
Matthias Stefan, Bachelor of Engeneering

Fragmentation of the Realtime Acyclic
protocol in PROFINET

Master’s Thesis

to achieve the university degree of

Master of Science

Master’s degree programme: Software Development and Business Management

submitted to

Graz University of Technology

Supervisor

Univ.-Prof. Dipl.-Ing. Dr.techn. Otto Koudelka

Institute of Communication Networks and Satellite Communications
Head: Univ.-Prof. Dipl.-Ing. Dr.techn. Otto Koudelka

Graz, March 2018

This document is set in Palatino, compiled with pdfLATEX2e and Biber.

The LATEX template from Karl Voit is based on KOMA script and can be
found online: https://github.com/novoid/LaTeX-KOMA-template

http://LaTeX.TUGraz.at
http://en.wikipedia.org/wiki/Biber_(LaTeX)
http://www.komascript.de/
https://github.com/novoid/LaTeX-KOMA-template

Affidavit

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to tugrazonline is
identical to the present master‘s thesis.

Date Signature

iii

Acknowledgment

I want to to say thank you to my supervisor Martin Meissnitzer who
answered all the questions I had and read through the thesis several times
for correction. Thank you Thomas Pössler for reading through my thesis
and helping my with the integration of the protocol into the PROFINET
norm. Thank you Ines Mohlzan, Herbert Tanner and Gregor Mang who
made it possible that I could write this thesis at Siemens AG. Thank you to
all my other colleagues in Graz that supported me all the time.

Thank you Berta and Resi (names of coffee machines) for your hot liquid
that helped me to continue working. Unfortunately Berta is no longer with
us. Thanks to my friend Thilo Graßmann, who had a sympathetic ear for
me when I made no progress with my thesis. Thank you to all my friends
who gave me the right balance after work and thanks to my parents for the
support during the whole master program.

Last but not least thank you Marika Scheer for managing the official stuff
with the university.

v

Abstract

PROFINET is an industrial Ethernet protocol with support for real time
transportation. The real time acyclic (RTA) protocol is used in version 1 to
send alarms. In version 2 it should support transportation of PROFINET
payloads for start up and parameterization, which is called Remote Service
Interface (RSI). The payloads (records) exceed the maximum payload length
of RTA. This is why version 2 of RTA needs fragmentation and reassembly
functionality.

Version 2 is designed based on the comparison and analysis of fragmentation
strategies of existing protocols (TCP, IPv4, IPv6, SCTP, IKEv2 and RPC).
Before RPC was used to transport records. Three variants are described. All
support in order transportation of a maximum of 16 MBytes of payload with
frame drop detection. The basic variant uses a separated communication
channel for the alarms to transport records. The advanced variant uses
one channel and shares its receive resources for records and alarms. The
chunk variant transports both in one Ethernet packet. Packet definition,
state machines and sequence diagrams are designed for all variants.

The basic variant has been implemented. PROFINET communication rela-
tions can be established. Retransmission mechanisms and resource use have
optimized in contrast to the RPC implementation.

Compared to RPC the calls are transported 15% faster with RSI. The addi-
tional memory usage of the test application with enabled RSI is 4 KBytes.
For now RPC and IP components are not removable and the code size
increased by about 10 Kbytes. Once they are, the code size can be reduced
by about 321 KBytes.

vii

Contents

Abstract vii

Index of abbreviations xv

1. Introduction 1

2. Motivation and Objectives 3
2.1. System Architecture . 3

2.2. Data transmission . 5

2.3. Software Architecture . 7

3. Fragmentation strategies 9
3.1. Naming . 9

3.2. TCP . 10

3.3. IPv4 . 12

3.3.1. Fragmentation Procedure 14

3.3.2. Reassembling Procedure 15

3.4. IPv6 . 16

3.4.1. Fragment Header . 18

3.4.2. Fragmentation Process 18

3.4.3. Reassembling . 19

3.5. IKEv2 . 19

3.5.1. Fragmentation Process 23

3.5.2. Reassembling . 23

3.6. SCTP . 24

3.6.1. Fragmentation and Reassembly Procedure 27

3.6.2. (Selective) Acknowledgment Mechanism 27

3.7. RPC . 29

3.7.1. Fragmentation Process 32

ix

Contents

3.8. Comparison . 34

3.8.1. Packet Structure . 36

3.8.2. Sequences . 41

3.8.3. Flow Control . 48

3.8.4. Memory . 51

4. Protocol Design 55
4.1. Packet Structure . 55

4.1.1. PDU Type . 56

4.1.2. Flags . 58

4.1.3. Fragmentation Information 59

4.1.4. Implementations . 61

4.2. Sequence . 64

4.2.1. Basic Variant . 65

4.2.2. Advanced Variant . 67

4.2.3. Advanced Variant with Chunks 74

4.3. State Machine . 78

4.3.1. Basic Variant . 78

4.3.2. Advanced Variant . 83

4.3.3. Chunk Variant . 85

5. Implementation 87
5.1. Test Interface . 89

5.2. Frame Observation . 89

5.3. Time . 93

5.4. Memory and Code Size . 95

6. Conclusion 97

Bibliography 99

Appendix 103

A. RTA Fragmentation Variant Basic - Sequence 105

B. RTA Fragmentation Variant Advanced - Sequence 113

x

Contents

C. Initiator State Machine of the Basic Variant. 117

D. Responder State Machine of the Basic Variant. 123

E. State Machine of the Advanced Variant 131

F. LMPM State Machine 135

G. Comparison Fragmentation 141

H. Comparison Memory 143

xi

List of Figures

2.1. PROFINET Logical Typology 4

2.2. NRT and RT Channel of Profinet IO 6

2.3. Software Stack . 7

3.1. TCP Header in Byte Definition 10

3.2. Flags in TCP . 11

3.3. Definition of IPv4 Header. 13

3.4. Definition of IPv6 Header. 17

3.5. Definition of IKEv2 Encrypt Frag Header 21

3.6. Structure of IKEv2 packet . 22

3.7. Structure of SCTP Packet . 25

3.8. Structure of SCTP Selective Acknowledgment Chunk 28

3.9. Header of Connectionless RPC 30

3.10. Fragment-ACK Payload . 33

3.11. RTA Header Version 1 . 37

3.12. Comparison Fragmentation Bits 38

3.13. PROFINET RPC Sequence Diagram 42

3.14. Sequence Diagram SCTP . 45

3.15. Sequence Diagram IKEv2 . 45

3.16. Sequence Diagram TCP . 46

3.17. RPC Fragment Sequence Diagram 46

3.18. TCP Without Intersection . 49

3.19. TCP With Intersection . 49

3.20. SCTP Call With Intersection . 50

3.21. Comparison of Memory Used for Fragmentation 52

4.1. Changes of RTA Header Version 2 56

4.2. Flags Implementation Possibilities 59

4.3. Fragmentation Header Realization Possibilities. 60

xiii

List of Figures

4.4. Packet Variant 1: RTA with Fix RSI Extension 62

4.5. Packet Variant 2: Optional Header Realization. 63

4.6. Packet Variant 3: Chunk Variant 63

4.7. Example Sequence Diagram 1 RSI Fragments Basic Variant . 66

4.8. Framedrops Request . 68

4.9. Example Sequence Diagram of RSI Fragments Basic Variant . 69

4.10. Example Sequence Diagram of Advanced Variant 71

4.11. Example Sequence Diagram of Advanced Variant With Alarms
and Records . 72

4.12. Server Sends Alarm During RSI Send Process 73

4.13. Example Sequence Diagram of Advanced Variant With Over-
lap 2 . 75

4.14. Example Sequence Diagram of Advanced Variant With Chunks 76

4.15. Initiator State Machine of Basic Variant 79

4.16. Responder State Machine of Basic Variant 82

4.17. Alarm State Machine for Advanced Variant 84

5.1. Development Environment . 88

5.2. PCIOX GUI Without Connection 90

5.3. PCIOX GUI After Connection Phase 91

5.4. Wireshark Connect . 92

5.5. Wireshark Fragmented Request 93

5.6. Compare Fragmentation . 94

5.7. Code Size in Bits . 96

xiv

Index of abbreviations

ACK Acknowledgment

ACP Alarm Consumer Provider

AP Access Point

CLRPC Connectionless Remote Procedure Call

CM Context Management

EDD Ethernet Device Driver

EPM Endpoint Mapper

IKE Internet Key Exchange

Ind Indication

IO In Out

ISN Initial Sequence Number

IV Initialization Vector

MTU Maximum Transmission Unit

NRT Non Real Time

Req Request

RPC Remote Procedure Call

RQB Request Block

RSI Remote Service Interface

Rsp Response

xv

Index of abbreviations

RT Real Time

RTA Real Time Acyclic

PDU Protocol Description Unit

SACK Selective Acknowledgment

SAP Service Access Point

SCTP Stream Control Transmission Protocol

TCP Transport Control Protocol

TTL Time To Live

TSN Time Sensitive Network

UDP User Datagram Protocol

xvi

1. Introduction

PROFINET is an industrial protocol based on Ethernet. It is defined in
IEC61158 and IEC61784 as an open standard. (PROFIBUS & PROFINET
International, 2016, p. 1) At the end of 2016 there have been 16,4 mil-
lion devices used and supported. (PROFIBUS & PROFINET International,
2017[b]) There are three fields of application: factory automation, process
automation and motion control. They are used in manufacturing facilities
for cars, food & beverages, planes, medicine and many more (PROFIBUS
& PROFINET International, 2017[a]) to connect, monitor and control the
production process.

The PROFINET software is separated into different components that are
placed in different layers. There are different classes of transportation.
PROFINET communication is using Ethernet Frames. For its Content Man-
agement data which is not time critical IP and UDP stacks are included.
Parallel to that there is a communication channel for realtime applications
that sit on top of the Data Link Layer. The Realtime Acyclic (RTA) protocol
is used for transporting alarms in realtime.

In the status quo the UDP/IP stack is included in every device that runs
PROFINET. In order to increase the stability of PROFINET the new protocol
does not necessarily use the UDP/IP stacks. The resource management of
IP must not influence the stability. In order to be more flexible and to build
devices, that are cheaper and more stable it is intended to build devices,
which will not contain an IP/UDP stack. Profinet@TSN is an IEEE standard
that gives more robustness to non realtime IP communication. As a next step
PROFINET is intended to be integrated into Time-Sensitive Network (TSN)
in Layer 2. A further step would be to remove IP completely. (Henning,
2017)

1

1. Introduction

PROFINET uses Remote Procedure Calls (RPC) for communication initial-
ization and parameterization. RPC uses IP as network layer and UDP for
transportation. The new version will replace these two layers with the RTA
protocol. In order to port the RPCs to the new version of RTA it needs to
be able to transport the maximum payload of RPC which is 64 KBytes. The
maximum payload of RTA is 1432 bytes. This will be extended through a
fragmentation procedure.

A research of existing fragmentation strategies and analysis of the RTA
protocol will be made. As output it will provide several solutions for im-
plementing fragmentation of RTA and the embedding of RPC calls in the
PROFINET component Alarm Consumer Provider (ACP). ACP is the com-
ponent where RTA is implemented and the alarms are processed. The most
promising solution of this research will be designed in detail. In order to
find the best solution a deep understanding of the system architecture and
structure is necessary, which will be described in the following chapter.

2

2. Motivation and Objectives

PROFINET is an open industrial standard and protocol that is based on
Ethernet. It is developed by the PROFIBUS user organization. The protocol
supports realtime and non realtime communication. (Popp, 2005, p. 12).
PROFINET has been divided into two parts: PROFINET CBA for modular
plant manufacturing and PROFINET IO for connecting decentral periph-
ery. PROFINET CBA is not used anymore. PROFINET IO is used for this
thesis.

This section describes the covered PROFINET stack, the system and software
architecture and the planned porting of Remote Procedure Calls to the ACP
component. It shows a prospect of the benefits that are expected concerning
to code size and performance, starting with the most outer one.

2.1. System Architecture

The PROFINET system architecture uses Controllers and Devices that are
connected via Ethernet. Controller and Device are set up in a Client / Server
model. The controller is the client that initiates the connection to the the
device which is the server. The Controller provides output data and con-
sumes input data and the device provides input data and consumes output
data. The Controller initializes a connection to a device and parameterizes
it. Next it analyzes diagnosis information from the device. (Bormann and
Hilgenkamp, 2006, pp. 199,200)

The PROFINET typology and the inner structure that represents the address-
ing model of an IO device or an IO controller are displayed in Figure 2.1.
All communication participants are connected via an Ethernet bus. The

3

2. Motivation and Objectives

Ethernet

Bus Connection Slot X

Slot 1

Subslot 2

Subslot 1 ...

Slot 1

Subslot 2

Subslot 1 ...

... Slot N

Inner structure of
IO Device 2

IO Device 1

IO
Device 1

IO
Device 2

IO Controller

IO
Supervisor

Figure 2.1.: Profinet Logical Typology. IO Controller and Devices are connected via Ether-
net. One controller may control one or more devices. One device is controllable
by one or more controllers. The controller has the structure for every con-
nected device inside. The IO supervisor is an engineering station and starts the
commissioning and searches for failures. (Popp, 2005, pp. 41,42,43)

4

2.2. Data transmission

devices and controllers are modeled with slots and subslots, which repre-
sent physical modules that can be pulled and plugged. Each module may
contain one subslot which is the interface to the processes. The slot of the
bus connections is decided through the projection. (Popp, 2005, pp. 42,43)

One controller is connected to one or more devices. It is also possible that
one device is connected to more than one controller which is necessary for
redundancy, fail safe and shared-device functionalities. A shared device is
controlled by two or more controllers. The IO Supervisor is an engineering
station for failure diagnosis and configuring the whole plant. The Totally
Integrated Automaton (TIA) Portal software (Siemens AG, 2017) controls
a production plant and is used to design the plant virtually and produces
configuration files for the startup. This configuration includes the definition
and description of the subslots. (Popp, 2005, pp. 42,43)

In the physical connection between a controller and devices there are dif-
ferent classes of communication within PROFINET. They differ basically in
their latency.

2.2. Data transmission

PROFINET uses two different ways of data communication that are dis-
played in Figure 2.2. One is used for realtime applications and the other
for non realtime applications. The non realtime applications use an IP stack
for routing and UDP as the transport protocol. This is the standard Eth-
ernet communication and it is used for establishing a connection between
a controller and a device, reading diagnosis information, parameterizing
the device and configuring the IP address over PROFINET DCP (Henning,
2015). These are defined in the PROFINET services Connect, Release, Read,
Write, Control and Read Implicit. The standard Ethernet communication
does provide realtime functionality. PROFINET adds this functionality in
parallel. The Ethertype 0x8892 is reserved for PROFINET. Within PROFINET
the Frame-ID is a description of the payload. The value 0xFE01 identifies
the RTA protocol version 1 and the Frame-ID of 0xFE02 will identify the
RTA protocol verison 2 which can additionally transport Remote Service

5

2. Motivation and Objectives

Ethernet

IP

UDP

NRT Data RT Data

PROFINET Application

Start up, Read
Diagnosis,
Read/Write
and DCP

IO Data and
Alerts

Figure 2.2.: NRT and RT channel of Profinet IO. Based on the Ethernet frame the communi-
cation is divided into NRT and RT channels. NRT is directed through the IP-
and UDP stacks. RT Data is directly delivered to the PROFINET application. RT
data has the EtherType 0x8892. NRT data has the Ethertypes 0x8000 or 0x0806.
(Popp, 2005, p. 48)

Interface RSI data as payload. RSI is the name for the new functionality
that transports Remote Procedure Calls over RTA.

The realtime communication is used for IO data and alarms. The realtime
communication can be extended to an isochronous realtime (IRT) communica-
tion, which guarantees cycle synchronization of cyclic IO data. IRT does not
have to be part of a PROFINET device. (Popp, 2005, pp. 47,48)

The goal of this thesis is to route the PROFINET services over RTA instead
of the NRT data path. The data does not have to be processed by the IP
and UDP stacks. These stacks do not have to be compiled in devices or
controllers and the required memory space is reduced. The software is
separated in components. The structure and layout of the architecture is
described in the following section.

6

2.3. Software Architecture

EDD

TCIP

SOCK

CLRPC

ACP

RTA

RSI Alarm

CM

Figure 2.3.: Software stack with record services without IP. Displayed are the PROFINET
components and ACPs inner component. The NRT ressourses are directed to
TCIP and the realtime packets (RTA) are directed to the ACP component. RTA
shall now transport the realtime alarms and also the record services in RSI.
RSI takes over the services to CLRPC. CM controls ACP and CLRPC (if it is
included). The Ethernet Device Driver (EDD) is below all components.

2.3. Software Architecture

Figure 2.3 displays the part of the PROFINET stack which is used to trans-
port records over the PROFINET component Connectionless RPC CLRPC
and the alarms that are processed by Alarm Consumer Provicder ACP over
the realtime channel RT. Furthermore it shows the upcoming feature Remote
Service Interface RSI that will transport the records with RTA for trans-
portation. The service elements that are currently transported by CLRPC
will be transported with RSI.

The current payload of RTA is limited to 1432 bytes. A data record may
have a maximum size of 64 KBytes. ACP has to fragment and reassemble
the records. The choice of the right fragmentation strategy is based on the
transport protocol RTA and the system architecture where it is embedded.

7

2. Motivation and Objectives

UDP over TCIP

The component TCIP, displayed in Figure 2.3 includes the TCP/IP
and also UDP/IP. TCP is not used to send records.

To support the transportation of records in RSI the existing RTA protocol
needs to be fragmented. To find a suitable fragmentation strategy a research
have been made, as described in the following chapter.

8

3. Fragmentation strategies

Other protocol standards are using fragmentation of their packets. This
chapter shall analyze the most important, well known and established
protocols and their fragmentation strategies. The protocols will be analyzed
regarding their other capabilities and for which use cases they are designed.
The extra features like flow control, in order transmission, header size,
flexibility, routing, OSI-Layer and used memory will be pointed out.

The basic fragmentation strategy and the extra features are the basis for this
comparison and the recommendation for a realization. Therefore advan-
tages and disadvantages are pointed out. A common naming convention is
necessary for that as described below.

3.1. Naming

Each protocol may use different words for the same meaning. So the fol-
lowing terms are used instead of the ones that are defined. This makes the
comparison easier to understand.

• Header: Contains additional information (like routing, fragmentation).
• Fragmentation Header: Part of the header that contains the fragmen-

tation information, if it is separated in an own header.
• Data: The data from an upper level that has to be transported.
• Payload: Whole or partial data that is sent in a packet or fragment.
• Packet: Contains header and payload.
• Fragment: Describes a packet if the data is fragmented.
• Chunk: Describes a packet (may be fragmented) that is the data of a

higher protocol part, optionally together with other queued chunks.

9

3. Fragmentation strategies

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Source port Destination port
}

Endpoints

Sequence Number

Acknowledgment number (if ACK set)

}
Reliable
Order

Dat. Off. Reserved Flags Window

Checksum Urgent pointer

Options (optional)

Figure 3.1.: Definition of the TCP Header. It includes endpoints for routing; sequence num-
ber and acknowledgment number, for the transmission in the right order and
for checking what has been received; Flags as control mechanism; WindowSize
for flow control and a checksum for error detection.

: Used for fragmentation process.

• Call: A call is a message orientated transmission of data from one
node to another.
• Request: A request is a call by an initiator.
• Response: A response is a transmission of data in reaction to an

incoming request.

These terms are used to describe the structure and behavior of the following
protocols that support fragmentation. A detailed analysis follows.

3.2. TCP

The Transmission Control Protocol is a commonly used byte stream protocol
that sends data from one node to another. TCP includes error-checking,
ordered transmission and reliability of the data. It does not differentiate
between an initiator or a responder and there is no request or response on
this layer. There is a bidirectional transportation of bytes.

The TCP header is defined in Figure 3.1. Source port and Destination port
are the endpoints of the communication within the hosts. The calling host
has to know the destination port of the called host for the transmission.

10

3.2. TCP

0 1 2 3 4 5 6 7 8 9 10 11

Reserved ECN (experim.) URG ACK PSH RST SYN FIN

Figure 3.2.: Flags in TCP with the initial verion from 1981 and the current version:

• ECN: Flags for Explicit Congestion
Notification for signal an upcumming
overload of the router (in ip nets). Ex-
perimental feature.

• URG: Urgentpointer used
• ACK: Acknowledgment Number

used
• PSH: Ask for push buffer to applica-

tion
• RST: Reset connection
• SYN: Synchronize Sequence Numbers
• FIN: Last packet from sender

: Used for fragmentation process.

Standard ports for TCP are well known and depends on the upper protocol,
e.g. HTTP uses 80, HTTPS 443, XMPP 5222 and 5269. (IANA, 2017[b]) The
port maps the service. If there is no standard port defined for a certain higher
protocol/service a unused number can be assigned by used applications.

Sequence Number addresses the packet(s) that have been sent by the caller.
The Acknowledgment Number is set by the receiver to tell the caller which
sequence number it is expecting next. The numbers are connected to each
other and the sequence number starts with the initial value called ISN. The
establishment of a connection and how the sequence and acknowledgment
numbers are used is described in Section 3.8.2. (RFC 793, 1980)

The Data Offset describes the length of the TCP header in 32 bit words. This
includes the Options field which is an optional header with extra connection
information. The Data Offset indicates where the payload starts.

The Flags part of the protocol is defined in Figure 3.2. The Flags are used
for connection establishment SYN, acknowledgment of received data ACK,
resetting the connection RST, ending FIN, telling the receiving host how
many bytes are left and demanding for immediate transport of the received
data to the application PSH.

TCP supports flow control with the Window part. The receiving host tell the
sender how many bytes it can be received until the next acknowledgment.

The Checksum includes an error check over the header and the payload. If

11

3. Fragmentation strategies

it is used over IP it also includes some fields like IP addresses from the IP
header.

The Urgent Pointer is an offset from the current sequence number to the
last sequence number.

Fragmentation as a Base

The fragmentation mechanism is a core feature of TCP. The whole protocol
supports a reliable transportation of a bytestream with an arbitrary length
which is built upon network packets. In contrast to the other strategies
this one is not message orientated. Messages are built the layer above. This
message may coincide with a TCP connection but it do not have to. In
HTTP 0.9, which is used not longer, every HTTP request started a new
TCP connection and closed it after finishing. In HTTP 1.0 the keep alive
function made it possible to transport multiple HTTP requests in one TCP
connection. In HTTP 1.1 it became the default variant. (RFC 2616, 1999)

The state of the art use of TCP for internet communication it uses one TCP
connection for many requests.

3.3. IPv4

IP is used for routing packets in networks through IP-Addresses.

Internet Protocol Version 4 IPv4 supports fragmentation. The fragmentation
is used for transmissions in ‘small packet‘ networks. (RFC 760, 1981, p. 2).
IP packets can be sent through many different network parts (nets). One
net is specified from one router to another. Every net may have different
Maximum Transmission Units MTUs. The packet may be fragmented.

