
Michael Öhninger, BSc

Implementation of a management
information system based on analysis and

presentation of user data

Master’s Thesis

to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme: Software Engineering and Management

submitted to

Graz University of Technology

Supervisor

Univ.-Prof. Dipl-Ing. Dr.techn. Wolfgang Slany

Institute of Software Technology
Head: Univ.-Prof. Dipl-Ing. Dr.techn. Wolfgang Slany

Graz, April 2018

Affidavit

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to tugrazonline is
identical to the present master‘s thesis.

Date Signature

ii

Acknowledgments

A special thank goes to Jochen Kerschenbauer and Martin Maritsch who
were supporting me during my whole master thesis.

I would also like to thank my family who is standing behind me all the time
and my friends.

iii

Abstract

This thesis describes the implementation of a management information
system based on analysis and presentation of user data. The work within
this project pursues the goal to provide a platform for football clubs to
keep in touch with their fans easily. The responsible persons of clubs can
provide a live ticker and create questions about a specific football game
via a web-moderation application and fans can answer these questions via
an Android- and iOS-App. Before this work has been done there was no
possibility to find out specific details of a football game of the last weekend,
e.g. how active a responsible person of a club has moderated a game in the
frontend. In order to fulfil the challenges of a growing start-up and improve
the overall experience of the product, a lot of activities must be logged, and
periodic automatic analyses must be done.

In this master thesis the methodology of “Iterative and Incremental de-
velopment” was applied. The aim of this methodology is to present one
component after another component and not showing all in one to the
customer. The whole system is finished when the customer agrees to all
components. To achieve this, time series and moderator activities are logged.
Developed automatic analysis of this thesis include an emergency list (live
analysis of all football games), Facebook statistics (mentions of this project
on Facebook) and a news list (news articles per club per week). This in-
formation is published for all clubs via a web-moderation application and
project intern via Google Drive.

The responsible persons of football clubs can see interesting statistics like
time series of their followers and a count of the clicks on hyperlinks of
their sponsors. Additionally, project intern, time series of the followers
of all teams, the above-mentioned analyses and a lot of other reports are
presented.

iv

With this thesis, club employees can draw conclusions. It is clear that
they have done something wrong, when the followers or the users in the
ranking during a football game are falling. Another possible outcome of the
delivered statistics could be contracts with sponsors, when a specific club
has very high access figures. For the project, a lot of processes are executed
automatically. Consequently, person hours can be economised.

v

Kurzfassung

Diese Arbeit beschreibt die Implementation eines Management - Informa-
tionssystems durch die Analyse und Darstellung von Userdaten. Diese fand
im Rahmen eines Projektes statt, welches das Ziel verfolgt, eine Plattform
zu bieten, bei der Sportvereine sehr leicht mit ihren Fans in Kontakt treten
können. Dabei ist es den Verantwortlichen von Fußballvereinen möglich,
ein Spiel live zu tickern und selbst erstellte Fragen zu einem Spiel über
eine Web-Moderatorenansicht zu stellen und die Fans können diese in
einer Android- und iOS-App beantworten. Bisher gab es allerdings keine
Möglichkeit, spezifische Details von Fußballspielen des vergangenen Woch-
enendes herauszufinden, z.B. wie aktiv ein Vereinsmoderator ein Spiel
getickert hat. Um also den Herausforderungen eines wachsenden Startups
gerecht zu werden und das Gesamterlebnis des Produktes zu stärken, sind
regelmäßige Auswertungen erforderlich, die automatisiert geschehen.

In dieser Masterarbeit wird ein inkrementelles Vorgehensmodell angewen-
det. Das Ziel dieser Methodologie ist es, dem Kunden eine Komponente
nach der anderen zu präsentieren und nicht alle auf einmal. Das ganze Sys-
tem ist dann abgeschlossen, wenn der Kunde allen Komponenten zustimmt.
Um dies zu erreichen, werden Zeitreichen und Aktivitäten von Modera-
toren mitgespeichert. Bei den automatisierten Auswertungen handelt es sich
unter anderem um eine Notfalldienstliste (Live-Auswertung aller Fußball-
spiele), Facebook-Statistiken (Projekterwähnungen auf Facebook) und eine
Newsliste (eingetragene Newsartikel der Vereine pro Kalenderwoche). Diese
Information wird entweder allen Clubs über eine Web-Moderatorenansicht
oder projektintern über Google Drive zur Verfügung gestellt.

Die Verantwortlichen von Fußballvereinen können interessante Statistiken
wie Zeitreihen der Followers ihres Teams und die Anzahl der Klicks auf
Sponsorenlinks sehen. Zusätzlich werden projektintern Zeitreihen aller

vi

Teams, die oben erwähnten Auswertungen und eine Menge anderer Statis-
tiken präsentiert.

Mithilfe dieser Arbeit können Mitarbeiter eines Vereins Schlüsse über ihre
Arbeit ziehen. Es ist klar, wenn die Followers oder die Benutzer in der
Spielrangliste sinken, dass irgendetwas falsch gemacht wurde. Es könnten
auch Verträge mit Sponsoren entstehen, wenn ein Fußballklub hohe Be-
sucherzahlen aufweist. Innerhalb des Projektes werden einige Prozesse
automatisiert. In weiterer Folge können Personenstunden eingespart wer-
den.

vii

Contents

Abstract iv

Kurzfassung vi

1. Introduction and overview 1
1.1. Context of this thesis . 1

1.2. Situation analysis . 2

1.3. Practical and scientific relevance 5

1.4. Methodology . 6

1.5. Aim of this thesis . 7

1.6. Challenges of this thesis . 8

1.7. Structure of this thesis . 11

2. State of the Art 12
2.1. Methodology . 12

2.1.1. Waterfall Development 12

2.1.2. Spiral development . 14

2.1.3. Iterative and Incremental development 15

2.2. Cloud services platform . 17

2.3. Real time stream processing . 20

2.4. RESTful API . 23

2.5. NoSQL Databases . 24

2.6. Frontend Framework . 26

3. Implementation 29
3.1. Infrastructure . 29

3.1.1. Analytics topology . 29

3.1.2. Clickstream user data 33

viii

Contents

3.2. Log data . 35

3.2.1. RESTful API . 36

3.2.2. Clickstream user data 39

3.2.3. Time series . 41

3.2.4. Month rankings . 45

3.2.5. Game specific details . 45

3.3. Analyse data . 49

3.3.1. RESTful API . 49

3.3.2. Serverless Interactive Query Service 52

3.3.3. Social media analysis 53

3.3.4. Moderator statistics . 57

3.3.5. Game statistics . 58

3.4. Display data . 58

3.4.1. Internal communication 59

3.4.2. External communication 65

4. Results 69
4.1. Reports . 69

4.2. Frontend . 86

5. Discussion 89
5.1. Reports . 89

5.2. Frontend . 93

6. Conclusions 96
6.1. Evaluation of the Research Questions 96

6.2. Limitations . 98

6.3. Future work . 98

A. Logging in the app 102

Bibliography 110

ix

List of Figures

2.1. Waterfall model . 13

2.2. Iterative and Incremental development 16

2.3. Example of a topology which contains spouts and bolts . . . 22

3.1. Example of topologies . 30

3.2. Spouts of the analytics topology 31

3.3. Bolts of the analytics topology 32

3.4. Data flow to log clickstreams 32

3.5. Data flow to log football games 32

3.6. Data flow to log football game rankings 33

3.7. Data flow to log followers . 33

3.8. Data flow to log rankings . 33

3.9. Analytics topology in Apache Storm 34

3.10. Data Flow in Amazon Athena 35

3.11. GET request for receiving followers within a time range . . . 51

3.12. Example query in the GUI of Amazon Athena 54

3.13. Gain Facebook timeline of a team via Graph API 57

3.14. Gain Facebook fan count of a team via Graph API 58

3.15. Generated slack messages . 66

4.1. Google Drive folders . 71

4.2. News report (Google Spreadsheet) 72

4.3. Future games report (Google Spreadsheet) 73

4.4. Matchday analysis (Google Spreadsheet) 75

4.5. Facebook report (Google Spreadsheet) 78

4.6. Rankings report (Google Spreadsheet) 80

4.7. Emergency list report (Google Spreadsheet) 84

4.8. Angular 5 application displaying time series of followers . . . 88

x

List of Tables

3.1. Output of an Amazon Athena query to receive the Android
and iOS viewed news articles count 53

A.1. Logged app actions . 102

A.2. Logged menu actions . 103

A.3. Logged notification actions . 103

A.4. Logged deep link actions . 103

A.5. Logged settings actions . 104

A.6. Logged news actions . 104

A.7. Logged event actions . 105

A.8. Logged question actions . 105

A.9. Logged post actions . 106

A.10.Logged activity actions . 106

A.11.Logged team actions . 107

A.12.Logged sponsor actions . 107

A.13.Logged league actions . 108

A.14.Logged ad actions . 108

A.15.Logged info actions . 109

xi

List of Listings

3.1. Promises in Nodejs (Promise.all) 36

3.2. Promises in Nodejs (sequential execution) 37

3.3. Example of a log activity of a moderator (entering a line-up) 37

3.4. Example of a log entry . 40

3.5. News views . 40

3.6. Sponsor clicks . 41

3.7. Log entry of event ranking . 42

3.8. Log entry of league followers 44

3.9. Log entry of team followers . 44

3.10. Amazon Athena query to get all Android, iOS and overall
news view counts since a specific date 52

3.11. Gain Facebook timeline of a public accessible page 54

3.12. Classify shared hyperlinks on Facebook 56

3.13. Gain Facebook fan count of a public accessible page 56

3.14. Get specific file id in Google Drive 59

3.15. Move file to a specific folder in Google Drive 60

3.16. Generating emails . 63

3.17. Generating slack messages . 65

3.18. Angular highchart . 67

xii

1. Introduction and overview

In this chapter, a general overview about the topic of this thesis is given and
the scientific relevance will be discussed.

This master thesis describes the work in a start-up which is on the way to
become a company.

1.1. Context of this thesis

This project provides a platform to improve the communication between
football fans and clubs and is the first club-to-fan platform in Austria, where
club employees can ask and be in contact with their fans. Club moderators
have the possibility to post news, ask questions and deliver a live ticker
of a football game to fans. They could also reach their fans Android and
iOS-based smartphones directly through notifications.

The whole software project is separated into four areas:

• Backend: Infrastructure based on Amazon Web Services, a JavaScript
framework which runs on server-side (Node.js), a real-time computa-
tion system (Apache Storm) and a NoSQL database based on Mon-
goDB.

• Frontend: Represents a responsive web application based on Angu-
larJS, newly developed in Angular 5.

• Android-App: Developed for smartphones with the operating system
of Google.

1

1. Introduction and overview

• iOS-App: Developed for smartphones with the operation system of
Apple.

There are also people who are responsible for marketing, sales and sup-
port.

1.2. Situation analysis

In March 2017, this project went online and there is a cooperation with
amateur clubs, especially located in Styria, since then. There are several
thousand Android and iOS app users at the moment, but currently there is
no way to analyse this data in a structured way.

1. Problem
At the moment there is no possibility or only one with large effort to
research specific details of football games of the past weekend, e.g.
how active was a football game moderated by a club or generally how
many teams, which have a cooperation with this project, had a game
on the last weekend. It is also impossible to check when and how app
users handle the app.
Here are other questions listed that cannot be answered at the moment:

• How many people open the Android- and iOS app in one week,
month and year?

• Which user has collected the most points in a specific league in
the last month by answering questions before, during and after a
football game?

• Did the followers count of a team or league decreases or increases
during the last weeks and months?

There are also no statistics about football games of each round per
league, state and country.

Research topic

After this thesis the following things should be logged and researched:

2

1. Introduction and overview

a) Teams
• Moderator

– What did a moderator specifically during a football game?
(in relation to game activities, questions, posts, match
sponsor changed, questions evaluated, entered line-up)

– Which moderators have written a lot of news articles,
shared project-related things on Facebook and moderated
a football game very well in the frontend? After this
question is answered, the best club moderators can get
honoured and afterwards they will be more motivated in
future to do things on this platform.

• App users
– Time series of users in ranking and observers of a football

game
– Time series of the followers count of a team

• Statistics
– Statistics about clicks on news articles and sponsor clicks
– Clickstream analysis: Contains all actions of Android-

and iOS app users.
– Find interesting coherences within a team, e.g. by com-

paring home and away goals or first half and second half
goals.

– Find out how active a team supports this project on Face-
book: Contains mentions, shared links, shared attach-
ments and all reactions of fans to their postings.

b) Leagues
• App users

– Time series of users in ranking and observers of a league
– Time series of the followers count of a league
– Rankings: Deliver month and season rankings of the app

users who have collected the most points by answering
questions before, during and after a football game.

• Statistics
– Deliver football statistics within each round, e.g. by com-

paring home and away goals.

3

1. Introduction and overview

– Find interesting coherences of a league, e.g. with forma-
tion 4-4-2 eight out of ten teams won their last football
game.

2. Problem
In conclusion to the first problem there exists no management informa-
tion system at the moment, where the delivered data can be published
internally, e.g. the evaluation of all football games of the last weekend.
A very useful tool to interpret an emergent trend are time series of the
followers count of a team. When the followers count is falling, the team
probably used this platform rarely lately. With such a management
information system it will be possible to detect problems and make
clear statements about the usage of this platform by a specific football
team. Problem clubs can be figured out very fast.
After creating such an information system, it would be also easy to
indicate a moderator of a football game, when he uses the frontend
inaccurate or to provide improvement suggestions for using this plat-
form optimal.
There is also a differentiation between internal and external commu-
nication. For all people of this project, this data must be published
internally and for the communication with a football team, an external
communication channel is needed.

• Internal communication: Google Drive and Slack
Deliver reports like the summary of football games of the last
weekend, month rankings with the best app users, team and
league rankings with the best app users, team statistics and a lot
of other interesting reports.
Slack is used as a channel within this project team to communicate
with each other.

• External communication: Angular application
There exists already a web application within this project. In the
moderation view moderators of football clubs can handle football
games, news articles, sponsors, squad and a lot of other things.
In the administration view football teams, leagues, question and
post templates within a football game and users can be handled.
The above-mentioned data should be integrated in the adminis-
tration and moderation view, e.g. time series are a very useful

4

1. Introduction and overview

tool to make historical and predictive analyses of follower counts
and game rankings.

1.3. Practical and scientific relevance

The following scientific questions will be answered during this master
thesis:

1. “How and with which components is it possible to save a great amount
of user data and analyse it under the usage of the current State of the
Art?”
With clickstream analysis of the Android- and iOS app, a lot of data
can be collected. After logging this data, it must be analysed to draw
conclusions. Another data that should be logged are activities of
moderators of football clubs before, during and after a game.
Useful user data include the followers count of all teams in the
database and logged football game rankings (with users in ranking,
viewers, anonymous users in ranking and visits). Other rankings like
team, league, state and country rankings can also be logged.
After this it can be established when and what a moderator has done
in the frontend and how many app users have clicked on a sponsor or
a news article in the Android and iOS app. With all this logged data
there are many ways to find out specific details of the usage of this
platform by moderators and app users.

2. “How is it possible to save time series and display them with time
series analysis?”
The following data will be logged:

• Followers of teams and leagues: Contains the followers count of
each team in the database.

• Game rankings: Contains users in ranking, viewers, anonymous
users in ranking and visits of the Android and iOS app.

• Team, league, state and country ranking: Contains users in rank-
ing and anonymous users in ranking.

5

1. Introduction and overview

This data must be logged in a database in an optimal way to display
it later. This information should be displayed in a web application to
observe trends. In further consequence it should be possible to analyse
this logged data.

The practical relevance of this problems is to conclude from the data how
users and club moderators use this platform. This information can be used
to receive money from sponsors for displaying their names at different times
of the day and at different times of a football game.

1.4. Methodology

In Section 2.1, three possible software development processes are mentioned
and described. In this master thesis the methodology of “Iterative and
Incremental development” was applied.

This method in software development is characterized by having a large
number of components. When one component is finished the feature will
be presented to the customer. After receiving feedback of the customer,
the component can be improved. In further consequence this methodology
reduces development time.

