
Dominik Hollerweger, BSc

Design and Implementation of a Novel
Power Aware Audio Interface

Master’s Thesis

to achieve the university degree of

Master of Science

Master’s degree programme: Electrical Engineering and Audio Engineering

submitted to

Graz University of Technology

Supervisors

Ass.Prof Dipl-Ing. Dr.techn. Christian Steger

Dipl-Ing. Klaus Strohmayer (USound GmbH)

Institute of Technical Informatics
Head: Univ.-Prof. Dipl-Inform.Dr.sc.ETH Kay Uwe Römer

Graz, June 2020

Affidavit

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly indicated
all material which has been quoted either literally or by content from the sources
used. The text document uploaded to tugrazonline is identical to the present
master‘s thesis.

Date Signature

ii

Zusammenfassung

Ziel dieser Arbeit war es eine Optimierungsmöglichkeit für einen, sich in
der Entwicklungsphase befindenden, ASIC zu finden. Dies soll sich in re-
duziertem Energieverbrauch äußern. Durch die Einschränkung auf den digi-
talen Bereich konnten zwei verschiedenen potentielle Verbesserungen gefun-
den werden. Eine Variante bezog sich auf die Anwendung verschiedener
Kodierungsmöglichkeiten, mit dem Ausblick die Schaltaktivität zu reduzieren.
Die andere Option war, zwei bereits auf dem Chip implementiert Schnittstellen
durch eine neuere, verbesserte zu ersetzen.

Vielfältige Kodierungen von Audio Daten wurden getestet. Diese brachten
keine zufriedenstellenden Ergebnisse, um sie in den Chip zu integrieren. Die
Recherche bezüglich anwendbarer Schnittstellen, konnte eine vielversprechende
Optimierung aufzeigen. Eine neuartige Schnittstelle wurde, auf Basis einer
vorhandenen Spezifikation, entworfen und implementiert. Konfigurationsmög-
lichkeiten, welche nicht essenziell für die Datenübertragung sind, konnten
stark reduziert werden. Durch die Kontrolle eines Slave-Gerätes wurde die
Funktionalität demonstriert.

Nachteil dieser Schnittstelle ist die geringe Anzahl an weltweit vorhande-
nen Adaptierungen zum jetztigen Zeitpunkt. Durch diese Arbeit wurde es
ermöglicht diese schneller zu integrieren sollte es zu einer Marktumstellung in
diesem Segment kommen.

iii

Abstract

The goal of this thesis is to find an optimization possibility in the sense of
energy consumption for an ASIC in the development phase. This brings up
a broad versatility. When reduced to digital field of improvement, two major
opportunities spiked out. One concerned data encoding techniques with a view
to reduce switching activity. The other treats interfaces including a alternative
replacement, resulting in a reduced wiring.

Regarding primary, no deliverables for an enhancement could be achieved.
Extensive search on various interfaces opened up design and implementation
according to available specifications. A feature reduction to optimize expendi-
ture on the ASIC was intended as some of them were insignificant. Controlling
a slave device functionality was demonstrated, showing off a replacement
possibility for two interfaces integrated at the moment.

The drawback is a weak market pervasion that has the potential for rapid
change. Through this thesis a fast adaption to this novel interface is made
easier.

iv

Contents

Zusammenfassung iii

Abstract iv

Table of Contents vii

List of Figures ix

Abbreviations x

1 Introduction and Motivation 1
1.1 USound . 1

1.1.1 Leda - Target of Interest . 1

1.2 Motivation for Digital Low Power Design 2

1.2.1 Switching Power Reduction 2

1.2.2 Clock Gating . 3

1.2.3 Gate Sizing . 4

1.2.4 Voltage and Frequency Scaling 6

1.2.5 Further Important and Decision Driving Influences 6

2 State of the Art 11
2.1 Interfaces . 11

2.1.1 Inter-Integrated Circuit (I2C) 11

2.1.2 Audio Interfaces . 12

2.1.3 I2S - Inter IC Sound . 14

2.1.4 Bi-Directional I2S . 15

2.1.5 AC-97 - Audio Link 97’ . 15

2.1.6 HDA Link - High Definition Audio Link 16

2.1.7 SSI - Synchronous Serial Interface 16

2.1.8 ESSI - Enhanced Synchronous Serial Interface 17

2.1.9 ESAI - Enhanced Serial Audio Interface 17

2.1.10 MLB - Media Local Bus . 18

2.1.11 A2B - Automotive Audio Bus 18

2.1.12 SLIMBus - Serial Low-power Inter-chip Media Bus 19

2.1.13 SoundWire . 20

2.1.14 Discussion and Results . 22

2.2 Audio Data Encoding Techniques 23

2.2.1 Self-transition versus Coupling-transition 23

v

Contents

2.2.2 Potential Field of Application and Related Encoding Tech-
niques . 24

2.2.3 Investigation of Data Encoding Techniques 25

2.2.4 Encoding Results & Conclusion 27

3 Design of the SoundWire Controller Interface 30
3.1 XEM7310 - Board . 31

3.1.1 ARTIX-7 - FPGA . 32

3.1.2 BRK7010 . 32

3.2 MAX98374 Evaluation KIT . 32

3.2.1 AUDINT 1 . 33

3.2.2 Class-D Amplifier MAX98374 33

3.3 ADAU1452 . 34

3.4 SoundWire Module Integration (FPGA) 35

3.5 Common SoundWire Design Structure 35

3.5.1 Transport . 36

3.5.2 Framer . 38

3.5.3 PHY . 38

3.6 Measurement and Supply Hardware 38

3.6.1 SALEAE - Digital Analyser 38

3.6.2 Oszilloscope . 38

3.6.3 Power Supply . 39

3.7 Modifications . 39

3.7.1 XEM7310 . 39

3.7.2 MAX98374 . 39

3.8 SoundWire-Controller Design . 42

3.8.1 Clocking . 42

3.8.2 Transport . 43

3.8.3 Framer . 44

3.8.4 FSM . 45

3.8.5 Synchronization . 46

3.8.6 PHY . 47

4 Implementation and Evaluation of the SoundWire Controller Interface 49
4.1 System Verilog Basic . 49

4.2 SoundWire Implementation . 50

4.2.1 Top . 50

4.2.2 Control . 51

4.2.3 Data Port . 57

4.2.4 Framer . 59

4.2.5 PHY . 66

4.2.6 Generated Modules . 68

4.3 Testing . 70

4.3.1 Test Slave . 71

4.3.2 Synthesis and Implementation 71

4.3.3 Implementation Testing Setup 72

4.3.4 Ringing . 73

vi

Contents

4.3.5 Signal Delay . 73

4.4 Results . 74

4.4.1 Area Expenditure . 75

4.4.2 Audio Signal Measurement 75

5 Conclusion 77

APPENDICES 78
A SoundWire Frame . 79

B Encoding Tables . 80

C ADAU1452 Configuration . 81

D MAX98374 Register Map . 82

E SDW Register . 90

Bibliography 94

vii

List of Figures

1.1 Clock Gating Versions . 4

1.2 Data of integrated circuits (IC) according to the Report of The
International Technology Roadmap for Semiconductors (Edition
2009) (see Nawrocki, 2011) . 4

