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Abstract

Nowadays competitive products within the railway industry have to offer
more than the basic functionality, which is why the future trend goes towards
the digital train. That is a revolutionary approach, that aims to improve
railway mobility simultaneously at different levels of product development,
using intelligent assistance systems. Condition based maintenance is identified
as one of the most promising applications of such systems, which require
condition detection and prediction tools to assess the vehicles components.
This thesis deals with the development of an algorithm, that estimates the
remaining useful lifetime (RUL) of bogie components, with focus on data
driven concepts for dampers. A so called multi-branch hidden Markov model
(MB-HMM) is implemented, to represent the evolution of a components health
condition over time, for diverse, non-linear deterioration modes. Deficiencies
regarding restrictions of its input data are compensated by a previously
performing classification using support vector machines (SVM), that enables
processing of multi-dimensional data sets. The necessary data for machine
learning of statistical models is simulated by a linearized, three-dimensional
multi-body system of a four-axle railway vehicle.
After the successful learning of SVM and MB-HMM for rapid, average and
slow deteriorating dampers, the models are tested with independent data. An
iterative procedure provides successively increasing segments of the simulated
data, which enables an assessment of the model’s accuracy. The algorithm
estimates the RUL of average and slowly degrading dampers, end-to-end
extraordinary well, whereas the rapid deterioration requires 75% of the overall
data, in order to produce an acceptable output.
Several extensions offer possibilities for optimization, primarily in terms of a
more universal form of permitted input data, which can be used to improve
the model accuracy for all branches. Thereby the MB-HMM can be used for
a RUL estimation of different components, provided that the data situation
allows machine learning.
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Kurzfassung

Heutzutage müssen wettbewerbsfähige Produkte im Bereich der Schienen-
fahrzeug Industrie mehr als die Basisfunktionalität bieten, weshalb die Zukunft
in Richtung des digitalen Fahrzeuges geht. Das ist ein revolutionärer Ansatz,
der versucht mittels intelligenter Assistenzsysteme gleichzeitig mehrere Ebe-
nen der Produktentwicklung zu verbessern. Als eine der vielversprechend-
sten Anwendungen solcher Systeme wird die zustandsbasierte Instandhal-
tung identifiziert, welche sinngemäß nur mit erfolgreicher Zustands- und
Restlebensdauerbestimmung (RUL) der Fahrzeugkomponenten funktioniert.
Diese Arbeit beschäftigt sich mit der Entwicklung eines Algorithmus zur
Bestimmung der Restlebensdauer von Fahrwerkskomponenten, wobei der
Schwerpunkt auf datengetriebenen Konzepten für Dämpferelemente liegt.
Eine zeitliche Auflösung der Entwicklung des Zustandes einer Komponente
für unterschiedliche, nicht lineare Verschleißmechanismen, wird mit einem
sogenannten Multi-Branch Hidden Markov Modell (MB-HMM) abgebildet.
Defizite des Modells hinsichtlich dessen Restriktionen der Eingangsdaten
werden durch einen vorgeschalteten Klassifizierer in Form einer Support
Vector Machine (SVM) kompensiert, die es ermöglicht mehrdimensionale
Datensätze zu verarbeiten. Die notwendigen Daten für das maschinelle Ler-
nen der statistischen Modelle werden mit einem linearisierten, dreidimen-
sionalen Mehrkörpersystem eines vierachsigen Schienenfahrzeuges simuliert.
Nach erfolgreichem Lernen von SVM und MB-HMM für schnell, durch-
schnittlich und langsam verschleißende Dämpfer, werden die Modelle mit
unabhängigen Daten getestet. Ein iteratives Verfahren, welches den Mod-
ellen schrittweise wachsende Anteile dieser simulierten Daten zur Verfügung
stellt, ermöglicht eine Bewertung deren Genauigkeit. Für durchschnittlich und
langsam degradierende Dämpfer schätzt der Algorithmus die RUL durchge-
hend außerordentlich genau, wohingegen schnelle Abnutzung erst nach 75%
der verstrichenen Gesamtlebensdauer akzeptabel bestimmt werden kann.
Zahlreiche Erweiterungen, die sich auf eine universellere Form der möglichen
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Eingangsdaten beziehen, bieten Raum zur Optimierung, welche die Mod-
ellgenauigkeit aller Branches erhöht. Damit kann das MB-HMM für RUL
Bewertungen verschiedener Komponenten herangezogen werden, vorausge-
setzt die Datenlage erlaubt maschinelles Lernen.
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1. Introduction

It does not matter whether transportation goes through the air, on water or on
the ground. The need of humanity to travel from A to B is relentlessly fueling
the research and development for better and cheaper technical solutions in
all branches. From customer perspective, costs, safety, comfort and time, as
defined by punctuality and travel duration are the main aspects which affect
the decision between means of transportation. The improvement of those four
properties can be seen as the superior goal for the contractor.
Needless to say the real world is not as black and white, which probably makes
the above statement seem naive. However, regardless of social, economical
or ecological boundaries, which may as well effect a customers decision,
the above mentioned properties serve as superior development requirement.
Improving any of them is going to help win the competition within and
outside of the branch. The following section discusses which development
requirements can be enhanced by prognostic concepts.

1.1. Motivation for Prognostic Concepts

Given that the history of railway industry goes back to the early 19th century,
railway vehicles as we know them have been developed for a rather long time.
Despite the fact that the variety of types, in terms of system architecture and
engine concepts has been growing vast, railway vehicles can still be consid-
ered as well-proven and reliable. Thanks to knowledge and experience built
throughout the course of history, quality meets a high standard. Nevertheless
room for improvement has to be identified in order to stay competitive in the
open market.

Similar to the industrial revolution at the beginning of the 19th century, the
digital revolution has been pushing technical progress ever since the end of

1



1.1. Motivation for Prognostic Concepts 1

the 20th century. That is how a basically purely mechanical system like a
railway vehicle, becomes upgraded by digitization. A once “disconnected”
stand alone vehicle, gets equipped with sensor systems, processing units and a
network interface. Thereafter able to observe, transmit and share data of itself,
the vehicle is no longer on its own, but “connected” to a network. This “digital
train” is linked with a virtual world, exchanging information at any given time.
From a general point of view, “connecting” all objects to a global network is a
vision which is called the internet of things (IoT). A vision, which has become
partially real over the course of the last decade. Its purpose is to interconnect
all objects, giving them the opportunity to interact intelligently [22]. Within
the IoT all objects are capable of observing, transmitting and processing data
in a way, that optimizes their utility for the user. The implementation of such
an intelligence requires a huge amount of data as well as algorithms, which
are able to interpret it and autonomously set necessary measures. Those algo-
rithms should recognize patterns, classify data and predict upcoming events.
Depending on the use case, the IoT detects different quantities and derives
different measures. Applications range from a supply chain management
in the pharmaceutical industry, to smart machines with the purpose of an
increased availability. In the railway industry, digitization grants access to
time correlated, health related data and thereby enables condition monitoring
of system components as well as an improved development process, due to a
better exploitation of resources.

The IoT whithin the railway industry, aims to interconnect vehicles, tracks
and related institutions, which all are equipped with countless electronic
devices [5]. They observe data about their health state and share information
about their utilized capacity. By processing these observations appropriately,
availability1 can be optimized, which keeps the downtime to a minimum.
This is exactly the purpose of a health monitoring system used for condition
based maintenance (CBM) and predictive maintenance (PM). Both of them
seem to be effective strategies in comparison with time based maintenance
(TBM), where a fixed time or mileage limit2 determins the next maintenance
stop. The objective of CBM and PM is to maintain a vehicle only when its
necessary [4]. Taking into account that besides an optimized maintenance plan,

1Availability is the ratio between the time a system is working as it is supposed to and the
overall time of operation [4]

2The minimum limits are defined by national regulations and laws [4]
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1.2. Maintenance Strategies 1

those strategies are capable of minimizing safety-endangering incidents and
improving the development process, their benefit is truly huge. The latter can
be achieved by rationalizing springs and dampers, or optimizing the design
of structure parts with respect to weight. The biggest benefit however, is the
improved maintenance strategy, which will be argued in section 2.2.

To successfully run such a maintenance strategy, certain algorithms for failure
detection and prediction are required. Their purpose is to convert the observed
sensor data to characteristic values that represent the components health state
and its future evolution. Concepts for diagnostics and prognostics are manifold
and need to be investigated further to apply them appropriately. Especially
prognostic concepts require increased attention in order to develop their full
potential.

1.2. Maintenance Strategies

The maintenance strategy is a holistic guideline for the management of main-
tenance related resources3. Its output is a maintenance process, which ideally
does not leave any related actions undefined. Clearly the nature of this strategy
has a major impact on the required financial funds and on the downtime of the
maintained vehicle. During the last decade the maximization of the availability
became an important topic. The concept of CBM and PM emerged, where
diagnostic and prognostic concepts identify and predict incipient failures
[18].

Less complex approaches are run to failure maintenance (RTFM) or fixed
interval maintenance (FIM) as shown in table 1.1. Assuming a component
would brake down during operation, RTFM provides only corrective actions,
no matter if the failure results in any safety or economically critical event. FIM
on the other hand, uses corrective actions only for non-critical failures. Critical
failures are tackled by preventive actions, which are performed during fixed
maintenance intervals. During the span of time between those depot checks
however, failures can not be detected. Therefore, the frequency of intervals
determines the probability of detecting a failure. Usually a lot of experience
and expert knowledge is used to define this frequency, as well as quantities

3Those contain all involved materials, tools and employees
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1.2. Maintenance Strategies 1

Strategy

Run to Failure
Maintenance
(RTFM)

Fixed Interval
Maintenance
(FIM)

Condition
Based & Pre-
dictive Mainte-
nance (CBM &
PM)

Corrective
Action

General concept
for RTFM

Non-critical fail-
ures

Non-critical fail-
ures

Preventive
Action Not included Critical failures.

Fixed interval

Critical fail-
ures. Dynamic
interval after
detection.

Predictive
Action Not included Not included

Critical failures.
Dynamic inter-
val based on
prediction.

Table 1.1.: Maintenance strategies and their actions [18]

with limit values for all relevant components. Evaluated in course of the depot
check, those quantities indicate the necessity of any maintenance measure.
RTFM and FIM both are “Time Based Maintenance” (TBM) strategies. Mainte-
nance actions are performed after a certain elapsed time or driven mileage,
regardless of the considered components health status. Easy to see that TBM
has a notable risk of either not performing if necessary, or the other way
round. Components could be removed way before their end of life (EoL), or
already been broken but still in operation, decreasing safety and harming
other components. Both ways, unnecessary costs are provoked, which is why
CBM and PM are logical successor strategies. Figure 1.1 shows qualitative the
tradeoff between preventive costs and actual maintenance costs. Preventive
costs include everything from the sensor hardware of the monitoring system,
to the front end software. Maintenance costs are considered to increase, if
unscheduled downtime occurs. The total costs, are the sum of both of them.
RTFM does not have a lot of preventive costs, however huge maintenance costs
due to the certainly occurring unscheduled downtime. FIM is considered to
have rather short maintenance intervals, to guarantee operation with very less
unscheduled downtime. CBM aims to find the optimum between investment
costs (preventive costs) and maintenance costs. CBM4 is a completely differ-
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1.2. Maintenance Strategies 1

C
o
s
t
s

Number of Failures

FIM CBM & PM RTFM

{ Prevention Costs

{ Maintenance Costs

{ Total Costs

Optimum

Figure 1.1.: Tradeoff between investment costs (preventive costs) and maintenance costs

ent approach. Whereas TBM reacts only after a failure already occurred and
supports discrete observation, CBM predicts when maintenance action will be
necessary by observing the components health continuously. The latter implies
that the vehicle is equipped with a monitoring system. That is a set of sensors
which record the dynamic system response of the vehicle during operation.
This recorded data is used as input for algorithms, which are responsible for
failure detection and prediction of RUL. In a manner of speaking, CBM is one
step ahead of TBM.
As table 1.1 points out, preventive action is performed immediately when
detecting a failure. The fixed maintenance interval from TBM becomes dy-
namic, because observations are possible at any given time. On top of that,
predictions of the components future health enable an optimized scheduling.
With that information, the possibility of a broken component in operation is
minimized, thus safety is increased and unscheduled downtime is lowered.
The necessary maintenance actions and their occurrences are also predictable,
which makes resource planning easy. All those benefits can only be realized
with sophisticated diagnostic and prognostic concepts. Based on continuously
observed sensor data, those concepts determine the current health state and
the RUL, which is basically the evolution of the health state from the current

4from here on out CBM and PM will be referred to as CBM

5



1.2. Maintenance Strategies 1

state until the EoL. CBM has advantages that can contribute to the major
development requirements from chapter 1 as follows:

• Costs

– Optimized maintenance scheduling
– Optimized resource management
– Minimized unscheduled downtime
– Utilization until close to EoL

• Safety

– No broken components in operation

• Time - punctuality

– Minimized unscheduled downtime

In order to give a concrete example of what can be accomplished by an
advanced maintenance strategy, chapter 2 compares the currently used process
with a condition based approach at SIEMENS.

6



2. Predictive Maintenance and its
Impact

A railway vehicle is a very complex system with high demands on safety and
availability. Typically the vehicle is composed of several wagons, which are in
turn composed of two bogies and a car body. The bogie is indeed one of the
most important components. It is responsible for carrying the car body, track
guiding and transmission of driving as well as brake power [9]. The main
sub-components are illustrated in figure 2.1. Railway vehicles are designed to

Traction link

Undercarriage frame

Axle bearing

Secondary vertical

damper

Air spring

Y aw damper

Primary acceleration

sensor

Axle bearing

acceleration sensor

Primary vertical

spring

Primary vertical

damper

Wheelset

(wheels; axle;
brakes)

Engine&Gearbox

Figure 2.1.: Bogie components

be in operation for up to thirty years. A rather long time to run, for highly
stressed mechanical parts. In order to keep their quality and functionality,
they need to be maintained properly.

7



2.1. Comparison of Applied Maintenance Strategies 2

2.1. Comparison of Applied Maintenance Strategies

SIEMENS currently pursues a TBM strategy. There is no such thing as a
monitoring system, hence observations of the components health states are
rare. In order to guarantee a certain level of safety and comfort, maintenance
inspections have to happen pretty often. A maintenance plan defines how
often those inspections take place and which dimensions have to be checked
in order to decide if a component has to be replaced or repaired. In case of
reparation, the plan defines all necessary maintenance actions. However, if the
reviewed dimension does not exceed its predefined limits, it is going to be in
operation until the next inspection. Anything that happens in between will be
unnoticed. Maintenance intervals are organized as follows.

• Visual inspection
• Damper replacement
• Brake revision
• Complete bogie revision
• Axle bearing replacement

All of them have to be done at latest before the vehicle reaches a specified
mileage. Considering that, minimizing downtime is a real challenge and
not without risk. Those checks are scheduled in a way, that as many tasks
as possible can be done within one inspection. Therefore some of them are
performed early and some are rescheduled.

With a CBM strategy, being able to predict the components RUL, scheduling
is much easier. Downtime can be calculated in advance, because continuously
observed health conditions allow an early decision of required maintenance
actions. Necessary resources can be organized beforehand, which can be a
major impact, considering the long lead times of certain components or the
availability of special maintenance tools1. However, the regularity of the above
mentioned maintenance checks can not be completely overruled by CBM. A
health monitoring system can also be faulty and there may exist some fault
modes that can not be detected by the algorithms properly. Therefore the
existing maintenance intervals are not canceled, but extended by a certain
mileage. Figure 2.2 shows an estimate of the expected benefit for a typical

1Underfloor lathe

8



2.2. A Survey of Life Cycle Costs for Railway Vehicles 2

Visu
al

in
sp

ec
tio

n

Dam
per

re
plac

em
en

t

Bra
ke rev

isi
on

Com
plet

e bogie
rev

isi
on

Axle
bea

rin
g re

plac
em

en
t

0

20

40

60

80

%
In

te
rv

al
ex

te
ns

io
n

Figure 2.2.: Benefit of CBM

commuter train. The maximum mileage, that defines the window within
which maintenance is mandatory, can be increased by up to 60%, depending
on the type of inspection.

Since this leads to a cost reduction, the following section roughly breaks down
a railway vehicles’ life cycle costs, in order to understand the impact of a well
designed CBM system, which is based on reliable diagnostic and prognostic
algorithms.

2.2. A Survey of Life Cycle Costs for Railway Vehicles

Estimating the total costs of ownership for a product or a system is a question
of boundaries. The resulting estimation depends on whether certain aspects
are included or excluded. Taking into account that currently developed railway

9



2.2. A Survey of Life Cycle Costs for Railway Vehicles 2

vehicles are designed to be turnkey solutions, life cycle costing2 has to consider
not only the vehicle itself, but also the entire railway system. Therefore design,
development, production, installation, operation, maintenance, support and
disposal of vehicle and infrastructure are included into the consideration.
An approach like this, leads to quite accurate estimations of the life cycle
costs (LCC), which corresponds very well to the total costs of ownership
[12].

Life Cycle Costs

Acquisition Costs

Design

Development

Production

Installation

Disposal

Annual Maintenance
Costs

Corrective Maintenance

Preventive Maintenance

Predictive Maintenance

Annual Operation
Costs

Operation

Support

Figure 2.3.: Life cycle cost model [12]

As shown in figure 2.3, those aspects can be roughly categorized into acqui-
sition, maintenance and operation. Acquisition costs occur only once, which
explains why disposal is a part of it. The other two aspects are annually recur-
ring. In which way the maintenance costs are divided, is obviously dictated
by the maintenance strategy.
A quantification and qualification of the LCC is a rather complex task, which
is beyond the scope of this thesis. However, the public literature offers several
different approaches, where the LCC of every sub-component is added up
to get a result for the entire railway vehicle. An absolute value as well as a
relative share of each cost aspect is the desired result of life cycle costing.
A huge number of variables can alter this result, which is why this task is
anything but trivial. Nevertheless, a very rough qualification should point out

2Process of cost estimation throughout the whole life cycle [12]
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2.2. A Survey of Life Cycle Costs for Railway Vehicles 2

Acquisition Costs

60%

Maintenance Costs

30%
Operation Costs

10%

Figure 2.4.: Relative share of life cycle costs

the potential of a sophisticated CBM system. Figure 2.4 is an estimation of
the relative share of LCC, whereby CBM is not established. It shows that an
improved maintenance system can contribute a great deal to cost optimization.
As mentioned above, maintenance costs recur annually, causing a major part
of the absolute LCC. Considering the maintenance interval extensions from
section 2.1, which are 30% on average, a maintenance cost reduction from 30

to 20% is possible.

In conclusion, prognostic concepts are a necessary feature for CBM systems,
which have a great potential in terms of decreasing costs and increasing safety.
The development of reliable prognostic concepts is topic of this thesis and will
be presented in detail.
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3. Fundamentals of Data Driven
Prognostics

Estimating the RUL for mechanical components in railway vehicles is an
essential part of the CBM strategy. Any component’s current condition, by
means of faulty or healthy, can be described by its health state (HS). Hence
the future condition can be evaluated by the HSs evolution over time. In this
context, RUL is defined by the current HS and the time or mileage until it
exceeds a reasonable threshold. An algorithm that computes the RUL has two
tasks:

1. Determine the current health state (detection)
2. Estimate its future evolution (prediction)

Those two tasks are basically executed recurrent, in daily or weekly intervals.
Therefore, every time the algorithm predicts the components RUL, additional
data, observed since the last interval, is available. Hence, in course of the
components life, the RUL estimate will increase in accuracy, because more data
is provided. To assess the algorithm during its development, this procedure is
artificially recreated. Details of the framework are provided in section 3.4.

There are many possibilities for developing such an algorithm. The key is to
figure out what the advantages and disadvantages of the different methods are
and how they apply to the particular situation or problem. All those methods
seek to establish a model that approximates the reality as good as possible and
ultimately deliver a statement for the RUL. There is however, a difference in
how those models are created, which leads to a distinction as shown in table
3.1. The basic idea of both, physical and empirical models, is to find a quantity
that correlates to the HS of a component and predict its evolution over time.
This quantity has to change with ongoing deterioration in order to make an
estimation possible. A physical model works with mathematical formulations
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Physical Model Empirical Model
Source Physical laws Observed data

Implementation Mathematical formula-
tion Machine learning

Approach Analytic Numeric

Advantage

No measurements re-
quired. Application in
an early development
stage.