The IP header is displayed in Figure 3.3. The Version is 0x4. The IHL,
Internet Header Length, describes the header length in 32 bit words. The
defined minimal value is 5. The technical maximum value is 60 bytes. If the
header length is not dividable by 32 the header length is padded. The Type
of Service specifies and categorize the data that is transported: precedence,

12

3.3. IPv4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Version IHL Type of Service Total Length

Identification Flags Fragment Offset

Time to Live Protocol Header Checksum

Source Address

Destination Address

}
Endpoints

Options Padding

Figure 3.3.: Definition of the IPv4 Header. (RFC 760, 1981, p. 11) It contains information
about the protocol version, length of header (IHL), the type of service the total
length (header and data), identification of fragments that belong together, flags
for signal that more frags are coming or an demand for don’t use fragmentation
and an offset of the payload.

: Used for fragmentation process.

stream or datagram, reliability and speed. It is a specification for the internet
service quality. (RFC 760, 1981, p. 27)

The Total Length is the length in octets of the data and Internet Header.
The minimum length that has to be accepted is 576 octets. The maximum
possible length is 65535 octets. (RFC 760, 1981, 12ff)

The Identification is a value that is chosen by the sender to identify frag-
ments that belong to the same data. This is the handle for assembling the
fragments into the right packets even if the order at the receiver is different
to the send order.

The Flags control the fragmentation:

0 1 2

0 DF MF

Bit 0 is reserved and has to be zero. With the DF-Flag the sender tells
the communication partner that this packet should not be fragmented on
its further way. This can be useful if the receiver is not able to handle
fragmented data. (RFC 760, 1981, p. 23) The MF-Flag indicates if more
fragments are coming or if this is the last or only fragment. (RFC 760, 1981,
p. 13)

The Fragmentation Offset indicates the position in the data where this

13

3. Fragmentation strategies

fragment is located. The offset scale is divided in 64 Bits parts. So the
payload size has to be a multiple of 8 Bytes. If not, padding has to be
added.

The Time to Live field contains the remaining time that a packet stays
valid for the net and is transported. The time is measured in seconds. If a
communication member receives a packet it decreases the Time to Live field
with the amount of time it took to process the packet. If there is no time
measurement it is decreased with the minimum of 1.

IP is the routing protocol for many higher protocols. Which one is used is
specified in the field Protocol. TCP uses 6, Sprite-RPC uses 90. 253 and 254

can be used for experimental and testing purposes. (IANA, 2017[a])

”[The Header Checksum] field is the 16 bit one’s complement of
the one’s complement sum of all 16 bit words in the header. For
purposes of computing the checksum, the value of the checksum
field is zero.”
RFC 791 (1981, p. 14)

It is used for error detection of the Header. There is no checksum for the
payload. This has to be checked by the higher protocol. (RFC 791, 1981,
p. 14)

The Source- and Destination Addresses are the IPv4 addresses for the end-
points. They are designed for routing packets in the whole world for over
four billion endpoints and are separated in a net part and a local part for
the device.

3.3.1. Fragmentation Procedure

The sender has to know the MTU, the maximum transmission unit, of the
next network. If the MTU is smaller than the packet’s Total Length, the
packet is fragmented. The first fragment of this process has the Total Length
of MTU and the second length is checked for size again. If the MTU is still
too large, the packet is fragmented again. This is repeated until the last
packet is equal to or smaller than the MTU. (RFC 760, 1981, p. 23)

14

3.3. IPv4

The header of the first fragment is copied from the original packet. The
MF-Bit is set, the Fragment Offset is set to 0 and the new Total Length is
set to MTU. The Header Checksum is recomputed for the new header. For
the remaining fragments the procedure is partly repeated but some options
are not repeated after the first fragment. The IHL becomes smaller. The last
fragment may have a smaller Total Length. (RFC 760, 1981, pp. 23,24)

3.3.2. Reassembling Procedure

During the resembling process it is necessary to find the right service access
point where the header and payload info of each packet has to be entered.
The key for this identification are the source, destination, protocol and
identification fields of the IP header. Only when they are all the same they
get assigned to the same endpoint. (RFC 760, 1981, p. 24)

If no packet with the appropriate endpoint has not been received yet, the
endpoint resources are allocated. These resources contain a buffer for the
data and header, a fragment block bit table, a value for the total length and
a timer. The fragment block bit table marks which octet blocks already have
been received. After transport was successful and the MF-bit is not set the
Total Data Length is computed with the fragment block bit table. It also
checked if all bits from 0 to Total Data Length are set. If not the receiver
waits for the next fragment or until the timer expires. (RFC 760, 1981, pp. 24,
26)

The timer is initialized by the first fragment arriving. The timer can have
a value between 1 and 255 seconds (4,25 minutes) if it is running and 0 if
it is run out. During a running process a new fragment can increase the
timer to a new value. So if the TTL-Value is higher the timer value assigns
the TTL-Value. If the TTL-Value is smaller than the current TTL-Value the
timer stays the same. If the timer runs out the endpoint resources are freed.
(RFC 760, 1981, p. 25)

15

3. Fragmentation strategies

3.4. IPv6

IPv4 had some restrictions, security and addressing problems. It was re-
leased in 1981 where 4 billion possible endpoint addresses were out of reach.
This claim was underestimated so a new version of the IP protocol has
been designed: Version 6, which is displayed in Figure 3.4. In comparison
to Version 4, which has a 32bit address space, IPv6 has an address space
of 128bit. This will be sufficient for 2128 endpoints. The structure of the
header is redesigned so that optional functionalities such as fragmentation
are only included if needed. Fragmentation has its own header part that
gets appended after the standard header and the other already included
optional headers. The Next Header field indicates which header part comes
next. (RFC 2460, 1998, p. 2)

The Version of the protocol is 6. The Traffic Class is used to determine
different classes or priorities of packets. The Flow Label part signalizes
realtime priority. (RFC 2460, 1998, pp. 2,25,26)

The Payload Length contains the number of bytes of the payload including
the optional headers. The standard header of IPv6 has a fixed size of 80

bytes. The length of the whole packet is computed as PayloadLength + 80.
In case of fragmentation there is no information about the whole length of
data.

Term conflict: Payload

In the IPv6 definition (RFC 2460, 1998) the term payload includes the
data from the upper level and the optional headers. To be consistent,in
this thesis the term payload is used only for data from the upper level
as described in Section 3.1.

The Next Header field indicates which block comes next. There can be
additional IP-Headers or a specification of the upper protocol. The numbers
are taken from RFC1700. So it is used in the same way as IPv4 uses its
Protocol Field. The Fragment Header is defined as Simple Internet Protocol
Fragment with the value 44. (RFC 1700, 1994, p. 9) (RFC 2460, 1998, p. 5)

16

3.4. IPv6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Version Traffic Class Flow Label

Payload Length Next Header Hop Limit

Source Address

Destination Address

...
} Other

Headers
Next Header Reserved Fragment Offset ResM

Identification

optional


}

Frag
Header

Figure 3.4.: Definition of the IPv6 header. It contains information about the protocol Version,
priority/classes handling of routers, special handling of sequences, length of
the payload, additional extra headers like fragmentation header and a Hop
Limit for define a maximum amount of transport routers for one packet. The
Source and Destination Addresses contain the IPv6 Addresses. All Headers
are optional. The fragment header contains a description of the Fragmentation
Offset, an extra flag for the indication if more fragments are coming and an
identification field for finding the right endpoint. (RFC 2460, 1998, pp. 4 sqq.)

: Used for fragmentation process.

17

3. Fragmentation strategies

If the packet is forwarded by a node the Hop Limit is decremented by 1.
This field is used to specify the amount of nodes this packet stays valid for
it. It has a similar function as the Time To Live field in IPv4. The Source and
Destination Addresses are the IPv6 addresses for the endpoints. They are
designed for routing packets from one node to another. (RFC 2460, 1998,
p. 5)

3.4.1. Fragment Header

For the fragmentation of an IPv6 packet an additional Fragmentation Header
has to be included. Its structure is displayed in Figure 3.4.

The Next Header part assigns the next optional header or upper protocol, if
it is the last one.

With the field Fragment Offset the sender tells the receiver in eight octet
units the location of the payload of this packet in the completed data. This
13 bit value is sufficient for 65528 bytes of transport.

Lengthmax(Data) = 213 · 4 = 65528bytes

The M - More-Fragment-Bit is set if this is not the last fragment. The Iden-
tification field is used to reassemble the right fragment in the appropriate
buffer. Together with the source and destination address, the identification
forms the so-called Service Access Point.

3.4.2. Fragmentation Process

Before the fragmentation of the original packet can take place it has to
be divided into a fragmentable part and an unfragmentable part. The
unfragmentable part has to be part of every packet because it is needed
by every node to forward and process the packet, e.g. the routing header.
The headers which are not fragmentable are placed before the fragmentable
header. The headers that are fragmentable are placed after the fragment
header. (RFC 2460, 1998, pp. 19,20)

18

3.5. IKEv2

The data and the fragmentable header become the fragmented data. This
data is divided into fragments so that the unfragmentable headers, the
fragment header and the fragments fit into one packet that is equal to the
MTU of the net. This also includes paths between inner nodes because they
are not allowed to be fragmented if a subnet has a smaller MTU. (RFC 2460,
1998, pp. 18,19,20)

3.4.3. Reassembling

As mentioned above the Service Access Point is defined through the source-
and destination addresses and the Fragment Identification. Traffic Class and
Flow Label are ignored for that. The reassemble starts when all fragments
have been received. There is a timer that starts with the reception of the
chronologically first fragment and stops waiting for new fragments after 60

seconds. If this occurs the fragments are dropped and allocated resources
are freed. (RFC 2460, 1998, p. 22)

If the reception of all fragments is successful, the unfragmented part of the
header from the first fragment is the basis for the original header. The first
fragment s identified by FragmentO f f set = 0. The Next Header field from
the last fragment is used for the original fragment. The original payload
length is computed through the unfragmentable part of the header from
the first fragment and the total length of data which is computed from
the fragmentation offset of the last fragment and the payload of the last
fragment. (RFC 2460, 1998, p. 21)

3.5. IKEv2

The Internet Key Exchange Protocol Version 2 conditionally supports frag-
mentation. Its underlaying protocol is UDP which uses ports 500 or 4500.
(RFC 7296, 2014, p. 72) Internet Key Exchange is used in the IPSec Proto-
col suite to open a secure tunnel for communication. Two nodes open a
communication channel that is calld IKE Security Association. IKE only

19

3. Fragmentation strategies

communicates with call and response. The IKEv2 header is displayed in
Figure 3.5.

The Security Parameter Index (SPI) of Indicators and Responder are used
to open and use a Security Association connection with a Diffie-Hellman
exchange to have a common secret. (RFC 7296, 2014, pp. 10,73) The Next
Palyoad field indicates which kind of payload comes next. In IKE it is
possible to append different kind of payload after each other. If there is
an encrypted payload appended, it has to be the last one. (RFC 7296, 2014,
pp. 10,110) The Major Version indicates the highest supported version of
the protocol. Version 2 supports fragmentation. There is no special version
that indicate if the end supports fragmentation. The Minor Version indicates
the minor protocol version that is still in use. Since there is no comparability
this should be set to 0. The Exchange Type specifies types of transportation
which indicate orders of payloads. Flags indicates if this packet is part of
a call or a response. The Message ID is used for identifying a packet. IKE
is a reliable protocol and supports retransmission through a timer event.
This helps to prevent replay attacks. The Length is the length of the packet.
(RFC 7296, 2014, pp. 24,25,73,74,75)

In the original description of IKEv2 there is no specification for fragmenta-
tion. There is only a reference to IP fragmentation that can be used in the
lower layer. (RFC 7296, 2014, p. 24) But there is an extra specification which
describes fragmentation of the encrypted data. The main goal of this is to
implement fragmentation in IKEv2 in order to avoid lower layer IP frag-
mentation since there are some routers that can not handle it and there are
security concerns and attack scenarios for IP fragmentation. Fragmentation
of IKEv2 can only be used if both communication partners support, use and
expect this extension. There is no field that indicates that the fragmentation
modification of the IKEv2 protocol is used. (RFC 7383, 2014, pp. 1,2)

20

3.5. IKEv2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

IKE SA Initiator’s SPI

IKE SA Responders’s SPI

Next Payload MjVer MnVer Exchange Type Flags

Message ID

Length



IKE
Header

...
} optional

Chunks
Next Payload C Reserved Payload Length

Fragment Number Total FragmentsFrag
Modi

{
Initialization Vector

 Encryption
Header

Figure 3.5.: Definition of the IKEv2 header modified encryption for fragmentation. It
contains an initiator and responder security token for establishing a secure
connection, a specification of the next type of payload, the minimum and
maximum supported versions, exchange type for payload, flags that indicates
the role of the sender, Message ID for retransmission and the total Length of the
packet. Then optional headers are appended. A modification of the encrypted
header may use fragmentation. It also contains a next payload field, length
of the payload, an fragment number for every fragment, the total number of
fragments and an IV that has been used for the encryption of the payload.
(RFC 7296, 2014, pp. 71 sqq.,111)

: Used for fragmentation process.

21

3. Fragmentation strategies

IKE
Header

PL1

Header
PL1

Data 1

PL2

Header
PL2

Data 2

... Encr.
Header

PL Encr.
Data Encr.

}
Inner Chunk
View

Header Chunk 1 Chunk 2
... Chunk Encr.

}
Inner Data
View

Header Payload
Data

}
IKE View

Packet
Fragment (if fragmented)

}
Net View

Figure 3.6.: Structure of IKEv2 packet, which starts with the mandatory IKE Header and is
followed by at least one chunk (Inner Data View). These chunks are appended
after one another. Each chunk consists of a header and an inner payload, which
simultaneously is the inner data. The last payload can be encrypted.
The encrypted payload is fragmentable. If it is fragmented the payload does not consist
of the whole inner Data.

: Used for fragmentation process.

Term conflict: Payload

In the Definition (RFC 7296, 2014) the term Payload is used like it is
used in the Inner Data View in Figure 3.6. To be consistent and precise
the term payload depends on the layer that is described in this thesis.
The default context is the Inner Chunk View. If used differently it is
mentioned.

The encrypted payload has to be sent last as shown in in Figure 3.6. It can
also be the only payload in the whole packet. The Encrypted Header starts
with the Next Payload field that indicates the type of the next payload. If
the encrypted payload is fragmented the first fragment contains a number
that specifies the data that is currently encrypted. The next fragments must
be zero. (RFC 7383, 2014, p. 7) (RFC 7296, 2014, p. 111)

The Payload Length contains the length of the Encryption Header and
payload of this fragment. There is no declaration of the whole encrypted
data length. (RFC 7383, 2014, p. 7)

22

3.5. IKEv2

The Fragment Number and Total Fragments fields are only coded in the
modified version of the protocol. In the original version these values form
the Initialization Vector as a 64 bit value. With fragmentation its size is
32 bits. The Fragment Number identifies the fragment. It starts with 1 and
gets incremented with the next fragment that is sent. The Total Fragments
field is the number of fragments that contain the encrypted data. (RFC 7383,
2014, p. 7)

3.5.1. Fragmentation Process

As basis for the fragmentation the MTU of the network should be used. If
there is no information about it IKEv2 uses the default value of 576 bytes
for IPv4 and 1280 Bytes for IPv6. The first fragment may contain one or
more unencrypted payloads before. The following has to be true so that
fragmentation is possible:

Length(HeaderIKECommon + Payloadunecrypted + HeaderEncryption) ≤ MTU

Otherwise the encrypted part has to be sent in a fresh packet with a new
Message ID. (RFC 7383, 2014, pp. 8,9)

The first fragment has the Fragment Number 1 and the Next Payload field
contains a number that specifies the encrypted data. The total fragments has
to be computed before the first fragment is sent due to the total fragments
value field that has to set in every fragment. All packets except for the last
one have the length of the MTU. (RFC 7383, 2014, p. 11)

The next fragments contain only one payload which is encrypted. The
correct fragment number is inserted but the Message ID has to stay the
same. (RFC 7383, 2014, p. 11)

3.5.2. Reassembling

The receiver detects a fragment if the packet contains an encrypted header
where the Total Fragments field is 2 or more and the Fragment Number
field is between 1 and the Total Fragments field. There are contradictory

23

3. Fragmentation strategies

descriptions on how to handle a changed Total Fragments value. In case of
already started fragmentation, one requirement is that the Total Fragments
value has to be greater or equal, to the number of fragments that has already
been received. Another requirement of a still running reassembling process
is a greater Total Fragment field demands that all already received fragments
have to be dropped and only the current fragment has to be stored to wait
for more fragments to arrive. (RFC 7383, 2014, p. 12)

A packet is only accepted if it is not a retransmission. To be more precise, if
the Message ID, the Fragment Number and the Total Fragments fields have
already been received in this combination the packet is dropped. There is
also an internal integretiy check field in the encrypted payload. If it fails all
packets are dropped. (RFC 7383, 2014, p. 12)

3.6. SCTP

The Stream Control Transmission Protocol (SCTP) is a transport protocol
on top of IP. It supports similar functionalities as TCP for a communication
between two endpoints. Supported features are full-duplex transmission of
data (includes a retransmission mechanism) and flow control. (RFC 3286,
2002, p. 1)

It also supports features like multi-streaming transmission where two trans-
missions between two endpoints can be handled at the same time. If packets
of one stream are lost it does not affect the other streams. (RFC 3286, 2002,
p. 2)

SCTP supports more than just the transport of bytes from one endpoint to
another. It transports data chunks from one part to another. There is one
common header and chunks that are appended. Every chunk may have a
different type of content. Fragmentation of chunks may happen with the
data chunk. The header structure is displayed in Figure 3.7.

The underlying protocol is IP. The combination of IP addresses and Source-
and Destination Port Numbers are the endpoints for the communication.
The Verification Tag identifies the other communication partner. The re-
ceiver checks if it is still the same value that is given to the sender during

24

3.6. SCTP

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Source Port Number Destination Port Number

Verification Tag

Checksum

 Common
Header

Chunk Type (0) Reserved Flags Chunk Length
} Chunk

Header
Transmission Sequence Number

Stream Identifier S Stream Sequence Number n

Payload Protocol Identifier

 Payload
Header

Figure 3.7.: Structure of an SCTP Packet with the chunk and payload headers. The headers
consist of the port numbers of the source and destination endpoints, a verifi-
cation tag to identify the sender, a packet checksum, flags for classifying data
and fragment information and a length of the whole chunk. The Transmission
Sequence Number identifies the sent payload chunk, the linked stream and
the stream sequence number and an upper protocol identifier. (RFC 4960, 2007,
pp. 22, 23)

: Used for fragmentation process.

25

3. Fragmentation strategies

the association phase. In contrast to that the sender uses the value that is
known from the receiver. There are exceptions for the first packet, shutdown
and abort of the communication. The Checksum field uses the CRCD32c
algorithm to calculate a checksum for the whole packet. (RFC 4960, 2007,
pp. 6,7)

The chunk itself contains of a chunk header. It starts with a Chunk Type.
There are extra chunk types for Payload Data, as used in Figure 3.7, various
types for establishing an SCTP connection, aborting or shutdown of the
connection. For the Payload Data the value is 0. (RFC 4960, 2007, pp. 17,18)

The Chunk Flags controls the Fragmentation:

0 1 2

U B E

The Unorderd Bit U indicates that there is no Stream Sequence Number in
this chunk and so the relative position does not matter. In this case it is set
to 1. If the order is important this bit shall be 0. The Beginning Fragment B
indicates that this is the first fragment. The Ending Fragment E indicates
that this is the last fragment. If no fragmentation is used B and E has to be
1. If both are 0 it is a fragment in between. (RFC 4960, 2007, pp. 22,23)

The Chunk Length indicates the length of the chunk header and payload.

The Transmission Sequence Number (TSN) is incremented with every data
chunk that is transported. Every fragment has its own TSN value. (RFC 4960,
2007, p. 23)

The Stream Identifier S and Stream Sequence Number n are used for iden-
tifying and handling different streams. Each stream Identification field
represents another layer of endpoints besides the ones defined in Source
and Destination Port. The Stream Sequence Number sorts the data. In case
of fragmentation the Stream Sequence Number field does not change. (RFC
4960, 2007, pp. 23, 24)

The Payload Protocol Identifier is not used by SCTP. It can be used by the
upper protocol to identify the payload that is transported. It has to be set
in every fragment to ensure that every node in between can access this
information. (RFC 4960, 2007, p. 24)

26

3.6. SCTP

3.6.1. Fragmentation and Reassembly Procedure

A data chunk is fragmented when all data chunks plus the common header
are larger than the MTU. In that case the last data chunk is fragmented. To
indicate that fragmentation is used the Beginning Fragment Flag is set. The
next fragment size depends on the missing part of the data that has to be
transmitted. If the common header, the data chunk header and the missing
data fit into in one fragment the Last Fragment Bit has to be set. (RFC 4960,
2007, p. 91)

For the next fragments the Common Header, the Chunk Header and the
Payload Header are copied from the first one. The TSN is incremented.
The Stream Sequence Number stays the same. To identify that this fragment
belongs to the same data. The Chunk Length and the Checksum have to be
adapted. If it is the last fragment the Last Fragment bit has to be 1. (RFC
4960, 2007, p. 91)

A receiver checks if a data chunk is fragmented by looking at the Flags.
The first fragment is indicated with the Flags (B:1, E:0). The chunks are
queued for reassembling. The receiver waits for more fragments with the
same Stream Identifier and the next Stream Sequence Number to come.
The chunks are sorted by TSN. If the buffer is filled completely before all
fragments could be received SCTP supports the feature of partial delivery
of already received packets to the upper layer. (RFC 4960, 2007, pp. 91,92)

3.6.2. (Selective) Acknowledgment Mechanism

SCTP supports Selective Acknowledgment (SACK) of data chunks with a
special chunk type. The Selective Acknowledgment chunk perform acknowl-
edgment of fragments with no errors in transmission but it also provides
information about chunk gaps and duplicate transmission of chunks to the
sender. (RFC 4960, 2007, pp. 34,35)

The Cumulative TSN Ack field is the basis of the information of gaps and
duplicated fragments. It contains the TSN value of the last chunk that
has been received before a gap. The Advertised Receiver Window Credit
(ARWC) redefines the buffer space in bytes. The Number Gaps and Number

27

3. Fragmentation strategies

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Chunk Type (3) Chunk Flags Chunk Length

Cumulative TSN Ack
}

Base

Advertised Receiver Window Credit

Number Gaps Number Duplicated

Gap 1: Start Gap 1: End

Gap 2: Start Gap 2: End
...

 Gaps
Offsets

Duplicate TSN 1

Duplicate TSN 2

...

