20 times consecutively. The network setup
was fixed among those runs to only investigate the same neurons and to avoid an additional
influence from other neurons. Since the framework was developed in such a way that the
underlying hardware can be exchanged (see 3.3.4), the exactly same experiment was done on
two different chips. Figure 5.2 shows a comparison of the outcome of the two experiments.

– 49 –

5 Results

Figure 5.2: Investigation of hardware variability for random MDP with ||S|| = 6 and ||A|| = 8 using two
different hardware chips. The upper left image shows the cumulative reward for a random MDP
with 20 executions using chip 20. The line represents the mean value and the shaded area repre-
sents the variability of the experiments. The upper right image shows only the last steps of the
experiment since the variability has its maximum value at the end. The lower two images show
the same information for the chip 22. Although the calibration explained in 3.3.4 theoretically
work for both hardware chips, the mean performance as well as the variance differ.

As one can see, the variability is larger on chip 22 and also the average value is lower (chip 20
(1622 ± 18) and chip 22 (1514 ± 86)). This leads to the fact that results might not be fully
comparable across different chips. To avoid this issue during the evaluation of the experiment,
all LTL algorithms for each separate problem class are performed on the same chip. However,
due to limited resources and the time-consuming experiments, different classes may be executed
on different chips.

5.3 Software simulation

The results of the software simulation were carried out with NEST on small clusters using up
to 84 processor cores. Since the learning rule cannot be implemented in an online fashion, the
execution time ranged from ten hours for small MDPs up to two to three days for the maze
tasks.

5.3.1 Fixed MDP and maze tasks

Since the software model has access to the precise spike times of the action neurons, even
random hyperparameters for the class of ”Fixed” MDP and maze tasks are sufficient to solve it.
Although there might be improvement potential for this classes, they are of no deeper interest

– 50 –

5.3 Software simulation

for this model. This class was mainly designed for the hardware implementation to show a
proof-of-concept.

5.3.2 Random MDPs

In contrast to the class of artificial MDPs, randomly chosen hyperparameters are not sufficient
to solve these problems. Therefore, the LTL framework is applied to navigate through the
hyperparameter space and to find right hyperparameters which optimize the performance on
the task family. The network performs 2000 steps to learn the given MDP, where the fitness
of the optimizee is defined as the accumulated reward. Figure 5.3 shows the evolution of the
cumulative reward over evaluated individuals for the different LTL algorithms for TD-Learning,
while figure 5.4 shows the LTL results for TD(λ)-Learning.

Figure 5.3: Fitness evaluation over evaluated individuals for TD-Learning with different LTL algorithms and
for ||S|| = 2 and ||A|| = 4. CE and ES show a good performance improvement, while GD and
SA stay constant in terms the fitness values.

– 51 –

5 Results

Figure 5.4: Fitness evaluation over evaluated individuals for TD(λ)-Learning with different LTL algorithms
and for ||S|| = 2 and ||A|| = 4. This figure shows a similar behavior to the case of TD-Learning
and the overall performance is almost the same.

Both figures show a similar behavior, whereas traditional algorithms like GD and SA are not
able to make a big performance improvement, newer algorithms like CE and ES are able to
improve the performance. The performance after applying the LTL algorithms are similar for
TD-Learning and TD(λ)-Learning.

Similar results can also be observed for the larger MDP class with ||S|| = 6 and ||A|| = 8. Again,
figure 5.5 and 5.6 show the performance improvement when applying LTL to TD-Learning and
TD(λ)-Learning.

– 52 –

5.3 Software simulation

Figure 5.5: Fitness evaluation over evaluated individuals for TD-Learning with different LTL algorithms and
for ||S|| = 6 and ||A|| = 8. As the difficulty of the task increase, CE and ES clearly outperform
SA and GD in terms of the average fitness value.

Figure 5.6: Fitness evaluation over evaluated individuals for TD(λ)-Learning with different LTL algorithms
and for ||S|| = 6 and ||A|| = 8. Similar to the case of TD-Learning, CE and ES outperform the
other two LTL algorithms. Again, the overall fitness reached is comparable to TD-Learning.

– 53 –

5 Results

The difference between the two learning algorithms used, is that TD(λ)-Learning is able to learn
the problem faster, i.e. it can learn a good policy for new tasks with fewer steps compared to
TD-Learning. The following table 5.1 lists the number of steps needed to converge to a fixed
policy for 50 random MDPs of size ||S|| = 2 and ||A|| = 4.

Table 5.1: Comparison of steps needed to reach fixed policy.

CE ... Crossentropy, SA ... Simulated Annealing, ES ... Evolution Strategies, GD ... Gradient
Descent

LTL-Algorithm TD-Learning TD(λ)-Learning

CE 287± 511 159± 274
SA 269± 514 346± 588
ES 402± 627 209± 282
GD 362± 631 301± 771

The average values show that TD(λ)-Learning is able to learn the problem with fewer steps
compared to TD-Learning. The high variance values come from the issue that for some prob-
lems no fixed policy was learned within the maximum number of steps.

To show that the LTL approach actually is effective, the agent is trained on 50 random MDPs for
each class, for each learning algorithm and for each LTL algorithm. Those performance values
are then used to fill the table 5.2.
A single problem, out of those 50 randomly generated tasks, is shown in figure 5.7 for ||S|| = 2
and ||A|| = 4 and in figure 5.8 for ||S|| = 6 and ||A|| = 8. In both cases CE was used as the LTL
algorithm to tune the hyperparameters.