1.3 Technology Node depending Current of Leda 5

1.4 Leda Chip Plot . 8

2.1 Inter IC Sound (I2S) Configurations 14

2.2 I2S Protocol . 14

2.3 AC-Link Protocol . 15

2.4 HDA-Link Protocol . 16

2.5 MLB Configuration example . 18

2.6 SLIMBus Superframe Structure . 19

2.7 SLIMBus Control Structure . 20

2.8 Basic frame of Soundwire Protocol 21

2.9 Capacitances relevant using Bus systems 24

2.10 Field of different encoding applications 24

2.11 Results of Encoding Algorithms 29

3.1 Future on-chip SoundWire application alternative 31

3.2 FPGA setup . 32

3.3 MAX98374 Evaluation Kit . 33

3.4 ADAU1452 . 34

3.5 Setup for Leda evaluation on the FPGA 36

3.6 Arasan SoundWire Controller Block Diagramm (see Arasan, 2020) 37

3.7 Back Side of MAX98374 . 40

3.8 Read, Ping, Write - Finite State Machine 45

3.9 Enumeration Finite State Machine 46

3.10 Sequence of Dynamic Synchronisation Patterns 47

3.11 Block Diagram of Implemented SoundWire Controller 48

4.1 Generated Flip-Flop and Combinatorial Blocks 50

4.2 Clock Domain Crossing . 55

4.3 Clock Module Generation . 69

4.4 Behavioural Simulation . 70

4.5 Implementation Testing Setup . 73

4.6 Ringing on SoundWire connection 73

4.7 SoundWire Signal Delay . 74

4.8 Audio Precision Measurement . 76

viii

List of Figures

.1 Soundwire Frame Structure (see Pierre-Louis Bossart, 2014) . . . 79

.2 Swithing Activity of Encoding Methods in % 80

.3 Swithing Activity of Encoding Methods in Total 80

ix

Abbreviations

AC-Link Audio Codec - Link
ACK Acknowledge
ASIC Application-Specific Integrated Circuit
APB Advanced Peripheral Bus
A2B Automotive Audio Bus
BRA Bulk Register Access
CDC Clock Domain Crossing
CMOS Complementary Metal Oxid Semiconductor
CMT Clock Management Tile
DAI Digital Audio Input
DCM Delay Locked Loop
DDR Double Data Rate
DMA Direct Memmory Access
DP Data Port
DSP Digital Signal Processor
ESAI Enhanced Serial Audio Interface
ESSI Enhanced Synchronous Serial Interface
FF Flip-Flop
FFT Fast Fourier Transformation
FIFO First In First Out
FPGA Field Programmable Gate Array
FSM Finite State Machine
GUI Graphical User Interface
HDA-Link High Definition Audio - Link
IC Integrated Circuit
IDDR Input Double Datarate Register
ILOGIC Input Logic
I2S Inter IC Sound
I2C Inter-Integrated Circuit
LFSR Linear Feedback Shift Register
MEMS Micro-Electro-Mechanical System
MIPI Mobile Industry Processor Interface
MLB Media Local Bus
MMCM Mixed-Mode Clock Manager
MOST Media Oriented Systems Transport
MUX Multiplexer
NAK Not Acklowledge
NRZI Non - Return to Zero Inverted

x

Abbreviations

ODDR Output Double Datarate Register
OEFNSC Odd Even Full Normal Self Coupling
OLOGIC Output Logic
PRBS Pseudo Random Binary Sequence
PCM Puls Code Modulation
PLL Phase Locked Loop
POR Power On Reset
QFN Quad Flat No Leads Package
SAIF Switching Activity Interchange Format
SAI Serial Audio Interface
SCP Slave Control Port
SDK Software Development Kit
SDW SoundWire
SLIMBus Serial Low-power Inter-chip Media Bus
SPI Serial Peripheral Interface
SSI Synchronous Serial Interface
TDM Time Division Multiplexing
WLP Wafer Level Package

xi

1 Introduction and Motivation

1.1 USound

USound GmbH is a fast growing fabless Audio company having the main
facilities in Graz and Vienna. The so called Ganymede is the core product of
USound. It’s a Micro-Electro-Mechanical System (MEMS) Speaker (see Andrea
Rusconi Clerici, 2018) based on piezoelectric technology. For this use-case the
piezoelement is supplied by a voltage thus experiencing a deflection. Regarding
dimensions of 4.7 x 6.7 x 1.6 millimeter Ganymede is unconquerable on the
market making it the ideal for integration into all kinds of audio wearables.
Recently developed product is a revolutionary audio eyewear FOCUS having
MEMS integrated for playing music, answering phone calls and supporting
daily routine. USounds R&D department includes an Application-Specific
Integrated Circuit (ASIC) development team responsible for creating a special
MEMS driver called Leda and opening up research strategies for improvement
in efficiency.

1.1.1 Leda - Target of Interest

Devices such as MEMS gain higher value as their production and integration
in novel systems are cost effective and open up various possibilities. Compar-
ing common electrodynamic speakers and piezoelectric MEMS developed by
USound, the main difference is a crossing from an inductive component to an
capacitive one. This induces various advantages like fast fabrication or lower
heat dissipation but also some drawbacks like the non linearity depending on
applied voltage and membrane displacement. Due to the novelty no drivers,
aware of specific MEMS behaviour are available yet. Thus USound initiated the
development of it’s own ASIC called Leda creating a highly efficient component.
After their final development the chip and speaker should be available as an
assembled all in one component thus making integration into audio wearables
as easy as possible. Especially for this type of integration it’s important to
consider each possibility of power reduction and keeping things small. The
novelty opens up many subjects for further research. This thesis focuses on
power awareness of digital design, size, and wiring harness related to interfaces
for chip communication.

1

1 Introduction and Motivation

1.2 Motivation for Digital Low Power Design

In previous decades development of digital low power design gained more
and more importance as products shrank in size enabling integration into all
kinds of wearables like wristbands, watches or glasses. One unique selling
point of those gadgets is driven by run-time. Longer periods between charging
the batteries, of course depending on item usage, reduces negative effects
like lowered capacitance due to overridden battery life-time charging cycles.
Additionally, consumers are able to use products for a longer time without
renouncing on it. Thus, it’s important to reduce power consumption to the
minimum needed, implying elimination of energy waste related to temporarily
unneeded parts as example. The following subsections discuss some of most
common techniques to achieve this objective.

1.2.1 Switching Power Reduction

Switching power describes how much energy needs to be provided to charge
the load capacitance in case of a state transition from 0 to Vdd. Complementary
Metal Oxid Semiconductor (CMOS) power dissipation can be divided into
mainly two components. Internal cell power and power driving the load capaci-
tance (compare Abdellatif Bellaouar, 1995 and Panda Preeti, 2010). There are
several contributing influences in regards to internal cell power.

One part is short circuit power. Each transistor switching causes this effect
because of non zero rise and fall time. During the state change there is a small
time slot where supply and ground are shorted establishing a current flow
depending on the load capacitance. Especially for high load caps this effect has
to be considered.

Another contributor to internal cell power dissipation is related to leakage
power. During the powering of a transistor there will be a small amount of
leakage caused by several effects namely ”Reversed Biased Diode Leakage”,
”Gate Induced Drain Leakage”, ”Gate Oxide Tunneling” and ”Subthreshold
Leakage”.

For later considerations power dissipation (dynamic power Pd) according to
supply voltage Vdd, caused by driving load capacitances CL, is relevant. Starting
with the basic formula for the average dynamic power:

Pd =
1
T

∫ T

0
io(t)vo(t)dt (1.1)

At charging phase one half of the energy is stored in the load capacitance and
the other is dissipated into heat. By inserting output current io during charging
and discharging phases this leads to equation 1.2.

2

1 Introduction and Motivation

Pd = CL ∗Vdd
2 ∗ f (1.2)

Regarding equation 1.2, one would assume switching to take place each clock
cycle according to frequency f . In general, one can say this is not the case.
Thus formula 1.2 has to be extended by a factor. The switching activity factor α
leading to 1.3.

Pd = α ∗ CL ∗Vdd
2 ∗ f (1.3)

α is determined by the probability a capacitive node is being switched. This
brings us to one key task of low power digital design, namely reducing α to the
minimum needed for running expected operations. There are immense possi-
bilities to approach a reduction of switching activity. Clock gating discussed
in subsection 1.2.2 is one. Later in section 2.2, encoding techniques to reduce
transitions are treated more in detail for a investigation of possible switching
reduction.

1.2.2 Clock Gating

Clock Gating describes a technique very similar to the higher level power
gating. In case of power gating, whole components are being turned OFF and
ON again depending on their usage. Regarding clock gating the clock is enabled
or disabled for a certain amount of time. E.g. consider a I2S interface responsible
for audio transmission. In case no audio data is scheduled for transaction, there
is no need for a Master Clock, Bit Clock or Word Select. Thus these clocks or
the whole component could be switched off saving power.

The following example (compare Rakesh Chadha, 2012) shows the difference
between a Flip-Flop (FF) enable signal and clock gating leading to the same
output when required. Picture 1.1 shows a flip-flop and a multiplexer on the
left side. The Multiplexer (MUX) feeds a FF with new input data if the enable
signal is high. The other way round, Q (output of the Flip-Flop) is feed back
and via the multiplexer applied to the FF again, leading to no change of the
output. Regarding the clock input there is no change thus power is dissipated
as long as the circuitry is turned on. This brings up a possibility for clock gating
to take action.