 Duplicates
TSN

Figure 3.8.: Structure of an SCTP Selective Acknowledgment Chunk. It provides Informa-
tion about TSN gaps that have not been received yet and about chunks with
the same TSN which have been received multiple times. (RFC 4960, 2007, p. 35)

: ACK Information inclusive gaps.

28

3.7. RPC

Duplicated indicate how many gaps and duplicates there are. This indicates
which fields are used afterwards. (RFC 4960, 2007, pp. 35,36)

Each gap has a start and an end TSN. The Start field indicates the offset
to the last received TSN before the gap to the Cumulative TSN Ack. The
Stop field indicates the offset to the last missing TSN number in the gap
from the Cumulative TSN Ack. These two fields are needed for every gap.
(RFC 4960, 2007, p. 36)

The Duplicate TSN fields contain the TSN numbers of duplicate TSN num-
bers received since the last SACK has been sent. If there is more than one
duplicate TSN each gets its own entry. (RFC 4960, 2007, p. 37)

3.7. RPC

The Remote Procedure Call protocol is used for interprocess communica-
tion that is normally based on a request response model where the client
makes a request, the server processes the request and sends back a re-
sponse. RPC itself is no defined specification of a protocol. There are several
implementations that are not compatible with each other.

PROFINET uses the CAE Spefication of RPC, which this thesis is based on.
(CAE Specification, 1997, p. 578) The common RPC header is described in
Figure 3.9. There are different kinds of packets that have different functional-
ities and services which are called Protocol Description Units (PDUs). Each
PDU may consist of three different parts, a header, a body and an authenti-
cation verifier. There are 20 different PDUs described. (CAE Specification,
1997, p. 575)

The RPC Version represents the version of the protocol. For the the described
specification it is version 4. The Packet Type contains the PDU Type that is
used by this packet.

The Flags are divided into two segments. The first contains the fragmenta-
tion information:

29

3. Fragmentation strategies

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

RPC Version Packet Type Flags 1 Flags 2

DRep Serial High

Object, Interface and Activity Identifier
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh


54 Byte

Server Boot Time

Interface Version

Sequence Number

Opnum Interface hint

Activity hint Packet Length

Fragment Number Auth. Identifier Serial Low

Figure 3.9.: Connectionless RPC header. It contains information about the supported RPC
version, the packet type, control flags and data decoding information. It contains
Identifiers from the object, interface and activity, which uses 54 Bytes, the
interface version, a unique sequence number for each call, a fragment number
for each fragment of one call and an identifier that specifies the protocol that is
used for authentication of the body. (CAE Specification, 1997, p. 578)

: Used for fragmentation process.

30

3.7. RPC

0 1 2 3 4 5 6 7

RES Last F Frag No Fack Maybe Idem. Broad RES

: Used for fragmentation process.

The Last Frag Flag indicates that this is the last fragment of a fragmented
transmission. The No Fack Flag demands of the receiver of this fragment
not to send an acknowledgment PDU for this fragment. Client and Server
may use this.

The Maybe idempotent Flag indicates the classification of a request. There
is no guarantee that a Maybe Request is delivered. No Ack will be sent and
in case of a failure no retransmission is executed. If the request is labeled
as idempotent the transmission is guaranteed. After a timeout, the sender
executes a call again. This call may be executed more than once. If the
request should only be executed once because a second execution would
bring a different result the request is labeled At-Most-Once. One and the
same call is only executed once if the receiver detects it is a retransmission.
To do that the Maybe and Idempotent Flag have to be Zero. The Broadcast
is a request to all hosts in the network. (CAE Specification, 1997, pp. 586,
587)

The DRep field describes the encoding of the packet for chars, integers and
floats that has been used. Encodings like LSB or MSB, unsigned or signed
char or floating point or fixed floats are described here.

The Serial High and Serial Low field are the higher and the lower byte of
the 16bit sized serial number that identifies fragments of one transmission.
The Fragment Number identifies a fragment during one call. In case of
retransmission the number is also incremented. The serial number is only
useful for request and response PDUs. For other PDUs this field is zero.
(CAE Specification, 1997, pp. 580, 581)

The Object- , Interface- and Activity Identifiers together are the endpoint
to where the call shall be delivered. One object may have more interfaces
and one interface may have more activities. Every identifier consist of 16

bytes, so the endpoint identifier consist of 48 bytes. The Server Boot Time
contains the time that the server needs to get started and is designed to
detect if the server has crashed. The Interface Version allows to specify
different versions. (CAE Specification, 1997, p. 581)

31

3. Fragmentation strategies

The Sequence Number identifies a call. Each fragment of one call has the
same sequence number. In case of a retransmission the sequence number
does not change. With every new call the number is increased. In case
of a request or response the PDU has the same Sequence Number. (CAE
Specification, 1997, p. 582)

The Opnum identifies a particular operation. The Interface and Activity
hint fields can be used by the implementation for optimization of lookups
or other information. (CAE Specification, 1997, p. 582)

The Payload Length is the length of the payload. The maximum is 65528

bytes. In case of fragmentation this is only the length of one fragment. (CAE
Specification, 1997, p. 582)

The Fragment Number identifies the fragment of a fragmented PDU. In
case of a request or response PDU the first fragment has the value 0. With
every new fragment that is sent the value is incremented. In case of a
retransmission the value does not change. If the PDU type is a FACK the
value is set to the last successful fragment transmission without gaps in the
fragment transmission.

The Authentication Protocol identifier defines the used authentication pro-
tocol. For this version it is only possible to use no encryption or the OSF
DCE Private Key Authentication. (CAE Specification, 1997, p. 583)

3.7.1. Fragmentation Process

If the MTU of the net is smaller than the request or response payload
plus RPC header plus optional Authentication Identifier then the packet
has to be fragmented. Only request and response packets vary in their
length, so they are the only ones that may be fragmented. In order to signal
fragmentation the fragmentation flag has to be set. With the No Fack flag
the sender decides that no acknowledgment of this fragment is wanted. For
the very first call after connection establishment it is recommended to use
a window size that the receiver is sure to support. The Serial Number and
Fragment Number will be set to 0 for the first fragment. The packet length is
only the length of the current fragment. (CAE Specification, 1997, p. 585)

32

3.7. RPC

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

FACK Version Pad Byte Window Size

Max Payload Size

Max Fragment Size

Serial Number Nr. Selective ACK (N)

Selective Ack Bitmask 1

...

}
N
Bitmasks

Figure 3.10.: This is the optional Fragment-ACK payload(CAE Specification, 1997, p. 578).
It contains information about the Fragment ACK version and a Window Size
which indicates how much payload in KB the receiver is able to process. The
Max Payload Size includes the maximum payload for the whole request or
response (includes all fragments). The Max Fragment Size is the maximum
payload of one fragment. The Serial Number is the serial number of the sender
that triggered this FACK. The Nr of Selective ACK is the amount of bitmasks
for the Selective ACK which allows the receiver of the ACK to retransmit only
the gap fragments. (CAE Specification, 1997, pp. 584, 585)

: Selective ACK information.

If the sender demands an acknowledgment the receiver checks the serial,
fragment and sequence number and sends a FACK PDU. The FACK PDUs
Fragment Number is the same as the highest fragment number that has
been received without a gap. The FACK PDU may contain a body like in
Figure 3.10 but it does not have to. For acknowledgment it is not necessary
but it supports some extra features like window size, MTU adaption and
selective acknowledgment. The Nr of Selective Ack bitmasks are described
in Nr Selective ACK (N). The first bitmask shows the selective acknowl-
edgment for the first 32 fragments after the fragment number. The second
bitmask would show the SACK from 33 to 64 fragment numbers after se-
lective acknowledgment. The formula for the computation of the selective
acknowledgment is: (CAE Specification, 1997, p. 583)

f ragmentNumber + (numberO f Bitmask) ∗ 32 + indexInBitmask

The sender of the request or response PDU waits for an incoming FACK
PDU and retransmits fragments if necessary. If the last fragment is sent
the Last Fragment Bit header is set. The behavior of the server after the

33

3. Fragmentation strategies

transmission of a request is completed depends on the request classification.
If the class is At-Most-Once then an ACK PDU is sent. The ACK PDU has
no body data. (CAE Specification, 1997, p. 583)

By looking through these protocols a comparison of the fragmentation
strategy follows.

3.8. Comparison

What the protocols have in common is that they support fragmentation.
But they have different users, different scopes of how many features are
supported and different hierarchies where they are placed in protocol stacks.
The OSI model classifies network layers in seven main layers, which begin
on the one end at the Physical layer, which represents the actual transported
bits, and ends at the application that is used. The Layers DataLink and
Session Layer are in between, as represented as Borders in Table 3.1. The
Data Link layer transports frames without errors to another node. The
Network Layer routes packets through networks over nodes. The Transport
Layer guarantees the transport of a bytestream and/or messages between
nodes. The Session Layer implements process orientated connections that
are able to handle timeouts without a complete reset. The table gives an
overview of how the protocols can be assigned to elements in a modified
OSI model. This model separates the transport layer in two layers: byte
orientated and message orientated.

The Real Time Acyclic protocol (RTA) transports alarms (a kind of message)
over the net. There is no routing over IP. The alarms are addressed directly
through MAC addresses and are checked and forwarded to the upper layer.
RTAs transportation mechanism is similar to TCP’s. They both support an
ordered, reliable, full dublex, end-to-end connection between nodes. The
main difference is that it separates acknowledgment and data transportation
with different PDU types. RTA transports messages and not a bytestream.

As mentioned before, TCP is the well established and a well known protocol
for transporting bytestreams. The typical setting of TCP is in combination
with IPv4 or IPv6 as the network layer below it. IP does not necessarily

34

3.8. Comparison

Table 3.1.: Modified OSI model and assigned protocols. The compared protocols and the
original RTA protocol are marked regarding their layer in the OSI Model. The
Transport Layout is split up into message oriented transportation and byte
oriented transportation, which is not an official OSI specification. RTA transports
alarm messages without IP layer. TCP realizes a byte stream. IPv4 and IPv6 route
packets through large nets. IKEv2 uses UDP as transport protocol and establishes
an authentic and confidential connection. SCTP performs a message orientated
connection on top of IP. RPC may sit on top of TCP or UDP. It supports session
handling through the request response mechanism. (CCITT, 1988)
* RTA addresses nodes through MAC addresses and does not use IP. But an
extension with IP is possible.

Layer RTA TCP IPv4 IPv6 IKEv2 SCTP RPC
Application

Presentation
Session

Transport Messages
Transport Byte

Network ∗
Data Link

Physical

35

3. Fragmentation strategies

have to be used as network protocol below TCP. But there has to be another
information source about the segment size. (RFC 1791, 1999)

IP establishes the identification of nodes and the transportation of packets
through the net. These packets are not reliable and may be jumbled.

IKEv2 is a higher abstracted protocol. It transports messages over a UDP
bytestream to set up a security association. In respect of this association this
protocol establishes a session through generating a valid shared secret that
makes a confidential and authenticated connection possible.

The SCTP protocol is similar to TCP but has some extra features and
differences. It transports whole messages that are if necessary fragmented
and internally reassembled. It is possible to have multiple message streams
in parallel through the same connection.

RPC is a typical protocol for the session layer. The two roles client and server
interact through access points and sessions. The client makes a request and
waits for a response from the server. TCP or UDP is used as transport
protocol.

The protocols are compared by category. The packet, especially header
structure, is the beginning.

3.8.1. Packet Structure

The packet structure describes the structure of the protocol in the network.
To be more precise this chapter analyzes the structure of how the fragmen-
tation information is inserted and how much information is needed for a
standardized and representative fragmentation process. The implementation
of fragmentation has to be adapted for RTA. The header of RTA is displayed
in Figure 3.11.

The fragmentation fields of TCP and IPv4 are present in every common
header and so in every packet that is sent. Due to the functionality of TCP
as bytestream transport it is necessary to include the information in each
packet. It is the key feature of TCP to implement a reliable full dublex

36

3.8. Comparison

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Destination AlarmEndpoint Source AlarmEndpoint

V. 1 Type Flags SendSeqNum

AckSeqNum VarPart Length

Figure 3.11.: RTA Header of Version 1.

connection. In IPv4 fragmentation is optional. But even if fragmentation is
not used the fields are present in every packet.

This has changed in IPv6. IPv6 uses a common header and includes a
fragmentation header if necessary. So if no fragmentation is used 8 bytes of
information do not have to be included in the packet header.

The addition of optional fragmentation headers is also used by the IKEv2
and SCTP protocols. Both use data chunks for transportation. That means
that the payload of one packet consist of queued inner packets, called chunks.
These chunks consist of their own headers and payload. The structure is
displayed in Figure 3.6 on Page 22. It allows to include fragmentation
information per chunk. The common header does not contain fragmentation
fields but in IKEv2 every encrypt chunk and in SCPT every data chunk
contains fragmentation information. Only these chunks are fragmentable.

The fragmentation fields of RPC are in the common header and are repeated
in every RPC packet. Depending on the PDU extra information for frag-
mentation is possible. As mentioned before, only the request or response
PDUs will become larger than the MTU because they transport payload
from upper layers. There is no extra PDU for fragmented PDUs.

The used fragmentation bits per protocol are shown in Figure 3.12. The
protocols differ in their scope and functionality. In order to make them
comparable the needed fields for fragmentation are adapted to transport
64 Kbytes to support the maximum VarPartLength of RTA which is 1432

bits and to support 255 unique packets that have to be put in order. This
amount of ordered unique packets guarantee the correct transport of the
maximum data size of 64 Kbytes.

37

3. Fragmentation strategies

TCP IPv4 IPv6 IKEv2SCTP RPC
0

5

10

15

20

N
or

m
al

iz
ed

Pr
ot

oc
ol

Fr
ag

m
en

ta
ti

on
Bi

ts

Fix Variable (if active fragmentation)

Figure 3.12.: Comparison of used fragmentation bits per packet. The needed bits are
normalized to transport 64KBytes of data, 1400 maximum payload per
packet/fragment and order clarity for 255 packets. The red bar symbolizes the
fixed part of fragmentation bits which is not reducible in case of no fragmenta-
tion, and is the minimum. The blue bar represents the bits that are needed in
case fragmentation is used and is the maximum, broken down in Appendix G.

38

3.8. Comparison

Every protocol needs to know how many bytes the payload consists of. This
information is not included in this comparison even though it would also
be mandatory if the protocol would not support fragmentation.

TCP, IPv4 and RPC have fixed fields for fragmentation that do not vary if
fragmentation is not used. In contrast, IPv6 has optional headers that can
be appended. As mentioned before, IKEv2 and SCTP are protocols that are
based on data chunks which are build up through chunk headers and chunk
payload. The chunk header often contains all or a part of the fragmentation
information. To signalize that there is an extra fragmentation header or
chunk it needs an extra bit. In the compared fragmentation strategies eight
bits are used. This is the typical internet standard of how to describe the
next content in the protocol that is coming.

All protocols are quite similar in using unique identifiers for their packets.
The name differs. In TCP it is the SequenceNumber, in IPv4 and IPv6 it
is called Identification, in IKEv2 it is the Message ID, in SCTP it is the
Transmit Sequence Number and in RPC it is the Serial Number. In IPv6 the
field is in the optional header but in IKEv2 the field is in the common header
so it is there even if it is not used. The Message ID is not only used for
fragmentation and is used by other services of the protocol as well. This is
the reason why IKEv2 has a fix fragmentation using 9 bytes.

The Offset Representation has two main ways of realization. IPv4 and IPv6

use byte offsets. Their offset field shows the current position of the payload
in the receiving buffer with multiples of 64 bytes. An offset of 10 means that
this payload has to be inserted 640 bytes from the beginning. This allows the
retransmission of some parts and interleaving. The data has to be padded if
the length isn’t an multiple of 64 bytes. For a data size of 64 Kbyte 11 bytes
are necessary. The maximum value is 0x400.

The other way of matching the place in the buffer and the part in the frag-
ment is the Fragment Identification. This is coded in the Fragment Number
(IKEv2 and RCP), Transmission Sequence Number (SCTP and TCP). The
first fragment is inserted at the beginning of the receiving buffer. The sec-
ond fragment is appended afterwards. It depends on the previous fragment.
This kind of fragmentation makes an ordered transmission or a well known
size of the payload mandatory.

39

3. Fragmentation strategies

The Flags differ. IKEv2 has no flags at all. All the others have a flag that
symbolizes that more fragments are coming. If this flag isn’t set this is
the last Fragment. In IKEv2 this information is not coded in the Total
Fragments field which contains an information on the number of fragments.
If the fragment number and the total fragment number is the same the
receiver knows that no more fragments will come. IPv4 has a DO FRAG,
RPC an FRAG and SCTP a FIRST FRAGMENT flag. All symbolizes that
Fragmentation is used. RPC has a NO FACK flag that symbolizes that no
acknowledgment of the fragment is desired and TCP has an ACK flag that
means the opposite.

IPv4 and IPv6 have 21 bits of memory because they do not support ordered
transmission. So this information can not be included in Sequence Numbers.
In IKEv2 the Message ID helps also to prevent replay attacks.

Another important category for this comparison is acknowledgment of
fragments. Is there any acknowledgment at all and if yes how is it done?

Acknowledgment

RTA itself supports acknowledgment through its ACK Number. The TCP
and RPC acknowledgment number has the same size and works similarly.
IPv4, IPv6 and IKEv2 do not have a functionality to acknowledge packets.
So they are no reliable protocols. SCTP has its own chunk type for selective
acknowledgment, shown in Figure 3.8. This chunk has an ACK number and
optionally provides information of gaps and information about doubled
sent packets.

Selective Acknowledgment is supported by SCTP and RPC but their im-
plementation is different. SCTP tells how many gaps are described and
shows the relative start and end position of the gap. In a scenario with
few gaps which consist of a series of fragments that could not be received
this implementation would be very useful. Since there is only a maximum
WindowSize of 15 as a requirement for RSI there could not be that many
gaps. So in the worst case that every second fragment is missing and the
maximum window size is used the SCTP mechanism would use seven
gaps are possible. The Selective Mechanism needs 3 + 6 ∗ n bits. 3 bits for

40

3.8. Comparison

maximum 7 numbers and 2*3 bits for marks of start and end of gaps. RPC
uses a different mechanism. It uses Bitmasks for every sequence number
of a fragment that is missing. There is a field that describes the number of
bitmasks. RPC now uses a maximum WindowSize of 2. RSI will also have
the default value 2 but is extendable to eight packets. So for the upcoming
scenarios seven bits will be necessary. This solution uses always fewer bits
for selective acknowledgment with the exception of SACK. In this case it is
two bit smaller.

A deeper description of acknowledgement realizations other parts of the
communication are described in the next section about sequence diagrams.

3.8.2. Sequences

The most important points for this comparison are the sequences that show
how the protocols are implemented and how the fragmentation is included
into the process of communication. The Remote Procedure Calls shall use
RTA as transport protocol. The current PROFINET RPC sequence diagram
is displayed in Figure 3.13.

PROFINET RPC is a modification of the original connection less RPC
protocol that has added additional opcodes like PrmEnd, Cancel or Control.
The sequence shows the communication between the controller and the
device. Each of them is controlled by a user which represents the upper
application Layer. The user triggers events like DeviceAdd, ApplReady and
ARCancel. These events are displayed in this figure because they may cause
cross over calls. Each controller/device instance is addressed over the net
through an AccessPoint AP.

During the Connection phase the controller sends a connect request from
an AP A to the device Endpoint Mapper EPM. This EPM contains a well
known value. The endpoint mapper activates a free receiving resource and
forwards the Connection request to the AP B of the device. The Response
of the connection contains the AP B of the device. After this the AP will be
used from that on.

41

3. Fragmentation strategies

User Controller
AP(A)

Device
EPM

Device
AP(B) User

DeviceAdd.req
Connect.req

Binding

Connect.ind

Connect.rsp

Call.req
LoopLoop PrmEnd / Write / Read

ApplReady
ApplReady.req

Call.req
LoopLoop Write / Read

ArCancel.req
Cancel.req

Unbind

Figure 3.13.: PROFINET RPC Sequence Diagram. The controller interacts with a distributed
device over the net. Both have a user that control them and both have an Access
Point which identifies them to the net. The Device has an endpoint mapper
(EPM) which handles the connect request to the internal Application Relation
(AR). The dashed arrows are responses. After connection establishment the
controller can read and wirte parameters from the device through the AP. The
Device User sends the control request to tell the controller that it is ready. This
request can overlap with a call from the controller. With the Cancel request
the controller closes the connection and the binding.

42

3.8. Comparison

After the connection phase the controller initiates requests to the device
which are answered and acknowledged with the Call Response.

PROFINET start up

The device is parameterized by the controller through a Write request and
tells the device that it has finished with the PrmEnd Request. After the
PrmEnd the device needs some time to launch its application. After it is
done it sends a
enameControl.req which tells the controller that it has finished. This Con-
trol.req can be started when the controller has sent a call request. The
protocol needs to be able to handle overlap. The cancel request quits the
connection. The resources on the device are unbound.

Acknowledgment

Figure 3.13 displays the call requests and responses. A response is also an
acknowledgment of a request on a higher hierarchy. The acknowledgment
of packets itself is one step below. The network protocols IPv4 and IPv6 do
not have any acknowledgment mechanism for packages. Higher protocols
that are based on IP have to implement it if necessary.

RTA transports payload via the DATA packet type and acknowledges these
packets via ACK packet types. A DATA packet can not be an implicit ac-
knowledgment of another one sent before. The ACK packet does not contain
any payload. Its only functionality is the acknowledgment of transported
DATA packets. SCTP provide acknowledgments through the Selective Ac-
knowledgment chunk which acknowledges not only the complete reception
of fragments. It supports acknowledgment of single fragments even if there
are gaps between transmissions. An example SCTP sequence is displayed in
Figure 3.14.

TCP does not differentiate between acknowledgment and payload trans-
portation. Both happen simultaneously. By setting the ACK field it indicates
that the acknowledgment number is significant. Every packet may contain
x bytes of payload and acknowledge previously received bytes from the

43

3. Fragmentation strategies

communication partner. It is perfect for simultaneous bidirectional trans-
portation. An example of a TCP sequence is displayed in Figure 3.16.

The IKEv2 protocol does not have transport acknowledgments of the frag-
ments. But every message is acknowledged by a response. To achieve this
the response has the same Message ID as the request. IKEv2 and SCTP both
provide a four step initialization phase which includes a cookie mechanism,
which is displayed in Figure 3.15.

Excursion: Cookie Mechanism

IKEv2 and SCTP provide a cookie mechanism which is displayed
in Figure 3.14 and 3.15. This cookie transmission guarantees that all
requests and responses belong to a single connection where the cookie
is defined by the server and function as a nonce. This 32 bit number
is unique and guarantees freshness.
This cookie mechanism may prevent retransmission of a packet which
belongs to another (already ended) connection but has the same
sequence number that is expected for the current call. This might cause
an attacker of the net who sends an old packet again to compromise
the system or a packet to stay in the net and to be delivered lately by
accident at a moment where it is valid.