Figure 5.7: Performance comparison of network with tuned hyperparameters (CE) using TD(λ)-Learning for
an MDP of size ||S|| = 2 and ||A|| = 4. The upper part shows a zoom on the first 100 steps while
the lower part shows the full 2000 steps. The network can compete with the reference algorithms
and clearly performs better than random.

– 54 –

5.3 Software simulation

Figure 5.8: Performance comparison of network with tuned hyperparameters (CE) using TD(λ)-Learning for
an MDP of size ||S|| = 6 and ||A|| = 8. The upper part shows a zoom on the first 100 steps while
the lower part shows the full 2000 steps. The network can compete with the reference algorithms
and clearly performs better than random.

Table 5.2 shows the complete comparison of the performances:

– 55 –

5 Results

T
a

bl
e

5
.2

:
C

o
m

pa
ri

so
n

o
f

pe
rf

o
rm

a
n

ce
s

fo
r

d
iff

er
en

t
p

ro
bl

em
cl

a
ss

es
,

re
fe

re
n

ce
a

lg
o

ri
th

m
s,

le
a

rn
in

g
a

lg
o

ri
th

m
s

a
n

d
L

T
L

a
lg

o
ri

th
m

s

V
I

..
.

V
a
lu

e
It

er
a
ti

on
,

Q
L

..
.

Q
-L

ea
rn

in
g

w
it

h
ad

ap
ti

ve
ep

si
lo

n
,

Q
L

F
..

.
Q

-L
ea

rn
in

g
w

it
h

fi
x
ed

ep
si

lo
n

,
R

n
d

..
.

R
a
n

d
o
m

p
o
li

cy

C
la

ss
L
T

L
-A

lg
o
ri

th
m

S
N

N
V

I
Q

L
Q

L
F

R
n

d

S
m

a
ll

(T
D

1)

C
E

1
4
8
9
±

1
9
6

16
95
±

20
5

13
50
±

34
2

14
52
±

2
06

9
4
7
±

5
5
2

S
A

1
5
1
7
±

1
9
9

16
78
±

20
9

12
53
±

2
81

1
44

2
±

21
0

9
0
8
±

5
1
1

E
S

1
4
2
4
±

2
3
2

16
76
±

19
5

11
43
±

3
66

1
22

1
±

28
2

1
0
1
3
±

5
4
5

G
D

1
3
8
4
±

2
7
6

16
68
±

20
7

12
66
±

3
45

1
46

3
±

20
8

1
0
2
7
±

5
3
3

S
m

a
ll

(T
D

(λ
))

C
E

1
5
2
9
±

2
0
2

16
90
±

19
9

14
20
±

30
4

14
38
±

1
97

9
5
9
±

5
8
1

S
A

1
4
1
8
±

2
1
1

16
61
±

24
1

14
25
±

3
23

1
49

4
±

19
8

9
3
4
±

5
8
6

E
S

1
4
8
9
±

2
2
0

16
82
±

19
3

12
77
±

3
23

1
41

9
±

21
8

1
0
4
8
±

5
1
2

G
D

1
3
1
1
±

2
4
8

16
43
±

29
4

14
42
±

2
95

1
48

6
±

21
0

1
0
6
4
±

5
1
1

L
ar

g
e

(T
D

1)

C
E

1
4
7
6
±

1
2
5

16
94
±

17
3

11
51
±

24
3

11
61
±

1
76

1
0
0
4
±

4
2
3

S
A

1
3
9
0
±

1
0
7

17
29
±

19
7

11
17
±

2
63

1
11

4
±

18
5

1
0
2
6
±

4
2
6

E
S

1
4
2
5
±

9
5

17
04
±

17
1

11
58
±

2
69

1
10

0
±

14
6

9
2
5
±

4
2
7

G
D

1
0
4
2
±

1
0
2

16
97
±

23
6

11
34
±

2
51

1
10

1
±

16
3

1
0
0
4
±

3
6
9

L
ar

g
e

(T
D

(λ
))

C
E

1
4
7
3
±

1
2
8

16
92
±

16
5

10
80
±

24
0

11
84
±

1
75

1
0
8
9
±

4
0
7

S
A

1
4
8
0
±

1
2
6

17
05
±

16
5

11
21
±

2
50

1
18

7
±

14
5

1
0
1
0
±

4
3
4

E
S

1
3
4
6
±

1
1
7

17
08
±

18
8

11
59
±

2
63

1
15

2
±

14
9

9
3
3
±

4
6
0

G
D

1
0
9
3
±

1
3
0

17
29
±

19
2

10
56
±

25
5

11
29
±

1
85

1
0
1
8
±

4
4
1

– 56 –

5.3 Software simulation

Although ES and CE show a performance increase over evaluated individuals, the finally best-
found parameters by SA and GD also yield a high cumulative reward on the final evaluation.
This is because SA does not in cooperate a population size in the sense as CE does. In the
case of SA these are individual annealing processes, where some manage to find a good region
with the parameter space and some not. The final parameter set produced by SA is the best
individual among those parallel runs, which can lead to a high fitness as well.
All in all, it can be observed that the proposed network, with the chosen learning rules, is able to
learn the given MDPs and can compete with the reference algorithms in a software simulation.

