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Abstract

The requirement to inspect materials and components for defects and inhomo-
geneities is a must in the industry as well as research to verify new materials
or to ensure the safety of these components. Non-destructive (NDT) testing
utilizes various physical effects to test materials and components without dam-
aging the material or component. Active thermography uses heat transfer into
the material and records it with an infrared camera. The advantage of this
principle is a non-contact, spatially resolved and rapid thermal measurement
process that represents inhomogeneities in a material due to interaction with
a heat flux. The heat flow is generated by an externally controlled excitation
source. In active thermography there are basically two forms of excitation, a
pulsed excitation (Pulse Thermography PT) or a sinusoidal excitation (Lock-
In Thermography). In this work, mainly the pulse thermography is presented
and used.
If a material or component is excited with an external excitation source and
has inhomogeneous illumination, it may be difficult to visualize these flaws and
inhomogeneities. In order to increase the contrast between inhomogeneities
and homogeneous background, algorithms are presented which increase this
contrast. Algorithms are developed which require a choice of error-free back-
ground and an algorithm derived from the one-dimensional heat equation.
If defects and inhomogeneities in the material are discovered, the question of
the depth in the material, at which the defect is present, arises. To calculate
this, three different algorithms are studied (LSD, APST and Maximum Con-
trast). In order to implement these, methods have to be developed to remove
the noise of thermography sequences. One of these methods used in active
thermography is Thermographic Signal Reconstruction (TSR), which is based
on the principle of polynomial fit.
Furthermore, different numerical methods of the heat equation are implemented
with the help of finite differences. By simulating the cooling process, the inho-
mogeneous background can be compensated by subtracting the simulation from
the thermographic sequence. The simulation of the heat equation is also a
requirement to implement the algorithm Maximum Contrast for depth deter-
mination.
In order to be able to implement the heat equation at all, the material-constant
thermal diffusivity has to be determined. In order to determine this, the method
of laser flash analysis is applied and implemented for active thermography.

Keywords: NDT, Active Thermography, Thermal diffusivity, Depth deter-
mination, Heat equation, Model-based analysing, Feature extraction



Zusammenfassung

Um die Sicherheit von Komponenten und Werkstoffen zu gewährleisten, wird
in der Industrie sowie Forschung immer mehr Wert auf die Prüfung dieser
Komponenten und Werkstoffen gelegt. Ziel solcher Prüfungen ist es, De-
fekte, Inhomogenitäten sowie physikalische Werkstoffparameter zu extrahieren
um Aussagen über die Verwendbarkeit sowie Einsatzgrenzen zu erhalten. Die
zerstörungsfreie Prüfung befasst sich mit der Extrahierung solcher Parameter
und nutzt dazu verschiedene physikalische Effekte um diese Extrahierung zu
ermöglichen. Aktive Thermografie nutzt dabei den physikalischen Effekt der
Wärme, welche in das Material mit einer externen Erregerquelle eingebracht
wird. Dieser Wärmefluss kann in der Aktiven Thermografie hauptsächlich
in zwei verschiedene Wege eingebracht werden, einerseits durch einen einzel-
nen Wärmeimpuls (Pulse Thermography PT) und andererseits durch eine pe-
riodische Erregung (Lock-In Thermoraphy. Der anschließende Abkühl- oder
Erwärmungsvorgang wird dabei mit eine Thermografiekamera aufgenommen.
Durch die Interaktionen des Wärmeflusses mit Fehlstellen resultieren dadurch
verschiedene, und durch verschiedene Inhomogenitäten, charakterische Abkül-
oder Erwärmungskurven. In dieser Arbeit wird der Fokus überwiegend auf die
Erregerform der PT eingegangen.
Werden Komponenten und Werkstoffe mit einer Erregerquelle erregt, welche
keine homogene Ausleuchtung erzielt, kann es bei der Betrachtung des Ther-
mograms zu schwierigkeiten kommen, um Inhomogenitten vom fehlerfreien
Hintergrund zu unterscheiden. Algorithmen wurden dabei implementiert, um
diesen Effekt der inhomogenen Ausleuchtung zu kompensieren.
Weiters werden Methoden vorgestellt, die bei Verwendung der aktiven Ther-
mografie häufig Anwendung finden um Inhomogenitten und Defekte zu ex-
trahieren.
Wurden Defekte und Inhomogenitten in Komponenten gefunden, ist ein weit-
eres Ziel die Tiefe dieser Inhomogenitten zu bestimmen. Dazu wurden drei
verschiedene Algorithmen erforscht (LSD, APST und Masimum Contrast).
Um diese Algorithmen implementieren zu können besteht die Anforderung von
zeitlich rauschfreien Thermogrammen. Um dies zu ermöglichen wurde die
Methode Thermographic Signal Reconstruction (TSR) implementiert, welche
auf dem Prinzip der Polynom Approximation basiert.
Durch Simulation des Abkühlvorganges mittels Finiter Differenzen der
Wärmeleitgleichung wird die inhomogene Erregung kompensiert. Dabei wird
die inhomogene Erregung mit der Simulation des Abkühlvorganges subtrahiert
und der Kontrast zwischen Inhomogenitäten und fehlerfreien Hintergrund
erhöht. Weiters ist die Simulation des Abkühlvorganges Ausgangspunkt der
Maximum Contrast Methode, welche für die Tiefenberechnung verwendet wird.
Um die Wärmeleitgleichung sowie Tiefen von Inhomogenitäten berechnen zu
können muss der physikalische Parameter, Thermische Diffusivität α, bekannt
sein. Um diesen Parameter zu ermitteln, wird die Methode der Laser Flash
Analyse angewendet und für die Aktive Thermografie adaptiert.

Keywords: NDT, Active Thermography, Thermal diffusivity, Depth deter-
mination, Heat equation, Model-based analysing, Feature extraction
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1 Introduction

1.1 Motivation

Non-destructive Testing NDT is the art to proof materials and components
non-invasive based on physical principles. These principles depend on vi-
sual, oscillate mechanical, acoustic, electromagnetic and thermal base. On
the basis of this physical principles, techniques were invented to extract in-
homogeneities and defects to classify the quality of produced materials and
components [18].
Accidents in everyday life, aviation, transportation and shipping reveal that
the reliable characterization of materials and components and their modifica-
tions is an important prerequisite for safe operation. Therefore, damage must
be detected in time so as to avoid failure. For reasons of time and cost, how-
ever, components are not to be exchanged unnecessarily in advance. Hence,
a test method has to be found to inspect the used materials. NDT therefore
offers important features to fulfil given requirements as e.g. inspection of dif-
ferent materials (composite material, metal), fast and extensive measuring
procedure, reliable detection of delaminations, inclusions and other defects,
non-contact measuring procedure and, if required, inspection result as image
[74].
In the selection of the NDT methods, it is crucial that the interaction with
the desired error is as strong as possible. In addition, it plays a major role
whether the process provides ”on-the-spot” in a harsh and possibly inac-
cessible environment, quickly and reliably, which are indisputable against
disturbances or misinterpretation.
In this thesis active infrared thermogrophy was chosen as NDT-technique to
detect non visible inhomogeneities of materials and components. In contrast
to conventional thermography (passive thermography), in active thermog-
raphy heat flow is controlled by a controlled external energy source, e.g.
flashlight, heat radiator, hot air, laser. On the base of interaction of the heat
flow and the specimen, inhomogeneities and defects should be detected .
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1.2 Nondestructive Testing NDT

The main goal of NDT is the inspection, testing or evaluation of components
and constructions to materials for discontinuities or inhomogeneities without
changing or destroying the serviceability of the inspected component or con-
struction [29]. These discontinuities or inhomogeneities usually occur during
the production of the object and can influence the lifecycle of the tested
specimen. In general, the application of NDT fulfills three important points:

• Avoiding hazards for people and environment

• Ensuring function standby

• Early selection of defective components and constructions

The analogy of NDT can be found in medical diagnostic as e.g. the
sonography of hips of sucklings. Therefore, this method is used to detect dis-
located or too small hips without any risks of impairment due to the applied
examination methods [45]. But also simpler methods can be used (e.g. visual
inspection) to detect inhomogeneities of components and constructions with-
out destroying the component. Nowadays, there are a lot of nondestructive
test methods and it would go beyond the scope of this thesis to review them
all. Nevertheless the ”classical” methods are presented and briefly described
in the following section.

1.2.1 Classical methods of NDT

Concerning the classical methods of NDT we can differentiate between acous-
tic methods [40] and methods where we exploit the properties of electromag-
netic waves [33]. Acoustic Methods use the properties of mechanical waves,
which are with increasing frequency: ring test or sound analysis and ultra-
sonic resonance inspection [34].

Acoustic test techniques

Acoustic test techniques are one of the oldest test methods to detect inho-
mogeneities or defects of components and constructions. These methods can
be executed in an audible frequency spectrum (<16 kHz), then it is called
ring test or sound analysis [5], as well as in a not audible frequency spectrum
(>16 kHz), then it is called ultrasonic resonance inspection [5]. In general,
acoustic test techniques are methods which are volume-oriented and evaluate
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the quality of whole components and constructions [40].
In principle, acoustic test techniques use the physical effect, that after acous-
tic excitation a solid state body oscillates in its natural resonance. This nat-
ural resonance is like a fingerprint of the tested component or construction.
The natural resonance can be detected with a sensor, analysed and compared
with a reference value (see Figure 1). After comparison, the component or
construction can be evaluated and when necessary discarded. To be able to
make statements about the relation of the resonance frequency and a refer-
ence frequency one of the most important requirements is to hold the test
conditions constant [48].
A possible test procedure can be

• Excitation of a oscillate-able mounted test specimen

• Frequency measurement

• Extracting of test specimen specific values

• Comparison of specific values with reference values

• Classification of test specimen

Figure 1: Example of Ultrasonic Resonanz testing [10].

The principle Ultrasonic Test UT can be used for almost all kinds
of materials or components. Therefore, ultrasonic waves are induced into
the specimen with a transducer. At inhomogeneities these ultrasonic waves
are reflected and are recorded with a receiving transducer. In most of the
ultrasonic test units first the transducer works as transmitter and after trans-
mission the transducer works as receiver [95]. Measuring transit time it can
be deduced to inhomogeneities as you can see for example in Figure 2. In
modern ultrasonic test units it is also possible to measure the geometries of
the detected inhomogeneities of the tested specimen [79]. One of the main
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advantages of this method is that test depths of several meters are possible,
depending on the acoustical property of the specimen. In order to reliably de-
termine the position and size of the inhomogeneities, the transducer must be
positioned perpendicular to the inhomogeneity.The resolution of this method
depends on the used ultrasonic transducer and is limited by half of the ultra-
sound pulse [79]. To correctly interpret ultrasound images, trained personnel
must be used.

Figure 2: Response of an ultrasonic pulse [13].

Spectrum of Nondestructive test methods with electromagnetic
waves

The most famous inspection method is Visual Testing (VT) (see Figure 3
for an example) which is used for e.g. production of electronic printed circuit
board, food industry or as combination with other test methods to detect
inhomogeneities. This inspection method was standardized in ISO 9712 and
in DIN EN 13018 [68] [36] [75]. In DIN EN 13018, they differentiate be-
tween direct visual testing and indirect visual testing. Direct visual testing
is without interruption of the light path between test surface and eye of the
observer and can also be distinguished between direct visual testing without
aid (= observation of test surface with the unaided eye) and direct visual
testing with aid (= observation with aid e.g. endoscopy, magnifying glass or
mirror). Typical inhomogeneities or defects which should be detected are on
the surface of components or constructions and are e.g. mechanical defects
(scratches, cracks), sediments, defective mounting, burr formation and also
color changes [75].

One other Nondestructive test method is Penetrate testing PT [19] to
visualize inhomogeneities and defects which are opened to the surface of the
tested specimen (see Figure 4). This test method can also be distinguished
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Figure 3: Example of Visual testing VT [14].

between liquid penetrant inspection [72] and fluorescent pentrant inspection
[54]. By liquid penetrant inspection [72] the specimen is coated with red
penetrant and after the end of the waiting time, the specimen is cleaned
and coated with a fine grained powder. This powder extract the rest of the
penetrant in the cavities. The big contrast of the powder and the penetrant
provides the detection of defects and cracks. On the other hand, by fluores-
cent pentrant inspection the specimen is injected with fluorescent pentrant.
After the end of the waiting time, the specimen is classified under UV-light
[54].

Figure 4: Example of Penetrate testing PT [8].

The next method X-ray inspection RT is used for two and three dimen-
sional testing of components and constructions to visualize inhomogeneities
that can also be inside the tested specimen. Constructions and components
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are radiographed with high energy electromagnetic rays as X-rays and gamma
rays. These electromagnetic rays are alleviated difference with variation of
thickness of the tested specimen and visualize the radiographed energy in
gray scale [89]. Hence, with this method inhomogeneities like delaminations,
cracks and a lot of more inhomogeneities can be found also inside the tested
specimen. Disadvantages of this test method are that only limited thickness
can be tested, it is very time expensive, radiation hazard for humans and
employees, who need special training, as well as for the specimen itself [61].
An example of RT can be seen in Figure 5.

Figure 5: Example of X-ray inspection [9].

Magnetic leakage flux test MT is used to find cracks on the surface
as well as to find local cross section reduction or thickness changes in ferro-
magnetic materials. Therefore the specimen is magnetized and the resulting
magnetic flux lines deviate parallel to the surface. Are inhomogeneities like
cracks on or near to the surface, these inhomogeneities produce a stray mag-
netic field and the magnetic flux lines leave the ferromagnetic material on
the one side of the defect and enter on the other side of the material and
produce magnetic poles. If magnetic powder is distributed across the surface
of the specimen, the powder is accumulated on the inhomogeneities because
of the magnetic effect. This principle only works for inhomogeneities that
are transverse to the magnetic flux lines. Furthermore inhomogeneities like
cracks can only be detected that are in a certain depth[19]. Figure 6 shows
an example of the functionality of MT.

The last, but in this thesis the most important Nondestructive test method
that is mentioned is Active Thermography or Infrared Thermography
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Figure 6: Functionality of MT [7].