The aim of this methodology is to present one component after another
component and not showing all in one to the customer. The whole system
is finished when the customer agrees to all components.

As explained in Choetkiertikul et al. (2017), iterative software development
is widely practiced in industry. It is essential to monitor the execution of an
iteration. Modern software development often uses this methodology and
this model has essential parts in many methodologies such as Unified Pro-
cess, Extreme Programming, Scrum and other agile software development
methods.

6

1. Introduction and overview

1.5. Aim of this thesis

The end situation of each stakeholder of this project after this thesis is
described in this section.

There are three stakeholders:

• Teams
After the completion of this project it should be possible for a user of
the web application to detect a trend after analysing the logged data.
The club employees can then draw conclusions out of this information.
It is clear that club moderators have done something wrong, when the
followers count or the users in the ranking during a football game are
falling. In further consequence, they will know their fans better.
Another possible outcome of the delivered statistics could be contracts
with sponsors, when a specific club has very high access figures. In
that case advertisements of sponsors of a team can be displayed.

• Fans
The club staff can detect possible problems in the usage of this plat-
form, when they recognise that the followers count of their team is
falling. Consequently, the fans will be better entertained by the pro-
vided information about the club and during football games, when the
club staff has drawn direct conclusions out of the delivered statistics.

• This project
At the moment it is not possible or only with huge time investment
to detect the mentioned things about app users, moderators, teams,
leagues, states and countries.
Sometimes backend developers of this project have to look manually
in the database to detect what a moderator has done before, during
and after a football game.
With this logged information it will be possible to react to criticism
and understand improvement suggestions of football clubs or fans. It
is also possible to reply faster in the case teams use this platform not
as intended and deliver hints to make the overall experience better.

7

1. Introduction and overview

Another possible outcome could be contracts with sponsors, when
there are high access figures at the moment and in further consequence,
advertisements are displayed.

1.6. Challenges of this thesis

In this section the challenges of this thesis will be presented.

Ad aim 1: Gather team- (moderator, player, statistics) and league (player,
statistics) specific data

• Requirement analysis
• Establish an infrastructure: Provide a route for the Android- and iOS

app to log specific occurring events.
• Gather data out of different data sources:

– For the analysis of a football game the already existing database
contains all needed information.

– Other information must be logged:
In many cases the recorded activities include things moderators
do during a football game in the frontend, e.g. enter goals, enter
the line-up, answer questions, start the match etc.
In order to log such activities, the name of the moderator of the
team, a timestamp and the activity of the moderator will be saved,
because this information is unknown yet.

• Analyse data

– During a football game
– Deliver football statistics about leagues, states and countries

It is important to start the analysis automatically not until a specific
event (e.g. the end of the football game) occurs.

Ad aim 2: Provide this information to the teams or project internally either
through Google Drive or a web application and display this information

• Requirement analysis

8

1. Introduction and overview

• Internal communication: Provide data through the Google Drive Ac-
count of this platform:

– Creation of Google Spreadsheets through Sheets API.
– Uploading this file through Drive API to a specific folder.

• External communication:

– Investigate State of the Art frameworks for time series analysis.
– Integration of the logged data in an existing Angular application.

Integration in the existing web application

There exists already a so-called administration view, where the above-
mentioned statistics should be displayed on following places:

• Project internally:

– Statistics menu item should appear on the right to league man-
agement.

– Time series of global ranking per year (users in ranking / viewers
/ anonymous users).

– Provide hyperlinks to specific Google Drive folder:
∗ Leagues- and team rankings report: Contains all fans which

have collected the most points in the current season.
∗ Month rankings report: Contains all fans which have collected

the most points in the last month.
∗ News report: Contains all written news articles per calendar

weak with access figures.
∗ Future game report: Contains all entered future games until

the next week.
∗ Game statistics report: Contains interesting coherences of

game statistics within a league.
∗ Matchday analysis: Contains information about matches and

is delivered one day after a match takes place.
∗ Emergency report: Contains live information about games of

today and the day before.
∗ Facebook statistics report: Contains all shared Facebook post-

ings in relation with this project and all reactions of fans.

9

1. Introduction and overview

∗ Team statistics report: Contains general team information and
rates the activities of team moderators in relation to Facebook
posts, news articles and activities on matchdays.

∗ Sales report: Contains contact details to each team which is
part of this project.

– Menu item team management:
A new symbol should appear on the left to the edited symbol of
each team:
∗ Time series of team followers
∗ Time series of team rankings (users in ranking / viewers /

anonymous users)
– Menu item league management:

A new symbol should appear on the left to the edited symbol of
each league:
∗ Time series of league followers
∗ Time series of league rankings (users in ranking / viewers /

anonymous users)

• Visible for all club moderators of all teams:

– Statistics menu item below the squad menu item should appear
with following tabs:
∗ General statistics:

· Time series of team followers
· Time series of team ranking (users in ranking / viewers /

anonymous users)
∗ Sponsor: Contains the information of click counts on a hyper-

link of a sponsor.
∗ News: Contains the information about click counts on a news

article.
– Menu item games:

A new symbol should appear on the left to the sharing symbol:
Time series of game ranking (users in ranking / viewers / anony-
mous users / visits)

10

1. Introduction and overview

1.7. Structure of this thesis

In Chapter 2 an overview about the current State of the Art of methodologies,
the infrastructure and the used software is given, where the possibilities in
infrastructure and software tools are discussed.

Chapter 3 describes the used infrastructure and the implementation of
logging, analysing and displaying user data.

The results of this master thesis will be presented in Chapter 4.

Afterwards, in Chapter 5 the outcome of the work will be discussed.

In the last Chapter 6, conclusions will be mentioned, and future work will
be discussed.

11

2. State of the Art

In order to follow the principles of current methodologies, this topic is
examined in this Chapter.

This project’s infrastructure, backend and frontend use a set of modern
technologies to supply its functionality. In this chapter the State of the Art
of this project will be presented.

2.1. Methodology

In this section current methodologies in the software development process
and their life cycle will be described.

2.1.1. Waterfall Development

The waterfall model is one of the oldest software development models. It
has many weaknesses but is currently in use in many software projects.

The waterfall process is executed sequentially. The output of each phase is
the input of the next phase. The next phase cannot start until the previous
phase is completed. There is the possibility of a small overlapping of a
phase with their next phase. Typically, there are entrance and exit criteria in
each phase in order to control everything. The whole process can be seen in
Figure 2.1.

After the requirements phase, unforeseen issues with the design can arise.
For such problems some requirements can be deleted or changed in order
to fulfil all requirements.

12

2. State of the Art

Figure 2.1.: Waterfall model

13

2. State of the Art

Another problem exists between testing and maintenance, e.g. when cus-
tomers detect errors in released software. In this case new test cases must
be written and the also the phase maintenance must be updated to cover all
new test cases.

A major issue of the waterfall model is the occurrence of the testing phase
almost as the last phase of this model. When performance or storage prob-
lems in the software development process are detected very late, probably
it is required to update also all other phases of this model.

Advantages:

• Simple and easy to use: All phases are processed sequentially with the
possibility of a small overlapping between each phase.

• Exists since many years: This model is generally accepted.
• Works well for smaller projects: When all requirements are known at

the beginning it works very well.

Disadvantages:

• Requirements must be known at the beginning: Before the whole
process starts, all features, that should be developed, must be known.

• Major problems are discovered very late.
• Lack of parallelism: Each phase is implemented after its previous

phase.

The source of this subsection about the waterfall development is Braude
and Bernstein (2016).

The paper of Chari and Agrawal (2017) has correlating conclusions. After a
sample of 49 software projects, which follow the waterfall methodology, was
analysed it was found that change requests based on incorrect requirements
increases the number of new requirements as well as the number of defects
in the software.

2.1.2. Spiral development

Spiral Model is developed by Barry Boehm, it is called spiral because Boehm
developed it as an outward spiral.

14

2. State of the Art

This software development model is a risk-driven model. Each cycle has the
aim to increase the degree of system definition and decrease the degree of
risk. Risk management is a very huge topic in the whole process.

Each iteration contains the following steps:

1. Identification of critical goals of the project.
2. Evaluation of alternatives of the process to reach goals.

Advantages:

• Risks are managed during the whole process.
• Errors are eliminated early.
• Planning is part in each phase.

Disadvantages:

• Complicated to use: Expertise is required in this software development
process. model

• Too much effort for small projects: It is needless, when risk analysis
takes a huge part in the process.

The source of the information in this subsection is Braude and Bernstein
(2016).

2.1.3. Iterative and Incremental development

As described in Braude and Bernstein (2016), a major disadvantage of the
waterfall model is the linear fashion and except for smaller projects this is
impractical. It is needed to revisit all phases in the development process.

In the iterative and incremental development, all phases are revisited in a
cyclical manner. A part of the system is developed and tested, after receiving
feedback more of the system is implemented. With such a system it is not
needed to understand everything at the beginning and not all features must
be known before the implementation starts.

An iterative process is defined as repeated execution of the waterfall model
and it is an incremental process, when the tasks in an iteration are relatively
small. In Figure 2.2 such a process with three iterations can be seen.

15

2. State of the Art

Figure 2.2.: Iterative and Incremental development (Source: Cockburn, Al-
istair. “Unraveling incremental Development” January 1993,
http://alistair.cockburn.us/Unraveling+incremental+development)

16

2. State of the Art

Regression testing is very important in this methodology and ensures that
previously developed software still acts the same way as it acts before a
change was made. As described in Rosero, Gomez, and Rodriguez (2017),
regression testing helps to ensure the reliability in the process of building
the software and helps to verify existing modifications (fixing bugs) or verify
new features added to a software product.

2.2. Cloud services platform

With Cloud computing it is possible to have access to servers, databases,
storage and a lot of other services. This project uses Amazon Web Services
as cloud services platform.

Six advantages of cloud computing are listed in Amazon Web Services
(2018[b]):

• Variable costs instead of fixed costs: With such a platform you only
have the variable costs instead of investing a lot of money in data
warehouses at a time, where it is not clear, what is needed.

• Huge economies of scale: Amazon Web Services are highly used by
many large companies. With the use of this services there are lower
costs than running services alone.

• Not estimating capacity sizes: It is very complex and costly to analyse
the situation in order to get the capacities that are really needed. With
Amazon Web Services it is easy possible to scale down, when there is
not the need of such a number of servers, or to scale up, when a lot
more capacities are needed.

• React fast to unexpected situations: It does not take weeks to speed
up the performance of such services, it is possible within minutes to
react to unexpected situations and be very flexible.

• Investing money in preserving data warehouses: With the outsourcing
of such services it is not needed to maintain data warehouses and it is
possible to focus on core competences of the company.

• Be fast available around the world: With only a few clicks it is possible
to deploy applications around the world to fulfil local customer needs.

17

2. State of the Art

There exist a lot of products made available by Amazon Web Services. They
can be categorised in the following areas and the used services in context of
this thesis are accurately described. The source of this information about
AWS products can be found in Amazon Web Services (2018[a]).

• Compute: Contains services like virtual servers, code can be executed
after the occurrence of an event (AWS Lampda), batch jobs can be
implemented, and a lot of other services are available.

• Storage: Includes services like block storage for virtual servers in the
cloud, managed file storage for ECS and petabyte-scale data transport.

– Amazon S3: Represents a scalable storage. There are a lot of
advantages like durability, availability and scalability. It is also
possible to perform queries in place. So, when saving data to
Amazon S3, analytics tools like Amazon Athena (will be described
later) can be executed directly on Amazon S3 and no interface is
needed between them.

• Database: There are services like managed relational databases (Ama-
zon Aurora), in-memory data store and cache (Amazon ElastiCache)
and graph database service (Amazon Neptune).

– Amazon Redshift: Represents a cost-effective data warehousing. It
is possible to perform SQL queries and use Business Intelligence
(BI) tools. Redshift Spectrum is also included in this service,
where exabytes of unstructured data can be searched.

• Migration: AWS also offers migration tools like AWS Database Migra-
tion service (migrate databases with minimal downtime) and AWS
Snowmobile (exabyte data transport).

• Networking & Content Delivery: There are also products like Amazon
API Gateway (to build, deploy and manage APIs), Elastic Load Bal-
ancing (distributes incoming traffic across multiple targets) and AWS
Direct Connect (network connection to AWS).

• Developer Tools: Includes tools like AWS Command Line Interface (to
manage AWS products via command line interface), AWS CodeStar
(develop and deploy AWS applications) and AWS CodeBuild (to build
and test code).

• Management Tools: Contains products like AWS Trusted Advisor
(to optimize performance and security) and Amazon CloudWatch

18

2. State of the Art

(monitor resources and applications).
• Media Services: There are services like Amazon Kinesis Video Streams

(to process and analyse video streams) and AWS Elemental MediaLive
(to convert live video content).

• Security, Identity & Compliance: Security is a highly interesting topic
currently. To provide adequate security Amazon offers services like
AWS Single Sign-On (to manage SSO access and user permissions),
Amazon Inspector (to analyse application security) and AWS WAF
(filter malicious web traffic).

• Analytics: Analytics tools are important and will be more important
in future. AWS provides a lot of products to fulfil these requirements.
A very useful tool is Amazon Quicksight, where visualizations can be
built, and statistics can be found very fast. Other services are Amazon
Athena, Amazon Kinesis and Amazon Redshift.

– Amazon Athena: With Amazon Athena it is possible to use an-
alytics mechanism to query S3 storage with SQL directly. It is
possible to perform queries. Athena is based on Facebook Presto
1 and also includes Apache Hive2.

– Amazon Kinesis: It is classified as an analytics service. With
Kinesis it is possible to work with real-time streaming data. More
precisely data can be collected, processed and analysed. It can be
used to log clickstreams of applications.

– Amazon Redshift: The previously mentioned service Amazon
Redshift (in category database) can also be used as an analytics
tool.

• Machine Learning: There are useful and deeply interesting products
like Amazon Translate (fluent language translation), Amazon Lex
(build voice and text chatbots), Amazon Comprehend (discover in-
sights and relationships in text) and Amazon Transcribe (automatic
speech recognition).

• Mobile Services: Amazon also offers mobile services like AWS Mobile
Hub (to build, test and monitor apps), Amazon Pinpint (push noti-
fications for mobile apps) and AWS Mobile SDK (a mobile software
development kit).

1https://prestodb.io
2https://hive.apache.org

19

https://prestodb.io
https://hive.apache.org

2. State of the Art

• AR & VR: With Amazon Sumerian it is possible to build and run AR
and VR applications.

• Application Integration: Consists of products like AWS Step Functions
(to coordinate distributed applications), a queue service (SQS) and
Amazon Simple Notification service (SNS).

– Amazon Simple Queue Service (SQS): With this message queuing
service no messages will be lost and can be handled individually.

• Customer Engagement: Contains cloud-based contact centre (Amazon
Connect), push notifications for mobile apps (Amazon Pinpoint) and
an email service (SES).

– Amazon Simple Email Service (SES): With this email service it is
possible to send and receive emails.

• Business Productivity: There are also products to increase the produc-
tivity like Alexa for Business (can be used to decrease tedious tasks at
work) and Amazon WorkMail (secure and managed business email
and calendaring).

• Desktop & App Streaming: There are services like Amazon WorkSpaces
(providing a secure Desktop-as-a-Service (DaaS) solution) and Ama-
zon AppStream 2.0 (streaming desktop applications to a browser
included).

• Internet of Things: It is possible to use tools like AWS IoT Core
(connect devices to the cloud), AWS IoT Analytics (provide analytics
for Internet of Things devices) and AWS IoT Device Management
(organize and remotely manage Internet of Things devices). There are
also a lot of other services.

• Game Development: This category provides services like Amazon
GameLift (game server hosting) and Amazon Lumberyard (cross-
platform game engine).

2.3. Real time stream processing

As described in Iqbal and Soomro (2015), big data is a synonym for compet-
itive advantages in business rivalries and one of the most trusted real time

20

2. State of the Art

processing and fault tolerant tool is called Apache Storm. Apache Storm is
highly scalable and offers low latency. Apache Storm was presented on 17

September 2014 and provides a simple architecture to build applications
called topologies.

With stream processing it is possible to process data. Data can arrive anytime
and must be evaluated in real-time.

