
Darjan Salaj, BSc

Spike-based LSTM-like Modules

in Neural Networks

Master’s Thesis

to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme: Computer Science

submitted to

Graz University of Technology

Supervisor:
Em.Univ.-Prof. Dipl.-Ing. Dr.rer.nat. Wolfgang Maass

Institute of Theoretical Computer Science

Graz, February 2018

Affidavit
I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to TUGRAZonline is
identical to the present master’s thesis.

Date Signature

ii

Abstract
Working memory is considered an essential component of a system display-
ing cognitive abilities. Artificial neural networks are successfully endowed
with the working memory capabilities by including specific implementations
of recurrent networks like LSTM. Underlying processes endowing spiking
networks with the same capabilities have remained elusive. In this work we
address this issue by developing a novel model that incorporates multiple
types of neurons in a structured network. Through experiments we evalu-
ate our model, demonstrating performance comparable to that of artificial
networks. Further we analyze the roles of different components within our
model and experimentally verify the conclusions.

iii

Zusammenfassung
Das Arbeitsgedächtnis wird als wesentlicher Bestandteil eines Systems ange-
sehen, das kognitive Fähigkeiten aufweist. Künstliche neuronale Netzwerke
werden erfolgreich mit Arbeitsspeicherfähigkeiten ausgestattet, indem spezi-
fische Implementierungen von wiederkehrenden Netzwerken wie LSTM ein-
geschlossen werden. Zugrunde liegende Prozesse, die Spiking-Netzwerke mit
den gleichen Fähigkeiten ausstatten, blieben schwer erfassbar. In dieser Ar-
beit befassen wir uns mit diesem Problem, indem wir ein neuartiges Modell
entwickeln, das mehrere Arten von Neuronen in ein strukturiertes Netzwerk
integriert. Durch Experimente evaluieren wir unser Modell und demonstrie-
ren eine Performance, die mit der von künstlichen Netzwerken vergleichbar
ist. Darüber hinaus analysieren wir die Rollen verschiedener Komponenten
des Modells und verifizieren die Schlussfolgerungen experimentell.

iv

Acknowledgment
Special thanks are due to...

Wolfgang Maass, for the guidance and opportunity to work on rewarding
cutting edge research topic.

Guillaume Bellec, for the too many hours spent helping, supervising, and
advising me throughout my time at IGI, and for his work that mine builds
upon.

All the colleagues at IGI, for constantly providing a friendly working
environment, social events, and a journal club!

Fabian Tschiatschek, for his invaluable help and discussions throughout
my studies.

My wife Anida, for endless support and life outside academia.
My parents, sister and grandmother, for their love and support in every-

thing I do.
Pokola Mrdžić, for unwavering companionship in fostering the occult.
And finally I would like to thank Michael Müller for providing me with

this great template. Everything else was easy. As a thank you, I will cite
his BSc thesis1 because no one else will ever do that2.3

“Wubba lubba dub dub!”

Rick Sanchez
Rick and Morty

1M. Müller and M. Kampelmühler. Reduced Precision MLPs. Bachelor Thesis 2015
2this was a joke
3NOT!

v

Contents
1 Introduction 1

1.1 Motivation . 2
1.2 Contributions . 2

2 Background 3
2.1 Biological Neuron . 3
2.2 Artificial models . 5

2.2.1 McCulloch and Pitts neuron 5
2.2.2 Recurrent networks . 6

2.3 Leaky integrate and fire neuron 6
2.4 Working Memory . 8
2.5 Related Work . 8

3 Neuron Model 11
3.1 LIF implementation . 11
3.2 LIF with adaptive bias . 11

4 Network Model 12
4.1 Structurally Constrained Recurrent Network 12
4.2 Spike based Memory Unit . 14

5 Training Method 15
5.1 SSD-BPTT . 15
5.2 Evolutionary Strategy . 16

6 Experiments 17
6.1 Store-Recall task . 17

6.1.1 Optimizing scaling factor β 18
6.1.2 Evaluation on large delays 20
6.1.3 Architecture evaluation 21

6.2 Sequential MNIST . 23
6.2.1 Pixel to spike encoding 24
6.2.2 Evaluation . 25

6.3 Speech recognition task . 28
6.3.1 TIMIT corpus . 28
6.3.2 Audio to spike encoding 29
6.3.3 Evaluation . 31

7 Conclusion and Discussion 34

vi

LIST OF FIGURES

Appendices 35
A Appendix: store-recall task 35
B Appendix: sequential MNIST task 35
C Appendix: TIMIT task . 39
D References . 40

List of Figures
1 Structure of a typical biological neuron: Dendrites make

synaptic connections with neurons from which they receive
the input. Soma integrates the inputs from dendrites and
generate spikes which are propagated by axon to the synaptic
connections of the downstream neurons. 4

2 Architecture comparison of SRN and SCRN: Archi-
tecture of (a) simple recurrent network and (b) structurally
constrained recurrent network. 13

3 Architecture of SMU network: Gray circles represent
spiking neurons, and gray arrows the synaptic connection.
Recurrent neuron pool marked with large orange circle, con-
tains only LIF neurons, while non-recurrent pool marked with
blue circle contains only the ALIF type neurons. 14

4 Trained SMU network solving store-recall task: Char-
acter step is set to τc = 250ms. From top to bottom: Spike
raster of input neurons, spike raster of LIF neurons, spike
raster of ALIF neurons, softmax output (with target and av-
erage of softmax for character step). and bias plot of ALIF
neurons. 19

5 Impact of bias update scaling factor β on network
learning speed: We perform a limited grid search over the
bias update scaling parameter β to optimize the learning
speed of SMU network. Plots show the number of training
iterations needed to reach error bellow 10% (y-axis) for sim-
ulations of store-recall task with expected delay of 400ms for
left plot and 1000ms for the right. 20

vii

LIST OF FIGURES

6 SCRN architecture alternatives: Proposed modifications
to the original SCRN architecture. In out implementation M
represents the pool of ALIF neurons while O represents the
pool of LIF neurons (for more details see Section 4.2). Red
edges represent the added synaptic connections. A: original
SCRN inspired architecture. B: additional connection from
recurrent LIF neurons to the ALIF neurons. C: recurrent
connection within ALIF neurons. D: both changes from B
and C effectively making a fully connected pool of mixed LIF
and ALIF neurons. 22

7 Evaluation of alternative SMU network architectures:
Performance comparison of different architectures of SMU
model on store-recall task. Points represent the number of
training iterations needed to reach an error bellow 5% on the
test set, each point representing a result from different ran-
dom initialization. Bars that contain points are the mean
values of results of individual architectures. 23

8 Sequential MNIST input encoding: Original MNIST im-
age (left) is fed to the network one pixel at a time in a sequen-
tial manner from top left to bottom right. Artificial LSTM
network is fed with analog pixel values directly, where as spik-
ing network models require additional encoding of analog val-
ues to spikes. Spike rasters produced from the MNIST image
on the left: Threshold crossings method (top right), Pop-
ulation rate encoding (probabilistic firing) method (bottom
right) . 24

9 Trained SMU network solving sequential MNIST: SMU
network classifying the sequential MNIST image of digit 9
encoded with onset-offset thresholding method. First three
rows show raster plots of input, LIF, and ALIF neurons re-
spectively. Fourth output row shows the plot of softmax prob-
abilities over output classes. Last row shows plot of adaptive
thresholds over time of the ALIF neurons. 26

10 Setup for audio classification with spiking models:
High level view of setup used to solve TIMIT phoneme clas-
sification task with spiking models. 28

11 Inner ear anatomy: Right osseous (bony) labyrinth of the
inner ear showing the cochlea (spiral-shaped cavity). Lateral
view. 30

12 TIMIT maximum phoneme lengths in ms: Maximum
pronunciation time per phoneme in the train set of TIMIT
corpus. For brevity, only half of the phonemes from the train-
ing set are shown. 31

viii

LIST OF TABLES

13 Trained SMU solving recall task with τc = 250ms, sequence
length 24 and pSR = 0.1. This sequence contains delay of
4250ms between the store-recall signals. From top to bottom:
Spike raster of input neurons, spike raster of LIF neurons,
spike raster of ALIF neurons, softmax output (with target
and average of softmax for character step), and bias plot of
ALIF neurons. 36

14 Trained SMU solving recall task with τc = 250ms, sequence
length 48 and pSR = 0.1. This sequence contains delay of
8750ms between the store-recall signals. From top to bottom:
Spike raster of input neurons, spike raster of LIF neurons,
spike raster of ALIF neurons, softmax output (with target
and average of softmax for character step), and bias plot of
ALIF neurons. 37

15 Trained SMU solving recall task with τc = 250ms, sequence
length 48 and pSR = 0.1. This sequence contains delay of
8750ms between the store-recall signals. From top to bottom:
Spike raster of input neurons, spike raster of LIF neurons,
spike raster of ALIF neurons, softmax output (with target
and average of softmax for character step), and bias plot of
ALIF neurons. 38

List of Tables
1 Accuracy on store-recall task: Smallest mean test er-

rors reached by different networks over 500 training itera-
tions. Mean test error is calculated over any ten consecutive
iterations. Final numbers represent the average values over
multiple random initializations. Number in boldface are the
best results reached for particular delay. 21

2 Accuracy on sequential MNIST: Performance compar-
ison of different networks on sequential MNIST task. Pre-
sented are the best runs out of 20 random network initial-
izations. Results are mean values and standard deviations of
network classification accuracy on test batch containing 512
images. 27