5.3.3 Random Maze tasks

The non-trivial maze class which is considered in this thesis is the class of 5x5 mazes. 10000
steps are used for training and the amount of goal visits within those steps is used as the fitness
measure of the optimizee. Similar to the MDP case, random parameters are not able to solve
the problem within this given step limit. Figure 5.9 shows the comparison of the different LTL
algorithms using TD(λ)-Learning. This learning rule was used because it shows faster learning
and a slightly better overall performance.

Figure 5.9: Fitness over evaluated individuals for TD(λ)-Learning with different LTL algorithms and for
mazes of size 5 x 5.Similar to the case of MDPs, CE and ES achieve a high performance im-
provement, while GD and SA cannot compete.

Again, to evaluate the performance after and before training, 50 random mazes are generated
and solved by the agent. Figure 5.10 shows one example out of these were the network with
random hyperparameters is compared to the network with optimized hyperparameters.

– 57 –

5 Results

Figure 5.10: Comparison of network with random and with optimized hyperparameters. On the left-hand
side, the policy after training with random hyperparameters is shown, while on the right-hand
side optimized hyperparameters were used where CE was used as the LTL algorithm. Without
tuned hyperparameters the network is not able to learn the task within the given step limit.
In contrast to this, the network learns the optimal policy within the same limit when using
optimized hyperparameters.

One can see that the agent is not able to learn the task within the given number of steps using
randomly chosen hyperparameters. Learning to Learn brings an improvement here in the sense
that the agent is able to improve learning speed. With this approach, the agent manages to
visit the goal more often and finds a better policy.

5.4 Hardware simulation

As already mentioned, the hardware simulation was carried out on a neuromorphic hardware.
All evaluation and plot scripts were developed in such a way, that results from both platforms
can be handled in a straight forward manner.

5.4.1 Fixed MDP task

In contrast to the software model, the hardware implementation does not have access to the
exact spike times and therefore it is also not trivial to show that the network is able to learn
the artificial MDP class.
However, the network is also able to learn the artificial task with randomly chosen hyperparam-
eters. Similar to the software simulation, 2000 steps are used for learning and the agent should
maximize the cumulative reward for the given problem.
Figure 5.11 shows a raster plot before and after training. As described in 4.1.1, only action 3
and 2 yield a positive reward for this class. One can see that the network learns to use the
correct actions after training because only the corresponding two action neurons spike.

– 58 –

5.4 Hardware simulation

Figure 5.11: Comparison of spike rasters before and after learning for the ”Fixed” MDP with random hyper-
parameters. The upper spike raster shows the situation before learning. The periodic spiking
behavior of the state neurons, due to the self-exciting connections, is clearly visible. Before
learning, the wrong, or even multiple action neurons spike within one state. In contrast to that
the lower part shows the situation after learning where only one action neuron per state emits
a spike. This demonstrates that the network is able to solve the class of ”Fixed” MDP with
randomly selected parameters, similar to the software model.

Although the network is already able to learn the task, the time needed to learn the optimal
policy is larger compared to the reference algorithms (see figure 5.12). To address this issue, CE
as a LTL algorithm was used to tune the hyperparameters which improve the learning speed of
the network. With those hyperparameters, it is able to compete with the reference algorithms
as shown in figure 5.13.

– 59 –

5 Results

Figure 5.12: Performance comparison of network with randomly chosen hyperparameters for the ”Fixed”
MDP class. The upper part shows a zoom on the first 100 steps while the lower part shows
the full 2000 steps. The network is able to learn the problem, but slower than the reference
algorithms, as one can see from the zoomed part.

Figure 5.13: Performance comparison of network with optimized hyperparameters for the ”Fixed” MDP
class. The upper part shows a zoom on the first 100 steps while the lower part shows the full
2000 steps. The network is able to learn the problem faster and can compete with the reference
algorithms.

– 60 –

5.4 Hardware simulation

5.4.2 Random MDPs

The class of random MDPs provides again a non-trivial problem class, where randomly selected
hyperparameters are not sufficient anymore. The experimental setup used in this case is the
same as for the software simulation. Besides the same fitness measure, the same number of
steps, the same random MDPs and the same learning algorithms, also the same LTL algorithms
are used.
The fitness evolution over evaluated individuals for different problem classes and learning algo-
rithms can be found in figure 5.14, 5.15, 5.16 and 5.17.

Figure 5.14: Fitness over evaluated individuals for TD-Learning with different LTL algorithms and for ||S|| =
2 and ||A|| = 4. In contrast to the software model GD also achieves a good performance on this
task. CE and ES both also work well on the hardware.

– 61 –

5 Results

Figure 5.15: Fitness over evaluated individuals for TD(λ)-Learning with different LTL algorithms and for
||S|| = 2 and ||A|| = 4

Figure 5.16: Fitness over evaluated individuals for TD-Learning with different LTL algorithms and for ||S|| =
6 and ||A|| = 8. This figure shows the fitness increase over evaluated individuals of the LTL
algorithms.

– 62 –

5.4 Hardware simulation

Figure 5.17: Fitness over evaluated individuals for TD(λ)-Learning with different LTL algorithms and for
||S|| = 6 and ||A|| = 8. This figure shows the fitness increase over evaluated individuals of the
LTL algorithms.