The RPC protocol provides a fragment acknowledgment packet called
FACK. No FACK is sent for the last packet. In case of an idempotent request
a response is sent and an implicit acknowledge of the sent fragments. In
case of an At-Most-Once call the initiator sends an ACK packet again three
seconds after it has received the response. This ACK packet acknowledges
whole calls and not single fragments.

RPC also provides a PING WORKING mechanism, displayed in Fig-
ure 3.17. When the responder receives the request and is not able to perform
a direct response, the initiator sends a PING. This PING ensures that the
responder is still reachable. The responder sends back a WORKING frame.
This process gets repeated until the response is computed and sent back.

How do the protocols behave when a failure occurs. It is described in the
next section.

44

3.8. Comparison

Initiator Responder

INIT(WinSize1)

INIT ACK
(Cookie, WinSize2 == 2)

COOKIE ECHO
(Cookie)

COOKIE ACK

data.req (F1)

data.req(F2)

SelAck(F2)

data.req(F3)

data.req(F4)

data.rsp

SHUTDOWN

Figure 3.14.: Sequence diagram of SCTP
for four fragments. Con-
nection gets established
through 4 way handshake
which guarantees freshness
through a cookie. The INIT
and INIT ACK packets
contain the WindowSize
of initiator and responder.
The Selective Ack Packet
gets send after the second
packet.

Initiator Responder

INIT

INIT ACK
(Cookie)

COOKIE ECHO
(Cookie)

COOKIE ACK

data.req(F1)

data.req(F2)

data.req(F3)

data.req(F4)

data.rsp

Figure 3.15.: Sequence diagram of IKEv2
for four fragments. Connec-
tion is established through
four way handshake which
guarantees freshness
through a cookie. There
is no acknowledgment
mechanism for fragments
and no cancel mechanism
for the connection.

45

3. Fragmentation strategies

Initiator Responder

SYN
SYN-ACK

ACK

Req(1): LEN
Req(2): LEN

ACK

Req(3): LEN
Req(4): LEN

Rsp ACK LEN

FIN
ACK
FIN
ACK

Figure 3.16.: TCP sequence diagram for
four fragments. A connec-
tion starts with the three-
way handshake. The Req(*)
and Rsp: is for helping to
identify the fragments. It is
not coded by the protocol.
The ACK says that the ACK
number is valid. The FIN
flag finishes the connection
and can be initialized by
both.

Initiator Responder

Connect.req
Connect.rsp

Call.req(F1)

Call.req(F2)

FACK(F2)

Call.req(F3)

Call.req(F4)

PING
WORKING

TimeoutTimeout Ping / Working

Call.rsp

Cancel.req
Cancel.rsp

Figure 3.17.: RPC fragment sequence di-
agram for four fragments.
Connection establishment
with one fragment call. The
call request is acknowl-
edged with a FACK. When
the request is running and
no response arrives the ini-
tiator PINGS the responder
who answers with WORK-
ING. This can be looped.

46

3.8. Comparison

Failure

There are different types of failure: drops, duplicates, delays and crosses of
packets.

The frame drops need a retransmission for sure because the payload infor-
mation could not be received. IPv4 and IPv6 do not provide acknowledg-
ment at all and IKEv2 only supports acknowledgment of a call. A frame
drop indicates a complete retransmission of the whole call. In TCP only the
send window has to be repeated. SCTP and RPC support selective acknowl-
edgment which allows the sender only to repeat the missing fragments.

In case of frame duplication the frame needs to be detected as such. A
frame duplication may lead to a duplication in the net or by retransmission
of the sender even though the original fragment has been received correctly.
A receiver may ignore the retransmission or react and tell the sender the
current receiving state. TCP and IKEv2 ignore duplications. In case of
repeated fragment numbers IPv4 and IPv6 take the content of the newer
packets and override the one already stored in the receiving buffer. In case of
retransmission this has no impact at all. In SCTP the receiver tells the sender
about duplicates in the selective acknowledgment chunk, see Figure 3.8.
RPCs fragment acknowledgment do not provide this information.

Frame delays may result in timeouts if they are too long. Every protocol
in this comparison use timers but the handling is different. The timer
should be as small as possible but big enough that the typical delays do not
result in a timeout. TCP has a retransmission timer that sends the whole
window again after the specified time. (RFC 793, 1980, p. 10) This leads
to a reception of duplicate frames. IPv4 and IPv6 have timers where the
complete call has to be received. SCTP use the same timer mechanism as
TCP. (RFC 4960, 2007, p. 83) IKEv2 uses a timer for a pending request. If
no response is received the request is sent again. The responder does not
execute the request again but has to retransmit the response again. (RFC
7296, 2014, p. 25) In RPC there is a retransmission timer for fragments as
well as whole requests. The retransmission of fragments is similar to TCP
and SCTP. If a duplicate request is detected the handling depends on the
class of the request: idempotent, at-most-once or nothing. See Section 3.7
for the description.

47

3. Fragmentation strategies

Frame overlaps may happen if timeouts occur and a retransmission of a
request is started and simultaneously the response was sent before the
retransmission is received by the responder. Another possibility is that
the responder itself starts a request. This is a scenario for the Application
Ready Callback by the responder in CLRPC, the PROFINET component
for RPC. If both communication partners start calls simultaneously each
retransmission may cause another retransmission. An example scenario is
displayed in Figure 3.19. In this example every fragment demands for an
acknowledgment which leads to retransmssion of the fragment before. The
data is transported correctly but the retransmissions affects performance
and net usage. Both sides have to demand an acknowledgment at the same
time and the timers have the same value. If there is asymmetry in these
variables the normal mode returns.

SCTP may use the selective acknowledgment frame to tell about duplicated
transported fragments, described in Figure 3.20. The receiver of the SACK
knows that this is a retransmission due to duplicates and does not make a
retransmission.

Not only failures may cause an abort also a wrong dimensioning of the
resources.

3.8.3. Flow Control

The protocols TCP, SCTP and RPC support acknowledgment of fragments
and flow control as well. Flow control describes the ability of a receiver to
tell the sender how many fragments it is able to receive until they have to
be acknowledged. This amount of fragments is called the window size.

TCP sends the window size in every packet where the ACK value is signif-
icant. (RFC 793, 1980, p. 4) So through the 3-way handshake of TCP it is
guaranteed that the window size is known to Initiator and responder.

SCTP has an Advertised Receiver Window Credit that is transported in
the INIT chunk by the initiator. The responder tells the sender its window
size through the INIT ACK chunk. This value may be changed during an
established connection with SACK chunks. The included window size field

48

3.8. Comparison

User 2User 1

Connection Established

SEQ(1) — ACK(0)

SEQ(1) — ACK(1)

SEQ(2) — ACK(1)

SEQ(2) — ACK(2)

Figure 3.18.: TCP without intersection.
Connection established,
payload length is always 1,
ACK is always valid. No
intersection.

User 2User 1

Connection Established

SEQ(1) — ACK(0)

SEQ(1) — ACK(0)

SEQ(1) — ACK(1)

SEQ(2) — ACK(1)

SEQ(2) — ACK(1)

SEQ(2) — ACK(2)

SEQ(2) — ACK(2)

Figure 3.19.: TCP with intersection. Con-
nection established, pay-
load length is always 1,
ACK is always valid. First
intersection occurs followed
by a retransmission of the
first fragment of user 2.
This retransmission occurs,
followed by another re-
transmission of the second
packet from user 1.

49

3. Fragmentation strategies

ResponderInitiator

Connection Established

REQ(1/1)

TO

REQ(1/1)

RES(1/2)

RES(1/2) — doubled(1)

ACK 1

RES(2/2)

Call finished

Figure 3.20.: SCTP call with intersection. ACK after every fragment. Single fragment request
has been received. Computation of response takes time. Timeout occurs and
retransmission is received after sending the first fragment of response. The re-
sponder sends the first response fragment again but adds a selective ACK field
with information about duplicated fragments. User 1 detects retransmission
and sends only one ACK.

50

3.8. Comparison

specifies the value of receiving buffer space at the moment the SACK is
computed. With the additional information of acknowledged fragments and
gaps in it, the receiver of the SACK knows which fragments are needed and
possible to transport correctly. (RFC 4960, 2007, p. 81)

SCTP and TCP transmit the window size in bytes. (RFC 4960, 2007, p. 8) (RFC
793, 1980, p. 4) RPC tells the window size in fragments. (CAE Specification,
1997, p. 585) To use bytes over fragments makes sense if the payload length
varies. The cause may be an unknown MTU that varies or in case of SCTP the
chunk architecture of the protocol. If more than one chunk is transported in
a packet the length of a chunk type’s payload varies. The simple knowledge
of the amount of chunks that are still coming is not useful and often not
possible to compute. The sender does not know how many other chunks
will get transported simultaneously.

Linked to the flow control feature is the used memory of a protocol.

3.8.4. Memory

This chapter describes the amount of memory the protocols need for the
fragmentation process to store and process the state. This comparison makes
the assumption that the packets have sequence numbers with the size of 32

bits, a maximum window size of eight, the length of data has a maximum
of 65546 bytes and the maximum payload size is 1400. The used memory
for timers is not described in any of those protocols. So the 24 bytes of the
RTA timer are used as reference. The comparison is displayed in Figure 3.21.
It does not contain the memory for the data buffer and information about
duplicate fragments.

In TCP the whole protocol is designed to transport a bytestream in frag-
ments from one node to another. (RFC 793, 1980, pp. 19,21) Every sequence
number of the sending and receiving partis described per byte. It is bidirec-
tional and there is no variation between initiator and responder.

IPv4 differentiates between sender and responder. The sender works se-
quentially and sends each packet after the other. Since there is no acknowl-
edgment mechanism the responder needs to remember which bytes it has

51

3. Fragmentation strategies

TCP IPv4 IPv6 IKEv2 SCTP RPC
0

500

1,000

N
or

m
al

iz
ed

U
se

d
Fr

ag
m

en
ta

ti
on

M
em

or
y

Bi
ts

Initiator
Responder

Figure 3.21.: Comparison of memory used for fragmentation for the initiator and responder
of a call. Memory is adapted for sequence numbers of 32bits, a max. window
size of eight, 65546 bytes of max. data length and max. payload length of 1400

bytes. IPv4 and IPv6 need fragment bit tables for the whole data in eight octets.
TCP, SCTP and RPC only save information about the current window. IKEv2

only needs a timer for the sender. Request is repeated if response is dropped.
RPC’s selective ACK needs less memory than SCTP’s. The full description is
in Appendix H.

52

3.8. Comparison

already received and which are are expected to be received. Therefore IPv4

has a Fragment Block Bit Table which has a bit for every eight bytes that has
been received. For a maximum of 64KBytes of data it has a size of 1kBit.
(RFC 791, 1981, 26ff) IPv6’s need for memory is quite similar to IPv4. (RFC
2460, 1998, 21ff)

IPv4 and TCP have an accurate description of the memory bits. The newer
standards IPv6, IKEv2 and SCTP do not give information and describe
it instead in prose. For theses protcols there are assumptions about the
technical fragmentation realizations of the data that is partially based on the
other standards and about saving the information on an optimum way.

For IKEv2 used memory is not directly described. The values in this com-
parison are optimistic and stand for the lower bound that is possible. In
IKEv2 there is on offset field and so the fragments have a fixed packet size.
On the receiving part there has to be a received fragment table. With the
reception of one fragment, if it is not the last one, the size of each fragment
is computable. Instead of 1024 bits for the received bit table the fragment
table has the size of 46 bits.

SCTP supports acknowledgment and needs the same ressources for request
and response. The memory for different streams is not included. Both
nodes need timers, information about received fragments and gaps. The
fragmentation mechanism of RPC is similar with small differences to it. The
selective acknowledgment of RPC needs 27 bits less space than the one in
SCTP. (RFC 4960, 2007, 34ff) (CAE Specification, 1997, p. 585)

IPv4 and IPv6 only need a timer for the receiving part. SCTP and RPC only
for the sending part. In all these protocols the initiator and responder send
and receive (request and response) so all resources are needed on both sides.
Only in IKEv2 the sender has a timer that triggers a retransmisson.

The comparison and analysis of existing fragmentation strategies is the basis
for the next step: Defining the RTA v2 protocol with included fragmenta-
tion.

53

4. Protocol Design

Based on the comparison of fragmentation strategies the RTA version 2 has
to be designed. Version 2 should support fragmentation. RTA v1 is defined in
an IEC norm (IEC 61158-6-10, 2015, pp. 231 sqq.). This chapter will outline
the changes that are necessary to describe the new v2. Three Sequence
Variants are described: The Basic Variant where records and alarms are
transported completely in parallel, the Advanced Variant for a common
window of alarms and records and the Chunk Variant for transportation of
alarms and records in one packet.

The packet structure, the sequence diagrams and the underlying state
machines are described and explained below.

4.1. Packet Structure

The packet structure of RTA v1 is displayed in Figure 3.11. The draft of the
new protocol is displayed in Figure 4.1. The existing elements of v1 shall
not change their meaning in v2 but they are extended and renamed.

The Destination AlarmRef and the Source AlarmRef of v1 are renamed to
Destination SAP (Service Access Point) and Source SAP since v2 is not lim-
ited to transport alarms. Service Access Points have the same functionality
by defining endpoints but they are renamed to a more general term.

The Protocol Version is set to 2. The Protocol Description Unit PDU Type
describes the kind of payload. The new types for v2 are described in Sec-
tion 4.1.1.

The Flags may be expanded. The need of additional flags is discussed in
Section 4.1.2.

55

4. Protocol Design

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Destination SAP Source SAP

Version PDU Flags SendSeqNum

AckSeqNum VarPart Length

 RTA
Header

RSI Header
(includes Fragmentation)

RSI

Figure 4.1.: Marked changes of RTA header version 2 in contrast to version 1. The SAPs
are renamed. The Version Type and Flags are extended and the RSI Header
contains the fragment information.

: Renamed
: Changed

The SendSeqNum and the AckSeqNum will be used in a similar way as
before. The initialization values stay the same: 0xFFFF for SendSeqNum and
0xFFFE for AckSeqNum. With every new fragment to send the SendSeqNum
is incremented. The AckSeqNum contains the information of the highest
received SendSeqNum of the communication partner. The sequence numbers
contain no mapping to a specific call.

The VarPart Length describes the payload length of RTA which begins right
after this field. The allowed range of v1 from 0-1432 bytes endures but it is
narrowed when an RSI header (with fragment information) is necessary.

The RSI Header contains the information of the Remote Service Interface
which will include fragmentation information.

4.1.1. PDU Type

The Protocol Description Unit (PDU) Type describes the kind of payload
RTA transports. In v1 there are three types: DATA for alarms, ACK for
acknowledgments and ERROR to tell the communication partner about the

56

4.1. Packet Structure

Table 4.1.: PDU Types compared to protocol versions and different implementation pos-
sibilities 2a, 2b and 2c. In v2a DATA type is used for alarms and records. V2b
use FRAG for records and v2c distinguish between request FREQ and response
FRES.

: Used type in this variant.
: Optional usable for alarms.

PDU Type Value Version 1 Version 2a Version 2b Version 2c
DATA 1

NACK 2

ACK 3

ERROR 4

FRAG 5

FREQ 5

FRES 6

Reserved 7 - 15

abort of the connection. In Table 4.1 version 1 and version 2 are compared
concerning the PDU Types. For version 2 of the protocol there are three
different variants a, b and c.

The type NACK has been used to tell a sender of an alarm a negative
acknowledgment. This type is no longer being used in version 1 anymore.

In Version 2a no new PDU type is used. The DATA type is used to transport
the records for version 2 of the protocol. Alarms have to be sent with version
1 of the protocol. Variant a would permit to send alarms and records in
one window. The Protocol Version field would be the indicator for the next
protocol which is not the role of this field.

In Version 2b there is an extra type FRAG for the records. Alarms and
records are distinguishable by the PDU Type.

Version 2c extends b by the use of an extra PDU type for the request which
is sent by the initiator and for the response which is sent by the responder.
This distinction helps the developers and supervisors who track the packets
to match them to sender and receiver. Version 2c is used for all sequence
realizations.

57

4. Protocol Design

4.1.2. Flags

The flags of RTA v1 are defined as follows:
0 1 2 3 4 5 6 7

WS Reserved TACK Reserved

In v1 the window size WS is 1 but Bits 1-3 are reserved for increasing
the window size in newer versions of the protocol. The RPC protocol in
PROFINET uses a fixed window size of 2 to send records. There are two
receive resources reserved for application relations plus one for an implicit
read access on the device. This kind of read access does not need an estab-
lished connection. After the response has been received it is disconnected
again.

The default window size for RSI will be 2 as well. If the controller or device
support more receive resources a window size of up to eight is possible.
Four bits are needed. In v2 all three reserved bits are used to increase the
window size.

Bit 4 is the TACK flag which indicates a demand for an acknowledgment
of the highest received sequence number without a gap. The sender will
send the next window when the ACK PDU has been received or a timeout
has occurred and it has to send it again. RPC has the Flag NO FACK which
is coded the opposite way. It signalizes the sender that no acknowledgment
is wanted. It has the same functionality as the TACK Flag.

For v2 additional flags are necessary. Four variants of how the RTA flags
can be coded are displayed in Figure 4.2.

In Variant 1 the MF flag indicates that more fragments are following. Dur-
ing a fragmented transportation this flag is always set except for the last
fragment.

Variant 2 indicates that the fragment is the first one, FF, and/or the last one,
LF. This provides extra information if it is a fragmented call or not. If both
are set to 1 it is a single fragment.

58

4.1. Packet Structure

0 1 2 3 4 5 6 7

Window Size TACK MF ReservedV.1
{

Window Size TACK FF LF ReservedV.2
{

Window Size TACK ReservedV.3
{

Window Size TACK DF ReservedV.4
{

Figure 4.2.: Flags implementation possibilities. The windows size is coded in 4 bits. The
TACK flag . Variant 1 has a More Fragments MF Flag which indicates it is not
the last fragment. Variant 2 has a First Fragment FF and a Last Fragment LF
flag that indicates the first, middle (no flags set) or single fragment (both set).
Variant 3 has no flags, control information in fix fragment header. Variant 4
has a Do Fragmentation DF flag that indicates an optional fragment header is
added between RTA header and RSI Block.

: Changed

In Variant 3 there is no fragmentation control flag at all. This is possible if
the information about the transported fragments and the information if a
fragment is the last one is coded in the fragment header.

Variant 4 contains the Do Fragmentation DF flag which indicates that there
is an optional fragmentation header which is only there if the call really has
to be fragmented. The signalization of an optional header is unusual. IPv6

and SCTP signalize an optional header with an 8 bit Next Header value
which codes multiple headers. For that realization the fragment information
has to be separated from the fixed part of the RSI header.

Variant 1 is used for the Basic- and Advanced Variants. It is the simplest
way to indicate fragmentation for a fixed fragment information coding and
there is no extra place necessary for new flags in another place in the header.
Variant 3 is used for the Chunk Variant because every control information
is stored in the chunk it self and there is reserved space in every chunk
header for protocol specific information.

4.1.3. Fragmentation Information

The fragmentation information can be coded in an extra fragmentation
header, in the fixed part of the RSI header or hard coded in the RTA header.

59

4. Protocol Design

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Frag. Nr. ReservedV.A1

{
Frag. Nr. Total Frag. ResV.A2

{
Fragment Byte OffsetV.A3

{
Frag. 4Byte Offset ResV.A4

{
No Position InformationV.A5

{
Total LengthV.B1

{
Payload Length ReservedV.B2

{
No Length InformationV.B3

{
Figure 4.3.: Fragmentation Header realization possibilities. First 16 bits for position infor-

mation. Next 16 Bits for length information. Variant A1 identifies the fragments
with numbers beginning from 1. A2 has additional information about total
number of fragments. A3 contains the position in a byte offset and A4 a multi-
ple of 4 bytes. A5 has no position information. The Total Length B1, the Payload
Length B2 or no length information may be transported.

The fragmentation information covers the offset position of the fragment
and the length information of the Data and/or Payload of the fragment.
Different variants for coding the fragmentation information are displayed
in Figure 4.3.

The Offset Information can be coded as a Fragment Number which starts
with one and ends with the last fragment. For the maximum Data Length
of 64 kBytes the maximum Fragment Number is 46. The Total Fragments
field tells the sender how many fragments will be sent. This information
helps the receiver to abort the transportation at the beginning of the call if
its receive buffer is too small.

In Variant A3 the offset is coded as byte offset. Variant A4 decodes it as a
four byte offset and permits a Payload Length which is not dividable by 32.
The maximum Payload Length is 1400 Byte.

60

4.1. Packet Structure

The offset coding has the benefit over the fragment number that the payload
order can be mixed up by the sender. If the receiver supports random
reception of fragments it has to use a buffer byte table where the bytes
which have been received are marked. The pointer to the information where
the payload data is copied to the local receiver buffer is double checked.
The receiver knows which part of the data it expects next and compares it
with the offset information in the header, which is another positive affect.

There is no need for position information at all Variant A5. If only in order
transmission is allowed the sequence numbers and the More Fragment bit
are enough to determine the offset in the receiving buffer to insert the new
payload.

In Variant B1 the length of the payload, in B2 the Total Length of the Data
and in B3 no length information is coded. Both length are not necessary. The
Payload Length is not necessary to transmit. It can be computed through
the VarPartLength field minus the length of the fragment header when
no chunks are used. If the fragmented part is transported in chunks the
Payload Length is necessary. The information about the Total Length of the
Data is not necessary. The receiver may abort when the receiving buffer
would be exceeded. Without chunks the Payload Length is redundant
information.

For the Basic Variant of RTA v2 the offset is coded in bytes. It supports a
check on the receiving part if the pointer to the part in the buffer is correct
and if a shorter field have been used bits would be reserved. For the Chunk
Variant the length information of the chunk is coded in the chunk header.

4.1.4. Implementations

There are three different implementation possibilities. The addition of frag-
ment information as a permanent layer between RTA and RSI (1, Figure 4.4),
an optional fragmentation header (2) or an optional fragmentation chunk
header (3, Figure 4.6).

In Variant 1 the fragment and RSI information are fixed parts of the RTA
header. The flags includes the More Fragment flag. The fragment informa-

61

4. Protocol Design

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Destination SAP Source SAP

V 2 PDU Win T MN R SendSeqNum

AckSeqNum VarPart Length

RTA
Header


Opnum Offset CallS.

RSI
Header

{
RSI Payload

Figure 4.4.: Packet Variant 1. RTA with fix RSI Extension. The flags contain the additional
More Fragment Flag M and the Notification Flag N which tells the initiator that
the responder is ready to send a Notification to the initiator. The RSI header
contains the Opnum, the byte offset and the Call Sequence. The payload is a
fragment of the RSI call.