3 TIMIT phoneme reduction: Reduction of the number of
phoneme labels in the corpus is achieved through mapping of
multiple phonemes in the left column to a single label in the
right column. The phoneme ’q’ is discarded. This mapping
reduces the the original 61 phonemes to 39 labels. 29

ix

LIST OF TABLES

4 Accuracy on TIMIT: Performance comparison of different
networks on TIMIT phoneme classification task. Last row is
the result of unidirectional LSTM from [1]. Other rows are
results from simulations we perform on TIMIT with reduced
phoneme set. 33

5 Figure specific parameters of store-recall task modification. . 35
6 Parameter details of different networks evaluated on sequen-

tial MNIST task. In the number of units column: for LSTM
ANN h represents number of hidden units and i the num-
ber of input channels; for SMU and LIF SNNs i represents
number of input neurons, o number of LIF neurons, and m
number of ALIF neurons . 35

7 Parameter details of different networks evaluated on TIMIT
task. In the number of units column: for LSTM ANN h
represents number of hidden units and i the number of input
channels; for SMU and LIF SNNs i represents number of input
neurons, o number of LIF neurons, and m number of ALIF
neurons . 39

x

Introduction

1 Introduction
Humans and animals (to various extents) possess abilities to acquire knowl-
edge through sensory inputs and use it to solve the challenges they face in
life. These abilities are embodied in form of observation, comprehension,
evaluation, reasoning, memory, planning, and are commonly labeled cogni-
tive abilities. Historically, the cognitive abilities have been taken for granted,
and investigated mostly in fields of philosophy and psychology without much
formalism. In past two centuries this has changed by the rise of more for-
mal and experimental research in fields of biology and neuroscience. More
importantly, past few decades have seen the rise in machine learning which
has sparked the interest of understanding the cognitive abilities in a formal
manner and to such a degree where they could be reproduced in artificially
constructed models. This interest resulted in emergence of field of computa-
tional neuroscience. Eric L. Schwartz introduced the term ”computational
neuroscience” in 1985 for the field which was, before that point, labeled by
different names such as neural modeling and brain theory.

Computational neuroscience is a field dedicated to producing theories of
brain function by means of information processing view of nervous system
[2]. It is a cooperative field between neurobiologists and computer scientists.
This cooperation is necessary due to the fact that applying only bottom-up
or top-down approach will likely fail in explaining the underlying functional
systems of neural networks [2].

One of the key cognitive systems contributing to the brains ability to
solve complex tasks is working memory. Human brain requires working
memory to solve even the most common daily tasks such as reading and
comprehending, communication through speech, and planning of motion.
More concretely this can be described as ability to hold, process, and use
information for some period of time during problem solving. Artificial neu-
ral networks are endowed with this ability by including layers of recurrent
memory units (usually of LSTM [3] or GRU [4] type).

1

Introduction

1.1 Motivation

In presence of artificial neural networks as successful solutions to the working
memory related problems, one might ask why is the development of more
constrained, biologically plausible models attractive. The motivation behind
this effort is manifold:

• Spiking models implemented on neuromorphic hardware is significantly
more energy efficient then the artificial counterparts. If the spiking
models can only approach the performance levels of artificial networks
withing application tolerance range, the benefits are still very high due
to energy efficiency of application.

• Successful spiking models offer new insights into the inner working of
the brain and give basis to further brain research which has impact on
variety of fields (e.g. medicine).

• Original artificial neural network models were developed through inspi-
ration from biological neural networks. Investigating biological neural
networks offers opportunity to learn about mechanism that could be
further adapted and used in artificial implementation to improve the
performance. One prominent example is the learning in the brain on
many different timescales, which has been popularized in the machine
learning community under ”learning to learn” term.

1.2 Contributions

In this work we develop simple model of spiking neurons with adaptive
threshold and combine them with other neurons in network with imposed
structure. Our aim is to endow spiking neural networks with many of the
properties of artificial networks with memory units. We demonstrate the
emerging features of such networks through tasks that require memory. We
compare the performance of our model against the spiking networks without
the adaptive mechanism and against the artificial neural networks. Through
this we demonstrate the competitive performance of our novel model against
the artificial counterpart. Finally we analyze the roles of different compo-
nents within our model and experimentally verify the conclusions.

2

Background

2 Background
Humans and animals exhibit complex behaviors which include capacity to
learn, ability to solve complex tasks, planning, and creativity. Such abilities
emerge from the signal processing and neural computation that is happening
in the nervous system and the brain, commonly called neural networks.

Basic building block of biological neural networks is the spiking neuron
(Figure 1). It produces discrete output by integrating the information it
receives from the neighboring neurons. Most of the neurons in the cortex
are of spiking type, however there exist specialized neurons such as analog
neurons in the retina. In this work we will not focus on non-spiking types
of cells. We describe the inner mechanics of biological spiking neurons in
Section 2.1. In addition to neurons, biological neural networks consist of
number of glia cells that support the functioning of the network but are not
directly involved in information processing [5].

In the Section 2.2.1 we discuss the first formal neuron model and its
extensions to the artificial neural networks. In the Section 2.3 we discuss the
leaky integrate and fire spiking neuron model which we will use throughout
the experiments in this work.

2.1 Biological Neuron

Neurons are cells that build nervous system and enable neural computa-
tion through their electrical properties. They control the electric potential
between their cellular walls which is termed membrane potential. This dy-
namic involves transport of different types of ions which are gated through
their corresponding ion channels. There exist many types of neurons, how-
ever their fundamental architecture and electrical properties are common
among all of them. Three functionally distinct parts that compose a neuron
are: dendrites, soma, and axon.

Dendrites are fiber which are attached to neighboring neurons through
synapses. Their role is to collect the input signals and relay them to the
soma. Soma is the cell body whose role is to integrate all incoming sig-
nals and generate the output in form of action potentials i.e. spikes. Axon
propagates these spikes to the connections with other neurons.

Connections between neurons are called a synapses. More specifically
this is the connection between an axon fiber of pre-synaptic neuron and the
dendrite of post-synaptic neuron. These synapses are chemical in nature
and do not propagate the spikes of pre-synaptic neuron to the post-synaptic
neuron directly. Instead the signal is processed and transmitted through
chemical processes in the synapse: Arriving spike at the axon terminal
causes opening of the calcium ion channels in the axon which allows the
flow of calcium ions through the membrane. Higher calcium concentration

3

Background

triggers the vesicles to merge with axon membrane, releasing the contain-
ing neurotransmitters to the extracellular fluid in the synaptic cleft. These
neurotransmitters bind to the receptors on the post-synaptic dendrite mem-
brane which causes opening of the ion channels through which cations and
anions flow. This causes the post-synaptic potential in the dendrites of the
receiving neuron [5].

Usually the dendrites of a neuron are connected to many axons of other
neurons receiving spike trains which produce many post-synaptic poten-
tials. Such post-synaptic potentials have high variance in shape and am-
plitude which results from the complex ion channel mechanisms and other
bio-chemical processes in the synaptic efficacy. The cell body integrates
these post-synaptic potentials into a single membrane potential.

Figure 1: Structure of a typical biological neuron: Dendrites make synaptic
connections with neurons from which they receive the input. Soma integrates the
inputs from dendrites and generate spikes which are propagated by axon to the
synaptic connections of the downstream neurons.

Functionally, synapses are categorized as excitatory or inhibitory. Exci-
tatory synapses depolarize (increase) the membrane potential of the post-
synaptic neuron, where as the inhibitory synapses decrease the membrane
potential pushing it in the direction of cells resting potential, thus reducing
its excitability. All of the post-synaptic currents at dendrites are prop-
agated to the soma. If the membrane potential at the soma crosses the
cell-specific threshold, a spike fires (is generated) and is propagated over the
axon to synaptic connections with other neurons. After the spike fires, the
fast repolarization of the membrane potential occurs, lowering the membrane
potential to a value bellow resting potential. At this point the membrane po-
tential does not change for a brief period of time (termed refractory period).
This phenomenon is called hyperpolarization and it effectively inhibits spike

4

Background

generation by increasing the input stimulus required to move the membrane
potential over the threshold.

The spikes generated in soma are discrete in nature, having similar shape
and duration across neurons. Information transmitted between neurons is
not solely contained in the spike train of the pre-synaptic neuron, but is
augmented by the complex dynamics of the synapse itself which is condi-
tioned by previous activity and other factors. This has strong effect on the
resulting post-synaptic potential.

One of the main learning mechanism in the brain is the adaptation of
the strengths of the synaptic connections. In addition, the biological neural
network not only adapt the strength of, but also create and remove synaptic
connections (effectively changing the architecture of the network).

Different neuron models with various levels of detail have been developed
by different research communities. In the machine learning domain, the ar-
tificial neural networks have been largely developed to efficiently solve com-
plex tasks on contemporary hardware. These belong to the first and second
generation of neural networks [6] and are discussed in the following section.
On the other hand, computational neuroscience and related fields developed
more biologically realistic spiking neuron models which are considered the
third generation [6]. Inspired by real neurons, these models implement spike
based communication and in turn incorporate spatio-temporal information
in the computation. In Section 2.3 we will discuss a specific spiking neuron
model which we will use extensively for the experiments in Section 6.

2.2 Artificial models

2.2.1 McCulloch and Pitts neuron

First attempt to describe fundamental behavior of neurons has been made in
1943. by McCulloch and Pitts [7]. This initial model had binary activation,
excitatory and inhibitory inputs, unit weights and fixed threshold. This
meant that the weights and thresholds of the network had to be analytically
determined and could not be learned. Despite these limitations, network of
McCulloch-Pitts neurons is able to model any logic function.