– 63 –

5 Results

As one can see, SA is on average not able to bring an improvement on any of the stated prob-
lem classes. Nevertheless, the best-found parameters of SA result in a high fitness for certain
problem classes (see 5.3), similar to the software model.
GD on the other hand is in some problem classes able to bring an improvement which is not
observed in the software simulations. One possible reason for this behavior is the different fitness
landscape of the hardware model and the software model.
CE as well as ES show a performance improvement in all problem classes like in the software
model. Especially ES is able to cope with the noisy fitness landscape and yields a good perfor-
mance improvement.

Again, the agent is trained on 50 random MDPs for each combination of each class, of each
learning algorithms and of each LTL algorithm. These values are collected and shown in the
performance table 5.3:

– 64 –

5.4 Hardware simulation

T
a

bl
e

5
.3

:
C

o
m

pa
ri

so
n

o
f

pe
rf

o
rm

a
n

ce
s

fo
r

d
iff

er
en

t
p

ro
bl

em
cl

a
ss

es
,

re
fe

re
n

ce
a

lg
o

ri
th

m
s,

le
a

rn
in

g
a

n
d

L
T

L
a

lg
o

ri
th

m
s

V
I

..
.

V
al

u
e

It
er

at
io

n
,

Q
L

..
.

Q
-L

ea
rn

in
g

w
it

h
ad

ap
ti

ve
ep

si
lo

n
,

Q
L

F
..

.
Q

-L
ea

rn
in

g
w

it
h

fi
x
ed

ep
si

lo
n

,
R

n
d

..
.

R
a
n

d
o
m

p
o
li

cy

C
la

ss
L
T

L
-A

lg
or

it
h

m
S

N
N

V
I

Q
L

Q
L

F
R

n
d

S
m

a
ll

(T
D

1)

C
E

1
5
0
3
±

2
8
6

16
45
±

25
4

14
32
±

2
72

1
4
8
5
±

2
0
4

1
0
2
2
±

5
1
7

S
A

1
4
8
1
±

3
0
0

16
45
±

25
4

14
29
±

27
4

14
8
8
±

2
0
4

1
0
0
4
±

5
4
2

E
S

1
5
1
5
±

2
5
7

16
65
±

20
0

13
57
±

3
20

1
4
4
3
±

1
8
3

9
5
5
±

5
2
0

G
D

1
3
6
1
±

2
9
5

16
65
±

20
0

12
91
±

2
93

1
4
4
9
±

2
0
6

1
0
5
5
±

5
8
6

S
m

a
ll

(T
D

(λ
))

C
E

1
4
7
7
±

2
9
1

16
45
±

25
4

13
59
±

3
14

1
4
7
3
±

1
9
5

8
8
8
±

5
2
2

S
A

1
0
9
1
±

3
9
7

16
72
±

20
0

11
00
±

39
8

13
4
8
±

2
7
4

1
0
3
4
±

5
2
7

E
S

1
4
4
4
±

2
2
8

16
74
±

19
7

13
16
±

3
80

1
4
3
6
±

2
1
3

9
2
0
±

4
9
1

G
D

1
0
3
5
±

2
9
7

16
45
±

25
4

14
48
±

2
65

1
4
5
8
±

2
1
1

1
0
8
9
±

5
0
7

L
ar

g
e

(T
D

1)

C
E

1
5
1
8
±

1
7
1

16
69
±

28
0

11
75
±

2
32

1
2
1
2
±

1
1
1

9
9
1
±

4
4
2

S
A

1
4
4
0
±

1
8
5

16
70
±

27
5

11
95
±

26
1

11
9
9
±

1
5
9

9
8
9
±

4
8
2

E
S

1
4
8
2
±

1
5
6

16
69
±

28
0

11
64
±

22
5

12
0
0
±

1
5
5

1
0
1
3
±

5
1
6

G
D

1
3
1
6
±

1
4
4

17
12
±

24
8

11
24
±

2
92

1
1
6
2
±

1
6
4

1
0
6
1
±

4
8
4

L
ar

g
e

(T
D

(λ
))

C
E

1
2
7
3
±

1
6
6

16
75
±

19
1

12
07
±

2
73

1
1
9
4
±

1
5
2

9
8
1
±

4
0
2

S
A

1
2
7
2
±

1
5
8

16
75
±

19
1

12
06
±

23
5

11
6
9
±

1
4
5

8
9
4
±

4
6
1

E
S

1
3
2
6
±

1
4
8

16
73
±

19
1

11
81
±

21
4

11
8
0
±

1
6
5

8
9
6
±

4
6
5

G
D

9
9
5
±

1
2
7

17
13
±

20
5

11
34
±

27
8

11
0
1
±

1
4
0

1
0
3
4
±

4
9
3

– 65 –

5 Results

5.4.3 Random Maze tasks

The experimental setup for the maze class differs from the software simulation in the sense that
only mazes with the size of 3x3 are considered. This is because larger mazes result in problems
with the underlying hardware.
Despite the fact that only 4000 steps were used for learning, similar to the software model, the
amount of goal visits within these steps is used as the fitness measure and TD(λ)-Learning was
used for learning. Figure 5.18 shows the fitness evolutions over evaluated individuals for the
LTL algorithms.