The paper of Veen et al. (2015) characterizes stream processing platforms as
applications to analyse incoming data continuously. It is not easy to predict
how much computing resources are needed for a specific use case, because
the velocity of input data may change over time. In Apache Storm, all
machines within an established cluster are used to fulfil this requirement.

Apache Storm (2018[a]) is a real-time computation system. It allows reliable
processing of streams of data and the use of any programming language.

The concept Apache Storm (2018[b]) is separated in the following compo-
nents:

• Topologies: The whole logic of stream processing is stored in topolo-
gies. Unless a topology is killed it runs forever. A topology is a graph
consisting of spouts and bolts connected with stream groupings.

– TopologyBuilder: This class is used to construct topologies in
Java.

– Running topologies on a production cluster: With StormSubmitter
the created topology can be submitted to a cluster. The number
of workers and the maximum spouts, which are pending, can be
defined.

– Local mode: It is also possible to test topologies locally.

• Streams: Nodes are connected through streams.

– Tuple: Can be described as main data structure. It consists of a
list of values with any type (integers, longs, shorts, bytes, strings,
doubles, floats, booleans and byte arrays).

– OutputFieldsDeclarer: Streams and their schemas can be declared.

• Spouts: Every spout can emit one or more emission streams. Streams
must be declared with the “declareStream”-method of “OutputFields-
Declarer” and the stream, where it has to emitted, has to be defined

21

2. State of the Art

Figure 2.3.: Example of a topology which contains spouts and bolts

in the emit-method on “OutputCollector”. The main method is “next-
Tuple”, where a new tuple is emitted into the topology or simply
returns if there are no tuples to emit.

• Bolts: The challenges of bolts are to process tasks. Bolt can emit one or
more emission streams like spouts.

An example of a topology can be seen in Figure 2.3. Spouts and bolts are
represented as rectangles. One circle represents one worker, arrows indicate
streams between workers. A bolt is able to push to a database.

In bolts, streams they should receive as input must be defined. The following
stream groupings define how the stream should be partitioned:

1. Shuffle grouping: In this grouping, tuples are randomly distributed,
but each bolt gets the same number of tuples.

2. Fields grouping: In this group, fields can be specified in the grouping
and these fields will decide the grouping of the stream. When a stream
is grouped by an id all tuples with the same id go to the same task.

3. Partial Key grouping: It is likely the fields grouping unless the fields
are load balanced between two downstream bolts.

4. All grouping: Here the stream contains all tasks of each bolt.
5. Global grouping: Every tuple is processed by the same bolt instance.

There are different system components in Apache Storm:

22

2. State of the Art

• Nimbus: The nimbus represents the master node. Nimbus analyses
the topology and distributes the founded task to a free supervisor.
When a thread fails, the nimbus will manage to restart the thread on
another node.

• Zookeeper: Apache ZooKeeper is a service for coordinating group of
nodes and synchronize them. With ZooKeeper it is possible to interact
with the nimbus and it can detect the state of nimbus and supervisor.

• Supervisor: The supervisor describes the worker node and has multiple
worker processes. They follow instructions of the nimbus.

Apache Storm is written in Java and its source code is open-source. Spouts
and bolts can be defined in any programming language like Ruby, Python
and JavaScript.

2.4. RESTful API

REST3 uses HTTP4 as a protocol. In the context of this project, the RESTful
API5 is based on Express6, a web framework for Node.js7.

As stated in Tilkov and Vinoski (2010), Node.js - also called Node - is
a server-side JavaScript environment and is based on Google’s runtime
implementation named “V8” engine. Node does not rely on multithreading
to support concurrent execution of business logic.

Node.js (2018) is an asynchronous event driven JavaScript runtime. With
Node.js it is possible to build applications with network access.

As described in Tilkov and Vinoski (2010), JavaScript is the perfect language
for this approach, because it supports callbacks. After a specific event occurs,
it triggers a callback.

There are four HTTP methods that are used in such an architecture:

3REST ... REpresentational State Transfer
4HTTP ... Hypertext Transfer Protocol
5API ... Application Programming Interface
6http://expressjs.com, visited on 03/13/2018

7https://nodejs.org/en/, visited on 03/13/2018

23

http://expressjs.com
https://nodejs.org/en/

2. State of the Art

• GET: Provides read only access to a resource.
• PUT: Provides the possibility to create a new resource.
• DELETE: A resource can be deleted.
• POST: With the POST-method a new resource can be created or an

existing resource can be updated.

The package manager of JavaScript and Node.js is npm8. With npm it is
possible to discover packages of reusable code and it provides powerful
functionalities.

Chaniotis, Kyriakou, and Tselikas (2014) shows that Node.js offers client-
server development integration and is the perfect tool for developing fast,
scalable network applications. It outperforms Nxinx and Apache in in-
put/output (I/O) operations.

Another highly interesting tool for API development is Postman9. With
Postman it is possible to perform HTTP requests and test the self-developed
routes.

2.5. NoSQL Databases

As described in Leavitt (2010), many organizations collect huge amounts of
customer, scientific and a lot of other data for future analysis. Traditionally,
this data was stored in relational databases.

Developers have begun using non-relational databases, now called NoSQL10.
Such databases can handle unstructured data. Proponents of NoSQL databases
enable better performance, which is very important for applications with
huge amounts of data.

The source of the following information is MongoDB (2018[b]):

NoSQL uses a set of different database technologies in further consequence
of modern applications:

8https://www.npmjs.com, visited on 03/13/2018

9https://www.getpostman.com, visited on 03/13/2018

10NoSQL ... Not only Structured Query Language (SQL)

24

https://www.npmjs.com
https://www.getpostman.com

2. State of the Art

• It is needed to change data types very often and handle a huge amount
of data not only as structured, but also as semi-structured, unstruc-
tured and polymorphic data.

• Today software developers must perform in agile sprints, iterate
quickly and push code every week. Once software was developed
in a waterfall development cycle.

• Applications are now served as services that are always online, acces-
sible around the world, and not only once served to the customers.

• Organizations today tend to use cloud computing, open source soft-
ware and not maintaining large server infrastructure.

Relational databases are not able to match up with these new require-
ments.

Here an overview about NoSQL Database types is given and can be found
in MongoDB (2018[b]):

• Document databases: There exists a key in combination with a data
structure called document. Documents can contain nested documents,
a variety of data types and arrays. MongoDB is an example for such a
database.

• Graph stores: With graph stores information about networks of data
like social connections can be stored. Examples of this database type
are Neo4J and Giraph.

• Key-value stores: The simplest version of NoSQL databases. Every
item in the database is stored as a key, together with the value.

• Wide-column stores: Examples are Cassandra and HBase. They are
optimized for queries over large datasets.

As described, MongoDB11 is a NoSQL database. Queries in MongoDB have
the following components:

• Collection: The collection which should be queried.
• Comparison query operators: The following operators for comparing

data are available:

– $eq: Checks equality of two values.
– $gt: Checks if the first value is greater than the second value.

11https://www.mongodb.com, visited on 03/13/2018

25

https://www.mongodb.com

2. State of the Art

– $gte: Checks if the first value is greater or equal than the second
value.

– $in: Checks if a value is contained in an array.
– $lt: Checks if the first value is less than the second value.
– $lte: Checks if the first value is less or equal than the second

value.
– $ne: Checks if the first value is not equal to the second value.
– $nin: Checks if a value is not contained in an array.

• Logical query operators:

– $and: Selects all documents where all defined expressions evalu-
ate to true.

– $not: Selects all documents where the defined expression does
not match.

– $nor: Selects all documents where all defined expressions fail.
– $or: Selects all documents where one of the defined expressions

must be evaluated to true.

• SelectFields: When only specific attributes of the queried collection
are needed and not all attributes.

• SortByFields: When the result must be sorted ascendant or descendent.

A very useful tool to test queries is NoSQLBooster12 for MongoDB (formerly
MongoBooster). It is a cross-platform GUI13 tool for MongoDB to query
data and perform the four basic operations create, read, update, and delete
(CRUD) in NoSQL databases.

2.6. Frontend Framework

With frontend frameworks, web applications can be build. As can be seen
in C Sharp Corner (2018), web development includes client and server side.
Client-side frameworks are typically written in JavaScript and run in web
browser. Examples are Angular, React and Vue. According to the article of

12https://nosqlbooster.com/home, visited on 03/13/2018

13GUI ... Graphical user interface

26

https://nosqlbooster.com/home

2. State of the Art

C Sharp Corner (2018), the Top 5 trending front-end frameworks in 2018 are
Angular, React, Backbone, Ember and Vue.

In this thesis, Angular14, the successor of AngularJS 1 and AngularJS 2, was
used as frontend framework. Angular (2018[a]) is a framework for building
client-side web applications based in HTML. It is written in either JavaScript
or TypeScript (can be compiled to JavaScript). Angular is one of the most
popular web development frameworks.

As stated in Evans (2017), it aims to simplify both the development and the
testing of such applications. It is based on a client-side MVC15 and MVVM16

architecture.

This framework is based on components that can be reused very easily. The
logic is added in so-called services. The components and services must be
added in modules.

The most important Angular tools are stated in Angular (2018[b]):

• Angular CLI: This tool makes it easy to create an already functioning
application, to generate components and test the app locally with a
simple command.

• Angular Playground: Provides an open source for building, testing
and documenting Angular applications.

• Angular Universal: Server-side rendering for Angular applications.
• Celerio Angular Quickstart: It is a tool for generating Angular applica-

tions from an existing database scheme.
• Codelyzer: Provides an analysis for Angular applications.
• Compodoc: This tool provides the possibility to generate documenta-

tions for Angular applications.
• Lite-server: This tool serves a web application and automatically up-

dates, when HTML17 or JavaScript code has been changed, and injects
CSS18 changes using sockets.

14https://angular.io, visited on 03/13/2018

15MVC ... Model–view–controller
16MVVM ... Model–View–ViewModel
17HTML ... Hypertext Markup Language
18CSS ... Cascading Style Sheets

27

https://angular.io

2. State of the Art

• Nx19: With nx it is possible to create and build enterprise-grade apps
with proven project structure and patterns.

• Universal for ASP.NET: This tool provides an opportunity for building
Angular applications in ASP.NET.

The current version is Angular 6, the major release was on April 4, 2018.

With Bootstrap20, responsive and mobile-first sites can be designed very
easy. It contains HTML- and CSS-based templates.

19Nrwl Extensions for Angular
20http://getbootstrap.com, visited on 04/02/2018

28

http://getbootstrap.com

3. Implementation

In this chapter, the implementation will be described in order to show
which infrastructure is used and to explain how the logging, analysing and
displaying of the data was handled.

3.1. Infrastructure

Here is a list of all used tools that are used in the context of this project:

• Cloud services platform: Amazon Web Services are used to fulfil these
requirements.

• Real time stream processing: Apache Storm is used as real time stream
processing tool. The programming language is Java and the integrated
development environment IntelliJ IDEA.

• RESTful API: The RESTful API is developed with the integrated devel-
opment environment Webstorm.

• NoSQL Database: MongoDB, a document database, is used as NoSQL
Database.

• Frontend Framework: As well as the RESTful API, the frontend is
developed with the integrated development environment Webstorm.

3.1.1. Analytics topology

The analytics topology, which is listed in the first line in Figure 3.1 was
created to perform such analyses that are described in this thesis.

In Apache Storm, a so-called “TopologyBuilder” is used to define topologies.
An example of running topologies can be seen in Figure 3.1. In this Figure,

29

3. Implementation

Figure 3.1.: Example of topologies

all topologies which are used in the context of this project are listed in order
to fulfil all real time stream processing requirements.

All spouts of this topology can be found in Figure 3.2. There are the follow-
ing defined spouts:

• appLogEntrySpout: Handles new messages in the queue that should
be processed. The queue contains all logged actions by Android- and
iOS app users and is stored by Amazon Simple Queue Service (SQS).

• eventProcessingSpout: This spout is used to check if there are finished
football games that should be processed. The status of the game is
checked (must be ended) and the test event-flag must be false (which
means it is not a game for internally testing). Also, the analytics
processed flag must be false, which means that this football game was
not processed yet. After this was checked, the bolt is invoked.

• eventRankingSpout: There are two possibilities:

– Game status is pregame or postgame (logging every five minutes):
All games are filtered where the status is pregame or postgame.
In this case questions can be answered in the Android- and iOS
app and all users in ranking, viewers, anonymous users and visits
in ranking are logged every five minutes.

– Game status is running (logging every minute): When the game
is currently running, more precisely has the status first half, first
half pause, second half, second half pause, overtime first half,
overtime pause, overtime second half or penalty shootout, the
ranking is logged every minute.

• followersSpout: Every hour the followers count of all teams and
leagues are logged.

30

3. Implementation

Figure 3.2.: Spouts of the analytics topology

• rankingSpout: Every hour all team, league, country and global rank-
ings are logged.

All created bolts are displayed in Figure 3.3. These bolts are defined:

• appLogEntryBolt: In order to log all actions an app user does, all mes-
sages that should be processed are handled here. There are following
possibilities:

– NewsViewProcessor: When an app user views a news entry, the
news view count will be updated.

– SponsorClickProcessor: When an app user clicks on a sponsor,
the clicks count will be updated.

– FirehoseProcessor: All logged app actions will be collected and
are send to Amazon Kinesis Firehose. They will be send after 50

logged entries, when the user closes the app and when the logout
is used.

– EventVisitsProcessor: When a football game is viewed in the app,
the visits count will be incremented.

• logEventBolt: Invoked by the previously explained “eventProcess-
ingSpout”. In this bolt, an event will be analysed and all useful prop-
erties will be saved as a document to a created analytics-MongoDB.

• mongoBolt: Used as an interface to write data to the MongoDB which
is used in this project.

In order to log specific things, data flows between the defined spouts and

31

3. Implementation

Figure 3.3.: Bolts of the analytics topology

Figure 3.4.: Data flow to log clickstreams

bolts are needed. Spouts can invoke bolts and can write to MongoDB. Bolts
must be invoked by spouts and cannot start any action independently.

The data flows between spouts and bolts in this project is explained here:

• Log clickstream analysis: After receiving messages from Amazon SQS
(appLogEntrySpout), they will be processed in the bolt (appLogEntry-
Bolt). This can be seen in Figure 3.4.

• Log football games: After finding out which games should be pro-
cessed (eventProcessingSpout), each game will be handled in the
logEventBolt and then saved via MongoBolt to the MongoDB. The
data flow can be seen in Figure 3.5.

• Log football game rankings: The game ranking is checked every five
minutes before and after the game. During each game the ranking
is checked every minute. When there was a change in the entry (e.g.
more viewers), this entry is saved to the MongoDB, as displayed in

Figure 3.5.: Data flow to log football games

32

3. Implementation

Figure 3.6.: Data flow to log football game rankings

Figure 3.7.: Data flow to log followers

Figure 3.6.
• Log followers: The count of followers is checked every hour and when

it has changed, a new entry is saved to the MongoDB, as shown in
Figure 3.7.

• Log rankings: Team-, league-, country-, and global rankings are also
checked every hour. When there was a change, a new entry is logged
via MongoBolt, as can be seen in Figure 3.8.

An overview about all data flows of these spouts and bolts of the analytics
topology, which is used to log data, can be seen in Figure 3.9.

3.1.2. Clickstream user data

In order to perform clickstream analysis, the mobile apps have to log all
actions that are described in Chapter Appendix A. When all these actions
are logged, there are many possibilities to analyse this data.

After logging 50 entries, when the user closes the app and when the logout
is used, this information is transported to the backend via API requests. An
Amazon service is used as a web service to guarantee access to message
queues that can be processed later. This service is called Amazon Simple

Figure 3.8.: Data flow to log rankings

33

3. Implementation

Figure 3.9.: Analytics topology in Apache Storm

34

3. Implementation

Figure 3.10.: Data Flow in Amazon Athena

Queue Service (Amazon SQS). This stored message is processed in Apache
Storm. After receiving such messages in the defined bolt, they will we
processed.

On the one hand, the received messages are processed internally. When a
news entry is viewed, the news views will be updated in the MongoDB
table news-views, when a sponsor click entry is received it will be updated
and when a football game is visited in the app, the visits count will be
incremented.