IRT. In the case of active thermography, a heat flow is induced by the ener-
getic excitation of components or constructions. Inhomogeneities or defects
inside the test specimen influence the resulting heat flow. High precision cam-
eras capture the heat flow on the surface of the specimen. The influenced
heat flow through inhomogeneities causes a difference on temperature on the
surface as in areas without inhomogeneities [81]. With different algorithms
like Pulse Phase Thermography, Statistical Parameter, Wavelet Transform
or Principal Component Analyse inhomogeneities and defects can be visual-
ized in final images [47] as can be seen for example in Figure 7.

Figure 7: Example Figure after IRT [6].
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It can be seen that a lot of NDT-methods exists, a short overview of the
advantages and disadvantages of the above described NDT-methods can be
seen in table 1.

Table 1: Overview of advantages and disadvantages of NDT-Methods
Advantage Disadvantage

Resonance Inspection
Fast
Whole part test
No preparation of the specimen required

Only materials thtat resonate
Location of defect can not be found
Large specimen difficult to test

Ultrasonic Testing
Very sensitive to cracks
Measurement of thickness of specimen
Measurement of geometry of defect

Couplant required
Trained operators
Complex specimen may be difficult to test

Visual Testing
Very Fast
Low cost
No preparation of the specimen required

Only surface can be checked

Penetrate Testing
Low cost
Portable

Only defects that are open to the surface can be detected
Messy
Costly
Cleaning of the specimen

X-ray Inspection
Detection of surface and internal defects
No specimen preparation
Good resolution

Hazardous to humans
Trained operators
Slow
Expensive

Magnetic leakage flux
Low cost
Surface and internal defects can be detected
Portable

Ferromagnetic materials only
Demagnetization after testing
Knowledge about tight alignment of magnetic field

Active Thermography

Large area can be tested
Allows recording in real time
Risk-free
Detection of surface and internal defects

Quality depends on heat diffusion of the specimen
Limited thickness of the specimen can be tested
Measurement of geometry of inhomogeneities
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1.3 Problem Statement

Active Infrared Thermography is a non-destructive testing method that uses
an excitation source to induce a heat flow into the specimen [78]. Are inho-
mogeneities inside the specimen, they cause a disturbance of the heat flow
and leads to a difference in the cooling or heating process at the surface in
relation to the defect free environment. The prerequisite for detecting inho-
mogeneities is that the excitation source is energetically capable of bringing
the test object out of the basic temperature state. If this temporal interaction
between heat and test object is recorded with an infrared camera, inhomo-
geneities such as cracks, cavities or delaminations can be visualized using
suitable evaluation algorithms [63]. Many of these Algorithms are sensitive
to inhomogeneous heating due to non-uniform illumination. If algorithms
are used which are sensitive to inhomogeneous illumination, this must be
compensated.
If inhomogeneities have been successfully identified, further requirements
arise for the system such as determination of the depth of inhomogeneities.
The principle of active thermography is a physical process and the result is
strongly influenced by the material properties. The most important material
parameter to extract the depth is the thermal diffusivity α. If this parameter
is not known, a method must be found to determine it.

1.4 Objectives and Approaches

Figure 8 describes the goal of this work by means of a flowchart.
Standard algorithms are used for preprocessing to suppress camera image
sensor-specific image errors, such as fixed pattern noise or bad pixels, in
order to suppress corruption of the thermogram [99]. If excitation sources
are used which do not achieve homogeneous illumination, they can have a
massive influence on the quality of the algorithms for feature extraction. Al-
gorithms are introduced and implemented to compensate this inhomogeneous
illumination. Furthermore, the quality of the individual methods is shown.
In order to extract inhomogeneities of a thermographic sequence, the most
commonly used algorithms for feature extraction are described.
If the requirement of inhomogeneities exists to determine the depth, the pa-
rameter of thermal diffusivity is needed. If the parameter alpha is not given,
a method for determining this parameter α is described. Furthermore, two
well-known algorithms (LSD, APST) for depth calculation are implemented
and their quality checked. These two known algorithms are compared with
a newly developed method, called Maximum Contrast.
Finally one is able to go through the presented flowchart with all necessary
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input parameters.

Figure 8: Flow chart of the thesis
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2 Literature Review

2.1 Infrared Thermography

The first thermographic systems were developed and used by the military
in the second world war [26]. Since then, these systems have been further
developed and found new fields of application, such as in medicine for the
investigation of the body temperature of humans, in agriculture for the in-
vestigation of frost sensitive plants, in maintenance for monitoring of tem-
perature and thermal patterns on pumps or motors [69]. The potential of
this new technology for NDT was quickly recognized and was first used in
the 1960s as NDT technology and played a major role in quality control and
service control. As can be seen, infrared thermography has a long history
and has been further developed over the last 60 years and still plays a major
role in industrial applications as well as in commercial applications [59].
Infrared thermography consists of a series of components with the core ele-
ment of the infrared camera which makes the invisible infrared rays visible
for human. [50]. The intensity of the invisible infrared ray emanating from
a point is interpreted as a measure of its temperature. The infrared camera
has the task of displaying the intensities as a map or image as false colors or
grayscale. By analyzing the contrast of the map or image, statements about
the quality of the examined object can be made or inhomogeneities detected
[50].
There are different devices or components that detect invisible infrared light.
An infrared sensor [51] consists of a temperature-sensitive pyrosensor which
reacts to temperature changes and generates an electrical voltage. the gener-
ated voltage is proportional to the temperature. The difference to an infrared
camera is that the camera consists of an array of sensors [76] and has the
ability to detect infrared rays from different spatial points at the same time.
The output of the sensor array can be represented as false color map or
grayscale image.

2.1.1 Electromagnetic Spectrum Bands

Light is a form of electromagnetic radiation and can be generally separated
for humans in visible light and invisible light. An overview of the spectrum
of light can be seen in figure 9 where for humans the visible region is between
380nm and 780nm [46].

The infrared radiation was discovered by Friedrich William Herschel in
1800 [16]. He used a glass prism to spectrally decompose the light. As you
can see in figure 9, infrared radiation is above the visible wavelength range.
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Figure 9: Electromagnetic spectrum of light [11]

Infrared radiation is electromagnetic radiation, which is connected to the
visible radiation in the direction of larger wavelengths and extends to the
microwaves [71]. It covers a wavelength range from 780 nanometers to 1 mil-
limeter. The infrared radiation is in turn divided into several subregions [71].

The near-infrared (NIR) region extends over the electromagnetic spec-
trum from 780 nm to 1.4µm and attaches itself to the visible light. In remote
sensing, this area is used to analyze vegetation using aerial and satellite im-
agery.
The next range of infrared radiation is the short-wave infrared radiation
(SWIR) which is divided in the range of 1.4µ to 3.0µ.
The next region, mid-wavelength infrared range (MWIR), extends over the
range of thermal radiation at terrestrial temperatures and is in the wave-
length range between 3µm and 8µm.
Long-wavelength infrared (LWIR) is the region which is in the range of 8µ to
15µ and is helpful in observing and clearing up in the dark or in poor visibil-
ity without the need for residual light and is mostly used in non-destructive
testing, medical applications and safety technology.
The last range of infrared radiation is the far infrared (FIR) range which
has the longest wavelength range of infrared radiation. FIR covers the wave-
length range of 15µm to 1000µm.
At the gas mixture of the atmosphere, the air, which contains various gases
such as ozone, carbon dioxide and water vapor, the electromagnetic infrared
radiation is absorbed or scattered depending on its wavelength. Those results
in an atmospheric window, which show how permeable the electromagnetic
radiation is, depending on its wavelength (see figure 10) [91][38].
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Figure 10: Transmittance of atmosphere in the range of 0 mum to 15 um

2.1.2 Black Body Radiation

The German physicist Gustav Robert Kirchhoff described the correlation be-
tween absorption and emission of a real body in thermal equilibrium in 1859,
which states that bodies which absorb the temperature radiation well, and
also emit temperature radiation well [64]. A black body or black radiator is
thus an idealized source of thermal radiation. Such bodies completely ab-
sorb and radiate temperature radiation completely. Hence no body emits or
absorb more energy than a black body. In other words, when a black body
absorbs a temperature radiation of amount, it also emits a temperature ra-
diation of the same amount. Furthermore a black body is a diffuse emitter
and thus a function of temperature and wavelength and independent of the
direction of irradiation [87].
Each body over the absolute zero point ok 0K=̂−273.15C emits electromag-
netic radiation with different wavelength. The distribution of the radiation
intensity to the individual wavelengths is described by Planck’s radiation
law. In 1900, Max Planck [64] succeeded in describing the distribution of the
electromagnetic energy of the heat radiation of a black body as a function of
the wavelength of the radiation as you can see in equation (1).

Mλ(T ) =
2πhc2

λ5
(e

hc
λkT − 1)−1 (1)

where:

h = Planck constant
λ = Wavelength
T = Temperature
k = Boltzmann constant
c = velocity

In figure 11 you can see the spectral energy densities where each curve is
seen to peak at a somewhat different wavelength. The radiation intensity of
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the heat radiation, which is composed of electromagnetic waves with differ-
ent wavelengths, is described by the Planck’s radiation law. The resulting
radiation intensity has a clear maximum. Wien’s law [87] describes the shift
of that peak in terms of temperature.

Figure 11: Black body radiation as a function of wavelength for various
absolute temperature [15]

In the case of a real body, the radiation intensity on the surface can be
reflected, absorbed or transmitted [41] in transparent bodies. The degree of
reflection indicates the ratio of reflected radiation to the total radiation (2).

qr
q

=
reflected radiation

total radiation
(2)

If only a part of the radiation is reflected, the remaining radiation passes
through the body and is absorbed by non-transparent bodies (3) or trans-
mitted by transparent bodies (4). Between these three variables (reflection,
absorption, transmission) exists the relationship which sum equals 1.

qa
q

=
absorbed radiation

total radiation
(3)

qt
q

=
transmitted radiation

total radiation
(4)
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Figure 12: Absorption by Non-
transparent bodies

Figure 13: Transmittance by
transparent bodies

2.1.3 IR Detectors and Sensor

At the heart of non-destructive testing by means of thermography is the opti-
cal component which receives infrared radiation without contact and converts
it into a high-quality, measureable signal. To measure infrared radition in a
proper way there are basically two main types of IR detectors which are on
the first hand thermal detectors [12] and on the other hand photonic detec-
tors [92].
In case of a thermal detector [12], the energy is absorbed by the electro-
magnetic radiation to be detected in the receiver material. The resulting
temperature increase in the detector is converted directly or indirectly into
an electrical signal by the absorbed energy. For example, in a radiation ther-
mocouple, the energy is converted directly into thermoelectric voltage. In
the case of a bolometer, however, the energy arriving at the detector leads
to the heating of metal. This causes the change in resistance and can thus
be put into proportion. In both cases the electrical answer of the detector is
proportional to the incoming energy. Such detectors are cheaper compared
to photoelectric detectors, however, they have a lower sensitivity and larger
time constant.
Photoelectric sensors [92] use the principle of inner photoelectric effect in
semiconductors. Due to the energy of the incoming photons at the detector,
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electrons are lifted from the valence band into the higher-energy conduc-
tion band and removed from the metal surface. The kinetic energy of the
liberated photoelectrons depends linearly on the wavelength of the induced
radiation [57]. Such detectors usually have a high sensitivity and a small
time constant. The big disadvantage, however, is that these detectors often
have to be cooled in order to reduce the intrinsic noise [56].
An overview of the advantages and disadvantages of thermal detectors and
photoelectric sensors can be seen in table 2.

Table 2: Overview of photoelectric sensors and thermal sensors [2]
Photoelectric sensors Thermal sensors

high sensitivity wavelength independent sensitivity
very high temperature resolution (<25mk) good temperature Resolution (>30 mk)

time constant: microseconds time constant: milliseconds
extensive cooling technique no cooling required

limited lifetime long lifetime stability
expensive low-cost

2.1.4 IR cameras

Thermography cameras are meant to detect the heat radiation of objects or
bodies without contact and to display areal temperatures [73]. Focal plane
arrays (FPAs) [76] are used to display areal temperature curves. The biggest
difference between modern thermal imagers is whether detectors are cooled
or not [2]. Choosing a thermography camera depends on the application
requirement. Cooled detectors have some advantages compared to uncooled
but cost is higher and the size of the camera is usually larger. If there is a
requirement that smallest temperature differences have to be detected, high-
speed recording is required, a very high sensitivity is required or only a part of
a spectrum has to be detected, then it is better to purchase a cooled infrared
camera [2]. However, uncooled thermal imaging cameras are much cheaper
than cooled cameras and also significantly smaller in size, which results in
better handling. An example of a cooled and uncooled camera can be seen
in figure 14 and figure 15.
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Figure 14: Acquisition of the
movement of a car wheel with a
cooled camera [1]

Figure 15: Acquisition of the
movement of a car wheel with an
uncooled camera [1]

2.1.5 Passive and Active Thermography

There are different types of thermography to achieve desired results. Basi-
cally, infrared thermography (IRT) can be divided into two types which are
active and passive thermography. The application of active thermography
can in turn be further subdivided. A rough overview can be found in figure
16 and will be described below.

Figure 16: Overview of Thermography types
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Passive Infrared Thermography: Each body above the absolute zero
point of 0K=̂−273.15C emits electromagnetic radiation with different wave-
length [71]. Hence, every body above the absolute null point emits thermal
radiation in form of electromagnetic radiation. This phenomenon is exploited
in passive thermography in order to detect the temperature distribution of
the object under test, which is caused by the environment or the process,
without forced thermall excitation of the object [21]. This method is used,
for example, in construction technology [83] to detect heat losses in build-
ings, in human medicine to detect inflammation or even breast cancer without
burdening the patient with X-rays [32].