As an extension to the McCulloch-Pitts model, in 1958. the perceptron
model has been developed [8]. This model allowed for parameter learning
and application of efficient minimization heuristics to solve linear separa-
bility problems. In the perceptron the complex dynamics of the synapses
are simplified to a weight factor. The membrane potential of the neuron is
defined as a weighted sum of the activation of input neurons:

u =

N∑
i=0

wixi + w0 (1)

5

Background

where wi is the synaptic weight to the input neuron i, w0 the weight bias
determining the resting potential, and N the number of input neurons. The
output is defined as a threshold function of the membrane potential:

z =

{
1 ifu ≥ θ
0 ifu ≤ θ (2)

where θ is the threshold parameter.
Next generation of artificial neuron models replaced the threshold func-

tion at the output with a non-linear activation functions, usually sigmoid or
tangens hyperbolicus. As opposed to the perceptron, networks of neurons
with non-linear activations are able to distinguish data that is not linearly
separable. First networks with these properties were multilayer perceptron
and madaline networks, but are today colloquially referred to as ”vanilla”
neural networks.

These networks, despite their simplicity, have proven to be powerful
models serving as universal function approximators. This along with the
existence of efficient algorithms for training such networks made neural net-
works a popular candidate for applications from different fields such as image
recognition [9].

2.2.2 Recurrent networks

A major shortcoming of the traditional neural networks is their inability to
incorporate information of the previously seen inputs in the computation
of the current state. This renders them unusable for the problems which
are sequential in nature and require the memory capabilities in order to
be solved efficiently. To overcome this the recurrent neural networks have
been developed. These networks contain loops withing layers allowing the
information to persist over many computation steps. Developments in the
recurrent networks allowed for the efficient application of the network models
to problems of machine translation, language modeling, speech recognition,
and more [9].

2.3 Leaky integrate and fire neuron

In this section we discuss a formal spiking neuron model called the leaky
integrate and fire (LIF) model. LIF neuron belongs to the third generation of
neuron modes due to its biologically realistic communication and is one of the
most popular formal spiking neuron models used in research. Information
transmitted in the networks of LIF neurons are encoded in the spike trains
the neurons produce.

The cell membrane is modeled as electrical circuit of parallel resistor R
and capacitor C elements which are driven by current I. The current I is

6

Background

interpreted as incoming current from the dendrites. The current component
discharging over the resistor R is interpreted as leaking of ions through
cells open channels, where as the second current component charges the
capacitor C. The capacitor voltage is interpreted as membrane potential u
and is defined by

τm
δu

δt
= −u(t) +RI(t) (3)

where τm = RC is the membrane time constant of the neuron [5].
When the membrane potential rises above the threshold parameter θ,

an action potential (spike) is generated. In this model the spikes are formal
events defined by their firing time t(f) which is determined by the threshold
criterion

t(f) : u(t(f)) = θ (4)

Immediately after the spike fires, the membrane potential is set to the
resting potential ur < θ [5].

In general, the LIF neuron can implement an absolute refractory period,
which we do in our simulations. In this case when the membrane potential
u reaches the threshold θ at time t = t(f), we interrupt the dynamics (3) for
the period of absolute refractory time ∆abs and continue the dynamics at
t(f) + ∆abs with the membrane potential u = ur [5].

LIF model does not define the form of a spike explicitly, thus the driving
current I of interconnected LIF neurons is undefined. In the biological neural
network the activity of pre-synaptic neurons determine the driving current.
Spikes produce current pulses at the synapse which are proportional to the
excitatory post synaptic potential in the receiving dendrite. In this setting
the input current is the weighted sum over received current pulses, where
weights represent the synaptic efficacies:

I(t) =
∑
i

wi
∑
f

αi(t− ti,f) (5)

where kernel αi(t) is the current pulse shape produced at synapse i, ti,f
is a list of input spike times arriving at synapse i, and wi the weight or
efficacy of the synapse i. The kernel α is usually a Dirac δ-pule, but can
also be a double exponential kernel parametrized with rise time τr and fall
time τs:

αi(t) =
q

τs − τr

(
exp

(
− t−∆i

τs

)
− exp

(
− t−∆i

τr

))
Θ(t−∆i) (6)

where q is the total charge of a synapse, ∆i the synapse delay, and Θ(t)
the Heaviside step function [5].

7

Background

2.4 Working Memory

Working memory is an essential part of a system that exhibits complex
cognitive abilities. Humans solve tasks that make heavy use of working
memory on daily basis. These include reading articles, cooking, comparing
prices, adapting and propagating information through speech. For successful
completion of such tasks, the human is required to do multiple steps while
temporarily keeping the intermediate results in mind [10].

Term ”Working memory” is the theoretical construct used in cognitive
psychology that refers to the mechanism underlying the maintenance of task-
relevant information during the performance of a cognitive task. The term
originated in the 1960. work of Miller et al. [11]. It has been stated that
the working memory is ”perhaps the most significant achievement of the
human mental evolution” [12]. Due to its significance, it has also become a
central construct studied in cognitive neuroscience. It is important to note,
however, that despite the prominence of the term, there is a lot of confusion
and contradiction in the definition and meaning of the term used throughout
different research communities.

In this work we use the term working memory as described in [13, 14]:
Working memory is the ability to hold information and manipulate it as op-
posed to short-term memory which refers to just holding the memory. These
two concepts are linked to different neural subsystems. The distinction is
shown by separate factor clustering in factor analyses, different reliance on
dorsolateral prefrontal cortex, and different developmental progression be-
tween the two features.

2.5 Related Work

In this work we hypothesize about potential implementation of working
memory mechanism in the spiking networks. We propose a form of neural
network with multiple types of neurons and imposed architecture. Previous
works approached the same problem in different ways. Here we briefly dis-
cuss these related works and their contributions.

Cortical microcircuits as gated-recurrent neural networks [15]
Authors of this work observe the stereotypical structure in cortical circuits,
interpreting them as the common computational units. They develop a
modified LSTM architecture, termed subLSTM, which gates the informa-
tion in subtractive manner. This unit is still able to approach the LSTM
performances on the sequential MNIST and language modeling tasks used
for evaluation. The key point of this work is that the architecture of LSTM
unit lends itself to a natural mapping onto known cannonical cortical cir-
cuits with few differences which have been bridged with the development of
subLSTM.

8

Background

Memory cell of an LSTM unit is controlled by gates through a multi-
plicative factor. This operation is however not biologically plausible, thus
the subLSTM model has been developed to address this issue. In subLSTM
the memory cell is gated in a subtractive manner, which is interpreted as
inhibition through inhibitory neurons. This however poses a constraint to
the model since this subtractive inhibitory mechanism needs to match the
excitatory input well in order to act as a gate effectively. This implies that
in order to work the network needs to be well balanced, which would be a
challenge to implement in spiking networks which are the end target for this
model.

Another critique of this work is that through the proposed mapping,
only a single LSTM-like unit is implemented in a cortical circuit containing
many neurons, which renders this mapping very inefficient. In our work
we present an efficient implementation of LSTM-like spiking network ap-
proaching the performance of artificial LSTM network with same number of
parameters and training iterations. Finally the use of LSTM architecture
as target when developing a spiking models of memory is not a good ap-
proach since the architecture of LSTM units have been primarily developed
to mitigate the issue of learning in automated gradient frameworks, namely
exploding and vanishing gradients, which do not exist in biological neural
networks.

Gating out sensory noise in a spike-based Long Short-Term Mem-
ory network [16]
In this work a simplified LSTM cell is targeted. Authors develop an Adaptive
Analog Neuron (AAN) which is used to build a simple LSTM cell version
containing only an input gate and a memory cell. They also develop an
Adaptive Spiking Neuron (a variant of LIF neuron with fast adaptation)
which can be used as drop-in replacement for the AAN. Main idea of their
approach is to use a network of ANN units to train the network on spe-
cific task, and finally replace the ANN units of the trained network with
the Adaptive Spiking Neurons. With this approach the authors were able
to solve Sequence Prediction task (Hochreiter & Schmidhuber 1997) and
T-Maze task (Bakker 2002).

Prefrontal cortex basal ganglia working memory (PBWM) [17, 18,
19, 20, 21, 22]
PBWM is an algorithm that has been put forward in many works as a hy-
pothesis for working memory model in the basal ganglia and the prefrontal
cortex. Functionally it also is comparable to the LSTM model. In the [17],
the authors try to shed light on the underlying mechanism of executive func-
tion of cortical homunculus. They approach the problem by constructing a
learning mechanism that endow perfrontal cortex model with ability to con-
trol different brain areas in strategic, task-oriented manner. The proposed

9

Background

learning mechanism is an actor-critic architecture formed from subcortical
structures (found in midbrain, basal ganglia, amygdala) and is designed to
solve the structural and temporal credit assignment problem.

10

Neuron Model

3 Neuron Model
In this section we describe the neuron models used throughout the simula-
tions in Section 6. To take advantage of modern frameworks for training
networks with automatic differentiation and backward propagation of errors
(backpropagation), we simulate the spiking neural networks in discrete time.
Details on how the backpropagation has been applied to recurrent networks
of spiking neurons are discussed in Section 5.

3.1 LIF implementation

We perform the neuron simulations in discrete time with time step of δt = 1
ms. Each neuron j is given a membrane time constant τm,i chosen from
uniform distribution in [15, 30] ms. The membrane potential of neuron i is
given by:

ui(t+ δt) = αiui(t) + (1− αi)Ii(t)− Irefi (t) (7)

αi = exp

(
−δt
τm,i

)
(8)

Each synapse is associated with a unique delay d in [1, 10]ms with uni-
form probability so that: W d

i,j is the synaptic weight and W d′
i,j with d′ 6= d

is zero. The input current Ii(t) of the neuron i at time t is defined as:

Ii(t) =
∑
d,j

W d
j,ixj(t) (9)

where x represents the spike trains of neurons which axons are connected
to the dendrites of neuron i.

The refractory current Irefi (t) = zi(t)(θ − V reset) resets the membrane
potential after an action potential to V reset = 0. A spike is initiated when
the neurons membrane potential rises above the threshold:

zi(t) = HSS(ui(t)− θ) (10)

where HSS denotes the Heaviside step function, and threshold θ = 0.01.