Can represent tran-
sient and complex sys-
tems

Disadvantage Oversimplification Greatly dependent on
data set

Table 3.1.: Prognosis Models

of physical laws or hypotheses, that approximate a certain failure mode. This
reduces their application to components, whose relevant failure modes are
known physical relations. If those relations are hypotheses instead of laws,
a bigger simplification error has to be considered. On the other hand, their
implementation is basically straight forward, which allows them to be used
in an early development stage. In contrast, an empirical model1 works with
observed data, which enables the representation of transient and complex
relations. Usually empirical models require an independent data set from
which the target relation can be derived. This process is called learning or
training and is performed by a certain algorithm. Generally speaking, learning
a relationship between certain quantities to classify data is called “machine
learning”. Because of its independence of knowledge about any physical
relations of failure modes and its possibility to represent a target function of
any complexity, the data driven approach is chose to be implemented.

Figure 2.1 shows the main mechanical components of a bogie. Certainly all of
them would have to be monitored and targeted from the detection and pre-
diction algorithms. The fact that the components deterioration characteristics
are very different from each other, supports the decision to use a data driven
model for the prediction algorithm. However, not only their deterioration,
but also their relevant quantities that indicate any change of health condition,
are very different. Since the approach of machine learning is the same, but
the pre-processing and data acquisition is not, this thesis focuses only on

1Also referred to as data driven model.
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3.1. Data Driven Prognosis 3

prediction of damper elements. Precise it deals with the secondary vertical
damper, that connects the car body with the bogie.

3.1. Data Driven Prognosis

The data driven approach can be realized with machine learning algorithms.
Machine learning, as a scientific discipline, is a subfield of artificial intelli-
gence. Its objective is to automatically recognize patterns out of data and
consequently derive decisions [3]. Models of machine learning are almost as
manifold as its applications. In figure 3.1, they are classified by their nature of
learning and their field of application.

Machine Learning

Supervised
Learning

Regression
Problem

Linear
Regression

Decision Tree

Neural
Network

Classification
Problem

Nearest
Neighbor

SVM

Naive Bayes

HMM

Reinforcement
Learning

Classification
Problem

Bayesian
Network

Neural
Network

Unsupervised
Learning

Clustering
Problem

K-Means

Gaussian
Mixture

Neural
Network

Figure 3.1.: Classification of machine learning models

Unsupervised Learning In this setting, training data does not contain any
information about the target quantity. In an engineering application, it consists
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3.1. Data Driven Prognosis 3

of a set of sensor signals or derived feature quantities in the form D = x1, ..., xN ,
where N is the length of the data set [1]. Unsupervised learning is used to solve
a clustering problem. Models are able to separate data into certain clusters.
However it is not possible to determine the class of the cluster. Certainly they
recognize the difference between a healthy and a faulty component, but not
which cluster is healthy and which one faulty.

Reinforcement Learning The training data for reinforcement learning does
have some information about the target output, which is however, not the
target quantity itself. In fact, every observed signal value comes with a
possible output and a measure that rates this output, in the form D =
x1, ỹ1, w1, ..., xN , ỹN , wN . It is mainly used to learn how to play a game, whereby
every move in a certain stage is rated, which enables the algorithm to figure
out the best line of play [1].

Supervised Learning We talk about “supervised”, when the training data set
consists of the above mentioned feature quantities, as well as a corresponding
target value in the form D = x1, y1, ..., xN , yN . The quantity yi, {i ∈ Z|1 ≤ i ≤
N} is also called the “label” and can be anything from a binary number like 0
or 1, to a verbal tag like blue or red. Models of the regression problem differ
from those of the classification in their mathematical output space. Whereas
regression deals with real output values y ∈ R, classification is only binary
and labels data as 0 or 1, yes or no, blue or red or any other class. Since 0 and
1 are also real values, a regression problem can more or less classify as well.
The definition is a little bit vague, which is why there may exist different
classifications in the literature. Supervised learning is a popular method for
condition based prognostics in engineering.

The selection of a suitable model is supported by the technical expertise of the
analytics group, which is responsible for bogie diagnostics and prognostics
within SIEMENS rolling stock engineering. This knowledge is very welcome, if
not required, when it comes to the decision, which actual model is going to be
implemented. Since a concrete labeling of the observed data to the HS of the
component is required, it is going to be a supervised learning model. Based
on expert knowledge and literature research, the implementation of a HMM
turned out to be a promising method. For this application, it is a statistical
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3.2. The Machine Learning Diagram 3

model, that connects physical states of a component with certain transission
probabilities. Those states are basically unknown. They can be estimated by
observations, which are emitted by a state with a certain probability. Section 4.3
provides a detailed explanation of HMMs. Its probabilistic connections enable
a non-linear propagation of the components condition from new to broken.
For the basic HMM however, the observed emissions used in the model, are
restrited to be one-dimensional. The health state and its evolution hast to
be estimated by only a single quantity, which is certainly not an acceptable
way. To tackle that problem, any classifier is necessary before the HMM, to
process multi-dimensional input to one-dimensional quantities. Since SVMs
are already applied and working well within diagnostics algorithms, they are
going to be used. Their outstanding ability of generalizing2, as well as a nice
visual representation of the results for low-dimensional problems, are just two
reasons for the selection of this method. Section 4.2 provides more details to
SVMs. The combination of a SVM and an HMM have to deal with the two
basic requirements for prognostic algorithms, which are the detection of the
current health state and the prediction of its future evolution. The presented
thesis gives a holistic overview of the workflow and provides details to the
implementation of the algorithm.

3.2. The Machine Learning Diagram

SVMs and HMMs are both part of the category supervised learning, which
means that they are trained with labeled data. How the process from learning
to testing actually works is schematically shown in figure 3.2.

To describe the process of learning and testing, a two-dimensional input space
is assumed, where the input quantities are acceleration signals from a bogie
and the output is a class, which can either be “healthy” or “faulty”. That
would be an example of two class learning. Any machine learning problem
starts with a target function f : X → Y . For linearly separable data, this is
a straight line, that separates healthy from faulty data points. That target

2Generalization is the property of a model, that quantifies the difference between the in
sample and the out-of-sample error. In sample error relates to training data, out-of-sample
error to test data [1]
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Learning Algorithm A

Training Data Set
D = x1, y1, ..., xN , yN

Target Function
f : X → Y

Input Distribu-
tion Dist(x)

Hypothesis Set H

Final Hypothe-
sis g : X → Y

Input Test Data Set
Tin = (x1, ..., xN)

Output Test Data
Set Tout = (y1, ..., yN)

Figure 3.2.: The machine learning diagram [1]

function is unknown and is supposed to be approximated by the machine
learning model. To estimate that function, a training data set is required,
which provides acceleration signals for healthy and faulty parts. That means
that every pair of input signals xi, {i ∈N|1 ≤ i ≤ N} is tagged with the label
“healthy” or “faulty”, so that the algorithm is able to distinguish between
them. The learning algorithm is supposed to find the best estimation g ≈ f
out of the hypothesis set H . In this two-dimensional linear example, H would
consist of an infinite number of straight lines in the input space. Once the
learning algorithm picked the final hypothesis, the model is ready for testing.
The testing data set consists only of observations. With the learned function,
the model can determine whether the test data corresponds to “healthy” or
“faulty” parts, by figuring out on which side of the line the test examples are.
Hence, a label can be added to the testing data set, giving information about
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3.3. Training Data for Mechanical Dampers 3

the current health state of the considered component. The whole process can
be divided into

• Training (Learning) and
• Testing

which is basically valid for all different models, hence also for SVMs and
HMMs. Since machine learning models are almost exclusively of statistical
nature, every statement made by an algorithm comes with a probability. The
quality of that statement strongly depends on the training data used to find
the final hypothesis. In the above mentioned example, input quantities were
assumed as acceleration signals from the bogie. That raises the question,
which actual acceleration signals are a good choice. Within machine learning
that process is called feature selection. It aims to find the right number and
type of input quantities, in order to increase the accuracy of diagnostic and
prognostic algorithms. Since the deterioration of every component of a bogie
has a different impact on the dynamic behavior of the vehicle, the significant
features are different as well. This thesis focuses on the prognosis of dampers
in railway vehicles, which is why in the following sections the procedure will
be described specifically for this component.

3.3. Training Data for Mechanical Dampers

This section discusses how proper training data can be acquired and which
features it should consist of, to enable a RUL prognosis. Basically its form
is D = x1, y1, ..., xN , yN . For an engineering application like the damper, the
label y is the components HS. The corresponding observations x are features,
extracted from signals of the health monitoring system. These observation
and label pairs have to be acquired throughout the dampers whole lifetime.
Meaning that there have to be observations with healthy and faulty labels.

3.3.1. Acquisition of Training Data

Just like most mechanical components of a bogie, dampers are designed for
six to eight years, which makes it rather difficult to acquire samples over the

18



3.3. Training Data for Mechanical Dampers 3

entire lifetime via testing. A six to eight year, full system test of a railway
vehicle is a very expensive operation and therefore a huge motivation to find
alternatives for acquiring a valid training data set. Figure 3.3 provides an
overview of different possibilities.

Training Data

Measurement

Endurance
Test

Componente
Test

System
Test

Nested
Endurance

Test

Component
Test

Simulation

Linear
Multi-Body
Simulation

Matlab

Non-Linear
Multi-Body
Simulation

Simpack

Figure 3.3.: Acquiring training data

Indeed a measured data set is the preferred source when it comes to model
training. Either in form of an endurance test, which is not going to be possible
for the most components because of their extended lifetime. Or a nested
endurance test, which requires advanced lab equipment and will only be
support single component tests. A complete system test will always deliver
more reliable data than a nested test, however six to eight years of testing is not
really an option. As more and more vehicles get equipped with a monitoring
system, it may be possible in a few years, to use training data recorded during
operation. As for now, simulated data sets are the common approach and will
also be the chosen method within this thesis. Besides the cost and time factor,
the flexibility in terms of system parameter variation is another advantage.
Components properties can be varied at will, which guarantees a training
data set with samples of every possible HS from new to broken condition.
On the downside, simulated training data sets require knowledge about the
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components deterioration behavior. Usually, there is more than just one failure
mode, that leads to different evolution the the components system property.
Most likely, it will be a combination of failure modes, which is responsible
for the actual deterioration characteristics. This combination and the impact
of the failure modes is in general unknown and can only be estimated with
support of expert knowledge and previous component testing. For the damper
deterioration the following failure modes have been considered:

• External sealing damage (Loss of oil)
• Internal sealing damage
• Valve damage
• Piston damage
• Rubber bearing embrittlement

All of them have a different impact on the damper characteristics when
occurring. According to a statement of a damper supplier, external sealing
damage and rubber bearing embrittlement are the most frequent failures.
This damper degradation is going to be implemented in a three-dimensional,
linear multi-body simulation, that is realized with Matlab. In contrast to a
Simpack simulation, which has more sophisticated approaches for wheel-rail
contact and friction phenomena and therefore a more realistic simulation,
the solution with Matlab has way less computation time. Since the machine
learning models are trained to react on a relative change of system properties,
the absolute value of that property does not really matter. The process for
training and testing will be the same, regardless of the inputs quality. The
accuracy of the output however, can only be as accurate as the training data.
This tradeoff between quality and computation time is accepted, because it
will not effect the learning algorithm. Once completed, better input data can
be processed in the exact same way.
For an artificially created training data set, several assumptions about the
lifetime and the health evolution of the damper have to be made. In figure
3.2, those assumptions are represented by an input distribution Dist(x). At
this point it should only be said, that lifetime as well as health evolution are
estimated with statistical distributions based on experience and previous test
results. Together with a detailed description of the simulation model, those
distributions are discussed in section 4.1.
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3.3.2. Feature Selection

The railway vehicle consists of a car body and two bogies with two wheelsets
each. It can be abstracted as a system of masses, springs and dampers, which
are responsible for the dynamic system response. Therefore, the degradation
of a component has a certain influence on the vehicle dynamics. Usually a
modern railway vehicle is equipped with a large number of sensors, mostly
acceleration sensors mounted on different areas on the vehicle. The feature
selection is supposed to find the most informative and accurate quantity,
derived from the observed sensor signals. The raw signal is converted to a
time domain, frequency domain or time-frequency feature, that represents a
components degradation. For the mechanical damper, these features are time
based standard derivations within defined frequency bands [8].

A promising approach is presented in Girstmair et.al.[8], where a combination
of heuristic and automated feature selection is applied. The heuristic method
is a rough pre-selection, based on changes in the transfer function, which
requires advanced domain knowledge. Due to the high number of possible
sensor signals, a pre-selection is absolutely necessary to keep the computation
time of the subsequent automated feature selection to a minimum. Automated
selection methods are basically optimizing the output of a machine learning
model by alternating the input quantities. This process of feature selection was
applied to a railway vehicle in order to find an optimized set of features for
the classification of secondary vertical dampers. The multi-body simulation
can basically provide accelerations in x-, y- and z-direction for any given
point on the vehicle. They serve as inputs for the feature selection. The result
shows, that a combination of three informative features is enough to ensure
an acceptable accuracy of the machine learning models. For the derivation of
a RUL algorithm for the right sided, secondary suspended, vertical damper of
the leading bogie, a total of three primary and secondary suspended, vertical
acceleration standard deviations were selected. Those three quantities will
serve as input observations for the machine learning algorithms. Together
with the label “healthy” or “faulty”, they form a complete input data set
D = x1, y1, ..., xN , yN .
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3.4. The Course of Action 3

3.4. The Course of Action

The machine learning diagram (figure 3.2) is a good overview of what has to
happen to successfully implement a prognostics algorithm. It can be pinned
down that there are two phases, training and testing. Whereas training is the
process to learn the model, testing is its actual application. As discussed in
section 3.3, the training data is going to be simulated with a linear, three-
dimensional multi-body model. Thereafter, the features mentioned in 3.3.2
are picked from the artificial training data set and are used to learn a SVM.
Once learned, it is able to map the multi-dimensional feature input to a
corresponding HS, hence a one-dimensional quantity. This output of the SVM
will then serve as observation for the HMM, which is ultimately used to
calculate the RUL. Figure 3.4 visualizes the course of action in three stages.

Simulation of
training data

Multi-
dimensional

training
data set

Train a SVM

Simulation of
training data

Multi-
dimensional

training
data set

Test the SVM

One-
dimensional

training
data set

Train an HMM

Derive an
artificial test

sequence

Test sequence
of Observations Test the HMM

Propagated
sequnces
until EoL

Remaining
Useful Lifetime

Figure 3.4.: The course of action to implement a RUL algorithm. All stages propagating hori-
zontally. Stage 1 at the top, stage 2 in the middle and stage 3 at the bottom

Stage One A SVM is trained, using simulated healthy (=̂ 100% damping
rate) and faulty (=̂ 0% damping rate) data sets.

Stage Two The SVM is tested with the intermediate damper stages, i.e.
from 100% to 0% damping rate in 10% steps. Resulting in a mapping of the
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dampers health condition to the three-dimensional feature input set. There-
after, this results are concatenated in order to represent the entire lifetime
of the damper. Additionally, a sequences of the same length with the cor-
responding health condition, by means of the damping rate determined by
the simulation, is produced. Details are presented in section 4.2.3. The last
step has statistical distributions underlying, which enables the generation of
independent and different sequences of observations with corresponding HSs.
Those concatenated, one-dimensional sequences serve as training data for the
HMM.

Stage Three This stage describes the testing of the HMM. In course of
the theoretical investigation of its performance, the actual testing process
as it is performed with real data, has to be artificially recreated. In the real
application the model is applied with observed data, predicting the RUL in
daily or weekly intervals. Therefore, the provided data increases with every
interval, until the component is broken. Naturally, the estimated RUL gets
better in accuracy as the time goes on. This continuously increasing length of
the applied data set is realized through an iterative approach, which provides
an increasing percentage of the input sequence with every iteration. In reality,
that sequence is observed by the health monitoring system. For the theoretical
assessment within this thesis, this test sequence is synthetically created. Just
like the training data set is produced in stage two, yet another sequence is
derived, only without the label of the HS. An important property of the output
sequences of stage two is, that all of them need to be independent from each
other in order to get a unbiased result of the statistical models. For every
partial sequence, the HMM should be in position to determine the current
HS and predict its future evolution until the EoL. The provided length of
the partial sequence, increases after every iteration. As more of the synthetic
sequence is provided, the prediction is supposed to get better. Actual results
are presented in chapter 5.

In conclusion, the course of action involves a multi-body simulation as well as
training and testing of SVMs and HMMs. All assumptions and mathematics
applied are presented in chapter 4.
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4. Implemented Methods

The algorithm is designed to estimate the RUL of mechanical components of
railway vehicles. The approach to establish that algorithm is independent from
the predicted component, however the selected features and assumptions for
training data are individually different. Despite the algorithm is implemented
for the secondary vertical damper of the leading bogie on the right side, it can
be used for any other component, provided that proper training data can be
acquired.

When it comes to condition based and predictive maintenance, HMMs have
been and still are in the focus of numerous research activities [16, 7, 17, 20,
19]. Many publications deal with similar tasks, namely the determination of
the HS and the prediction of the RUL, which have already been specified as
the main objectives of prognostic concepts in chapter 3. There exist several
smart approaches, where the basically discrete and one-dimensional HMM
is extended, to represent continuous observations and deal with coexisting
deterioration modes. Since all of them are successful in predicting a mechanical
components future condition, HMMs are chosen to be the approach for this
application in railway industry [7, 16, 17].

According to the course of action described in section 3.4, a multi-body
simulation as well as a SVM is necessary to process data, observed by a health
monitoring system in a way, that an HMM can deal with it. Therefore, three
methods are applied to develop a holistic algorithm, capable of predicting the
RUL of a damper. This chapter provides theoretical foundations and details
for those three methods. Their specific parameter settings are going to be
subject of chapter 5.
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4.1. A Linear Multi-Body Simulation

The objective is to synthetically generate training and testing data for SVMs
and HMMs. Although nowadays many professional software packages, spe-
cialized on this kind of task are available, a simplified, linearized model is
developed to effectively generate data. Being aware of the solutions imperfec-
tion, its advantage is a very short computation time, which is a rather good
tradeoff. Considering that the generated data should simulate sensor obser-
vations, which are noisy anyway, the seemingly bad accuracy is no problem,
because it gets lost in the noise. Within this section, a linear state-space model
for a three-dimensional railway vehicle is derived, whose solution will be
provided later on in chapter 5.

The desired output of a multi-body simulation is the system response to
a certain excitation, represented by the equation of motion (EoM) for the
center of gravity (CoG) of every participating component. For this special
application, which involves the synthetic generation of healthy and faulty data
sets, multiple simulations with varying system parameters are performed.
A continuous variation of those parameter was initially considered, but dis-
carded because of the enormously increased computation time. Additionally,
the accuracy of the solution would have only improved slightly, compared
with a discrete approach, assuming a smart choice of the iteration frequency.
Along side the vehicle parameters, including the iterative changed damping
characteristics, track parameters represent the second input for the simulation.
Those are vertical (z) and lateral (y) excitations, as well as curvature and line
routing. Those track conditions are taken into account by exciting the wheels
according to the track data. The wheel-rail contact is due to its non-linearity a
challenging topic. For this application the wheel profile is linearized which
leads to a manageable system of equations. Further assumptions for the linear
model are as follows [9]

• Small deflections and angles
• Small profile angle γ
• Rigidly mounted and flawless rail
• Constant velocity vx and angular speed φ̇
• Linear traction law
• Neglected rotary slip
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• Vertical wheel set acceleration z ≈ 0 and angular wheel set acceleration
χ̈ ≈ 0

The simulation is done in the euclidean three-dimensional space R3. Although
the model calculates in three dimensions, including curvature, line routing,
lateral accelerations and all traction related phenomena which result in the
sinusodial run (see section 4.1.3), a track of 40km length, is processed within
a few minutes. Since the parameter variation, which simulates the deteriora-
tion of the damper is done iterative, a short computation time is absolutely
necessary. The railway vehicle is abstracted according to figure 4.1, which
leads to a model with 7 components and a total of 102 vehicle parameters,
including geometrical dimensions, masses, moments of inertia, spring and
damper characteristics as well as material specific parameters. Overall, the
model has 23 EoM with just as much degrees of freedom (DoF). As it is the
nature of common multi-body systems, masses are rigid bodies and springs
and dampers do not have mass properties.