On the other hand, the received messages are transported to Amazon
Kinesis Firehose, a service for delivering real-time streaming data to various
destinations. Amazon Kinesis Firehose collects this data and stores the
entries every hour in Amazon S3 buckets which represents the data storage.
Afterwards, the app log entries can be queried via Amazon Athena, a query
service which can access Amazon S3 buckets directly.

The whole process can be seen in Figure 3.10.

3.2. Log data

A lot of data must be logged to find out the requested information men-
tioned in previous chapters, e.g. what a moderator has done during a

35

3. Implementation

football game.

3.2.1. RESTful API

In this subsection, all implementations in Nodejs to log data and other
operations in order to achieve this are described.

Promises

With bluebird1, a Nodejs promise library, it is possible to execute asyn-
chronous code in JavaScript. This feature is used in many implemented
functions in this project.

Listing 3.1 shows the possibility to add several functions to a list. After all
these functions are executed parallel, the return values of all promises can
be handled. This method waits with the execution until all promises are
done.

1 let promises = [];

2 promises.push(firstAsynchronousFunction ());

3 promises.push(secondAsynchronousFunction ());

4

5 Promise.all(promises).then(function (returnValues)

6 {

7 for (let i = 0; i < returnValues.length; i++) {

8 // handly return values

9 }

10 }).catch(function () {

11 // handly exceptions

12 });

Listing 3.1: Promises in Nodejs (Promise.all)

1http://bluebirdjs.com/docs/getting-started.html, visited on 03/26/2018

36

http://bluebirdjs.com/docs/getting-started.html

3. Implementation

Another opportunity to implement asynchronous code is stated in Listing
3.2. With this code, functions can be executed sequentially. After the function
is done, the return value of this function can be handled.

1 return firstAsynchronousFunction ().then(function (

firstReturnValue)

2 {

3 return secondAsynchronousFunction ().then(function

(secondReturnValue)

4 {

5 // handle firstReturnValue and

secondReturnValue

6 }).catch(function () {

7 // handle exceptions of

secondAsynchronousFunction

8 });

9

10 }).catch(function () {

11 // handle exceptions of firstAsynchronousFunction

12 });

Listing 3.2: Promises in Nodejs (sequential execution)

Moderator activities

In order to find out what a moderator has done before, during and after
a football game in the frontend, actions of moderator must be logged. An
example of a log activity of a moderator can be found in Listing 3.3, in this
case a line-up was entered by a user.

These activities are saved in the events table in the MongoDB. There exists a
subdocument for the home and away team and depending on whether the
home or away moderator has entered an action, it will be added there.

1 {

2 "userid ": "57 c6be5aff4a2d6e1bff78f4",

3 "action ": "add_lineup",

4 "timestamp ": 1521014091024

37

3. Implementation

5 }

Listing 3.3: Example of a log activity of a moderator (entering a line-up)

All logged activities of a moderator before, during and after a game are
listed here:

• start: When a moderator starts a game.
• start halftime pause: When a moderator ends the first half.
• start second half: When a moderator starts the second half.
• end second half: When there exists the possibility of extra time and a

moderator ends the second half.
• start overtime: When there exists the possibility of extra time and a

moderator starts the first half of the overtime.
• end overtime first half: When a moderator ends the first half of the

overtime.
• start overtime second half: When a moderator starts the second half

of the overtime.
• start penalty shootout: When a moderator starts the penalty shootout.
• end: When a moderator blows the final whistle in the frontend.
• delayed evaluation: When a moderator states that he is present or

absent during the game.
• add activity: When a moderator adds an activity in the game.

All activities: goal, own goal, yellow card, red card, second yellow
card, injury, substitution, top chance, top parade, top tackle, offside,
penalty goal and penalty miss.

• add correct answer: When a moderator adds a correct answer to an
evaluable question.

• add lineup: When a moderator adds a line-up to a team.
• add question: When a moderator asks a question in the frontend.
• delete question: When a moderator deletes a question.
• add post: When a moderator adds a post before, during and after the

game.
• delete post: When a moderator deletes a post.
• add result: When a moderator enters the final score of the first half,

second half, overtime first half, overtime second half, penalty shootout
and final score.

38

3. Implementation

3.2.2. Clickstream user data

In order to make reliable statements, it would not be enough to save only
count of clicks of actions of a user, because then a lot of information will
be lost. In this case one cannot query how much Android and how much
iOS user do certain actions. It is more useful to log the timestamp of the
occurrence and a lot of other user data to guarantee a meaningful statement
out of each entry.

The challenge was to write down all useful actions that should be logged by
the Android- and iOS apps. It was clicked through each screen of the app
and all things that should be logged were written down.

In order to answer all relevant questions, the following information must be
logged:

• action: All possible actions a user can do (open, close, login, logout,
register, rate, view, click, share).

• category: Either general app things (app, notification, deep link) or
collections in the database (such as news, events, questions, posts and
so on) are logged.

• type: Contains an optional description of the category.
• id: Contains an optional id, when a logged action corresponds with a

collection from the MongoDB (e.g. a specific news article is viewed,
then the newsid of this article is stored in the database).

• userid: Contains the identification number of the user who made an
action.

• sessionid: In order to save a token to identify a session of a user.
• useragent: In order to identify which app version and which operating

system is used (e.g. 2.5.14; Android/API 25).
• timestamp: Contains a Unix timestamp of the occurred action.
• partitiondatetime: Is used for Amazon Kinesis Firehose, because then

not all data must be searched every time. In this case all specific actions
during a specific time range can be queried.

All logged actions by the Android- and iOS apps ordered by relevant
categories can be found in Chapter Appendix A.

39

3. Implementation

An example of such a log entry can be seen in Listing 3.4. In this case an
app user has clicked on a news article in the news screen via an Android
smartphone and has used the app version 2.5.19 on 03/17/2018 between 9

and 10 am.

1 {

2 "action ": "click",

3 "category ": "news"

4 "type": "newsscreen",

5 "id": "580731 b87349222878c01122",

6 "userid ": "5 a86a9c4b884ae5d2b60528d",

7 "sessionid ":"0 be89849 -8ba2 -4eb6 -97a8 -9 e18658b4889

",

8 "useragent ":"2.5.19; Android/API 24",

9 "timestamp ": 1521277837162 ,

10 "partitiondatetime ": "2018 -03 -17 -09" ,

11 }

Listing 3.4: Example of a log entry

News views

There exists a MongoDB table with the name news views, an example entry
can be seen in Listing 3.5, where all users are logged which have viewed
a news article. With the logging of this information it is easy to find out
how many different users has viewed a specific news article (identified by
newsid).

1 {

2 "_id" : ObjectId ("5 a3be9865d0daa92a10bd659 "),

3 "newsid" : ObjectId ("5 a3bde6c5bf45a59274899bd "),

4 "viewers" : [

5 ObjectId ("59 e46fa991c8853457054cea "),

6 ObjectId ("5 a63aa1dd23b4410a126bebc "),

7 ObjectId ("59 d9fdd0cfc4b92ef031302c "),

8 ObjectId ("58 be780114deb6216156ecdb "),

9 ObjectId ("58 c3b953d00afb511cff567b "),

40

3. Implementation

10 ObjectId ("5 a6c6cefce8f147d5621845f "),

11 ObjectId ("58 c30d88bce4673e99a5c62b "),

12 ObjectId ("58 c036ece6eb18789a02b86c "),

13 ObjectId ("58 fa0a96abf0b958f1fc800a ")

14]

15 }

Listing 3.5: News views

Sponsor clicks

There exists also a MongoDB table with the name sponsor clicks, an entry is
displayed in Listing 3.6, where all users are saved which have clicked on a
sponsor. It follows the same schema as the viewed news articles mentioned
before.

1 {

2 "_id" : ObjectId ("5 a75f9f3fe532d17d9e49e8e "),

3 "sponsorid" : ObjectId ("59006 c8889e2b267e004656e "),

4 "users" : [

5 ObjectId ("59 c60271141b7d0ecbed74e2 ")

6]

7 }

Listing 3.6: Sponsor clicks

3.2.3. Time series

As explained in MongoDB (2018[a]), a time series is a sequence of data
points saved over a time interval and is used in many areas like the financial
market, systems (server logs) and sensors (temperatures). When time series
are displayed in charts, current trends of this data can be analysed. Time
series are very useful to make historical and predictive analysis of different
information.

As can be seen in Box et al. (2015), there are many usages of time series. A
very huge topic is the forecasting of future values of time series. Another

41

3. Implementation

possibility is the examination of relationships between several related time
series variables of interest.

Game Ranking

Time series are used to save rankings. The ranking is checked every 5

minutes before and after a game and during a game the ranking is checked
every minute. When something has changed, a new entry will be saved.
An example entry of logged time series of a game ranking can be found in
Listing 3.7.

1 {

2 "_id" : ObjectId ("5 a9cf9889580d11422a03368 "),

3 "eventid" : ObjectId ("5 a99129d6008d9677060a708 "),

4 "teams" : {

5 "home" : {

6 "teamid" : ObjectId ("586169 d1de03c06083281083 "),

7 "entries" : [

8 {

9 "viewers" : 22,

10 "users" : 9,

11 "anonymous_users" : 0,

12 "visits" : 5,

13 "timestamp" : 1520236935864

14 },

15 {

16 "viewers" : 23,

17 "users" : 10,

18 "anonymous_users" : 0,

19 "visits" : 6,

20 "timestamp" : 1520237535960

21 },

22 ...

23 {

24 "viewers" : 41,

25 "users" : 22,

42

3. Implementation

26 "anonymous_users" : 1,

27 "visits" : 50,

28 "timestamp" : 1520269338083

29 }

30]

31 },

32 "away" : {

33 "teamid" : ObjectId ("586169 d3de03c06083281130 "),

34 "entries" : [

35 {

36 "viewers" : 0,

37 "users" : 0,

38 "anonymous_users" : 0,

39 "visits" : 5,

40 "timestamp" : 1520236935864

41 },

42 ...

43 {

44 "viewers" : 0,

45 "users" : 0,

46 "anonymous_users" : 0,

47 "visits" : 40,

48 "timestamp" : 1520267537994

49 }

50]

51 }

52 }

Listing 3.7: Log entry of event ranking

Rankings

All team, league, country and global rankings are checked every hour by a
spout and when it has been changed, the new entry will be logged. In this
case all users in ranking and anonymous users are logged. Such an entry is
displayed in Listing 3.8.

43

3. Implementation

1 {

2 "_id" : ObjectId ("5 a12f01b9580d1361a1deb6f "),

3 "leagueid" : ObjectId ("586137 dfde03c06083280e79 "),

4 "entries" : [

5 {

6 "timestamp" : 1511190555916 ,

7 "users" : 36,

8 "anonymous_users" : 10

9 },

10 {

11 "timestamp" : 1513005116794 ,

12 "users" : 37,

13 "anonymous_users" : 10

14 },

15 ...

16]

17 }

Listing 3.8: Log entry of league followers

Followers

Also, all team and league followers are logged every hour, when the follower
count has changed, as can be seen in Listing 3.9. With this information it
is very easy to detect less motivated moderators of teams and a predictive
analysis can be made.

1 {

2 "_id" : ObjectId ("5 a0b4e9d0b5a4674cce9e115 "),

3 "teamid" : ObjectId ("586169 d6099e0d6089bdb3b6 "),

4 "entries" : [

5 {

6 "timestamp" : 1510690461774 ,

7 "followers" : 190

8 },

9 {

10 "timestamp" : 1511716299259 ,

44

3. Implementation

11 "followers" : 191

12 },

13 {

14 "timestamp" : 1511987954182 ,

15 "followers" : 192

16 },

17 {

18 "timestamp" : 1512486233801 ,

19 "followers" : 193

20 },

21 {

22 "timestamp" : 1519545576794 ,

23 "followers" : 194

24 }

25]

26 }

Listing 3.9: Log entry of team followers

3.2.4. Month rankings

In order to answer the question which users has collected the most points
in the last month, month rankings of all teams, leagues, states and countries
are logged.

After a question has been answered by a user, the month ranking will be
updated.

When a month has finished, the whole month ranking will be saved to the
analytics-MongoDB. There exists a month ranking for teams, leagues, states
and countries.

3.2.5. Game specific details

Game specific details must be logged to answer questions in relation to a
football game. With this information, statements about moderator activities

45

3. Implementation

and users who follow the game can be made.

Here is an explanation of the most important properties of a game in the
MongoDB:

• teams.home.abbreviation, teams.away.abbreviation: Contains the ab-
breviation of the team name which is displayed in the apps.

• teams.home.moderation type, teams.away.moderation type: Indicates
which users moderate the match.

– standard: There is no moderator and there will be only automated
questions and posts.

– team: There is a club moderator.
– fan: There is a fan moderator.
– redactional: This game will be redactional moderated by a neutral

viewer.

• teams.home.lineup, teams.away.lineup: Home and away indicate the
home and away team. This property contains all players from the line-
up with playerid (there exists a Mongo table called players), percentage
of the fans who have voted this player in their line-up and the position
of the player (goalkeeper, defence, midfield, offense).

• teams.home.reserve, teams.away.reserve: Contains all reserve players.
• teams.home.formation, teams.away.formation: Indicates the used for-

mation (e.g. 3-4-3 or 4-4-2) of a team.
• teams.home.live lineup, teams.away.live lineup: Contains the current

line-up on the pitch (line-up, reserve and replaced players).
• teams.home.subscribers, teams.away.subscribers: The subscribers are

all users who receive notifications when one of the following actions
occur:

– questions: When a new question is asked.
– news: When a new news article appears.
– goals: When the home or away team has scored.
– interevent questions: When not game specific questions are asked.
– event posts: When a new post emerges in a game.
– general posts: When not game specific posts appear.

• teams.home.viewers, teams.away.viewers: The home and away viewers
of the game in the app.

46

3. Implementation

• actions: The action property contains logged actions from the modera-
tor of a football game. With this data, it can be determined how active
a moderator was before, during and after the game.
These actions include start, start halftime pause, start second half, end
second half, start overtime, end overtime first half, start overtime sec-
ond half, start penalty shootout, end, delayed evaluation, add activity,
add correct answer, add lineup, add question, delete question, add
post, delete post, add result and were already explained in Section
3.2.1.

• timestamps: Contains timestamps of a specific game. These times-
tamps are Unix timestamps with 13 digits. There exist the following
possibilities:

– pregame start: Means the moment when questions and posts of
the game appear in the app.

– postgame end: Means the moment when no questions and posts
can be written by a moderator and users cannot answer questions
of a specific game anymore.

– start: Contains the official kick-off of the game.
– end: Contains the timestamp of the end of the game.
– regular.firsthalf.start: Contains the timestamp of the start of the

first half. When the game has not started yet, this property is null.
– regular.firsthalf.end: Contains the timestamp of the end of the

first half.
– regular.secondhalf.start: Contains the timestamp of the start of

the second half.
– regular.secondhalf.end: Contains the timestamp of the end of the

first half.
– overtime.firsthalf.start: Contains the timestamp of the start of the

first half of the overtime.
– overtime.firsthalf.end: Contains the timestamp of the end of the

first half of the overtime.
– overtime.secondhalf.start: Contains the timestamp of the start of

the second half of the overtime.
– overtime.secondhalf.end: Contains the timestamp of the end of

the second half of the overtime.
– overtime.shootout.start: Contains the timestamp of the start of

47

3. Implementation

the penalty shootout.

• scores: Here all results after the first half, second half, overtime first
half, overtime second half and penalty shootout are saved.

• leagueid: Contains the identification number of the league in the
MongoDB. With this property, the name of the league, the state name
and the country name can be determined.

• analytics processed: When this property is false, the event was not
processed yet.

• test event: When the game is only a test match, this property is true.
• userid: Contains the identification number of the user who has created

this football game in the frontend.
• created: This property contains a timestamp which marks the creation

of the game.
• modified: Contains a timestamp of the game, when the last modifica-

tion of this game was made.
• visits: Contains all visits through the Android and iOS-App.

There is a check every ten minutes, as can be seen in previous mentioned
spout (Section 3.1.1), if the analytics processed-flag is not set, the game
status is ended, and it is not a test match. In this case, the game will be
processed, and all needed information will be exported.