Active Infrared Thermography: Active Infrared Thermography is a
non-destructive testing method that is more widely used than passive ther-
mography to test specimen for inhomeneities [63]. The difference to passive
thermography lies in the fact that an external or internal excitation source
applies a heat pulse to the object to be examined [21]. This heat pulse leads
to a heat flow in the specimen. If there are inhomogeneities in the object,
they cause a disturbance of the heat flow. This disturbance leads to a dif-
ference in the cooling or heating process at the surface in relation to the
defect-free environment. If this temporal interaction between heat and test
object is recorded with an infrared camera, inhomogeneities such as cracks,
cavities or delaminations can be visualized using suitable evaluation algo-
rithms [78]. To get a better understanding, figure 27 shows a cooling process
of a defect free and a defect area. As you can see in figure 16, there are
mainly three classical active thermographic techniques we can use if we use
an external excitation source.
In pulse thermography, a heat flux is induced by a short pulse into the test ob-
ject. This short heat pulse reaches the specimen surface and travels through
the specimen. Inhomogeneities of the specimen lead to different temperatures
with respect to non-defective areas. This evolution of cooling processes can
be monitored with an IR-camera [63]. If a short excitation pulse is used the
method is called Pulse Thermography PT. The Lock-In Thermography uses
heat sources that can be modulated differently. Components to be examined
are periodically excited with the help of these heat sources. If components
are excited, for example sinus modulated the excitation frequency determines
the depth from which information can be obtained [67]. An advantage of this
method is that by averaging several heating periods, an improvement of SNR
can be achieved [25].
When it comes to Laser Spot Thermography a high power laser source is used
to deliver heat to a point at the surface. Inhomogeneities can be detected
close to the delivered heat point [53].
Furthermore, there are two configurations for data acquisition. The first con-
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figuration is the reflection mode where both, the heating and the recording,
are performed from the same side. The second configuration is the trans-
mission mode where the heating source is located on the back side and the
recording source is located at the opposite side.

Figure 17: Cooling process of a non-defect (blue) and defect (red) area

2.1.6 Excitation Sources

In active thermography, one of the most important components is the excita-
tion source. In figure 16, it is shown that either an internal excitation source
or an external excitation source has to be used in order to be able to induce
a heat flow into the object to be examined [28][78].
If active thermography with an internal excitation source [28] is used, a me-
chanical oscillator (sonic or ultrasonic transducer) is often applicable which is
in direct contact with the object. If inhomogeneities are present, the energy,
generated by the oscillator is dissipated in form of heat waves and can thus
be recorded at the material surface.
An inductive excitation source [77] can be used in electro-conductive materi-
als. Determined by the excitation frequency, eddy currents can be generated
at a certain depth, depending on the excitation frequency. Defects in the
specimen create a change in the eddy currents, which changes the temper-
ature distribution. This change in the temperature distribution can in turn
be recorded with an IR-camera and visualized [77].
If an external excitation source is used, optical sources are usually applica-
ble. In pulse thermography, there is a requirement of a short pulse with high
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energy which can be achieved with flash lamps [64]. When using Lock-In
Thermography where modulated heat sources are usually required, halogen
lamps are used at low frequency and intensity-modulated laser sources are
used at higher frequencies [67].

2.2 Mathematical Background

2.2.1 Partial Difference Equation

If there is a desire to model processes in physics and engineering, very often
differential equations are used [42]. If the sought solution depends only on
one variable (space or time), one speaks of an ordinary differential equation
[27]. Looking at equation (5) it quickly becomes apparent that one is looking
for a function as a solution.

y′ = 2y + x2 (5)

Many technical and physical processes cannot be described, or only in
special cases, by one coordinate and ordinary differential equation. Thus,
partial differential equations are needed. So if one has the case that the pro-
cess spreads throughout the space and also propagates over time for transient
problems, the solution is a function of several variables and the mathematical
model is one or a system of partial differential equations [27]. For example,
in unsteady flows the velocity and pressure are sought as functions as you
can see in equation (6).

v = v(x, y, z, t), p = p(x, y, z, t) (6)

The degree to which partial differential equations are divided is given
by the highest derivative. The most general form of a partial differential
equation of the second order is shown in formula (7).

F (x, y, u, ux, uy, uxx, uxy, uyy) = 0 (7)

Extending the construction of numerical methods from two-dimensional
problems to three-dimensional problems is often just a simple transfer of
the algorithms. However, the transition from the one-dimensional ordinary
differential equation to the two-dimensional partial differential equation re-
quires new ideas and approaches, which is usually more difficult [27].
Solutions of differential equations can show very different behaviour, depend-
ing on the problem. In case of partial differential equations, the behaviour
differs and can roughly be divided into three classes, which fundamentally
describe different physical processes [42].
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• stationary procedures

• dissipative phenomena

• wave propagation processes

Classification of partial differential equation 2nd Order

To classify partial differential equations of second order, we start with equa-
tion (8) which is limited to two space dimensions. Furthermore, it is a pre-
requisite that the sought solution u depends on the independent variables x
and y and that the solution is continuously differentiable at least twice.

a · uxx + b · uxy + c · uyy = h (8)

If condition (9) is fulfilled, the equation (8) is called linear with con-
stant coefficients or quasilinear

a ∈ R, b ∈ R, c ∈ R (9)

The linear differential equation of second order with constant coefficients
can thus be divided into three categories: It’s called elliptical if

b2 − 4ac < 0 (10)

it’s called parabolic, if

b2 − 4ac = 0 (11)

and hyperbolic, if
b2 − 4ac > 0 (12)

are fulfilled.
Stationary states of equilibrium in various physical fields, such as strength
theory, magnetostatics [35], fluid mechanics [94] or thermodynamics [80], is
the area of application of elliptic differential equations.
One of the most important equations in this thesis, the heat equation, is
described by a parabolic differential equation.
If the requirement is to describe unsteady processes, such as waves and prop-
agation phenomena, hyperbolic differential equations are used [43].
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2.2.2 Derivation of heat equation in 1 dimension

As described above, the heat equation is part of parabolic differential equa-
tion. This section describes the derivation of the relationship between the
temporal and spatial changes in temperature at a location in a body.
To derive the heat equation in 1 dimension, a thin bar of length L is given.
Furthermore, we assume that the bar is of homogeneous material, straight,
have uniform cross section and the sides of the bar are perfectly insulated.
Hence, the temperature u is a function of position x and time t. Figure 18
schematically shows the assumptions [90].

Figure 18: Schematic image of the assumptions to derive the heat equation

Now we want to show how to form the heat equation:

ut = αuxx (13)

where the thermal diffusivity α is given by:

α =
κ

ρc
(14)

κ = Thermal conductivity
ρ = Density
c = Specific heat capacity

κ, ρ, c are positive constants and depend on the material of the bar.

Considering a section D of the bar with ends x0 and x1, as can be seen
in figure 19.

Now the total amount of heat H = H(t) in D is:

H(t) =

∫ x1

x0

cρu(x, t) dx (15)
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Figure 19: Section of bar

Differentiating using Leibnitz rule:

dH

dt
= cρ

∫ x1

x0

ut(x, t) dx (16)

Because of the assumption that the sides of the bar are insulated, the
only way heat can flow into or out of D is through the ends at x0 and x1.
In 1822, Jean Baptiste Joseph Fourier described that heat flows from warmer
regions to colder regions [55]. Furthermore the flow is proportional to ux.
The heat change H in D is now given by the heat flowing in D minus the
heat leaving the section D (see equation (17)).

dH

dt
= −κux(x0t)− (−κux(x1, t)) (17)

Equation (17) now describes a positive heat flow from left x0 to right x1

given by the sign. But this is only possible if the temperature at the left side
is higher than the temperature at the right side.
This results in the connection:

dH

dt
= κux(x1, t)− κux(x0, t) =

∫ x1

x0

κuxx(x, t) dx (18)

Equating the two expressions for dH
dt

(equation (16) and equation (18))
the two expressions results in the connection:

cρ

∫ x1

x0

ut(x, t) dx = κ

∫ x1

x0

uxx(x, t) dx (19)
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If we differentiate the left and right side with respect to x1, we get the
heat equation in 1 dimension (equation (20)).

cρut = κuxx ⇒ ut = αuxx (20)

2.2.3 Numeric of partial differential equations

One problem with computers is that they can only handle algebraic equa-
tions. In order to solve partial differential equations, the requirement is
to replace non algebraic expressions of these equations with corresponding
algebraic expressions. One approach is to use Finite Differences to find al-
gebraic expressions for partial differential equations [27]. The aim of this
method is to find approximations for the function you are looking for, using
discrete values of the independent variable. Due to the discrete approach to
the exact solution, approximation errors arise that should not be ignored.
Furthermore, the stability of the method used must be checked.

Derivation of finite differences based on the taylor series

As already described above, the requirement is to replace derivatives of the
differential equation with algebraic expressions [27]. To achieve this, the
derivative for a function can be used (see equation)

f ′(x) = lim
∆x→0

f(x+ ∆x)− f(x)

∆x
(21)

For small steps ∆x, a good approximation solution for the differential
quotient can now be achieved, see equation (22) which represents the for-
ward differential quotient [22]. The error due to the approximation can be
calculated using the Taylor series.

f ′(x) ≈ f(x+ ∆x)− f(x)

∆x
(22)

If one knows the function value at the position x , then the position x+∆x
and x−∆x can be calculated with the help of the Taylor series. The Taylor
series development of the position x + ∆x and x − ∆x describe formulas 1
and 2

f(x+ δx) = f(x) +
∆x

1!
f ′(x) +

∆x2

2!
f ′′(x) + ... (23)

f(x+ δx) = f(x)− ∆x

1!
f ′(x) +

∆x2

2!
f ′′(x)− ... (24)
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By combining equation (22) and (23) we now obtain the following expres-
sion:

f ′(x) =
f(x+ ∆x)− f(x)

∆x
− ∆x

2!
f ′′(x)− ∆x2

3!
f ′′′(x)− ... (25)

If one chooses the increment ∆x smaller than 1, the first summand is
dominant over the rest. The rest is now a measure of the local error of the
procedure. Equation (26) now describes the right-sided or forward difference
quotient [22] with the error O.

f ′(x) =
f(x+ ∆x)− f(x)

∆x
+O(∆x) (26)

By using the Taylor series development according to formula 1 one obtains
the rearward or left-side difference quotient [22] (see equation (27)).

f ′(x) =
f(x)− f(x−∆x)

∆x
+O(∆x) (27)

Forming the difference between formulas 1 and 2 gives the central differ-
ence quotient. In equation (28) it can be seen that the error is reduced to
O(∆x2) in this formulation.

f ′(x) =
f(x+ ∆x)− f(x−∆x)

2∆x
+O(∆x2) (28)

If the differential equation requires the forming of the second derivative,
this can be achieved by the addition of equation (23) and (24). The second
derivative can now be seen in (29) with the error O(∆x2).

f ′′(x) =
f(x+ ∆x)− 2f(x) + f(x−∆x)

∆x2
+O(∆x2) (29)

Looking now at the heat equation (see equation (20)), the partial deriva-
tive of the function u = u(x, t) can approximated either by the right-sided
or forward difference quotient of equation (26), the rearward or left-side dif-
ference quotient (27) or the central difference quotient (28). However the
term of the second partial derivative uxx(x, t) of the heat equation can be
approximated with the central differential quotient as can be seen in equation
(29).
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2.3 Overview of most used Algorithms for Feature Ex-
traction

In order to generate a single image from a sequence of thermograms, which
includes all defects as well as inhomogeneities, is the aim of the following
methods. Of course, each algorithm has its advantages and disadvantages.
Some are more stable towards noise but are sensitive to inhomogeneous ex-
citation. The aim of this work, however, is not to study the strengths and
weaknesses of the following algorithms but to show which principles they use
to map inhomogeneities in a single image and why we need them for further
processing.
If defects and inhomogeneities have been imaged on a picture, further fea-
tures can be extracted based on their now known localization.

2.3.1 Pulsed Phase Thermography (PPT)

Pulsed Phase Thermography (PPT) is one of the most commonly used al-
gorithms for feature extraction [64] [81] [47]. The aim of this method is to
split signals into sinus and cosine parts. So you can see that one transforms
signals from the time domain into the frequency domain. So this method em-
ploys application on the Fourier transformation. The analogy of the discrete
Fourier transformation is that the signal x[n] is replaced by the thermograms
T (n(x, y)), as seen in equation (30), where T (x, y) describes the fourier co-
efficient at pixel (x, y), n the frame increment, N the frames per period and
k the frequency component.

T (x, y) =
N−1∑
n=0

T (n(x, y)) exp−j
2πn
N
k (30)

If we look at equation (30) we are able to split this equation into a real
part and an imaginary part, as seen in equation (31).

T (x, y) =
N−1∑
n=0

T (n(x, y)) · cos(2πn

N
k)−

N−1∑
n=0

T (n(x, y)) · j · sin(
2πn

N
k) (31)

where:

S0 =
N−1∑
n=0

T (n(x, y)) · sin(
2πn

N
k) (32)
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S90 =
N−1∑
n=0

T (n(x, y)) · cos(2πn

N
k) (33)

By the property of the orthogonality of (32) and (33) we are able to
calculate an amplitude image (see equation (34)) and a phase image (see
equation (35))

A =
√
S2

0 + S2
90 (34)

φ = arctan(
S90

S0

) (35)

Figure 20 additionally shows a schematic representation of the calculation
of the two components S0 and S90 at one frequency component.

Figure 20: Schematic representation of PPT [23].

2.3.2 Wavelet Transformation

Wavelet transformation originates in geophysics in the early 1980s by Morlet
et al and is a relative new technique which is used in data reduction, data
compression and signal processing [52] [70]. Roughly speaking, the wavelet
transformation can be seen as an improvement of the short-time fourier trans-
formation (STFT) [37]. The principle of the wavelet transformation is that
temporally localized waves or functions are used as a basis to achieve a time
and frequency resolution. The improvement of the wavelet transformation
compared to the STFT lies in the variable frequency resolution. The window
function includes the frequency information and is by Wavelet transformation
a modulated window function (Wavelet = modulated window function).
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Figure 21 shows the window function for STFT and figure 22 the window
function for Wavelet transformation.
It can be seen that a small window ends in a low frequency resolution as in
opposite a wide window ends in a high frequency resolution. It is therefore
not possible to achieve the best possible resolution simultaneously in the time
domain and in the frequency domain.

Figure 21: Frequency resolution
STFT

Figure 22: Frequency resolution of
Wavelet transform

In the equation (36) you can see the definition of the continuous Wavelet
transform of a signal x(t) ∈ L2(R) which results in Wx(b, a) and is the inner
product of the signal x(t) with shifted and scaled version of the function Ψ(t).
To make sure that all of the functions |a|−1/2Ψ(t/a) for all a ∈ R+ have the
same energy, factor |a|−1/2 was introduced. Furthermore, the factor a can be
used to elongate and compress a Wavelet. Thus, with the factor a > 1, the
Wavelet can be stretched and the factor b translates the Wavelet at the time
axis t.