4.1.1. Data Acquisition Using a Multi-Body Simulation

A solution of a linearized multi-body model in Matlab is chosen over a Sim-
pack simulation or something comparable. Reason for that is not least, because
the generated data is used for analysis on subsequently performing statistical
models, hence does not have the requirement to be most precisely. Therefore,
the way faster computing, solution is preferred, which enables a quick and
reproducible way of generating data, of sufficient accuracy. The iterative pa-
rameter variation includes only the considered secondary vertical damper,
which is initiated with 100% of its nominal damping rat, and successively
decreased by 10%, until its contribution is completely vanished, resulting
in 11 iterations. Thereafter, each of those 11 damper settings, are computed
with 11 randomly different gamma distributed revenue loads, resulting in a
total number of 121 simulations. The course of action for the simulation is
concluded as follows

1. Selection of the constant longitudinal velocity vx
2. Definition of track related input data u
3. Vehicle parameter settings
4. Definition of random revenue load
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5. Derivation of system matrices for a linear state-space system
6. Solution of this linear system
7. Transformation of the EoM for the CoG to any given point on the vehicle
8. Saving the results as a specifically designed object
9. Decreasing the damper characteristic by 10%

10. Repeating the procedure from point 3) to 10) until damping rate has
reached 0%

Whereas most of the points are straight forward and easy to implement,
point 5) is actually a pretty hard task. Sections 4.1.2 and 4.1.3, deal with
the definition of the system matrices. Assuming all of the above points are
successfully completed, 121 data sets with the varying damping parameter
and random revenue loads are produced. Each of them covering a distance of
about 40km, this results in a total of approximately 5 · 103km, within which the
dampers health condition goes linearly from completely healthy to completely
faulty. First of all, this is a rather short distance, considering that the dampers
lifetime will be around six to eight years. However, a direct simulation of
several million kilometers is certainly not feasible. Second of all, a linear
deterioration is very unlikely. Those two open points are very important
assumptions, which have to be made in order to produce most realistic signal
sequences. Therefore, two remaining tasks in order to acquire an appropriate
data set are the following.

1. Define the maximum mileage that represents the dampers lifetime
2. Define the evolution of the dampers condition throughout its lifetime

Both of them will be estimated by a certain probability distribution, which
will be described in section 4.2.3. The purpose of the multi-body simulation
as such, will be met after the 121 simulation results are saved.

4.1.2. Model of a Railway Vehicle

A common railway vehicle is a rather complicated system. Figure 2.1 presents
the bogie, which is from an engineering point of view, the most interesting
component. Most of the vehicles functionality, such as track guiding, stabi-
lization, braking or driving, is brought by sub-components of the bogie. To
ensure stable and safe operation, it is common that the bogie is divided into
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Figure 4.1.: A railway vehicle represented by a multi-body system: a, b, c, d) Wheel sets; e)
Leading bogie; f) Trailing bogie; g) Car body, h) Track.

a primary and a secondary suspended level. The wheel sets however, can
be considered as non-suspended, which leads to a total of three suspension
levels within the vehicle. From the simulation models point of view, every
single component contributes to the over all weight, but the effective mass is
concentrated in the center of gravity of the corresponding suspension level.
With respect to that, the vehicle is divided into the car body in the second
level, two bogies with related parts in the first level and four wheel sets in the
non-suspended level. Those seven components are connected with springs
and dampers in longitudinal (x), lateral (y) and vertical (z) direction. The track
defines the excitation for the multi-body system. Figure 4.1 shows the model
which is used for the simulation. The plotted springs and dampers are not the
only components contributing to the systems stiffness and damping rate. In
fact, every component has certain stiffness and damping properties, which
are considered as well.
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Degrees of Freedom

A body in R3 without constraints has in general six DoF. Namely translation
x = [x y z]T as well as the corresponding rotations ω = [χ(x) ϕ(y) α(z)]T.
Since one of the model assumptions is a constant velocity in driving direction,
any EoM in x is unnecessary. The DoF decrease to five per body. For the
wheel sets, the angular speed ϕ̇ has a kinematic connection to the longitudinal
motion. Therefore the rotation about the y-axis does not count as DoF either.
Phenomena like the loss of contact between wheel and rail are not considered,
which implies, under the assumption of the wheel as rigid body, that they
directly follow the track excitation in z-direction. Therefore, a wheel sets
motion in z direction is no DoF anymore. Both wheels are firmly mounted on
the axle, which leads to another kinematic relation. The rotation about the
x-axis is related to the left and right z excitation. That last constraint leaves the
wheel set with only two DoF. In conclusion, four wheel sets à two DoF, plus
two bogies and a car body à five DoF sum up to a total of the above stated 23

[9].

The EoM is solved with the “Newton-Euler Procedure”, which will be rea-
soned in section 4.1.3. However, in course of this method, equations are
established for every participating body and all their DoF. Hence, 23 EoM
need to be identified in order to solve the problem. For a uniform repre-
sentation of the equations, the following indices are used to address certain
locations on the vehicle. Not explicitly mentioned is the index x, y and z which
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represents the coordinate direction.

Bogies : k(x) =

{
I if x ≥ 0
I I if x < 0

Sides : j(y) ∈N =

{
1 if y ≥ 0
2 if y < 0

Axes : i(x, k) ∈N =



0 if x = 0, k = I ∨ I I
1 if x > 0, k = I
2 if x < 0, k = I
3 if x > 0, k = I I
4 if x < 0, k = I I

Level : l =


u if non-suspended
p if primary-suspended
s if secondary-suspended

Origin : o =


c if spring
d if damper
ext if external

Where the coordinates x and y measure from the considered components
body-fixe coordinate system. With this indexing system, all quantities can be
properly assigned to their location of impact. Since there are different use
cases, the indexing is applied to each type of quantity exemplary.

Forces and torques : ψOrigin, Coordinate, Bogie, Axle, Side → ψo,x,k,i,j

State variables : φLevel o f Suspension, Bogie, Axle → φl,k,i

System parameters : φCoordinate, Level o f Suspension, Bogie, Axle, Side → φx,l,k,i,j

Geometrical quantities : ΓAxle, Side → Γi,j

Position vectors : ΠCoordinate, First Location, Second Location → Πx,kij,kij

Not all of them are always necessary to exactly address the right location,
therefore k, i, or j will sometimes be left empty. Position vectors, which
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are used to define relative locations on the components, are indexed with
both positions. The vector points from the first, to the second index location.
Basically vectorial quantities do not contain a coordinate index.
Considering the twenty-three DoF of the entire railway vehicle, the complete
position vector x and the input vector u, that represents the track related
systems excitation, are defined as follows

x =
[
ys zs ϕs χs αs

ypI zpI ϕpI χpI αpI

ypI I zpI I ϕpI I χpI I αpI I

yu1 yu2 yu3 yu4

αu1 αu2 αu3 αu4
]T ,

(4.1)

u =
[
uy1 uy2 uy3 uy4

uz1 uz2 uz3 uz4

uχ1 uχ2 uχ3 uχ4 uκ

]T ,

(4.2)

4.1.3. The Newton-Euler Procedure

This procedure was chosen because in comparison with energy-based prin-
ciples like Lagrange, d’Alembert or Jourdain, the internal forces are part of
the solution. Although it is not impossible with one of the other principles,
it is associated with effort, which can be avoided with Newton-Euler. By
considering every sub-component on its own, all the internal forces appear in
the system equations. Since the intended parameter variation of the secondary
vertical damper requires internal forces to be parameterized, this method
is predestined. A rather simple example of the procedure is provided in
appendix A.1.

It works with the two basic principles of Newton and Euler, which describe
the dynamic of a body or a system of bodies with respect to their centers of
gravity. The principle of linear and angular momentum is applied on every
sup-component and relating to the body-fixed coordinate system, which has
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its origin in the center of gravity.

d
dt

p =
d
dt

mẋ = mẍ =
N

∑
n=1

Fn , (4.3)

d
dt

L(CoG) =
d
dt

θ(CoG)ω̇ = θ(CoG)ω̈ =
N

∑
n=1

M(CoG)
n . (4.4)

Both equations are only valid for constant mass m. p is the linear momentum,
x the linear position vector with its time derivatives ẋ and ẍ with time t. L(CoG)

is the angular momentum with respect to the center of gravity, θ(CoG) the
inertia tensor and ω the angular position vector with its time derivatives ω̇
and ω̈.

Equation 4.3 says that the temporal change of the linear momentum is equal
to the sum of all effective forces Fn where N is the maximum number of forces
on the considered body. For constant m this is Newton’s second law. Equation
4.4 is also only valid for a body-fixed coordinate system and related to the
center of gravity. It says that the temporal change of the angular momentum
equals the sum of all effective torques M(CoG)

n [2, Chap. B, Sec. 3]. The above
described principles are the basic approach to get to the EoM when using the
Newton-Euler procedure. The desired outputs are as many equations as DoF
in matrix form:

Mẍ + Dẋ + Cx = Udu̇(t) + Ucu(t) . (4.5)

This is a linear and time invariant differential equation of second order1. The
system properties are represented through the masses and inertia N × N
matrix M, the N × N velocity proportional damping matrix D and the N × N
position proportional stiffness matrix C. The position vector and its first
and second time derivative are of size N × 1. On the right hand side is the
system excitation, which is again sorted by their proportionality. The velocity
proportional N×Q excitation matrix Ud and the N×Q position proportional
share Uc define the impact of the input vector u, which has the size Q× 1. For
a system of multiple bodies, N equals the number of bodies k = 1, ..., K, times
their DoF, or in other words the total number of DoF of the entire system. Q

1Linear because the position vector and the excitation is linear. Time invariant because the
system matrices are constant [2, Chap. O, Sec. 2]
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depends on how many inputs are designated to represent the track excitation
[2, Chap. O, Sec. 2]. In this simulation of a railway vehicle N = 23, which
equals the number of DoF and Q = 13 because of the size of the excitation
vector defined in 4.2. The best approach to fill all those system matrices, is to
investigate every component separately, because the occurring forces are quite
different. Only the internal connection forces as well as the centrifugal force
appear to be part of every components equation. So before every components
contribution to the system is determined separately, connection forces and
torques as well as the generally effective centrifugal force, are defined.

The centrifugal force effects every sub-component and occurs when the vehicle
drives through a curve. Usually the outer rail in the curve is raised by a
certain amount which is called the “cant” ũ, in order to lower the lateral
acceleration. If so, the weight force reduces the real lateral acceleration by
its lateral component, which is determined by the amount of ũ. The actual
centrifugal force is then

Fq = maq = m
(v2

R
− g

ũ
2b

)
= m

(
uκv2 − g sin(χ)

)
, (4.6)

where m is the considered components mass and aq its effective lateral ac-
celeration, which is a function of the vehicle speed v and the track related
parameters curve radius R, cant ũ and the gauge exactness 2b. Since uκ is a
better manageable track parameter and χlki will be included in the solution,
the centrifugal is ultimately represented by those two quantities.

Connection forces are either related to a spring or a damper and manifest as a
force or a torque, which are formulated as functions of the position vectors
x and ω. As the coil spring force is proportional to its compression and the
hydraulic damper force to its relative velocity, those can be written as:

F(K,K̂)
c =

∫ xK̂

xK

c(x)dx , (4.7)

F(K,K̂)
d =

∫ ẋK̂

ẋK

d(ẋ)dẋ . (4.8)

The stiffness matrix c(x) defines the spring rate for each direction, which is
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basically a function of its compression, i.e.,

c(x) =

cx(x) 0 0
0 cy(y) 0
0 0 cz(z)

 . (4.9)

The damping matrix d(ẋ) defines the damping rate for each direction, which
is also not constant but a function of its relative velocity, i.e.,

d(ẋ) =

dx(ẋ) 0 0
0 dy(ẏ) 0
0 0 dz(ż)

 . (4.10)

dx is the differential of the linear position vector with its time derivative dẋ.
The integral goes from the considered body K to the interacting body K̂, both
of which are connected through a spring or a damper.

The mixed terms are zero because the connection elements are assumed
to transmit only in their main direction. Yet, a non-linear behavior can be
expected from this kind of characteristics. Since the purpose of this simulation
is to deliver quick estimates, this non-linearities are simplified to a linear
function.

Spring and damper relative motion does not come only from translational mo-
tion, but also from rotation. Therefore the angular position vector contributes
as follows

∆x = ω× l , (4.11)

∆ẋ =
d
dt
(ω× l) =

d
dt

ω× l + ω× d
dt

l = ω̇× l , (4.12)

where l is the distance vector between the CoG of the considered body and
the respective spring or damper. Since the bodies are assumed to be rigid,
l 6= f (t) and therefore drops out of equation 4.12. Superposition of the
angular contribution and the translation leads to the total relative position
and velocity

x̃ = x + ∆x , (4.13)
˜̇x = ẋ + ∆ẋ . (4.14)
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With equations 4.7 to 4.14 applied on 4.3 and 4.4 and the linearity assumption,
the resulting forces and torques (momentums) can be written as:

F(K,K̂)
c = c

∫ x̃K̂

x̃K

dx̃ = c(x̃K̂ − x̃K) =

= c
(

xK̂ − xK + (ωK̂ × lK̂)− (ωK × lK)
)

,
(4.15)

M(K,K̂)
c = lK ×

(
c
∫ x̃K̂

x̃K

dx̃
)
= lK ×

(
c(x̃K̂ − x̃K)

)
=

= lK ×
(

c(xK̂ − xK + (ωK̂ × lK̂)− (ωK × lK)
)

,
(4.16)

F(K,K̂)
d = d

∫ ˜̇xK̂

˜̇xK

d ˜̇x = d( ˜̇xK̂ − ˜̇xK) =

= d
(

ẋK̂ − ẋK + (ω̇K̂ × lK̂)− (ω̇K × lK)
)

,
(4.17)

M(K,K̂)
d = lK ×

(
d
∫ ˜̇xK̂

˜̇xK

d ˜̇x
)
= lK ×

(
d( ˜̇xK̂ − ˜̇xK)

)
=

= lK ×
(

d(ẋK̂ − ẋK + (ω̇K̂ × lK̂)− (ω̇K × lK)
)

.
(4.18)

Whereby the relation between a force and a torque is defined by M = l ×
F. With these formulations of the connections, which are responsible for
the interaction between bodies in a multi-body simulation, each individual
component of the vehicle can be investigated separately. Note that the inner
connection forces are effected by Newton’s third law, actio=reactio, or FK

ij =

−FK̂
ij [2, Chap. B, Sec. 3].

Wheel set

The dynamic of the wheel set is very important for the characteristic of the
whole railway vehicle. The interaction between wheel and rail depends mainly
on both geometries, speed and the prevailing friction conditions. Assuming
a point-shaped contact, the oscillation of the vehicle is determined by the
position of that contact point between wheel and rail. Figure 4.2 shows a
non-linear wheelprofile and the occurring forces. Txij and Tyij are slip forces,
whose coordinate index relates to their origin, which is either longitudinal
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Figure 4.2.: Non-linear wheelprofile.

or lateral slip. The two of them, as well as the normal force depend on the
profile angle γuij = f (yui), which is a function of the lateral movement. Both
wheels and the axle have a rigid connection and therefore, they all have the
same angular velocity ϕ̇ui. The motion of a wheel set depends on its relative
position to the track, which can be described with the lateral displacement yui
and the angular displacement αui. Therefor it is displaced by yui to the right,
which increases lateral forces on the right and decreases them on the left side,
because of the varying radius of the contact point. As a result, a lateral force
pushes the wheel set back to the center of the track. In addition to that, the
difference in contact radii on both sides and the fact that both wheels have
the same ϕ̇ui, lead to longitudinal slip forces. They tend to brake down the
wheel with the greater radius and accelerate the other one. This pair of forces
results in a torque, which turns the wheel set by αui. Thereafter, the wheel
set drives towards the center of the track, which is when the longitudinal
slip forces vanish and the lateral forces are in balance. However, due to the
angular displacement, lateral slip forces are induced, which drives the wheel
set to the left side. It does not matter whether the wheel set gets displaced
by yui or αui in the first place, this phenomena will always be the result. It
is called sinusodial run and describes the motion of a a wheel set, which
transmits the oscillation through the spring and damping connections to the
bogie and thereafter to the vehicle body [9, 11]. Another contributor to the
complex wheel rail interaction are rotary slips. They occur because the wheel,
which is approximated by a cone, is forced to follow a straight line [11]. This
rotary slip results in an additional slip torque, that is going to be neglected for
simplicity reasons. Hence the relevant wheel set forces can be broken down to
the following

• Connection forces (springs and dampers)
• Longitudinal slip forces
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Figure 4.3.: Principle of track guiding.

• Lateral slip forces
• Normal forces between wheel and rail
• Centrifugal forces
• Weight forces

The only forces missing to build the EoM are the longitudinal and lateral slip
forces. They are functions of the relative motion between wheel and rail (slip)
as well as of the friction conditions. Kalker [13] found that longitudinal, lateral
and rotational slip do not only effect the corresponding force, but also each
other, which results in a highly non-linear function. For small slips however,
those function can be linearized and lead to the following definition [9, 13]

Txij = − f11sxij , (4.19)

Tyij = − f22syij − f23sφij , (4.20)

where f11 and f22 are adhesion coefficients and sxij, syij and sφij are slips. Since
the simulation is based on the assumption that the rotary slip is neglected, sφij
drops out of equation 4.20. The adhesion coefficients are defined according to
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Kalker [13] as

f11 = (a · b)GC11 , (4.21)
f22 = (a · b)GC22 , (4.22)

with a and b as the semi axis of the contact ellipse, G the modulus of shear
and C11, C22 the corresponding “Kalker” coefficients. For standardized wheel
rail combinations, with respect to profile and material, those dimensions can
be picked from certain tables [9].

Lateral and longitudinal slips are the relative motion in x and y between the
wheel set and the rail. Any acceleration or deceleration is related to a slip,
which in fact is required to make the motion even possible. For a railway
vehicle, the longitudinal and lateral difference in velocity at the contact point
can be defined as [9]

sxij = ∓
v− rij ϕ̇ui + biα̇ui

v
= ∓ tan(γe,i)

r0,ij
(yui − uyi)∓

biα̇ui

v
, (4.23)

syij =
(ẏui − u̇ui)− rij ϕ̇iαi

v
≈ (ẏui − u̇ui)

v
− αi . (4.24)

The ∓ represents the equation for the right side (j = 1→“-”) and the left side
(j = 2 →“+”) respectively. This notation will also be used in the following
procedure. Equation 4.23 and 4.24 are based on the linearization of the wheel
profile in a way, that the wavelength of the sinusodial run remains the same
as it is for the non-linear profile. tan(γe,i) is the equivalent conicity2, r0,i the
nominal wheel radius, rij the current radius and bi the distance from the
contact point to the wheel sets CoG.
With respect to the linearization, the contact wheel radius rij, the profile
angle γij, the equivalent conicity tan(γe,i) and the so called “contact angle
parameter” ε i are defined [9]. The latter basically helps later on to formulate

2The equivalent conicity defines the profile angle of an idealized conical wheel, so that the
wavelength of the sinusodial run is the same, as of the real wheel profile [2]
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well-arranged equations, i.e.,

rij = r0,ij ± tan(γe,ij)(yui − uui) , (4.25)

γij = γ0,ij ± ε i
(yui − uui)

bi
, (4.26)

tan(γe,i) =
ri,j=1 − ri,j=2

2(yui − uui)
, (4.27)

ε i =
γi,j=1 − γi,j=2

2 (yui−uui)
bi

. (4.28)

With those equations combined with 4.19 and 4.19, the slip forces can ulti-
mately be formulated as

Txij = − f11

(
∓ tan(γe,i)

r0,i
(yui − uui)∓

biα̇i

v

)
, (4.29)

Tyij = −
f22

v
(
(ẏui − u̇ui)− vαi

)
. (4.30)

Now the basic tools are introduced to bring the equations for linear and
angular momentum into a form that can be processed further.

The wheel set has only two DoF, hence two EoM. Figure 4.4 shows the
effective forces necessary to derive the equations. Geometrical dimensions are
not illustrated in order to clearly represent the body. Equation 4.3 and 4.4 are
applied on the wheel set. With respect to the indexing system defined above,
equations are defined for the first wheel set of the leading bogie as follows:

∑ Fy = mu1ÿu1 = Ty11 + Ty12 − N11 sin(γ11)+

+ N12 sin(γ12) + Fq,1 − FcyI1−
− FdyI1 + Fy1,ext , (4.31)

∑ Fz = mu1z̈u1 ≈ 0 = −N11 − N12 + FA,1 + Fcz11+

+ Fcz12 + Fdz11 + Fdz12 + Fz1,ext , (4.32)

∑ M(CoG)
x = θxxu1χ̈u1 ≈ 0 = b1(N12 − N11) + Mcx11 −Mcx12+

+ Mdx11 −Mdx12 + Mx1,ext , (4.33)

∑ M(CoG)
z = θzzu1α̈u1 = b1(Tx12 − Tx11) + Mcz11 −Mcz12+

+ Mdz11 −Mdz12 + Mz1,ext , (4.34)
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Figure 4.4.: Wheelset - effective forces.