The other displayed structure in 1.1 represents the kind of a Flip-Flop including
clock gating. Input D is only captured if there is a clock applied to the FF,
corresponding an enable signal input. This equals high input at the Clock
Gating Cell. Assuming output of the Flip-Flop to be utilized every 10th clock
cycle the reduction of power corresponds to about 90%. Inserting Clock Gating
Cells should be considered wisely though. Applying clock gating to each and
every FF can also lead to performance losses. One reason is due to timing
requirements and the others is related to power consumption of Clock Gating

3

1 Introduction and Motivation

Figure 1.1: Clock Gating Versions

Cell’s. The so called Switching Activity Interchange Format (SAIF) is used to
determine the activity of a clock and provides decision driving data. One very
effective integration treats systems where a whole bus can be turned OFF and
ON e.g. a 32-bit wide bus is applied to 32 Flip-Flops. All clocks applied to those
Flops can be switched by one Clock Gating Cell.

1.2.3 Gate Sizing

Gordon Moore stated in 1965 that the complexity of integrated circuits would
double every two years. This statement well known as Moore’s law is related
to the number of components being integrated into the same area. Starting
with the mass production of Integrated Circuit (IC)’s in 1960 at a technology
node of 50 micrometer, in 1999 already 180 nanometre were offered by several
semiconductor fabs. Since the beginning of 2019 it has been possible to order 7

nanometre processes at Samsung and TSMC.

Figure 1.2: Data of integrated circuits (IC) according to the Report of The International Technol-
ogy Roadmap for Semiconductors (Edition 2009) (see Nawrocki, 2011)

Figure 1.2 shows the roadmap for semiconductors in 2009. As we know now
7nm nodes are already in production and further decreasing down to 1.5nm
is predicted till 2029 (see Cutress, 2019). Various problems had to be solved
to go further in this decreasing process. Following an overview, regarding key

4

1 Introduction and Motivation

issues to be solved, for scaling CMOS technology in 1997 below 100nm is given
(compare literature Yuan et al., 1997):

- Lithography: A mask is used to transfer an image onto a light
sensitive photoresist by lithography

- Power Supply: Voltage needs to be decreased as continuously more
transistors are integrated

- Gate Oxide: Source, Drain and Channel are separated by a gate
oxide which is desired to be reduced in relation to
channel length keeping short-channel effect under
control

- Short-channel
Effect:

Due to downscaling transistors lead to deviation
of long-channel behaviour. Effects like increased
punch-trough risk have to be considered

- High Field
Effects:

As supply power is not changed in same ratio as
channel length, field strength increases

- Dopant Number
Fluctuations:

Reaching sub 100nm dopants are in the order of
hundreds. Thus distribution of them generate non-
negligible effects on threshold voltage

- Interconnect
Delays:

Increasing processor speed comes with improve-
ment of device speed. Delays caused by wire resis-
tance and capacitance have to be shrunk

By the process of downscaling depicted in 1.2 not only is lower size a positive
effect, but also decreasing voltage opens up possibilities for increased clock
frequency. This enables lower power dissipation in addition to higher processing
speed. Though it’s not always possible to implement this caused by restrictions
related on application area.

Figure 1.3: Technology Node depending Current of Leda

Currently USound’s ASIC team utilizes a 180nm process of TSMC. Several
considerations of gate size reduction were already discussed. As the semicon-
ductor consists of a digital and analogue part there has to be a trade-off for

5

1 Introduction and Motivation

both. Figure 1.3 shows efficiency of the reduction regarding Leda’s digital part.
Development-phase of analogue functionality doesn’t allow further reduced
voltage. Thus minimizing the size to 45nm wouldn’t be meaningful whereas
130nm opens up a opportunity. Changing to 130nm decreases digital (displayed
in grey) power consumption by half. Due to several internal reasons within the
company this can’t be taken as advantage at the moment.

1.2.4 Voltage and Frequency Scaling

In general power consumption of a circuitry increases by it’s number of compu-
tations. Delay of CMOS gates sets limits for applied frequency they can run at.
Though by scaling supply voltage it’s possible to vary clock frequency (direct
relation to gate delay) with some restrictions. This technique is called voltage
and frequency scaling. (compare Panda Preeti, 2010). Changing voltage and
frequency at runtime is called dynamic voltage and frequency scaling.

Gate delay τG is defined as:

τG = k · CL ·
Vdd

(Vdd −Vt)2 (1.4)

k corresponds to the gain factor, CL is the load capacitance consisting of the
gate capacity, wire capacity and the input capacity of following gate. Supply
voltage is given as Vdd and the threshold voltage as Vt. A key challenge here
is meeting timing requirements while saving energy by scaling voltage and
frequency. This method gains relevance for systems having a dynamic processor
speed adjustment depending on instantaneous load, especially when thinking
about DSP’s. Analysis showed that reduction of speed, including a delivery
of computational results within time constraints, is more energy efficient than
computing the result and running in idle operation mode. SoundWire, a protocol
being introduced to you later is capable of frequency scaling as-well.

1.2.5 Further Important and Decision Driving Influences

Previously some basics of digital low power design had been discussed. At
least one of those, namely Clock Gating is already implemented partially.
Whereas others like Voltage and frequency scaling won’t be considered further
at the moment. In this section more decision driving influences regarding
advancement of this thesis will be discussed including wiring harness, Area
Expenditure and Data Encoding.

6

1 Introduction and Motivation

Wiring Harness

Powering silicon and communication with it is done via wires. Depending on
implemented features, this can be significantly more or less. In comparison
with on-chip connections a multiple of the space is required. Thus it has to
be considered which kinds of signal output and input need to be provided.
This includes not only signals which are planned to be used in the field of
application after finishing the silicon, but also important test signals in the
development and improvement process. Sometimes area is not as important as
a very fast data transportation possibility. Herein implementation of parallel
buses is recommended rather than an serial connection implementing Time
Division Multiplexing (TDM).

In regard to the automotive industry, there is an ongoing weight economization
process in each and every possible part. Reducing for example the hi-fi audio
connectivity in cars from 5 down to 2 wires will also have an impact on fuel
consumption, a key requirement for the automotive market. Wiring harness is
a decision driving influence in development process of USounds Leda silicon.
Audio wearables are very small devices decreasing further at the moment. One
main field of application will be in-ear headphones. Thus there is few space for
integration of a chip. Another section is free field usage. Therefore MEMS need
support to drive lower frequencies by another speaker. Specifically this scenario
makes it important to lower wiring.

In figure 1.4 one can see a pinout including 48 pins. Most of them are used for
testing reasons. Actually needed are at least connections for I2C, I2S and power
supply requiring 7 wires:

- I2S: 3 wires

- I2C: 2 wires

- Power Supply: 2 wires

Compared to conventionally in-ear headsets connected by two wires, this points
out the serious effect. Not only the wire thickness and weight are affected, but
also the chance breaking one wire out of seven is much higher than one out of
two. Aware of those impacts USound wanted to know if there has been any
change in technology in last years opening up a possibility to reduce wiring
harness. In chapter 2 familiar interfaces are discussed as well as one novel
transmission protocol, leading to the main part of this thesis including a design
and implementation chapter (3 & 4) of the SoundWire Interface.

Area Expenditure

On-chip area consumption by different components is shown in this subsection.
Figure 1.4 depicts Leda (version 1.1 of tape-out April 2019). Table 1.1 lists some
of digital components including area expenditure on silicon. Contemplating

7

1 Introduction and Motivation

Table 1.1: Digital Leda Area Expenditure
Module Cell Area [nm2] Cell Area [%]
Digital Core 2765482.263 100
DCDC 1782873.203 64.5
Upsampling 268427.174 9.7
Filter 256805.212 9.3
I2C 78825.701 2.9
I2S 36204.538 1.3
...

Figure 1.4: Leda Chip Plot

the figure, one can immediately observe a big difference between the section
related to digital on the left and the analogue part on the right. Surrounded by
red is the area related to the Digital Core in table 1.1.