First of all, the basic information of a football game will be exported like
the event-id, the two team-ids, all timestamps, the league-id, all actions the
moderator has done (adding activities, adding correct answers, his setting
of present or absent, the entered line-up). With this information it can be
said what a moderator has entered.

Also, other things like an edited sponsor, if eleven players for the line-up
has been entered, how many questions have been asked, how many posts
have been entered and how many news entries were written in the last two
weeks are logged.

The most important properties and how they are saved are here explained:

• teams.home.moderators, teams.away.moderators: All moderators who
have done anything during the game or have written a news article in
the last seven days are logged here.

48

3. Implementation

• teams.home.questions, teams.away.questions: Here the count of all
evaluated questions and evaluable questions, of all automated and
evaluable automated questions, of all manual and evaluable questions
and if the line-up was entered are saved.

• teams.home.posts, teams.away.posts: Contains the count of automated
posts with and without pictures, the count of manual entered posts
with and without pictures before, during and after the game.

• teams.home.activities.home, teams.home.activities.away: Here are all
activities from the home and away team stored and how many have
been entered by the moderator (goal, own goal, yellow card, red card,
yellow-red card, injury, substitution, top chance, top tackle, top parade,
offside, penalty goal, penalty miss).

• teams.home.news, teams.away.news: Contains all news articles with
timestamp, title, date and username (of the moderator who has written
this article) of the last seven days.

• actions: Contains all actions of moderators like adding activities (goals,
own goals etc.), adding correct answers to evaluable questions, delayed
evaluation (with this flag the moderator of a game can decide if he
is present or absent during the game), add line-up, kick-off and end
timestamps of the match. In all these cases, the team (home or away),
username, timestamp and further interesting information are saved.

3.3. Analyse data

The logged data, which was described in the previous Chapter, must be
processed and analysed. It is not enough to log this data, because all this
information must be displayed.

3.3.1. RESTful API

There are several API routes for getting the logged information via API
requests to fulfil the requirements of this thesis.

49

3. Implementation

Statistics

In order to deliver statistics about the clicks on news articles and sponsor
hyperlinks, API routes were written.

One GET-request to deliver the count of a specific viewed news article
(/statistics/news/:id) and another GET-request for the count of clicks on a
specific sponsor (/statistics/sponsor/:id).

For the news information, a JSON Object consisting of the newsid and a
views count is delivered, for the sponsor information a JSON Object with
the sponsorid and sponsor clicks.

These statistics can also be extended, when another information is needed
or claimed by the customer.

Time series

After logging time series of rankings and followers, time series must be
calculated. 360 entries are computed in order to receive meaningful time
series. With these entries historical and predictive analysis can be made.

Following routes are provided to get time series:

• Game ranking: The identification number of a game must be provided
(GET request: /timeseries/ranking/events/:id).

• Team and league ranking: To receive a team or league ranking, a value
for collection (team or league), the teamid or leagueid and the start
and end timestamp must be provided (GET request: /timeseries/rank-
ing/:collection/:id/:start/:end).

• Global ranking: In order to receive the global ranking over all leagues,
states and countries, a start and end timestamp must be provided
(GET request: /timeseries/ranking/global/:start/:end).

• Followers: In order to get the followers of a team or a league, the collec-
tion must be provided, as well as the teamid or leagueid and a start and
end timestamp (GET request: /timeseries/followers/:collection/:id/:start/:end).
The response of a GET request to receive all followers within a time
range of a specific team can be seen in Figure 3.11.

50

3. Implementation

Figure 3.11.: GET request for receiving followers within a time range

51

3. Implementation

3.3.2. Serverless Interactive Query Service

Amazon Athena, which was described in Section 2.2, is used as a serverless
interactive query service. With Amazon Athena it is possible to query
Amazon S3 buckets directly, where all logged app actions of the Android-
and iOS users are collected.

An example query can be seen in Listing 3.10, where the overall news view
count since a specific date is requested. In this query the user agent is parsed
after a blank and before a slash, the return value will be Android or iOS.

A user agent can look like:

• For Android: 2.5.16; Android/API 24

• For iOS: 1.2.1 iOS/11.2.6

Then the logged app actions are queried, where a news article is viewed.

There are three possibilities to achieve this:

• When an app user clicks on a notification to view a new news article.
• When an app user clicks on a deep link to view a new news article.
• When a news article is viewed via the news screen.

Then the count of Android and iOS viewers of a specific news article is
calculated.

1 SELECT count (*) as count ,

2 split(substr(useragent , strpos(useragent , ’ ’),

3 strpos(useragent , ’/’)), ’/’)[1]

4 as os, id FROM default.logdata

5 WHERE partitiondatetime >= ’2018 -03 -20 -00’ AND

6 ((action = ’click ’ AND

7 category = ’deeplink ’ AND

8 type = ’news’)

9 OR

10 (action = ’click ’ AND

11 category = ’notification ’ AND

12 type = ’news’)

13 OR

14 (action = ’open’ AND

52

3. Implementation

15 category = ’news’)) GROUP BY

16 id , split(substr(useragent , strpos(useragent , ’ ’

),

17 strpos(useragent , ’/’)), ’/’)[1]

Listing 3.10: Amazon Athena query to get all Android, iOS and overall news view counts
since a specific date

The output of this query is displayed in Table 3.1.

count operating system id
5 Android 5ab03671a86960035dd7df78

1 Android 5aac05876f445e4a0fb25654

1 Android 59e45ebe91c8853457054ce8

4 Android 5a5527904acb750b7771efab
1 Android 59ad2e0d6687ce15990bb066

1 iOS 5aa70e9a8c9b7c7a601b0cb5

Table 3.1.: Output of an Amazon Athena query to receive the Android and iOS viewed
news articles count

Amazon Athena also has a graphical user interface from Amazon to test
queries online, it can be seen in Figure 3.12.

3.3.3. Social media analysis

For social media analysis, Facebook provides the Graph API2 in order to
receive information about Facebook pages.

With this API it is possible to get information of public accessible Facebook
pages. For private profiles, Facebook must be contacted, and it must be
shown for which purpose this information is needed.

Fb3 is a module, developed for Node.js, to use Graph API and was used in
this context to get the described information.

2https://developers.facebook.com/docs/graph-api/, visited on 04/01/2018

3https://www.npmjs.com/package/fb, visited on 04/01/2018

53

https://developers.facebook.com/docs/graph-api/
https://www.npmjs.com/package/fb

3. Implementation

Figure 3.12.: Example query in the GUI of Amazon Athena

Facebook feed

With the provided code in Listing 3.11, it is possible to get information
about the last posts of this Facebook page.

1 facebook.api(’’, ’post’, {

2 batch: [

3 {

4 method: ’get’,

5 relative_url: team + ’/feed?fields=created_time ,

message ,link ,attachments ,permalink_url ,’ +

6 ’shares ,reactions.type(LIKE).limit (0).summary (1).as(

like),reactions.type(LOVE).limit (0).summary (1).as(

love),’ +

7 ’reactions.type(HAHA).limit (0).summary (1).as(haha),

reactions.type(WOW).limit (0).summary (1).as(wow),’

+

8 ’reactions.type(SAD).limit (0).summary (1).as(sad),

reactions.type(ANGRY).limit (0).summary (1).as(angry

)’ +

9 ’&limit =100’

54

3. Implementation

10 },

11]

12 }, function(posts) {

13 let response = JSON.parse(posts [0]. body);

14 }

15);

Listing 3.11: Gain Facebook timeline of a public accessible page

One Facebook post contains:

• created time: Contains the date of the written post.
• message: Contains the written text (when existing).
• link: Contains the shared link (when existing).
• attachments: Contains the shared attachment in this posting (when

existing). In most cases the attachment is a preview picture of the
shared link.

• permalink url: Contains a hyperlink to the shared posting of the team
which shared it on Facebook.

• shares: How many people shared this Facebook post?
• like: How many people liked this Facebook post?
• love: How many people reacted to this Facebook post with love?
• haha: How many people reacted to this Facebook post with haha?
• wow: How many people reacted to this Facebook post with wow?
• sad: How many people reacted to this Facebook post with sad?
• angry: How many people reacted to this Facebook post with angry?

The limit specification means the count of Facebook posts that should be
returned.

Figure 3.13 shows the response of such a request to get all Facebook posts
written by the team “SV Lafnitz” from the Austrian “Regionalliga Mitte”.

Another helpful module is URL4, a module for Node.js applications, which
is used for URL resolution and parsing.

It is needed to parse the hyperlinks shared on Facebook by teams, as can be
seen in Listing 3.12. The pathname contains the remaining characters after
a domain ending. With this listing it is possible to classify each link and

4https://www.npmjs.com/package/url, visited on 04/01/2018

55

https://www.npmjs.com/package/url

3. Implementation

determine if it contains a shared event, ranking, news, line-up, question,
post, fixtures or another information.

1 let facebook_url = new URL(post.link);

2 let facebook_pathname = facebook_url.pathname;

3

4 if (facebook_pathname.indexOf("/event/") !== -1) {

5 ret.link.event ++;

6 } else if (facebook_pathname.indexOf("/ranking/") !== -1) {

7 ret.link.ranking ++;

8 } else if (facebook_pathname.indexOf("/news/") !== -1) {

9 ret.link.news ++;

10 } else if (facebook_pathname.indexOf("/lineup/") !== -1) {

11 ret.link.lineup ++;

12 } else if (facebook_pathname.indexOf("/question/") !== -1) {

13 ret.link.question ++;

14 } else if (facebook_pathname.indexOf("/post/") !== -1) {

15 ret.link.post ++;

16 } else if (facebook_pathname.indexOf("/fixtures/") !== -1) {

17 ret.link.fixtures ++;

18 } else {

19 ret.link.other ++;

20 }

Listing 3.12: Classify shared hyperlinks on Facebook

Facebook fan count

The fan count of a Facebook page is needed to evaluate the importance of a
team on this platform. It works similar to getting all posts of a team. The
request can be seen in Listing 3.13.

1 facebook.api(’’, ’post’, {

2 batch: [

3 {

4 method: ’get’,

5 relative_url: team + ’?fields=fan_count ’

6 },

7]

8 }, function (response) {

9 let fan_count = JSON.parse(posts [0]. body.fan_count);

10 }

56

3. Implementation

Figure 3.13.: Gain Facebook timeline of a team via Graph API

11);

Listing 3.13: Gain Facebook fan count of a public accessible page

Figure 3.14 shows the response of this request. In this example, the likes
count of the team “SV Lafnitz” on Facebook is shown.

3.3.4. Moderator statistics

An algorithm was implemented to discover how active moderators were
during a football game.

The most important things:

• Has the moderator started the first half, ended the first half, started
the second half, ended the second half?

• Has the moderator entered the line-up?

57

3. Implementation

Figure 3.14.: Gain Facebook fan count of a team via Graph API

• Has the moderator of a football game also entered other activities like
top parade, top chance, etc. beside goals?

• Has the moderator entered some game comments during a game?
• Has the moderator evaluated all questions?

After this was analysed, each moderation of a team in a game was classified
in weak, average and strong moderation.

3.3.5. Game statistics

In order to determine game specific statistics, games were analysed to
receive the following information:

• most used formations at wins, draws, losses at home, away and both
together

• scored home and away goals
• conceded home and away goals

3.4. Display data

After logging and analysing the gathered information, the data must be
displayed to show the outcome of the work of this thesis.

58

3. Implementation

3.4.1. Internal communication

Not all information is intended for the general public or it will cost some-
thing to receive specific information. In this project, Google Drive5 is used
for sharing development hints and project intern communication.

Google Drive integration

The reports with the information about teams, leagues, states and countries
are published via Google Drive.

Google Drive API6 allows users to make basic operations in Google Drive.

Basic operations in Google Drive are listed here:

• Copy files: With a specific file id, a copy of a Google Drive file can be
created.

• Create files: It is possible to create a file in Google Drive. The mime
type of the file indicates the file type.

• Delete files: With a specific file id, a file can be deleted permanently
without moving it to trash.

• Get file: With this operation, metadata and content of a file can be
determined.

• Search for files: It is possible to search for files via Google Drive API.
Listing 3.14 shows a search for spreadsheet files with a specific name.
The id of the first file, that was found, is returned.

1 service.files.list({

2 auth: auth ,

3 q: "mimeType = ’application/vnd.google -apps.

spreadsheet ’ and name=’" + name + "’",

4 }, function (err , response) {

5 if (err || response.files.length === 0) {

6 console.log(’File does not exist’);

7 reject(err);

8

9 } else {

5https://www.google.com/drive/, visited on 04/01/2018

6https://developers.google.com/drive/, visited on 04/01/2018

59

https://www.google.com/drive/
https://developers.google.com/drive/

3. Implementation

10 fulfill(response.files [0].id);

11 }

Listing 3.14: Get specific file id in Google Drive

• Update files: One possibility to update a file is to move a file between
folders.
Firstly, the existing parents of the file will be retrieved via file id and
after then the file will be moved to a specific folder via folder id. This
can be seen in Listing 3.15.

1 service.files.get({

2 auth: auth ,

3 fileId: fileId ,

4 fields: ’parents ’

5 }, function (err , file) {

6

7 // Move the file to the new folder

8 let previousParents = file.parents.join(’,’);

9 service.files.update ({

10 fileId: fileId ,

11 addParents: folderId ,

12 removeParents: previousParents ,

13 fields: ’id , parents ’,

14 auth: auth

15 }, function (err , file) {

16 if (err) {

17 console.error(err);

18 } else {

19 cb(url);

20 }

21 });

22 });

Listing 3.15: Move file to a specific folder in Google Drive

Generation of Google Sheets

After basic Google Drive operations are made, the information is shared via
Google Spreadsheets7. Google Spreadsheets are very useful, because there
it is possible to filter specific rows and information.

7https://developers.google.com/sheets/, visited on 04/01/2018

60

https://developers.google.com/sheets/

3. Implementation

Google Sheets API8 provides a lot of possibilities to make basic operations
and format a Google Spreadsheet.

Basic Google Spreadsheet operations include:

• Create spreadsheets: For the creation of a spreadsheet, a title, tab title
and an authentication are needed. It is created at the basic folder of
Google Drive. After the creation, a file can be moved to a specific
folder via Google Drive API, as described earlier.

• Update values of spreadsheets: With a given spreadsheet id, values
and formatting information (e.g. value input option must be “RAW”
when the spreadsheet contains formulas) of a specific spreadsheet can
be updated.

• Batch update: With this operation, one or more requests can be applied
to the spreadsheet. Before all operations are executed, the operations
are checked. After applying all requests, some of them can contain
replies with important information for further use. An example for this
is when a tab is added to a spreadsheet, the response of this operation
contains the new sheet id of this tab.

• Get spreadsheets: With a given spreadsheet id, information about this
spreadsheet can be gathered. The response contains information about
the title, basic formatting, the contained sheets and their formatting
and URL of the spreadsheet.

Following basic sheet operations are available:

• Add sheets: Sheets API provides the possibility to add tabs in a Google
Spreadsheet on a specific position (specified by index, the value 0

indicates the first position).
• Delete sheets: With a given sheet id, a tab can be deleted. When there

is no tab with such an id or it is the last tab in the whole Google
Spreadsheet, an exception occurs. A Google Spreadsheet must contain
at least one sheet.

With Google Sheets API, the following operations for formatting are possible,
as can be seen in Google (2018), and used in this project:

8https://developers.google.com/sheets/api/, visited on 04/01/2018

61

https://developers.google.com/sheets/api/

3. Implementation

• User entered format: With this operation, a specific cell can be updated.
There are the following possibilities:

– Background colour: This colour is given in red, green and blue
values (e.g. red: 1.0, green: 1.0, blue: 0 represents yellow).

– Text format: Foreground colour, font size, font family, underlining,
strikethrough, italic and thickness can be edited (e.g. fontSize: 11,
bold: true).

– Horizontal alignment: The possibilities are left, center and right.
– Vertical alignment: The opportunities are top, middle and bottom.
– Wrap strategy: There are several ways to define the wrap strategy:

∗ Wrap: Lines that are longer than the cell will be wrapped and
not clipped.