The following assumptions are valid for the above set of equations. Ty � N,
z̈Wheelset = χ̈Wheelset ≈ 0, χ� γ, γ� and therefore sin(γ) ≈ γ and cos(γ) ≈ 1
[9]. With FA,1 as the proportional net weight from the whole vehicle, which
effects the considered wheel set. Note that the equilibrium condition in z
and χ will not be influenced by the connection forces, because z and χ are
not considered as DoF. Therefore, Fcz, Fdz, Mcx and Mdx are dropping out
of equations 4.32 and 4.33. Within this simulation, the input excitation will
not be realized through the external forces and torques. Rather than that,
excitations will be induced as transverse wheel set movement in vertical uzi
and lateral uyi direction as well as rotation about the x-Axis uχi. Hence, all
external forces and torques are dropping out of the above equation system.
More to the excitation in chapter 4.1.4. Relating to the centrifugal force Fq,u1
the second term from equation 4.6 can be neglected because of the assumption
of small angles. To dissolve the remaining connection forces and torques, the
position vectors for both interacting components, from the respective CoG to
the connections, are defined. In this case, interacting components are bogie
I and wheel set 1. The connections are longitudinal and vertical at the axle
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bearings as well as lateral in the middle of the axle. Therefore three position
vectors for each interacting component can be defined as follows

l I,I1 =

lx,I,I1
ly,I,I1
lz,I,I1

 l I,11 =

lx,I,11
ly,I,11
lz,I,11

 l I,12 =

lx,I,12
ly,I,12
lz,I,12

 (4.35)

l1,I1 =

lx,1,I1
ly,1,I1
lz,1,I1

 l1,11 =

lx,1,11
ly,1,11
lz,1,11

 l1,12 =

lx,1,12
ly,1,12
lz,1,12

 (4.36)

From equations 4.32 and 4.33 with respect to all simplicity assumptions
described above, it can be derived that N11 = N12 = N = 1

2 FAx,1. The definition
of 4.28 and the normal forces lead to the so called “gravity spring stiffness” as
in [9]

cRSyi =
FAx,iε i

2bi
, (4.37)

which enables a compressed representation of equation 4.38 and 4.39 in the
form

mu1ÿ1 = Ty11 + Ty12 + N(γ12 − γ11) + Fq,1 − FcyI1 − FdyI1 =

= −2
f22

v
(
(ẏui − u̇ui)− vα1

)
− FAx,1 ε

(yui − uui)

b1
+

+ m1uκv2 − FcyI1 − FdyI1 =

= −2
f22

v
(
(ẏui − u̇ui)− vα1

)
− 2 cRSy1 (yui − uui)+

+ m1uκv2 − FcyI1 − FdyI1 , (4.38)

θzzu1α̈u1 = b1(Tx12 − Tx11) + Mcz11 −Mcz12 + Mdz11 −Mdz12 =

= −2 f11b1

(γe,1

r0,1
(yui − uui) +

b1α̇1

v

)
+

+ Mcz11 −Mcz12 + Mdz11 −Mdz12 . (4.39)

To handle such equations within a numerical algorithm, they need to be in
matrix form. Therefore, the lateral and rotary states are combined to the
position vector yu1 as defined in equation 4.60, which means for the first
wheel set of the leading bogie with its two DoF that yu1 := [yu1 αui]

T. All
occurring forces and torques need to be ordered by their contribution, by
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means of velocity proportional, position proportional or external contributor.
Equations 4.15 and 4.17 are used to dissolve the connections FcyI1, FdyI1, Mcx11,
Mcx12, Mdx11 and Mdx12. A detailed equation is provided in appendix A.2.

Considering the centered position of the lateral spring and damper connection
between wheel set and bogie (see figure 4.4, FyIij), the position vector l1,I1 ≡ 0,
because the connection is assumed to be in the CoG. What remains as the
representation of the lateral connection is

FcyI1 = cyI1

(
ypI − yu1 + (αpI lx,I,I1 − χpI lz,I,I1)

)
,

FdyI1 = dyI1
(
ẏpI − ẏu1 + (α̇pI lx,I,I1 − χ̇pI lz,I,I1)

)
,

Mcz11 = −cx11ly,1,11

(
(ϕpI lz,I,11 − αpI ly,I,11) + αu1ly,1,11)

)
,

Mcz12 = −cx12ly,1,12

(
(ϕpI lz,I,12 − αpI ly,I,12) + αu1ly,1,12)

)
,

Mdz11 = −dx11ly,1,11

(
(ϕ̇pI lz,I,11 − α̇pI ly,I,11) + α̇u1ly,1,11

)
,

Mdz12 = −dx12ly,1,12

(
(ϕ̇pI lz,I,12 − α̇pI ly,I,12) + α̇u1ly,1,12

)
.

Now the two EoM can be brought in matrix form, which results in the
following equation system:[

mu1 0
0 θu1

]
·
[

ÿu1
α̈u1

]
+

[
2 f22

v − dyI1 0

0 2 f11b2
1

v + dx11l2
y,1,11 − dx12l2

y,1,12

]
·
[

ẏu1
α̇u1

]
+

+

[
2cRSy − cyI1 −2 f22

2 f11b1

(
γe,1
r0,1

)
cx11l2

y,1,11 − cx12l2
y,1,12

]
·
[

yu1
αu1

]
=

=

[
2 f22

v 0 0 mu1v2

0 0 0 0

]
·


u̇y1
u̇z1
u̇χ1
u̇κ

+

[
2cRSy1 0 0 0

2 f11b1

(
γe,1
r0,1

)
0 0 0

]
·


uy1

uz1

uχ1
uκ

 (4.40)

This is the desired form of the EoM for the wheel set, where system parameters
are represented by the mass matrix Mui, the damping matrix Dui and the
stiffness matrix Cui [2, Chap. O, Sec. 2]. The excitation is on the right hand
side of the equation, represented by the velocity proportional input matrix Ud
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and the position proportional matrix Uc. A general notation for this equations
is

Mui ẍui + Dui ẋui + Cuixui = Udiu̇i(t) + Uciui(t) . (4.41)

All terms from the connection forces and torques, that contain state variables
from any other than the considered body, are included in the system equa-
tions of the corresponding component. That is how the interaction between
components impacts the EoM of the entire system. To solve the equation, the
Newton Euler procedure has to be done for all sub-components. A compar-
ison of equation 4.41 and 4.5 shows that the wheel set’s equation has the
same form as the desired equation for the entire system. That means, once
every sub-components contributing system equation is determined, the entire
system can easily be formulated.

Bogie

The bogie is not as complex as the wheel set. There are no traction forces or
non-linearities that need to be considered in order to get a good estimate of
the EoM. All forces considered in this simulation, are related to a connection
to either one of the other sub-components, or an excitation. The equilibrium
condition contains all interacting connection forces, which can be properly
formulated as a function of position or velocity with equation 4.15 to 4.18.
The result will very much look like equation 4.5 from the wheel set, however
the dimension of the matrix will correlate to the DoF. The bogie has five,
because the x-direction is determined by the constant input velocity of the
vehicle and therefore not part of the simulation. Figure 4.5 shows the relevant
connections, which will again be represented by forces and torques from
springs and dampers. The equilibrium conditions 4.3 and 4.4 are exemplary
applied to the leading bogie I. The sub-components position vector is defined
as:

xpI =
[
ypI zpI ϕpI χpI αpI

]
. (4.42)

(4.43)
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Figure 4.5.: Bogie - effective forces.

The resulting five equations for the leading bogie are:

∑ Fy = mpI ÿpI = −FcyI − FdyI + FcyI1 + FdyI1+

+ FcyI2 + FdyI2 + Fq,pI , (4.44)

∑ Fz = mpI z̈pI = −FczI01 − FdzI01 − FczI02 − FdzI02+

+ Fcz11 + Fdz11 + Fcz12 + Fdz12+

+ Fcz21 + Fdz21 + Fcz22 + Fdz22 + Fg,I , (4.45)
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∑ M(CoG)
x = θxxpI χ̈pI = −McxI01 −MdxI01 + McxI02 + MdxI01+

+ Mcx11 + Mdx11 −Mcx12 −Mdx12+

+ Mcx21 + Mdx21 −Mcx22 −Mdx22−
−McxI −MdxI + McxI1 + MdxI1+

+ McxI2 + MdxI2 , (4.46)

∑ M(CoG)
y = θyypI ϕ̈pI = −McyI01 −MdyI01 −McyI02 −MdyI02−

−MdyI001 −MdyI001+

+ McyI11 + MdyI11 + McyI12 + MdyI12+

+ McyI21 + MdyI21 + McyI22 + MdyI22 , (4.47)

∑ M(CoG)
z = θzzpI α̈pI = MczI1 + MdzI1 −MczI2 −MdzI2+

+ MczI01 + MdzI01 −MczI02 −MdzI02−
−Mcz11 −Mdz11 + Mcz12 + Mdz12−
−Mcz21 −Mdz21 + Mcz22 + Mdz22 . (4.48)

In equation 4.47, two torques, namely MdyI001, and MdyI002, can not be properly
assigned to a location with the provided indexing system. The reason is,
because at those locations, spring and damper do not effect the same point on
the body. The secondary vertical damper is slightly moved, which is why both
those “special” torques only occur in relation with a damper. The secondary
vertical spring is in line with the CoG, hence no torque contribution about the
y-axis.

By applying equations 4.15 to 4.18 to the equilibrium conditions, the con-
nection forces can be dissolved in the same way as it was demonstrated for
the wheel set. The result is a rather large set of of equations, that can be
represented in the quite familiar matrix form as follows

MpI ẍpI + DpI ẋpI + CpI xpI = UdpI u̇pI(t) + UcpIupI(t) . (4.49)

The dimension of the system matrices M, D and C is 5× 5, since the bogie
has five DoF. In the presented form, the equations can be combined with all
the other components at the end.
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Car body

Since the car body is very similar to the bogie in terms of their representation
within the multi-body simulation, the procedure to get the system equations is
exactly the same. Only connection forces and torques as well as the centrifugal
force are applied to the car body. It interacts with both bogies and is considered
to be in the second level of suspension. However, as an abstracted contributor
to the dynamic system, it can be treated equally. The position vector is defined
as

xs =
[
ys zs ϕs χs αs

]
. (4.50)

(4.51)

Again equilibrium conditions are applied to formulate the five contributing
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Figure 4.6.: Car body - effective forces.

system equations as:

∑ Fy = msÿs = −FcyI − FdyI + FcyI I + FdyI I + Fq,s , (4.52)

∑ Fz = ms z̈s = FczI01 + FdzI01 + FczI02 + FdzI02+

+ FczI I01 + FdzI I01 + FczI I02 + FdzI I02 + Fg,s , (4.53)
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∑ M(CoG)
x = θxxsχ̈s = −McxI −MdxI −McxI I −MdxI I+

+ McxI01 + MdxI01 −McxI02 −MdxI02+

+ McxI I01 + MdxI I01 −McxI I02 −MdxI I02 , (4.54)

∑ M(CoG)
y = θyys ϕ̈s = −McyI01 −MdyI01 −McyI02 −MdyI02+

+ McyI I01 + MdyI I01 + McyI I02 + MdyI I02 , (4.55)

∑ M(CoG)
z = θzzsα̈s = MczI + MdzI −MczI I −MdzI I−

−MczI01 −MdzI01 + MczI02 + MdzI02−
−MczI I01 −MdzI I01 + MczI I02 + MdzI I02 . (4.56)

And once more, the vectorial evaluation of the above stated equations with
4.15 to 4.18, delivers the desired output

Ms ẍs + Ds ẋs + Csxs = Udsu̇s(t) + Ucsus(t) . (4.57)

The dimension of the system matrices is equal to equation 4.49 of the bogie.

Now that all sub-components are investigated, their system matrices can
be combined in order to get a system of equations for the entire vehicle.
Four wheel sets, two bogies and a car body are the contributors. Ultimately,
twenty-three equations are provided, that have to be solved in order to get a
solution.

4.1.4. Numerical Solution of the Equation System

The derived EoM are linear differential equations of second order. However,
most of the existing numerical methods require a differential equation of first
order

ẏ = F(y, t) . (4.58)

To convert the existing EoM to a system of first order, a state-space transfor-
mation is performed. The basic idea is to replace the vector triple

x =

 x1
...

xN

 , ẋ =

 ẋ1
...

ẋN

 , ẍ =

 ẍ1
...

ẍN

 ,
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with the state vector and its time derivative

y =



x1
...

xN
ẋ1
...

ẋN


, ẏ =



ẋ1
...

ẋN
ẍ1
...

ẍN


.

Therefore, the system of 23 equations of second order gets transformed into a
system of 46 equations of first order. A nice tradeoff, because several numerical
methods exist, that can conveniently solve these kind of equations [14]. The
only thing left to do, is to rearrange all system matrices and excitation vectors
in order to preserve the equilibrium conditions, based on which the EoM was
derived in the first place. The desired form of the entire system of equations
is as follows:

ẏ = Ay + Bu(t) , (4.59)

where A and B represent the new state matrices, that have to be found and y
is the full state vector of the 23 DoF railway vehicle. With the definition of x
in equation 4.1, that state vector is

y =

[
x
ẋ

]
and ẏ =

[
ẋ
ẍ

]
. (4.60)

With that knowledge, the composition of the new state matrices can be derived.
Multiplied by the state vector, they have to deliver the same result as the
previously found EoM. In order to replace x with y, the equation is rearranged
as follows:

Mẍ = −Dẋ− Cx + Udu̇(t) + Ucu(t)

ẍ = −M−1Dẋ−M−1Cx + M−1Udu̇(t) + M−1Ucu(t)
ẍ = −Dm ẋ− Cmx + Udmu̇(t) + Ucmu(t) . (4.61)

Now the position vector can be replaced by the state vector and equation
4.61 is rearranged to get a system in the form of 4.59. Moreover, the position
and velocity excitation vectors have to be concluded to u = [u u̇]T. An
additional equation is obtained, however the order is reduced which enables
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the application of well known solvers. The system matrices are ultimately
becoming

A =



0 . . . 0
...

. . .
...

0 . . . 0

1 . . . 0
...

. . .
...

0 . . . 1

Cm Dm


, B =



0 . . . 0
...

. . .
...

0 . . . 0

0 . . . 0
...

. . .
...

0 . . . 0

Ucm Udm


.

Where the dimension of A is R(2N×2N) and of B it is R(2Q×2Q). For the pre-
sented railway vehicle 2N = 46 and 2Q = 26.

Now all necessary equations to define a linear state-space model are provided.
Such a model can conveniently be solved by any commercial software package
that supports matrix operations, which is shown in chapter 5. It is in the
nature of the Newton-Euler procedure that the resulting equations describe
the dynamics of the components CoG. In order to produce a proper training
data set for the subsequently performed statistical models, all acceleration
signals that usually would have been recorded by a health monitoring sys-
tem, are evaluated as well. That is realized through translatory and rotatory
transformation matrices, that make use of the known geometries. Since the
components are perfectly rigid bodies, this transformation is purely geomet-
rical, hence a rather easy task to solve. Like mentioned in section 3.3.2, the
statistical models preferably use features, such as the standard derivation
or the mean value, which is why those quantities are evaluated as well. In
conclusion, the solution of the derived state-space model is the state vector,
consisting of position, velocity and acceleration of all twenty-three DoF for any
given point on the vehicle. Together with the additionally calculated statistical
quantities and some meta data about the system parameters, these variables
are saved as the result of one iteration. Hence, the data acquisition by the
multi-body simulation is complete, and the next step in the course of action
follows.
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4.2. Classification with Support Vector Machines

The procedure presented in this thesis, uses the classifier to convert a multi-
dimensional to a one-dimensional data set, which correlates to a certain
health condition of the considered component. The one-dimensional quantity
is required by the subsequently performed HMM. Therefore not only the
class, but also a certain quantifying measure is of note. A SVM provides this
measure in form of a posterior probability, that indicates how likely a data
point is classified as it is. Thereafter, the posterior probability derived from
the simulated input data, is concatenated to a sequence, that represents the
dampers entire lifetime. Length and composition3 of that sequence will be
defined in section 4.2.3.

A SVM is a kernel based statistical model, with the purpose of classifying
data. When an input data set is presented, it is often of interest, to which
class, type or group a certain sample belongs. Inputs are usually a selection
of statistically representative features, which can for example be selected
according to a method described in section 3.3.2. With proper features and a
well trained SVM, pattern recognition is possible, even with a small number
of samples. This, and its highly appreciated generalization abilities are its
advantages in comparison with conventional classification methods. SVMs
work with kernels, which can be interpreted as a mathematical space of the
dimension d. If the input data is not linearly separable in the current feature
space, the so called “kernal trick” is applied. The data x is transformed into
a higher dimensional space, which then allow a linear separation of data. In
this particular space, the SVM algorithms are executed with the result of a
“hyperplane” which separates the occurring classes of feature data. Although
SVMs work as one-class up to multi-class recognition tools, for its broad
application within the field of CBM two-classes are used [24].

The common objective in the area of CBM is to determine the HS of a certain
mechanical component. For now, the classes are defined as healthy and faulty,
which can be represented by a two-class SVM. Within the mathematical
formulation of the model, the classes correspond to the label value y =

3In that context, the composition describes how long the component is assumed to stay in
each HS. In other words, it defines the relative number of samples which are used for signals
of the corresponding HS.
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+1 or y = −1. The classification can be achieved by providing a specific
data set, that contains features with the corresponding label of the HS. This
data is provided by a multi-body simulation described in section 4.1. SVM
algorithms for learning are basically available within the libraries of most
programming software, like Matlab or Python. However, the learning process
will be described roughly to point out the advantages of SVMs.

4.2.1. Learning of a Support Vector Machine

The following notation is used to pin down the mathematics of SVMs. X is
considered the input space, that contains the input data set xi ∈ Rd with
i = 1, ..., N ∈ N, in a d-dimensional space. A Kernel is defined by K (x, z) =
〈φ(x), φ(z)〉, if the scalar product ∀x, z ∈ X and the mapping φ : X → F both
exist [21]. F is the feature space, that could be of any dimension, which is
basically dependent on the type of kernel.

The above stated mathematics concerning kernels can be interpreted as
methodology to transform or “map” the input space X to a higher-dimensional
feature space F. This mapping can be applied to enable a linear separation
of data, which might not have been possible in the input space. Basically
there is no upper bound of the feature space dimension, because it does not
effect the computation time of the algorithm. The conclusion is, that there
will always be a feature space F, where data can be separated linearly by a
hyperplane. Mapped back to the input space, that hyperplane is most likely
not linear, which enables the separation of basically not linearly separable data.
SVMs can process multi-dimensional input, however in the spirit of clarity,
just two input features are used to describe the way, how that hyperplane
is determined. Figure 4.7 shows the hyperplane that separates the positive
samples o, from the negative samples x, under the assumption of separable
data. It is quite intuitive that the best separating plane is the one with the
biggest margin, since this is the width that a data sample can change without
being missclassified. Therefore the maximum width is used as a decision for
picking the final hypothesis of the plane. The hyperplane has the equation

wTx + b = 0 , (4.62)
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Figure 4.7.: Maximum margin hyperplane for a two-class SVM.

where w represents a vector, normal to the plane and b is the bias. For each
o-sample of the data set, the corresponding class is yi = +1, for each x-sample
it is yi = −1. Therefore the class of the data point can be determined as
follows:

yi = sign(wTxi + b) . (4.63)

For any data sample, this equation can also be written as [24]

wTxi + b =

{
> 0 if yi = +1
< 0 if yi = −1 .

(4.64)

Since it does not affect the hyperplane whether wT is large or small, it can be
normalized to accomplish scale invariance. Without any loss of generalization,
wT can be scaled in order to get the equation for positive and negative samples
xn, which are right on the margin, i.e.:

|wTxn + b| = 1 . (4.65)

The norm is applied to make the equation valid for both classes. To calculate
the actual margin, the vector xn on the margin is subtracted by a generic
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point on the hyperplane xn and thereafter projected to the norm of the normal
vector ‖w‖. With respect to equation 4.62 and 4.65, the margin is

Margin =
wT

‖w‖ |xn − x| =

=
1
‖w‖ |w

Txn −wTx| =

=
1
‖w‖ |w

Txn + b−wTx− b| =

=
1
‖w‖ . (4.66)

This is actually half the margin, but since the positive and negative side are
symmetric and equal in size, it leads to the same result. So this is the quantity
that has to be maximized in order to provide a decision for the best hypothesis.
That maximization has to happen with respect to equation 4.65, because the
margin is supposed to be maximized within the closest positive and negative
sample:

Maximize:
1
‖w‖

Subject to: min
n=1,...,N

|wTxn + b| = 1 .

Both equations are mathematically inconvenient to solve. Therefore the max-
imization is replaced by a minimization and the minimum of the absolute
value over all samples is taken care of as follows:

Minimize:
1
2

wTw

Subject to: yn(wTxn + b) ≥ 1 ∀n .

The absolute value is replaced by the assumption that every data point is
classified correctly, which implies a compensation of the equations sign,
because positive samples have yn = +1 and negative samples yn = −1. The
required minimum is taken care of by the ≥ condition. This minimization
problem with an inequality constraint still needs some minor changes in order
to be solvable. Hence, the “Karush-Kuhn-Tucker” (KKT) conditions are used
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to derive the Lagrangian as follows [24, 21]

L(w, b, α) =
1
2

wTw−
N

∑
n=1

αn(yn(wTxn + b)− 1) , (4.67)

where αn ≥ 0, ∀n are the positive Lagrange multipliers, which are introduced
by KKT to change the inequality constraint to an equality constraint. To pursue
the minimization problem, the derivatives of L with respect to w and b are
evaluated and thereafter substituted back to equation 4.67.