For later considerations we shall remember area related to data interfaces I2S
and I2C. Only 4.2% of area related to digital core is used for both interfaces in
total 115030.239nm2. Comparison to a novel audio interface is made in section
4.4 under subsection 4.4.1.

Data Coding

Nowadays data coding is used in almost every electronic device. Especially re-
moving redundant data to save data-storage and reducing transmission amount
is significant. This is called data compression. Important differentiation can be
made between lossy and lossless encoding. Comparing images and audio, lossy
data processing leads to fuzziness on the one hand and dullness on the other.
Application of lossless encoding instead results in a fully recoverable data set.

8

1 Introduction and Motivation

Due to quantitative data reduction, transmission is already more power efficient.
The relationship between lowering energy consumption and switching power
reduction is treated below (compare section 1.2.1). Regarding Leda there are
two kinds of data namely audio data supplied by the I2S interface and register
data for setup brought up by using a I2C port. After short discussion about the
types of data an example for lowering switching activity will be shown.

Audio Data: Waveforms are picked up by a microphone transforming alternat-
ing pressure into a voltage. The voltage is sampled by a certain sampling-rate fs
and each sample quantized depending on the desired resolution. Multiplying
those leads to the bitrate (1.5) increasing by the amount of used channels x as
well. One commonly used combination is 48kHz sampling rate quantized by
16-bits. If only one channel is used (x = 1) bitrate is 768000 bit/s.

Bit/s = fs · bits · x (1.5)

One sample is mapped to a number between 0 to 65536 or −32768 to 32767
(scope of 2

16) depending on changing voltage. For transmission via I2S the
resulting number has to be encoded into the so called two’s complement.
Ranging from −2n-1, ...0,...,2n-1−1 this number format mapps them into binary
values like the following (only 4-bits are used to keep it simple).

- 16 → 1111
- 0 → 0000
- 15 → 0111

The first digit is used for signalling positive or negative values. Positive values
include zero thus maximum value is counted minus one. Thinking about digital
transmission high levels refer to logic ones whereas low level is mapped to
zeros. This is the most intuitive way. There are other possibilities as well like
mapping the other way around. Considering a value in two’s complement. Lets
take number 85 equally 01010101 in the binary format. This example shows
the maximum of possible level changes regarding 8 bit digits. Decreasing the
amount of logical switches is the same as lowering switching thus saving power.
Several options for data encoding application related to different points of
operation are discussed more precisely in section 2.2.

Register Data: Register data is used for device setup and configuration. I2C is
a proper interface transmitting related data. Therefore, an address and register-
information to be stored are needed (further description in 2.1.1). For switching
reduction applications one could consider mapping high frequented registers to
low switching addresses and the other way for lower ones. Another influence for
switching power reduction can be a reordering of register content. E.g. turning
on a device could be done via one bit out of 8. Using the first or last one of those

9

1 Introduction and Motivation

digits is more meaningful than putting it into the middle as there won’t often
be a change. Together this kind of switching reduction is negligible compared
to others, although it should be considered for high performance systems.

10

2 State of the Art

This chapter is primarily split into two parts. The first one, 2.1 speaks to audio
interfaces. The general structure and their field of application are discussed.
Additionally, examples of present integration are described. Encoding of audio
data is the basis for the second chapter. Various possible techniques are listed
whereas some of them have been tested for meaningfulness reasons. An adjusted
encoding possibility has also been tried (see paragraph 2.2.3).

At the end of both the results are discussed leading to chapter 3 Design of the
SoundWire Controller Interface.

2.1 Interfaces

In the following subsections several evaluated audio interfaces according to
table 2.1 are introduced. A description of an I2C port is given in advance due to
the fact of its implementation in Leda and relevancy for comparing reasons in
the sense of wiring and area economization.

2.1.1 I2C

I2C, short for Inter Integrated Circuit, is a standard interface introduced by
Philips Semiconductors in 1982 (Compare further to NXP, 2014). Since then, it
has spread worldwide, implemented into a huge number of devices by over
50 companies. An advantage of this direct on-chip interface is that it enables
communication to others independent of either system designers or equipment
manufacturers.

With two wires the whole connectivity is set up:

- SCL: Serial Clock Line

- SDL: Serial Data Line

Devices attached to the interface are addressable by a unique ID. Throughout
operation a master slave behaviour is set up. Data transfer is either unidirectional
or bidirectional, both 8-bit oriented. In general, it’s possible to connect as many
devices as desired just limited by bus capacitance. The transactions are started
and ended by a combined signal behaviour of SDA and SCL. Selection of a
connected slave in between others is done by sending the ID a unique address

11

2 State of the Art

on the bus which has to be confirmed by the appealed, sending an acknowledge.
All others disconnect themselves from the bus until the finished exchange.
Data is transferred in both directions depending on read or write commands
coming from the master. As long as there have been no end signalling this
connection stays stable, enabling further data transmission all requiring an
receiver Acknowledge (ACK). Using this interface, all control functionalities of
Leda are set up by configuration of registers.

2.1.2 Audio Interfaces

Table 2.1 lists spotted audio interfaces. For USound it’s not practicable utilizing
an interface based on parallel transmission thus “8-bit Parallel” (P in the table)
is not mentioned further. Puls Code Modulation (PCM) actual refers to a data
compression type applying a-law or u-law (contrary encoding types for different
countries). Some companies like Texas Instruments designed a PCM codec (see
TexasInstruments, 2001) specifying the interface PCM. in general it’s designed
likewise the Bi-directional I2S in sense of wiring TDM and other characteristics
(see table 2.1). For this reason the interface is not mentioned any further.

12

2 State of the Art

Ta
bl

e
2

.1
:E

va
lu

at
io

n
of

A
ud

io
In

te
rf

ac
es

In
te

rf
ac

e
Fe

at
ur

e
P

I2
S

Bi
-I

2
S

PC
M

A
C

H
D

A
SS

I
ES

SI
ES

A
I

M
LB

A
2
B

SL
IM

SW
In

du
st

ry
St

an
da

rd
+

+
-

+
+

+
-

-
-

?
?

D
ev

ic
e

C
on

tr
ol

+
-

-
-

+
+

-
+

+
+

+
Bi

-d
ir

ec
ti

on
al

D
at

a
+

-
+

+
+

+
+

+
+

+
+

Su
pp

or
te

d
D

ev
ic

es
1

1
1

up
to

4
up

to
4

1
-3

2
4
-?

1
-6

4
1

-6
4

1
-3

2
1
1

1
6
-b

it
4
8
kH

z
st

r.
ch

an
1

1
I/

O
1

I/
O

4
I/

3
O

1
5

I/
O

8
I/

O
1
4

1
4

Pi
ns

1
2

3
4

4
5
-7

m
in

5
3

-6
3

3
3

2
2

2

Is
oc

hr
on

us
D

at
a

Fl
ow

-
-

-
+

+
-

+
?

+
+

Bi
t

W
id

th
A

ud
io

D
at

a
8

an
y

an
y

an
y

1
6
-2

0
8

-3
2

2
4

8
-3

2
8
-3

2
8

-3
2

4
-1

2
4

Sa
m

pl
er

at
e

(s
up

.)
1
6
/3

2
1
6
-4

8
4
4

,1
-8

8
,2

8
-1

9
2

8
-4

8
4
4
,1

/4
8

4
4
,1

/4
8

+
Sa

m
pl

er
at

e
C

ha
ng

e
-

-
-

+
-

-
-

+
+

Se
am

le
ss

C
LK

Sc
al

in
g

-
-

-
-

-
-

-
+

-?
Fr

am
e

R
at

e
va

r
va

r
va

r
4
8

4
8

va
r

va
r

va
r

va
r

13

2 State of the Art

2.1.3 I2S - Inter IC Sound

Inter IC Sound or more common I2S (see PhilipsSemiconductors, 1996) is a
transmission protocol developed by Philips Semiconductors (nowadays NXP
Semiconductors) in 1986. Integrated in a huge number of devices this port is
one of the most common interfaces. It defines a serial link specially created
to send digital audio data from one integrated circuit to another. It’s possible
to configure different bit rates e.g. 8, 16 or more. The interface utilizes 3 to 4
physical wires described below:

− SD = Signal Data
−WS = Word Select
− SCLK = Serial Clock
−MCLK = Master Clock

SD is in charge of transmitting the desired audio data. Word Select line defines
which channel is being transmitted at the moment. Thinking of TDM it’s
possible to send stereo audio data via the channel. WS changes the level one
clock period before the next data word starts. This is because the slave requires
some amount of time to store the received data and pick up the next ones.
Serial Clock defines the time between two consecutive bits. This timeslot has to
be complied by the SD line. Differences caused by any participant can lead to
wrong assignment of the audio data thus create transmission errors. SCK can
be derived by the Master Clock. The MCK has to be provided by the master
interface. Using any other Clock e.g. from another quartz crystal can cause
substantial Jitter errors. There are three common system configurations deciding
about master and slave hierarchy in the communication system depicted in
figure 2.1. It’s possible for either transmitter or receiver to take over the master
position as well as being external controlled by another device. The Master
device effectively provides the MCK.