Figure 5.18: Fitness over evaluated individuals for TD(λ)-Learning with different LTL algorithms for a maze
of size 3 x 3. Also, this figure shows similar behavior to the software equivalent. CE and ES
yields a high performance increase and lead to parameters, which can be used to find the optimal
policy for the given mazes.

Again, 50 randomly generated mazes are used to evaluate the performance of the agent before
and after applying LTL. Figure 5.19 shows one example out of these, were the network with
random hyperparameters is compared to the network with optimized hyperparameters.

– 66 –

5.5 Comparison

Figure 5.19: Comparison of network with random and with optimized hyperparameters. On the left-hand
side, the policy after training with random hyperparameters is shown, while on the right-hand
side optimized hyperparameters were used with CE as the LTL algorithm. The network with
randomly chosen hyperparameters is not able to learn the optimal policy within the given step
limit, but the network using tuned hyperparameter is able.

5.5 Comparison

The results for the MDP classes are comparable between the software and the hardware imple-
mentation. The cumulative reward for the different learning algorithms shows similar behavior.
Figure 5.20 and 5.21 show direct comparisons between the software and the hardware model for
50 random MDPs, with different sizes, after applying ES as the LTL algorithm.

Figure 5.20: Comparison of average performance of hardware and software model for MDPs of size ||S|| = 2
and ||A|| = 4. In both cases TD(λ)-Learning and the same 50 random MDPs were used after
ES was applied to tune the hyperparameters. The lines represent the average cumulative reward
over those 50 random problems and only a minor difference can be observed. This supports the
fact that the hardware implementation provides a similar performance than the software model.

– 67 –

5 Results

Figure 5.21: Comparison of average performance of hardware and software model for MDPs of size ||S|| = 6
and ||A|| = 8. In both cases TD(λ)-Learning and the same 50 random MDPs were used after
ES was applied to tune the hyperparameters. The lines represent the average cumulative reward
over those 50 random problems. For the larger problem class, there is a slight derivation in
performance between software and hardware.

As one can see from the figures, the mean cumulative reward for the software and the hardware
model are in good agreement. However, when the problem difficulty increases, the software
benefits from the access to the precise spike times and the hardware implementation loses per-
formance.

For the maze tasks a comparison is not directly possible, because the considered problem size are
different. Nevertheless, the evaluation of both individually showed that solving random mazes
is also possible in software as well as on hardware.

– 68 –

Spike based agent for MDPs

6
Discussion and Outlook

6.1 Discussion

The results show that the presented approach can be used to endow a network of spiking neu-
rons to solve MDPs. As one can see from the performance tables 5.2 and 5.3, the implemented
method is able to compete with the chosen reference algorithms, clearly outperforms a random
policy and also works on the neuromorphic hardware. Although the hardware limits the possible
problem sizes, the provided experiments show a proof-of-concept for non-trivial problems.

One key concept of this approach, provided on hardware, is an implicit implementation of work-
ing memory. Since the weights are values stored in the digital part of the chip, they are not
subject to any volatility. Working memory is important in many applications like image recog-
nition or complex planning processes [Baddeley, 2012], [Burgess and Hitch, 2005].
One construction of working memories with SNNs is done in [Giulioni et al., 2012] by using a
population of self-excitatory connected LIF neurons. The memory is represented by bistable
attractor states within such a population. The activity of the network is either high or low,
corrects itself through the self-excitatory connections and the value stored can be manipulated
from outside.
Such approaches have the problem of keeping the correct information present inside the ”mem-
ory” cell. A proper network activity is needed, while in the present case, the desired values can
be directly written to the ”memory” and read without further interference.

Despite the resource limitation, Learning to Learn can improve the performance compared to
handcrafted or even random hyperparameters. This becomes significant when the hyperparam-
eter space becomes larger or the fitness landscape hardly allows for manual hyperparameter
finding. Especially on the neuromorphic hardware LTL is relevant, because it was hard to man-
ually find parameters that worked even for a single maze or a larger random MDP.

An additional point regarding the LTL algorithms used is that they are also parameterized.
Those parameters, here called hyperhyperparameters, can be essential for the algorithm to
produce good results and were set by hand. It is possible that algorithms like SA or GD would
achieve better results if the hyperhyperparameters are also tuned by another optimization loop.
However, this scenario would require even more evaluations of individuals and was therefore not
considered.

– 69 –

Spike based agent for MDPs

A
Training time

The computing times required to carry out all the present experiments are listed in this section.
For example, the execution of one random MDP experiment with ||S|| = 6 and ||A|| = 8
on hardware only lasts for a few seconds. However, for the learning to learn framework the
evaluation of thousands of individuals was necessary resulting in a runtime of approximately
nine hours per LTL algorithm. Together with the variety of problem classes and LTL algorithm,
the collection of the results was a time-consuming process. This situation is even worse for the
software simulation, since the execution of one single experiment takes longer than compared to
the hardware. In the following table following measures are shown:

• Class: indicates the problem class

• Learning algorithm: indicates the learning rule used for the weight updates

• Runtime: indicates the pure runtime for learning a single problem instance without any
over runtime overhead from initializations and cleanup. The value is computed over 50
different runs

• LTL Runtime: indicates the overall runtime when applying LTL algorithms on one single
CPU core. This value is computed over the four used LTL algorithms