: Contains fragmentation information
: RSI Information

tion may theoretically be transported with every version that is displayed
in Figure 4.3. The version without an extra fragment number or fragment
offset has been used since the sequnce number is enough to identify the
fragment of the RSI payload. The protocol is designed to always use the
maximum possible VarPartLength which is 1432 . The maximum Payload
Length is 1400. Therefore the buffer offset for the receiving part is always
a multiple of 1400. Variant 1 is the easiest and simplest way of including
fragmentation functionality.

In Variant 2 there is additional fragmentation information in the RSI header.
A PDU type FRAG (PDU type v5) or FREQ and FRES (PDU type v6)
signalizes that all fragmentation information is in the fragment header. The
first element indicates which optional header or which payload comes next.
This makes it easy to add other additional headers later.

In Variant 3 the architecture of the protocol is based on chunks where more
chunks can be transported in one RTA frame. The Flags do not contain any
extra flags for fragmentation. The PDU type indicates with the types FRAG
or FREQ and FRES that this is the next chunk which follows. With the type
of DATA it indicates that an Alarm will follow. Alarm High has its own

62

4.1. Packet Structure

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Destination SAP Source SAP

Version Type Flags V.3 SendSeqNum

AckSeqNum VarPart Length

 RTA
Header

Fragment Number Reserved MN Opnum Reserved CallS.
} RSI

Header

RSI Payload

Figure 4.5.: Packet Variant 2. Optional fragmentation header realization. In addition to the
first version the fragment number is included and the More Fragment bit is
included in the RSI header. The size of the RSI header is the same.

: Contains fragmentation information
: RSI Information

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Destination SAP Source SAP

Vers. N. PDU Flags V.3 SendSeqNum

AckSeqNum VarPart Length

 RTA
Header

N. PDU Payload Length MN Opnum Reserved CallS.

Record Payload

 Record
Chunk

N. PDU Payload Length Reserved

Alarm Low Payload

 Alarm
Chunk

Figure 4.6.: Packet Variant 3: Chunks. RTA header is extended with a chunk type field that
indicates that a fragment chunk follows. The chunk type indicates the following
chunk that comes next. The Payload Length is considered as part of this chunk.
In the RSI chunk header the M Flag is the More Fragment Flag and the N Flag
for the Notification bit of the responder. The Opnum is the operation number
of RSI and the CallSequence is used for every new call. The last chunk type is
0 and indicates that nothing follows.

: Contains fragmentation information
: RSI Information

63

4. Protocol Design

PDU type. Alarms and records use the same receive resource management
with a common window size. For the chunk type in the chunk headers the
PDU type field is used. The payload length is the length of the payload data
of each chunk. This is necessary to know in order to get a pointer to the
next chunk header.

How will the protocol be look like on the wire? The next section describes
the sequence.

4.2. Sequence

The versions that are described in Section 4.1.4 lead to three different
communication sequences. In the basic variant the alarm and RSI parts are
separated into different state machines. The sequence and acknowledgment
numbers are not linked, the window size is separated but the alarm reference
of an alarm addresses the same endpoint as the SAP of RSI does. An extra
resource for Alarm High and Alarm Low has to be reserved besides the
resources for RSI. The communications are not influenced by the other.

Alarm Priorities

There are two alarm priorities: Alarm High and Alarm Low. The high
one receives preferential treatment and is used for critical events. The
low one is used to reset a connection after timeout or user trigger. The
different priorities are identifiable through a different Frame ID in the
PROFINET Ethernet header.

There could also be a possible Advanced Variant which combines the state
machines of alarms and RSI in the same transport flow. This includes
the sequence and acknowledgment numbers and a common window size.
Records and alarms would be transported with a common Frame ID and
with the protocol version 2. These advanced variants differ if they use
chunks or not.

RSI uses two different timers for records. The fragmentation timer TO
and the call timeout TOC. The fragmentation timer ensures that fragments

64

4.2. Sequence

are acknowledged and the call timeout ensures that the initiator does not
have to wait for the response for an infinite time. The TO timer starts with
the first fragment of the request and ends with the receiption and correct
defragmentation of the response. The alarms have a separate timer TOA
which has to ensure that the alarms are transported. The alarm timout TOA
is 100ms, the fragmentation timeout TO is 2s and the call timeout TOC is
3min.

4.2.1. Basic Variant

The Basic variant does not include alarms in the same transportation win-
dow. Alarms are sent in parallel and have their own receive resources. An
example transportation is displayed in Figure 4.7. The sequence diagram is
separated in different sections in order to show the cases that may appear.
All cases are displayed in Appendix A.

The controller is always the initiator of a call and starts a request. The device
is the responder. The first fragment always uses the window size 1 which
has two reasons. First, the controller does not know the window size of
the device and second, the Service Access Point SAP is not known. So the
first fragment is addressed to the endpoint mapper. The first fragment that
is repeated contains the SAP for this connection and the window size of
the device. The window size shall not be adapted during the connection.
When a timeout occurs the initiator repeats the message three times before
it aborts.

The meanings of the states in the sequence diagrams are:

• Start (empty): Is the first fragment of a connection.
• A(x): x fragments of the request have been acknowledged.
• A(x)R(r): x fragments of the request have been acknowledged but an

fragment timeout has occurred and the number of maximum timeouts
has not yet been reached.
• W/R(r): All fragments of the calls have been acknowledged but no

response fragment has been received by the initiator. There are r
timeouts left until the connection will be aborted.

65

4. Protocol Design

devicecontroller

REQ (1/6) — TACK

ACK 1

A(1)
REQ (2/6)

REQ (3/6)

REQ (4/6) — TACK

ACK 4

A(4)
REQ (5/6)

REQ (6/6)

TO

A(6)R(3)
REQ (5/6)

REQ (6/6) — TACK

ACK 6

TO

W/R(3)
ACK 0

ACK 6

RSP(1/3)

RSP(2/3) — TACK

RSP(2)/R(3)
ACK 2

RSP (3/3)

NEXT

Figure 4.7.: Example sequence diagram 1 of
basic variant without frame drops.
Server window size for request is
3 and client window size is 2. First
fragment is first connect fragment
with window size 1.
Last fragment of window con-
tains TACK flag. Last window of
request or response does not con-
tain TACK on first transmission.
Next transmissions set the TACK
until device has acknowledged
every fragment. The ACK o is a
PING signal which demands for
a a working signal.
Server starts the response with
the controller window of 2. Client
acknowledges every response
window.
The grayed lines are linked to
sequence parts that are used to
describe all parts and failure
conditions as illustrated in Ap-
pendix A.

66

4.2. Sequence

• RSP(x)/R(r): x fragments of the response have been received and r
timeouts are left until the connection will be aborted.
• NEXT: All fragments of the response have been received. The next

request can be sent.

The frame description is structured like this:

• REQ(m/M) – TACK: mth fragment of a request with M fragments ins
total. TACK signalizes if the flag is set.
• RES(n/N) – TACK: nth fragment of a request with N fragments ins

total. TACK signalizes if the flag is set.
• ACK x: Acknowledgment of the packet where x is the fragment num-

ber of the opposite site’s call.

There can be several possibilities of what could go wrong. Frame drops may
occur. Two example scenarios of frame drops are displayed in Figure 4.8.
These frame drops may lead to retransmissions. If the sender of a window
does not receive an acknowledgment the window will be sent again.

Another possibility of what could go wrong is the overlap of packets. An
example sequence with a fragmented request and response is displayed in
Figure 4.9. The last two request fragments are received correctly but the com-
putation of the response takes time and so a timeout occurs. Right before the
response has been received by the controller the last two request fragments
are retransmitted. Because of this retransmission also a retransmission of
the first two response fragments from the device occurs.

4.2.2. Advanced Variant

The Advanced Variant of RTA v2 uses shared resources for alarms and
for records. The sequence numbers, the acknowledgment mechanism and
the window size take effect for both kinds of data. The Advanced Variant
extends the Basic Variant with the possibility to transport alarms while
transmitting a record. Therefore, the sequence diagrams are extended by
extra sections.

67

4. Protocol Design

devicecontroller

A(1)/R(2)
REQ (2/6)

REQ (3/6)

REQ (4/6) — TACK
X

TO

A(1)/R(1)
REQ (2/6)

REQ (3/6)

REQ (4/6) — TACK

TO

ACK 4

X

ERROR

devicecontroller

A(1)/R(3)
REQ (2/6)

REQ (3/6)
XREQ (4/6) — TACK

ACK 2

A(2)
REQ (3/6)

REQ (4/6)

REQ (5/6) — TACK

ACK 5

A(5)

Figure 4.8.: Framedrop requests. If requests with TACK or ACK are dropped a timeout
occurs and a retransmission of the window starts. After three retransmissions
an error occurs and the connection is terminated. If a frame is dropped during
a window the responder acknowledges the last fragment received in order.

68

4.2. Sequence

devicecontroller

A(4)

REQ (5/6)

REQ (6/6)

TO

A(4)/R(3)

REQ (6/5)

REQ (6/6) — TACK
RSP (1/3)

RSP (2/3) — TACK

RSP(2)/R(3) — TACK

ACK(2)

RSP (1/3)

RSP (2/3) — TACK

RSP(3/3)

NEXT

Figure 4.9.: Example sequence diagram of
basic variant with intersections.
Window size for controller and
sever is 2. Response and retrans-
mission of request overlaps which
causes retransmission of response
fragments. The TACK flag is ig-
nored for response retransmis-
sions.

69

4. Protocol Design

The alarms use the TOA timeout, which is 100ms. In case of a running call
the initiator decreases the timer from the fragment timer value TO to the
alarm time value TOA.

The meanings of the section states are extended by additional information
about sequence numbers:

• Seq(y y)...: The section that follows ... is extended with SendSeqNum
of controller (x) and device (y).
• *Seq(x y): Is valid for all basic sections and adds the information of

SendSeqNum of controller (x) and device (y).

In Figure 4.10 an example sequence for the transportation of alarms is
displayed. The RSI initiator and responder is allowed to send an alarm with
the priority high and low at all times. Every alarm has to be acknowledged
immediately. The TACK field is set in every alarm PDU. When an alarm
has been sent a timer is started. After the Timeout Alarm TOA the alarm
is resent. If there is no acknowledgment after three retransmissions of the
alarm the alarm sender aborts the connection.

The case where the controller has to send alarms to device during the
fragmentation process of a request is displayed in Figure 4.11. The window
sizes are two for both nodes. The left sequence displays the case without
frame drops and the right sequence displays the same case with frame drops.
The behavior of the protocol would be the same if the initiator fragments
the response and the device has alarms to send.

When the Alarm Low AL event occurs there is still one frame left in the win-
dow where the Alarm Low can be sent directly. The next alarm which occurs
AH can only be sent directly when the last window has been acknowledged.
In the right sequence diagram the framedrop of the acknowledgment causes
a retransmission of the last window. The Alarm High event on controller
side starts a timer.

The case where the device has sent all response fragments but the last
window has not been acknowledged and an alarm occurs is displayed in
Figure 4.12. There is no acknowledgment information for the device if the
last response fragment has been received correctly or if some frame has been
lost. The controller has a Fragmentation Timer TO that sends an ACK if not

70

4.2. Sequence

devicecontroller

*Seq(3 5)AL S(4)A(5) AL

ACK 4

*Seq(4 5) AHS(6)A(4) AH

ACK 6

*Seq(4 6)AH

TO
A

S(5)A(6) AH

ACK 5

X

*Seq(4 6)/R(3)

TO
A

S(5)A(6) AH
X

*Seq(4 6)/R(2)
S(5)A(6) AH

ACK 5

Seq(5 6)

Figure 4.10.: Example sequence diagram of
Advanced Variant with alarms
only. No overlap of an RSI call
and no overlap without con-
troller and device are allowed to
send Alarm Low AL and Alarm
High AH.

71

4. Protocol Design

devicecontroller

Seq(3 5)A(3)
S(4)A(5) REQ(4/8)AL

S(5)A(5) AL

ACK 5AH

S(6)A(5) AH

ACK 6

Seq(6 5)A(4)

devicecontroller

Seq(3 5)A(3)
S(4)A(5) REQ(4/8)AL

TO
A

S(5)A(5) AL

ACK 5

X
AH

TO
A

TO
A

S(4)A(5) REQ(4/8)

S(5)A(5) AL

ACK 5

S(6)A(5) AH

ACK 6

X
S(6)A(5) AH

ACK 6

Seq(6 5)A(4)

Figure 4.11.: Example sequence diagram of Advanced Variant with alarms and records.
Alarm Low AL fits in window of size 2 and can be sent instantly. After timeout
TOA window is retransmitted. Alarm High is queued and is sent after the
previous window has been acknowledged.

72

4.2. Sequence

devicecontroller

RSP(2)Seq(3 5)
ACK 5

RES(3/4)Seq(6)Ack(3)

RES(4/4)Seq(7)Ack(3)
X

ALAL Seq(8)Ack(3)

ACK 6

RES(4/4)Seq(7)Ack(3)

AL Seq(8)Ack(3)

ACK 8

NEXT Seq(8 3)

Figure 4.12.: The server sends an alarm after he has finished his response. The alarm is sent
but can not be delivered. The device starts a timeout and retransmits the last
window. After acknowledgment of the RSI window the alarm is transported.

73

4. Protocol Design

all expected fragments could be received. If an alarm occurs on the device
side the alarm is sent and the Alarm Timer TOA is started. The alarm is
not accepted by the controller. The second last fragment is acknowledged
so that the device can send the last response fragment and the alarm in one
window.

In case of an alarm that has to be transported by the currently receiving
part of a record connection it can be sent immediately. A scenario with
two alarms is displayed in Figure 4.13. The transport process of RSI is not
influenced. If the alarm has been received an ACK is sent. The Alarm High
has been received by the controller during the transportation of a window.
The next fragment REQ(7/8) acknowledges the AH.

If the first alarm is lost then it is resent after the alarm timeout is triggered.
Another alarm AH is sent in the previous window. After the timeout both
alarms are resent simultaneously. A separate timeout of alarm low and
alarm high would trigger the retransmissions of both, alarms separately
and guarantees that the alarm high is not retransmitted immediately after
the initial send. This reduces the sent frames if the acknowledgment of the
alarm low is lost. If the alarm is lost separate timers do not bring any benefit.
They may even delay the transport of the second alarm since the second
alarm can only be processed if the first has arrived.

The acknowledgment packets (ACK) have been left out of the window
calculation. An argument to include them would be that ACK packets use
the resources as well and so have the ability to block them. A counter
argument is that the blocking time is much shorter because no payload is
included and the information can be extracted faster.

4.2.3. Advanced Variant with Chunks

The Advanced Variant can be extended by the use of chunks. Chunks
are used to transport more than one different payload type in one frame.
The packet structure of this variant is described in Figure 4.6. It is able to
transport an alarm HIGH, LOW and a record fragment in one packet. This
technique reduces the potential of the alarms thwarting the transportation
of records.

74

4.2. Sequence

devicecontroller

A(3)Seq(3 5)

S(4)A(5) REQ(4/8)

S(5)A(5) REQ(5/8) — TACK

S(6)A(5) ACK 5

AL

S(6)A(3) AL

S(5)A(6) ACK AH

S(7)A(4) AH

S(7)A(7) ACK

S(6)A(6) REQ(6/8)

S(7)A(7) REQ(7/8) — TACK

S(5)A(5) ACK 7

S(7)A(8) REQ(8/8)

S(7)A(8) RES(1/1)

NEXT

devicecontroller

A(3)Seq(3 5)

S(4)A(5) REQ(4/8)

S(5)A(5) REQ(5/8) — TACK

S(5)A(5) ACK

AL
S(6)(3) AL

X
TO
A AH

S(7)A(4) AH

S(7)A(5) ACK

S(6)A(5) REQ(6/8)

S(7)A(5) REQ(7/8) — TACKS(6)A(5) AL

S(7)A(6) AH

S(7)A(7) ACKACK 5

ACK 6

S(8)A(7) REQ(8/8)

S(8)A(8) RES(1/1)

NEXT

Figure 4.13.: Example Sequence Diagram of Advanced Variant with alarm and record from
different nodes. The left sequence illustrates the sequence without and the
right with a frame drop. The transport of the request is not deferred. On
retransmission both alarms are transported in one window.

75

4. Protocol Design

devicecontroller

A(1)Seq(3 5)
S(4)A(5)|REQ(2/8)AL

S(5)A(5)|AL|REQ(3/8)

ACK 5AH
S(6)A(5)|AH|REQ(4/9)

ACK 6

A(4)Seq(6 5)
S(7)A(5)|REQ(4/9)

S(8)A(5)|REQ(5/9)AL
AH ACK 8

S(9)A(5)|AH|AL|REQ(6/9)

ACK 9

A(6)Seq(9 5)

devicecontroller

A(1)Seq(3 5)
REQ(2/8)Seq(4)Ack(5)AL

AL Seq(5)Ack(5)

ACK 5AH
AH Seq(6)Ack(5)

ACK 6

A(2)Seq(6 5)
REQ(3/8)Seq(7)Ack(5)

REQ(4/8)Seq(8)Ack(5)AL
AH ACK 8

AH Seq(9)Ack(5)

ACK 9AL Seq(10)Ack(5)

ACK 10

A(4)Seq(10 5)

Figure 4.14.: Example sequence diagram of Advanced Variant with chunk realization on
the left and without chunks for the same scenario on the right. Chunks are
separated with |. S(*)A(*) signalizes sequence and acknowledgment number.
Total number of RSI fragments is increased from 8 to 9.

76

4.2. Sequence

This benefit takes effect when the sender of an RSI call has to simultane-
ously transport one or more alarms. An example scenario is displayed in
Figure 4.14. The Advanced and the Chunk Variants start at the same point
of transportation. When an alarm occurs during the sending procedure of a
window the alarm is sent directly.

In the chunk realization it is possible to add some part of current RSI
transportation until the packet reaches the maximum packet size. One alarm
chunk has a fixed size of 204 bytes. Since the maximum length is 1432 bytes
there are still 1228 bytes left in that packet where 1224 bytes of RSI payload
can be transported. Both payloads have an chunk header with the size of
4 bytes. The second alarm AH causes an increase of the 8 to 9 fragments
that are necessary to transport the whole call. The question is in how many
cases there is no extra fragment necessary to transport an alarm.

pno =
xal
xtot

=
lenmax − lenmin − lenal

lenmax − lenmin
=

1428− 1− 204
1428− 1

= 85, 7%

• pno: Probability that a new alarm causes no new fragment.
• xal: Cases where no new fragment is needed to transport an alarm.
• xtot: All cases
• lenmax: Maximum payload length of RSI.
• lenmin: Minimum payload length of RSI.
• lenal: Length of alarm chunk.

In 86% of the cases where an alarm is sent simultaneously to an RSI call
there is no extra fragment necessary to send.

If two alarms are in the send queue the alarm high is prioritized and then
an RSI chunk is optionally appended. The chunk realization brings perfor-
mance improvements but brings also complexity to the state machines.

The algorithm behind the designed sequences is the basis for the realization
of the protocol. This is done by the state machines.

77

4. Protocol Design

4.3. State Machine

Based on the sequence diagrams there are three new state machines for the
Basic Variant: Initiator, Responder and (Lower Layer). Reduced versions of
the Initiator and Responder state machines are illustrated in Figure 4.15

and 4.16. The complete versions are appended in Appendix C and D. These
state machines are part of the PROFINET norm. The simplified visual
presentation is sufficient to understand the functionality of RSI. The parts
that are missing do not reduce the understanding of fragmentation of RSI.
Device Access and Application Ready Notification are an example for extra
features of RSI.

Application Ready Notification is a callback from the device to the con-
troller after startup where it tells that is application is ready for cyclic data.
It is the only call where the device is the initiator. RSI uses therefore an ACK
PDU with a Notification bit N set to 1. The controller then initializes a call
to bring the information. The Application Ready Notification mechanism is
described in a separate state machine.

Device Access describes a mechanism where the connection will not be
persistent. The call is addressed directly to the device.

4.3.1. Basic Variant

The state machines of the initiator and the responder are illustrated in
Figure 4.15 and 4.16. Both are embedded in upper and lower state machines.
The events that are described in the arrows are events from the upper and
lower state machines which are defined in the tables below the machines.

The Initiator is activated with a Connect.req. This and the following re-
quests are fragmented in the state Fragment Request FREQ and sent to
the responder. The initiator starts with window size 1 and waits for an
acknowledgement after the first fragment. The initiator stays in the FREQ
state until it has received and acknowledegment for the last fragment of the
request. This is either the case when the response is received or the Initator
retransmits the last window and the responder sends an acknowledgment
to tell that it is working on the request.

78

4.3. State Machine

UN
BOUND

FREQ

IDLE

DRSP

Call.req
[Connect]

Abort.req

Ack.ind
[! LastFrag]

Ack.ind
[LastFrag]

Error.ind
|| TO

Abort.req

RecvFrag.ind
[! LastFrag]

RecvFrag.ind
[LastFrag]

Error.ind
|| TO

Abort.req

Call.req
[! Connect]

Figure 4.15.: Initiator state machine of the Basic Variant. The start state is UNBOUND. In
FREQ the request is fragmented. In DRSP the response is defragmented. In
the state IDLE the connection is established and a new request can be sent.
(Pössler and Stefan, 2017a)

79

4. Protocol Design

Table 4.2.: Events of Initiator state machine shown in Figure 4.15.
Name Source Description Action

Call.req[*] Upper Demand to transport the call
request with the opnum *. SendFrag.req

SendFrag.req Intern. Send next unacknowledged
window.

Ack.ind[!LastF.] Lower Receive new AckSeqNum SendFrag.req

Ack.ind[LastF.] Lower Receive new
AckSeqNum [Last Frag].

RecvFrag.ind
[!LastF.] && TACK Lower Receive new SendSeqNum SendAck.req

SendAck.req Intern. Send acknowledgment.
RecvFrag.ind

[!LastF.] Lower Receive new SendSeqNum
[last Frag]. Call.cnf(+)

Abort.req Upper Abort connection. Call.cnf(-)

Error.ind Lower Cancel current call by
responder. Call.cnf(-)

TO Intern. Call Timeout Call.cnf(-)

80

4.3. State Machine

Table 4.3.: Events of Responder state machine shown in Figure 4.16.
Name Source Description Action

RecvFrag.ind
[First Connect] Lower First fragment of connect

indication Start Timer

RecvFrag.ind
[TACK]

Lower Received last fragment
from window SendAck.req

RecvFrag.ind
[LastFrag] Lower Received complete request. Stop Timer

Call.rsp Upper Demand to transport the call
response with the opnum *. SendFrag.rsp

Ack.ind[!LastF.] Lower Receive new AckSeqNum SendFrag.rsp

Ack.ind[LastF.] Lower New request acknowledges
response implicit.