∇wL = w−
N

∑
n=1

αnynxn = 0 ,
∂L
∂b

= −
N

∑
n=1

αnyn = 0 , (4.68)

L(α) =
N

∑
n=1

αn −
1
2

N

∑
n,m=1

ynymαnαmxT
n xm . (4.69)

Now this formulation can be solved by minimizing with respect to α and
with subject to the KKT condition αn ≥ 0, ∀n and the equation on the right
side of 4.2.1. This can effectively be achieved by quadratic programming
algorithms, which deliver the solution for α. Analyzing the KKT condition
αn(yn(wTxn + b)− 1) = 0 and reviewing the minimization criterion results
in the conclusion that if αn > 0, the vector xn has to be directly on the outer
boundary of the margin. The reason is, because only then, the second term
of the KKT condition becomes 0, which is required for it to hold. Thus, xn
is called a support vector (SV). In figure 4.7 for example, the hyperplane is
build with three SVs. By rearranging the left equation of 4.2.1 and the KKT
condition, the hyperplane parameters can be determined

w = ∑
SV

= αnynxn , (4.70)

b =
1
yn
−wTxn . (4.71)

So for any data set of dimension d, w is computed through a summation over
all SVs with α as parameters. Therefore its dimension is reduced dramatically,
from d to the number of SVs. This is good news for the generalization of the
model, because the out-of-sample error decreases for a decreasing number
of SVs and an increasing number of samples N [1]. Equation 4.71 can be
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evaluated with any one of the SVs with its corresponding label. Hence, all
necessary parameters are defined in order to use equation 4.63 on a new data
set to perform classification.

Note that the entire procedure takes place in the feature space F. If the input
space X is not linearly separable, the mapping φ : X → F will transform data
into a higher-dimensional space. Howsoever this space may look like, the
input for quadratic programming will be very similar to equation 4.69, i.e.:

L(α) =
N

∑
n=1

αn −
1
2

N

∑
n,m=1

ynymαnαmφT(xn)φ(xm) . (4.72)

Even if the mapping increases the data dimension significantly, it will always
be an inner product that has to be solved. Therefore, the dimension of the
problem solved by quadratic programming, depends only on the size of the
input data set in terms of samples N. This is another advantage, because
the increased dimension enables the solution of highly non-linear problems,
without loosing any computation performance. A transformation back to the
input space, would deliver a “hyperplane”, that is not a plane anymore. In
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φ
(x

2
)

M
a
r
g
in

x1

x
2

φ : X ! F

Figure 4.8.: Kernel transformation from input space X to feature space F.

conclusion, the mathematical consideration shows, that a SVM can handle
non-linear data sets with good generalization ability. High-dimensional input
does not necessarily mean overfitting and low-dimensional input has still a
good chance of a low out-of-sample error. Due to the fact that the mathematics
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behind a SVM use the inner vector product to compute the output, the
kernel function can transform the input to a high-dimensional output and
take advantage of that, without increasing computation time. All of those
properties make SVMs a popular method with a broad field of application.

4.2.2. Testing a Support Vector Machine

The statistical model trained with a labeled data set, is able to classify com-
pletely new and unlabeled data. The output according to equation 4.63 is
either yi = +1 for “positive” samples and yi = −1 for “negative” samples. In
addition to that, it is possible to calculate the so called “score” s ∈ R of every
sample within the data set. It represents the distance to the hyperplane in the
F space and is therefore an indication for the probability of a sample, being
correctly classified. The higher the score, the further away is the sample from
the separating hyperplane. However, it is just an indication of the actual prob-
ability of correct classification. To calculate the latter, a posterior probability
function P(s) has to be fit to the SVM. This function depends on whether the
data set is perfectly separable or not and on the nature of the SVM in terms
of types of classes. Figure 4.9 shows possible P(s) for a two-class SVM. The

s

P (s)

1

0

s

P (s)

1

0

a b

Figure 4.9.: Fit of a posterior probability to the score by: a) Step function; b) Sigmoid function.
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step function is used to fit the posterior probability if the data set is perfectly
separable. Otherwise, the Sigmoid function is applied. The output of the SVM
is then between 0 and 1, which represents the probability of the considered
sample to be in the positive class. The closer the considered sample gets to
the hyperplane, the higher is the chance for misclassification. However, the
posterior probability is a quantity that can be well interpreted. For most cases
of health monitoring of mechanical components, the Sigmoid function will be
used to fit it. Hence, a continuous transfer from the 100% positive sample to
the 100% negative sample will be provided, which enables conclusion about
the intermediate HS of the component. The lower the posterior probability,
the better the health condition.

The posterior probability is basically the quantity, used to assign the features
to a corresponding HS. Once the SVM is trained with 100% healthy (“positive”
samples) and 0% healthy (“negative” samples), it is tested with the interme-
diate conditions to acquire a mapping of the HS. The next section provides
details about how the obtained posterior probabilities are concatenated in
order to get the desired sequence.

4.2.3. Length and Composition of the Synthetic Sequence

As already mentioned in section 4.1.1, there are two crucial points that need to
be clarified in order to produce a sequence that represents the entire lifetime
of the considered component.

1. Define the maximum mileage that represents the dampers lifetime
2. Define the evolution of the dampers condition throughout its lifetime

Usually this kind of assumptions are made based on experience or measure-
ments. Unfortunately measuring the characteristics of mechanical components
in railway vehicles is a huge effort and not part of any existing maintenance
process. In some very rare cases, the damping characteristics where recorded
during the dampers lifetime. However, the quality of those results is rather
poor and the quantity is not quite statistically representable. Moreover, none
of the tested dampers were broken or close to a foreseeable failure, which
means that the degradation in damping rate can only be assessed for the
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achieved mileage. Nevertheless, those measurements were used to derive a
possible statement for point two of the above stated.

Evolution of the Damping Condition

A slight decrease of approximately 20% in damping rate could be observed
for all investigated parts. That decrease happened within the first 0.2 · 105km
of operation. After this, the damping rate remained basically stable until the
dampers got substituted by new parts. Unfortunately a certain variance from
the nominal damping rate of about ±10% also contributes to the already
bad data situation. However, the initially, slightly degrading characteristics,
followed by a plateau is expected to take a sudden end. After a certain
mileage, the deterioration will decrease rapidly. Figure 4.10 shows how these
findings can be applied to the assumption of the HS evolution. A Poisson

Figure 4.10.: Poisson distribution of health state evolution

distribution P (λ), with λ = 1
3 N, where N is the number of states, is chosen to

represent the initial decrease and the subsequent stable scope, followed by the
rather quick deterioration until the complete brake down. Figure 4.10 shows
exemplary the distribution for a sequence if the number of states N is chosen
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to be five. Within the simulation however, the damping rate was decreased
by 10%, which results in 10 distinct HS. A proper mapping of the simulated
HSs to the desired output HSs is required. The y-axis in figure 4.10 gives
the actual number of samples simulated with each mapped HS. One sample
represents the calculated mean value from one iteration of the simulation,
which equals approximately one day of operation. This downsizing of the data
set is absolutely necessary, because otherwise over-fitting4 could happen easily.
So the evolution is estimated by the Poisson distribution, but the absolute
value of simulated mileage is still unclear.

Total Mileage of a Damper

For this problem, actually no existing measurements can be consulted. It
would be necessary to observe accelerations during the complete lifetime of a
component, which can easily reach six years and more. Obviously such testing
is not reasonably, but unfortunately highly appreciated. Different approaches
are presented in section 3.3.1, however for this synthetic data sequence a
normal distribution will be assumed. Figure 4.11 shows the assumption that
the dampers EoL is standard distributed N (µ, σ). The estimated mean was
chosen according to the absolute maximum mileage that a damper is currently
expected to be in operation, which is µ = 1.6 · 106 km. A rather high standard
derivation of σ = 2.0 · 105km is assumed, in order to represent diverse failure
modes. Figure 4.11 exemplary shows ten samples which are drawn from the
distribution. The x-axis shows the actual mileage values, that will serve as
maximum mileage for the corresponding damper simulation, the y-axis relates
to the absolute number of samples which are drawn.

In conclusion, the desired sequence is a labeled data set, which contains
posterior probabilities, as well as the corresponding HSs. In other words, for
every evaluated point, there should be a sequence of posterior probabilities
and a sequence of HSs. The length of this sequences will be represented by
the normal distribution N (µ, σ), its composition by the Poisson distribution
P (λ). Based on those distributions the posterior probabilities are concatenated
to a sequence that represents the components complete life cycle. Although it

4A phenomena within statistics, where to much data is used for learning. The trained
model fits the training data perfectly, but does not generalize at all.
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Figure 4.11.: Normal distributed maximum mileage of a damper

seems like a simple accumulation of the results, it is not, because firstly, the
revenue load defined during the simulation causes some noise and secondly,
the posterior probabilities of the SVMs are also related to a Sigmoid distribu-
tion. Therefore, different posterior probabilities can be produced for the same
HS, depending on the Sigmoid parameters, which are basically defined during
the training phase of the SVM. Hence, the actual output is viable, providing a
sequence for the posterior probabilities and one for the HS. This method is
used to generate training data as well as testing data, for the implemented
statistical models.

4.3. Prognostics with Hidden Markov Models

This section provides the required tools in terms of HMMs, to develop a
proper RUL algorithm. A previously simulated data set, that represents the
entire lifetime of a damper, is generated with a multi-body simulation and a
subsequent SVM. In that manner, several independent data sets representing
the source for training and testing are produced. Ultimately, the HMM with all
its implemented features is trained and tested with different sequences from
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those generated data sets. To evaluate its out-of-sample error. The following
section presents the results and the detailed parametrization of the used
tools.

HMMs are commonly known for their excellent performance in speech recog-
nition and deterioration estimation. Basically they model real-life processes,
with a number of distinct finite states S = {S1, S2, ..., SN} with N ∈ N and
distinct finite observations V = {V1, V2, ..., VK} with K ∈ N. The latter is
the observed or measured quantity, which is emitted by the currently ac-
tive and unknown or “hidden” state, hence the models name. Generally
speaking, they are statistical models that describe a two staged stochastic pro-
cesses, which is repeatedly executed, forming a corresponding state sequence
q = (q1, q2, ..., qT) and observation sequence o = (o1, o2, ..., oT) with T ∈N [6,
19]. The path through the model from time step t = 1 to t = T, is a chain
of discrete and causal events, where the frequency of the time discretization
depends on the considered problem. Each time step within the sequence,
consists of a two staged stochastic process. The first stage deals with the
states, the second one with the emitted observations. HMMs are statistical
models, that capture transitions between states and their emitted observa-
tions between time steps, with probabilities or probabilistic distributions. An
HMM is a probabilistic, finite automaton of states and observations, where
every state has both, an emission probability for every possible observation
bj(k) = P(ot = Vk|qt = Sj), as well as a transition probability for each pair
of states aij = P(qt = Sj|qt−1 = Si) [19]. At this point, two fundamental
assumption have already been made, namely the “markov property” and the
“output independence assumption”.

• Markov property [6]:
The current state probability qt depends only on the immediate prede-
cessor, not on the entire sequence, i.e.

P(qt|q1, ..., qt−1) = P(qt|qt−1) . (4.73)

• Output independence assumption [6]:
Each time step is associated with one state, which emits one observation.
The probability distribution for that observation depends only on the
state from which it was emitted, i.e.

P(ot|o1, ..., ot−1, q1, ..., qt) = P(ot|qt) . (4.74)
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Figure 4.12.: HMM Automaton with three distinct states and two distinct observations.

Figure 4.12 is a generic example of such an automaton for three distinct states
S1, S2 and S3, as well as two distinct observation symbols V1 and V2. For
an HMM described by such an automaton, aij are entries of the transition
matrix A of size N × N with the property ∑N

j=1 aij = 1, ∀i. bj(k) are entries
of the emission matrix B of size N × K with the property ∑K

k=1 bj(k) = 1, ∀j.
The definition of an HMM is completed with the initial state distribution
π = P(q1 = Si) where 1 ≤ i ≤ N. Thereby a compact notation of the
parameters of an HMM is given by

λ = (A, B, π) , (4.75)

which requires implicitly a definition of N and K [20]. Figure 4.13 shows
how states and observations are linked with probabilities within the time
series. For every HMM, not the hidden states, but the emitted observations
are the measured quantities, which are very often continuous signals, like
sound levels or accelerations. However, the basic version of an HMM uses a
discrete and finite observation space, which allows the emission probabilities
to be presented in matrix form, just like in the above example. That leads
to the distinction between “discrete” and “continuous” HMMs. Although
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q1 q2 q3 qN

o1 o2 o3 ... oT

bj(k) bj(k) bj(k) bj(k)bj(k)

aijiaijiaiji ... aiji

t1 t2 t3 tT...

πii  

Figure 4.13.: HMM Sequence of states and observations as a time series.

the continuous HMM is the better choice for deterioration problems, the
discrete model is implemented, because many of the applied algorithms
exist in Matlab libraries, yet only for the discrete HMMs. Hence, the basic
version of the developed RUL algorithm will refer to a discrete HMM. Another
distinction can be made between types of automatons in terms of their state
connections, i.e. which transitions are basically possible (aij > 0) and which
are not (aij = 0). Figure 4.14 showes two different types of HMMs [20]. The
model 4.14(a) is a so called “ergodic-HMM”, which allows transitions between
every distinct state. Model 4.14(b) is a left-right HMM, which basically only
allows increasing states. Since this type can model a developing process, it is
chosen to be implemented in course of the deterioration prediction algorithm.
In addition to the left-right constraint, transitions are only allowed to the
direct successor state, because the degradation of mechanical components is
assumed to happen continuously. Therefore, the transition probabilities will
be of the following form, considering the indices being positive integers, i.e.

aij

{
> 0 if i ≤ j ≤ i + 1
= 0 otherwise .

(4.76)

The theoretical basics presented in the following section do not consider
any particular type of HMM, hence they are valid for all types. The theory
facilitates the understanding of how the algorithm is capable of satisfying the
two major requirements of prognostics

1. Detection of the current HS
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(a) (b)

Figure 4.14.: Possible state transitions for different types of HMMs. (a) 4 state ergodic HMM;
(b) 4 state left-right HMM.

2. Prediction of its future evolution (RUL).

Since HMMs are probabilistic models, a definition of the “Conditional Prob-
ability”, the “Law of Total Probability” as well as “Bayes’ Theorem” are
necessary, in order to understand the mathematics behind the algorithm.

P(A|B) = P(A, B)
P(B)

, (4.77)

P(B) = ∑
A∈U

P(B|A) · P(A) , (4.78)

P(A|B) = P(B|A) · P(A)

P(B)
. (4.79)

Where A and B are discrete random events within the state space U, 0 ≤
P(A) ≤ 1 and 0 ≤ P(B) ≤ 1 their prior probabilities and P(A|B) the condi-
tional probability of A given B [15].
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4.3.1. The Three Problems of Hidden Markov Models

This section includes a lot of basic mathematics for HMMs. It mainly relates
to the work of R. Rabiner [20], who gives a holistic tutorial on HMMs. Some
mathematical formulations however, are inherited from A. Fink [6] and R.
Movellan [19].

In the previous section, all parameters of an HMM were defined by λ =
(A, B, π), which are now ready to be applied. There are basically three use
cases for HMMs, each of them using the defined statistical relations between
states, observations and their corresponding sequences, in a different way in
terms of input and output.

1. The evaluation problem:
Give the model λ = (A, B, π) and an observation sequence o = (o1, ..., oT).
Objective is to calculate the likelihood of that sequence P(o|λ) [20].

2. The decoding problem:
Give the model λ = (A, B, π) and an observation sequence o = (o1, ..., oT).
Objective is to calculate the sequence of states q∗ = (q∗1 , ..., q∗T), which
best explains the observation sequence o. [20].

3. The learning problem:
Give an observations sequence o = (o1, ..., oT). Objective is to maximize
the probability P(o|λ) by adjusting the model parameters A, B and π
[20].

The second requirement of prognostics, which relates to the estimation of the
RUL, can not be solved by the standard applications for HMMs alone. Still,
they are necessary for the HS detection and in a way, they form the base for
the RUL computation, which is discussed in section 4.3.3.

The Evaluation Problem

The evaluation algorithm determines how well a given sequence fits to a
given model, or in other words, how likely the given sequence is produced by
the given model. It can be used to find the best model among others, or to
quantify a certain model [20]. Therefore, the objective is to determine P(o|λ)
with respect to the markov property and the output independence assumption,
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which are represented through equations 4.73 and 4.74. Considering the
HMM’s two staged stochastic process, including the transition and emission
probabilities and the basic statistical relations from equation 4.77 and 4.78, the
probability of a given sequence can be derived through direct calculation as
follows [20]:

P(o|λ) = ∑
K

P(o, qK|λ)

= ∑
K

P(o|qK, λ) · P(qK|λ)

= ∑
qK

πq1 bq1(o1)aq1,q2 bq2(o2) · ... · aqT−1,qT bqT (oT) . (4.80)

The above equation points out, that a summation over all possible state
sequences qK is necessary. Figure 4.15 helps to understand the propagation
through the trellis, which represents all possible states qi at each time step t,
given the sequence of emissions o. States are drawn as circles, observations
as squares and the edges represent the transition probability P(qt|qt−1) = aij.
Since this method would require operations on the order of ≈ 2TNT [20],
it is not feasible at all, which motivates the research for a better algorithm.
The so called Forward Algorithm is a more effective method to compute
the likelihood of the observation sequence, given the model. It relates to
the markov property, which says, that the path of states taken to reach the
current state i is irrelevant for the probability of the predecessor state j.
Therefore, in the successor time step t + 1, only all possible states of step t are
considered. That enables a parallel computation of all possible states paths
[6]. The auxiliary forward variable, which represents the possibility of being
in state Si at time t, given the previous sequence of observations until t, is
defined as:

αt(i) = P(o1, o2, ..., ot, qt = Si|λ) . (4.81)
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Figure 4.15.: State space trellis of states for a given observation sequence.

With this definition, the desired probability P(o|λ) can be computed by
inductively solving for αt(i) [20].

Initialization : α1(i) = πibi(o1), 1 ≤ i ≤ N, (4.82)

Recursion : αt+1(j) =
( N

∑
i=1

αt(i)aij

)
bj(ot+1), 1 ≤ t ≤ T − 1,

1 ≤ j ≤ N, (4.83)

Termination : P(o|λ) =
N

∑
i=1

αT(i), 1 ≤ i ≤ N. (4.84)

In the first step, the starting value of the forward variable is set as the joint
probability of the prior and the emission probability of time step 1. The
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αt(N)qN

aNj

bj(ot+1)

V

Figure 4.16.: Computation scheme for recursion of forward variable αt+1(i).

recursion step is the propagation through the entire state space trellis, which
is visualized for one of N summations in figure 4.16 For every possible state
j in time step t + 1, only every forward variable αt(i) with 1 ≤ i ≤ N from the
previous time step t, is summed up and joined with the emission probability of
the evaluated step bj(ot+1). This “forward procedure” is propagated through
the entire sequence until step T− 1 is reached. Ultimately the termination step
provides the desired probability P(o|λ) by summing up the forward variables
of time step T. With the forward algorithm, the number of operations can be
reduced to the order ≈ N2T, which is about 69 orders less than the direct
calculation with ≈ 2TNT. This algorithm will be used later on, to determine
the probabilities of a given sequence of observations, being produced by either
one of several different HMMs. Ultimately, the pseudo code is presented in
algorithm 6.
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Algorithm 1 Solving the evaluation problem with the forward algorithm
1: function Forward-Algorithm(o, λ)
2: create a forward probability matrix α
3: for state i from 1 to N do
4: α[i, 1]← πi · bi(o1) . Initialization
5: for time t from 1 to T − 1 do
6: for state j from 1 to N do
7: α[j, t + 1]← ∑N

i=1 α[i, t] · aij · bj(ot+1) . Recursion

8: α[N, T]← ∑N
i=1 α[i, T] · aiN . Termination

9: return α[N, T]

The Decoding Problem

This use case deals with the determination of the “best fitting” state sequence
q∗ = (q∗1 , ..., q∗T) given the model λ = (A, B, π) and the observation sequence
o = (o1, ..., oT). Since the definition of the “best fit” depends on the optimiza-
tion criterion, more than one algorithm exist that is capable of solving the
decoding problem. However, the most popular method is the so called Viterbi
algorithm, that aims to maximize the probability of a state sequence, given
the observation sequence and the model P(q|o, λ). Its objective is to find one
single path, that is considered to be the optimum. By applying equation 4.77,
the maximization can be rewritten as follows [20, 6]:

max
q1,q2,...,qt−1

P(q|o, λ) = max
q1,q2,...,qt−1

P(o, q|λ)
P(o|λ)

= max
q1,q2,...,qt−1

P(o, q|λ)

= P(o, q∗|λ) = P∗(o|λ) . (4.85)

For maximization, the constant value of P(o|λ) does not matter, which allows
the above relation. To formulate the procedure properly, an auxiliary quantity
is introduced, that respects equation 4.85, i.e.:

δt(i) = max
q1,q2...,qt−1

P(q1, q2, ..., qt = Si, o1, o2..., ot|λ)

= max
q1,q2...,qt−1

P(o1, o2..., ot, q1, q2..., qt = Si|λ) . (4.86)
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This quantity represents the probabilities for the optimal path through the
state space trellis, that produced the observation sequence until time t and
can be solved recursively. The main objective however, is to find the optimal
state sequence q∗, which is why a tracking of the argument i that maximizes
the probability δt(i) is necessary. Therefore the array ψt(i) is introduced,
which holds the information about the state corresponding to the maximum
probability. The procedure is similar to the forward algorithm, only with a
maximization over all possible state probabilities, instead of a summation and
an additional operation that fills ψt(i) [20, 6, 23]. Figure 4.16 can be considered,
only with δt(i) instead of αt(i).