∗ Clip: When lines are longer than the cell, the word will be
clipped.

∗ Overflow cell: When lines are longer than the cell, the word
will be continued in the next cell unless in the next cell is also
text, then it is the same command as clip.

– Number format: The format of the cell can be specified. In order
to sort the date in Google Spreadsheet, the type date is used with
the pattern ”dd.mm.yyyy hh:mm”. Other possibilities are percent,
currency, date, number and text.

– Borders: Top, left, right and bottom borders can be defined.
– Padding: Top, left, right and bottom paddings can be defined.

• Update dimension properties: With this property, the height (if a row)
or width (if a column) of the cell can be defined in pixels.

• Auto resize dimension: Based on the content of the cells, they will be
resized to see all needed information.

• Delete dimension: With this operation, unused columns and rows can
be deleted.

• Merge cells: Cells can be merged in Google Spreadsheet. Either all
given cells in a range are merged (with MERGE ALL) or only the
columns and not the rows are merged (with MERGE COLUMNS).

• Update values: There exists two types to describe the data. When the
Google Spreadsheet only contains raw data or when formulas are
used, the types RAW and USER ENTERED must be defined.

• Frozen rows: This property provides the possibility to freeze one or

62

3. Implementation

more rows of a Google Spreadsheet.
• Frozen columns: This property provides the possibility to freeze one

or more columns of a Google Spreadsheet.
• Basic filter: With this operation, a basic filter can be enabled to sort the

content of each column. In order to sort dates, the number format of
the column must be changed to the type date and a specified pattern.

There are also a lot of other possibilities to work with Google Spreadsheets
like specifying and embedding a chart, but not used in this project.

Writing Emails

Beside the possibility of generating Google Spreadsheets and adding it to a
specific Google Drive folder, there are also other ways to publish information
like writing emails via Node.js.

Nodemailer9 is a module for Node.js applications for sending emails. An
implementation can be seen in Listing 3.16.

“sendEmail” represents the function call for sending emails. After sending
an email, the function returns to the callback and then the process will be
finished.

1 IEmail.sendEmail(

2 "Admin",

3 "admin@gmail.com",

4 mail_addresses ,

5 subject ,

6 "HTML only ...",

7 html ,

8 replyto ,

9 error => {

10 process.exit()

11 }

12);

13

14 let nodemailer = require(’nodemailer ’);

15 let smtpTransport = require(’nodemailer -smtp -transport ’);

9https://nodemailer.com/about/, visited on 04/01/2018

63

https://nodemailer.com/about/

3. Implementation

16 let transport = nodemailer.createTransport(smtpTransport(config

.aws_ses));

17

18 function sendEmail (from_name , from_address , to_addresses ,

subject , plaintext , htmltext , replyto , cb)

19 {

20

21 var mailOptions = {

22 from: from_name + ’ <’ + from_address + ’>’, // sender

address

23 to: to_addresses , // list of receivers e.g: ’test@test.at ,

test12@test.at’

24 subject: subject , // Subject line

25 text: stripHtmlTags(htmltext),// plaintext body

26 html: htmltext // html body

27 };

28

29 if(replyto !== undefined && replyto !== null)

30 mailOptions.replyTo = replyto;

31

32 transport.sendMail(mailOptions , function(error) {

33 if (error) {

34 console.log(error);

35 if (cb) {

36 cb(error);

37 }

38 }

39 else {

40 console.log("Email successfully sent");

41 if (cb !== undefined) {

42 cb();

43 }

44 }

45 });

46 }

Listing 3.16: Generating emails

64

3. Implementation

Writing Slack messages

There is also another opportunity to publish information, because in this
project, Slack10 is used for intern project communication.

Slacknode11 is a module for Node.js applications to send messages in Slack.
An implementation can be seen in Listing 3.17.

1 let slackNode = require(’slack -node’);

2 let slack = new slackNode(config.slack_api_key);

3

4 slack.api(’chat.postMessage ’, {

5 text: slack_message ,

6 channel: ’#statistiken ’,

7 username: config.environment + "-statistiken"

8 }, (err , response) => {

9 if (err) {

10 console.err(err);

11 }

12 process.exit();

13 }

14);

Listing 3.17: Generating slack messages

This service is used, when a new report is updated. Figure 3.15 shows
written slack messages after several updates of different reports.

3.4.2. External communication

There exists already a so-called administration page, newly developed in
Angular 5, where the logged and analysed data will be presented.

In this web application, information which is disseminated to the general
public is published like time series of followers counts.

10https://https://slack.com/, visited on 04/01/2018

11https://www.npmjs.com/package/slack-node, visited on 04/01/2018

65

https://https://slack.com/
https://www.npmjs.com/package/slack-node

3. Implementation

Figure 3.15.: Generated slack messages

66

3. Implementation

Integration in Angular application

One way to publish time series of followers and rankings are highcharts12.
Highcharts are interactive JavaScript charts for web applications.

Angular highchart13 is especially developed for Angular web applications
and is used in this project, as can be seen in Listing 3.18.

In this implementation, time series of the followers of a specific team are
requested. After the response from the API is received, the data attribute of
the Angular highchart is filled with this data.

Also, the range selector is adjusted to fulfil the requirements of this project.
1 this.apiService.getFollowers(this.collection , this.id ,

2 start_timestamp , end_timestamp).subscribe(ret => {

3

4 const followers = [];

5 for (let i = 0; i < ret[’data’][’followers ’]. length; i++)

{

6 const entry = [];

7 entry.push(ret[’data’][’followers ’][i].time , ret[’data’

][’followers ’][i]. followers);

8 followers.push(entry);

9 }

10 this.stock = new StockChart ({

11 rangeSelector: {

12 buttons: [{

13 type: ’day’,

14 count: 1,

15 text: ’1T’

16 }, {

17 type: ’week’,

18 count: 1,

19 text: ’1W’

20 }, {

21 type: ’month’,

22 count: 1,

23 text: ’1M’

24 }, {

25 type: ’ytd’,

12https://www.highcharts.com, visited on 04/01/2018

13https://www.npmjs.com/package/angular-highcharts, visited on 04/01/2018

67

https://www.highcharts.com
https://www.npmjs.com/package/angular-highcharts

3. Implementation

26 text: ’Jahr’

27 }, {

28 type: ’year’,

29 count: 1,

30 text: ’1J’

31 }, {

32 type: ’all’,

33 text: ’Alles’

34 }],

35 inputEnabled: false ,

36 selected: 5

37 },

38 title: {

39 text: ’Followers vom SV Lafnitz ’

40 },

41 series: [{

42 name: ’Followers ’,

43 data: followers

44 }]

45 });

46 });

Listing 3.18: Angular highchart

68

4. Results

In this chapter, the outcome of this thesis will be presented, after the
implementation was explained in the previous chapter.

This section shows the results of all questions that were mentioned in
Chapter 1.

4.1. Reports

In order to answer questions about the activities of moderators of football
teams in the frontend and activities of app users in the Android- and iOS
app, reports must be generated.

The following reports are generated:

• News list report: Contains all news articles posted in each calendar
week.

• Future games report: Contains all games in each calendar week until
next week.

• Game statistics report: Contains general game statistics of each team.
• Matchday analysis: Contains game specific details and activities of

moderators.
• Facebook report: Contains all Facebook posts of a team in relation to

this project in each calendar week and in the current season.
• Month rankings report: Contains the best app users of each month.
• Rankings report: Contains the best app users of the season.
• Team statistics report: Contains general team statistics in each calendar

week.

69

4. Results

• Sales report: Contains information of the relation between each team
and this project and contact information of each team.

• Emergency list report: Contains live information about game specific
details and activities of moderators.

All these mentioned Google Spreadsheets were uploaded to one of the
folders in Figure 4.1.

In this section, an overview about these mentioned reports is given.

News list report

This report is updated each day and contains a list of all news articles that
were written in each week. The whole report consists of one tab per week.
All these tabs are saved in one Google Spreadsheet.

Such a report can be seen in Figure 4.2 and consists of the following infor-
mation:

• number: Consecutive number to see how many teams have shared a
news article and how many teams are public accessible.

• team: Contains the team name.
• league: The league name of the team.
• state: The state name, if the league takes place in one state.
• country: The country name of the league.
• count of news articles shared in the current season
• count of news articles shared in the current calendar week
• dates of shared news articles: Contains all dates of shared news articles

in each calendar week.
• titles of shared news articles: Contains all titles of shared news articles

in each calendar week.
• authors of shared news articles: Contains all authors of news articles

in each calendar week.
• hits of Android app users: How many users have viewed each news

article in the Android app?
• hits of iOS app users: How many users have viewed each news article

in the iOS app?

70

4. Results

Figure 4.1.: Google Drive folders

71

4. Results

Figure 4.2.: News report (Google Spreadsheet)

• overall hits: How many users have clicked on each news article with
the Android and iOS app?

Future games report

This report is updated every 10 minutes and contains a list of all games that
take place in the last, current and next week. The whole report consists of
one tab per week. All these tabs are saved in one Google Spreadsheet.

This report can be seen in Figure 4.3 and is filled with the following data:

• kick-off of the game: Contains the start date of a match.
• country: The country name of the league.
• state: The state name, if the league takes place in one state.
• league: When there exists a more precise information about the sub-

league in the backend (e.g. when the sub-league is “Regionalliga
Mitte”, the league would be “Regionalliga”).

• sub-league: The league name of the game.

72

4. Results

Figure 4.3.: Future games report (Google Spreadsheet)

• table URL: Contains the table URL of the Austrian football association.
On this page, official data about a league can be found and checked if
it is similar to the data of this project.

• home team: Contains the home team of this match.
• away team: Contains the away team of this match.
• visits: How many users have clicked on this game in the Android and

iOS app?
• overtime information: Is overtime possible in a game?
• cancellation information: Contains information about the cancellation

of a football game.
• teams without games: Contains team names which do not have a game

in a specific week.

Game statistics report

This report consists of game statistics and with this information, interesting
coherences can be found.

The following statistics are calculated for the current season:

73

4. Results

• team: Contains the team name.
• league: The league name of the team.
• state: The state name, if the league takes place in a state.
• country: The country name of the league.
• victory (most used formation): Contains information about the most

used formation, when the team wins a game (e.g. 5x: 4-4-2).
• draw (most used formation): Contains the most used formation, when

the result of a game is a draw.
• defeat (most used formation): Contains the most used formation, when

the team loses a game.
• home goals: Contains the sum of all home goals.
• away goals: Contains the sum of all away goals.
• ratio between home and away goals: Compares the sum of all home

with the sum of all away goals. When there is a huge gap between
home and away goals, this will be mentioned.

• goals in the first half: Consists of the sum of all goals during the first
half.

• goals in the second half: Consists of the sum of all goals during the
second half.

• ratio between first half and second half goals: Compares the sum of all
goals during the first half with the sum of all goals during the second
half. When there is a huge gap between them, this will be mentioned.

• sum of goals: Finally, the sum of all achieved goals in this season is
given.

Matchday analysis

There is one spreadsheet in every week and it consists of a list of all games
that were in the current week.

Such a report can be seen in Figure 4.4 and contains this information:

• number: All games are numbered consecutively.
• start of the match: Contains the kick-off time of the game.
• team: Contains the two teams of the match.
• country: The country name of the league of the game.
• state: The state name, if the league takes place in one state.

74

4. Results

Figure 4.4.: Matchday analysis (Google Spreadsheet)

• league: The league name of the game.
• moderation type: There is a differentiation between team moderation,

fan moderation, redactional moderation and standard moderation.
• sports venue: Which team plays at home and which team plays away?
• end score: Contains the end score of the game (if the game has an end

score).
• only end score entered: When only the end score and no activities

were entered.
• delayed evaluation at event start: Contains information about the

delayed evaluation flag. When it is true, the evaluable questions are
answered not during but after the game. The event start in the Android
and iOS app takes place several hours before the match starts, at this
time moderators have the possibility to ask questions.

• delayed evaluation at game start: Information about the delayed eval-
uation flag at this time.

• moderator activity during the game: There is a differentiation between
standard moderated, absent, weak activity, mediocre activity and
strong activity.

• kick-off: Which moderator started at which time the football game?

75

4. Results

• end first half: Which moderator ended when the first half of the
football game?

• start second half: Which moderator started at which time the second
half of the football game?

• end second half: Which moderator ended when the second half of the
football game?

• date of the game creation: When was the game created in the frontend?
• moderator of the game creation: Which moderator created the game

in the frontend?
• game edited: Which moderator edited when the game?
• match sponsor changed: Was the match sponsor changed? What is the

new match sponsor?
• line-up entered: Was the line-up entered? If yes, which moderator

entered the line-up at which time?
• automated questions: How many automated questions were posted?
• manual entered questions: How many questions were manually added

to the game?
• questions evaluated: How many questions were evaluated at which

time and which moderator evaluated them?
• goal: Which moderator entered at which time goals?
• own goal: Which moderator entered at which time own goals?
• yellow card: Which moderator entered at which time yellow cards?
• red card: Which moderator entered at which time red cards?
• yellow-red card: Which moderator entered at which time yellow-red

cards?
• injury: Which moderator entered at which time injuries?
• substitution: Which moderator entered at which time substitutions?
• top-chance: Which moderator entered at which time top-chances?
• top-parade: Which moderator entered at which time top-parades?
• top-tackle: Which moderator entered at which time top-tackles?
• offside goal: Which moderator entered at which time offsides?
• penalty goal: Which moderator entered at which time penalty goals?
• penalty miss: Which moderator entered at which time penalty misses?
• automated posts: How many automated posts were added automati-

cally?
• manual entered posts before and after the game: How many posts

were written at that time?

76

4. Results

• manual entered posts during the game: How many posts were written
at that time?

• moderators: Consists of a collection of all moderators who have done
anything before, during and after the game

• count of news articles in the last seven days: How many news articles
were written during the last week?

• date of the last news article: At which time was the last news article
written?

• last news title: What was the last title of a news article?

Facebook report

This report is updated each day and consists of an overview about all
Facebook posts which a team has posted in association with this project.
The whole report consists of one tab per week. All these tabs are saved in
one Google Spreadsheet.

There is also another Facebook report which consists of information about
all posts of a team per season and all teams that have not posted anything
about this project.

Such a report can be seen in Figure 4.5 and consists of the following infor-
mation:

• country: The country name of the team.
• state: The state name, if the league takes place in one state.
• league: The league name of the team.
• Facebook hyperlink of the team site: Contains a hyperlink to the

Facebook team site. This site will be examined.
• all shared postings on Facebook: Here all posts that are written in

association with this project are collected.
• all dates of the Facebook sharings: Here dates of all posts that are

written in association with this project are collected.
• Facebook message: When a shared message on Facebook contains the

keyword of this project.

77

4. Results

Figure 4.5.: Facebook report (Google Spreadsheet)

• Facebook link: This classification contains hyperlinks about games,
rankings, news, line-up, question, post and website. When the shared
link cannot be classified it one of these mentioned things it can be
found in miscellaneous.

• Facebook attachment: When an attachment about this project was
shared.

• all combinations: Here all combinations of message, link and attach-
ments are calculated (e.g. message and link were shared on Facebook).

A description of how this data is gathered is mentioned in Subsection
3.3.3.

Month rankings report

This report is sent out on the first day of each month and contains three
tabs. In the first tab a league ranking, in the second tab a state ranking and
in the third tab a country ranking can be found.

In the league ranking, the 10 best app users of each moderated league can
be found. There is also a state and country ranking with the 10 best app

78

4. Results

users of each moderated state and country. The 10 best app users are the
users with the most points.

This month ranking contains the best app users who have answered ques-
tions in the Android- and iOS app during the last month.

Rankings report

This report is sent out on the first day of each month and contains two tabs.
In the first tab a league ranking and in the second tab a team ranking can
be found.

In the league ranking, the 30 best app users of each moderated league can
be found. There is also a team ranking with the 15 best app users of each
moderated team. These are the users with the most points.

This rankings report contains the best app users of the current season. Such
a ranking can be seen in Figure 4.6. In order to maintain data protection,
the names and email addresses of the best app users are removed.