3.2 LIF with adaptive bias

In addition to the vanilla LIF neuron model, we implement LIF neuron
model with adaptive bias i.e. threshold, which we term ALIF in the following.
As opposed to LIF model which has the fixed threshold potential θ = 0.01,

11

Network Model

the ALIF model has adaptive threshold. For ALIF neuron k the adaptive
threshold is defined as:

θk = θ0 + bk(t)β (11)

bk(t) = (1− αthr)zk(t) + αthrbk(t− 1) (12)

where zk(t) is the spike train of ALIF neuron k at time t, αthr a parameter
in (0, 1), β the update scaling factor, and θ0 = 0.01 the baseline threshold.
We set αthr = exp(−δtτa) with τa set to number of milliseconds matching the
expected memory length requirement of a given task. This however applies
only to artificial tasks where the memory length requirement is predictable.
For more complex tasks like speech recognition, and more biological realism,
a wide spread of τa values over neuron population is more suitable.

4 Network Model
There exist many models of artificial recurrent neural networks that ap-
proach state of the art performance on memory related tasks, most notable
being the LSTM[3] and GRU[4]. In the following Section 4.1 we describe the
artificial recurrent neural network that served as inspiration for development
of our spiking network model discussed in Section 4.2.

4.1 Structurally Constrained Recurrent Network

Structurally Constrained Recurrent Network (SCRN) has been developed
by Mikolov et al. [23] and gives as an insight into the effects of imposing a
structural constraint on a simple artificial recurrent model which by itself is
considered inadequate for solving memory related tasks.

Original Elman neural network [24] as shown in Figure 2(a) consists of
an input layer, a recurrent hidden layer, and an output layer. The recurrent
hidden layer allows the information about previous inputs to be propagated
through time and influence the future outputs. Formally this model is de-
fined by following equations:

ht = σ(Axt +Rht−q)

yt = f(Uht)

where σ(x) = 1
1+exp(x) is the sigmoid function, and f is the soft-max

function.
Such simple models of recurrent neural networks, although elegant, suf-

fered from the exploding and vanishing gradient problem. During training

12

Network Model

xt

yt

ht

A

U

R R

(a)

xt

yt

stht

BA

U V

P
R α

(b)

Figure 2: Architecture comparison of SRN and SCRN: Architecture of (a)
simple recurrent network and (b) structurally constrained recurrent network.

of a network, if the accumulation of error gradients during an update results
in large values, this leads to large weight updates and unstable training. In
extreme case these large values can cause an overflow in the training frame-
work. The growth of the gradients is a result of repeated multiplication
through the network layers, which is especially the case with recurrent neu-
ral networks which need to be unrolled in time. This is called the exploding
gradient problem, and can be worked around by means of gradient clipping.

The problem of vanishing gradient results from propagating the gradi-
ents through layers which have small weights, which in turn shrink the value
of the propagated gradients quickly to values close to zero. This results in no
updates being made to recurrent layers with dependencies reaching further
in the past, which makes learning longer term patterns difficult. Vanishing
gradient problem can not be mitigated easily as exploding gradient problem.
This motivated the development of much more complex and biologically un-
feasible recurrent units such as LSTM [3] and GRU [4]. SCRN however
offers network architecture that overcomes the problems of exploding and
vanishing gradients and is also able to retain information about longer pat-
terns while still retaining the architectural simplicity. Formally the SCRN
is defined:

st = (1− α)Bxt + αst−1

ht = σ(Pst +Axt +Rht−1)

yt = f(Uht + V st)

where α is a parameter in (0,1). Architecture of SCRN is shown in
Figure 2(b). Notice however that the self pointing edge on st with label α

13

Network Model

represents the dependence of st on its state from previous time step, and
not the self recurrent connection as is the case with node ht.

4.2 Spike based Memory Unit

Inspired by SCRN [23], we propose a spiking model which we term Spike
based Memory Unit (SMU). Architecture of proposed SMU is shown in
Figure 3.

In Figure 3, orange pool represents a recurrent network of LIF neurons
which we label O, while blue pool represents a non-recurrent layer of ALIF
neurons we label M . Both O and M receive input from a pool of input
neurons X. Pool O additionally receives input from M .

Figure 3: Architecture of SMU network: Gray circles represent spiking neu-
rons, and gray arrows the synaptic connection. Recurrent neuron pool marked with
large orange circle, contains only LIF neurons, while non-recurrent pool marked
with blue circle contains only the ALIF type neurons.

Inner neuron dynamics of LIF and ALIF neurons are described in Section
3. The input current is defined by equations 13 and 14 for neurons in O and
M respectively.

Ij(t) =
∑
d,i

W in,d
i,j xi(t) +

∑
d,k

W mem,d
k,j mk(t) +

∑
d,l

W rec,d
l,j ol(t) (13)

Ik(t) =
∑
d,i

W in,d
i,k xi(t) (14)

14

Training Method

where x, m, and o are the spike trains of input neurons X, ALIF neurons
M , and LIF neurons O respectively.

The output Y receives the inputs from both O and M and is defined as
softmax over weighted sum of post synaptic potentials:

y(t) = softmax(U ô(t) + V m̂(t))

where ô(t) and m̂(t) are vectors of exponentially convolved spike trains
of o(t) and m(t) respectively:

ô(t) =
t∑

t′=0

o(t′)exp(
−t− t′

τout
) (15)

m̂(t) =
t∑

t′=0

m(t′)exp(
−t− t′

τout
) (16)

with τout = 22ms, and o(t) and m(t) being the vectors of neuron spiking
outputs at time t.

The output dimensionality is chosen to match the requirements of the
task at hand. For the supervised learning classification problems it is num-
ber of classes, and for the reinforcement learning tasks it is the number of
possible actions. We apply softmax function over this output and define
loss as cross-entropy between the target values and the softmax output.
Role of softmax on the PSPs of the output pool Y can be interpreted as
winner-take-all circuits in context of classification tasks.

5 Training Method
Artificial neural networks have been successfully trained by gradient-based
methods, most notably backpropagation (BP). For the recurrent neural net-
works the extension of this method is used which is called backpropagation
through time (BPTT).

However, the BP and BPTT methods can not be directly applied to the
spiking neural networks due to the non-differentiable nature of the spiking
neuron output. To overcome this problem Bellec et al. developed a novel
variant of BPTT which is applicable to the spiking neural networks simu-
lated in discrete time. Section 5.1 describes the detail of this novel BPTT
and is based on [25].

5.1 SSD-BPTT

A spiking neuron i at time t produces a non-differentiable output zi(t) ∈
{0, 1}. This output is produced by the spike generation dynamics of the
neuron which is defined as thresholding of the membrane potential:

15

Training Method

zi = HSS(ui(t)− θ) (17)

where HSS is the Heaviside step function, ui(t) the membrane potential
of the neuron i at time t, and θ the threshold voltage.

Solution to the non-differentiability of the Heaviside step function is to
interpret its theoretical derivative as a Dirac distribution. Following [26, 27]
the derivative of HSS is approximated as smoothed Dirac:

δzi(t)

δvi(t)
≈ SD(vi(t)) := max{0, 1− |vi(t)|} (18)

where SD is the smoothed Dirac function, vi(t) the normalized mem-

brane potential vi(t) = ui(t)−θ
θ . This approximation allowed for deep neural-

networks of deterministic binary neurons to be trained by means of back-
propagation, but has shown to be unstable for training of recurrent networks
of spiking neurons where the gradients are propagated through the spiking
mechanism of a neuron many thousands of time steps [25].

To overcome this, further adaptations have been made to (18). The
gradients that are propagated through neurons are sparsified by a dampening
factor γ. This method has been termed sparsified smoothed Dirac (SSD):

δzi(t)

δvi(t)
≈ SSD(vi, t) := γ SD(vi(t)) (19)

5.2 Evolutionary Strategy

Possible alternative training method which solves biological realism problem
of back propagation methods is the evolutionary strategy [28]. In this work
we opted for not using this approach firstly due to the inherent computa-
tional cost that comes with it, and secondly due to performance inferiority
in comparison with gradient based approaches in the context of supervised
learning tasks on which we focus in this work.

16

Experiments

6 Experiments
To evaluate if our proposed SMU model endows spiking networks with many
of the features of LSTM artificial networks, we consider a set of different
memory related tasks. We first solve a distribution of artificial toy problems
labeled store-recall task in Section 6.1. Our aim with solving these tasks is
to demonstrate the ability of our spiking models to replicate the basic be-
haviors of LSTM networks like storing and recalling information on demand,
and processing this information to produce the required output. Next we
consider a more demanding sequential MNIST task which we discuss in Sec-
tion 6.2. Lastly we apply our models to TIMIT task of speech recognition,
in Section 6.3.

6.1 Store-Recall task

The store-recall task is simple working memory task testing if the model
can memorize and recall input values on demand. The task is defined in
discrete steps, each lasting for τc milliseconds. Since these steps dictate the
changes in the network input values (characters), we label them ’character
steps’. The input is defined through a set of input channels. Two channels
are reserved for ’store’ and ’recall’ signals to the network which instruct the
network to either store the currently shown input signal on value channels,
or recall the last stored signal respectively. All other input channels are
labeled value channels and are used to encode the input values (which are
stored and recalled during the task).

In our setup we define two value channels, termed ’0’ and ’1’ representing
the bit values (characters) that should be stored and recalled. These two
channels are activated exclusively (either one or the other) and constantly
feed random binary stream to the network. When the store signal is received,
the network should remember the currently present binary value from the
the value encoding channels. When the recall signal is present, the network
has to output the previously stored value. Dimensionality of the network
output is equal to the number of value channels, which in this case is two.
Input values, shown on value channels, are picked with equal probability and
the store-recall channels are activated in alternating fashion with probability
of pSR = 0.2. Another implementation detail is that no value is shown at
value encoding channels during the recall signal.