Wx(b, a) = |a|−
1
2

∫ ∞
−∞

x(t)Ψ(
t− b
a

)dt (36)

Discrete Wavelet Transformation (DWT)

The discrete wavelet transformation was developed by Meyer and Mallat in
the year 1988 which is based on a digital high- and low pass pair [65]. The
basic concept of DWT is that the signal is decomposed into a rough inex-
act representation (low pass) and into a representation with exact details
(high pass). These suitable high- and low passes cut the frequency region in
half without losing information. Mallat and Meyer show following context
that the continued (recursive) digital filtering of the low pass portion creates
coefficient sets that correlate to a Wavelet transform. Figure 23 shows a
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schematic representation of a level 2 decomposition. The maximal decompo-
sition is limited by log2(N) where N is the length of the signal [66].

Figure 23: Schematic representation of DWT - Level 3 [3].
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2.3.3 Principle Component Thermography (PCT)

Another common method to extract features from thermograms is Principle
Component Thermography. PCT is based on Singular value decomposition
(SVD) and is an eigenvector based transformation which forms an orthogonal
space. The main goal of SVD is to extract spacial and temporal features from
thermograms. To achieve this, the data matrix A must exist in the format
MxN where M > N [82].
A SVD of a matrix A of rank r is called a product of shape:

A = USVT (37)

S = is a diagonal NxN matrix which consists of singular values of A in diagonal
U = is a matrix in the form of MxN
VT = is a NxN matrix

A schematic representation of SVD is shown in figure 24. To extract
spatial variations of the data or better known as the empirical orthogonal
functions (EOF) the columns of the matrix U are used. To get the time
variation of the data matrix, known as the principle components (PC), the
rows of the matrix VT are used [82].

Figure 24: Schematic representation of SVD

As described above, the technique of SVD is used to extract spatial EOFs
and temporal PCs [82] [86]. To extract features using PCT, first the 3D
thermograms must be converted into a 2D matrix whereby time is represented
along the columns and space in a row vector. To apply PCT to thermograms,
the data must first be standardized. This can be done by equation (38)

Â =
A− Amean
std(A)

(38)
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There are two types to calculate Amean. Either the mean image is sub-
tracted from each figure (39) or the temporal mean is subtracted from each
temporal profile (40).

µM =
1

N

N∑
n=1

A(n,m) (39)

µN =
1

M

M∑
m=1

A(n,m) (40)

2.3.4 Statistical parameters

Another technique in signal processing to describe non-linear signals is to look
at the characteristics of the distribution of a random variable. The following
section briefly describes how it can be deduced to such characteristics, called
cumulants [58].
The Cumulative Distribution Function (CDF), as can be seen in figure 25,
represents that the random variable X takes on a value less than or equal to
ξ.

Figure 25: Cumulative distribution function CDF of a random variable X
[58]

The Probability Density Function (PDF) can be deduced from the CDF
as the derivative of the CDF (see figure 26). A requirement is that the PDF
has to be continuous and differentiable.

Now we assume that we add two random variables. This leads to the
final PDF being the convolution of the two single PDFs of the two random
variables (see equation (41)).

fX+Y (ξ) = fX(ξ) ∗ fY (ξ) (41)

Applying the Fourier transformation to equation (41) results in:

ΦX+Y (µ) = ΦX(µ)ΦY (µ) (42)
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Figure 26: Probability density function PDF of a random variable X [58]

If we now apply the natural logarithm to equation (42) we receive:

lnΦX+Y (µ) = lnΦX(µ) + lnΦY (µ) (43)

Finally to get the cumulant-generating function, the function lnΦX(µ) at
µ = 0 has to be approximated with Taylor series like in the equation

lnΦX(µ) =
∞∑
p=0

1

p!
cX,pµ

p (44)

Now we are able to generate cumulants from the cumulant generating
function (44). An overview of the first four cumulants is given in table 3.

Table 3: Overview of cumulants
Cumulant Name

c1 mean
c2 variance
c3 skewness
c4 kurtosis
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2.4 Related work on depth estimation

The methods mentioned in the previous chapter are used to find inhomo-
geneities in the specimen. It is not only important to find inhomogeneities
but also to characterize them. The depth of inhomogeneities is one of the
important features that often need to be extracted [97]. To achieve this, most
methods introduce a characteristic time that is proportional to the depth of
the inhomogeneity. To get this characteristic time usually one or more ref-
erence points from the sound area are needed [97] [60]. Simply explained,
as already mentioned, the surface of a specimen heats up during active ther-
mography. After excitation of the surface of the specimen, the heat spreads
in the specimen and thereby causes a continuous decrease of the surface tem-
perature. If inhomogeneities with a higher thermal resistance are present
in the test specimen, they cause a delay in heat dissipation. This results
in a higher temperature at inhomogeneity points compared to surface area.
If inhomogeneities near the surface, these temperature differences will occur
earlier. If inhomogeneities are deeper inside the specimen the temperature
differences will occur later.
These temperature differences result in a temperature contrast of.

∆ = T − TR (45)

Figure 27 schematically shows the above described principle of active
thermography and figure 28 shows a practical example.

Figure 27: Schematic principle of
active thermography

Figure 28: Practical
example of active ther-
mography

2.4.1 Log Second Derivative (LSD)

In the subsection above, it has already been roughly outlined that there
are preconditions for determining the depth of inhomogeneities. The first
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requirement necessary for all algorithms is the knowledge of the thermal
diffusivity α [93]. This means that the correct material constant α must first
be found using the method described in section 4.7. In order to determine
the depth, the characteristic time has to be extracted. The first method to
extract the characteristic time is the Log Second Derivative (LSD) [31]. With
this method, each pixel of the thermographic sequence is first scaled into the
log-log space and approximated using polynomial fit. The exact method is
called Thermographic Signal reconstruction (TSR) [85] and is described in
chapter 4.5. The second derivative is then calculated from the approximated
signals.
Parker et. al. defined the decay of the surface temperature T of the one
dimensional heat equation with time t as:

T (t) =
Q

ρCL
[1 + 2

∞∑
n=1

exp(−n
2π2

L2
αt)] (46)

Q = input energy
ρ = density
C = specific heat
α = thermal diffusivity
 L = sample thickness

By computing the second derivative of equation (46) and extracting the
time of the maximum peak the depth of the inhomogeneity is estimated by
equation (??).

L =
√
π · α · tpeak (47)

2.4.2 Absolute Peak Slope Time (APST)

The huge advantage of the next method APST is that no reference point is
needed to determine the depth of inhomogeneities. This method was invented
by Zeng et. al. [98]. His paper describes the linear connection between the
square of the depth of inhomogeneities and the absolute peak slope time
tAPST .
Zeng et. al.[98] also described an equation for the case that inhomogeneities
are inside a specimen:

∆T (t) =
Q

e
√
πt

[1 + 2
∞∑
n=1

exp(−n
2L2

αt
)] (48)
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Q = input energy
α = thermal diffusivity
L = defect depth
e = thermal effusivity

Next both sides of equation (48) are multiplied by the square root of the
time

√
t. Multiplying

√
t produces a new time dependent function f , as can

be seen in equation (49).

f(t) = ∆T (t) ·
√

(t) =
Q

e
√
π

[1 + 2
∞∑
n=1

exp(−n
2L2

αt
)] (49)

The next step is to estimate the first derivative of equation (49), which
results into:

f ′(t) =
2Q

e
√
π

∞∑
n=1

exp(−n
2L2

αt
) · n

2L2

αt2
(50)

Now we have to find the absolute peaks. Therefore, we calculate the
second derivative of equation (50) and find the roots. The second derivative
is given in equation (51).

f ′′(t) =
2Q

e
√
π

∞∑
n=1

exp(−n
2L2

αt
) · n

2L2

αt3
· (n

2L2

αt
− 2) (51)

Finally the absolute peak slope time tAPST can be estimated by:

tAPST =
L2

2α
(52)

and the depth of the inhomogeneity can thus be calculated by equation
(53).

L =
√

2 · α · tAPST (53)
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3 Preprocessing Techniques

3.1 Fixed Pattern Noise (FPN)

The reason why FPN occurs is primarily due to production-related tolerances.
These tolerances cause a deviation by a fixed offset in the image, but can be
corrected by a correction (addition or multiplication) per pixel [99].In order
to determine the correction factor, the FPN is measured without light. By
measuring without light, the FPN is also often referred to as Dark Signal
Non Uniformity (DSNU) [88].
Ideally, each pixel should have the same value if uniform light falls on the
camera sensor. However, small deviations in the production of the sensor
cells lead to slight differences in the pixels. These deviations of the pixels are
referred to as Photo Response Non Uniformity (PRNU) [96] in the camera
technique. Due to the physical tolerances of the production, the PRNU
cannot be finally corrected.

3.2 Bad Pixel

Bad Pixels can occur in the camera sensor in two ways. Either such bad
pixels always appear as dark ones, then one speaks of dead pixels. Or they
appear as white pixels in the picture, then one speaks of stuck pixel. When
it comes to high-quality cameras, these pixels are detected by the camera’s
firmware and repaired by themselves. The defective pixel is then ignored
during acquisition and then an average value is calculated. In order for the
firmware to detect such Bad Pixel, a corresponding list of defective pixels
must be available. In general, the camera sensor is tested after production
on bad pixels and the list of bad pixels is firmly programmed. If bad pixels
occur after production due to aging or environmental influences, they are not
recognized by the firmware and must be removed afterwards [20].

3.3 Signal fitting

If signal fitting is used in numerical mathematics, there are essentially two
different types: Interpolation and Approximation.

Interpolation

When it comes to interpolation, a function needs to be found for known
points (for example results of a measurement) that describes these points
and connects them by a curve. If interpolation is used, it is essential that the
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given data points describe the measurement as exactly as possibly (noise free
observation). Simplified, it can be said that for a given list of input/output
sample pairs (xi, yi) we have to find an interpolation function f̂(xi) such as:

f̂(xi) = y(i) ∀pairs(xi, yi) (54)

and meet additional constraints such as

• Smoothness

• Band limitedness

• Piecewise constant

The most used interpolation methods are: Linear Interpolation, Higher-
Order Polynomials, Cubic Spline Interpolation, Sinc Interpolation and La-
grange Interpolation. Due to the given measurement noise of the IR-camera,
interpolation is only of minor importance in this thesis [58].

Approximation

To extract depths of thermogram sequences temporal noise-free cooling pro-
cesses are needed. Approximation is a method that is more stable compared
to noisy measurement results. It aims at representing given observations by
a simpler function. In general, approximation has certain advantages over
interpolation as for example: proper handling of noisy measurement or flex-
ible trade-off between model complexity and model accuracy.
In other words, the method approximation should find a function f̂(xi), for
a given list of input/output sample pairs (xi, yi) which can be corrupted by
noise. This minimizes a cost function or approximation measures and meet
additional constraints such as

• Smoothness

• Band limitedness

• Piecewise constant

Cost functions or approximation measures can exist as:

• L-Norm:
∫
D
|f(x)− F̂P (x)|L < ε

• Least squares (L=2):
∫
D
|f(x)− F̂P (x)|2dx < ε

• Chebyshev or uniform approximation: (L→ inf) sup|f(x)−f̂P (x)| < ε
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The most widely used approximation methods that are applicable are
Polynomial Approximation, Fourier Series, Radial Basis Functions or Multi-
layer Perceptrons Neuron [58].

In this thesis, we use Least squares polynomial fit, as can be seen in equa-
tion (55), which fits a polynomial of degree n to points (x, y). This solution

minimizes the squared error E =
k∑
j=0

|p(xj)− yj|2.

p(x) = p0 + p1x
n + p2x

n−1 + ...+ pnx+ pn+1 (55)

Now, if one has decided to approximate data with polynomial fit then the
question of the degree of the polynomial arises. If you increase the order of

the polynomial, the sum of the squares of the residuals
N∑
i=1

|ε2i | will always be

smaller until 0 is reached, in case the polynomial order is chosen is one less
than the number of data points. This achieves an exact replica of the data.
To avoid overfitting the sum of the squares of the residuals will be weighted,
as can be seen in equation (56). The order of the polynomial is now chosen
so that equation (56) reaches a minimum or there is no significant decrease
in its value as the degree of polynomials is increased [4].

N∑
i=1

|ε2i |

N − n− 1
(56)

N = Number of data points
n = order of polynomial
ε = Residuals

4 Processing Techniques

4.1 Thermographic Signal Reconstruction (TSR)

In active thermography, TSR is a popular and attractive method of data
processing to increase the quality of thermographic images. By reducing
temporal noise, TSR can improve both temporal and spatial image resolu-
tion as well as dramatically improve the signal-to-noise ratio (SNR) of a given
pixel as well. The result is a temporal low-pass filtered thermography signal
without additional noise [85].
In order to counteract the inhomogeneous temperature distribution of the
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sample before excitation, the cooling process is subtracted from each pixel
with a reference image before the excitation. By forming the logarithm of the
cooling process and its time, the exponential curve becomes a linear function.
By forming a polynomial fit, the SNR is subsequently improved. Advantage
of a polynomial fit is certainly the broad range of functions that can very
flexible be fit.
In general, TSR is based on polynomial fit. The goal is to fit the logarith-
mic time dependence of thermographic signals with an n-order polynomial
function, as can be seen in equation (57).

ln(T − T0) = p0 + p1ln(t) + p2[ln(t)]2 + ...+ an[ln(t)]n (57)

The improved SNR of the thermographic signals is an advantage. Another
great advantage of this method is that now derivatives of the signals can be
calculated. The derivation of thermographic signals allows differences in the
cooling behavior to be seen more easily. It is also possible to calculate the
characteristic time for depth determination by derivations of the signals. An
important factor of this method is the correct determination of the degree
of the polynomial. If the polynomial is too small or too large, important
features are either filtered out or an overfitting of the signals is caused [4].
In figure 29, an original thermographic signal whereas in figure 30, the TSR-
signal of the original signal can be seen.