Initialization : δ1(i) = πibi(o1), 1 ≤ i ≤ N, (4.87)
ψ1(i) = 0, (4.88)

Recursion : δt+1(j) =
(

max
i

δt(i)aij

)
bj(ot+1), 1 ≤ t ≤ T − 1,

1 ≤ j ≤ N, (4.89)

ψt+1(j) = argmax
1≤i≤N

(
δt(i)aij

)
, 1 ≤ t ≤ T − 1,

1 ≤ j ≤ N, (4.90)
Termination : P∗(o|λ) = P(o, q∗|λ) = max

1≤i≤N
δT(i), (4.91)

q∗T = argmax
1≤i≤N

δT(i), (4.92)

Backtracking : q∗t = ψt+1(q∗t+1), T − 1 ≥ t ≥ 1. (4.93)

In contrast to the forward algorithm which computes the total output probabil-
ity, this procedure only processes the most probable possibilities by maximiz-
ing over all distinct states N in time step t. The backtracking step ultimately
delivers the “best fit” for the state sequence q∗.

Assuming a model λ = (A, B, π) and an observation sequence from time
step 1 to t, o = (o1, o2, ..., ot) is given, the Viterbi algorithm can compute
the optimal state sequence. Hence, the last state of the obtained sequence
q∗ = (q∗1 , q∗2 , ..., q∗t ) is the currently occupied state. The Viterbi algorithm fulfills
the first requirement of prognostics, which is to determine the current HS.
Algorithm 7 provides the pseudo code, to solve die decoding problem.
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Algorithm 2 Solving the decoding problem with the Viterbi algorithm
1: function Viterbi-Algorithm(o, λ)
2: create a path probability matrix δ
3: create backtracking matrix ψ
4: create most likely state path q∗

5: for state i from 1 to N do
6: δ[i, 1]← πi · bi(o1) . Initialization
7: ψ[i, 1]← 0
8: for time t from 1 to T − 1 do
9: for state j from 1 to N do

10: δ[j, t + 1]← maxN
i=1 δ[i, t] · aij · bj(ot+1)] . Recursion

11: ψ[j, t + 1]← argmaxN
i=1 δ[i, t] · aij

12: δ[N, T]← maxN
i=1 δ[i, T] · aiN . Termination

13: ψ[N, T]← argmaxN
i=1δ[i, T] · aiN

14: for time t from T − 1 to 1 do
15: q∗[1, t]← ψ[q∗[t + 1], t + 1] . Backtracking
16: return q∗

The Learning Problem

A method is presented, that aims to estimate the model parameters A, B, and
π, given an observations sequence q, by maximizing P(o|λ) locally. In other
words, the model parameters are tuned in order to find the HMM that most
likely produced the given observation sequence. There exist several different
numeric approaches to tackle that problem, which all belong to the family of
EM (expectation maximization or expectaion modification) algorithms. Within
this thesis, the wide spread Baum-Welch Algorithm is presented, which is
an iterative procedure, that numerically solves for the system parameters,
step by step. Initial “guesses” of aij, bj(k) and πi are necessary to run the
algorithm, which re-estimates them as âij, b̂j(k) and π̂i. In order to pin down
the mathematics behind the Baum-Welch algorithm, further quantities have to
be defined. First of all, the auxiliary backward variable, which is similar to
the forward variable, is defined as follows [20]:

βt(i) = P(ot+1, ot+2, ..., oT|qt = Si, λ) . (4.94)
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Whereas the forward variable considers the observation sequence from step
t = 1 to the current step t, the backward variable accounts for the partial
sequence from current step t until the end of the sequence T. Beta can be
solved recursively, by initialization at time step T and termination at t = 1 [20,
6]:

Initialization : βT(i) = 1, 1 ≤ i ≤ N, (4.95)

Recursion : βt(i) =
N

∑
j=1

aijbj(ot+1)βt+1(i), T − 1 ≥ t ≥ 1,

1 ≤ i ≤ N, (4.96)

Termination : P(o|λ) =
N

∑
i=1

πibi(oi)β1(i), 1 ≤ i ≤ N. (4.97)

Figure 4.17 illustrates the recursion step of the solution. The backward variable
represents the probability that the model has been in state Si at time t, account-
ing all possible transitions aij to state Sj, and the emitted observation bj(ot+1).
Just like a mirrored forward probability, βt(i) is calculated via summing over
all possible states N at the time step t + 1.

Another quantity of note, is the state occupation probability, or posterior
probability of being at state Si at time t, which can be written as

γt(i) = P(qt = Si|o, λ) . (4.98)

Unlike the forward an backward probabilities, which account only for partial
sequences of observations, namely from t = 1 to t, and from t onward to T
respectively, the state occupation probability considers the entire observation
sequence o. Applying Bayes’ rule from equation 4.79, the desired probability
can be written as [6]:

P(qt = Si|o, λ) =
P(qt = Si, o|λ)

P(o|λ) . (4.99)

The denominator can be seen as normalization factor, hence ∑N
i=1 γt(i) = 1.

The numerator can be split into two partial probabilities, namely P(o1, o2, ..., ot, qt =
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Figure 4.17.: Computation scheme for recursion of backward variable βt(i).

Si|λ) and P(ot+1, ot+2, ..., oT, qt = Si|λ), which leads to the following represen-
tation of the state occupation probability [6].

γt(i) =
αt(i)βt(i)

P(o|λ) =
αt(i)βt(i)

∑N
i=1 αt(i)βt(i)

(4.100)

The combination of the forward and backward variable is referred to as the
forward-backward algorithm, which is used to compute the probability of
being in state Si at time t.

Before the iterative re-estimation procedure can be executed, yet another
quantity is necessary to be defined. ζt(i, j) is the probability of the model,
being at state Si at time t and at state Sj at time t + 1, given the sequence and
the model, i.e.:

ζt(i, j) = P(qt = Si, qt+1 = Sj|o, λ) . (4.101)

Figure 4.18 illustrates the computation scheme for ζt(i, j). Assuming time step
t as the current one, a transition from Si to Sj can be interpreted as the joint
event of the forward probability, accounting for the observation sequence
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Figure 4.18.: Computation scheme for joint probability ζt(i, j) of the model, being in Si at t and
in Sj at t + 1 [20].

earlier to t, the backward probability, accounting for the observation sequence
onward to T and ultimately the transition from Si to Sj itself, accounting
the transition probability aij and the produced emission bj(ot+1). ζt(i, j) is
normalized by the total output probability P(o|λ), which has to be evaluated
for the path, that includes the defined transition from Si to Sj, i.e.:

ζt(i, j) =
αt(i)aijbj(ot+1)βt+1(j)

P(o|λ)

=
αt(i)aijbj(ot+1)βt+1(j)

∑N
i=1 ∑N

j=1 αt(i)aijbj(ot+1)βt+1(j)
. (4.102)

Both above defined auxiliary quantities are tensors, where γt(i) is two-
dimensional of size N × T and ζt(i, j) is three-dimensional of size N × N × T.
Excluding the termination step T, a summation over time can be interpreted
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as the expected number of state transitions which yields [20]:

T−1

∑
t=1

γt(i) = Number of transitions from Si ,

T−1

∑
t=1

ζt(i, j) = Number of transitions from Si to Sj .

With the above findings, the re-estimated system parameters can be formulated
as follows. A verbal representation of the equations is added, in order to
facilitate the idea behind them [20]:

π̂i = Probability of being in state Si at time (t = 1)
= γ1(i) , (4.103)

âij =
Number of transitions from Si to Sj

Number of transitions from Si

=
∑T−1

t=1 ζt(i, j)

∑T−1
t=1 γt(i)

, (4.104)

b̂j(k) =
Total visits in Sj when observing Vk

Total visits in Sj

=

∑T
t=1

t:ot=Vk

γt(j)

∑T
t=1 γt(j)

. (4.105)

Where the second argument of the summation in the numerator of equation
4.105, restricts the relevant terms that contribute to the re-estimated emission
probability, to the events, where the considered observation k actually occurred.
In contrast to the transition probability âij that considers transitions between
states, the re-estimate π̂i and b̂j(k) account for visits in the respective states,
which is why the summation includes the termination step T. For the prior
probability π̂i, the visits in states Si can be computed without summation
because it is considered to be in the first time step t = 1. During the course of
the re-estimation procedure, the stochastic constraints of the parameters are
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preserved, i.e,

N

∑
i=1

π̂i = 1 , (4.106)

N

∑
j=1

âij = 1 , 1 ≤ i ≤ N, (4.107)

K

∑
k=1

b̂j(k) = 1 , 1 ≤ j ≤ N. (4.108)

By denoting the re-estimated HMM as λ̂ = (Â, B̂, π̂) and the initial version
as λ = (A, B, π), Baum et.al. proved that the observation sequence o is either
equally, or more likely to be produced by the re-estimated HMM λ̂. They
achieved that by maximizing the auxiliary function Q(λ, λ̂) [20].

Q(λ, λ̂) = ∑
Q

P(q|o, λ) log
(

P(o, q|λ̂
)
) (4.109)

max
λ̂

Q(λ, λ̂) =⇒ P(o|λ̂) ≥ P(o|λ) (4.110)

with respect to equations 4.106 to 4.108. Javier R. Movellan [19] presents a well
structured derivation of this proof. Although the procedure delivers a better
solution with every iteration, it is in fact just a local maximum that is found,
which stresses the necessity of a rather good first guess of λ.

Within this thesis, the EM algorithm is going to be used to train proper HMMs.
As for now, the required input is a training data set o = (o1, o2, ..., oT) and, if
available, a proper guess of the initial model parameters. If the latter is a only
a rough guess, the algorithm will certainly work, however the result will be
a local maximum, whose quality depends on the shape of the maximization
surface. The pseudo code is represents in algorithm 8.

4.3.2. Extension of the Left-Right Hidden Markov Model

As mentioned in the previous section, a rather simple type of HMM is used to
model the deterioration of mechanical components, precisely the degradation
of the secondary vertical damper. That is a left-right HMM, which is sometimes
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Algorithm 3 Solving the learning problem with the EM algorithm
1: function EM-Algorithm(o, aest, best, πest, Iter)
2: for iterations iter from 1 to Iter do
3: create probability arrays α, β, γ, ζ
4: if iter ≤ 1 then
5: a← aest b← best π ← πest
6: else
7: a← â b← b̂ π ← π̂

8: for state i from 1 to N do
9: α[i, 1]← πi · bi(o1)

10: β[i, 1]← 1 . Initialization
11: for time t from 1 to T − 1 do
12: for state j from 1 to N do
13: α[j, t + 1]← ∑N

i=1 α[i, t] · aij · bj(ot+1)] . Forward recursion

14: for time t from T − 1 to 1 do
15: for state i from 1 to N do
16: β[i, t]← ∑N

j=1 aij · bj(ot) · β[j, t + 1] . Backward recursion

17: for time t from 1 to T do
18: for state j from 1 to N do
19: γ[j, t]← α[j,t]·β[j,t]

∑N
i=1 α[i,t]·β[i,t]

20: for time t from 1 to T − 1 do
21: for state i from 1 to N do
22: for state j from 1 to N do
23: ζ[i, j, t]← α[i,t]·aij·bj(ot+1)]·β[j,t]

∑N
i=1 ∑N

j=1 α[i,t]·aij·bj(ot+1)]·β[j,t]

24: for state i from 1 to N do
25: π̂i ← γ[i, 1]
26: for state j from 1 to N do

27: âi,j ← ∑T−1
t=1 ζ[i,j,t]

∑T−1
t=1 γ[i,t]

28: for state j from 1 to N do
29: for observation k from 1 to K do
30: validObs← (o == Vk)

31: b̂j(Vk)← ∑T
t=1(γ[j,t] ◦ validObs)

∑T
t=1 γ[j,t]

32: return λ← (π̂, â, b̂)
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referred to as “Bakis HMM” in literature. Yet another constraint for the state
transitions of the left-right model is, that no state can be skipped, or in
other words, the state transition is only possible to the immediate successor
state. Nevertheless, deterioration can be modeled pretty well, because the
unidirectional, probabilistic propagation through the state-time trellis, is able
to represent any possible non-linearity. However, the HMM as a detection and
prediction tool, will only work properly, if the observed sequence is somewhat
similar to the sequence used for training. Since that can hardly be guaranteed
by a single HMM, Le et.al. [16] introduced the concept of a so called multi-
branch MB-HMM. The idea is, to train separate HMMs for every distinct
deterioration mode that can occur. This enables the modeling of competing
failure modes, which may or may not occur at the same time [16]. Figure 4.19

illustrates the coexistence of several branches. Assuming a MB-HMM with
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Figure 4.19.: Multiple branch, left-right automaton for modeling of coexistent failure modes.
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two branches, one for rapid, the other for slow deterioration. An observed
sequence o will initially be classified in terms of its likeliest branch. The prior
probability Π determines the initial likelihood of every branch, enabelign an
unequal distribution of the different branches. Thereafter, the prediction of
the RUL will be performed through Bayes’ averaging with the constituent
models’ likelihood as weights. An inter-branch state transition is not possible,
however every branch contributes to the final result as follows[16]. Considering
equations 4.79 and 4.78, the model likelihood can be written as

P(λl |o) =
P(o|λl)P(λl)

∑L
l=1

(
P(o|λl)P(λl)

) . (4.111)

Where L ∈N is the total number of coexisting branches. The probability of
the observation sequence, given the model P(o|λl) is determined for every
branch with the forward procedure, described in section 4.3.1. The prior
probability P(λl), is chosen according to the respective deterioration modes’
event risk. Every branch will contribute to the final result, yet the best fitting
model will have the biggest share, considering its relatively higher likelihood.
By providing a representative selection of branches (failure modes), a wide
range of possible observation sequences can be predicted properly. The impact
of number and parameters of the distinct HMMs (branches), as well as the
determination of their likelihood is rather big, which is why at this point
an expert consultation is advisable. Moreover, the prior probability P(λl)
has to be chosen based on experience. The actual RUL calculation will be
discussed in the next chapter, nonetheless its appearance in the Bayesian
model averaging is presented hereafter [10], i.e.:

E(RUL|o) =
L

∑
l=1

E(RUL|λl , o)P(λl |o) . (4.112)

Where E(·) denotes the expected value, which is in this case the overall
RUL given the observation sequence on the left-hand side and the branch
specific RUL, given the model and the observations sequence, on the right-
hand side. The weight for the averaging is P(λl |o), which is calculated with
equation 4.111. An implementation of Bayesian model avaraging is presented
in algorithm 9.
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Algorithm 4 MB-HMM contribution with Bayesian model averaging

1: function BayesianModelAveraging(P(otest|λ), P(λ),RULl
ψ)

2: for branch l from 1 to L do
3: P(λl |otest)← P(otest|λl)·P(λl)

∑L
l=1 P(otest|λl)·P(λl)

4: RULψ ← ∑L
l=1 RULl

ψ · P(λ|otest)

5: return RUL

4.3.3. Solution for the Remaining Useful Lifetime Algorithm

In sections 4.3.1 and 4.3.2, the tools were defined, that are necessary to develop
an algorithm, capable of fulfilling both prognostics requirements, namely the
HS detection and the RUL prediction. Referring to figure 3.4, the HMM
related actions take place in the second and third stage, involving training
and testing. This section presents the complete framework for both of those
actions, together with the used tools and methods. The input data is described
earlier in chapter 4. Figure 4.20 shows the complete procedure from input data
to a RUL statement and points out where the algorithms defined in section
4.3.1 are applied.

Learning and Testing Starting with the training of HMMs, the EM algorithm
(or Baum-Welch) is the first one to be applied, solving the “learning problem”
according to section 4.3.1. It is performed for every data set corresponding to
a different branch, resulting in a set of HMMs λl = (λ1, λ2, ..., λL), each mod-
eling a different deterioration mode. Together they represent the MB-HMM,
which then can be tested with a new, unknown and independent data set.
In doing so, the so called out-of-sample error can be determined, which is
basically a quantity that remains unknown. Usually, only the training data
is labeled, providing the desired output of the model. Testing the MB-HMM
means, processing of measured observations, which in this case are partic-
ularly derived features, classified by a SVM. Therefore the label of the data
has to be determined by the model and can not be validated immediately,
hence the uncertainty of the out-of-sample error. However, if the testing is
performed with simulated data, the actual desired output of the HMM is
known, because the components are conditioned in course of the multi-body
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Figure 4.20.: Framework for RUL estimation with MB-HMM.

81



4.3. Prognostics with Hidden Markov Models 4

simulation. Therefore, the following diagnosis and prognosis step can be
assessed, which will happen at the end of the procedure by comparison of the
“real” output with the estimated output.

Diagnostics Within the diagnostics block, two algorithms are applied, namely
the forward algorithm and the Viterbi algorithm. Since the MB-HMM consists
of different branches, the first step is to determine the likelihood of each
constituent HMM, according to the procedure in section 4.3.2, which is called
the “evaluation problem”. The output is a probability measure that classifies
the applied testing data set in terms of its relation to one of the distinct
branches. After successfully applying the algorithm, the contribution of each
branch to the ultimate output is fixed. Moving on to the next step, the Viterbi
algorithm determines the current HS of each constituent branch, as well as
the most likely state path from t = 1 until the current time step t. The exact
procedure is provided in section 4.3.1 and is also referred to as the “decoding
problem”.

Prognostics This block deals with the estimation of the future evolution of
the HS, which can be seen, in terms of HMMs, as the ongoing propagation
through the state time trellis until the last state SN is reached. Once the
current state Scs is determined by the Viterbi algorithm, the corresponding
time t can be evaluated by counting the number of time steps of the Viterbi
sequence for each state ∆ti for i = 1, ..., cs. From there on out, the prognosis
estimates the future state transitions and counts the time steps ∆ti for i =
cs, ..., N, which are required until the last state is reached. To achieve this, a
statistically representative number of observation sequences Y is produced
with all branches L and with respect to the constituent HMM parameters λl .
Based on the characteristics of those sequences, a statistical statement about
the mean and the standard derivation of the RUL can be made. The generation
of ol

y = (o1
1, o1

2, ..., o1
Y; oL

1 , oL
2 , ..., oL

Y) sequences, can be described in four steps
[20], which are basically called, sampling an HMM:

1. Evaluate the initial state through the prior probability π and set the time
t = 1.

2. Select an observation ot = Vk according to state dependent emission
probability bj(k), given by the emission matrix B. Figure 4.21 illustrates
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the different probability mass functions (PMFs) for the respective state.
Depending on which state the model is in, an observation Vk is picked
with respect to its probability.

3. Go on to the next time step t + 1 and select the new state qt+1 according
to the state transition probability aij provided by A.

4. Repeat step 2) to 4) with t = t + 1 until qt+1 = SN .
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Figure 4.21.: PDF for different states (rows) within the emissions matrix B.