Figure 2.1: I2S Configurations Figure 2.2: I2S Protocol

14

2 State of the Art

Figure 2.3: AC-Link Protocol

2.1.4 Bi-Directional I2S

Bi-Directional I2S extends the previously described I2S interface. An additional
physical signal data line enables data transmission in both directions. Configu-
rations can all be done in same manner as before. Applications for this interface
concern e.g. Noise Cancelling (microphone and speaker integrated in one de-
vice). To process required audio data the transmission must be bi-directional.
Data rate stays the same as clock and word select are unique.

2.1.5 AC-97 - Audio Link 97’

Audio Codec - Link (AC-Link) refers to an interface developed by Intel Architec-
ture Labs in 1997 (see Intel, 2002). It was designed for connecting sound-cards,
modems and motherboards in a PC environment. There are five wires are
necessary for a connection comprising of:

− SYNC = Synchronization
− BIT CLK = Bit Clock
− SD O = Signal Data Output
− SD I = Signal Data Input
− RST = Reset

This interface is capable of transmitting TDM audio data for 44, 1kHz and 48kHz
qualities. It’s possible to send 12x 20-bit slots on the bi-directional interface
via the channels SD I and SD O. Thus, a master clock fixed at 12.288MHz is
needed to provide necessary granularity. In the AC-Link a power saving mode
is implemented allowing to halt the clock, sync and data signals. Figure 2.3
shows the structure of an AC-Link output frame which is very close to the
input frame format. Each frame consists of 16-bits tag phase determined by a
logic high period of the SYNC signal. This it then followed by an up to 12x
20-bits wide Data Phase on logic low of SYNC. Further description of the frame
construction can be looked up in Intel, 2002. Generally tag phase concerns
validation of the whole frame (slot 0, bit 15) as well as confirmation of different
data channels transporting information.

15

2 State of the Art

Figure 2.4: HDA-Link Protocol

2.1.6 HDA Link - High Definition Audio Link

High Definition Audio is the successor of AC’97 released by Intel in 2004.
It’s not designed to be backward compatible to its predecessor. PCI-Express
defines the connection to PC’s motherboards. The interface connecting HD-
Audio controllers to different HD-Audio codecs is called High Definition Audio
- Link (HDA-Link). This protocol is purely isochronous based on a 48kHz
framing period. Similar to the previously described AC-Link, the following five
listed wires are needed for connection:

− SYNC = Synchronization
− BIT CLK = Bit Clock
− SD O = Signal Data Output
− SD I = Signal Data Input
− RST = Reset

Bit Clock is fixed to the 24MHz clock sourced from the controller device and
provided to all attached peripheries up to a maximum of 15 codecs. Frame
synchronization is done via an 8-bit wide word whereas the falling edge of
the eighth bit indicates the beginning of the next frame. A frame consists of a
command proportion and different streams indicated by a stream tag of the
SYNC wire. The tag structure includes a 4-bit preamble followed by the Stream
ID of same size shown in figure 2.4. Bi-directionality is implemented again by
an additional line.

For further reading concerning the HDA-Link see Intel, 2010.

2.1.7 SSI - Synchronous Serial Interface

Synchronous Serial Interface, developed by Max Stegmann GmbH in 1984, refers
to a point to point connection between master and slave. Initially it was designed
as differential non-multiplexed and simplex interface using two twisted pair
connections. The advancement of Synchronous Serial Interface (SSI), done
by Freescale/NXP/Motorola, is (depending on configuration) capable of full-
duplex transmission to several devices. Three different modes can be selected:
normal, on-demand and network. Normal mode is for periodic transmission of
a single word, on-demand is selected for asynchronous device communication
and network mode built on TDM is for transmitting up to 32 words.

16

2 State of the Art

A feasible configuration for audio data transmission includes listed connec-
tions:

− TXD = Transmit Data
− SC = Frame Synchronization
− SCLK = Serial Clock

Depending on the interfaces operating mode, various wiring is necessary. Ap-
plicable configurations including different wiring of a continuous (normal/net-
work) mode and gated (on-demand) modes can be checked in the specification
Freescale Semiconductor, 1994. Area of application treats all kind of sensors
data transfer.

2.1.8 ESSI - Enhanced Synchronous Serial Interface

Enhanced Synchronous Serial Interface (ESSI) describes a further development
of the previous SSI. It’s capable of full-duplex transmission created for codecs
Digital Signal Processor (DSP)’s and other peripherals. Identical to SSI, three dif-
ferent modes (normal, on-demand, network) are adjustable. The enhancements
concern following subjects:

– network enhancements (e.g. end of frame interrupt)
– audio enhancements (three transmitters per ESSI)
– general enhancements (e.g. trigger DMA interrupts)
– other changes (e.g. gated clock mode not is not available)

Further in-depth explanation can be found in M. Inc., 2001. The number of
pins and wiring for SSI depends on the different operation modes. As ESSI is
capable of receiving one signal and transmitting three signals, two units can be
merged to provide surround sound.

2.1.9 ESAI - Enhanced Serial Audio Interface

Enhanced Serial Audio Interface (ESAI) was developed by Freescale Semicon-
ductor, Inc. (nowadays NXP Semiconductors). It’s a combination of the ESSI and
Serial Audio Interface (SAI) (not further described in this thesis see Pavel Bo-
hacik and Group, 2012) designed for the Motorola Symphony audio processors
family (take a look at FreescaleSemiconductor, 2000). I/O sections of ESAI can
be used to interface several of most common digital audio protocols like I2S.
Usually, they have a 3 wire structure including one bit clock, one frame syn-
chronization clock and one data line. ESAI shows full efficiency in multichannel
processing e.g. cinema and home theatre. Therefore it contains 2 output pins as
well as 4 pins programmable for input or output. Standard configurations and
applications for data transfer concerning ESAI interface are further described
in FreescaleSemiconductor, 2000.

17

2 State of the Art

All three interfaces (SSI, ESSI & ESAI) concerning the Motorola’s Symphony
DSP processing are not practicable solutions for USound due to their application
limitation.

2.1.10 MLB - Media Local Bus

Media Local Bus (MLB) was created to provide a bridge from the Media Ori-
ented Systems Transport (MOST) network protocol to several subsidiary devices
(see figure 2.5). An MLB Controller (serving as MOST to MLB mapper) is an
connected to at least one MLB device. The controller supports all methods of
data transport concerning MOST architecture. Scope of this is interconnection of
different audio devices in automotive application by usage of lower complexity
enabling faster time-to-market. Pin count in respect to the MOST bus is kept as
low as possible in between of 3 and 6 pins.

As this interface depends on MOST networks protocol it’s not described any
further being no optionality for integration into Leda. Interested can look up
the MLB interface in the literature of SMSC, 2010.

Figure 2.5: MLB Configuration example

2.1.11 A2B - Automotive Audio Bus

Automotive Audio Bus (A2B), as the name suggests, was developed for Auto-
motive application by Analog Devices. It’s a 2 wired single master to multiple
slave topology capable of transporting I2S data, in addition to I2C data, over a
maximum distance of 15m pin to pin. This interface provides standard audio
sample rates 44.1kHz, 48kHz and supports 12, 16 and 24-bit channel width.
Primarily it has been designed to reduce the weight of an in car cable harness
where it can compress up to 75% of weight. The following are some target
applications:

– vital signs monitoring
– smart radio connectivity
– hands-free/speech recognition/in-car communication

18

2 State of the Art

Figure 2.6: SLIMBus Superframe Structure

A very interesting feature is the possibility of applying Phantom Power by
this interface. Nevertheless, it displays no viable options in terms of intended
operation mode due to automotive restrictions. Further reading can be found in
A. Inc., 2016.