Figure 29: Original thermographic
signal in logarithmic scale

Figure 30: TSR-signal in logarith-
mic scale

4.2 Contrast Methods

Active thermography uses an external excitation source to induce energy into
the material. As already described, in case of inhomogeneities, the thermal
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resistance is either greater or less than the background, and thus provides
a thermal contrast whereby features can be extracted [84]. However, this
assumption is only correct if the energy of the excitation source excites the
specimen uniformly. In reality, excitation sources have a non-uniform illu-
mination, as can be seen in figure 31, causing the specimen to be excited
differently. This difference may cause the thermal contrast between inhomo-
geneity and background to be lost.
The following methods are different methods to compensate the non-uniform
heating. In figure 32, a compensated thermogram can be seen.

Figure 31: Thermogram of a non-
uniform excited specimen

Figure 32: Thermogram of a com-
pensated non-uniform excitation

4.2.1 Absolute Contrast

The first and easiest way to compensate non-uniform heating is the procedure
Absolute Contrast. In this case, it is necessary to select one or more points
which have a specific cooling characteristic at the specimen [49]. The signal
or mean of the signals is then subtracted from each point as can be seen in
equation (58).

AbsCtrst(x,y)(t) = T(x,y)(t)− Tsnd(t) 0...if AbsCtrst(x, y) < 0 (58)

4.2.2 Running Contrast

The next method, Running Contrast, is a method very similar to the Absolute
Contrast method. Here again one or more points must be selected, which
are characteristic for the cooling process. Again the selected background is
subtracted from each pixel but then scaled to Tsnd [17], as can be seen in
equation (59).

RunCtrst(x,y)(t) =
T(x,y)(t)− Tsnd(t)

Tsnd(t)
0...if RunCtrst(x, y) < 0 (59)
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4.2.3 Normalized Contrast A

The normalized contrast method is one of two similar methods. With this
method, one or more reference points must be selected just as in the previous
two methods. The principle of this procedure is that each pixel of each
thermogram is scaled to its final temperature value and also the selected
reference signal is scaled to its final temperature value. Then, each pixel of
the scaled thermogram is subtracted with the scaled reference signal [17] (see
equation (60)).

NormCtrstA(x,y)(t) =
T(x,y)(t)

Tend(x, y)
− Tsnd(t)

Tsnd end
(60)

4.2.4 Normalized Contrast B

The difference of this method compared to the first normalized contrast
method is that the scaling factor is not the final temperature but the starting
temperature after the excitation [17]. The calculation method of this method
is described in formula (61).

NormCtrstB(x,y)(t) =
T(x,y)(t)

Tstart(x, y)
− Tsnd(t)

Tsnd start
(61)

4.2.5 Standard Contrast

In the standard contrast method, the self-heat before the excitation is in-
cluded in the calculation. Again, one or more reference points must be cho-
sen. Each thermogram after the excitation is subtracted with the thermo-
gram before the excitation and also the reference point is subtracted with the
reference point before the excitation. Thereafter, the individual thermograms
are scaled with the corrected reference point [62] (see equation (62)).

stdCtrst(x,y)(t) =
T(x,y)(t)− Tpreflash(x, y)

Tsnd(x,y)(t)− Tsnd preflash
(62)

4.2.6 Differentiated Absolute Contrast (DAC)

In the last contrast DAC we assume that at time t = 0, the heat pulse is
applied to the specimen. At this time, the recording of the thermograms
begins and lasts until the time tf . If a heat pulse hits the specimen, it takes
a while for the heat pulse to spread and the first defect to occur. The time
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that is assumed until the first defect occurs is referred to as t′ [30]. In this
case, equation (63) will be the result.

Ts(x,y)(t
′) = Tx,y(t

′) (63)

We now assume a semi-infinite body to which a Dirac pulse is applied.
Under these circumstances the 1-dimensional Fourier equation is solved as:

∆Tsemiinfinitebody(z = 0.t) =
Q

e
√
πt

(64)

z = Depth
Q = Injected Energy
e = Thermal effusivity
∆T = Temperature increase from t=0

With assumption (63) the sound area Ts(x,y)(t
′) is given by:

∆Ts(x,y)(t
′) = ∆T(x,y)(t

′) =
Q(x,y)

e(x,y)

√
πt′

(65)

Now we can extract the ratio of the unknown parameters Q/e as:

Q(x,y)

e(x,y)

=
√
πt′ ·∆T(x, y)(t′) (66)

Equation (67) now describes the temperature of the sound area as func-
tion of time t.

∆Ts(x,y)(t) =
Q(x,y)

e(x,y)

√
πt

=

√
πt′√
πt
·∆T(x,y)(t

′) =

√
t′

t
·∆T(x,y)(t

′) (67)

Finally, DAC is defined as can be seen in equation (68).

DAC(x,y)(t) = ∆T(x,y)(t)−
√
t′

t
·∆T(x,y)(t

′) (68)

4.3 Determination of the thermal diffusivity α

An important point of this thesis is the determination of the depth of inho-
mogeneities in the specimen. If one has information about the characteris-
tic time, additional information of the material property of the specimen is
needed to determine the depth of inhomogeneities. This required material
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property is the thermal diffusivity α, which describes the temporal change
of the spatial distribution of the temperature. The thermal diffusivity α is
defined as:

α =
λ

ρ · c
(69)

λ = Thermal conductivity
ρ = Density
c = Specific heat capacity

In order to determine the thermal diffusivity the principle of Parker et
al. [93] is adopted. In general, a test object is heated at one side and at the
opposite side the increase of the temperature is measured. The increase of
the temperature is then proportional to the thermal diffusivity α. In equation
(70), the formula to determine the thermal diffusivity α is displayed.

α =
1.38 · L2

π2t1/2
(70)

t1/2 = time required for the back surface to reach half of Tmax
L = Thickness of the specimen
e = Thermal effusivity

The exact derivation of the formula would go beyond the scope of this
thesis, but can be read in Parker’s et. al. paper [93].

4.4 Implementation of heat equation

4.4.1 Explicit procedure

In this chapter, various methods are shown for the numerical solution of the
heat equation. In order to solve the heat equation, a suitable initial- and/or
boundary condition is needed. Now let us assume a thin rod whose length
is given by 0 ≤ x ≤ 1. Thus, the initial condition is given by formula (71),
where g(x) is a given function [44].

u(x, 0) = g(x) for x ∈ [0, 1] (71)

The boundary conditions with constants a and b are given by equation
(72).

u(0, t) = a, u(1, t) = b, t ≤ 0 (72)
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With the heat equation, the given initial condition and the boundary
conditions, the model of a thin rod, whose ends are kept at the constant
temperatures a and b, is given. The solution ut(x, t) = uxx(x, t) then delivers
the temperature distribution within the rod as a function of time.
As already described in chapter 2.2.3, derivatives must be replaced by ap-
proximations. This is done by using finite differences. Thus, the length of
the rod as well as the time is covered with a grid of lattice points. In other
words, the length of the rod as well as the temporal change is subdivided
into equally long subintervals. The grid points are now defined as (xj, tm),
where the temporal changes are given as tm = m∆t and the length intervals
are given as xj = j∆x. The solution umj is now the approximated solution
at the grid point (x, t) [44].
In the explicit solution method, the partial derivative of the function u =
u(x, t) according to the time variable t is approximated by the forward dif-
ferential quotient, as outlined in equation (73).

ut(xj, tm) ≈
um+1
j − umj

∆t
(73)

The second partial derivative uxx(x, t) is approximated by the central
differential quotient [27], as depicted in equation.

∆u(xj, tm) ≈
umj+1 − 2umj + umj−1

(∆x)2
(74)

If the heat equation with equation (73) is replaced by and equation (74),
we get the approximated solution in direction forward (see )

um+1
j − umj

∆t
= α

umj+1 − 2umj + umj−1

(∆x)2
(75)

The equivalent of equation (75) is :

um+1
j = umj + µ(umj+1 − 2umj + umj−1) (76)

where

µ =
α∆t

(∆x)2
(77)

In A it is shown that condition (78) must be fulfilled in order to ensure
the stability of this procedure [39].

∆t ≤ (∆x)2

2α
(78)
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By approximating the heat equation with finite differences, a residual
amount e is given, which indicates the error of the approximation. The
error e is also called the local discretization error and can be estimated as a
function of ∆t and ∆x.
Thus, for the implicit method there is a discretization error which is of first
order with respect to the time and second order with respect to the location
(see equation (79)). For more details see [44].

e = O(∆t) +O((∆x)2) (79)

4.4.2 Implicit procedure

The implicit method has the advantage that the stability of this method is
unconditional. This means that for every ratio for ∆t and ∆x, the stability
is given. Looking now at the equation (80) of the implicit procedure, it is
evident that the equation is similar to the equation of the explicit procedure
(75). The difference is that the term umj is replaced by the term um+1

j . Since

the values of the terms um+1
j+1 are all unknown, a system of equations is needed

that implicitly contains the values [44].

um+1
j − umj

∆t
= α

um+1
j+1 − 2um+1

j + um+1
j−1

(∆x)2
(80)

We set as before:

µ =
α∆t

(∆x)2
(81)

and we are able to write equation (80) as:

(1 + 2µ)um+1
j − µ(um+1

j+1 + um+1
j−1 ) = umj , j = 1, ...n (82)

Concerning the implicit procedure, it is necessary to solve a linear equa-
tion system with each step to get um+1

j from umj . The linear equation system
can be seen in equation.

(I + µA)um+1 = um + b, m = 0, 1, ... (83)
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The tridiagonal matrix A is given as:

2 −1
−1 2 −1

. . .
. . .

. . .
−1 2 −1

−1 −2
−1


(84)

The vector b represents the boundary conditions and consists of zeros
except for the first and last component which is b0 = µa and bn+1 = µb.
As in the explicit method, there exists also a discretization error e in the
implicit method. By approximating the heat equation with ∆x and ∆t, we
get the same discretization error as in the explicit method (see equation 79)
but with the big advantage of stability of the method.

4.4.3 Cranck-Nicolson procedure

The Cranck-Nicolson procedure is a stable procedure second order. It is a
means between explicit and implicit method and the terms umj and um+1

j are
replaced by the arithmetic mean (see equation (85)) [44].

u
m+ 1

2
j =

1

2
(um+1

j + umj ) (85)

By replacing with the arithmetic mean, the Cranck-Nicolson procedure
is given by equation (86)

um+1
j − umj =

α∆t

2(∆x)2
(um+1

j+1 − 2um+1
j + um+1

j−1 + umj+1 − 2umj + umj−1) (86)

Again, this method can be specified in matrix vector form, as seen in
formula (87).

(I +
µ

2
A)um+1 = (I +

µ

2
A)um + b, m = 0, 1, ... (87)

4.4.4 2-dimensional heat equation

2D-Explicit procedure

In equation (88), the heat equation can be seen in two space dimensions.

ut(t, x, y) = α(uxx(x, y, t) + uyy(x, y, t)) (x, y) ∈ Ω = (0, 1)2 (88)
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Ω represents a flat plate with the edge δΩ. As a boundary condition,
we assume the temperature distribution on the four sides as displayed in
equation (89) where g is a given function [44].

u(t, x, y) = g(x, y) for (x, y) ∈ δΩ (89)

The initial condition is a function in the two space dimensions:

u(x, y, 0) = f(x, y) for (x, y) ∈ Ω (90)

Similar to the one-dimensional case, a network of grid points is placed
over the two-dimensional space of the plate. The central differences are ap-
proximated through equation (92) and equation (93) where h is the distance
between horizontal and vertical direction.
For the cranck nicolson method, a discretization error is eventuated, which is
of second order with repect to time and is also of second order with respect
to the location [44], as can be seen in equation (91).

e = O((∆t)2) +O((∆x)2) (91)

uxx(xi, yj, t) ≈
u(xi−1, yj, t)− 2u(xi, yi, t) + u(xi+1, yj, t)

h2
(92)

uyy(xi, yj, t) ≈
u(xi, yj−1, t)− 2u(xi, yi, t) + u(xi, yj+1, t)

h2
(93)

The time derivation is then given as:

ut(xi, yj, tm) ≈
um+1
i,j − umi,j

∆t
(94)

This results in the equation:

um+1
i,j − umi,j

∆t
= α

umi−1,j + umi+1,j + umi,j−1 + umi,j + 1− 4umi,j
h2

(95)

Finally, equation (96) shows the explicit procedure for the two dimen-
sional case.

um+1
i,j = umi,j +

α∆t

h2
(umi−1,j + umi+1,j + umi,j−1 + umi,j + 1− 4umi,j) (96)

As already shown in the one-dimensional case, the explicit procedure has
a stability condition [39]. Equation (97) shows that at small h, very small
time steps are needed.

∆t ≤ h2

4c
(97)
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2D-Implicit procedure

Not only the explicit method can be extended into the two-dimensional space
but also the implicit procedure. The advantage of the implicit method is
again, as in the one-dimensional case, that it is a stable method [27]. Analo-
gously to the one-dimensional method, the values umi,j are replaced by um+1

i,j ,
resulting in equation (99).

um+1
i,j − umi,j

∆t
= α

um+1
i−1,j + um+1

i+1,j + um+1
i,j−1 + um+1

i,j+1 − 4um+1
i,j

h2
(98)

By transforming formula 1, one obtains the calculation of the heat equa-
tion with the implicit method in the two-dimensional case seen in the equa-
tion below. The drawback of the two-dimensional implicit method is that
every time step requires the solution of a two-dimensional Poisson equation
[39].

um+1
i,j = umi,j +

α∆t

h2
(um+1

i−1,j + um+1
i+1,j + um+1

i,j−1 + um+1
i,j+1 − 4um+1

i,j ) (99)

4.4.5 Determination of the initial condition

To calculate the initial condition we assume a semi-infinite body with tran-
sient conduction [24].
The solution of such a body with a heat flux at the surface q̇′′ = −k δT

δX
|x=0

can be seen in equation (71).

∆T =
q̇′′

k
[

√
4αt

π
exp(− x2

4αt
)− xerfc( x√

4αt
)] (100)

In order to calculate the initial condition, we set the position of the surface
x = 0 and define the unknown scaling factor q̇′′

k
to s. Equation (71) results

in:

∆T = s[

√
4αt

π
exp(0)− 0] = s

√
4αt

π
(101)

Next, we calculate the first derivative of equation (101) and extract the
unknown scaling factor s:

δ∆T

δt
0

α · s
√
π ·
√
αt
⇒ s =

∆T ′
√
παt

α
(102)

56



In order to calculate the time relative to the surface disturbance t, we
start from equation (103).