The month rankings and rankings report contain the following informa-
tion:

• team: Contains the team name (only in the team ranking).
• league: Contains the league of the team (in the league and month

ranking).
• state: The state name, if the league takes place in one state (in the

league and month ranking).
• country: The country name of the league (in the league and month

ranking).
• ranking position: The ranking position of the best users is given.
• first- and last name: The first- and last names of the best users are

given.
• email address: The email addresses of the best users are given.
• points: The collected points in the Android and iOS-App before, during

and after a football game of the best users, by answering questions,
are given.

79

4. Results

Figure 4.6.: Rankings report (Google Spreadsheet)

80

4. Results

Team statistics report

This report is updated each day and contains a list of all teams. The whole
report consists of one tab per week. All these tabs are saved in one Google
Spreadsheet.

• team: Contains the team name.
• league: The league name of the team.
• state: The state name, if the league takes place in one state.
• country: The country name of the league.
• status activation: Is this team public accessible in the app (test-team or

not)?
• moderation: There is a differentiation between team moderation, fan

moderation, redactional moderation and standard moderation.
• team logo uploaded: Is a team logo uploaded or not?
• moderators: Consists of all enabled moderators of this team.
• followers: Contains the followers count of the team in the Android-

and iOS app.
• users in season ranking: Contains the count of all users who answered

at least one question in the current season.
• standard moderated (home): Contains the count of all standard mod-

erated games at home in the current season.
• absent (home): Count of all games at home in the current season where

the moderator was classified as absent.
• weak moderation (home): Count of all games at home in the current

season where the moderation was classified as weak moderation.
• mediocre moderation (home): Count of all games at home in the

current season where the moderation was classified as mediocre mod-
eration.

• strong moderation (home): Count of all games at home in the current
season where the moderation was classified as strong moderation.

• standard moderated (away): Contains the count of all standard moder-
ated games at away in the current season.

• absent (away): Contains the count of the moderator activity classifica-
tion for the away team.

• weak moderation (away)
• mediocre moderation (away)

81

4. Results

• strong moderation (away)
• standard moderated (overall)
• absent (overall): Contains the count of the moderator activity classifi-

cation for the home and away team.
• weak moderation (overall)
• mediocre moderation (overall)
• strong moderation (overall)
• count of news articles in this season
• date of the last news article: With this information it can be said how

active a moderator writes news entries.
• count of players in the squad: With this information it can be said that

the data is up-to-date or not.
• date of the last change of one player in the squad
• trainer name: Contains the trainer name of this team, when it was

entered in the frontend.
• Twitter: Contains the Twitter page of this team, when it was entered

in the frontend.
• Instagram: Contains the Instagram page of this team, when it was

entered in the frontend.
• YouTube: Contains the YouTube account of this team, when it was

entered in the frontend.
• main sponsor: Contains the count of the main sponsors and the main

sponsor names, when a main sponsor was entered in the frontend.
• premium sponsor: Contains the count of the premium sponsors and

the premium sponsor names.
• standard sponsors: Contains the count of the standard sponsors and

the standard sponsor names.

Sales report

This report is sent out once a week. The whole report consists of one tab
per week. All these tabs are saved in one Google Spreadsheet.

It contains the following information of each team:

• country: The country name of the team.
• state: The state name, if the league takes place in one state.

82

4. Results

• league: The league name of the team.
• sub-league: The sub-league of the team, when there is a sub-league

(e.g. the sub-leagues of ”Regionalliga“ are ”Regionalliga Mitte“, ”Re-
gionalliga Ost“ and ”Regionalliga West“).

• test-team: Is this team public accessible in the app or at the moment a
test-team?

• start date publication: When was this team enabled for public use in
the app?

• end date publication: When was this team disabled for public use in
the app?

• moderated: Has this team a moderator or not?
• start date moderation: At which time started the moderation of a

team?
• end date moderation: At which time ended the moderation of a team?
• name, phone number and email of the chairman of the club, of the

person responsible for this project in the club and of the moderators
of the club

Emergency list report

This emergency report is updated every 10 minutes in a Google Spreadsheet.
It is used on a matchday to observe the current status of each game.

The whole report consists of one tab per day in a specific week, when football
matches take place. All these tabs are saved in one Google Spreadsheet.

Such a report can be seen in Figure 4.7 and consists of the following infor-
mation:

• number: All games are numbered consecutively.
• kick-off: Contains the kick-off time of the game.
• team: Contains the two teams that clash each other.
• country: The country name of the league of the game.
• state: The state name, if the league takes place in one state.
• league: The league name of the game.
• moderation: There is a differentiation between team moderation, fan

moderation, redactional moderation and standard moderation.

83

4. Results

Figure 4.7.: Emergency list report (Google Spreadsheet)

• sports venue: Which team plays at home and which team plays away?
• current minute: Contains the current minute of a game (e.g. 15 - 30

(18))
• current score: Contains the end score of the game (if the game has an

end score).
• first half end score: Contains the end score of the first half.
• second half end score: Contains the end score of the second half.
• end score after the first half of the overtime
• end score after the second half of the overtime
• end score after the penalty shootout
• league URL: Contains the table URL of the league, where the match

takes place, from the Austrian football association.
• only end score entered: When only the end score and no activities

were entered.
• kick-off information: Which moderator started when the football

game?
• end first half: Which moderator ended when the first half of the

football game?
• start second half: Which moderator started when the second half of

84

4. Results

the football game?
• end second half: Which moderator ended when the second half of the

football game?
• start first half of the overtime: Contains moderator information and

the timestamp of this action.
• end first half of the overtime: Contains moderator information and the

timestamp of this action.
• start second half of the overtime: Contains moderator information and

the timestamp of this action.
• end second half of the overtime: Contains moderator information and

the timestamp of this action.
• start penalty shootout: Contains moderator information and the times-

tamp of this action.
• end penalty shootout: Contains moderator information and the times-

tamp of this action.
• line-up entered: Was the line-up entered? If yes, which moderator

entered the line-up at which time?
• questions evaluated: How many questions were evaluated at which

time and which moderator evaluated them?
• goal: Which moderator entered when the goal activities and which

text was entered?
• own goal: Which moderator entered when the own goal activities and

which text was entered?
• all goals entered: Checks if the final score corresponds with the entered

goal and own goal activities.
• yellow card: Which moderator entered when the yellow card activities

and which text was entered?
• red card: Which moderator entered when the red card activities and

which text was entered?
• yellow-red card: Which moderator entered when the yellow-red card

activities and which text was entered?
• injury: Which moderator entered when the injury activities and which

text was entered?
• substitution: Which moderator entered when the substitution activities

and which text was entered?
• top-chance: Which moderator entered when the top-chance activities

and which text was entered?

85

4. Results

• top-parade: Which moderator entered when the top-parade activities
and which text was entered?

• top-tackle: Which moderator entered when the top-tackle activities
and which text was entered?

• offside goal: Which moderator entered when the offside activities and
which text was entered?

• penalty goal: Which moderator entered when the penalty goal activi-
ties and which text was entered?

• penalty miss: Which moderator entered when the penalty miss activi-
ties and which text was entered?

• end score two hours after game start correct: Contains a query to check
the end score very fast.

• all goals entered two hours after game start: Contains a query to check
if all goals were entered.

• questions evaluated two hours after game start: Contains a query to
check if all questions were evaluated.

• users in ranking: Contains the count of all playing users who has
answered at least one question in the Android- and iOS app.

• viewers: Contains the count of all viewers of the game in the app.
• match sponsor changed: When the match sponsor is changed, the

sponsor name is displayed.
• Facebook site: Contains the Facebook site of the team, when there is

one entered in the frontend.
• Facebook sharings between event start and event end: Contains hyper-

links of all Facebook sharings on the matchday to check if the team
uses this project’s sharing possibilities.

• date of these Facebook sharings
• count of these Facebook sharings

4.2. Frontend

There is already an existing administration web application, where users,
teams, leagues and templates can be managed. This administration web
application was extended with the logged information mentioned in Section
3.2.

86

4. Results

In this chapter, the integrated data in the frontend will be described.

News views

After the logging of news articles is described in 3.2.2 and how this data,
which should be displayed, is explained in 3.3.1, this information can be
viewed in the Angular application.

A news article is displayed with the information of the count of the users
who have viewed this specific article. A news article is viewed when app
users have clicked on a notification, on a deep link and when an app user
clicks on a news article in the Android- and iOS app.

Sponsor clicks

The information about sponsor clicks is similar handled as the news views
information. The logging is mentioned in 3.2.2 and the calculated data is
described in 3.3.1.

With this data it can be said how many Android- and iOS app users have
clicked on each main, premium and standard sponsor.

This data is displayed beside each sponsor name.

Time series

The logging of time series is described in 3.2.3 and the calculation of the
displayed data in 3.3.1.

These time series are presented for:

• Followers: Contains the followers count.

– Team
– League

• Rankings: Contains the count of users (with registration) and anony-
mous users in ranking.

87

4. Results

Figure 4.8.: Angular 5 application displaying time series of followers

– Game: Time series of each game ranking are displayed. Contains
additionally viewers and visits of a game in the Android- and
iOS app.

– Team: Time series of each team ranking are displayed.
– League: Time series of each league ranking are displayed.
– State: Time series of each state ranking are displayed.
– Country: Time series of each country ranking are displayed.
– Global: Time series of all app users is displayed.

An example for the outcome of time series of the followers of a specific team
can be seen in Figure 4.8.

88

5. Discussion

This chapter shows the discussion of all results that were presented in
Chapter 4.

5.1. Reports

Reports are generated to answer a lot of questions in relation to moderators
of football teams in the frontend and app users in the Android- and iOS
app of this project.

News list report

In order to answer the question how many news articles have been written
by moderators, a news report is generated.

It shows the activity of a moderator. When a moderator does not use
this service anymore, the support team of this project can react to such
problematic cases. News articles are very important to publish matchday or
injury related information. This report helps also to understand a football
club better, because every author of a news article can be seen.

Additionally, the importance of each team can be evaluated, because the
visits by Android- and iOS users and the overall visits are given.

89

5. Discussion

Future games report

In the future games report, information about all games which take place in
every calendar week, until next week, can be found.

With this information it can be examined if a moderator of a team has
created future games in the frontend of this project. It is possible to check
the cancellation status of a game, the visits of this game in the apps and if
overtime is possible.

Teams without games in a specific week can also be double-checked with a
hyperlink of the Austrian football association, which contains official data.

Game statistics report

With the data of this report, interesting statistics about games can be deliv-
ered, e.g. home and away goals or first half and second half goals can be
compared. When there are huge gaps between these goals, this information
can be highlighted.

These statistics can be integrated in packages for football teams they can get
when they are willing to pay something.

Matchday analysis

This report consists of information about matchdays and is sent out after
each matchday.

With this information, the support team of this project can check if the
moderators of the teams have done all things they must do before, during
and after a game in the frontend like evaluating questions, providing goal
scorers, entering the line-up and a lot of other things fast and easily.

Also, an evaluation of the activities of a moderator is given, there is a
classification in absent, standard moderated, weak moderation, mediocre
moderation and strong moderation. Moderators with many activities before,
during and after a game can be honoured.

90

5. Discussion

Facebook report

With this data, Facebook posts of all teams which are part of this project
can be examined per calendar week. There is also the possibility to check
all Facebook posts of this season and if this project is mentioned.

Teams without posting anything can be detected and it can be suggested to
use the sharing possibilities this project gives in order to share things on
Facebook like publishing a news article.

After receiving this report, the importance of each team can be rated, because
it is possible to see all people’s reactions to these Facebook posts. It is also
possible to see how many people liked the Facebook page of a specific
team.

The most popular Facebook posts can also be examined. The most popular
posts are these with the most reactions (like, love, haha, wow, sad, angry,
shares) of people on Facebook. The shared hyperlinks are classified as
mentioned in Section 4.1.

Month rankings report

This month ranking shows 10 app users with most points in every league,
state and country of this project’s Android and iOS app during the last
month. These users must have answered at least one question during the
last month.

With these results, app users can be honoured that were highly motivated to
use the app in order to answer questions in the last month. The best users
can be asked to be a fan moderator of a specific team or a whole league.
There is also the possibility to redactional moderate a team.

Rankings report

This rankings report shows 30 app users with most points in league ranking
and 15 app users with most points at a team ranking during the whole

91

5. Discussion

season. These users must have answered at least one question during the
season.

At the end of the season, the best fans of a team can be acknowledged with
awards and they can also be asked to redactional moderate a team or be a
fan moderator.

Team statistics report

With this report, the whole activities of a moderator in the frontend can be
evaluated.

This activity can be rated as follows:

• News articles: How many news articles are written during the whole
season?

• Facebook sharings: How many fans has a team on Facebook? How
many Facebook sharings are written about this project during the
whole season and what are the reactions of fans to these posts?

• Activities on matchday: What has a moderator done during a season
on each matchday? Did he provide a live ticker, interesting questions
and answers to these questions, write general posts, enter the line-up
and many other activities?

It is also possible to check if a team logo is uploaded, which moderators of
a football club are enabled, how many followers a team has, which sponsors
are entered and a lot of other information.

In order to provide up-to-date squad data, the last modification of a squad
can be checked and how many players are part of each team.

Sales report

This report consists of sales-oriented information, e.g. start and end date of
the moderation of a team. It also contains all contact details of a team like
name, phone number and email of the representative, responsible person of
a football club for this project and the enabled moderators.

92

5. Discussion

It helps people of this project’s sales and support team in order to contact
teams when there are new features provided by the frontend or e.g. when
the responsible person for this project of a team did not do anything in the
frontend anymore.

Emergency list report

It is used on a matchday to observe the current status of each game. With
this list it is easy to detect errors very fast, because it is updated every ten
minutes.

The current score, half time score, end score, live ticker text and a lot of other
information can be checked about a specific game. With this information
it can be examined what a moderator has done on a matchday. It is also
possible to check Facebook posts of teams on a matchday.

This report helps to check whether a team moderator moderate the game of
his team live. Also, the quality of a live ticker can be evaluated, and the best
moderators can be honoured with this information.

5.2. Frontend

In this section, all statistics that are integrated in the existing Angular 5 web
application, called administration view, are discussed.

In order to publish the logged information, statistics about news views and
sponsor clicks and time series of followers and rankings are displayed.

News views

Every team can see how often a news article was visited by Android-, iOS-
and overall app users.

93

5. Discussion

With this data, they can evaluate the importance of this project for them and
can improve their performance. For example, when they see there are very
high access figures, teams can write more news articles.

Sponsor clicks

This project often receives requests from teams to share the following
information from the Android and iOS-app regularly:

• count of clicks on the information tab of a team: How many times was
the info tab of the team visited? In this tab, all premium, main and
normal sponsors are listed.

• count of sponsor clicks: How often have app users clicked on the
sponsor hyperlinks in the info tab of the team?

All this data is integrated in the administration view and with the informa-
tion of this thesis, all these questions can be answered, and this information
can be sold.

Consequently, also the teams can sell this reports to their sponsors.

Time series

An example of the results of this thesis can be seen in Figure 4.8, where
time series of the followers of a specific team are displayed.

With such information it is possible to make historical and predictive analy-
sis of this team. In this example, the followers count is continuously rising
and shows that the moderator of the team “SV Lafnitz” does a quite good
job.

After taking a closer look on the work of the moderator of the team, it is
clear why this occurs. He shares daily news articles and other social media
like Facebook.

He also asks interesting questions before, during and after a football game
and provides a live ticker with entered goals, own goals, substitutions and

94

5. Discussion

other activities during a game. He also updates the squad of the team
regularly.

95

6. Conclusions

Finally, all conclusions are presented in this chapter. In order to summarize
this thesis, the research questions will be evaluated, raised problems will be
given and future work will be described.