Table A.1: Training time

Class Learning algorithm Runtime LTL Runtime

SW / s HW / s SW / h HW / h

Small MDP
TD1 3.17± 0.37 1.15± 0.02 105.86± 4.91 10.66± 0.54

TD(λ) 4.87± 0.05 1.20± 0.02 180.40± 10.89 11.17± 0.86

Large MDP
TD1 5.31± 0.04 1.20± 0.01 188.22± 9.12 14.70± 4.00

TD(λ) 18.74± 0.19 1.21± 0.01 655.41± 32.56 15.97± 2.74

Maze 3x3 TD(λ) - 3.60± 0.02 - 27.41± 2.29

Maze 5x5 TD(λ) 1833.84± 7.54 - 3217.72± 117.49 -

The hardware framework has a runtime which is not dependent on the size of the MDP, which
is different for the software simulation. Therefore, the hardware is beneficial for the application
of LTL as it provides a more constant and overall shorter runtime for the LTL algorithms. Note
also that the overall LTL runtime of the software simulations is computed using a single core
only. This runtime can be reduced when using more cores and a parallel execution.

– 70 –

Spike based agent for MDPs

Bibliography

Simonite Tom, “Intel Puts the Brakes on Moore’s Law - MIT Technol-
ogy Review,” 2016. [Online]. Available: https://www.technologyreview.com/s/601102/
intel-puts-the-brakes-on-moores-law/

C. D. Schuman, T. E. Potok, R. M. Patton, J. D. Birdwell, M. E. Dean, G. S. Rose, and J. S.
Plank, “A Survey of Neuromorphic Computing and Neural Networks in Hardware.” [Online].
Available: https://arxiv.org/pdf/1705.06963.pdf

D. Monroe, “Neuromorphic computing gets ready for the (really) big time,” Communications
of the ACM, vol. 57, no. 6, pp. 13–15, jun 2014. [Online]. Available: http:
//dl.acm.org/citation.cfm?doid=2602695.2601069

A. Calimera, E. Macii, and M. Poncino, “The Human Brain Project and
neuromorphic computing.” Functional neurology, vol. 28, no. 3, pp. 191–
6, 2013. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/24139655http:
//www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3812737

F. Y. H. Ahmed, B. Yusob, H. Nuzly, and A. Hamed, “Computing with Spiking Neuron Networks
A Review,” Int. J. Advance. Soft Comput. Appl, vol. 6, no. 1, 2014. [Online]. Available:
https://pdfs.semanticscholar.org/ecba/7b5a713cf3b175b78e59f0789f851245d01b.pdf

E. O. Neftci, C. Augustine, S. Paul, and G. Detorakis, “Event-Driven Random Back-
Propagation: Enabling Neuromorphic Deep Learning Machines.” Frontiers in neuroscience,
vol. 11, p. 324, 2017. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/
28680387http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5478701

J. H. Lee, T. Delbruck, and M. Pfeiffer, “Training Deep Spiking Neural Networks using
Backpropagation.” [Online]. Available: https://arxiv.org/pdf/1608.08782.pdf

L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and acting in partially
observable stochastic domains,” Artificial Intelligence, vol. 101, no. 1-2, pp. 99–134, may 1998.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/S000437029800023X

J. Brea and W. Gerstner, “Does computational neuroscience need new synaptic learning
paradigms?” Current Opinion in Behavioral Sciences, vol. 11, pp. 61–66, oct 2016. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S2352154616301048

J. Friedrich and M. Lengyel, “Goal-Directed Decision Making with Spiking Neurons.” The
Journal of neuroscience : the official journal of the Society for Neuroscience, vol. 36, no. 5, pp.
1529–46, feb 2016. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/26843636http:
//www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4737768

T. Nakano, M. Otsuka, J. Yoshimoto, and K. Doya, “A Spiking Neural Network Model of
Model-Free Reinforcement Learning with High-Dimensional Sensory Input and Perceptual
Ambiguity,” PLOS ONE, vol. 10, no. 3, p. e0115620, mar 2015. [Online]. Available:
http://dx.plos.org/10.1371/journal.pone.0115620

M. Shein, “A spiking neural network of state transition probabilities in model-based
reinforcement learning,” p. 69, oct 2017. [Online]. Available: https://uwspace.uwaterloo.ca/
handle/10012/12574

HBP, “Human Brain Project Home.” [Online]. Available: https://www.humanbrainproject.eu/
en/

– 71 –

https://www.technologyreview.com/s/601102/intel-puts-the-brakes-on-moores-law/
https://www.technologyreview.com/s/601102/intel-puts-the-brakes-on-moores-law/
https://arxiv.org/pdf/1705.06963.pdf
http://dl.acm.org/citation.cfm?doid=2602695.2601069
http://dl.acm.org/citation.cfm?doid=2602695.2601069
http://www.ncbi.nlm.nih.gov/pubmed/24139655 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3812737
http://www.ncbi.nlm.nih.gov/pubmed/24139655 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3812737
https://pdfs.semanticscholar.org/ecba/7b5a713cf3b175b78e59f0789f851245d01b.pdf
http://www.ncbi.nlm.nih.gov/pubmed/28680387 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5478701
http://www.ncbi.nlm.nih.gov/pubmed/28680387 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5478701
https://arxiv.org/pdf/1608.08782.pdf
http://www.sciencedirect.com/science/article/pii/S000437029800023X
http://www.sciencedirect.com/science/article/pii/S2352154616301048
http://www.ncbi.nlm.nih.gov/pubmed/26843636 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4737768
http://www.ncbi.nlm.nih.gov/pubmed/26843636 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4737768
http://dx.plos.org/10.1371/journal.pone.0115620
https://uwspace.uwaterloo.ca/handle/10012/12574
https://uwspace.uwaterloo.ca/handle/10012/12574
https://www.humanbrainproject.eu/en/
https://www.humanbrainproject.eu/en/