∆T =
∆T ′
√
παt

α

√
4αt

π
(103)

If we transform equation (103), it ends in:

t = (
∆Tα

∆T ′
)2 · 1

4α
(104)

4.4.6 Boundary conditions

As shown in the above-defined various types of implementation of the heat
equation, the boundaries of the object to be simulated must be predeter-
mined. Since this knowledge about the boundaries is often uncertain, this
problem is called boundary problem. There are several approaches to solve
this problem. Two widely used approaches takes up in this thesis are Dirich-
let Boundary conditions [27] and Neumann Boundary conditions [27].
If a defined function is specified for the boundaries, this is called Dirichlet
Boundary conditions.
If no function values, but derivation values for the boundaries are defined,
these are called Neumann Boundary conditions.
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4.5 Depth determination with new approach

4.5.1 Maximum Contrast

When considering the development of a method that simultaneously elimi-
nates the influence of inhomogeneous illumination, a method was developed
using the combination of heat equation and TSR.
Through the necessary input parameter thermal diffusivity α, which is needed
to determine the exact depth of inhomogeneities, the heat equation with fi-
nite differences was simulated. If the parameter α was determined exactly
for the specimen to be examined, we achieve the cooling process of an ideally
homogeneous specimen without inhomogeneities. If the acquisition of the
active thermography is subtracted from the simulation, ideally only inhomo-
geneities and detector noise are present in the acquisition sequence.
In order to eliminate the existing detector noise, each pixel is approximated
using the TSR method [85], independent of the simulation of the heat equa-
tion. Thus, we have an ideal cooling process of a sample on the one hand
and on the other hand a noise-free approximation of the real cooling process
of each pixel.
By subtracting the heat simulation and the TSR approximation, the value
in the background is now ideally 0. If there are inhomogeneities in the spec-
imen, deviations occur due to the subtraction. Depending on whether inho-
mogeneities are introduced near the surface or in the depth, deviations will
arise sooner or later.
Extracting the time of maximum deviation, the depth of inhomogeneity can
be determined by equation (105).

L =
√
tmaxCtrst · α (105)
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5 Experiment Setup

5.1 Used IR-camera

All the results shown in this work were created using the infrared camera IR
8300 hp from Infratec. Table 4 gives an overview about the most important
technical specifications of the IR-camera.

Table 4: Specification of IR 8300 hp
Infratec IR 8300 hp

Detector Format (IR Pixels) 640 x 512
Detector Cooled Indium-antimonide (InSb) - Focal Plane Array

Spectral range MWIR, (2.0 - 5.7)µm
Detector cooling Integrated, robust Stirling-Rotation cooler

Pixel size 15µm
Temperature measuring range NETD @30C <25mK, typical 20mK

Integration time (1-20.000)us in 1µs steps
Dynamic range 14 bit

Frame rate Up to 300Hz

5.2 Used Flash lamp/Power supply

As excitation source a flash lamp from Hensel with the correlated power
supply TRIA 6000S was used. Table 5 and table 6 again show the most
important technical specifications.

Table 5: Specification of flash lamp
Hensel flash lamp

Maximal Power Up to 6000J
Modeling Light Up to 650W

Cooling Fan Yes
Flash Tube HD9450143
Glass cover clear
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Table 6: Specification power supply
Hensel power supply - TRIA 6000S

Energy 6000J
Shortest lighting time 1/800s
Longest lighting time 1/440s

Head socket 3x Long Plug

5.3 Software

All of the programs and algorithms were written with the programming lan-
guage Python 3.5. Furthermore, the Python distribution Anaconda 5.0.1 was
used to facilitate the analysis of large data sets and the writing of algorithms.
The thermograms were recorded with the help of the software ATIIS of Ot-
tronic GmbH.

5.4 Test specimen

To test the stability and correctness of the developed algorithms, different
test plates with partially artificially introduced inhomogeneities were con-
structed.

5.4.1 Test specimen for testing the stability of the thermal diffu-
sivity α

To test the stability and correctness of the algorithm for the thermal diffu-
sivity, PE-HD-plates with thickness 2mm, 3mm, 5mm, 8mm and 10mm were
constructed.

5.4.2 Test specimen for depth estimation

PP-GF - Test plate

The outer dimensions of the test plate were 270x190mm2 and its thickness
was 2 and 4 mm. Polypropylene (PP) was used as matrix material and
glass fibre (GF) was used as fibre material. When measuring the test plate
thickness, it was found that this varies by up to ±0.2mm. The positions of
the artificially introduced inhomogeneities are shown in figure 33. Different
materials or drills of the inhomogeneities are supposed to simulate different
defect types, which are shown in table 7.
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Figure 33: Positions of artificially introduced inhomogeneities

Table 7: Positions and kinds of inhomogeneities

#
Length
in mm

Width
in mm

Thickness
in mm

Depth
in mm

Material Defect-Type

1 4 x 0,5 1 Drill Cluster of pores
2 4 x1 1 Drill Cluster of pores
3 4 x 2 1 Drill Cluster of pores
4 3 1 Drill Defect
5 5 1 Drill Defect
6 8 1 Drill Defect
7 10 1 Drill Defect
8 4 x 0,5 0,5 Drill Cluster of pores
9 4 x 1 0,5 Drill Cluster of pores
10 4 x 2 0,5 Drill Cluster of pores
11 3 0,5 Drill Defect
12 5 0,5 Drill Defect
13 8 0,5 Drill Defect
14 10 0,5 Drill Defect
15 40 x 10 x 0,3 1 GF-Tape Extraneous material

PA6-GF - Test plate

The outer dimensions of the test plate again were 270x190mm2 and its thick-
ness 2 and 4 mm. Polyamide 6 (PA6) was used as matrix material and glass
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fibre (GF) was used as fibre material. The positions of the artificially intro-
duced inhomogeneities are the same as at PPGF-plate (see figure 33) and
again the different types and kinds of the inhomogeneities are shown in table
7.

PE-HD - perforated plate

This PEHD (Polyethylene Hard Density) plate was used to test the stability
of the algorithms developed for depth determination. The dimension and
the arrangement of the drills can be seen in figure 34. The gradations of the
depth of the drills can be seen in figure 35.

Figure 34: Dimension and arrangement of drills - PEHD
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Figure 35: Gradiation of depths - PEHD

63



6 Experiments and Results

6.1 Experiments and results of the implemented Con-
trast Methods

Algorithms for extracting inhomogeneities and defects may be sensitive to
inhomogeneous excitation and the contrast between error and defect-free
background vanishes. In order to be able to use these algorithms in their full
strength, contrast methods were implemented which attempt to compensate
the inhomogeneous excitation.
All algorithms were applied to the test objects described in chapter 5 and
tested for their usability. Since algorithms that are sensitive to inhomoge-
neous excitation, contain a similar spatial pattern in the error-free back-
ground, these were checked for spatial homogeneity.
In this section, the results are shown for a PA6-GF specimen. Furthermore
a horizontal plot of the pixel y = 348 is shown to get a better feeling for the
temporal stability of the method. The thermogram sequence was recorded
with an acquisition frequency of 100Hz and a time of 15 seconds. In the
figures of all contrast methods, two different time stamps were chosen (5 sec-
onds after excitation and 10 seconds after excitation) to show the temporal
stability.
In figure 36 and figure 37, the non - manipulated thermograms at time stamp
5 second and 10 second after excitation can be seen. Furthermore, all of the
images are displayed with pseudo color and the colormap jet.

Absolute Contrast

The first result of the Absolute Contrast method can be seen in figure 38 and
figure 39. The calculation rule can be seen in 4.6.1.

Running Contrast

The scaled version of the previous contrast method is Running Contrast
(4.6.2). The result of this version is shown in figure 40 and figure 41.

Normalized Contrast A

Normalized Contrast A (4.6.3) is the first version of two different normalized
methods and the result can be ssen in figure 42 and figure 43.

64



Figure 36: Original thermogram at 5
seconds after excitation

Figure 37: Original thermogram at 10
seconds after excitation

Figure 38: Thermogram manipulated
with Absolute Contrast at 5 seconds
after excitation

Figure 39: Thermogram manipulated
with Absolute Contrast at 10 seconds
after excitation

Normalized Contrast B

Normalized Contrast B (4.6.3) is the second version of normalized contrast
methods and the results are shown in figure 44 and figure 45.
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Figure 40: Thermogram manipulated
with Running Contrast at 5 seconds
after excitation

Figure 41: Thermogram manipulated
with Running Contrast at 10 seconds
after excitation

Figure 42: Thermogram manipulated
with Normalized Contrast A at 5 sec-
onds after excitation

Figure 43: Thermogram manipulated
with Normalized Contrast A at 10
seconds after excitation

Standard Contrast

The last contrast method which depends on the selection of a background is
Standard Contrast. The result can be seen in figure 46 and figure 47.
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Figure 44: Thermogram manipulated
with Normalized Contrast B at 5 sec-
onds after excitation

Figure 45: Thermogram manipulated
with Normalized Contrast B at 10
seconds after excitation

Figure 46: Thermogram manipulated
with Standard Contrast at 5 seconds
after excitation

Figure 47: Thermogram manipulated
with Standard Contrast at 10 seconds
after excitation

Differentiated Absolute Contrast (DAC)

Differentiated Absolute Contrast is the last implemented contrast method in
this thesis. It is the only method that does not require any knowledge of
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flawless background of the specimen. The results are shown in figure 48 and
figure 49.

Figure 48: Thermogram manipulated
with DAC at 5 seconds after excita-
tion

Figure 49: Thermogram manipulated
with DAC at 10 seconds after excita-
tion

6.2 Determination of the thermal diffusivity α

If one reads chapter 4 one recognizes that the material parameter,thermal
diffusivity α, plays an important role in the heat theory. It is the key pa-
rameter to correctly simulate the heat equation or to determine the depth
of inhomogeneities. The algorithm to determine the thermal diffusivity α is
described in section 4.7.
To specify the stability and correctness of the algorithm, it was tested at
the PE-HD plates which are described in section 3.4.1. The test object was
intentionally illuminated as inhomogeneously as possible. Various areas are
intended to provide information about the independence of the excitement
intensity (see figure 50).
In table 8 to 12 the result of the determined thermal diffusivities for different
areas and different thickness of PE-HD plates are outlined. In addition, the
tables show the mean and standard deviation of the nine areas of each PE-
HD specimen. Table 13 shows the mean value and the standard deviation of
the total amount of the PE-HD plates.
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Figure 50: Inhomogeneous illumination and areas to test stability and cor-
rectness of α

Table 8: Thermal diffusivity α of specimen PE-HD -2mm
PE-HD - 2mm

Area Thermal diffusivity α in mm2

s

1 0.27257
2 0.27527
3 0.27913
4 0.27215
5 0.27455
6 0.27916
7 0.27042
8 0.27342
9 0.27748

Mean: 0.27491
Standard deviation: 0.00294
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Table 9: Thermal diffusivity α of specimen PE-HD -3mm
PE-HD - 3mm

Area Thermal diffusivity α in mm2

s

1 0.25577
2 0.25738
3 0.25952
4 0.25872
5 0.25903
6 0.26152
7 0.26116
8 0.26148
9 0.26364

Mean: 0.25980
Standard deviation: 0.00226

Table 10: Thermal diffusivity α of specimen PE-HD -5mm
PE-HD - 5mm

Area Thermal diffusivity α in mm2

s

1 0.28548
2 0.28761
3 0.28961
4 0.28429
5 0.28502
6 0.28766
7 0.28747
8 0.28716
9 0.28896

Mean: 0.28703
Standard deviation: 0.0016
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Table 11: Thermal diffusivity α of specimen PE-HD -8mm
PE-HD - 8mm

Area Thermal diffusivity α in mm2

s

1 0.25462
2 0.25476
3 0.25316
4 0.25386
5 0.25609
6 0.25690
7 0.25882
8 0.25886
9 0.25954

Mean: 0.25629
Standard deviation: 0.00223

Table 12: Thermal diffusivity α of specimen PE-HD -10mm
PE-HD - 10mm

Area Thermal diffusivity α in mm2

s

1 0.27741
2 0.27797
3 0.27925
4 0.27723
5 0.27664
6 0.27892
7 0.27851
8 0.27952
9 0.28061

Mean: 0.27845
Standard deviation: 0.00118

Table 13: Overal mean and standard deviation of PE-HD
PE-HD - Overall

Mean: 0.271300663
Standard deviation: 0.012932078
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As can be seen in Tables 8 to 12, the standard deviations of the thermal
diffusivity of all samples have a very small value. Thus, it can be concluded
that all nine tested surfaces are close to the mean, despite different excitation
energy and independent of the energy that acts on the test object.
The mean thermal diffusivity of all thicknesses is 0.271mm

2

s
and the standard

deviation is 0.0129 as illustrated in Table 13. It is striking that the standard
deviation of the mean values of different thicknesses is greater than the stan-
dard deviation of the heat diffusivities of different excitation energies.
As shown in Chapter 4.3, the thermal diffusivity calculation consists of two
unknown, the time t1/2 and the thickness L , where the time t1/2 is obtained
from the experiment. So only the thickness L remains, which is measured
manually and is included quadratically in the calculation. Thus, measure-
ment inaccuracies of manual thickness measurement are included quadrati-
cally in the calculation and cause a larger standard deviation.

In order to obtain an even more accurate statement about the stability,
additional plates PA6-GF - 2mm and PA6-GF - 4mm with different flash
distances were measured. Again, different areas were chosen to investigate a
possible change in diffusivity depending on the flash energy. A thermogram
of the areas can be seen in figure 51. Table 14 and table 15 show the result
for the flash distance 15cm and 25cm. Furthermore, table 16 shows the mean
value and standard deviation for these two distances. The same results for
PA6-GF - 4mm can be seen in table 17, table 18 and table 19.