After repeating the above procedure Y times for each branch L, the produced
sequences are analyzed, again by the Viterbi algorithm, producing the likeliest
state sequences q∗y,l = (q∗1,1, q∗2,1, ..., q∗Y,1; q∗1,L, q∗2,L, ..., q∗Y,L). The Viterbi sequence
can slightly differ from the generated sequence, obtained by Rabiner’s pro-
cedure, since Viterbi always takes the most likely way through the model.
Thereafter, these generated Viterbi sequences are analyzed in terms of their
required steps ∆tl

i,y per state i, from the previously determined, current state
Si = Scs, until the last state SN . l denotes the branch and y the generated
sequence. The number of time steps within the current state are considered
as well, i.e. the predicted number of steps for Scs is decreased by the pre-
viously determined amount. This detail is shown in algorithm 10, however
the theoretical mathematics consider ∆tl

i,y to count exactly from the current
step, until the transition to SN . This quantity is also known as the RUL. A
separate statistical evaluation of all sequences from the different branches e.g.
q∗y=1,l=1(t) = (q∗1,1(t = 1), q∗1,1(t = 2), ..., q∗1,1(t = T)), ∀y , delivers an expected
value RULl

µ as well as an upper and a lower bound for each branch. These
statistical quantities are evaluated for each state separately, which yields in
the RUL per branch and state as RULl

µ,i. This applies to the bounds as well,
which are defined as the standard derivation S(·) of the above evaluation,
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i.e.:

RULl
µ,i = E

(
∆tl

i,y
)
, 1 ≤ y ≤ Y ∀i, l (4.113)

RULl
upper,i = E

(
∆tl

i,y
)
+ S
(
∆tl

i,y
)
, 1 ≤ y ≤ Y ∀i, l (4.114)

RULl
lower,i = E

(
∆tl

i,y
)
− S
(
∆tl

i,y
)
, 1 ≤ y ≤ Y ∀i, l (4.115)

By executing the above equations for all states and branches, the obtained
result in a matrix for each of the three quantities, where the rows correspond
to the branches and the columns to the states of the MB-HMM. Each row
contains the estimated number of steps per state, or the upper and lower
bound respectively. Hence, those matrices are of size L× N and index ψ is
either µ, upper or lower, as follows:

ˆRULψ =


RUL1

ψ,1 RUL1
ψ,2 . . . RUL1

ψ,N
RUL2

ψ,1 RUL2
ψ,2 . . . RUL2

ψ,N
...

...
. . .

...
RULL

ψ,1 RULL
ψ,2 . . . RULL

ψ,N

 . (4.116)

Thereafter, the RUL statement with the contribution from every branch can be
computed by applying Bayesian model averaging from equation 4.112. This
operation results in a row vector of size 1× N, providing the time steps, or
RUL for each state as

RULψ =
[
RULψ,1 RULψ,2 . . . RULψ,N

]
, (4.117)

where the index ψ is again either µ, upper or lower, representing the mean or
the respective confidence bounds. Given the scenario that the Viterbi algorithm
would detect the third state as current state when analyzing an arbitrary test
sequence, the above described procedure would just deliver 0 as results for
the first two states and some RUL > 0 for the remaining ones. To obtain a
quantity for the overall RUL, the above equation 4.117 is summed up, i.e.:

RULψ =
N

∑
i=1

RULψ,i . (4.118)

The pseudo code in algorithm 10 is supposed to give a better understanding
of the framework. Among the above defined algorithms 6 to 9, a sampling
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function from the Matlab library, called “hmmgenerate”, is used for point (a)
from the prognostics block in figure 4.20. It should be kept in mind, that the
number of branches L, number of states N, number of observations K and
length of the sequences T are considered to be known or chosen at this point.
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Algorithm 5 RUL
1: procedure RUL-Estimate(otrain,otest,aest,best,πest,Iter)
2: for branch l from 1 to L do
3: function EM-Algorithm(ol

train,aest,best,πest,Iter)
4: return λl ← (π̂,â,b̂)
5: function Forward-Algorithm(otest, λl)
6: return P(otest|λl)

7: function Viterbi-Algorithm(otest, λl)
8: return q∗

9: currentState← q∗[end]
10: numCurrentState← length( f ind(q∗ == currentState))
11: numPreviousStates← length(q∗)
12: function HmmGenerate(λl)
13: return ogen]

14: function Viterbi-Algorithm(ogen, λl)
15: return q∗

16: create time step matrix ∆t
17: create RUL matrices RULµ,RULupper,RULlower
18: for gen y from 1 to Y do
19: for state i f ind from 1 to N do
20: ∆t[y, i f ind]← f ind(q∗[y] == i f ind, last sample)
21: ∆t← ∆t[:, currentState : N − 1]
22: ∆t[:, currentState]− numPreviousStates
23: for j from 1 to N do
24: RULl

µ[j]← mean(∆t[:, j])
25: RULl

upper[j]← mean(∆t[:, j] + std(∆t[:, j])
26: RULl

lower[j]← mean(∆t[:, j]− std(∆t[:, j])
27: function BayesianModelAveraging(P(otest|λl),P(λl),RULl

µ,RULl
upper,RULl

lower)
28: return RULµ,RULupper,RULlower

29: RULµ ← ∑N
j=1 RULµ[j]

30: RULupper ← ∑N
j=1 RULupper[j]

31: RULlower ← ∑N
j=1 RULlower[j]

32: return RULµ, RULupper, RULlower

86



5. Results

A lot of different tools and methods for condition prediction of mechanical
components of railway vehicles have been presented within this thesis. As
already mentioned in chapter 3, the data driven approach for prognosis
concepts can be applied to most of the vehicles components. Nevertheless,
the input data as well as the parameter selection of the statistical models
are different, which is why the derived algorithm is going to be applied to
a specific component, namely the secondary vertical damper, on the right
side of the leading bogie. Figure 3.4 provides a detailed overview of what the
exact course of action was. Having said, that the wealth of results through
the entire procedure is extraordinary large, the presented results have to be
carefully selected, in order to provide a good impression of what was actually
achieved, without overloading this chapter. Thus the results are limited to the
most significant findings.

• The equation of motion by a multi-body simulation

– Frequency response analysis
– Track curvature and related, filtered system response

• Mapping of the health condition onto acceleration signals by SVM

– Trained classificator with three predictors, illustrated by the hyper-
plane for all considered filters

– Performance of SVM for selected filter on independent data

• Prediction of the RUL by MB-HMM

– State and observation sequences of trained HMMs for different
branches

– State and observation sequence of test data sets
– RUL expressed as the equivalent remaining useful mileage
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5.1. The Equation of Motion by a Multi-Body
Simulation

Relating to the description in section 4.1, the required inputs for the multi-body
simulation are vehicle and track parameter settings. The vehicle is configured
as a generic commuter train, based on data sheets from SIEMENS. Basically all
of the defined parameters are constant within each iteration of the simulation.
However, in order to represent the deterioration of the damper, its damping
rate is decreased between iterations. Eleven steps à 10% are combined with
eleven different, randomly chosen revenue loads. These are drawn from a
gamma distribution and cause a significant noise in the system response. For
all those 121 simulations, the same track is loaded, which covers a distance
of 40km. The output is an object, that contains statistical quantities like the
standard derivation and the mean, together with the simulation’s meta data,
like the velocity, track parameters and vehicle parameters. Most important of
all, the output file contains the corresponding damper condition, which is in
fact considered to be its HS. The output sample rate is 1 sample per 100m of
track, hence for the considered track, every stored quantity is a vector of size
400× 1.

A practicable way of managing the rather big collection of equations in section
4.1, is to define them as symbolic variables within Matlab, using the “symbolic
math toolbox”. After the variables are brought into the desired matrix form,
they are converted to a stand alone function by “matlabFunction”. Thereafter
able to be called with a specific set of parameters, the stand alone function
delivers the system matrices in the desired form. Ultimately, a linear state-
space model object is created with “ss” and solved with “lsim”.

Frequency Response Analysis

The common way to validate the output of a model, is to simulate with certain
parameters, were the right result is known. For a railway vehicle with four axis,
two bogies and a car body, this validation is performed through a frequency
response analysis. The vertical transfer function G =

zCar Body
zTrack

, that links the
position of the track with the CoG of the car body, has certain qualitative
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characteristics, which are commonly known. Hence, if the calculated transfer
function and its knowingly true result are alike, the model is considered to
deliver reasonable results. The reference transfer function is taken from Haiger-
moser [9], who presents its result, evaluated at excitation frequencies from 0 to
10Hz, which can be interpreted as the vehicle, driving with increasing speed
over a periodic excitation. It appears to have an extinction, or a significant
reduction of the signal at 2, 6 and 10Hz. For low frequencies < 1Hz the car
body follows the movement of the excitation with a slight amplification. Figure

Figure 5.1.: Transfer function of the vertical positions from car body and track excitation,
evaluated for frequencies from 0 to 10Hz with a sinusodial excitation

5.1 shows the vertical transfer function for the multi-body simulation, which
is generated using a sinusodial excitation in order to create a solution, which
is comparable with the reference function. The frequency range is discretized
and the response for each frequency evaluated numerically. Thereafter the
standard derivation of the signal, corresponding to each discrete frequency is
used to derive the transfer function G. The turquoise line is the response of
the model, evaluated at its nominal condition. The black line represents the
corresponds to a degraded, or even broken secondary vertical damper, which
is the actual quantity that is targeted by the parameter variation. Firstly, the
characteristics of the transfer function are similar to the reference function,
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which suggests a reasonable simulation model. Secondly, the difference of
the vertical system response in case of a broken component is illustrated.
However, the signal is not easy to distinguish, if the track excitation is not
a perfectly smooth sinus. Therefore, the subsequently performed statistical
models account more than just two feature values, that better represent any
anomaly in the system response.

Track Curvature and System Response

An interesting feature of this efficient simulation, is its ability to compute
lateral accelerations, induced by the track curvature. The centrifugal accelera-
tion was simplified by means of neglecting the decreasing impact of gravity.
Results show that curvature has a significant impact on the vehicle dynamics.
The above simplification can be argued by the rather small rolling angles
χ. The black line represents the curvature in [m−1], the turquoise line is the

Figure 5.2.: Curvature and corresponding lateral system response with an applied low-pass
filter

lateral system response of the car body in [m/s2], evaluated just above the
leading bogie on the roll axis. The x-axis shows the time of one iteration of
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the simulation, which again corresponds to about 40km of track. The signal
was prepared with a low-pass filter, in order to see the slow response to the
curve and get rid of the high frequency noise. A positive curvature indicates
a right turn and results in a negative peak (to the left of the vehicle) of the
lateral acceleration and vice versa. This is how the cornering was accounted
within the Matlab model.

5.2. Mapping of the Health Condition onto Acceleration
Signals by Support Vector Machines

The procedure described in section 4.2, forms a hyperplane within a feature
space, built of a combination of three representative features. The selected
number and type of features, depends on the considered component and
is done by sequential feature selection according to section 3.3.2. The result
of the feature selection showed, that an increased number of features (> 3)
actually does deliver better results, however the improvement is marginal.
This observation and the fact that a visual interpretation is required, supports
the decision of only three combined features.

Trained SVM

The SVM is trained with the previously simulated and labeled (in terms of
healthy and faulty) data set, with a linear kernel. A kernel transformation is
not necessary, because the processed data is basically linearly separable in
the input space. Nevertheless, a few outliers are part of the data, which are
penalized by the SVM. Figure 5.3 shows the resulting hyperplane, that best
separates the healthy (green samples) from the faulty (red samples) data points.
In that case, healthy means 100% damping rate, faulty 0% respectively. Prior
to the learning procedure, the complete data set is filtered with a band-pass
filter of various settings, whose upper and lower frequencies are determined
based on experience of the bogie analytics group at SIEMENS. For each filter
setting a SVM was trained, which leads to a total of 10 SVMs for the same
data set, but with varying filter settings. Figure 5.3 illustrates the selected
SVM with the best generalization, hence the best classification performance
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Figure 5.3.: Hyperplane of a two class SVM with three predictors (features), trained to classify
a secondary vertical damper of railway vehicles

on test data. This model selection is made by a visual interpretation of the
score1 PMFs for all filter settings. Assuming the PMFs for healthy and faulty
data points would overlap, it would not be possible to distinguish between
classes based on the score or posterior probability, which is considered to be
the output of SVMs. Whereas a distribution with two local maxima, each of
them corresponding to one of the two classes, indicates that the SVM nicely
generalizes. Hence, the selected filter setting corresponds to the model, with
the largest distance between the two maxima of the score PMF. Figure 5.4
shows the score PMF of the selected model. The two separated maxima for
healthy and faulty data points are most distinctive for a band-pass filter with
a centered frequency band. This model is now used to label the intermediate
conditions2 of the damper to a corresponding score, or posterior probability
measure.

1Quantity whose sign indicates the class (healthy, faulty) and magnitude the distance to
the plane(see section 4.2)

2Labels between 100% and 0% damping.
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Figure 5.4.: Score PMF of the SVM with the selected filter settings (center frequency band)

Tested SVM

Following through the machine learning diagram form section 3.2, the next
step is testing. Now that the hyperplane is fixed, data, corresponding to the
intermediate conditions is tested, which results in a mapping of the health
condition3 to the SVMs output. According to the discussion in section 4.2.2, the
output of the SVM will now be presented as the posterior probability, rather
than the score. Figure 5.5 illustrates the computed output of the selected SVM,
for the labeled input data. Those eleven subplots are PMFs for the posterior
probability, whose value is within the interval [0, 1]. Obviously the model can
distinguish between healthy and faulty. The posterior probability of the better
part of data samples corresponding to a healthy (100% to 70%) or a faulty
(0% to 30%) damper, is either 0 for healthy, or 1 for faulty. However, it has its
difficulties to distinguish between the constituent healthy, average or faulty
data sets, because their posterior probability outputs look very much alike.
Nonetheless, a tendency is certainly identifiable, which makes the posterior
probability a one-dimensional quantity that correlates to the components
health condition. Each one of these eleven subplots, belongs to a sequence

3Health condition is determined by the parameter damping rate, which is iterative de-
creased throughout the multi-body simulation
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Figure 5.5.: Posterior probability computed by the selected SVM for the intermediate damper
conditions.

of posterior probabilities that represents a distinct health condition. Those
sequences are now concatenated according to section 4.2.3. Additionally,
a sequence of the same length is produced, that consists of the HS that
corresponds to the respective observation. Both of those sequences represent a
labeled data set, which is used in the last phase, to train and test the HMM.

5.3. Prediction of the Remaining Useful Lifetime by
Multi-Branch Hidden Markov Models

The MB-HMM consists of a certain number of distinct branches, each of
them modeling a different failure mode. This approach only makes sense
for rather diverse deterioration modes, therefore not every possible failure,
which probably has a similar deterioration behavior, has to be modeled
separately. A number of three distinct branches is chosen in order to provide
one model for rapid deterioration, one for the average and another one
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for slow and steady degradation. Each of those separate HMMs has seven
distinct states, and ten distinct observations. As described in section 4.3,
the basic HMM can only process discrete observations, i.e. the continuously
provided posterior probability, has to be discretized in order to work with
the algorithms. The number of states is determined by a parameter study,
were the same sequences have been used for prognosis. Their results show,
that to less states fail to predict the RUL, because the last state is reached
way to early. Considering the damper to be broken as soon as the last state is
reached, HMMs with less than seven states underestimated the RUL, because
too much of the entire observation sequence corresponds to the broken state.
The upper bound for the number of states is certainly hard to tell, however, too
many states tend to overestimate the RUL, which is basically the more critical
error. Therefore, not more than the necessary seven states were chosen. The
number of distinct observations on the other hand, has a less significant impact
on the models output. The reason for that, is the distribution of posterior
probabilities for the constituent HS. Figure 5.5 points out, that a healthy
condition produces observations somewhat close to zero, faulty condition
close to one and the intermediate conditions have almost uniformly distributed
observations. Hence, a more precise discretized observation sequence does
not really change anything, unless it has an order of 103 or higher, which
will certainly lead to a loss of computational performance because the system
matrices are huge. Last of all, parameters for testing, which is an assessment
of the model in terms of its out-of-sample error, are determined. The iterative
procedure of providing partial segments of the testing sequence is described
in section 3.4. The number of iterations actually determine how often the RUL
is estimated throughout the lifetime. Hence, more iterations deliver a better
resolution of the final result. A practicable tradeoff between computation
time and resolution is reached with 20 iterations. Therefore, the synthetic test
sequence is split into 1

20 segments of increasing length. The relevant parameter
setting for MB-HMM training and testing are summed up as follows.

• Training parameters

– Number of branches: L = 3
– Number of distinct states: N = 7
– Number of distinct observations: M = 10

• Testing parameters
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– Prior probability of the branches Πl =
1
3 , ∀l

– Tested synthetic sequences: J = 3
– Iterations for partially provided test sequences: iTest = 20

Training of an MB-HMM

Three representative training sequences are produced, in order to model rapid,
average and slow deterioration. Those three sequences, represent the branches
of the MB-HMM. The assumed average mileage until the EoL is chosen based
on the current maximum mileage during which a damper operates. 1.6 million
kilometers are selected as average, 1.0 million as rapid and 2.1 million as slow
deterioration. Figure 5.6 shows the state sequences, which correspond to
the observation sequences, based on which the HMMs for the respective
branches are trained. Section 4.2.3 describes how exactly those sequences are

Figure 5.6.: Sequence of states for three branches.

derived in terms of their length and composition. The state composition4 is

4Determins how many samples correspond the each HS
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derived from a Poisson distribution, the length from a normal distribution.
However, the selected models where chosen to represent average, lower and
upper deterioration modes. All three of them contribute to the estimated
value of the RUL, weighted by their likelihood, as described in section 4.3.3.
Matlab offers a bunch of functions for standard HMMs, which where used
to derive the branches. “hmmestimate” delivers the model with its system
parameters λ = (A, B, π). The mechanical deterioration is modeled with a
straight left-right HMM, hence the states are not permitted to decrease.

Test Sequences of an MB-HMM

The testing sequences are derived in the exact same manner as the training
data. Figure 5.7 shows three testing sequences that are used to assess the
MB-HMM later on. Note that the illustrated sequences are actually not the

Figure 5.7.: Sequence of states for testing data and training data.

data, that is applied to the MB-HMM. They are only the corresponding state
sequences, that are known because the data is generated synthetically. The
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actual model uses the observations, represented by the posterior probability to
estimate the state sequence. In section 5.3 these estimates are compared with
the knowingly true state sequence, providing an out-of-sample error for the
MB-HMM. Nonetheless, the shown state sequences illustrate the difference
between the training and the testing data. They were selected in order to assess
the MB-HMMs performance on differently degrading dampers. Therefore,
three test sequences are derived, each of them representing one of the three
branches, rapid, average and slow.

Assessment of Model Quality

The purpose the algorithm is to produce a statement about the RUL. Since
the origin of the investigated data is a simulation, the complete data set
is labeled. In other words, each produced sequence of observations has a
corresponding sequence of states. In reality, a monitoring system provides only
observation sequences, which are applied to the MB-HMM, whose objective
is to determine the RUL. For the processing of simulated data, the desired
output of the MB-HMM is known at any time, which enables an assessment
of the output. The algorithm is applied with a sequence of observations which
is iterative growing in length, where every iteration provides 1

20 more of
the entire sequence then the previous one. Figure 5.8 shows the iterative
estimates of the three testing sequences from section 5.3. The turquoise line is
the MB-HMMs output, which is the estimated value of the RUL according to
equation 4.118, converted into a corresponding mileage value and evaluated
at each iteration. The light grey lines are the confidence bounds, within
which the true value should be with a likelihood of approximately 68%, i.e.
the bound is determined by the standard derivation of the RUL according
to equations 4.114 and 4.115. The black line illustrates the true RUL value,
which is as already mentioned, known because the underlying testing data
is synthetically generated. It is a linear curve, because the tested observation
sequence is iterative increased in length, by a constant of one twentieth of the
entire sequence. The small numbers, next to the data points that belong to
each one of those iterations, indicate the most likely branch of the MB-HMM,
which therefore has the biggest influence upon the respective RUL statement.
The mapping of the numbers to the branches is as follows:

98



5.3. Prediction of the Remaining Useful Lifetime by Multi-Branch Hidden Markov
Models

5

Figure 5.8.: RUL estimation for three different testing sequences, which represent either average,
rapid or slow deterioration of the damper.
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1. Rapid deterioration
2. Average deterioration
3. Slow deterioration

The first subplot shows the prognosis of an average degrading damper. Not
surprisingly, the most likely branch is #2, because this HMM was trained
with the average sequence. The models “best guess” is actually very precise,
however the confidence bounds are rather big. The second subplot illustrates
an estimation of a slowly degrading damper. Equal to the average degrading
sequence, the most likely branch is always #3, which is the branch that was
trained with the slowly degrading observation sequence. The MB-HMM has
a rather hard time predicting the RUL of the rapidly degrading sequence,
illustrated in the third subplot. Until about 80% of the total mileage is reached,
it overestimates the true RUL significantly. Obviously the most likely branch
changes several times throughout the lifetime. Only about one third of the
iterations are calculated with the “right” model #1. Approaching the EoL,
is hops back to the rapid deterioration branch, decreasing the models error.
This kind of behavior is expected when different failure modes occur at
the same time. However, the generated test sequence only represents one
failure mode, i.e. the MB-HMM parameters have to be optimized in order to
guarantee a better prediction of rapid deterioration. Although the model does
not always deliver the right RUL, the true value lies within the confidence
bounds at every iteration. It is basically a matter of model optimization, that
can improve the result in terms of smaller confidence bound and a better
estimate. Generally, the MB-HMM seems to be a promising method to predict
the RUL of component, whose deterioration behavior is non-linear. Still, it is
a data driven method, hence strongly dependent on the quality of data.
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In course of this thesis, an improved maintenance strategy is identified as
one of the major benefits of digitization in railway industry. A sophisticated
utilization of hardware and software, that comes with a so called “digital
train”, enables enormous potential for improvement. Besides other aspects,
like increased safety or advanced possibilities within the development process,
the condition based maintenance (CBM) strategy, builds upon smart concepts
of big data handling. Provided by an on-board monitoring system of the
digital train, a huge amount of data is collected, that needs proper treatment
in order to make the whole system profitable. The processing of such data
with the objective of condition prediction of mechanical components, is focus
of this thesis.