Input channels (’store’, ’recall’, ’0’, ’1’) were encoded in a population of
100 spiking neurons. Each of the input channels is encoded in a sub popu-
lation of 25 neurons that fired with 30Hz firing rate during its activation.

We first trained the networks on sequences of length 12 (character steps).
With the probability of alternating store-recall signal being pSR = 0.2, we
calculate the expected number of character steps between consecutive store-
recall signals E[k] = 1−pSR

pSR
= 4. This converts to expected delay of τc ∗

17

Experiments

E[k]ms in biological time. In first setup we extend this delay by increasing
the character step length τc.

The networks compared in this and following sections are: LIF network
with 80 neurons, and SMU network with 60 neurons in LIF pool and 20
neurons in ALIF pool. Using this setup both networks have the same number
of spiking neurons, note however that the SMU network has less synapses
(parameters) due to the constrained architecture.

Results: Networks of LIF neurons are only able to reliably solve the
store-recall task up to 200 ms expected delay, see Table 1, where as the
SMU with same number of neurons is able to solve the task with arbitrarily
long delays. Figure 4 (containing the spike raster plots of input, LIF and
ALIF neurons, traces of ALIF neuron biases, and network outputs) shows
performance of successfully trained SMU network on instance of store-recall
task with τc = 250ms containing a delay of 1250ms between store and recall
signals. In the raster plot of ALIF neuron pool we can observe that the
stored information is maintained in the activity silent manner, through the
internal bias state, showcasing the functional difference of the ALIF neurons
to the LIF neurons in this setting. Improvement to the performance by
adding ALIF neurons to the model also introduces the additional hyper-
parameters: speed of bias decay τα and the scaling factor of bias change β,
see (11). In general we can set τα to the expected delay (in milliseconds)
of the task instance if we want to ensure that the ALIF neurons can easily
memorize values for those delays. For the scaling factor β we do a task
specific parameter search in the following section.

We also investigate a more natural approach to choosing the τα param-
eter. Instead of using the insight into the task specifics to choose the bias
decay τα, we set it to wide spread of values which is something we can
observe happening in biological neural networks for a semantically similar
parameter [29]. Allen Institute for Brain Science provides us with database
of single cell feature measurements of both human and mouse brains. Here
we observe that brains of both species contain a spread of adaptation index,
with human brains having a wider spread. The adaptation index in the data
is defined as: ”The rate at which firing speeds up or slows down during a
stimulus” [29], which is semantically equivalent to the adaptiveness of the
threshold in our implementation of ALIF neuron.

6.1.1 Optimizing scaling factor β

For the β we perform a simple parameter search to optimize for the learning
speed of the SMU network. More specifically we measure the number of
training iterations required to reach error bellow 10%. Plots in Figure 5
show the learning speed of the network as a function of different β values in
two experiment setups. First setup is performed with τc = 100ms resulting
in 400ms expected delay time, and τα = 200ms. In second setup we set

18

Experiments

Figure 4: Trained SMU network solving store-recall task: Character step
is set to τc = 250ms. From top to bottom: Spike raster of input neurons, spike
raster of LIF neurons, spike raster of ALIF neurons, softmax output (with target
and average of softmax for character step). and bias plot of ALIF neurons.

19

Experiments

Figure 5: Impact of bias update scaling factor β on network learning
speed: We perform a limited grid search over the bias update scaling parameter β
to optimize the learning speed of SMU network. Plots show the number of training
iterations needed to reach error bellow 10% (y-axis) for simulations of store-recall
task with expected delay of 400ms for left plot and 1000ms for the right.

τc = 250ms (1000ms expected delay) and τα = 400ms. For every β value we
performed two simulations with random initializations and plot the mean
number of iterations. We set the τα to values smaller then expected delay
on purpose to make it harder for the network to store the values over longer
periods. This should result in more spiking in the ALIF pool being required
to successfully store a value. This firing highly depends on parameter β
which dictates the strength of bias update on every spike.

Based on Figure 5, we can observe that the optimal value for β is found
in the range (1.5, 2), so we fix the parameter to the value β = 1.7 for further
store-recall experiments.

6.1.2 Evaluation on large delays

In this section we optimize the network to solve the task for longer delays
between the store and recall signals. We extend the delay by increasing the
τc parameter. Table 1 contains the results of different training runs for SMU
and vanilla LIF networks.

From the results we can observe the importance of ALIF neurons for the
input memorization over longer periods. On the other hand the network
with more LIF neurons is able to memorize the inputs more efficiently for
shorter time periods by encoding the data in network activity.

Extending the τc parameter not only extends the expected delay, but
also extends the character step duration. This implies that the network
has longer period for storing the value, which makes the task easier. To
verify the robustness of SMU to smaller τc with longer expected delays, we
test the network on longer input sequence lengths, fixed τc = 250ms, and
smaller store-recall signal probability to pSR = 0.1. In this setup the SMU
was still able to reach errors lower then 5% withing same training period

20

Experiments

Task τc (ms) 50 125 250 500 1000

expected delay (ms) 200 500 1000 2000 4000

SMU with τα =
expected delay

0.0414 0.0150 0.0078 0.0073 0.0197

SMU with spread τα
in [200, 4000]ms

0.0186 0.0285 0.0013 0.0064 0.0373

LIF 0.0039 0.3070 0.3183 0.3503 0.3748

Table 1: Accuracy on store-recall task: Smallest mean test errors reached by
different networks over 500 training iterations. Mean test error is calculated over
any ten consecutive iterations. Final numbers represent the average values over
multiple random initializations. Number in boldface are the best results reached
for particular delay.

of 500 iterations. Appendix A contains Figures 13 and 14 showcasing the
SMU solving the task in this setup with delay between store-recall signals
of 4250ms and 8750ms respectively.

6.1.3 Architecture evaluation

To evaluate the influence of specific architecture proposed by Mikolov et
al. [23], we implement three additional architectures based on the original
SCRN by adding the possible additional connections to the model until
the fully connected pool of mixed LIF and ALIF neurons is reached. New
architectures emerging from this process are shown in Figure 6 with labels
A, B, C, and D. Architecture A is the original SCRN architecture, while D
is the fully connected model.

The changes to the architecture are also reflected in the input current
dynamic (14) of the M neuron pool in the following way:

arch. B : Ik(t) =
∑
d,i

W in,d
i,k xi(t) +

∑
d,l

W rec,d
l,k ol(t) (20)

arch. C : Ik(t) =
∑
d,i

W in,d
i,k xi(t) +

∑
d,l

W mem,d
l,k ml(t) (21)

arch. D : Ik(t) =
∑
d,i

W in,d
i,k xi(t) +

∑
d,l

W rec,d
l,k ol(t) +

∑
d,n

W mem,d
n,k mn(t) (22)

Finally we compare the learning speed of above developed architectures
on the store-recall task. We repeat the same setup as in previous section.
With goal to find the fastest learning architecture, we measure the number
of training iterations needed to reach the error rate bellow 5%. Simulations
that do not reach this threshold in 600 iterations are stopped and marked as
failure. We perform this evaluation for store-recall task instances with ex-

21

Experiments

X

Y

MO

A

X

Y

MO

B

X

Y

MO

C

X

Y

MO

D

Figure 6: SCRN architecture alternatives: Proposed modifications to the
original SCRN architecture. In out implementation M represents the pool of ALIF
neurons while O represents the pool of LIF neurons (for more details see Section
4.2). Red edges represent the added synaptic connections. A: original SCRN in-
spired architecture. B: additional connection from recurrent LIF neurons to the
ALIF neurons. C: recurrent connection within ALIF neurons. D: both changes
from B and C effectively making a fully connected pool of mixed LIF and ALIF
neurons.

22

Experiments

Figure 7: Evaluation of alternative SMU network architectures: Perfor-
mance comparison of different architectures of SMU model on store-recall task.
Points represent the number of training iterations needed to reach an error bellow
5% on the test set, each point representing a result from different random ini-
tialization. Bars that contain points are the mean values of results of individual
architectures.

pected delay of 2000ms and 4000ms. Figure 7 shows the individual training
times along with the mean values for every architecture.

Through this comparative analysis we have shown that the imposed
structure on the network plays a large role in the resulting performance. Ar-
chitectures C and D show significant degradation in learning speeds which
indicates that their common factor, recurrence in the pool of ALIF neu-
rons, has negative impact on the models capabilities to capture long term
dependencies in sequential patterns.

Another discovery is the second promising architecture B which performs
as well as original architecture A but with higher variance in learning speed.
However, when considering only the best results reached by individual ar-
chitecture, the architecture B is the winner. The additional connection from
LIF to ALIF pool in architecture B might be responsible for better process-
ing ability of the model but with a cost of additional parameters that need
to be trained.

6.2 Sequential MNIST

The MNIST dataset [30] is a popular toy problem in the deep learning
community. It is a dataset of handwritten digits and respective labels used
as a supervised learning image classification task. Since image data is lacking
the dimension of time, this dataset needed to be adapted for benchmarking
of memory capable neural networks. This resulted in the sequential MNIST
developed by Le et al. [31]. In this task the 784 pixels of an image are
presented in a sequential manner to the recurrent network. Classifying such
sequences requires a network capable of learning longer time dependencies

23

Experiments

between the presented pixels.
This same problem has been tackled by different publications, which

report very different performances using the LSTM networks. In the [31]
the maximum test accuracy reached is ∼65% after 106 training iterations of
an LSTM network with 100 hidden units. They also performed a grid search
to optimize the initial forget gate bias to improve the learning of long term
dependencies. In contrast to these results, in the [15] the authors report the
performance of 97.96% without sharing any details on the training duration.
They report also using single layer LSTM network with 100 hidden units,
optimizing the network with RMSProp with momentum with learning rate
10−4, and initializing forget gate to 1. Lastly the authors of [32] report the
test accuracy of only 52% with 10k training iterations.