Figure 51: Inhomogeneous illumination and areas of PA6-GF specimen α
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Table 14: Thermal diffusivity α of specimen PA6-GF 2mm -15cm flash dis-
tance

PA6GF 2mm - 15cm

Area Thermal diffusivity α in mm2

s

1 0.28298
2 0.26089
3 0.24195
4 0.24067
5 0.24881
6 0.26698
7 0.31502
8 0.29416
9 0.27595
10 0.27355
11 0.28164
12 0.29675

Mean: 0.27328
Standard deviation: 0.02186

Table 15: Thermal diffusivity α of specimen PA6-GF 2mm -25cm flash dis-
tance

PA6-GF 2mm - 25cm

Area Thermal diffusivity α in mm2

s

1 0.30680
2 0.28072
3 0.25767
4 0.25766
5 0.26353
6 0.28124
7 0.33292
8 0.30880
9 0.28827
10 0.28337
11 0.28940
12 0.30189

Mean: 0.28769
Standard deviation: 0.02152
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Table 16: Overal mean and standard deviation of PA6-GF - 2mm
PA6-GF 2mm - Overall

Mean: 0.28048
Standard deviation: 0.01018

Table 17: Thermal diffusivity α of specimen PA6-GF 4mm -15cm flash dis-
tance

PA6-GF 4mm - 15cm

Area Thermal diffusivity α in mm2

s

1 0.31210
2 0.28345
3 0.26799
4 0.26123
5 0.26481
6 0.26290
7 0.29654
8 0.27189
9 0.26401
10 0.26706
11 0.26961
12 0.27230

Mean: 0.27449
Standard deviation: 0.01479
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Table 18: Thermal diffusivity α of specimen PA6-GF 4mm -25cm flash dis-
tance

PA6-GF 4mm - 25cm

Area Thermal diffusivity α in mm2

s

1 0.31609
2 0.29420
3 0.27509
4 0.26664
5 0.26354
6 0.27008
7 0.29818
8 0.27131
9 0.26472
10 0.26001
11 0.26131
12 0.26906

Mean: 0.27585
Standard deviation: 0.01677

Table 19: Overal mean and standard deviation of PA6-GF - 4mm
PA6-GF 4mm - Overall

Mean: 0,27517
Standard deviation: 0,00096

75



In this experiment, the effect of different flash to object distances on the
thermal diffusivity of the PA6-GF plates 2mm and 4mm can be observed. As
can be seen in Table 16 for 2mm and Table 19 for 4mm, different distances on
each of the twelve areas tested do not greatly affect the thermal diffusivity.
It is noticeable, however, that individual areas deviate more than in the
experiments with the PE-HD objects.
This is because measuring the PA6-GF plate has revealed a greater variance
in thickness across the entire plate. Due to the fact that the thickness is
taken quadratically in the calculation, a constant assumed thickness causes
errors which cause a quadratic error of thermal diffusivity.
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6.3 Implementation of Heat equation with finite dif-
ferences

In chapter 4.8, various methods were presented which is show how to imple-
ment the heat equation with finite differences. In this work, the simulation
is used to increase the contrast between background and inhomogeneities
and as part of the depth determination of inhomogeneities. Figure 52 shows
the thermogram 5 seconds after excitation and figure 53 shows the temporal
profile of the flawless background and the three inhomogeneities. First, the
1D-implicit heat equation of each pixel was simulated and subtracted with
the original signal of cooling process. Each simulation of the heat equation
was based on the previously determined α- value

Figure 52: Thermogram 5 sec-
onds after excitation with sub-
tracted heat simulation

Figure 53: Temporal profile of flawless
background, drill in 1mm depth, drill in
0.5mm depth and GF-Tape

6.3.1 1D-Heat equation with explicit method

To simulate this method, we assume a long thin rod whose length is scaled
to the range [0, 1]. The thermal diffusivity α is given by the value α = 1e−5.
The initial condition can be seen in figure 54 and the boundary conditions
are Dirichlet-boundary conditions with b0 = s and b1 = s where s is the
scaling factor, given as α∆t

∆x2
. In figure 57, the temporal heat flow of the rod

can be seen. After about 12000 seconds, the stability condition is reached.

6.3.2 1D-Heat equation with implicit method

In this method, again we assume a thin rod whose length is again scaled to the
range [0, 1]. Furthermore, we assume the same thermal diffusivity α = 1e−5
and the same initial condition, as can be seen in figure 56. Compared to
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Figure 54: 1D Explicit method -
Initial condition

Figure 55: 1D Explicit method -
Stability condition

the simulation of the explicit method, the difference is that we assume this
time Neumann-boundary conditions. With this boundary conditions, the
tridiagonal matrix is modified by A[0, 1] = −2s and A[n, n− 1] = −2s. The
term n is thereby the number of grid points. In this simulation, the boundary
condition vector b is assumed to be b0 = 3 · 2 · s∆x and b1 = 3 · 2 · s∆x. The
scaling factor s is given as α∆t

∆x2
. The heat distribution after 12 000 seconds

of the heat flow can be seen in figure 57.

Figure 56: 1D Implicit method -
Initial condition

Figure 57: 1D Implicit method -
Stability condition

6.3.3 2D-Heat equation with explicit method

In the following test, instead of a rod, a thin plate is taken. The lengths x
and y are scaled between the range [0, 1]. To show the two-dimensional heat
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equation with the explicit method we assume a constant initial condition of
0C of the thin plate, as can be seen in figure 58 . As described in section
4.8, the explicit methods are subject to a condition of stability. For the one-

dimensional heat equation, is it ∆t ≤ (∆x)2

2·α and for the two-dimensional case

it is ∆t ≤ h2

4·α . If the right term is smaller than the left one, the stability
condition is violated. Now we simulate the two-dimensional explicit heat
equation where two points of the plate are heated and one point of the plate
is cooled and the stability condition is violated. The result can be seen in
figure 59.

Figure 58: 2D Explicit method -
Initial condition

Figure 59: 2D Explicit method -
Stability condition with violated
stability condition

6.3.4 2D-Heat equation with implicit method

The advantage of this method is that the implicit methods are not subject to
any stability condition. The same experiment is simulated similar to chapter
5.3.3. A thin plate, with initial temperature 0C (see figure 60), is heated at
two areas and cooled at one area. The boundaries of the plate are kept at a
constant value of 0C. As can be seen from figure 61, there is no violation of
a stability condition.
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Figure 60: 2D Implicit method -
Initial condition

Figure 61: 2D Implicit method -
Stability condition
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6.4 Depth determination

6.4.1 Preliminary observation

In order to derive a statement about the quality of the different depth deter-
mination methods, holes were drilled in different depths in an 8mm PE-HD
plate. All depths in all specimen were measured by hand and used as ref-
erence point. In figures 62 to figure 73, the temporal profile of a flawless
background and the temporal profiles of the inhomogeneities can be seen.
As can be seen in the temporal profiles, the difference between error-free
background and inhomogeneity decreases with increasing depth until no dif-
ference is recognizable. For this reason, the results of the depth calculation
of different methods only deal with different depths as long as differences are
recognizable.

Figure 62: Temporal pro-
file of flawless background
and inhomogeneity in
0.02mm depth

Figure 63: Temporal pro-
file of flawless background
and inhomogeneity in
0.24mm depth
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Figure 64: Temporal pro-
file of flawless background
and inhomogeneity in
0.5mm depth

Figure 65: Temporal pro-
file of flawless background
and inhomogeneity in
0.72mm depth

Figure 66: Temporal pro-
file of flawless background
and inhomogeneity in
0.92mm depth

Figure 67: Temporal pro-
file of flawless background
and inhomogeneity in
1.11mm depth

Figure 68: Temporal pro-
file of flawless background
and inhomogeneity in
1.27mm depth

Figure 69: Temporal pro-
file of flawless background
and inhomogeneity in
1.5mm depth

82



Figure 70: Temporal pro-
file of flawless background
and inhomogeneity in
1.75mm depth

Figure 71: Temporal pro-
file of flawless background
and inhomogeneity in
2.02mm depth

Figure 72: Temporal pro-
file of flawless background
and inhomogeneity in
2.16mm depth

Figure 73: Temporal pro-
file of flawless background
and inhomogeneity in
2.25mm depth
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6.4.2 LSD - depth determination

To check this algorithm for correctness, equation 103 was used to simulate
inhomogeneities. Inhomogeneities in the depth of 1mm, 2mm and 3mm were
simulated as well as signals without noise and signals with a signal to noise
ratio (SNR) of 40dB, 30dB and 20dB. In order to test the robustness of this
method by the degree of the polynomial of the TSR, each simulated signal
was additionally fitted with the polynomial 5 to 20.
In figure 74, the noise free simulated signal with an inhomogeneity of 2mm
and the fitted signal with TSR and polynom 10 can be seen. Furthermore,
figure 75 shows the determined depth of the LSD method with numerical and
analytical derivation.
Again the depth determination with the LSD method can be seen in figure
76 and figure 77 with a SNR of 20dB. Problems with this method result from
a combination of a high proportion of noise (≤ 20dB) and a high degree of
the polynomial of the TSR. This problem can be seen in figure 78 and figure
79, where an inhomogeneity of 3mm was simulated and the simulated signal
is manipulated with noise (SNR = 20dB). In figure 79 the wrong determined
signal can be seen.
Due to the large number of pictures, the remaining results can be found on
the web.

Figure 74: Noise free simulated
signal and TSR with an inhomo-
geneity of 2mm

Figure 75: Determined depth with
LSD of inhomogeneity with nu-
merical and analytical derivation
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Figure 76: Simulated signal with
a SNR of 20dB and TSR with an
inhomogeneity of 2mm

Figure 77: Determined depth with
LSD of inhomogeneity with nu-
merical and analytical derivation

Figure 78: Simulated signal with
a SNR of 20dB and TSR with an
inhomogeneity of 3mm

Figure 79: Determined depth with
LSD of inhomogeneity with nu-
merical and analytical derivation

After the check of the algorithm with simulations, the algorithm was
tested at the test plates which are described in section 3.4. In figure 80,
a schematic representation of the depth determination can be seen. The
determined depths of the PP-GF - 2mm specimen with LSD is shown in
table 20.
In figure 81, the temporal curve of a flawless background pixel and a drill in
2mm depth of a PP-GF plate with 4mm thickness is depicted. Because of
the small differences in the cooling curves, no exact depth can be determined
at this test object.
The result of the depth determination of the PA6-GF - 2mm plate is shown
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in table 21. Due to the too small differences between flawless background
and inhomogeneity, this test object could not get a result for the depth of
the matrix accumulation. The same effect can be seen in figure 81.
Furthermore the result of the depth determination of the PA6-GF - 4mm
plate is shown in table 22. Again no depth of the matrix accumulation can
be determined.
The last specimen that was tested with this method was the PE-HD plate
with drills. The results of depth determination are shown in table 23.

Figure 80: Schematic representation of depth estimation with LSD - PP-GF
2mm

Table 20: Depth calculation with LSD - PP-GF 2mm
Measured depth

in mm
Calculated Mean
in mm

Standard Deviation
in mm

Drill 1 1.11 1.03 0.03
Drill 2 1.55 1.40 0.05
Matrix

Accumulation
1 0.98 0.03
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Figure 81: Cooling curves of flawless background and drill in 2mm depth -
PP-GF 4mm

Table 21: Depth calculation with LSD - PA6-GF 2mm
Measured depth

in mm
Calculated Mean
in mm

Standard Deviation
in mm

Drill 1 1.35 1.20 0.12
Drill 2 1.88 1.81 0.27

Table 22: Depth calculation with LSD - PA6-GF 4mm
Measured depth

in mm
Calculated Mean
in mm

Standard Deviation
in mm

Drill 1 1.94 2.07 0.11
Drill 2 2.83 3.13 0.15
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Table 23: Depth determination of PE-HD plate with LSD
Measured depth

in mm
Determined Mean

in mm
Standard Deviation

in mm
0.02 0.11 0.07
0.24 0.25 0.09
0.5 0.55 0.11
0.72 0.82 0.09
0.92 0.94 0.12
1.11 1.2 0.12
1.27 1.32 0.21
1.5 1.47 0.26
1.75 1.71 0.28
2.02 1.82 0.33
2.16 1.96 0.37
2.25 1.98 0.72
2.54 2.02 0.96
2.73 1.98 0.89
2.90 1.95 1.05
3.21 2.17 0.98

88



6.4.3 APST - depth determination

The second method for depth determination was again tested first with sim-
ulated signals and with the same parameters as described in section 5.4.1.
In figure 82, the noise free simulated signal with an inhomogeneity of 2mm
and the fitted signal with polynomial fit and polynom 10 can be seen. Fur-
thermore, figure 83 shows the determined depth of the APST method with
numerical and analytical derivation.
Again the depth determination with the LSD method can be seen in figure
84 and figure 85 with a SNR of 20dB.
Applying this method, problems arise because of a combination of a high
proportion of noise (≤ 20dB) and a high degree of the polynomial of the
polynomial fit. This problem can be seen in figure 86 and figure 87, where
an inhomogeneity of 3mm is simulated and the simulated signal is manipu-
lated with noise (SNR = 20dB). In figure 87, the wrong determined signal
can be seen.

Figure 82: Noise free simulated
signal and polynomial fit with an
inhomogeneity of 2mm

Figure 83: Determined depth with
APST of inhomogeneity with nu-
merical and analytical derivation
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Figure 84: Simulated signal with
a SNR of 20dB and polynomial fit
with an inhomogeneity of 2mm

Figure 85: Determined depth with
APST of inhomogeneity with nu-
merical and analytical derivation

Figure 86: Simulated signal with a
SNR of 20dB and a polynomial de-
gree of 19 with an inhomogeneity
of 3mm

Figure 87: Determined depth with
APST of inhomogeneity with nu-
merical and analytical derivation
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A schematic representation of the depth determination by means of APST
and the test specimen as described in section 3.4 is shown in figure 88. The
results of the depth determination of the PP-GF specimen with a thickness
of 2mm are shown in table 24.
As described in section 5.4.1 and as depicted in figure 81, it is not possible
to determine the depths of the inhomogeneities of the PP-GF specimen with
4mm thickness.
The next specimen is the PA6-GF plate with a thickness of 2mm and 4mm.
The results are shown in table 25 and table 26.
Again, this algorithm was tested with the created PE-HD specimen and the
results of the depth determination, as far as a depth of 2.02mm, are shown
in table 27.