SendError.req Intern. Sends error PDU. Abort.cnf()
Abort.req Upper Abort connection SendError.req

SendError.cnf Lower Error sent Abort.cnf()
Error.ind Lower Cancel current call by initiator. Call.cnf(-)

TO Intern. Connect request timeout Call.cnf(-)

In the state Defragment Response DRSP the response is defragmented.
When a window is received and the TACK flag is set the Initiator sends an
ACK which tells the responder to continue to send the next window. When
the response has been received completely the state changes to IDLE. The
Initiator is ready for a new call.

The Abort.req is an abort of the connection that is triggerd from the upper
layer and the Error.ind is a trigger from the Responder that it has finished
the connection. The Abort.req can be triggered by the upper layer of the
Initiator and the Responder. After finishing the connection both send an
Error-PDU which triggers an Error.ind at the other communication partner.
The Error-PDU will no be repeated if it is lost. In this case the the Initiator
will be set to UNBOUND if a timeout occurs during an active call or during
Abort.req by the user.

The Responder uses a request timeout which is active during a fragmented
request in the state DREQ. When the request has been received completely

81

4. Protocol Design

IDLE

DREQ WRSP

FRSP

ABORT

RecvFrag.ind
[Connect]

RecvFrag.ind [!LastFrag]

RecvFrag.ind
[LastFrag]

TO ||
Error.ind ||
Abort.req

Ack.ind
[LastFrag]

Ack.ind[!LastFrag]

Error.ind ||
Abort.req

Call.rsp(*)

Error.ind ||
Abort.req

SendError.req
Abort.req

Figure 4.16.: Responder state machine of the Basic Variant. The initial state is IDLE where
no connection is established. DREQ is the defragmentation of the request
and WRSP waits for the response. The state FRSP sends the response and
fragments ist. The state ABORT can be triggerd through timeout, incoming
error PDU or an Abort.req. It aborts the connection and sends an Error PDU.
(Pössler and Stefan, 2017b)

82

4.3. State Machine

Table 4.4.: Events of an Alarm state machine shown in Figure 4.17.
Name Source Description Action

Alarm.req Upper Alarm to send. Insert in send queue.
start alarm timer.

Alarm.ind Lower Incomming alarm Send Ack-PDU.

Ack.ind Lower Update ACK Info and
check if alarm is to send.

SendWindow or
return to RSI.

TO Intern Alarm Timeout[not max] SendWindow
TOMax Intern Alarm Timeout [max]

Error.ind Lower Error indication Error.ind
Abort.req Upper Abort request Abort.req

the responder delivers the request to its user and change the state to state to
WRSP. The response from the upper layer is fragmented in the state FRSP.
After an window has sent the responder waits for an acknowledgment from
the Initiator. No acknowledgment will be sent for the last window so the
responder will stay in FRSP until a new request will be received.

The initiator and the responder state machines are above the lower layer state
machine which is described in Appendix F. It checks that the parameters
are within the allowed boundaries and triggers acknowledgment-, RSI- and
alarm indications. For the RSI indications it extracts the information if it is
a connect request.

4.3.2. Advanced Variant

The Advanced Variant of RSI combines the RSI and alarm state machines
in order to transport both in one transport window. To do this the state
machines of the Basic Variant is extended by the one that is displayed in
Figure 4.17. In the state RSI the alarm is not active. If an Alarm.req occurs
the state changes to ALARM SEND. In this state the lower events trigger
the Alarm state machine and not the RSI state machine.

The alarm that has to be sent will be inserted in the send array of RSI
packets. It is inserted directly after the highest sent SendSeqNum. If there

83

4. Protocol Design

RSI ALARM
SEND

Alarm.req
Alarm.ind

TOMax || Error.ind || Abort.req

Ack.ind
[NoAlarmToSend] TO

Alarm.req
|| Alarm.ind

Ack.ind
[AlarmToSend]

Figure 4.17.: Alarm state machine for Advanced Variant. It is an extension of the basic state
machines and becomes active with an Alarm.req. Alarm.ind are always possible.

is still room in the window the next fragment is sent. The fragmentation
timeout is stopped and the alarm timeout is started. If there is no free
window the sender waits until the timeout occurs or an acknowledgment of
the old window is received.

If another Alarm.req is executed the sender checks if an alarm with the
same priority (low or high) is already in the queue. If there is none it is
stored. Otherwise it is confirmed with a negative response. If an Error.ind,
an Abort.req or a timeout occurs after the maximum time the state machines
will be reset and the events are forwarded to the RSI state machine.

All events that are not defined in the state ALARM SEND are queued inter-
nally and after successful transmission of all alarms they are forwarded to
the RSI state machine and are executed in the order they occurred. The com-
plete state machine of the advanced variant is described in Appendix E.

84

4.3. State Machine

4.3.3. Chunk Variant

For the the chunk realization the Advanced Variant is extended to put alarm
and record PDUs in one packet. An alarm does not need a complete packet
length for transportation and there is room to transport a part of a running
call. The state machines for Initiator and Responder of the Advanced Variant
has to be adapted, as well as the integration of the alarm for the Advanced
Variant. Both variants divide the call in fragments at the beginning of the
transportation. This is not possible if chunks were used. It is not certain
how many fragments are there since alarms change the fragmentation and
it is not deterministic when an alarm occurs.

The Basic Variant has been designed and is ready for the practical part. In
the next chapter the implementation and the implementation environment
is described.

85

5. Implementation

The theoretical design of the protocol in the previous chapter enables the
integration of RSI in the PROFINET software stack. This work is done by a
team with the size of circa five people plus system architects.

The PROFINET stack is developed in a Visual Studio project and is written
in C. PCIOX is a Windows application, which includes the PROFINET stack
and is made for testing purposes. PCIOX emulates IO-Devices and IO-
Controllers which contain Slots and Subslots. The development architecture
is illustrated in Figure 5.1.

The Totally Integrated Automation (TIA) portal is a software where the
device configuration and network topology can be described. The device
properties are then exported to a configuration file where the technical
capabilities are stored. For the device another configuration file contains
the inner architecture of slots, the address configuration. The INI-File of
the controller includes its own address and slot configuration and the
configuration of the devices that are controlled. (Popp, 2005, p. 258)

PCIOX controls the PCIe boards SOC1 and EB200P. Both are Siemens
development boards that are able to send and receive PROFINET Ethernet
frames. In the test environment the SOC1 is used as the controller and the
EB200P is used as the device. They are different in their architecture, both
can be used as controller or device.

The EB200P card has four RJ45 connectors. Two for interacting and two
for logging the incoming and out going frames. These two ports may
be connected to Wireshark via another common network interfaces. It is
running on a PC. How does it look like?

87

5. Implementation

Ethernet

EB200P

PROFINET
Stack

PCIOX Device

Config-Files

SOC1

PROFINET
Stack

PCIOX Controller

Config-Files

TIA-Portal

Network
Interface

Wireshark

Figure 5.1.: Development environment. PCIOX is the PC application that includes the
PROFINET stack and builds an IO-Device or IO-Controller in software. PCIOX
controls the SOC1 and EB200P development boards. Config-Files are computed
in the TIA-Portal and describes the device and controller. Wireshark captures
the packets.

88

5.1. Test Interface

5.1. Test Interface

The PCIOX GUI is shown in Figure 5.2 where the connection between the
devices has not been established. The controller has a description of the de-
vice in its own configuration which contains the slots, subslots and function
descriptions. On the right side of the GUI there are tabs with information
about PCIOX itself, the state of the connection and the possibility to write
and read records after connection establishment. The controller initializes
a connection to the device with the Add Request. After the connection
phase has been finished the AR state changes to IN DATA, as shown in
Figure 5.3.

Beside of PCIOX another tool is used to monitor the communication.

5.2. Frame Observation

The fragmentation can not be displayed by PCIOX. Fragmentation and
reassembly is done in the background. For debug purposes Wireshark
(Combs, 2018) is used. Wireshark is a network protocol analyzer that can
filter, reassemble and present network packets. PROFINET uses an adapted
version with automatic highlighting and reassembly features. A snapshot
of the frames of the connection phase is displayed in Figure 5.4. All frames
are smaller than the maximum VarPartLen. No fragmentation is used. The
fragment information is decoded in the FOpnumOffset field which includes
Call Sequence, Opnum and Offset.

In Figure 5.5 a fragmented Write request is performed which consists of 10

fragments. The window size is two. After two fragments has been sent the
device sends an ACK-RTA, Application Ready Notification. The acknowledg-
ment PDU may be used additionally to tell the controller that the application
is ready. The modified Wireshark also has the functionality to reassemble
fragmented calls. By clicking on the last frame the whole call is readable.

The communication can be recorded and so evaluated.

89

5. Implementation

Figure 5.2.: PCIOX GUI of controller (top) and device (bottom) with no active Application
Relation (No AR). The structure of the Interface is illustrated on the left in the
tree view. The controller is configured to control the device 1 with the listed
slots and subslots. If not connected the controller displays Device Removed and
the device displays NO AR.

90

5.2. Frame Observation

Figure 5.3.: Snapshot of PCIOX GUI of controller (top) and device (bottom) with an active
Application Relation (AR). The AR-State has changed on both sides to INDATA
and the controller is able to send read and write records.

91

5. Implementation

Figure 5.4.: Snapshot of Wireshark from the connection phase. The frames sent and received
frames are displayed in the top part and the decoded information of the first
packet is displayed in the bottom part.

92

5.3. Time

Figure 5.5.: Snapshot of Wireshark from a fragmented request with 10 fragments. Window
size is 2.

5.3. Time

The time to start a communication relation can be compared between RSI
and CLRPC. Both have a similar start up behavior. RSI needs three calls
with the following Opnums: Connect, PrmWrite and ReadNotification to reach
the state INDATA. CLRPC needs an additional call: PrmEnd.

From the start of the connection to the state INDATA RSI needs 3,78s and
CLRPC 3,90s. RSI is 0,13 s faster than RPC for startup, which includes
allocation of memory and is not only linked to the fragmentation process.
By now CLRPC is not removable and so the RSI variant also allocates the
buffer for CLRPC. In this test all calls are not fragmented.

The transportation time of a fragmented call is measured. The measurements
are made with the Light Variant of PCIOX, where the computations are
made in Windows. It is done through an internal time logging function
since it has a larger accuracy than the network logging process. The time is
measured two times: Send point of the first fragment of a call and the point
when the last fragment of a call is sent. The results of the comparison are
displayed in Figure 5.6. The figure displays the averaged transport duration
of a call with the length of 25 kBytes. The averaged value of CLRPC is
54µs and RSI has an average transportation time of 43µs. The upper border
time of both variants is the same. The lower border differs. In RSI some
transportations need only 23µs. In CLRPC all transportations take 46µs

93

5. Implementation

CLRPC RSI

10

20

30

40

50

60

70
Tr

an
sp

or
t

D
ur

at
io

n
of

Ex
am

pl
e

C
al

l[
µ

s]

Figure 5.6.: Comparison of Duration in µs of a fragmented call between CLRPC and RSI.
The highest 10% and the lowest 10% are not included of all measured cases are
removed.

94

5.4. Memory and Code Size

or longer. RSI calls are not slower than CLRPC calls. On average they are
faster.

Besides the time analysis the need of memory and the code size are limiting
factors.

5.4. Memory and Code Size

The code size and the used runtime memory of RTA v1 and RTA v2 are
analyzed.

The memory includes stack and heap. Three different constellations are
analyzed: CLRPC only, CLRPC and RSI or RSI only. Controllers always have
to support CLRPC and optionally RSI. So the removal of CLRPC from the
PROFINET stack may only be a memory benefit for CLRPC. If RSI and
CLRPC are used the memory use is 4 Kbyte higher than it is without RSI.
At this point CLRPC cannot be completely removed from the build so it is
impossible to make a comparison of the real memory benefit when CLRPC
is not used.

The results of the code size analysis are displayed in Figure 5.7. The analysis
is done for the Ertec200p with an OpenBSD stack. The component CLRPC
is the component where the RPC calls are performed. SOCK and TCIP
are there for the IP and UDP/TCP stacks. These stacks are not necessary
in v2 of RTA. The implementation may reduce the codesize by about 321

kBytes.

The implementation especially the testing of RSI is in progress and will be
continued so that more analyses of RSI can be made. There is still work to
do and the next big step is to have a fair construction with integrated RSI.

95

5. Implementation

27,332

3.46 · 105

RPC RSI
0

0.2

0.4

0.6

0.8

1
·105

C
od

es
iz

e
in

By
te

s

ACP CLRPC SOCK TCIP

Figure 5.7.: Code size of the components in bits of the compile variant OpenBSD for
ERTEC200p. Displayed are the involved components for the variant with
records over RPC and of the variant with records over RSI without the other
components.

96

6. Conclusion

Records for the parameterization have been sent over IP with the PROFINET
component Connectionless Remote Procedure Calls CLRPC. The records
that are sent with Remote Procedure Calls RPC over IPv4 are ported to
the Realtime Acyclic transport protocol RTA. RTA uses no extra network
protocol like IP. In v1 RTA is used to send alarms. In v2 this is extended
with the Remote Service Interface RSI to send records like RPC which may
have a size of up to 16 MBytes.

RTA has been fragmented in order to be ready for RSI which should guar-
antee in order transportation and frame drop detection. There are three
variants: Basic, Advanced and Chunk. The Basic Variant has been imple-
mented. The fragment information is fix coded in the RSI payload. The
communication is triggered and controlled by the controller. The device
needs only a timer between the very first and the second fragment of a
communication.

The other variants, Advanced and Chunk are designed in theory. Both could
save receive resources because they use a common communication window
for records and alarms. The chunk variant would even reduce the possibility
that one protocol may break another because alarms and records could be
sent within one packet. The benefit of chunks is limited to cases where an
alarm occurs during a transportation of a fragmented call on the sender’s
side.

In comparison to CLRPC the resources are not extended. RSI transports
a fragmented call 15% faster on average than CLRPC and the phase to
establish an active Application Relation is 0,13s faster for the RSI implemen-
tation even though it is only a temporary result because CLRPC and the IP
components are not removable so far.

97

6. Conclusion

RSI has solved the problem of call classes of CLRPC. The user had to
determine whether the transportation of a call is guaranteed or it should
only be executed once. In RSI a call is executed only once by default and
the transportation is guaranteed. The device saves the data until a new call
is received in the own buffer and in case of retransmission the response is
sent back without executing the request.

With RSI the record services are ported to the Layer 2 of the OSI-Model like
the realtime communication before. In the future PROFINT will be using
Time Sensitive Network TSN, an open standard for real time communi-
cation with the goal of protecting the transportation undisturbed. For the
TSN realization no IP stack will be used. RSI is an important base to port
PROFINET to TSN and to transport large calls.

Furthermore RSI is capable enough to build a new communication stan-
dard in the PROFINET protocol suite for future-proofness. The door has
been opened for new product lines of devices with additional feature and
interface possibilities and beyond new product lines where the components
connected to IP are removed completely.

98

Bibliography

Bormann, Alexander and Ingo Hilgenkamp (2006). Industrielle Netze. Hüthig.
isbn: 3778529501 (cit. on p. 3).

CAE Specification (1997). DCE1.1: Remote Procedure Call. The Open Group
(cit. on pp. 29–34, 51, 53).

CCITT (1988). SERIES X: DATA COMMUNICATION NETWORKS: OPEN
SYSTEMS INTERCONNECTION (OSI) – MODEL AND NOTATION, SER-
VICE DEFINITION. International Telecomunication Union. url: https:
//www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.200-

198811-S!!PDF-E&type=items (visited on 08/18/2017) (cit. on p. 35).
Combs, Gerald (2018). About Wireshark. url: https://www.wireshark.org/

(visited on 02/05/2018) (cit. on p. 89).
Henning, Carl (2015). Tech Tip: What Is PROFINET DCP? url: http://

profinews.com/2015/07/tech-tip-what-is-profinet-dcp/ (visited
on 12/30/2017) (cit. on p. 5).

Henning, Carl (2017). Integrating TSN into PROFINET. url: http://profinews.
com/2017/05/integrating-tsn-into-profinet/ (visited on 11/20/2017)
(cit. on p. 1).

IANA (2017[a]). Assigned Internet Protocol Numbers. url: https://www.
iana.org/assignments/protocol-numbers/protocol-numbers.xhtml

(visited on 08/07/2017) (cit. on p. 14).
IANA (2017[b]). Service Name and Transport Protocol Port Number Registry.

url: https://www.iana.org/assignments/service- names- port-
numbers/service-names-port-numbers.xhtml (visited on 11/07/2017)
(cit. on p. 11).

IEC 61158-6-10 (2015). Industrial Communication Networks – Fieldbus Specifica-
tions. Part 6–10: Application layer protocol specification – Type 10 elements.
International Eletrotechnical Commission (cit. on p. 55).

Popp, Manfred (2005). Das PROFINET IO-Buch. Hüthig. isbn: 3778529668

(cit. on pp. 3–6, 87).

99

https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.200-198811-S!!PDF-E&type=items
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.200-198811-S!!PDF-E&type=items
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.200-198811-S!!PDF-E&type=items
https://www.wireshark.org/
http://profinews.com/2015/07/tech-tip-what-is-profinet-dcp/
http://profinews.com/2015/07/tech-tip-what-is-profinet-dcp/
http://profinews.com/2017/05/integrating-tsn-into-profinet/
http://profinews.com/2017/05/integrating-tsn-into-profinet/
https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml

Bibliography

Pössler, Thomas (2018). LMPM (Lower Layer) State Machine. Tech. rep. Siemens
AG (cit. on p. 135).

Pössler, Thomas and Matthias Stefan (2017a). RSI Initiator State Machine.
Tech. rep. State Machine is designed by Pössler which is based on a
version from me. Siemens AG (cit. on pp. 79, 117).

Pössler, Thomas and Matthias Stefan (2017b). RSI Responder State Machine.
Tech. rep. State Machine is designed by Pössler which is based on a
version from me. Siemens AG (cit. on pp. 82, 123).

PROFIBUS & PROFINET International (2016). PROFINET System Description.
url: https://www.profibus.com/download/profinet-technology-
and-application-system-description/ (visited on 08/03/2017) (cit.
on p. 1).

PROFIBUS & PROFINET International (2017[a]). Case studies by technology
and business. url: http://www.profibus.com/index.php?id=5013&
pxdprofibusfilter_technology=1 (visited on 08/03/2017) (cit. on p. 1).

PROFIBUS & PROFINET International (2017[b]). PROFINET - the leading In-
dustrial Ethernet Standard. url: http://www.profibus.com/technology/
profinet/overview/ (visited on 08/03/2017) (cit. on p. 1).

RFC 1700 (1994). Assigned Numbers. Network Working Group. url: https:
//tools.ietf.org/pdf/rfc1700.pdf (visited on 08/08/2017) (cit. on
p. 16).

RFC 1791 (1999). TCP And UDP Over IPX Networks With Fixed Path MTU.
Network Working Group. url: https://tools.ietf.org/pdf/rfc1791.
pdf (visited on 11/30/2017) (cit. on p. 36).

RFC 2460 (1998). Internet Protocol, Version 6 (IPv6). Network Working Group.
url: https://tools.ietf.org/pdf/rfc2460.pdf (visited on 08/07/2017)
(cit. on pp. 16–19, 53).

RFC 2616 (1999). Hypertext Transfer Protocol – HTTP/1.1. Network Working
Group. url: https://tools.ietf.org/pdf/rfc2616.pdf (visited on
11/30/2017) (cit. on p. 12).

RFC 3286 (2002). An Introduction to the Stream Control Transmission Protocol
(SCTP). Network Working Group. url: https://tools.ietf.org/pdf/
rfc3286.pdf (visited on 08/16/2017) (cit. on p. 24).

RFC 4960 (2007). Stream Control Transmission Protocol. Network Working
Group. url: https://tools.ietf.org/pdf/rfc4960.pdf (visited on
08/16/2017) (cit. on pp. 25–29, 47, 51, 53).

100

https://www.profibus.com/download/profinet-technology-and-application-system-description/
https://www.profibus.com/download/profinet-technology-and-application-system-description/
http://www.profibus.com/index.php?id=5013&pxdprofibusfilter_technology=1
http://www.profibus.com/index.php?id=5013&pxdprofibusfilter_technology=1
http://www.profibus.com/technology/profinet/overview/
http://www.profibus.com/technology/profinet/overview/
https://tools.ietf.org/pdf/rfc1700.pdf
https://tools.ietf.org/pdf/rfc1700.pdf
https://tools.ietf.org/pdf/rfc1791.pdf
https://tools.ietf.org/pdf/rfc1791.pdf
https://tools.ietf.org/pdf/rfc2460.pdf
https://tools.ietf.org/pdf/rfc2616.pdf
https://tools.ietf.org/pdf/rfc3286.pdf
https://tools.ietf.org/pdf/rfc3286.pdf
https://tools.ietf.org/pdf/rfc4960.pdf

Bibliography

RFC 7296 (2014). Internet Key Exchange Protocol Version 2 (IKEv2). Internet
Engineering Task Force. url: https://tools.ietf.org/pdf/rfc7296.
pdf (visited on 08/08/2017) (cit. on pp. 19–22, 47).

RFC 7383 (2014). Internet Key Exchange Protocol Version 2 (IKEv2) Message
Fragmentation. Internet Engineering Task Force. url: https://tools.
ietf.org/pdf/rfc7383.pdf (visited on 08/08/2017) (cit. on pp. 20,
22–24).

RFC 760 (1981). Internet Protocol. Information Sciences Institute, University
of Southen California. url: https://tools.ietf.org/pdf/rfc760.pdf
(visited on 07/03/2017) (cit. on pp. 12–15).

RFC 791 (1981). IP - ARPA Internet Program. Information Sciences Institute,
University of Southen California. url: https://tools.ietf.org/pdf/
rfc791 (visited on 08/07/2017) (cit. on pp. 14, 53).

RFC 793 (1980). Transmission Control Protocol. Information Sciences Institute,
University of Southen California. url: https://tools.ietf.org/html/
rfc793 (visited on 06/28/2017) (cit. on pp. 11, 47, 48, 51).

Siemens AG (2017). Totally Integrated Automation Portal. url: https : / /

www . siemens . com / global / de / home / produkte / automatisierung /

industrie-software/automatisierungs-software/tia-portal.html

(visited on 11/29/2017) (cit. on p. 5).

101

https://tools.ietf.org/pdf/rfc7296.pdf
https://tools.ietf.org/pdf/rfc7296.pdf
https://tools.ietf.org/pdf/rfc7383.pdf
https://tools.ietf.org/pdf/rfc7383.pdf
https://tools.ietf.org/pdf/rfc760.pdf
https://tools.ietf.org/pdf/rfc791
https://tools.ietf.org/pdf/rfc791
https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc793
https://www.siemens.com/global/de/home/produkte/automatisierung/industrie-software/automatisierungs-software/tia-portal.html
https://www.siemens.com/global/de/home/produkte/automatisierung/industrie-software/automatisierungs-software/tia-portal.html
https://www.siemens.com/global/de/home/produkte/automatisierung/industrie-software/automatisierungs-software/tia-portal.html

Appendix

103

Appendix A.