2.1.12 SLIMBus - Serial Low-power Inter-chip Media Bus

Serial Low-power Inter-chip Media Bus (SLIMBus), developed by the so called
Mobile Industry Processor Interface (MIPI) Alliance, is one of two MIPI stan-
dards mentioned in this thesis. The main features concerning this transmission
protocol are low pin count (2 pins) and the possibility to transmit both audio
and control data. Changing clock speed for reasons of energy saving is possible
too. Nevertheless, this interface has not taken a serious position on the market
now (see Alexander Khazin, 2018). As a consequence, the MIPI Alliance defined
a new standard namely SoundWire discussed in next subitem 2.1.13.

SLIMBus describes a model connecting different devices applied to the same
bus. By this control data such as filter coefficients in addition to audio data
can be sent. It’s also able to handle isochronous and asynchronous transport.
For a setup connecting several devices it can be configured as synchronous
multi-drop bus utilizing TDM frame structure.

The structure includes a Super-frame divided into Frames, Subframes, Slots
and Cells. A Super-frame describes the superior element consisting of a total of
1536 slots consuming always the size of eight frames. A frame is constructed
by several subframes but the size of them is not fixed. Subframes can be set up
using 6, 8, 24 or 32 slots. One slot is related to 4 cells in turn a cell corresponds
to 1 bit. (see 2.6).

The whole Super-frame is nothing but a bitstream of 6144 bits including framing
information, control data and audio data (depending on setup). Each frame’s
0-th and 96-th slot is reserved for framing information. In Frame zero of each
Super-frame ,additional 2 slots are reserved for so called guide channel bits.
Those are used to provide necessary information to the connected devices. On

19

2 State of the Art

Figure 2.7: SLIMBus Control Structure

left side of figure 2.6 a frame snippet including first synchronization bit and the
guide bits is shown (one square equals 4 bits). Right side represents content of
guide bits (each square equals 1 bit). For further insight into details take a look
at M. A. Inc., 2008.

2.1.13 SoundWire

SoundWire refers to the second audio interface concerning the MIPI Alliance.
As well as previous protocol, SoundWire is based on a TDM frame and has
multi-drop capabilities. It’s a fairly new interface published in 2015. The market
has not adopted the protocol in a big sense, but there are several modules
available especially for the mobile phone industry like the CL42L42 audio codec
and MAX98374 digital amplifier. On October 8th 2018, Intel released the Z390

chipset (see Intel, 2019) including a SoundWire interface in their “Intel® HD
Audio Technology”.

SoundWire provides audio data transmission and has embedded control and
commands. Thus, it can displace need of a control interface like I2C or Serial
Peripheral Interface (SPI). Bandwidths up to 20 Mbits/s are possible for fast
device setup. There is a clock stop mode integrated for reduction of power
consumption after Power On Reset (POR).

Appendix A shows the typical frame structure. 2 up to 16 columns are config-
urable as well as a minimum of 48 rows to a maximum of 256 rows, defining
the protocol edges. 48-bits, out of the basic 48x2 frame (depicted in 2.8), are
reserved for a control word in each Frame, remaining part can be either config-
ured to further control or audio data. The 48-bit control-word can operate in
three different conditions. Ping, Read and Write. Read and Write are relevant
for register configuration and collecting device information. Standard operation
is a Ping request displaying status of devices attached to the bus allowing
enumeration of newly connected. A maximum of 11 devices can be supported
by the SoundWire master interface.

This interface has been chosen as relevant for an optional exchange of I2S and
I2C in 2.1.14. Thus further detailed explanation follows about functionality
based on Pierre-Louis Bossart, 2014 and MIPI Alliance, 2019.

20

2 State of the Art

Figure 2.8: Basic frame of Soundwire Protocol

By displaying figure 2.8, a general overview about the SoundWire protocol
in basic frame format shall be given. Rows and columns are flipped by 90
degrees. The upper line includes audio data signed as A. In this show-case 16

bit audio data is intended for transmission. Remaining 32-bits are not used.
The lower part is control word related data placed in the first column of a
SoundWire (SDW) frame.

The numbers listed below describe control word related bits and usage:

1 Ping Request: Owned by slaves to signal requests and status changes
2-4 Opcode: Decision for Read, Ping or Write commands
5-8 Either address for choosing slaves to operate read/write commands or

used for stream synchronization/transfer bus master responsibility to
another SDW Controller

9-24 Stores Register Address for read/write and slave status of devices 11-4
15-32 Static Synchronization: Bit word used to make synchronization easier

for devices
33 PHY Sync: Signals physical limits (high or low) of used version
34-41 Read/write register data or slave status 3-0
42-45 Dynamic Synchronization: Pattern sequence used for slave synchro-

nization operations
46 Parity: Even and Odd parity are used to discover bus clashed
47 NAK: Not acknowledge signals not accepted data read/write opera-

tion
48 ACK: Register read/write was successful

SoundWire slaves have a number of registers whereas audio port dependent
ones are used to define space and kind of data on the frame others are relevant
for clock speed scaling and stopping, frame size, interrupts, device ID etc.

Transmission of SDW data follows the prinicple of Non - Return to Zero
Inverted (NRZI) encoding. Switching of the signal corresponds to transmitting
a digital one. The constant line level delivers digital zeroes. As the interface
transmits data according to Double Data Rate (DDR), both clock edges are used
for sampling data. A controller starts framing on a falling edge. Thus, control
data is transferred on this clock edge.

At the start-up phase, a consecutive switching by data line sends a sequence of
2048 ones, signalling slaves, that a running protocol is coming up.

To enable functional audio transfer, a slave has to be enumerated (see 3.8.4)
and signed to 1 out of 11 possible device numbers. After this process, slaves

21

2 State of the Art

can display their status by requesting ping commands. Untreated slaves-status
information can lead to dropping them from the bus.

2.1.14 Discussion and Results

11 audio interfaces have been introduced previously and listed in table 2.1,
which includes their main properties. Achieving an optimization of Leda implies
either lowering power consumption, wiring or area economization. A high
valued impact of applicability is given by interfaces market pervasion.

The audio interfaces MLB and A2B are excluded as opportunities as they
are developed for automotive industry. A dependency on MOST bus systems
is given by those additionally. Bi-directional I2S is nothing others than an
expansion (1 extra pin for duplex transmission) of I2S. Until now, Leda (subitem
1.1.1) is not designed to support audio data exchange in both directions as it is
meant to be the amplifier for Ganymede’s (MEMS piezo speakers). In case of
extending the primary use-case, concerning implementation of a microphone,
this interface may be an option.

The AC-Link and HDA-Link are both developed by Intel as link frame for-
mat’s for PC’s audio sub-systems. A minimum of 5 pins and application area
eliminates any utilization option of this interface. SSI is initially developed as
simplex, non-multiplexed differential interface. Compared to this, the currently
implemented I2S has the advantage being capable of transmitting a second
channel for example, a woofer speaker supporting the MEMS. Further SSI de-
velopment and “enhancement” for, specifically Motorola DSP’s has been done
by Freescale introducing ESSI and ESAI. Both are able to transmit up to 32
channels per frame. As there are more wires needed for realization (min. 3)
compared to SSI and both are, in turn, used only for special applications and
not strong in market penetration they drop out.

Finally, MIPI standards SLIMBus and SoundWire are left as possible I2S and
I2C replacements. Both use a 2 wire multi-drop structure capable of wide config-
uration possibilities in the sense of audio channel and control data transmission,
as well as supporting different clock speeds. The interfaces are not strongly
present at the market until now which clearly would be a reason for no further
treatment. As SoundWire, especially, is a fairly new development there might
be an increased market penetration in the near future (TDK announces Micro-
phone with integrated SDW protocol in Jannuary 2020). SoundWire is dealt as
the successor of SLIMBus (see Alexander Khazin, 2018) although it has some
advantages like seamless clock frequency scaling. Those two standards present
the only possible solution of decreasing pin count, as well as the transmission
both audio and control data.