Figure 88: Schematic representation of depth estimation with APST - PP-GF
2mm
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Table 24: Depth calculation with APST - PP-GF 2mm
Measured depth

in mm
Calculated Mean
in mm

Standard Deviation
in mm

Drill 1 1.11 1.08 0.14
Drill 2 1.55 1.22 0.13
Matrix

Accumulation
1 1.04 0.03

Table 25: Depth calculation with APST - PA6-GF 2mm
Measured depth

in mm
Calculated Mean
in mm

Standard Deviation
in mm

Drill 1 1.35 1.23 0.15
Drill 2 1.88 1.75 0.25

Table 26: Depth calculation with APST - PA6-GF 4mm
Measured depth

in mm
Calculated Mean
in mm

Standard Deviation
in mm

Drill 1 1.94 2.12 1.03
Drill 2 2.83 4.27 0.73

Table 27: Depth determination of PE-HD plate with APST
Measured depth

in mm
Determined Mean

in mm
Standard Deviation

in mm
0.02 0.2 0.02
0.24 0.42 0.03
0.5 0.58 0.01
0.72 0.7 0.02
0.92 0.88 0.11
1.11 1.15 0.02
1.27 1.22 0.02
1.5 1.26 0.02
1.75 0.93 0.31
2.02 0.67 1.09
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6.4.4 Maximum Contrast

The last method used in this thesis for depth calculation is the maximum
contrast method. This method was not tested with any simulation but with
the test specimen as described in section 3.4. Again, a schematic represen-
tation of the determined depth can be seen in figure 89.
The depth determination for the specimen PP-GF - 2mm can be seen in
table 28. In case of the PP-GF - 4mm plate, again, the same effect as in the
two previously described methods occurs, which is that the inhomogeneity
signal is almost equal to the flawless background and thus no depth can be
determined.
The result for the specimen PA6-GF - 2mm and PA6-GF - 4mm is shown int
table 29 and table 30.
Finally also the specimen PE-HD with artificial induced drills were tested
and the results can be seen in table 31.

Figure 89: Schematic representation of depth estimation with Maximum
Contrast - PP-GF 2mm
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Table 28: Depth calculation with Maximum contrast - PP-GF 2mm
Measured depth

in mm
Calculated Mean
in mm

Standard Deviation
in mm

Drill 1 1.11 1.11 0.06
Drill 2 1.55 1.43 0.14
Matrix

Accumulation
1 1.06 0.03

Table 29: Depth calculation with Maximum Contrast - PA6-GF 2mm
Measured depth

in mm
Calculated Mean
in mm

Standard Deviation
in mm

Drill 1 1.35 1.28 0.07
Drill 2 1.88 1.46 0.32

Table 30: Depth calculation with Maximum Contrast - PA6-GF 4mm
Measured depth

in mm
Calculated Mean
in mm

Standard Deviation
in mm

Drill 1 1.94 1.78 0.13
Drill 2 2.83 3.57 1.02

Table 31: Depth determination of PE-HD plate with Maximum Contrast
Measured depth

in mm
Determined Mean

in mm
Standard Deviation

in mm
0.02 0.32 0.12
0.24 0.36 0.08
0.5 0.51 0.05
0.72 0.68 0.03
0.92 0.92 0.01
1.11 1.03 0.02
1.27 1.14 0.01
1.5 1.41 0.03
1.75 1.80 0.09
2.02 1.93 0.22
2.16 2.21 0.30
2.25 2.47 0.52
2.54 2.97 0.48
2.73 3.15 0.79
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7 Conclusion and Discussion

7.1 Discussion of the results

7.1.1 Contrast methods

As described in chapter 4.6, basically two types of contrast methods are pre-
sented and implemented in this thesis to improve the contrast between flaw-
less background and inhomogeneities. On the one hand, there are contrast
methods which require the selection of a background without inhomogeneity
(Absolute Contrast, Running Contrast, Normalized Contrast A, Normalized
Contrast B and Standard Contrast) and on the other hand, in this thesis a
contrast method is implemented which requires a temporal reference point
until the first defect occurs (DAC) which is derived from the one-dimensional
heat equation.
Absolute Contrast and Running Contrast are basically the same methods
except that Running Contrast is a scaled version of the Absolute Contrast
method. These two methods only work if an ideal homogeneous illumination
of the specimen is achieved. If the illumination of the specimen is inho-
mogeneous and the flawless background is chosen such that the intensity is
greater than the intensity of the inhomogeneities, inhomogeneities will be
smaller than 0 after subtraction of the background. The condition of these
two methods that all pixels smaller than 0 are set to 0 , leads to deleting the
normally existing inhomogeneities and can therefore no longer be detected.
With the Normalized Contrast A method, each pixel is first scaled to the
final temperature value, and the selected error-free background is also scaled
to the final temperature value. The advantage of this method compared
to the absolute contrast and running contrast method is that even negative
values are allowed and thus, information is preserved. The function of this
method is also dependent on the recording time in addition to the selection
of flawless background. If the recording time is infinite, each pixel has the
same final temperature and each pixel is scaled to the same value. Thus, this
method is then a kind of absolute contrast with scaled values and without
the condition.
With the Normalized Contrast B method, each pixel is scaled to the temper-
ature value of the excitation in the pixel. With this procedure, this method
is independent from the recording time but still dependent on the choice of
flawless background.
The last method that depends on the choice of the flawless background is
the method Standard Contrast. In this method, each thermogram and the
selected background is subtracted with the temperature of the specimen and
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the selected background before the excitation. By doing so, an improvement
can be achieved if the test object has already had an inhomogeneous illumi-
nation before testing with active thermography. If the test object has had the
same temperature everywhere before the test, the result is a scaled version
of the original thermograms.
The method Differentiated Absolute Contrast (DAC) is the only method
of this thesis that is not dependent on the choice of a flawless background
and is derived from the one-dimensional heat equation. In order to simulate
the heat equation, the material constant heat diffusivity α is needed. The
method DAC assumes that the heat diffusivity is unknown and compensates
the unknown term by the time up to which it is assumed that no inhomo-
geneity is visible. If the depth of inhomogeneities is known, DAC is a stable
method to increase the contrast between error-free area and inhomogeneities.
If the depths of inhomogeneities are unknown and the time is chosen incor-
rectly, the thermal diffusivity is estimated wrongly and the method becomes
unstable.

7.1.2 Determination of the thermal diffusivity α

In order to correctly simulate the heat equation, a major requirement of this
thesis was the correct calculation of thermal diffusivity α. To test the sta-
bility and correctness of the calculation, different test methods were defined.
First, different thicknesses of the PE-HD plate were tested. In order to make
a statement about the behavior of the heat diffusivity in dependence of the
inhomogeneous illumination, different areas at the specimen were defined and
tested. The result of all plates of the determination can be seen in table 12.
Due to the small standard deviation of all measurements, the result was clas-
sified as good, reproducible and stable against inhomogeneous illumination.
Furthermore, the specimen PA6-GF was tested with different lightning dis-
tances and defined areas. Again, there were small standard deviations be-
tween the defined areas and the measurements. Thus, the result was classified
as good, reproducible and stable against inhomogeneous illumination. In or-
der to obtain an independent result of thermal diffusivity, this test object
was further analyzed by laser flash analysis. The result of the laser flash
analysis showed a thermal diffusivity of 0.277mm

2

s
.

In general, the determination of thermal diffusivity using active thermogra-
phy is a stable method and is already being used in industry. The requirement
for accurate determination of thermal diffusivity is an exact thickness of the
object to be examined. Due to the quadratic influence of the thickness in
the calculation, larger errors in the calculated thermal diffusivity result even
from small measuring errors.
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7.1.3 Implementation of the heat equation

The heat equation in this thesis is used as an aid to increase the contrast
between flawless background and inhomogeneities when inhomogeneous il-
lumination is present at the specimen. On the other hand, it is also used
as an aid for the depth determination of inhomogeneities. Due to stability
problems of the explicit methods, these methods were mainly avoided in the
generation of the results. Jean Baptiste Joseph Fourier described the effect
that heat flows from warmer regions to colder regions. If the specimen is now
excited with an excitation source, the specimen has a temperature difference
at the surface at the time t = 0 in relation to the rest of the object. The heat
then spreads to the depth. Since the two-dimensional heat equation assumes
a thin plate where the heat propagates in space in direction x and y, this
results in a contradiction to the Fourier law. Tests have been made with the
two-dimensional heat equation but no useful results were achieved. Thus,
the law of Fourier was affirmed and the two-dimensional heat equation was
excluded for further experiments.
To use the heat equation for active thermography, the selection focused on
the one-dimensional implicit and one-dimensional cranck nicolson method.
All results of the heat equation were simulated with Neumann boundary

conditions with U(t, 0) = 0 =
δUk0
δx

and U(t, 1) = 0 =
δUkn+1

δx
. So for U(t, 0)

and U(t, 1), there is an ideal insulator. These boundary conditions are only
conditionally valid. Due to the ideal insulator, the heat only spreads into
the specimen and is thus still present in the specimen after the time t = ∞
and thus cannot return to the basic temperature state. However, when ex-
clusively considering the period of time when interactions between heat flow
and inhomogeneities arise, this assumption is a good choice.
The use of finite differences for the approximation of the analytic solution
of the heat equation results in a discretization error e, which depends on
the step size of the time ∆t and the step size of the area-direction ∆x as
described in chapter 4.4. If small time steps and small area-direction steps
are used, the choice of using the Cranck Nicolson through the square in (∆t)2

is an advantage and achieves a less discretization error e. However, if time
steps greater 1 are selected, the discretization error increases by the factor
of the square ∆t. Thus, approximations with finite differences achieve better
accuracies by means of the implicit method.
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7.1.4 Depth determination

In the simulation of the LSD and APST method, the stability of the methods
was first examined in dependence on the noise and the degree of the poly-
nomial of the fitting function. The two methods are stable at No Noise and
a SNR of 40dB and 30dB independent from the polynomial of the fitting
function. At a SNR of 20dB, there is a high probability that first problems
occur. With this SNR and from a polynomial of about 15, the fitted signal
adapts to the noise and thus, no exact depth determination can be calcu-
lated.
In order to determine the correct depth of inhomogeneities, it is necessary
that the signals of inhomogeneities have a significant difference compared to
the flawless area. This significant difference depends on the depth of inho-
mogeneities, the diameter of inhomogeneities, the thermal diffusivity of the
specimen and the amount of energy which is induced the specimen. This
large number of dependent parameters often makes accurate depth deter-
mination difficult. In order to derive a statement about the quality of the
different depth determination methods, holes were drilled in different depths
in an 8mm PE-HD plate. All depths in all specimen were measured by hand
and used as reference point.
With the method LSD, the depth of the PE-HD plate is credibly determined
up to a depth of about 2mm. However, the standard deviation increases
sharply from a depth of 1.5mm.
The worst results of depth determination of the PE-HD plate are achieved
with the method APST. Up to a depth of 1.5mm, the depth of the drills is
exactly determined and also the standard deviation is very small.
When determining the depth with the maximum contrast method, the depth
to 2.16 mm is determined as accurately as possible. The standard deviation
increases from a drill depth of 2.02mm and is previously consistently small.
The prerequisite for the functionality of this method, however, is an exact
calculation of the thermal diffusivity α.
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7.2 Conclusion

Active thermography is a wide-spread but powerful application technique to
inspect components non-destructively and quickly. In contrast to the x-ray
examination, there are no additional costs and it can therefore be used at any
time. The disadvantage is that additional components, such as the excita-
tion source, can strongly influence the results. As shown in this thesis, there
are methods to compensate for inhomogeneous illumination. The contrast
method DAC is a method that compensates for this inhomogeneous illumi-
nation with the help of the heat equation. In all of the contrast methods,
however, knowledge about either the placement of inhomogeneities or the
depth of inhomogeneities must be present. If this knowledge is not available,
problems will arise when applying these methods.
In order to extract features of thermographic sequences and to display them
in a single image, the most frequent techniques, such as PPT, PCT, Statis-
tical Parameters and Wavelet-Transform, are briefly presented in this thesis.
In order to remove the temporal noise of thermographic images, common
fitting methods, such as polynomial fit or TSR, are used. These techniques
immediately raise the question of the degree of the polynomial. In this thesis,
the polynomial is chosen based on the variance. The choice of the correct
polynomial has not been further investigated in this thesis and may improve
the quality of the algorithms.
In the simulation of the heat equation, there is the disadvantage that each
pixel has to be simulated individually by the one-dimensional heat equation.
Parallel calculation on the CPU will improve the speed of the calculation, but
it is too slow to be used in the industry. Remedy, however, could be achieved
in form of a calculation on the graphic card GPU, but this is associated with
costs for the customer. Another remedy would be a three-dimensional simu-
lation of the heat equation but this would go beyond the scope of this thesis.
When determining the depth of the PE-HD plate, it can be observed that
a maximum depth of 2mm can be determined correctly when applying the
three algorithms. Drill depth, drill diameter, amount of energy and the ef-
fect of the lateral thermal diffusivity are factors that significantly affect the
quality of the depth calculation.

Through this thesis, a basic theoretical understanding of the most di-
verse methods and areas of application of NDT is given. Furthermore, the
theoretical background of light and its interaction with matter was treated.
This theoretical background knowledge makes it possible to understand the
principle of active thermography more precisely. The aim of this thesis was
also to fulfill the flow chart of figure 8. With the presented methods and
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algorithms it is now possible to fulfill this. Thus, the inhomogeneous illumi-
nation of the excitation source can now be compensated in order to increase
the contrast between background and inhomogeneities and to make feature
extraction methods such as PPT robust compared to inhomogeneous illu-
mination. Through the extraction of thermal diffusivity α it is possible to
simulate thermal heat equations by means of finite differences and to use
them to compensate inhomogeneous excitation. Furthermore, a new method
of depth calculation with the help of the heat equation was presented and
compared with known methods. It is also possible through this work to go
through this flow chart and the entire process. Considering the above sug-
gestions, it is possible to improve individual components and achieve better
results

In general, as already mentioned, active thermography is a powerful ap-
plication technology with a lot of potential benefits and is furthermore very
well accepted in the industry.
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