6.2.1 Pixel to spike encoding

Figure 8: Sequential MNIST input encoding: Original MNIST image (left) is
fed to the network one pixel at a time in a sequential manner from top left to bottom
right. Artificial LSTM network is fed with analog pixel values directly, where as
spiking network models require additional encoding of analog values to spikes. Spike
rasters produced from the MNIST image on the left: Threshold crossings method
(top right), Population rate encoding (probabilistic firing) method (bottom right)

Pixel values in the MNIST data sets are normalized to floating point number
in range [0, 1]. To encode such pixel sequences to spikes we implemented two
different approaches. First, a simple pool of neurons fire with probability
of pixel value, effectively implementing the population rate encoding. The
probabilities are scaled down so the stochastic neurons fire in the range [0,
200] Hz. Resulting spike trains are shown in the Figure 8 bottom right
plot. The second approach was inspired by the onset-offset method used for
audio preprocessing in [33]. Here we apply an onset and offset threshold
operation on the pixel values in the sequence. Every threshold-direction
tuple is assigned to separate neuron which would fire in respect to the change
of the pixel value. Resulting spike trains from this method are shown in the
Figure 8 top right plot.

24

Experiments

In comparison we observe that the threshold crossing method of spike
generation preserves much more information about the pixel values showing
spikes in the train for even the very low pixel values. This of course depends
on the number of thresholds, however the previous statement always holds
if the number of neurons is matched by both methods. In contras the pop-
ulation rate encoding shows more degradation in the information detected
(pixels with very low values are not detected), but much more irregular
and biologically plausible firing rates. This method would require very high
number of input neurons to detect the weak pixels with same accuracy as
the threshold crossing method.

A potential improvement to the population rate encoding would be to
apply a logarithmic transform to the pixel intensities making the input more
sensitive to the weak pixels, analog to the human logarithmic perception of
many stimuli (sound, light, etc.). Exploration of this potential improvement
to the input preprocessing we leave for the future works, and focus here only
on previously described methods.

With the two encoding methods described above, it is obvious that in-
creasing the number of input neurons encoding the pixel values would in-
crease the information resolution in the spike trains. This however comes
with a cost of increase in parameter number for the network model which is
significant for the effectiveness of the network.

Additionally for the resulting spiking input, we extend the sequence by
100ms and add a neuron that fires constantly for this period of time at
the end of input. This serves as the output cue to the spiking models.
During training, the softmax output of the spiking models is averaged over
this cue period and the output channel with highest probability is used as
final classification output of the network. This output is compared with the
target values to compute the classification accuracy of the network. Plot of
probabilities of the softmax output of a trained SMU network is shown in
fourth row of Figure 9.

6.2.2 Evaluation

In the following we compare performances of different network models with
different input encodings of sequential MNIST task. We first perform the
experiment with recurrent networks of LIF neurons to serve as a baseline
for spiking network performance. We fix the SMU network architecture to
version B (see Section 6.1.3) and test it on both thresholding and popula-
tion rate pixel encoding methods described in previous section. Finally we
compare the results of spiking networks to the artificial LSTM network. To
facilitate a fair comparison we match the number of parameters between the
networks (∼66k), the batch size (512), and the number of training iterations
(12k, 24k, 36k). An important factor to note is that the LSTM network has
been fed with the original analog input pixel values, potentially giving it a

25

Experiments

Figure 9: Trained SMU network solving sequential MNIST: SMU network
classifying the sequential MNIST image of digit 9 encoded with onset-offset thresh-
olding method. First three rows show raster plots of input, LIF, and ALIF neurons
respectively. Fourth output row shows the plot of softmax probabilities over output
classes. Last row shows plot of adaptive thresholds over time of the ALIF neurons.

26

Experiments

significant advantage over the spiking network which are fed with the lossy
input encoding. Further details of the training setups is described in Ap-
pendix B. Table 6 contains the accuracy on the test set of different network
models after the training. The reported results are the best runs out of
20 random network initializations that showed the fastest learning speed in
initial training period.

τα (ms) input type
test accuracy at

12k iter. 24k iter. 36k iter.

LIF thresholding 36± 5.4% 55± 8.9% 61± 4.2%

SMU 700 population rate 77± 5.3% 86± 2.4% 86± 2.3%

SMU [200, 2000] thresholding 80± 6.3% 89± 1.7% 92± 1.4%

SMU 700 thresholding 83± 5.6% 90± 1.7% 93± 1.2%

LSTM analog 83± 1.8% 94± 1.7% 96± 1.6%

Table 2: Accuracy on sequential MNIST: Performance comparison of different
networks on sequential MNIST task. Presented are the best runs out of 20 random
network initializations. Results are mean values and standard deviations of network
classification accuracy on test batch containing 512 images.

With the results from Table 6 we can confirm that the information degra-
dation through the population rate pixel encoding has a direct impact on the
performance of spiking network (compare SMU results with different input
types). Results also show the superiority of our SMU model to the recurrent
network of LIF neurons in the context of task where temporal dependencies
in the sequences that need to be exploited are over the 200ms limit.

Finally the highlight of this experiment is the performance of SMU net-
work which approaches the performance of optimized artificial LSTM net-
work (see last two rows of Table 6). We point out that both networks use
the approximately the same number of parameters, and were trained for
the same number of training iterations, while the LSTM network had an
advantage of more precise analog input.

The SMU network with spread of adaptation time constant τα in [200,
2000]ms performed slightly worse then the same network with fixed τα =
700ms. This is caused by the two factors. First, the potential maximum
of the required time constant to hold the information from beginning of
input is 700ms. This indicates that ALIF neurons with lower time constants
would not be able to successfully store the information until the output cue.
Second, with the onset offset thresholding method of encoding the pixels,
there is no redundancy in the input (as opposed to store-recall task where
values are presented for τcms which allows even the ALIF neurons with
short adaptive time constant to significantly change their threshold bias
which can then decay sufficiently long until the recall output cue). Both of
these factors contributed to training difficulty of this network which could

27

Experiments

potentially match the performance of SMU network with fixed τα. It is
important to note that the SMU network with spread of τα values is much
more flexible and applicable to tasks with very different memory demands.

Raster plots of trained SMU network solving the sequential MNIST clas-
sification of onset-offset threshold encoded image of digit 9 is shown in Figure
9. Additional plots for the trained network solving the task encoded with
population rate method is shown in Figure 15 (in Appendix B).

6.3 Speech recognition task

In this section we present the supervised learning phoneme classification
task on TIMIT corpus. The dataset on which we train the model is de-
scribed in the Section 6.3.1. The encoding of audio signals to spike trains
by Lyon’s cochlear model is described in Section 6.3.2. Finally we evaluate
and compare models in Section 6.3.3.

20kHz

5kHz

1kHz

20Hz

TIMIT

SMU

Phonem
classification

Lyon's Cochlear
Model

Input

Output

Figure 10: Setup for audio classification with spiking models: High level
view of setup used to solve TIMIT phoneme classification task with spiking models.

Motivation for solving a speech recognition task is twofold. First it is a
real world problem still being researched by the machine learning commu-
nities. Methods used to solve it are continuously being improved by many
handcrafted algorithms, mostly using artificial neural networks. So far, to
the best of our knowledge, no work has attempted to solve this task using
spiking neural networks. Second, the task is something human brain solves
on the daily basis, making it a well fitted task for a biologically plausible
spiking network models.

With this in mind, during our experiments in the following sections we
will opt for the more biologically plausible methods in different aspects of
experiments. We acknowledge that this will result in worse performance
of our spiking models then if we optimized all aspects of the experiments
toward maximum performance.

6.3.1 TIMIT corpus

The TIMIT corpus is a collection of reading speech data made with auto-
matic speech recognition systems evaluation as its primary target [34]. The

28

Experiments

original label target label

aa, ao → aa
ah, ax, ax-h → ah

er, axr → er
hh, hv → hh
ih, ix → ih

l, el → l
m, em → m

n, en, nx → n
ng, eng → ng

sh, zh → sh
pcl, tcl, kcl, bcl, dcl, gcl, h#, pau, epi → sil

uw, ux → uw
q → –

Table 3: TIMIT phoneme reduction: Reduction of the number of phoneme
labels in the corpus is achieved through mapping of multiple phonemes in the left
column to a single label in the right column. The phoneme ’q’ is discarded. This
mapping reduces the the original 61 phonemes to 39 labels.

corpus contains recordings of 630 speakers reading ten phonetically rich sen-
tences. The speakers dialects belong to the eight major dialects of Amer-
ican English, providing the high variation in the utterance of phonemes.
A data point (single utterance of a sentence) from the corpus consists of
recorded waveform, and phonetic, orthographic, and word labels which are
time-aligned. The waveform recording are 16-bit with 16kHz sampling rate.
All the labels contained are hand verified. Additionally test and training
groupings are balanced for phonetic and dialectal coverage [34].

The transcription labels of this corpus belong to the dictionary of 61
phonemes. Throughout experiments in this chapter we us a reduced set of
phonemes which is a common practice from speech recognition domain [35].
We achieve this by mapping multiple phonemes to single label using the
common mapping from [36] shown in Table 3. Through this reduction the
resulting phoneme dictionary contains 39 entries.

6.3.2 Audio to spike encoding

State of the art ANNs commonly use the Mel-frequency cepstral coefficients
(MFCCs) as the audio preprocessing method of choice for tasks related to
speech recognition [37]. Many authors have been credited for development
of this method, most notable ones include Paul Mermelstein, John S. Bridle
and M. D. Brown.