RTA Fragmentation Variant Basic
- Sequence

105

Appendix B.

RTA Fragmentation Variant
Advanced - Sequence

113

Appendix C.

Initiator State Machine of the
Basic Variant.

The initiator state machines have been written by Thomas Pössler. He has
used as basis an early state machine by me as the base for this work. (Pössler
and Stefan, 2017a).

117

Current
State

Event Condition Actions taken Output Next State

1 UNBOUND RSI_Call.req OpNum in [Connect,
ReadImplicit,
ReadConnectionless]

/* init new session */
 isap.rsap := CON-SAP
 SendSeqNum := 0xFFFE
 SendWindowSize := 2 /* implementation
specific */
 RecvAckNum := 0xFFFE
 RecvSendNum := 0xFFFE
 RecvWindowSize := 1
 SendCallSequence := 0x07
/* init call */
TimeoutCount := 0
RecvFragOffset := 0
SendCallSequence += 1
M_PrepareRequest (OpNum,
 ArgsRspMaxLength, ArgsReqLenght,
ArgsReq)
StartTimer (ApplicationReadyTimeout)
KeepSendSeqNum := SendSeqNum
SendSeqNum += 1

M_SendFreq_req FREQ

2 UNBOUND RSI_Call.req OpNum not-in [Connect,
ReadImplicit,
ReadConnectionless]

RSI_Call.cnf (-) UNBOUN
D

3 UNBOUND RSI_Abort.req RSI_Abort.cnf (-) UNBOUN
D

4 UNBOUND RSI_Ack_ind ignore UNBOUN
D

5 UNBOUND RSI_Fres_ind ignore UNBOUN
D

6 UNBOUND RSI_Error_ind ignore UNBOUN
D

7 UNBOUND TimerExpired (ANY) ignore UNBOUN
D

8 UNBOUND M_SendAck_cnf ignore UNBOUN
D

9 UNBOUND M_SendFreq_cnf ignore UNBOUN
D

10 UNBOUND M_SendError_cnf ignore UNBOUN
D

11 IDLE RSI_Call.req OpNum in [Read, Write,
Control, ReadNotification,
PrmWrite]

TimeoutCount := 0
RecvFragOffset := 0
SendCallSequence += 1
M_PrepareRequest (OpNum,
 ArgsRspMaxLength, ArgsReqLenght,
ArgsReq)
StartTimer (ApplicationReadyTimeout)
KeepSendSeqNum := SendSeqNum
SendSeqNum += 1

M_SendFreq_req FREQ

12 IDLE RSI_Call.req
OpNum in [Connect,
ReadImplicit,
ReadConnectionless]

RSI_Call.cnf (-) IDLE

13 IDLE RSI_Abort.req M_SendError_req UNBOUN
D

14 IDLE RSI_Ack_ind ignore IDLE
15 IDLE RSI_Fres_ind ignore IDLE
16 IDLE RSI_Error_ind RSI_Abort.ind IDLE
17 IDLE TimerExpired (ANY) ignore IDLE
18 IDLE M_SendAck_cnf ignore IDLE
19 IDLE M_SendFreq_cnf ignore IDLE
20 IDLE M_SendError_cnf ignore IDLE
21 FREQ Do_CheckMoreToSend M_CheckMoreToSend ==

LastFragAcked
StopTimer (FragTimeout) /* for send */
StartTimer (FragTimeout) /* for receive */
TimeoutCount := 0

DRSP

22 FREQ Do_CheckMoreToSend M_CheckMoreToSend ==
Send

SendSeqNum += 1 M_SendFreq_req FREQ
23 FREQ Do_CheckMoreToSend M_CheckMoreToSend ==

WaitAck
/* Note: Send a frag with TACK set or send the
last frag, wait for Ack */

FREQ

Confidential

24 FREQ Do_CheckMoreToSend M_CheckMoreToSend ==
Timeout

/* Note: more than MaxFragTimeoutCount
Timeouts occurs without response */

RSI_Call.cnf(-) IDLE

25 FREQ M_SendFreq_cnf StartTimer (FragTimeout) Do_CheckMoreToSend
(SendCnf)

FREQ

26 FREQ TimerExpired
(FragTimeout)

TimeoutCount += 1 Do_CheckMoreToSend
(Timeout)

FREQ

27 FREQ M_SendAck_cnf StartTimer (FragTimeout) FREQ
28 FREQ RSI_Ack_ind M_UpdateAckInfo

TimeoutCount := 0
if TACK /* because of
implicit Ack */
 M_SendAck_req

Do_CheckMoreToSend

FREQ

29 FREQ RSI_Call.req RSI_Call.cnf(-) FREQ
30 FREQ RSI_Abort.req RSI_Call.cnf(-)

M_SendError_req
UNBOUN
D

31 FREQ RSI_Fres_ind ignore FREQ
32 FREQ RSI_Error_ind StopTimer (ANY) RSI_Abort.ind

RSI_Call.cnf(-)
IDLE

33 FREQ M_SendError_cnf ignore FREQ
34 DRSP Do_LastFrag_ind OpNum in [ReadImplicit,

ReadConnectionless]
StopTimer (ANY)

PNIOStatus := KeepPNIOStatus
ArgsRspLength := RecvFragOffset - PDUOffset

RSI_Call.cnf(+) UNBOUN
D

35 DRSP Do_LastFrag_ind OpNum not-in [ReadImplicit,
ReadConnectionless]

StopTimer (ANY)

PNIOStatus := KeepPNIOStatus
ArgsRspLength := RecvFragOffset - PDUOffset

RSI_Call.cnf(+) IDLE

36 DRSP RSI_Fres_ind PDU.SendSeqNum ==
(RecvSeqNum + 1)
&& PDU.FragOffset ==
RecvFragOffset
&& M_MoreFresCheck

/* Expected, do defragmentation */
ArgsRsp := M_Copy_FragData

RecvSeqNum := PDU.SendSeqNum
RecvFragOffset += PDU.VarParLen - 4

if isLastFrag
 Do_LastFrag_ind

DRSP

37 DRSP RSI_Fres_ind ! (PDU.SendSeqNum ==
(RecvSeqNum + 1)
 && PDU.FragOffset ==
RecvFragOffset

/* ! Expected, Ignore */
ignore

DRSP

38 DRSP TimerExpired
(FragTimeout)

! (TimeoutCount >
MaxFragTimeoutCount)

TimeoutCount += 1 M_SendAck_req DRSP
39 DRSP TimerExpired

(FragTimeout)
TimeoutCount >
MaxFragTimeoutCount

StopTimer (ANY) RSI_Call.cnf(-) IDLE
40 DRSP TimerExpired

(ApplicationReadyTimeout)
StopTimer (ANY) RSI_Call.cnf(-) IDLE

41 DRSP RSI_Ack_ind TimeoutCount := 0
M_UpdateAckInfo

if TACK
 M_SendAck_req

DRSP

42 DRSP M_SendAck_cnf StartTimer (FragTimeout) DRSP
43 DRSP RSI_Error_ind StopTimer (ANY) RSI_Abort.ind

RSI_Call.cnf(-)
IDLE

44 DRSP RSI_Call.req RSI_Call.cnf(-) DRSP
45 DRSP RSI_Abort.req StopTimer (ANY) RSI_Call.cnf(-)

M_SendError_req
UNBOUN
D

46 DRSP M_SendFreq_cnf ignore DRSP
47 DRSP M_SendError_cnf ignore DRSP

Confidential

Name Type Meaning
MaxFragTimeoutCount Const This value determines how often a TimerExpired (FragTimeout) may occur. Value: 3.

Note: see [Protocol::Timeout Frag]
MaxVarPartLen Const The constant value 1432, see RTA-PDU::VarPartLen

FragTimeout Timer Timeout for retransmission, Timeout for busy indicator. Value: 2 seconds.
Note: see [Protocol::Timeout Frag]

RemoteApplicationTimeout Timer Timeout for finishing a RSI-Call. Value: 300 seconds.
Note: see [Profile::Remote_Application_Timeout]

TimeoutCount Value Counts the TimerExpired events.
StartTimer Function This function is used to start or restart a timer.
StopTimer Function This function is used to stop a timer.

TimerExpired Function This function signals that a timer is expired.
isap Value This RSI-Initiator, refer to RSI-LMPM::Rsi-List

SendSeqNum Value The largest SendSeqNum sent
SendWindowSize Value The WindowSize of this RSI-Initiator

RecvAckNum Value The largest AckSeqNum received
RecvSendNum Value The largest SendSeqNum reveiced
RecvFragOffset Value The next FragOffset to receive, points to CallBuffer

RecvWindowSize Value The tailored WindowSize of the RSI-Responder
/* The WindowSize within the first ACK or Connect response fragment will be taken,
see M_UpdateAckInfo */SendCallSequence Value CallSequence; Range (0..7); += 1 does an wrap around

KeepSendSeqNum Value Keep the SendSeqNum for re-transmitting the first REQ Fragment
KeepPNIOStatus Value Keep PNIOStatus from first RES Fragment

PDUOffset Macro // The fragmented part of the "PROFINETIOServiceResPDU" starts at this Offset
within the RSI-PDU
PDUOffset := RsiHeaderSize (PDU)SendArray Value Array of 1 to n request fragment to send
SendArray.Length is the count of fragments
fragments ::= (sendSeqNum, sendTack, sendMoreFrag, offset, dataLen, Data[])

SearchIndexWithSendSeqNum Function // Return the index within SendArray with SendArray[idx].SendSeqNum ==
SendSeqNum
for (idx := 0; idx < SendArray.Length; ++idx)
 if (SendArray[idx].SendSeqNum == SendSeqNum) return idx
endfor
return undef // shall never happen

SearchLastAckedSendSeqNum Function // Return the highest acknowledged SendSeqNum within SendArray. Return
KeepSendSeqNum if no entry is acknowledged.
for (high_idx := 0, idx := 0; idx < SendArray.Length; ++idx)
 if (SendArray[idx].SendSeqNum == RecvAckSeqNum) return RecvAckSeqNum
endfor
return KeepSendSeqNum

build Macro Marshal a RSI-REQ-PDU from it's arguments

Confidential

M_PrepareRequest Macro // Prepare the args from RSI_Call.req to an array of FREQ-RTA-PDU to send
RSI-REQ-PDU Data := build (OpNum, ArgsRspMaxLength, ArgsReqLength,
ArgsReq)
DataLen := sizeOf (Data)
FragPartLen := MaxVarPartLen - 4/*sizeOf FOpnumOffset*/

SendArray := []
ssn := SendSeqNum
offset := 0
for (len := 0, i := 0; len < DataLen; len += FragPartLen, i += 1)
 ssn += 1
 if (len + FragPartLen < DataLen)
 sendTack := ((i+1) % RecvWindowSize) == 0 ? 1 : 0
 SendArray[i] := (ssn, sendTack, sendMoreFrag := 1, offset,
 FragPartLen, Data[len .. len + FragPartLen - 1])
 offset += FragPartLen
 else
 rest := DataLen - len
 SendArray[i] := (ssn, sendTack := 0, sendMoreFrag := 0, offset
 rest, Data[len .. len + rest - 1])
 endif
endfor

Do_LastFrag_ind Event Signal an internal Event
Do_CheckMoreToSend(Trigger) Event Signal an internal Event with Trigger as Parameter. This Parameter is used by

M_CheckMoreToSend() Macro // SendSeqNum was send; check if there is more to send; returns one of:
//- Send: send next FRAG of prepared array
//- WaitAck: wait for ACK, has more FRAGs to send or wait for ACK of the last
FRAG
//- LastFragAcked: the last FRAG from array was acked
//- Timeout: timeout too often, cancel call
idx := SendArray.SearchIndexWithSendSeqNum (SendSeqNum)

if (Trigger == SendCnf)
 if (SendArray[idx].sendMoreFrag == 0) return WaitAck
 if (SendArray[idx].sendTack == 1) return WaitAck
 return Send

if (Trigger == Timeout)
 if (TimeoutCount > MaxFragTimeoutCount) return Timeout
 SendSeqNum := SendArray.SearchLastAckedSendSeqNum ()
 return Send

 if (Trigger == Ack)
 if (SendArray[idx].sendMoreFrag == 0)
 if (SendArray[idx].SendSeqNum == RecvAckNum) return LastFragAcked
 return WaitAck
 elseif (SendArray[idx].sendTack == 1)
 if (SendArray[idx].SendSeqNum == RecvAckNum) return Send
 return WaitAck
 endif
 SendSeqNum := SendArray.SearchLastAckedSendSeqNum ()
 return Send

Confidential

Appendix D.

Responder State Machine of the
Basic Variant.

The responder state machines have been written by Thomas Pössler. He
has used as basis an early state machine by me as the base for this work.
(Pössler and Stefan, 2017b).

123

Current State Event Condition Actions taken Output Next State

1 IDLE Do_Connect_ind SendSeqNum := 0xFFFE
SendWindowSize := 2 /* implementation specific */
RecvAckNum := 0xFFFE
RecvSendNum := PDU.SendSeqNum - 1
RecvFragOffset := 0
RecvWindowSize := 0

ConnectResponseState := IDLE
KeepConnectSendSeqNum := PDU.SendSeqNum
- 1

M_do_fullyBound
StartTimer (FragTimeout)

DREQ

2 IDLE RSI_Connect_ind Do_Connect_ind IDLE
3 IDLE RSI_Freq_ind ignore IDLE
4 IDLE RSI_Ack_ind ignore IDLE
5 IDLE RSI_Call.rsp () ignore IDLE
6 IDLE M_SendFres_cnf ignore IDLE
7 IDLE M_SendError_cnf ignore IDLE
8 IDLE M_SendAck_cnf ignore IDLE
9 IDLE TimerExpired

(FragTimeout)
ignore IDLE

10 IDLE RSI_Error_ind ignore IDLE
11 IDLE RSI_Abort.req () RSI_Abort.cnf (-) IDLE
12 DREQ Do_LastFrag_ind StopTimer (FragTimeout)

ArgsReqLength := RecvFragOffset - PDUOffset
OpNum := KeepOpNum
ArgsRspMax := KeepArgsRspMax

if (ConnectResponseState == IDLE)
 if (isFirstFrag && isLastFrag) /* single frag
connect */
 ConnectResponseState := PING
 else
 ConnectResponseState := ABORT

RSI_Call.ind () WRSP

13 DREQ RSI_Connect_ind M_CheckConnect == ABORT RSI_Abort.ind () ABORTING
14 DREQ RSI_Connect_ind M_CheckConnect != ABORT /* Setup a new

RSI_Connect_ind,
RSI_Ack_ind and
RSI_Frag_ind comes

IDLE

15 DREQ RSI_Freq_ind PDU.SendSeqNum ==
(RecvSeqNum + 1)
 && PDU.FragOffset ==
RecvFragOffset
 && M_MoreFreqCheck

/* Expected: do defragmentation */
ArgsReq := M_Copy_FragData

RecvSeqNum := PDU.SendSeqNum
RecvFragOffset += PDU.VarParLen - 4

StartTimer (FragTimeout)

if (isLastFrag)
 Do_LastFrag_ind

DREQ

16 DREQ RSI_Freq_ind ! (PDU.SendSeqNum ==
(RecvSeqNum + 1)
 && PDU.FragOffset ==
RecvFragOffset

/* ! Expected: Ignore */
ignore

DREQ

17 DREQ RSI_Ack_ind M_UpdateAckInfo if (TACK)
 M_SendAck_req

DREQ

18 DREQ RSI_Call.rsp () ignore DREQ
19 DREQ M_SendFres_cnf ignore DREQ
20 DREQ M_SendError_cnf ignore DREQ
21 DREQ M_SendAck_cnf ignore DREQ
22 DREQ TimerExpired

(FragTimeout)
ConnectResponseState !=
IDLE

RSI_Abort.ind () ABORTING

23 DREQ TimerExpired
(FragTimeout)

ConnectResponseState ==
IDLE

M_do_halfBound IDLE

24 DREQ RSI_Error_ind ConnectResponseState !=
IDLE

RSI_Abort.ind () ABORTING

Restricted

25 DREQ RSI_Error_ind ConnectResponseState ==
IDLE

M_do_halfBound
StopTimer (FragTimeout)

IDLE

26 DREQ RSI_Abort.req () M_SendError_req ABORTING
27 WRSP RSI_Call.rsp () if (SendSeqNum == 0xFFFE)

 SendSeqNum := KeepConnectSendSeqNum
M_PrepareResponse (PNIOStatus, ArgsRsp,
ArgsRspLength)
StartTimer (FragTimeout)
SendSeqNum := SendSeqNum + 1

M_SendFres_req FRSP

28 WRSP RSI_Connect_ind M_CheckConnect == ABORT RSI_Abort.ind () ABORTING
29 WRSP RSI_Connect_ind M_CheckConnect != ABORT ignore WRSP
30 WRSP RSI_Freq_ind ignore WRSP
31 WRSP RSI_Ack_ind M_UpdateAckInfo if (TACK || (PDU.Type ==

ACK)
|| (PDU.Type == FRAG &&
PDU.SendSeqNum ==
RecvSeqNum))
 M_SendAck_req

WRSP

32 WRSP M_SendFres_cnf ignore WRSP
33 WRSP M_SendError_cnf ignore WRSP
34 WRSP M_SendAck_cnf ignore WRSP
35 WRSP TimerExpired

(FragTimeout)
ignore WRSP

36 WRSP RSI_Error_ind RSI_Abort.ind () ABORTING
37 WRSP RSI_Abort.req () M_SendError_req ABORTING
38 FRSP Do_CheckMoreToSend M_CheckMoreToSend ==

LastFragAcked
RecvFragOffset := 0
/* Note: prepare next call */

if (ConnectResponseState == PING)
 ConnectResponseState := ABORT

DREQ

39 FRSP Do_CheckMoreToSend M_CheckMoreToSend ==
LastRIFragSend

/* ReadConnectionless or ReadImplicit */ ABORTING

40 FRSP Do_CheckMoreToSend M_CheckMoreToSend ==
Send

StartTimer (FragTimeout)
SendSeqNum := SendSeqNum + 1

M_SendFres_req FRSP

41 FRSP Do_CheckMoreToSend M_CheckMoreToSend ==
WaitAck

ignore FRSP

42 FRSP RSI_Connect_ind M_CheckConnect == ABORT RSI_Abort.ind () ABORTING
43 FRSP RSI_Connect_ind M_CheckConnect != ABORT ignore FRSP
44 FRSP RSI_Freq_ind ignore FRSP
45 FRSP RSI_Freq_ind ignore FRSP
46 FRSP RSI_Ack_ind M_UpdateAckInfo

SendSeqNum := M_PrepareReSend

if (TACK)
 M_SendAck_req /* for
implicit Ack_ind */

Do_CheckMoreToSend

FRSP

47 FRSP RSI_Call.rsp () ignore FRSP
48 FRSP M_SendFres_cnf Do_CheckMoreToSend FRSP
49 FRSP M_SendError_cnf ignore FRSP
50 FRSP M_SendAck_cnf ignore FRSP
51 FRSP TimerExpired

(FragTimeout)
KeepOpNum in
[ReadConnectionless,
ReadImplicit]

/* Note: WaitAck */
M_do_halfBound

IDLE

52 FRSP TimerExpired
(FragTimeout)

KeepOpNum not-in
[ReadConnectionless,
ReadImplicit]

ignore FRSP

53 FRSP RSI_Error_ind RSI_Abort.ind () ABORTING
54 FRSP RSI_Abort.req () M_SendError_req ABORTING
55 ABORTING M_SendError_cnf M_do_halfBound RSI_Abort.cnf () IDLE
56 ABORTING RSI_Connect_ind KeepOpNum in

[ReadConnectionless,
ReadImplicit]

/* Setup a new
RSI_Connect_ind,
RSI_Ack_ind and
RSI_Frag_ind comes

IDLE

57 ABORTING RSI_Connect_ind KeepOpNum not-in
[ReadConnectionless,
ReadImplicit]

ignore /* must RSI_Abort.req first */ ABORTING

58 ABORTING RSI_Freq_ind ignore ABORTING
59 ABORTING RSI_Call.rsp () ignore ABORTING

Restricted

60 ABORTING RSI_Ack_ind KeepOpNum in
[ReadConnectionless,
ReadImplicit]

M_UpdateAckInfo

SendSeqNum := M_PrepareReSend

if (TACK)
 M_SendAck_req /* for
implicit Ack_ind */

Do_CheckMoreToSend

FRSP

61 ABORTING RSI_Ack_ind KeepOpNum not-in
[ReadConnectionless,
ReadImplicit]

ignore ABORTING

62 ABORTING M_SendFres_cnf ignore ABORTING
63 ABORTING M_SendAck_cnf ignore ABORTING
64 ABORTING TimerExpired

(FragTimeout)
KeepOpNum in
[ReadConnectionless,
ReadImplicit]

/* Note: do not keep response any longer */
M_do_halfBound

IDLE

65 ABORTING TimerExpired
(FragTimeout)

KeepOpNum not-in
[ReadConnectionless,
ReadImplicit]

ignore ABORTING

66 ABORTING RSI_Error_ind ignore ABORTING
67 ABORTING RSI_Abort.req () M_SendError_req ABORTING

Restricted

Name Type Meaning
FragTimeout Timer Timeout for partial request detection; Value: 4 * RSI-I::FragTimeout
StartTimer Function This function is used to start or restart a timer.
StopTimer Function This function is used to stop a timer.