A comparison of data driven and model based approaches leads to the se-
lection of a machine learning method. Its advanced abilities in modeling
non-linear and complex systems make them a perfect choice for the presented
problem of health condition prediction. The discussion of fundamentals of
machine learning shows the basic procedure, that leads to a successful imple-
mentation of such a statistical model. It includes the two substantial phases,
learning and testing. The application condition prediction of mechanical
components requires a method from the field of supervised learning.

Based on an extensive literature research as well as on expert counsel, hidden
Markov models (HMMs) are chosen to be implemented. Since they are able to
model stochastic processes resolved over time, a continuous deterioration of
mechanical components, even of non-linear character, is represented very well.
An HMM basically consists of a finite number of distinct states, which are
usually unknown. Each constituent state emits one observation, out of a cer-
tain number of distinct observations. Based on the analysis of the observation,
the state from which it is emitted can be determined in a probabilistic way. By
analyzing not only one, but an entire chain of observations, which are emitted
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within a certain time, the corresponding chain of states can be determined.
Within that process both, the emission of a certain observation and the tran-
sition from one state to another, are modeled with probability distributions.
The HMM represents a sequence of several two staged, stochastic events,
which are linked with probabilities. For the use case condition prediction,
the states represent the components health states (HSs) and the observations
are certain features, that are requested to be most informative. An additional
functionality is added to the HMM by training three models with diverse data
sets. Each of them, representing either a rapid, average or slow deterioration
mode of the analyzed component. The output of the so called multi-branch
hidden Markov model (MB-HMM), is produced by means of Bayesian model
averaging, allowing every single trained branch to contribute to the final result.
Thereby the respective contributions are weighted by the likelihood of the
branch. However, the basic version of each constituent HMM can only handle
one-dimensional observations. A reasonable analysis of the components health
condition is hardly possible with only one quantity. To tackle that problem,
a classifier is used, that is supposed to obtain a one-dimensional measure
that correlates well to the HS. Due to its outstanding ability of generalizing, a
support vector machine (SVM) is chosen to be that classifier.

A SVM models mutual dependencies from certain statistical quantities and
assigns the corresponding data set to a certain class. That way, a combination
of several statistical quantities is converted to the desired one-dimensional
observations. The SVM delivers a likelihood for each sample of the applied
data set, of being produced by a faulty component. Hence, the SVMs output
is a quantification of the components HS, which is then further processed by
the MB-HMM.

Both of those, sub-sequentially performing statistical models are implemented,
which is done by following through the above mentioned phases of ma-
chine learning. Therefore, the first step is to learn the models. Either one
of them requires data from both, healthy and faulty components, without
which supervised learning is certainly not feasible. This data is acquired by a
multi-body simulation, which is executed with varying vehicle parameter sets.
It is a linearized, three-dimensional state-space model of a railway vehicle,
represented by its main components, namely the car body, two bogies and
four wheel sets. It accounts for a linearized wheel rail contact, position and
level of the track as well as curvature. The parameter variation is realized
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through an iterative approach, where the parameter of the considered com-
ponent is reduced step-by-step, simulating its deterioration. The produced
sequences represent the entire lifetime of the component, assuming its HS
evolution is Poisson distributed and the end of life (EoL) mileage is normal
distributed. The parameter set for both of those distributions depend on the
considered component, which is why from this point on, the procedure is
specifically performed, only for the secondary vertical damper. Its parameter
set is determined, based on expert knowledge and component tests. The basic
approach for the condition prediction is similar for almost any component on
the vehicle, however the data acquisition is not. Therefore, the simulation will
only represent the degradation of one single component, which in this case
is the secondary vertical damper. In conclusion, to successfully implement
a condition prediction by basic MB-HMMs, a one-dimensional and labeled
data set is required. This data set is synthetically generated by a multi-body
simulation and thereafter classified by a SVM, whose output is a probability
measure that indicates the components health.

The second phase is testing, where the learned models are applied with
completely new, independent and unlabeled data, which is again generated
by the multi-body simulation. In doing so, the SVM delivers a mapping of a
three-dimensional feature data set to its corresponding health condition. After
an appropriate pre-processing, which is first and foremost the application
of a band-pass filter, a data set is being present, that consists of a sequence
of HSs and another one of the observable likelihood of faultiness. The latter
is applied to the MB-HMM, which detects the current health situation and
predicts the most likely further propagation until the EoL. This procedure is
repeatedly executed for every branch, increasing the length of the provided
input data after each iteration. The output is a quantity that represents the
time or mileage which is left, until the damper eventually brakes down. This
quantity is also referred to as the remaining useful lifetime (RUL) and is
produced by means of Bayesian averaging of all constituent branches. The
applied data has a corresponding sequence of HSs, which is used for an
assessment of the MB-HMM’s performance.

The MB-HMM is tested with three different training sequences, with the
objective of a selective assessment of the three deterioration branches rapid,
average and slow. Therefore, each of these training sequences is chosen to
be similar to one of the constituent branches. The results show, that the
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performance of the MB-HMM is certainly acceptable, given that the RUL
lies always between the conference bounds of the estimate. The model does
a great job on average and slowly degrading dampers, however the rapid
deterioration does not work out perfectly. At least, not until about 80% of
the entire sequence is provided. This behavior is traced back to the nature
of the algorithm that computes the most likely branch, which is the one
that contributes most. Apparently, this selection does not work properly for
the rapid deterioration. The algorithm compares the HMMs by means of
their posterior probability, a measure, that quantifies the likelihood of an
observation to be produced by the model. A practicable way of determining
the best model, however it neither accounts the previously made decisions,
nor has it any functionality that relates to a physical interpretation of e.g. a
change in the deterioration branch. There are many possibilities of improving
the MB-HMM, in order to optimize the estimation for all desired deterioration
modes. A structured conditioning of the model parameters is a quick way,
whereas an upgrade to a so called continuous HMM, or a hidden semi Markov
model (HSMM) represents the extensive improvements. The continuous HMM
is capable of processing continuously, rather than discrete distributed, real
valued observations. Hence its not restricted to a finite set of observations,
which actually is a more accurate representation of the reality, considering
the inputs are provided by a monitoring system i.e. certainly not discrete.
The term HSMM can frequently be found in literature and is referring to a
different modeling of the state sojourn time, which enables a more precise
adaption to the use case, that the HSMM is trained for. Yet another expansion
of the basic HMM is the consideration of more than one emitted observation
per state, which would make the classification by SVM obsolete. All of those
proposed upgrades build upon the basic algorithms, presented in this thesis.
However, they certainly require implementation of adjustments.

Although many assumptions have been made throughout the development
process of the RUL algorithm, its performance on synthetic data provides
very promising results. Testing the statistical models with real, rather than
simulated data, is certainly way more challenging. Additional non-linear phe-
nomena occur and make it even harder, to detect certain anomalies. However,
the already largely acceptable MB-HMM, offers several improvements, which
can optimize its output and even make it a considerable method for predicting
real data.
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Appendix A.

The State Space Model

A.1. An Example of the Newton Euler Procedure

The procedure according to Newton Euler, which is applied to the model
of a complete railway vehicle in section 4.1.3, is exemplary performed on
a simplified vehicle, represented by a double oscillator, in order to provide
details to the approach. Give a two mass system with two DoF according to
A.1. For this simplified vehicle model, equations 4.3 and 4.4 yield [14]:

m1z̈1 + d1ż1 − d1ż2 + c1z1 − c1z2 = 0 , (A.1)
m2z̈2 + (d1 + d2)ż2 − d1ż1 + (c1 + c2)z2 − c1z1 = d2u̇z + c2uz , (A.2)

which can easily be rearranged into matrix form, i.e.:[
m1 0
0 m2

] [
z̈1
z̈2

]
+

[
d1 −d1
−d1 d1 + d2

] [
ż1
ż2

]
+

[
c1 −c1
−c1 c1 + c2

] [
z1
z2

]
=

[
0 0
c2 d2

] [
uz
u̇z

]
,

or in a more compact form as:

Mz̈ + Dż + Cz = Uu , (A.3)

with the mass matrix M, damping matrix D, stiffness matrix C and excitation
matrix B. As described in section 4.1.4, to solve the system of equations
conveniently, a state-space transformation is necessary. The system of two
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d1

d2

c2

c1

m1

m2

z1

z2

uz

Figure A.1.: Simplified vehicle model, represented by a double oscillator with two DoF.

second order differential equations A.3, is converted into a system of four
differential equations of first order, i.e. with

y =


z1
z2
ż1
ż2

 , ẏ =


ż1
ż2
z̈1
z̈2

 and ū =


0
0
u̇z
uz
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the new system can be written in the following form [14]:
1 0 0 0
0 1 0 0
0 0 m1 0
0 0 0 m2




ż1
ż2
z̈1
z̈2

+


0 0 −1 0
0 0 0 −1

c1 + c2 −c2 d1 + d2 −d2
−c2 c2 −d2 d2




z1
z2
ż1
ż2

 =

=


0 0 0 0
0 0 0 0
0 0 0 0
0 0 c2 d2




0
0
uz
u̇z

 ,

or in a more compact form as:

M̄ẏ + C̄y = Ūū . (A.4)

The above equation rearranged yields the desired form, in order to solve the
equation system numerically:

ẏ = −M̄−1C̄y + M̄−1Ūū
ẏ = Ay + Bū . (A.5)

With A and B defined as:

A =


0 0 1 0
0 0 0 1

− c1+c2
m1

c2
m1

− d1+d2
m1

d2
m1

c2
m2

− c2
m2

d2
m2

− d2
m2

 and B =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 c2

m2

d2
m2

 (A.6)

In the same manner, systems of any complexity can be solved. Several numeri-
cal solvers, implemented in various commercial software packages can handle
this type of equation system.

A.2. Details to the Connection Equations

In chapter 4, connection forces and torques were introduced, which are re-
sponsible for the transmission of motion through the multi-body system. To
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exemplary show an entry of the connection force or torque for one coordinate,
they have to be dissolved. The following equations are the results of the vector
equations 4.15 to 4.18

Fckij =

Fcxkij
Fcykij
Fczkij

 =

cxkij 0 0
0 cykij 0
0 0 czkij

 ·
xK̂ − xK + (ϕK̂lz,K̂,kij − αK̂ly,K̂,kij)−

yK̂ − yK + (αK̂lx,K̂,kij − χK̂lz,K̂,kij)−
zK̂ − zK + (χK̂ly,K̂,kij − ϕK̂lx,K̂,kij)−

− (ϕKlz,K,kij − αKly,K,kij)
− (αKlz,K,kij − χKlz,K,kij)
− (χKly,K,kij − ϕKlx,K,kij)

 (A.7)

Fdkij =

Fdxkij
Fdykij
Fdzkij

 =

dxI1 0 0
0 dyI1 0
0 0 dzI1

 ·
ẋK̂ − ẋK + (ϕ̇K̂lz,K̂,kij − α̇K̂ly,K̂,kij)−

ẏK̂ − ẏK + (α̇K̂lx,K̂,kij − χ̇K̂lz,K̂,kij)−
żK̂ − żK + (χ̇K̂ly,K̂,kij − ϕ̇K̂lx,K̂,kij)−

− (ϕ̇Klz,K,kij − α̇Kly,K,kij)
− (α̇Klz,K,kij − χ̇Klz,K,kij)
− (χ̇Kly,K,kij − ϕ̇Klx,K,kij)

 (A.8)
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Mckij =

Mcxkij
Mcykij
Mczkij

 =

lx,K,kij
ly,K,kij
lz,K,kij

×
Fcxkij

Fcykij
Fczkij

 =

 ly,K,kijczkij
(
zK̂ − zK+

lz,K,kijcxkij
(
xK̂ − xK+

lx,K,kijcykij
(
yK̂ − yK+

+ (χK̂ly,K̂,kij − ϕK̂lx,K̂,kij)− (χKly,K,kij − ϕKlx,K,kij)
)
−

+ (ϕK̂lz,K̂,kij − αK̂ly,K̂,kij)− (ϕKlz,K,kij − αKly,K,kij)
)
−

+ (αK̂lx,K̂,kij − χK̂lz,K̂,kij)− (αKlz,K,kij − χKlz,K,kij)
)
−

− lz,K,kijcykij
(
yK̂ − yK + (αK̂lx,K̂,kij − χK̂lz,K̂,kij)−

− lx,K,kijczkij
(
zK̂ − zK + (χK̂ly,K̂,kij − ϕK̂lx,K̂,kij)−

− ly,K,kijcxkij
(
xK̂ − xK + (ϕK̂lz,K̂,kij − αK̂ly,K̂,kij)−

− (αKlz,K,kij − χKlz,K,kij)
)

− (χKly,K,kij − ϕKlx,K,kij)
)

− (ϕKlz,K,kij − αKly,K,kij)
)
 (A.9)

Mdkij =

Mdxkij
Mdykij
Mdzkij

 =

lx,K,kij
ly,K,kij
lz,K,kij

×
Fdxkij

Fdykij
Fdzkij

 =

 ly,K,kijdzkij
(
żK̂ − żK+

lz,K,kijdxkij
(
ẋK̂ − ẋK+

lx,K,kijdykij
(
ẏK̂ − ẏK+

+ (χ̇K̂ly,K̂,kij − ϕ̇K̂lx,K̂,kij)− (χ̇Kly,K,kij − ϕ̇Klx,K,kij)
)
−

+ (ϕ̇K̂lz,K̂,kij − α̇K̂ly,K̂,kij)− (ϕ̇Klz,K,kij − α̇Kly,K,kij)
)
−

+ (α̇K̂lx,K̂,kij − χ̇K̂lz,K̂,kij)− (α̇Klz,K,kij − χ̇Klz,K,kij)
)
−

− lz,K,kijdykij
(
ẏK̂ − ẏK + (α̇K̂lx,K̂,kij − χ̇K̂lz,K̂,kij)−

− lx,K,kijdzkij
(
żK̂ − żK + (χ̇K̂ly,K̂,kij − ϕ̇K̂lx,K̂,kij)−

− ly,K,kijdxkij
(
ẋK̂ − ẋK + (ϕ̇K̂lz,K̂,kij − α̇K̂ly,K̂,kij)−

− (α̇Klz,K,kij − χ̇Klz,K,kij)
)

− (χ̇Kly,K,kij − ϕ̇Klx,K,kij)
)

− (ϕ̇Klz,K,kij − α̇Kly,K,kij)
)
 (A.10)
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Pseudo Code

This section provides a conclusion of the pseudo code for the framework pre-
sented in section 4.3.3. It consists of the following HMM related algorithms

• Forward algorithm
• Viterbi algorithm
• EM algorithm (Baum-Welch algorithm)
• Bayesian model averaging
• Complete RUL procedure

Algorithm 6 Solving the evaluation problem with the forward algorithm
1: function Forward-Algorithm(o, λ)
2: create a forward probability matrix α
3: for state i from 1 to N do
4: α[i, 1]← πi · bi(o1) . Initialization
5: for time t from 1 to T − 1 do
6: for state j from 1 to N do
7: α[j, t + 1]← ∑N

i=1 α[i, t] · aij · bj(ot+1) . Recursion

8: α[N, T]← ∑N
i=1 α[i, T] · aiN . Termination

9: return α[N, T]
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Algorithm 7 Solving the decoding problem with the Viterbi algorithm
1: function Viterbi-Algorithm(o, λ)
2: create a path probability matrix δ
3: create backtracking matrix ψ
4: create most likely state path q∗

5: for state i from 1 to N do
6: δ[i, 1]← πi · bi(o1) . Initialization
7: ψ[i, 1]← 0
8: for time t from 1 to T − 1 do
9: for state j from 1 to N do

10: δ[j, t + 1]← maxN
i=1 δ[i, t] · aij · bj(ot+1)] . Recursion

11: ψ[j, t + 1]← argmaxN
i=1 δ[i, t] · aij

12: δ[N, T]← maxN
i=1 δ[i, T] · aiN . Termination

13: ψ[N, T]← argmaxN
i=1δ[i, T] · aiN

14: for time t from T − 1 to 1 do
15: q∗[1, t]← ψ[q∗[t + 1], t + 1] . Backtracking
16: return q∗
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Algorithm 8 Solving the learning problem with the EM algorithm
1: function EM-Algorithm(o, aest, best, πest, Iter)
2: for iterations iter from 1 to Iter do
3: create probability arrays α, β, γ, ζ
4: if iter ≤ 1 then
5: a← aest b← best π ← πest
6: else
7: a← â b← b̂ π ← π̂

8: for state i from 1 to N do
9: α[i, 1]← πi · bi(o1)

10: β[i, 1]← 1 . Initialization
11: for time t from 1 to T − 1 do
12: for state j from 1 to N do
13: α[j, t + 1]← ∑N

i=1 α[i, t] · aij · bj(ot+1)] . Forward recursion

14: for time t from T − 1 to 1 do
15: for state i from 1 to N do
16: β[i, t]← ∑N

j=1 aij · bj(ot) · β[j, t + 1] . Backward recursion

17: for time t from 1 to T do
18: for state j from 1 to N do
19: γ[j, t]← α[j,t]·β[j,t]

∑N
i=1 α[i,t]·β[i,t]

20: for time t from 1 to T − 1 do
21: for state i from 1 to N do
22: for state j from 1 to N do
23: ζ[i, j, t]← α[i,t]·aij·bj(ot+1)]·β[j,t]

∑N
i=1 ∑N

j=1 α[i,t]·aij·bj(ot+1)]·β[j,t]

24: for state i from 1 to N do
25: π̂i ← γ[i, 1]
26: for state j from 1 to N do

27: âi,j ← ∑T−1
t=1 ζ[i,j,t]

∑T−1
t=1 γ[i,t]

28: for state j from 1 to N do
29: for observation k from 1 to K do
30: validObs← (o == Vk)

31: b̂j(Vk)← ∑T
t=1(γ[j,t] ◦ validObs)

∑T
t=1 γ[j,t]

32: return λ← (π̂, â, b̂)
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Algorithm 9 MB-HMM contribution with Bayesian model averaging

1: function BayesianModelAveraging(P(otest|λ), P(λ),RULl
ψ)

2: for branch l from 1 to L do
3: P(λl |otest)← P(otest|λl)·P(λl)

∑L
l=1 P(otest|λl)·P(λl)

4: RULψ ← ∑L
l=1 RULl

ψ · P(λ|otest)

5: return RUL
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Algorithm 10 RUL
1: procedure RUL-Estimate(otrain,otest,aest,best,πest,Iter)
2: for branch l from 1 to L do
3: function EM-Algorithm(ol

train,aest,best,πest,Iter)
4: return λl ← (π̂,â,b̂)
5: function Forward-Algorithm(otest, λl)
6: return P(otest|λl)

7: function Viterbi-Algorithm(otest, λl)
8: return q∗

9: currentState← q∗[end]
10: numCurrentState← length( f ind(q∗ == currentState))
11: numPreviousStates← length(q∗)
12: function HmmGenerate(λl)
13: return ogen]

14: function Viterbi-Algorithm(ogen, λl)
15: return q∗

16: create time step matrix ∆t
17: create RUL matrices RULµ,RULupper,RULlower
18: for gen y from 1 to Y do
19: for state i f ind from 1 to N do
20: ∆t[y, i f ind]← f ind(q∗[y] == i f ind, last sample)
21: ∆t← ∆t[:, currentState : N − 1]
22: ∆t[:, currentState]− numPreviousStates
23: for j from 1 to N do
24: RULl

µ[j]← mean(∆t[:, j])
25: RULl

upper[j]← mean(∆t[:, j] + std(∆t[:, j])
26: RULl

lower[j]← mean(∆t[:, j]− std(∆t[:, j])
27: function BayesianModelAveraging(P(otest|λl),P(λl),RULl

µ,RULl
upper,RULl

lower)
28: return RULµ,RULupper,RULlower

29: RULµ ← ∑N
j=1 RULµ[j]

30: RULupper ← ∑N
j=1 RULupper[j]

31: RULlower ← ∑N
j=1 RULlower[j]

32: return RULµ, RULupper, RULlower
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