There exist many variations of the algorithm for deriving MFCCs, but
the essential steps include:

29

Experiments

• Fourier transform of windowed signal

• Mapping the powers of previous step on the mel scale, using triangular
overlapping windows

• Applying logarithm to the powers at each mel frequency

• Discrete cosine of previous result

• Finally the output is made of amplitudes of the spectrum from previous
step

Even thou the MFCCs are a powerful and proven audio preprocessing
methods for speech recognition methods, it is ill-suited for the spiking net-
work models. In context of human speech recognition and audio processing
in general, the preprocessing task of the incoming sound waves is performed
by ear organs. More specifically the outer and middle ear partially process
the acoustic pressure waves which are finally transformed into nerve firings
in the cochlea, located in the inner ear. The resulting spike trains are used
in the higher levels of the brain for speech recognition and related tasks.

A well known biologically realistic audio preprocessing method is the
Lyon’s Cochlear Model [38]. This method provides us with a simple model
for the middle and outer ear and most importantly the input/output charac-
teristics of the cochlea from the inner ear. The output of this cochlear model
is a discrete time series of neuron spiking probabilities. Sampling from these
probabilities produces spike trains which are compatible with our discretized
simulation of spiking neurons (described in Section 3). This is equivalent to
the population rate encoding we investigate in previous sequential MNIST
experiment where we learn the inferiority of this encoding method to the

Figure 11: Inner ear anatomy: Right osseous (bony) labyrinth of the inner ear
showing the cochlea (spiral-shaped cavity). Lateral view.

30

Experiments

thresholding method. Nevertheless, for this experiment we will use the pop-
ulation rate encoding since this is the intended and biologically justified
encoding to spikes through cochlear model.

For the purposes of our experiments we used the Malcolm Slaney’s im-
plementation of Lyon’s passive cochlear model in the Auditory Toolbox [39]
to produce the firing probability matrices.

6.3.3 Evaluation

Despite the popularity of the TIMIT corpus as a task used for evaluating
recurrent models, in the following analysis we show that relatively short
memory is required for successfully solving the task. Through statistical
analysis of the corpus sampled with 1ms window we discover that the max-
imal length of single phoneme in the corpus does not cross the 438ms limit.
Overall the mean phoneme length is only 77ms in the training dataset, and
the mean length for the longest phoneme is only 160ms. Figure 12 shows
the distribution of maximum phoneme lengths in milliseconds for half of the
randomly chosen phonemes in the corpus. Fact that most state of the art
results were achieved through applying LSTM on MFCC sampled with 10ms
window size (resulting in average phoneme length of 7.7 steps) point to the
relatively short memory demand of the task. These statistical properties

Figure 12: TIMIT maximum phoneme lengths in ms: Maximum pronunci-
ation time per phoneme in the train set of TIMIT corpus. For brevity, only half of
the phonemes from the training set are shown.

31

Experiments

suggests that the ability of SMU to learn long term dependencies will not
be exploited in this task. Based on our findings during store-recall task, we
would expect that the LIF network would perform better on TIMIT task
then the SMU model.

For population rate encoding of the audio data through Lyon’s cochlear
model we observed that sampling with 1ms resolution produced too noisy in-
put which proved to be detrimental to the performance of spiking networks.
To mitigate this we sample the input with 10ms resolution which we then
stretch in time by repeating every step 10 times to produce a more stable
input of the required length. The resulting firing probability matrix is also
extended in space, duplicating every channel 5 times with aim to increase
the sampling precision.

Training recurrent neural networks on TIMIT corpus is very computa-
tionally intensive. In an attempt to speed the training process, we split the
input sequences in the chunks of 600ms. Network state at the end of one
such chunk is transfered to the start of the next corresponding chunk. This
adaptation only has an effect on the gradient propagation in time which in
this case is limited to only 600ms. This resulted in noticeably faster training
of the networks without the performance loss.

To evaluate our previous claim that only relatively short memory is re-
quired for successful learning of TIMIT task, we perform the simulation of
LSTM network with sequence chunking to very short 200ms chunks which
prevents any gradient propagation beyond this time limit. We observed
no performance degradation in this setup which confirms our initial task
analysis and conclusion.

LSTM network used in the simulations contain a single LSTM layer of
200 hidden units. Input to LSTM network is (1ms window) MFCC with 13
channels combined with first and second derivative of the same, resulting in
39 input channels. We fix the SMU network architecture to version B (see
Section 6.1.3). For fair comparison we construct the SMU network with the
same number of parameters as LSTM network. Lyon’s cochlear model has
86 channels at output, after 5 times repetition, we have 430 input channels.
This limits the SMU network to 182 LIF and 100 ALIF neurons to match
the number of parameters of LSTM network. For recurrent LIF network the
number of neurons is 272 to match this constraint. Details on the number
of parameters per network model is described in Appendix C.

Additionally we include the results of Graves and Schmidhuber [1] who
also trained a unidirectional LSTM network on a more challenging version
of TIMIT using the complete set of 61 phonemes with MFCCs extended
through first derivative and log-energy.

All networks have been trained with batch size 500 and up to 100 epochs,
using Adam optimizer with learning rate of 0.01.

32

Experiments

input type
no. target accuracy
phonemes test validation

LIF Lyon’s cochlear 39 65.8% 67.2%

SMU Lyon’s cochlear 39 63.5% 65.6%

LSTM MFCC +∆ + ∆∆ 39 68.6% 70.9%

LSTM [1] MFCC +∆+ logE 61 64.6% –

Table 4: Accuracy on TIMIT: Performance comparison of different networks
on TIMIT phoneme classification task. Last row is the result of unidirectional
LSTM from [1]. Other rows are results from simulations we perform on TIMIT
with reduced phoneme set.

From the experiment results shown in Table 7 we observe that the re-
current network of LIF neurons is more effective at solving the TIMIT task
then the SMU network. Our previous analysis of TIMIT corpus align with
the experimental results. We can conclude that the task of phoneme predic-
tion does not require longer memory then the length of one phoneme which
are largely in the range of up to 200ms. This supports our finding with
the store-recall task showing superiority of LIF neurons on processing the
sequences of shorter length.

Regardless of the model used, the spiking network managed to approach
the performance of LSTM network in the unfavorable setting and same
training period. To the best of our knowledge this is the first result of
spiking networks performing comparably to the artificial networks on such a
demanding task. Additional modifications to the task setup like introduction
of target delays as described in [1] improve the performance of artificial
networks. Since the speed of information processing in the spiking models is
most likely limited by synaptic delays, we postulate that this introduction
of delay in targets would in the same manner improve the performance of
spiking models by allowing more time for information processing.

Further, we point out that no hyper-parameter optimization was used
to achieve the results reported in this section. It is highly unlikely that
extensive hyper-parameter search for our spiking models would not yield in
even better performance on the TIMIT speech recognition task.

33

Conclusion and Discussion

7 Conclusion and Discussion
LSTM artificial networks dominate the machine learning community as the
primary model of recurrent networks. In this work we aimed to develop a
spiking network model that would exhibit much of the capabilities of the
LSTM model. We developed a model that uses mixture of LIF neurons
with and without adaptive excitability in a network with imposed structure.
To evaluate this model we based our approach on the internally developed
SSD-BPTT which allows the training of spiking networks (in high resolution
discrete time) in the same manner as the artificial recurrent networks.

We evaluate the model on three tasks that require memory:

• Store-recall task: test the models capability to store and recall input
values over arbitrary long periods of time.

• Sequential MNIST task: test if the model is able to recognize com-
plex sequence patters and extract the common relationships between
sequence classes

• TIMIT task: test the models capability in classifying the spoken phonemes

Through the store-recall task we have showed the functional difference
between novel SMU network and recurrent LIF network. We showcased the
ability of our model to memorize values for arbitrary long times and the
control of this ability by a single time constant parameter in the threshold
adaptability of the ALIF neurons. Further we gained insights into the role
and capabilities of recurrent LIF networks to effectively store and process
values for short periods of time.

Using sequential MNIST task we make a significant leap in the per-
formance of spiking networks. We show that our model can approach the
performance of ANNs even in the same training setup and with the same
number of parameters, despite of using a noisy input as opposed to ANN.
Significance of this milestone is further supported by the facts: The spiking
models are much more energy efficient when implemented in neuromorphic
hardware (as opposed to ANNs); Our model is biologically plausible and
can contribute to further brain research related to the topic of (working)
memory.

Finally we reevaluate our functional analysis of SMU and LIF networks
through phoneme classification task. Here we confirm our initial conclusion
that the LIF networks are more efficient at processing shorter sequences.

A natural follow up to this work would be investigating the robustness
of SMU model one wider variety of tasks, most notably evaluation in the
context of reinforcement learning tasks.

34

Appendices

Appendices

A Appendix: store-recall task

This appendix contains additional raster plots of trained SMU networks
solving store-recall task. Table 5 contains parameter details of the figures
13 and 14. This setup demonstrated the robustness of SMU model to solve
store-recall task for longer delays without increasing the time available for
storing a value by expanding the character step τc.

τc sequence length pSR delay

Figure 13 250ms 24 0.1 4250ms

Figure 14 250ms 48 0.1 8750ms

Table 5: Figure specific parameters of store-recall task modification.