TimerExpired Function This function signals that a timer is expired.
rsap Value This RSI-Responder, refer to RSI-LMPM::Rsi-List

SendSeqNum Value The largest SendSeqNum sent
SendWindowSize Value The WindowSize of this RSI-Responder

RecvAckNum Value The largest AckSeqNum received
RecvSendNum Value The largest SendSeqNum reveiced
RecvFragOffset Value The next FragOffset to receive, offset of CallBuffer

RecvWindowSize Value The tailored WindowSize of the RSI-Initiator
/* The WindowSize within the first Connect fragment will be taken, see
M_UpdateAckInfo */
/* Tailoring to a lower value is implementation specific */SendArray Value Array of 1 to n response fragments to send.
SendArray.Length is the count of fragments
fragments ::= (sendSeqNum, sendTack, sendMoreFrag, offset, dataLen, Data[])

MaxVarPartLen Const The constant value 1432, see RTA-PDU::VarPartLen
M_do_fullyBound Macro (rsap.IMAC, rsap.ISAP, rsap.ARUUID) := (PDU.SourceMac, PDU.SourceSAP,
M_do_halfBound Macro (rsap.IMAC, rsap.ISAP, rsap.ARUUID) := (undef, undef, undef)

isFirstFrag Condition PDUType.Type == RTA_TYPE_FREQ && PDU.Foffset == 0
isLastFrag Condition PDUType.Type == RTA_TYPE_FREQ && PDU.AddFlags.MoreFrag == 0
PDUOffset Macro // The fragmented part of the PROFINETIOServiceReqPDU starts at this Offset within

the RSI-PDU
PDUOffset := RsiHeaderSize (PDU) KeepOpNum Value Keep PDU Data

 KeepArgsRspMax Value Keep PDU Data
 KeepCallSequence Value Keep PDU Data
M_MoreFreqCheck Macro // outsourced checks to keep overview

if (isFirstFrag)
 KeepOpNum := PDU.FOpNum
 KeepArgsRspMax := PDU.ResMaxLength
 KeepCallSequence := PDU.FCallSequence
else
 if (KeepOpNum != PDU.FOpNum) return false
endif
if ((PDU.VarPartLen + RecvFragOffset) > CallBuffer.MaxLength) return false
return true

M_Copy_FragData Macro Copy VarPartLen data from the FREQ-RTA-PDU to the CallBuffer at FOffset

M_UpdateAckInfo Macro if (RecvWindowSize == 0)
 RecvWindowSize := PDU.AddFlags.WindowSize
 /* Decision: is set with first ACK | FRAG and is no longer changed */

/* Update */
if (PDU.AckSeqNum > RecvAckNum)
 RecvAckNum := PDU.AckSeqNum

build Macro Marshal a RSI-RES-PDU from it's arguments

Restricted

M_PrepareResponse Macro // Prepare the response from RSI_Call.rsp to an array of FRAG-RTA-PDU to send
RSI-RES-PDU Data := build (PNIOStatus, ArgsRspLength, ArgsRsp)
DataLen := sizeOf (Data)
FragPartLen := MaxVarPartLen - 4/*sizeOf FOpnumOffset*/

SendArray := []
ssn := SendSeqNum;
offset := 0
for (len := 0, i := 0; len < DataLen; len += FragPartLen, i += 1)
 ssn += 1
 if (len + FragPartLen < DataLen)
 sendTack := ((i+1) % RecvWindowSize) == 0 ? 1 : 0
 SendArray[i] := (ssn, sendTack, sendMoreFrag := 1, offset,
 FragPartLen, Data[len .. len + FragPartLen - 1])
 offset += FragPartLen
 else
 rest := DataLen - len
 SendArray[i] := (ssn, sendTack := 0, sendMoreFrag := 0, offset,
 rest, Data[len .. len + rest - 1])
 endif
endfor

M_PrepareReSend Macro // Received an Ack, prepare to ReSend the array of FRAG-RTA-PDU

for (i := 0; i < SendArray.Length; i += 1)
 if (SendArray[i].SendSeqNum >= RecvAckNum)
 return SendArray[i].SendSeqNum
endfor
return SendSeqNum

M_CheckMoreToSend Macro // check if there is more to send
// returns:
// - Send: send next FRAG of prepared array
// - WaitAck: wait for ACK, has more FRAGs to send or wait for ACK of the
last FRAG
// - LastFragAcked: the last FRAG was acked (implicit or explicit)
// - LastRIFragSend: the last FRAG with OpNum ReadConnectionless or
ReadImplicit was send

idx := SendArray.SearchIndexWithSendSeqNum (SendSeqNum)

if (SendArray[idx].sendMoreFrag == 0) // last frag
 if (SendArray[i].SendSeqNum <= RecvAckNum) return LastFragAcked
 if (KeepOpNum in [ReadConnectionless, ReadImplicit]) return LastRIFragSend
 return WaitAck

if (SendArray[i].sendTack == 1) //wait for ack
 If (SendArray[i].SendSeqNum > RecvAckNum) return WaitAck
 return Send

return Send

SearchIndexWithSendSeqNum Function // return the index within SendArray

for (idx := 0; idx < SendArray.Length; ++idx)
 if (SendArray[idx].SendSeqNum == SendSeqNum) return idx
endfor
return undef // shall never happen

Do_Connect_ind Event Loval event within state IDLE

Do_LastFrag_ind Event Loval event within state DREQ

Do_CheckMoreToSend Event Local event within state FRSP

Restricted

ConnectResponseState Value Track the state of the connect indication
ConnectResponseState: IDLE, PING, ABORT

M_CheckConnect Macro /* calculate behave of RSI_Connect_ind */
if (ConnectResponseState == ABORT) return ABORT
if (ConnectResponseState == PING && PDU.SendSeqNr != RecvSeqNum) return
ABORT
return ConnectResponseState

M_SendFres_req Macro /* Send a FRES-RTA-PDU */
idx := SendArray.SearchIndexWithSendSeqNum (SendSeqNum)

PDU.DA := rsap.IMAC

PDU.DestinationSAP := rsap.ISAP
PDU.SourceSAP := rsap.RSAP
PDU.PDUType.Version := 2
PDU.PDUType.Type := RESPONSE
PDU.AddFlags.WindowSize := SendWindowSize
PDU.AddFlags.TACK := SendArray[idx].sendTack
PDU.AddFlags.MoreFrag := SendArray[idx].sendMoreFrag
PDU.AddFlags.Notification := (RSI-R-Notification.state == NOTIFY) ? 1 : 0
PDU.SendSeqNum := SendSeqNum
PDU.AckSeqNum := RecvSendNum
PDU.VarPartLen := SendArray[idx].dataLen + 4/*sizeOf FOpnumOffset*/

PDU.FOpnumOffset.Offset := SendArray[idx].offset
PDU.FOpnumOffset.OpNum := KeepOpNum
PDU.FOpnumOffset.CallSequence := KeepCallSequence
PDU.Data := SendArray[idx].Data

LMPM_A_Data.req

M_SendFres_cnf Macro LMPM_A_Data.cnf
/PDU.PDUType.Type == RESPONSE

M_SendAck_req Macro /* Send a RTA-ACK-PDU */
PDU.DA := rsap.IMAC

PDU.DestinationSAP := rsap.ISAP
PDU.SourceSAP := rsap.RSAP
PDU.PDUType.Version := 2
PDU.PDUType.Type := ACK
PDU.AddFlags.WindowSize := SendWindowSize
PDU.AddFlags.TACK := 0
PDU.AddFlags.MoreFrag := 0
PDU.AddFlags.Notification := (RSI-R-Notification.state == NOTIFY) ? 1 : 0
PDU.SendSeqNum := SendSeqNum
PDU.AckSeqNum := RecvSendNum
PDU.VarPartLen := 0

LMPM_A_Data.req

M_SendAck_cnf Macro LMPM_A_Data.cnf
/PDU.PDUType.Type == ACK

Restricted

Appendix E.

State Machine of the Advanced
Variant

131

Current
State

Event Condition Actions taken Output Next State

1 RSI AlarmSend.req(High) InsertInArray
set AlarmHigh
if (FragTimer == running)
 FragTimerIsRunning = TRUE
else
 FragTimerIsRunning = FALSE
StopTimer (FragTimeout)
StartTimer (AlarmTimeout)

Do_CheckFreeWindow ALARMS

2 RSI AlarmSend.req(Low) InsertInArray
set AlarmLow
if (FragTimer == running)
 FragTimerIsRunning = TRUE
else
 FragTimerIsRunning = FALSE
StopTimer (FragTimeout)
StartTimer (AlarmTimeout)

Do_CheckFreeWindow ALARMS

3 RSI TimerExpired
(AlarmTimeout)

RSI
4 RSI Alarm.ind PDU.SendSeqNum == (RecvSeqNum + 1) RecvSeqNum := PDU.SendSeqNum UpperAlarm.ind

M_SendAck_req
RSI

RSI Alarm.ind PDU.SendSeqNum != (RecvSeqNum + 1) M_SendAck_req RSI
6 ALARMS Do_CheckFreeWindow M_CheckFreeWindow == True M_SendRSI_req ALARMS
7 ALARMS Do_CheckFreeWindow M_CheckFreeWindow == False ALARMS
8 ALARMS RSI_Ack.ind PDU.SendSeqNum == (RecvSeqNum + 1)

&& M_AlarmsInSendArray == False
KeepSendSeqNum = PDU.SendSeqNum
SendSeqNum++
StopTimer(AlarmTimeout)

if (FragTimerIsRunning ==
TRUE)
 StartTimer(FragTimeout)

RSI

ALARMS RSI_Ack.ind PDU.SendSeqNum == (RecvSeqNum + 1)
&& M_AlarmsInSendArray == True

KeepSendSeqNum = PDU.SendSeqNum
SendSeqNum++
StopTimer (AlarmTimeout)
StartTimer (AlarmTimeout)

M_SendRSI_req ALARMS

10 ALARMS TimerExpired
(AlarmTimeout)

TimeoutCount <= MaxFragTimeoutCount TimeoutCount += 1 M_SendFreq_req ALARMS
11 ALARMS TimerExpired

(AlarmTimeout)
TimeoutCount > MaxFragTimeoutCount StopTimer(AlarmTimeout)

if (FragTimerIsRunning ==
TRUE)
 StartTimer(FragTimeout)
TimerExpired (FragTimeout)

RSI

ALARMS AlarmSend.req(Low) AlarmHigh is empty InsertInArray
set AlarmLow

ALARMS

13 ALARMS AlarmSend.req(High) AlarmHigh is empty InsertInArray
set AlarmHigh

ALARMS

14 ALARMS AlarmSend.req(High) AlarmHigh is full AlarmSend.cnf(-) ALARMS
15 ALARMS AlarmSend.req(Low) AlarmLow is full AlarmSend.cnf(-) ALARMS
16 ALARMS M_SendFreq_cnf ignore ALARMS
17 ALARMS RSI_Abort.req /* forward request

RSI_Abort.req()
RSI

18 ALARMS Alarm.ind PDU.SendSeqNum == (RecvSeqNum + 1) RecvSeqNum := PDU.SendSeqNum UpperAlarm.ind
M_SendAck_req

ALARMS

19 ALARMS Alarm.ind PDU.SendSeqNum != (RecvSeqNum + 1) M_SendAck_req ALARMS
20 ALARMS RSI Events Not defined Put in Queue ALARMS

Confidential

Name Type Meaning
AlarmHigh Value Local variable of alarm high to send

(sendSeqNum, sentAlready)
AlarmLow Value Local variable of alarm low to send

(sendSeqNum, sentAlready)
Do_CheckFreeWindow Event Signal an internal Event with Trigger as Parameter. This Parameter is used

by M_CheckFreeWindow()
M_CheckFreeWindow Makro idx := SendArray.SearchIndexWithSendSeqNum (SendSeqNum)

 if (SendArray[idx].sendMoreFrag == 0) return WaitAck
 if (SendArray[idx].sendTack == 1) return WaitAck

if (SendSeqNum - KeepSendSeqNum == 2
 && SendArray[idx].sendMoreFrag == 1
 && SendArray[idx].sendTack == 1)
return FALSE
else
return TRUE

Confidential

Appendix F.

LMPM State Machine

The LMPM state machine is the connection between the initiator and re-
sponder state machines to the Ethernet Device Driver state machine. It is
designed by Thomas Pössler. (Pössler, 2018).

135

Current
State

Event Condition Actions taken Output Next State

1 IDLE LMPM_A_Data.ind CheckRSI() == Ignore ignore IDLE

2 IDLE LMPM_A_Data.ind CheckRSI() ==
RespondError(err)

PNIOStatus := err M_Tx_Error_req IDLE

3 IDLE M_Tx_Error_cnf ignore IDLE

4 IDLE LMPM_A_Data.ind CheckRSI() ==
IndicateError(err, sap)

/* sap may be rsap or isap */
PNIOStatus := err

RSI_Error_ind IDLE

5 IDLE LMPM_A_Data.ind CheckRSI() == Ack sap := Rsi-DsapLookup /* may be rsap or
isap */

RSI_Ack_ind /* explicit Ack */ IDLE

6 IDLE LMPM_A_Data.ind CheckRSI() == Freq rsap := Rsi-DsapLookup RSI_Ack_ind /* implicit Ack */
RSI_Freq_ind

IDLE

7 IDLE LMPM_A_Data.ind CheckRSI() == Fres isap := Rsi-DsapLookup RSI_Ack_ind /* implicit Ack */
RSI_Fres_ind

IDLE

8 IDLE LMPM_A_Data.ind CheckRSI() == ConnectFreq rsap := Rsi-Alloc RSI_Connect_ind
RSI_Ack_ind
RSI_Freq_ind

IDLE

9 IDLE LMPM_A_Data.ind CheckRSI() ==
ConnectReRun(rsap)

/* use existing rsap */ RSI_Connect_ind
RSI_Ack_ind
RSI_Freq_ind

IDLE

10 IDLE RSI_Abort.req Rsi-Free (sap) IDLE

11 IDLE RSI_R_Add.req Add RSI-R-Interface to RSI-List RSI_R_Add.cnf IDLE

12 IDLE RSI_R_Remove.req Remove RSI-R-Interface from RSI-List RSI_R_Remove.cnf IDLE

13 IDLE RSI_I_Add.req Add RSI-I-Interface to RSI-List RSI_I_Add.cnf IDLE

14 IDLE RSI_I_Remove.req Remove RSI-I-Interface from RSI-List RSI_I_Remove.cnf IDLE

Restricted

Name Type Meaning
CheckRSI Function //possible returns:

//- Ignore
//- ConnectFreq
//- ConnectReRun
//- Freq
//- Fres
//- Ack
//- IndicateError(err)
//- RespondError(err)

if (! Valid-RTA-PDU) return Ignore
if (! Valid-RSI-PDU) return Ignore
PDU := A_SDU

sap := Rsi-DsapLookup ()
if (sap == undef) return CheckFreqConnect ()

if (PDU.PDUType == FREQ) return CheckFReqData ()
if (PDU.PDUType == FRES) return CheckFResData ()
if (PDU.PDUType == ACK) return CheckAckData ()
if (PDU.PDUType == ERROR) return CheckErrorData ()
return Ignore

Valid-RTA-PDU Function if (EthType != 0x8892) return false
if (FrameID != 0xFE02) return false
if (DestinationMac != InterfaceMac) return false
if (SourceMac == Multicast) return false

if (DestinationSAP not-in [0..0x7FFF,0xFFFF]) return false
if (SourceSAP not-in [0..0x7FFF]) return false
if (PDUType.Type not-in [ACK,ERR,FREQ,FRES]) return false
if (PDUType.Version != 2) return false
if (AddFlags.WindowSize not-in [2..7]) return false
if (AddFlags.<Rest>) # do not check
if (SendSeqNum not-in [0..0x7FFF,0xFFFE]) return false
if (AckSeqNum not-in [0..0x7FFF,0xFFFE]) return false
if (VarPartLen not-in [0..0x0598]) return false

return true

Valid-RSI-PDU Function if (PDUType in [ACK, ERR]) return true /* check later */

if (PDUType == FREQ)
 if (FOpnum in [0,2..8]
 && FOffset in [0..0x00FFFFFF]
 && FCallSequence # do not check
 && RSI-XXX-PDU # do not check
)
 if (ResMaxLength in [4 .. 0x00FFFFFF]) return true

if (PDUType == FRES)
 if (FOpnum in [0,2..8]
 && FOffset in[0..0x00FFFFFF]
 && FCallSequence # do not check
 && PNIOStatus # do not check
 && RSI-XXX-PDU # do not check
) return true

return false

Restricted

CheckFReqConnect Function if (PDU.DestinationSAP != CON-SAP) return Ignore
if (PDU.PDUType != FREQ) return Ignore
if (PDU.SendSeqNum not-in [0..0x7FFF) return Ignore
if (PDU.AckSeqNum != 0xFFFE) return Ignore
if (PDU.FOffset != 0) return Ignore

if (FOpNum == Connect or FOpNum == ReadConnectionless)
 if ((rsap := Rsi-IsapLookup(AR)) != undef) return ConnectReRun(rsap)
 if (! Rsi-InterfaceAvailable(AR)) return
RespondError(InterfaceNotFound)
 if (! Rsi-AllocPossible(AR)) return
RespondError(OutOfARRessource)
 return ConnectFreq

if (FOpNum == ReadImplicit)
 if ((rsap := Rsi-IsapLookup(RI)) != undef) return ConnectReRun(rsap)
 if (! Rsi-InterfaceAvailable(RI)) return
RespondError(InterfaceNotFound)
 if (! Rsi-AllocPossible(RI)) return
RespondError(OutOfARRessource)
 return ConnectFreq

return Ignore
CheckFReqData Function if (PDU.SA != SourceMAC) return Ignore

if (PDU.SourceSAP != SourceSAP) return Ignore
if (PDU.AckSeqNum > SendSeqNum) return Ignore

return Freq

CheckFResData Function if (PDU.SA != SourceMAC) return Ignore
if (PDU.SourceSAP != SourceSAP) return Ignore
if (PDU.AckSeqNum > SendSeqNum) return Ignore

return Fres

CheckAckData Function if (PDU.SA != SourceMAC) return Ignore
if (PDU.SourceSAP != SourceSAP) return Ignore
if (PDU.AckSeqNum > SendSeqNum) return Ignore

return Ack

CheckErrorData Function if (PDU.SA != SourceMAC) return Ignore
if (PDU.SourceSAP != SourceSAP) return Ignore
if (PDU.PNIOStatus == 0) return Ignore

return IndicateError(PNIOStatus, sap)

sap Value Means rsap or isap

rsap Value Responder-SAP
Values refer to entry within RSI-List or "undef" if not contained.

isap Value Initiator-SAP
Values refer to entry within RSI-List or "undef" if not contained.

RSI-List Value List of Union (
 (Typ(ANY): unique-key: SAP,
 State, SourceMAC, SourceSAP, VendorID, DeviceID, Instance)
 (Type(R): unique-key: RSAP,
 State, IMAC, ISAP, VendorID, DeviceID, Instance, Binding, CallBuffer)
 (Type(I): unique-key: ISAP,
 State, RMAC, RSAP, VendorID, DeviceID, Instance, Binding)
)

Restricted

Rsi-InterfaceAvailable(B_) Function True if the tuple ("R", Binding(B_), VendorID,DeviceID,Instance) is in Rsi-List

 Rsi-AllocPossible(B_) Function Looking for a free entry within RSI-List:
"R", Binding(B_), VendorID, DeviceID, Instance must match
Use rsap if Binding is AR and IMAC and ISAP matches and
 the state of the instance is IDLE or
 the state if the instance is ABORTING and KeepOpNum is
ReadConnectionless.
Use rsap if the state of the instance is IDLE.
Use rsap if the state of the instance is ABORTING and KeepOpNum is
ReadImplicit.
return true if there is a entry with state free

 Rsi-Alloc Function Alloc the free entry within RSI-List found by Rsi-AllocPossible():
Mark found rsap's state as used
return rsap

Rsi-Free Function Mark sap's state as free

Rsi-DsapLookup Function sap := Search PDU.DestinationSAP within RSI-List
isap := rsap := undef
if (sap found)
 if (Typ == "R") rsap := sap
 if (Typ == "I") isap := sap
 return sap
return undef

Rsi-IsapLookup(B_) Function Search IMAC, ISAP with in RSI-List with Type R and Binding B_.
Return rsap if found.
Return undef if not found.

M_Tx_Error_req Macro Send an ERR-RTA-PDU back to originator SourceMAC, SourceSAP

FOpNum Macro PDU.FOpnumOffset.Opnum

FOffset Macro PDU.FOpnumOffset.Offset

FCallSequence Macro PDU.FOpnumOffset.CallSequence

> Operator Compares two SeqNum, take care of wrap around
For valid range see definition of SendSeqNum and AckSeqNum

Restricted

Appendix G.

Comparison Fragmentation

141

Protokoll TCP IPv4 IPv6 IKEv2 SCTP RPC

Bits with Frag 11 21 21 21 11 17
Bits without
Frag 11 21 1 9 1 17

SEQ-Number 8 Identification: 8
Next Header:
1

Message ID:
8

Chunk Type:
1 Flags: 3

ACK, SYN-FIN
Flag: 3 Offset 11

Fragment
Offset: 11

Flag Header:
1 TSN: 8 Serial: 8

Flags DF + MF:
2 More Flag: 1

Maximum
Fragmente:
47: 6 Flags: 2

Fragment
Number: 6

Identifiaction:
8

MaxTotal
Fragments:
47: 6

1432Byte

54KByte

255 (8 Bit)

Max Payload Size

Max Data Length

Uniqueness of one packet

Comparison Conditions

Appendix H.

Comparison Memory

143

Memory Fragmentation

Sequence Numbers / Uniqueness 32Bit

WindowSize 8

Length 65546 Byte

MTU 1400 -> is known

TCP Bits IPv4 Bits

WindowSize 8 Identification 32

SND.UNA 32 FO 10

SND.NXT 32 MF 1

SND.WND 4 NFB 6

SND.UP 32 Timer 192

SND.WL1 32 OFO 10

SND.WL2 32 OMF 1

ISS 32 OTL 32

RCV.NXT 32 OIHL 4

RCV.WND 4

RCV.UP 32

IRS 32 RCVBT 1024

SEG.SEQ 32 Total Length 32

SEG.ACK 32

SEG.LEN 4

SEG.WND 4

SEG.UP 32

user_calls(OPEN, SEND,

RECEIVE, CLOSE,

ABORT, and STATUS) -

States: LISTEN, SYN-SENT, SYN-

RECEIVED, 10

ESTABLISHED, FIN-WAIT-1, FIN-

WAIT-2, CLOSE-WAIT, CLOSING,

LAST-ACK,

TIME-WAIT, and the fictional state

CLOSED

Timer 192

610 Recv 1344
Send 1344

Only

Recv

Only

Send

Page 1

Memory Fragmentation

IPv6 Bits IKEv2 Bits

Identification 32 Message ID 32

Next Header 4

MF 1

Timer 192

RCVBT 1024

not

declared,

assumptio

n Total Fragments 6

Only

Recv

PL.orig 32

Fragment

Bitmask 46

PL.first 6

FL.first 6 ICV (AES_GCM)

withouth

Integrety

Check

FO.last 6

FL.last 6

Fragment

Offset 10 Fragments Sent 6

Total Length 32

Number

Fragments 6

Total Length 32

Timer 192

Recv 1351 Recv 84
Send 1351 Send 268

Only

Recv

Only

Send

Only

Send

Page 2

Memory Fragmentation

SCTP Bits RPC Bits

Sequence Number 32

window_size 8

Base TSN 32 Timer 192

a rnd 8

Timer 192

Number Gaps 3

Received / Gaps 32 Received / Gaps 8

Base ACK 32 serial_num 32

Dublicated

Not

compa

red Dublicated

Not

compare

d

Counter Received 4 number selack 1

selack 8

Next TSN to Send 32

Next Sequence

Number to send 32

Receive 335 313
Send 335 313

Page 3