As a result, SoundWire interface is chosen to be implemented as a controller
port on a Field Programmable Gate Array (FPGA) for further testing reasons.
On-chip area is a key part of analysation. The slimmed down version of SDW

22

2 State of the Art

is designed in chapter 3 and implementation is shown in chapter 4. Further
results concerning SoundWire controller port are discussed in 4.4.

2.2 Audio Data Encoding Techniques

At the moment, audio data is transmitted via an I2S interface to Leda. Thus,
information is encoded in two’s complement. For implementation of a dif-
ferent encoding technique, data has to be converted back to the origin after
transmission for further processing. Data transmitted by the audio interface
has been taken into account for encoding consideration along with on-chip
communication. There are three different transmission variations. In the next
session those are discussed depending on the application.

2.2.1 Self-transition versus Coupling-transition

The impact of capacitive losses on transmission lines are described by two kinds.
Self-transitions are related to single wire transmission. Coupling-transitions are
treated in respect to parallel wiring having narrow spacing. As the first one is
especially important for connections to a chip, the second one treats an on-chip
influence. In the following both are further described.

Self-transition: The wire capacitance is responsible for energy losses causes
by switching the line on and off again. Power consumption increases by the
capacitive losses. External influences are not taken into account for self-transition
behaviour.

To get an idea of the capacitive behaviour related to a conductor, the Leda eval-
uation board has been taken into account. The conductors length was measured
by hand in Altium (PCB designer Program), leading to an overall length of
97.65mm. Using Saturn PCB Toolkit (Program for PCB related calculations), one
can calculate the conductors capacitance per centimetre. The parameters used
for the calculation are conductor width (0.2mm), conductor height (0.325mm)
and the frequency (12.288MHz) whereas latter has a minor impact on the ca-
pacitance. Conductor height describes the track distance to the ground plane.
As result 0.6981pF/cm has been calculated and used for further processing.
Additional to the capacitance one can output resistance by the used program
leading to a value of 0.3Ω.

Coupling-transition: Figure 2.9 shows capacitances related to a bus having
several parallel wires being close together. The capacitances of one to the ground
plane is named CL. The capacitance among the conductors is signed as CI.

23

2 State of the Art

Considering coupling transitions, one assumes that switching ON and OFF a
wire is additionally affecting wires besides the capacitive effect (CI). Depending
on the power level state of wires related to change of one conductor, interacting
capacitances are charged or discharged. The encoding technique OEFNSC
gives insight in this process and how this can be influenced. Generally spoken,
coupling transitions are triggered by self transitions.

Figure 2.9: Capacitances relevant using Bus systems

2.2.2 Potential Field of Application and Related Encoding
Techniques

Overall, there are three meaningful areas being considered for applying encod-
ing techniques.

On the left side of figure 2.10, the I2S interface is characterized. Herein, data is
transmitted serial. Switching signals at this point are related to self-transitions
(take a look at previous section 2.2.1).

The other is based on parallel wiring since these are on-chip connections.
Linking of the I2S interface and signal processing unit is again affected by
self-transition. Regarding conductors, after ADC and output of DSP, coupling-
transitions may have an influence due to a longer cabling distance.

Figure 2.10: Field of different encoding applications

24

2 State of the Art

2.2.3 Investigation of Data Encoding Techniques

For both, parallel and serial, three encoding variations have been tested. To
compare influences, two of them have been taken into account twice. Regarding
serial part, a so called pattern encoding has been tested based on the thoughts
of my supervisor and myself. The last one (OEFNSC), treats coupling transitions
as well, whereas all of the others just affected self-transitions. Tests were done
by using a sine signal at 1kHz without dc offset. An period of one second,
sampling the signal by 48000Hz and quantization done with 16 and 32 bit, has
been considered.

Serial:

Serial connections are used if lower wiring harness is important to reduce
area consumption as example. For data transport, time-division multiplexing is
applied. Thus, the clock speed needs to be increased if same data rate has to be
transmitted.

Binary Inversion: For binary inversion, one takes all logical values and switches
high ones to low and vice versa. If data is equally distributed, the outcome is
resulting in an overshoot. The same amount of switches will occur. Additional
logical circuitry is needed for inversion. Inverting binary words like this makes
no sense for reducing switches at serial transmission. One possible application
is reduction of ones or zeroes. But overall number of switches will stay the same.
Thus, an implementation is not meaningful at all but for reasons of comparison
and impact of encoding-expenditure, binary inversion for serial connection, is
listed.

Transition Inversion: This encoding describes a preliminary stage of later
pattern encoding. Considering a binary word like 01010101, this is the most
switching active number one can imagine for an 8-bit word. If the switches
counter exceeds a certain limit we may set to 4 (it’s major then the half of
maximum 7 switches per word), the encoding has to be applied. Therefore, all
pairs of 01 will be switched into 00 and all pairs of 10 into 11. Previous assumed
binary word results in 00000000 having no switches at all.

Pattern Encoding: Patterns are related to bit sets a binary word consists of.
Assuming a cipher 011000101, five toggles are needed for a transmission. Apply-
ing a pattern change like the following, 0110 remains constant. 0101 changes to
0000. The new pattern looks now like 01100000. A switching reduction from 5
to 2 occurred. There are several buttons to turn on for optimization. Pattern size
is one important variable and another is the decision threshold of switches since
an encoding has to be applied. Another consideration is a Volume depending

25

2 State of the Art

Serial:
org. −0000111100001111 inv. −1111000011110000

Parallel:
org. −0101 inv. −1010

−0101 −1010
−0101 −1010
−0101 −1010

decision threshold. Thinking about 16-bit word, if the Volume is set to −20
dBFS, at least the first 3 bit stays the same except the negation bit.

Parallel:

Implementation of parallel wiring is related to the on-chip connections in
our case (see 2.10). As described before (2.2.1) for parallel transitions both
effects ()self- and coupling-transitions) can be relevant. Binary and transition-
inversion are related to self-transitions. The so called Odd Even Full Normal
Self Coupling (OEFNSC) has been suggested for minimization of coupling
transitions.

Binary Inversion: Binary inversion for parallel wiring is based on the same
principle as serial with the difference being that each conductor transmits only
bits related to one position of binary numbers. Thus, an implementation of
encoding, including an dependency on previous word, is possible.

Previously bit words of size 4 in serial and parallel manners are displayed. As
one can see for serial alternative, only two bits on both ends are able to influence
switching. In contrast parallel transmission opens up the chance of reducing
toggle rate significantly.

Transition Inversion: Applying transition inversion encoding on parallel wires
can be improved, as well as binary inversion, by adding a dependency on
previously transmitted binary-word. Nevertheless, one has to keep the size of
patterns and related coding effort in mind.

OEFNSC: The power of Odd Even Full Normal Self Coupling (compare Chen-
nakesavulu, .Jayachandra Prasad, and Sumalatha, 2018 and Jafarzadeh et al.,
2014) lies in its potential of reducing self and coupling-transitions. Dynamic
power is then calculated in dependency of a factor αS and αC. CC is the capaci-
tance related to the interconnections, CS the capacitive load due to the substrate
and CL, the load capacitance.

26

2 State of the Art

Pdyn = (αS ∗ (CS + CL) + αC ∗ CC) ∗
VDD

2 ∗ FCLK

2
(2.1)

The coupling activity αC is calculated in relation to four different types of
switching. Coupling transitions are classified as Type-I, Type-II, Type-III, and
Type-IV in two wire models (take a look at table 2.2). Type-I coupling transitions
are happening when one of the interconnect switches and other interconnect
remains same. Type-II coupling transitions are happening when two intercon-
nects are switched simultaneously in opposite. Type-III coupling transitions
are happening when two interconnects are switched simultaneously. Type-IV
coupling transitions are happening when two interconnects are not switched.