6.1. Evaluation of the Research Questions

In this section, the research questions, which were raised in the beginning
of this thesis, are evaluated:

• “How and with which components is it possible to save a great amount
of user data and analyse it under the usage of the current State of the
Art?”
The outcome of a research about useful components was to use Ama-
zon Web Services, when they are already in use. In such cases, the
process and data flow can be optimised very easily.
A very smart process was developed in order to achieve this, the data
flow is presented in Figure 3.10.
The Android- and iOS apps log the in Chapter Appendix A displayed
actions to track all actions all users do in the app.
The apps send these actions to the backend’s API after 50 logged en-
tries, when the user closes the app and when the logout is used. After
receiving this data at the backend, it is published to an Amazon Web
Service. Amazon Simple Queue Service (SQS) takes these messages.
In Apache Storm, a spout is defined which waits for messages from
Amazon SQS. After receiving such messages, they are handled in the
defined bolt.
There are three possible scenarios handled in the bolt:

96

6. Conclusions

– When receiving sponsor clicks actions, they are saved in the
analytics-MongoDB with the userid in order to obtain the sum of
all clicks on a specific sponsor via MongoDB.

– Also, when receiving news viewing actions, they are saved in
the analytics-MongoDB to obtain how many users have seen a
specific news article.

– All actions are transported to Amazon Kinesis Firehose which
stores the data in Amazon S3 buckets in a structured way. There
are files containing all logged actions per hour, day, month and
year.

In order to query Amazon S3 buckets, also an Amazon Web Service is
used. With Amazon Athena it is possible to access Amazon S3 buckets
directly and execute queries on them. Amazon Athena is based on
Presto, a distributed SQL query engine for big data.

• “How is it possible to save time series and display them with time
series analysis?”
Time series are collected for rankings (game, team, league, state, coun-
try and global) and followers (team and league). With time series it is
very easy possible to analyse this data. In order to make historical and
predictive analyse, a very intuitive solution must be found.
Time series are saved in a very efficient way in the analytics-MongoDB.
The game ranking will be checked every five minutes before and
after the game and in every minute during the game. When users
in ranking, anonymous users, viewers or visits have been changed
during this time, a new entry will be logged in the MongoDB.
Teams, leagues, states, countries and global rankings are checked every
hour and when it has been changed, the new entry will be logged.
Follower counts will also be checked and possibly logged every hour.
After saving time series of rankings and followers the data must be
displayed. During a research, a lot of possibilities to display such
data were found. A constraint was that Angular 5 was current in use.
Consequently, time series must be developed in Angular and not with
other frontend frameworks like ReactJS.
Finally, highcharts1 was selected. It provides very powerful ways

1https://www.highcharts.com

97

https://www.highcharts.com

6. Conclusions

to achieve this and is already in use by many big companies like
Facebook, Nokia and Visa. An example of time series displayed with
highcharts can be seen in Figure 4.8.

6.2. Limitations

The work of this thesis makes it possible to collect app actions. With more
collected data, e.g. after logging the Android-, iOS- and Web app for a
whole season, more analysis can be done. A big problem was that the new
season proceeded not until the begin of March. Consequently, there are not
many logged actions at the moment.

Another limitation was that the iOS app developers of this project have not
logged all actions, which are mentioned in Chapter Appendix A, yet.

When collecting data over a lot of games and over a season, the whole
process can be optimized. It is also possible that other interesting coherences
will be found in future. Also, clearer statements can be made after analysing
the logged information.

6.3. Future work

A lot of work has been done and a lot of work must be done in future in
order to fulfil the requirements of this project for having a great future.

Here a list of several future tasks will be mentioned that could be interesting
for this project:

• Clickstream analysis: A very huge topic will be clickstream analysis.
The path of an app user in the Android- and iOS app is already
tracked. This data could be analysed in order to optimize the app.
A possible outcome could be that almost all app users do not use a spe-
cific app function. Consequently, this function must be highlighted to
the user. Another interesting outcome would be that users try specific
things more often than other things like viewing the current ranking

98

6. Conclusions

during a game.

• Markov chain: A corresponding scientific topic would be the Markov
model. With a Markov chain it is possible to predict the next action of
a user.
In such a model there exists a set of states. In the context of this project,
possible states would be answering questions, clicking on the activities
tab in a game in the app etc. With the Markov chain, the probabilities
of the transition from one state to another state are calculated. The
received data could also be graphically processed in order to analyse
it better.

• Integration of live data from football games: This project will receive
live data from the Austrian Football Association. In detail this pack-
age contains information about teams, leagues, states, countries and
general player information.
With this data, moderators of football clubs must not spend that much
time in the frontend, because a lot of the work they have to do at the
moment will be automated. They do not have to create games in the
frontend and also all match specific activities like goals, own goals and
yellow cards will be loaded automatically. After loading these activities,
live questions, e.g. about the future score, can also asked automatically.

• Moderator ranking: With the logging information of this work, moder-
ator rankings could be created in order to award the best moderators.
When the best moderators receive prices, they would be highly moti-
vated to continue their good work and also other moderators would
be more encouraged to do more in the frontend.

• Integration of videos: A very nice feature for the future would be the
creation of a videos section. In that case fans would feel a closer con-
nection to their teams. Moderators could be awarded when uploading
such live videos in the frontend.

• Generate images: With the received information of this thesis, interest-
ing images could be created and afterwards shared on social media
(Facebook, Twitter, Instagram, YouTube) to increase the influence of

99

6. Conclusions

this project in public relation.
For example, general game statistics like the difference between first
half and second half goals in the current season could be published.

• Providing all collected information to teams: All teams, which are part
of this project, are quite likely interested in the evaluations, which are
collected for this thesis. When they are prepared to spend money for
receiving this information, the outcome could be really interesting for
the football teams.

• Calculate game statistics: After collecting a lot of game statistics like
goals, own goals, yellow cards and other activities, this data can be
analysed in many ways in order to deliver statistics about home and
away games. The outcome of such statistics could be unexpected and
surprising.

• Detect specific things: After providing a service for teams to report
statistics they would like to know this project can offer delivering these
statistics against the payment of a fee.

• Live evaluation: Another nice feature would be the live evaluation of
visitor numbers. In cases where many app users are currently online
in the Android- and iOS app, this information can be reported to the
apps. Based on current hits, premium, main and normal sponsors can
be displayed.

• Optimizing the generated reports: Over time, the requirements of this
project are changing, and also other information could be interesting
for reports.
Also, specific reports can be optimized. For example, the matchday
analysis report can be removed, because a lot of the data of this report
is integrated in the emergency list report which is updated every 10

minutes.

100

Appendix

101

Appendix A.

Logging in the app

All logged actions by the Android- and iOS apps ordered by relevant
categories can be found in this chapter.

Table A.1 shows all general app actions like open and close, login and logout
and many others.

action category id type timestamp sessionid
open app
close app
login app email
login app facebook
login app guest
logout app email
logout app facebook
logout app guest
register app email
register app facebook
register app guest
rate app android
rate app ios

Table A.1.: Logged app actions

Table A.2 shows all click actions a user does in the menu of the app.

102

Appendix A. Logging in the app

action category id type timestamp sessionid
click menu news
click menu events
click menu teams
click menu leagues
click menu settings

Table A.2.: Logged menu actions

Table A.3 shows all click actions a user does after receiving a notification.
The action “app open” is at same time possible.

action category id type timestamp sessionid
click notification newsid news
click notification eventid event
click notification eventid goal
click notification eventid end-rank
click notification info

Table A.3.: Logged notification actions

Table A.4 shows all deep link click actions of a user, e.g. when a moderator
shares a news article, he has written in the frontend, on Facebook and a
user clicks on this link. The “app open” activity is at same time possible.

action category id type timestamp sessionid
click deeplink newsid news
click deeplink eventid event
click deeplink teamid team
click deeplink eventid ranking-event
click deeplink teamid ranking-team
click deeplink leagueid ranking league

Table A.4.: Logged deep link actions

Table A.5 shows all click actions of a user in the settings menu item, when a
user tries to change the email, name, password or wants to give feedback.

103

Appendix A. Logging in the app

action category id type timestamp sessionid
click settings email
click settings name
click settings password
click settings feedback
click settings support

Table A.5.: Logged settings actions

Table A.6 shows all actions a user does with news. A news article is viewed
when the view time is equal or greater than 0.5 seconds. There is a possibility
to share a news article via Facebook or another method. For successfully
shared items via Facebook there exists a callback.

action category id type timestamp sessionid
view news newsid newsscreen
view news newsid teamscreen
view news newsid leaguescreen
open news newsid newsscreen
open news newsid teamscreen
open news newsid leaguescreen
click news newsid share
share news newsid facebook
share news newsid other

Table A.6.: Logged news actions

Table A.7 shows all actions a user does in relation with a football game in
the frontend.

104

Appendix A. Logging in the app

action category id type timestamp sessionid
view event eventid eventscreen
view event eventid teamscreen
view event eventid leaguescreen
open event eventid eventscreen
open event eventid teamscreen
open event eventid leaguescreen
click event eventid fanwall
click event eventid sponsor
click event eventid overview
click event eventid ranking
click event eventid change-team
click event eventid notifications
click event eventid lineup
click event eventid lineup-details
click event eventid ranking-details
click event eventid share
change event eventid change-team
change event eventid notifications
share event eventid facebook
share event eventid other

Table A.7.: Logged event actions

In Table A.8, all question actions can be found. When a user clicks on a
question, the type “details” is logged.

action category id type timestamp sessionid
view question questionid
click question questionid answer
click question questionid points
click question questionid details
click question questionid share
share question questionid facebook
share question questionid other

105

Appendix A. Logging in the app

Table A.8.: Logged question actions

In Table A.9, all post actions, a user does in the app, can be found.

action category id type timestamp sessionid
view post postid
click post postid share
share post postid
share post postid other

Table A.9.: Logged post actions

All activity actions can be seen in Table A.10. An activity in a game is a goal,
own goal, yellow card, red card, yellow-red card, injury, substitution, top
chance, top parade, top tackle, offside, penalty goal and penalty miss.

action category id type timestamp sessionid
view activity activityid
share activity activityid

Table A.10.: Logged activity actions

Table A.11 shows all team actions a user can do.

106

Appendix A. Logging in the app

action category id type timestamp sessionid
view team teamid
open team teamid event
open team teamid teams
open team teamid league
open team teamid news
click team teamid news
click team teamid events
click team teamid squad
click team teamid info
click team sponsorid sponsor
click team teamid table
click team teamid ranking
click team teamid notifications
click team teamid add
click team teamid remove
change team teamid notifications
share team teamid

Table A.11.: Logged team actions

In Table A.12, actions in relation with a sponsor are logged like clicking on
a sponsor.

action category id type timestamp sessionid
view sponsor sponsorid
click sponsor sponsorid
view page name

Table A.12.: Logged sponsor actions

Table A.13 shows all league actions that are logged.

107

Appendix A. Logging in the app

action category id type timestamp sessionid
view league leagueid
open league leagueid event
open league leagueid team
open league leagueid table
click league leagueid news
click league leagueid events
click league leagueid info
click league leagueid table
click league leagueid ranking
click league leagueid notifications
click league leagueid add
click league leagueid remove
share league leagueid

Table A.13.: Logged league actions

Within a game in the Android- and iOS app, ads are displayed. All ad
actions can be found in Table A.14 like viewing an ad.

action category id type timestamp sessionid
view ad adid
view ad notfound

Table A.14.: Logged ad actions

In the info tab, all social media channels and sponsors are listed. Also, all
clicking actions in this screen are logged, as can be seen in Table A.15.

108

Appendix A. Logging in the app

action category id type timestamp sessionid
click info teamid/leagueid ranking
click info teamid/leagueid table
click info teamid/leagueid homepage
click info teamid/leagueid facebook
click info teamid/leagueid twitter
click info teamid/leagueid email
click info teamid/leagueid instagram
click info teamid/leagueid youtube

Table A.15.: Logged info actions

109

Bibliography

Amazon Web Services (2018[a]). Cloud Products. url: https://aws.amazon.
com/products/?nc2=h_ql_p&awsm=ql-1 (visited on 03/06/2018) (cit. on
p. 18).

Amazon Web Services (2018[b]). What is Cloud Computing? url: https:
//aws.amazon.com/what-is-cloud-computing/?nc1=h_ls/ (visited on
03/01/2018) (cit. on p. 17).

Angular (2018[a]). Description. url: https://angular.io/guide/architecture
(visited on 03/03/2018) (cit. on p. 27).

Angular (2018[b]). Description. url: https://angular.io/resources (vis-
ited on 03/03/2018) (cit. on p. 27).

Apache Storm (2018[a]). Apache Storm. url: http://storm.apache.org/
(visited on 02/15/2018) (cit. on p. 21).

Apache Storm (2018[b]). Concepts. url: http://storm.apache.org/releases/
current/Concepts.html (visited on 02/15/2018) (cit. on p. 21).

Box, George P. et al. (2015). Time series analysis: Forecasting and Control. Fifth
Edition. John Wiley and Sons (cit. on p. 41).

Braude, Eric J. and Michael E. Bernstein (2016). Software Engineering: Modern
Approaches, Second Edition. second edition. Waveland Press (cit. on pp. 14,
15).

C Sharp Corner (2018). Top 5 Trending Front-End Frameworks In 2018. url:
https://www.c-sharpcorner.com/article/top-5-trending-front-

end-frameworks-in-2018/ (visited on 04/02/2018) (cit. on pp. 26, 27).
Chaniotis, Ioannis K., Kyriakos-Ioannis D. Kyriakou, and Nikolaos D. Tse-

likas (2014). Is Node.js a viable option for building modern web applications?
A performance evaluation study. Springer (cit. on p. 24).

Chari, Kaushal and Manish Agrawal (2017). Impact of incorrect and new require-
ments on waterfall software project outcomes. Springer Science+Business
Media New York 2017 (cit. on p. 14).

110

https://aws.amazon.com/products/?nc2=h_ql_p&awsm=ql-1
https://aws.amazon.com/products/?nc2=h_ql_p&awsm=ql-1
https://aws.amazon.com/what-is-cloud-computing/?nc1=h_ls/
https://aws.amazon.com/what-is-cloud-computing/?nc1=h_ls/
https://angular.io/guide/architecture
https://angular.io/resources
http://storm.apache.org/
http://storm.apache.org/releases/current/Concepts.html
http://storm.apache.org/releases/current/Concepts.html
https://www.c-sharpcorner.com/article/top-5-trending-front-end-frameworks-in-2018/
https://www.c-sharpcorner.com/article/top-5-trending-front-end-frameworks-in-2018/

Bibliography

Choetkiertikul, Morakot et al. (2017). Predicting Delivery Capability in Iterative
Software Development. IEEE (cit. on p. 6).

Evans, Shawna (2017). Angular JS For Busies. CreateSpace Independent
Publishing Platform (cit. on p. 27).

Google (2018). REST Resource: spreadsheets. url: https : / / developers .

google.com/sheets/api/reference/rest/v4/spreadsheets (visited
on 03/20/2018) (cit. on p. 61).

Iqbal, Muhammad Hussain and Tariq Rahim Soomro (2015). Big Data Analy-
sis: Apache Storm Perspective. International Journal of Computer Trends
and Technology (IJCTT) (cit. on p. 20).

Leavitt, Neal (2010). Will NoSQL Databases Live Up to Their Promise? IEEE
(cit. on p. 24).

MongoDB (2018[a]). MongoDB for Time Series Data. url: https://www.

mongodb.com/presentations/mongodb-time-series-data (visited on
03/19/2018) (cit. on p. 41).

MongoDB (2018[b]). NoSQL Databases Explained. url: https://www.mongodb.
com/nosql-explained (visited on 03/13/2018) (cit. on pp. 24, 25).

Node.js (2018). Description. url: https://nodejs.org/en/about/ (visited
on 02/15/2018) (cit. on p. 23).

Rosero, Raul H., Omar S. Gomez, and Glen Rodriguez (2017). An approach for
regression testing of database applications in incremental development settings.
IEEE (cit. on p. 17).

Tilkov, Stefan and Steve Vinoski (2010). Node.js: Using JavaScript to Build
High-Performance Network Programs. IEEE (cit. on p. 23).

Veen, Jan Sipke van der et al. (2015). Dynamically Scaling Apache Storm for the
Analysis of Streaming Data. IEEE (cit. on p. 21).

111

https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets
https://developers.google.com/sheets/api/reference/rest/v4/spreadsheets
https://www.mongodb.com/presentations/mongodb-time-series-data
https://www.mongodb.com/presentations/mongodb-time-series-data
https://www.mongodb.com/nosql-explained
https://www.mongodb.com/nosql-explained
https://nodejs.org/en/about/