Bibliography

K. Heidelberg, “Digital Learning System.” [Online]. Available: https://www.kip.uni-heidelberg.
de/vision/research/dls/

S. Friedmann, J. Schemmel, A. Grubl, A. Hartel, M. Hock, and K. Meier, “Demonstrating
Hybrid Learning in a Flexible Neuromorphic Hardware System,” IEEE Transactions on
Biomedical Circuits and Systems, vol. 11, no. 1, pp. 128–142, feb 2017. [Online]. Available:
http://ieeexplore.ieee.org/document/7563782/

S. A. Aamir, P. Muller, A. Hartel, J. Schemmel, and K. Meier, “A highly tunable 65-nm CMOS
LIF neuron for a large scale neuromorphic system,” in ESSCIRC Conference 2016: 42nd
European Solid-State Circuits Conference. IEEE, sep 2016, pp. 71–74. [Online]. Available:
http://ieeexplore.ieee.org/document/7598245/

S. A. Aamir, P. M\”uller, L. Kriener, G. Kiene, J. Schemmel, K. Meier, . A. Aamir,
P. M\”uller, and and L. Kriener and G. Kiene and J. Schemmel and K. Meier, “From
LIF to AdEx Neuron Models: Accelerated Analog 65 nm CMOS Implementation,” in
IEEE Biomedical Circuits and Systems Conference (BioCAS), 2017. [Online]. Available:
http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=3518

D. Stöckel, “Exploring Collective Neural Dynamics under Synaptic Plasticity,” Masterarbeit,
Universität Heidelberg, 2017.

Y. Stradmann, “Characterization and Calibration of a Mixed-Signal Leaky Integrate and Fire
Neuron on HICANN-DLS,” Bachelorarbeit, Universität Heidelberg, 2016.

R. Bellman, Dynamic programming. Princeton University Press, 2010. [Online]. Available:
https://press.princeton.edu/titles/9234.html

R. S. Sutton and A. G. Barto, Reinforcement learning : an introduction. MIT Press, 1998.
[Online]. Available: https://mitpress.mit.edu/books/reinforcement-learning

Richard S. Sutton and Andrew G. Barto, “Chapter 7: Eligibility Traces,” p. 38. [Online].
Available: http://www-anw.cs.umass.edu/{∼}barto/courses/cs687/Chapter7.pdf

S. P. Singh and R. S. Sutton, “Reinforcement learning with replacing eligibility
traces,” Machine Learning, vol. 22, no. 1-3, pp. 123–158, 1996. [Online]. Available:
http://link.springer.com/10.1007/BF00114726

C. S. Szepes ari Richard Sutton, “Reinforcement Learning Algorithms in Markov Decision
Processes AAAI-10 Tutorial Part II: Learning to predict values,” 2010. [Online]. Available:
http://old.sztaki.hu/{∼}szcsaba/research/AAAI10{ }Tutorial/tutorial02-slidesonly.pdf

C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8, no. 3-4, pp.
279–292, may 1992. [Online]. Available: http://link.springer.com/10.1007/BF00992698

P. Dayan and T. J. Sejnowski, “TD(λ) Converges with Probability 1,” Machine Learning,
vol. 14, no. 3, pp. 295–301, 1994. [Online]. Available: http://link.springer.com/10.1023/A:
1022657612745

P. Dayan, “The Convergence of TD(X) for General X,” Machine Learning, vol. 8,
pp. 341–362, 1992. [Online]. Available: https://link.springer.com/content/pdf/10.1023/A:
1022632907294.pdf

M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau, T. Schaul, B. Shillingford,
and N. de Freitas, “Learning to learn by gradient descent by gradient descent,” jun 2016.
[Online]. Available: http://arxiv.org/abs/1606.04474

– 72 –

https://www.kip.uni-heidelberg.de/vision/research/dls/
https://www.kip.uni-heidelberg.de/vision/research/dls/
http://ieeexplore.ieee.org/document/7563782/
http://ieeexplore.ieee.org/document/7598245/
http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=3518
https://press.princeton.edu/titles/9234.html
https://mitpress.mit.edu/books/reinforcement-learning
http://www-anw.cs.umass.edu/{~}barto/courses/cs687/Chapter 7.pdf
http://link.springer.com/10.1007/BF00114726
http://old.sztaki.hu/{~}szcsaba/research/AAAI10{_}Tutorial/tutorial02-slidesonly.pdf
http://link.springer.com/10.1007/BF00992698
http://link.springer.com/10.1023/A:1022657612745
http://link.springer.com/10.1023/A:1022657612745
https://link.springer.com/content/pdf/10.1023/A:1022632907294.pdf
https://link.springer.com/content/pdf/10.1023/A:1022632907294.pdf
http://arxiv.org/abs/1606.04474