B Appendix: sequential MNIST task

In this section we present the omitted details of the sequential MNIST task
setup in Table 6. We also include a raster plot of trained SMU network
solving the sequential MNIST task while using the population rate encoding
of the input pixels.

input type num.params. num.units

LIF thresholding 66000 i:80 o:220

SMU population rate 66800 i:80 o:140 m:100

SMU thresholding 66800 i:80 o:140 m:100

LSTM analog (original) 66048 i:1 h:124

Table 6: Parameter details of different networks evaluated on sequential MNIST
task. In the number of units column: for LSTM ANN h represents number of hidden
units and i the number of input channels; for SMU and LIF SNNs i represents
number of input neurons, o number of LIF neurons, and m number of ALIF neurons

35

Appendices

Figure 13: Trained SMU solving recall task with τc = 250ms, sequence length 24
and pSR = 0.1. This sequence contains delay of 4250ms between the store-recall
signals. From top to bottom: Spike raster of input neurons, spike raster of LIF
neurons, spike raster of ALIF neurons, softmax output (with target and average of
softmax for character step), and bias plot of ALIF neurons.

36

Appendices

Figure 14: Trained SMU solving recall task with τc = 250ms, sequence length 48
and pSR = 0.1. This sequence contains delay of 8750ms between the store-recall
signals. From top to bottom: Spike raster of input neurons, spike raster of LIF
neurons, spike raster of ALIF neurons, softmax output (with target and average of
softmax for character step), and bias plot of ALIF neurons.

37

Appendices

Figure 15: Trained SMU solving recall task with τc = 250ms, sequence length 48
and pSR = 0.1. This sequence contains delay of 8750ms between the store-recall
signals. From top to bottom: Spike raster of input neurons, spike raster of LIF
neurons, spike raster of ALIF neurons, softmax output (with target and average of
softmax for character step), and bias plot of ALIF neurons.

38

Appendices

C Appendix: TIMIT task

num.params. num.units

LIF 190944 i:430 o:272

SMU 190784 i:430 o:182 m:100

LSTM 191200 i:39 h:200

Table 7: Parameter details of different networks evaluated on TIMIT task. In the
number of units column: for LSTM ANN h represents number of hidden units and
i the number of input channels; for SMU and LIF SNNs i represents number of
input neurons, o number of LIF neurons, and m number of ALIF neurons

39

Appendices

D References

[1] Alex Graves and Jürgen Schmidhuber. Framewise phoneme classifica-
tion with bidirectional LSTM and other neural network architectures.
Neural Networks, 18(5-6):602–610, jul 2005.

[2] Patricia S. Churchland, Christof Koch, and Terrence J. Sejnowski.
Computational neuroscience. chapter What is Computational Neuro-
science?, pages 46–55. MIT Press, Cambridge, MA, USA, 1993.

[3] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
9:1735–80, 12 1997.

[4] Rahul Dey and Fathi M. Salem. Gate-variants of gated recurrent unit
(GRU) neural networks. CoRR, abs/1701.05923, 2017.

[5] Wulfram Gerstner and Werner Kistler. Spiking Neuron Models: An
Introduction. Cambridge University Press, New York, NY, USA, 2002.

[6] Wofgang Maas. Networks of spiking neurons: The third generation of
neural network models. Trans. Soc. Comput. Simul. Int., 14(4):1659–
1671, December 1997.

[7] Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas
immanent in nervous activity. The bulletin of mathematical biophysics,
5(4):115–133, Dec 1943.

[8] F. Rosenblatt. The perceptron: A probabilistic model for information
storage and organization in the brain. Psychological Review, pages 65–
386, 1958.

[9] Christopher M. Bishop. Pattern Recognition and Machine Learning
(Information Science and Statistics). Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2006.

[10] Augusto Buchweitz. Models of working memory: Mechanisms of active
maintenance and executive control. 04 2008.

[11] G.A. Miller. Plans and the structure of behavior. A Holt - Dryden book.
Holt, 1960.

[12] Patricia S. Goldman-Rakic. Working memory and the mind. 267:110–7,
10 1992.

[13] Adele Diamond. Executive functions. Annual Review of Psychology,
64(1):135–168, jan 2013.

[14] Nelson Cowan. Chapter 20 what are the differences between long-term,
short-term, and working memory? In Progress in Brain Research, pages
323–338. Elsevier, 2008.

40

Appendices

[15] R. Ponte Costa, Y. M. Assael, B. Shillingford, N. de Freitas, and
T. P. Vogels. Cortical microcircuits as gated-recurrent neural networks.
ArXiv e-prints, November 2017.

[16] Roeland Nusselder Sander Bohte Davide Zambrano, Isabella Pozzi.
Gating out sensory noise in a spike-based long short-term memory net-
work, 2018.

[17] Randall C. O’Reilly and Michael J. Frank. Making working memory
work: A computational model of learning in the prefrontal cortex and
basal ganglia. Neural Computation, 18(2):283–328, feb 2006.

[18] Kai A. Krueger and Peter Dayan. Flexible shaping: How learning in
small steps helps. Cognition, 110(3):380–394, mar 2009.

[19] David Daniel Cox and Thomas Dean. Neural networks and
neuroscience-inspired computer vision. Current Biology, 24(18):R921–
R929, sep 2014.

[20] Adam H. Marblestone, Greg Wayne, and Konrad P. Kording. Toward
an integration of deep learning and neuroscience. Frontiers in Compu-
tational Neuroscience, 10, sep 2016.

[21] Demis Hassabis, Dharshan Kumaran, Christopher Summerfield, and
Matthew Botvinick. Neuroscience-inspired artificial intelligence. Neu-
ron, 95(2):245–258, jul 2017.

[22] Upinder S. Bhalla. Dendrites, deep learning, and sequences in the hip-
pocampus. Hippocampus, oct 2017.

[23] Tomas Mikolov, Armand Joulin, Sumit Chopra, Michaël Mathieu, and
Marc’Aurelio Ranzato. Learning longer memory in recurrent neural
networks. CoRR, abs/1412.7753, 2014.

[24] Jeffrey L. Elman. Finding structure in time. COGNITIVE SCIENCE,
14(2):179–211, 1990.

[25] Guillaume Bellec et al. Medium-term synaptic plasticity endows net-
works of spiking neurons with functional properties of LSTM networks.
Internal report of Institute for Theoretical Computer Science TU Graz,
2017.

[26] Matthieu Courbariaux and Yoshua Bengio. Binarynet: Training deep
neural networks with weights and activations constrained to +1 or -1.
CoRR, abs/1602.02830, 2016.

[27] Steven K. Esser, Paul A. Merolla, John V. Arthur, Andrew S. Cas-
sidy, Rathinakumar Appuswamy, Alexander Andreopoulos, David J.

41

Appendices

Berg, Jeffrey L. McKinstry, Timothy Melano, Davis R. Barch, Carmelo
di Nolfo, Pallab Datta, Arnon Amir, Brian Taba, Myron D. Flickner,
and Dharmendra S. Modha. Convolutional networks for fast, energy-
efficient neuromorphic computing. CoRR, abs/1603.08270, 2016.

[28] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever. Evolution
Strategies as a Scalable Alternative to Reinforcement Learning. ArXiv
e-prints, March 2017.

[29] Allen Institute for Brain Science. Allen Brain Atlas - Cell Feature
Search. http://celltypes.brain-map.org/data. [Online; accessed
22-January-2018].

[30] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, Nov 1998.

[31] Quoc V. Le, Navdeep Jaitly, and Geoffrey E. Hinton. A simple
way to initialize recurrent networks of rectified linear units. CoRR,
abs/1504.00941, 2015.

[32] Junier B. Oliva, Barnabás Póczos, and Jeff G. Schneider. The statistical
recurrent unit. CoRR, abs/1703.00381, 2017.

[33] Robert Gütig. Spiking neurons can discover predictive features by
aggregate-label learning. Science, 351(6277), 2016.

[34] William M. Fisher Jonathan G. Fiscus David S. Pallett Nancy L.
Dahlgren Victor Zue John S. Garofolo, Lori F. Lamel. TIMIT Acoustic-
Phonetic Continuous Speech Corpus. https://catalog.ldc.upenn.

edu/ldc93s1, 1993. [Online; accessed 19-November-2017].

[35] Robinson A.J. Several improvements to a recurrent error propaga-
tion network phone recognition system. Technical Report CUED/F-
INFENG/TR82, University of Cambridge, 1991.

[36] K. F. Lee and H. W. Hon. Speaker-independent phone recognition using
hidden markov models. IEEE Transactions on Acoustics, Speech, and
Signal Processing, 37(11):1641–1648, Nov 1989.

[37] Todor Ganchev, Nikos Fakotakis, and George Kokkinakis. Comparative
evaluation of various mfcc implementations on the speaker verification
task. In in Proc. of the SPECOM-2005, pages 191–194, 2005.

[38] M. Slaney and R.F. Lyon. Lyon’s cochlear model. Apple technical
report. Apple Computer, Advanced Technology Group, 1988.

42

http://celltypes.brain-map.org/data
https://catalog.ldc.upenn.edu/ldc93s1
https://catalog.ldc.upenn.edu/ldc93s1

Appendices

[39] Malcolm Slaney. Auditory Toolbox. https://engineering.purdue.

edu/~malcolm/interval/1998-010/, 1998. [Online; accessed 25-
November-2017].

43

https://engineering.purdue.edu/~malcolm/interval/1998-010/
https://engineering.purdue.edu/~malcolm/interval/1998-010/

	Introduction
	Motivation
	Contributions

	Background
	Biological Neuron
	Artificial models
	Leaky integrate and fire neuron
	Working Memory
	Related Work

	Neuron Model
	LIF implementation
	LIF with adaptive bias

	Network Model
	Structurally Constrained Recurrent Network
	Spike based Memory Unit

	Training Method
	SSD-BPTT
	Evolutionary Strategy

	Experiments
	Store-Recall task
	Sequential MNIST
	Speech recognition task

	Conclusion and Discussion
	Appendices
	Appendix: store-recall task
	Appendix: sequential MNIST task
	Appendix: TIMIT task
	References