Bibliography

Y. Chen, M. W. Hoffman, S. Gómez Colmenarejo, M. Denil, T. P. Lillicrap, M. Botvinick, and
N. De Freitas, “Learning to Learn without Gradient Descent by Gradient Descent.” [Online].
Available: http://proceedings.mlr.press/v70/chen17e/chen17e.pdf

Y. Duan, J. Schulman, X. Chen, P. L. Bartlett, I. Sutskever, and P. Abbeel, “FAST
REINFORCEMENT LEARNING VIA SLOW REINFORCEMENT LEARNING.” [Online].
Available: https://arxiv.org/pdf/1611.02779.pdf

C. Wang, S. Guo, Y. Xu, J. Ma, J. Tang, F. Alzahrani, and A. Hobiny, “Formation of Autapse
Connected to Neuron and Its Biological Function,” Complexity, vol. 2017, pp. 1–9, feb 2017.
[Online]. Available: https://www.hindawi.com/journals/complexity/2017/5436737/

A. Hartel, “Implementation and Characterization of Mixed-Signal Neuromorphic ASICs,”
Ph.D. dissertation, 2016. [Online]. Available: http://www.ub.uni-heidelberg.de/archiv/20179

P.-T. de Boer, D. P. Kroese, S. Mannor, and R. Y. Rubinstein, “A Tutorial on the
Cross-Entropy Method,” Annals of Operations Research, vol. 134, no. 1, pp. 19–67, feb 2005.
[Online]. Available: http://link.springer.com/10.1007/s10479-005-5724-z

D. Wierstra, T. Schaul, T. Glasmachers, J. Peters, and J. Schmidhuber, “Natural Evolution
Strategies,” Journal of Machine Learning Research, vol. 15, pp. 949–980, 2014. [Online].
Available: http://www.jmlr.org/papers/volume15/wierstra14a/wierstra14a.pdf

T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever, “Evolution Strategies as
a Scalable Alternative to Reinforcement Learning,” mar 2017. [Online]. Available:
http://arxiv.org/abs/1703.03864

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated Annealing,” pp.
671–680. [Online]. Available: http://www.jstor.org/stable/1690046

J. Fernando Dı́az Mart́ın and J. M. Riaño Sierra, “A Comparison of Cooling Schedules for
Simulated Annealing,” in Encyclopedia of Artificial Intelligence. IGI Global, jan 1, pp.
344–352. [Online]. Available: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.
4018/978-1-59904-849-9.ch053

A. Baddeley, “Working Memory: Theories, Models, and Controversies,” Annual
Review of Psychology, vol. 63, no. 1, pp. 1–29, jan 2012. [Online]. Available:
http://www.annualreviews.org/doi/10.1146/annurev-psych-120710-100422

N. Burgess and G. Hitch, “Computational models of working memory: putting long-term
memory into context,” Trends in Cognitive Sciences, vol. 9, no. 11, pp. 535–541, nov 2005.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/S1364661305002731

M. Giulioni, P. Camilleri, M. Mattia, V. Dante, J. Braun, and P. Del Giudice,
“Robust Working Memory in an Asynchronously Spiking Neural Network Realized with
Neuromorphic VLSI,” Frontiers in Neuroscience, vol. 5, p. 149, feb 2012. [Online]. Available:
http://journal.frontiersin.org/article/10.3389/fnins.2011.00149/abstract

– 73 –

http://proceedings.mlr.press/v70/chen17e/chen17e.pdf
https://arxiv.org/pdf/1611.02779.pdf
https://www.hindawi.com/journals/complexity/2017/5436737/
http://www.ub.uni-heidelberg.de/archiv/20179
http://link.springer.com/10.1007/s10479-005-5724-z
http://www.jmlr.org/papers/volume15/wierstra14a/wierstra14a.pdf
http://arxiv.org/abs/1703.03864
http://www.jstor.org/stable/1690046
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-59904-849-9.ch053
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-59904-849-9.ch053
http://www.annualreviews.org/doi/10.1146/annurev-psych-120710-100422
https://www.sciencedirect.com/science/article/pii/S1364661305002731
http://journal.frontiersin.org/article/10.3389/fnins.2011.00149/abstract

	Abbreviations
	Introduction
	Overview
	Motivation
	Markov Decision Processes
	Definition and Notation

	Related work
	Hardware introduction
	Neuron model
	Synapse model

	Methods
	Bellman equations
	Temporal Difference Learning
	Temporal Difference Learning with eligibility traces
	Learning to Learn
	Reference Algorithms

	Implementation
	High-level network structure
	Details of update rules
	Action selection process

	Software implementation
	Hardware implementation
	Framework on host computer
	Plasticity Processor
	Mailbox
	Chip calibration
	Limitations

	Learning to Learn framework
	Crossentropy
	Evolution Strategies
	Simulated Annealing
	Classic gradient descent
	Hyperhyperparameters for Learning to Learn framework

	Experiments
	Tasks
	MDP
	2D Maze

	Results
	Learning to Learn result
	Hardware variability
	Software simulation
	Fixed MDP and maze tasks
	Random MDPs
	Random Maze tasks

	Hardware simulation
	Fixed MDP task
	Random MDPs
	Random Maze tasks

	Comparison

	Discussion and Outlook
	Discussion

	Training time