Table 2.2: Different Types of Coupling

Time Type 1 Type 2 Type 3 Type 4

t-1 00,11,00,11,01,10,01,10 01,10 00,11 00,11,01,10
t 10,01,01,10,00,11,11,00 10,01 11,00 00,11,01,10

2.2.4 Encoding Results & Conclusion

Figures 2.11 (a-f) show computed results regarding switching activity α of
different encoding techniques. The graphics can be split into a left column (a,c,e)
related to serial encodings and a right one (b,d,f) related to parallel ones. Rows
distinguish different types of applied audio data. Primary (a,b) a noise signal
has been tested to get an independent insight on efficiency. The second row (c,d)
shows a sine signal including added noise. This should be more accurate to the
field of application in the end. In the last row (e,f) a sine sweep has been applied
without any noise. Each figure consists of three different encoding techniques
either BINV, TINV, Pattern or BINV, TINV, OENFSC which in turn are split
into using full scale dynamic range or −20 dBFS. This is marked in the legend
according to V = 30 and V = 3 based on applied output voltage ,where 30V will
be used rarely and 3V is the more common amplitude. Each of these shows then
the original toggle rate, the toggle rate after encoding and the switching after
encoding with included additional switches due to the encoding technique. For
all examples, additional lines have been assumed transmitting information if
encoding is applied rather than reducing bits of resolution. Calculated numbers
used for those graphics can all be found in the appendix B.

As already mentioned, at the beginning of previous section, binary inversion
for serial transmission (figure 2.11 a) has a negative influence on toggling
rate. Alpha stays nearly the same when encoding is applied and increases for
inclusion of coding related switching. ”Nearly” same due to lining up words,
each crossing from one bit-word to the next could cause a difference of one
toggle. Maximum 48000 switches (equally the number of samples) could add up

27

2 State of the Art

or lower the overall amount by this. Inverting bits can, in addition, cause a little
variation regarding the crossover. Level control has no influence on that just
like different signals. Compared to this, transition inversion shows an impact
although it’s little. Full scale audio switching can be reduced by 5.26%, whereas
it’s only 3.36% for standard application ratio. One has to keep relation to a
pure noise signal in mind. Audio variation effects are discussed later. Pattern
encoding performs best at this without taking a lower level into account for the
latter encoding related switching amount relativises results to equal.

Results for parallel encodings according a noise signal is shown in picture 2.11

b. Here, switching reduction by binary inversion has a significant influence. Full
scale noise can be reduced by almost 20%. For a lower noise level toggling is
decreased further to 71.8%. Including the additional expenditure for determin-
ing the encoding, this ends up in a reduction by 13.62% to 22%. Considering
0dBFS transition inversion performs similar to the serial one except the lower
level allows further reduction down to 84.9% (serial transition inversion incl.
overhead adjusts at 96.64%). Where serial considerations are extended by a
pattern encoding, parallel ones treat OEFNSC as addition. Toggling reductions
by 12.49% for full drive and 16.65% for a scaled level (including all encoding
switches) are possible.

The previously discussed has all been related to a pure noise signal. Extending
this by a sine-wave (figures 2.11 c and d) to simulate a more accurate transmis-
sion of audio music or speech signals (noise −20dB in relation to the sine-wave),
the following findings are significant. Binary, as well as transition-inversion, for
serial connection is nullified. Pattern encoding shows little optimization by a
maximum of 6.06% reduced switching. Looking at the parallel coding first two
can be neglected (2% to 3% improvement) and the OEFNSC overshoots original
toggles.

A sweep signal has been tested aswell. Depicted in figures 2.11 e and f, all
algorithms (with one exception) are either increasing basis switching amount or
equalling them. Single exception is full-scale serial pattern encoding showing
an improvement of about 10% reduced switching activity.

Overall, the investigation of those encoding algorithms didn’t show a common
thread throughout tested signals. Whereas noise related improvement can be
shown especially for parallel transmission lines inclusion of sine waves denied
primary refinements. According to this, no special audio data coding technique
is being suggested for integration into Leda.

28

2 State of the Art

(a) Noise Serial Encodings (b) Noise Parallel Encodings

(c) Sine+Noise Serial Encodings (d) Sine+Noise Parallel Encodings

(e) Sweep Serial Encodings (f) Sweep Parallel Encodings

Figure 2.11: Results of Encoding Algorithms

29

3 Design of the SoundWire
Controller Interface

Attention in this chapter is put on general setup and structure 3.4, the corre-
sponding components (3.1 & 3.2.2), integration on the audio-chip and want-
ed/needed SoundWire interface modifications (3.5 & 3.7). As there is no audio
component including a SoundWire controller interface on the market that al-
lows physical access (e.g. Intel 300 Chipset Intel, 2019) and configuration for
own setups (rarely companies such as Intel give insight into their data sheets),
the decision was made to implement the controller protocol on an FPGA and
operate a slave.

Slaves can be found more easily and whilst authoring this theses new were pre-
sented (TDK announced a microphone TDK, 2020). Cirrus Logic developed an
Audio Codec called CS42L42 (see CirrusLogic, 2019) allowing it to be controlled
via SoundWire. It’s decided to use Class-D Amplifier MAX98374 (MaximInte-
grated, 2018), produced by Maxim Integrated, as it’s in the scope of a potential
use-case for USound as well as it’s cheaper containing an Evaluation kit.

Detailed implementation and related upcoming problems, including further
approaches, are discussed in the next chapter, chapter 4.

Due to the previously mentioned lack of SoundWire controller interfaces on the
market (no fast switchover in prospect at the moment), possible applications
other than using it for LEDA setup and control were considered. Ganymede
is a speaker able to perform well in in-ear implementations. When it comes to
free field acoustic irradiation, there is a known lack of low frequencies. Audio
wearables such as glasses without transmission via bone contact will need
support by a woofer. This is a point for the novel interface to step in action.
Shown in picture 3.1, LEDA is still controlled by an I2C connection and audio
transmission is done using I2S. The lower part depicts a woofer amplifier, in our
case a MAX98374, being operated by the two wired SoundWire connection.

Whole implementation is done due to testing reasons. Thus, direct integration
into the current programmed LEDA is avoided. Interface placement on the
FPGA is explained in section 3.4. Following sections contain explanations for all
hardware components needed in order to accomplish the previous defined.

30

3 Design of the SoundWire Controller Interface

Figure 3.1: Future on-chip SoundWire application alternative

3.1 XEM7310 - Board

The XEM7310 is a compact USB 3.0 (SuperSpeed) FPGA integration module
featuring the Xilinx Artix-7 FPGA, 8 Gib (256 M x 32-bit) DDR3 SDRAM, two
128 Mib SPI Flash devices, high-efficiency switching power supplies, and two
high-density 0.8-mm expansion connectors. The USB 3.0 SuperSpeed interface
provides fast configuration downloads and PC-FPGA communication, as well as
easy access with our popular FrontPanel application and Software Development
Kit (SDK) (compare Sanchez, 2018).

There are different board versions available depending on features to be un-
locked. Also, the mounted clock is changing due to this. XEM7310-A200 is the
actual bought version including a low-jitter 200 MHz crystal oscillator attached
to the FPGA. Further upgrades to predecessors are increased number of Clock
Management Tile (CMT)’s, slices, RAM and MULT/DSP.

- CMT’s is the number of different clocks to be configured and used at
the same time

- A slice defines four 6-LUT including 8 D-FF’s
- The MULT/DSP is related to the calculation units in this case there are

740 DSP48E1 units
- Ram is the Block Ram used for storing large amount of FPGA data

(13,140Kib)

For physical input and output access a breakout board is needed. MB2 (Main
Board 2), designed for LEDA evaluation is not usable for this due to its special
design for the chip. Thus, basic board BRK7010 from Opal Kelly has been used
(see 3.1.2).

31

3 Design of the SoundWire Controller Interface

(a) XEM7310 (b) BRK7010

Figure 3.2: FPGA setup

3.1.1 ARTIX-7 - FPGA

ARTIX-7 FPGA, mounted on the XEM7310, was picked according to require-
ments and specification of LEDA. As it’s common for ASIC development, the
capabilities of such an FPGA are chosen much higher than actually needed
to avoid limitations in the development phase. Thus, additional integration of
the SoundWire interface in the current LEDA setup experiences no boundaries.
Special modifications are discussed later in 3.7. Most important is, for general
interface functionality, the availability of DDR flip-flops has to be given for
output and for input handling. Those are able to provide data on both clock
edges (see Output Double Datarate Register (ODDR)-register in 4.2.5).

3.1.2 BRK7010

The two layer breakout board BRK7010 (3.2 b) is designed for mounting either
the XEM7010 or XEM7310 on it. Two high density connectors are provided for
this. Each of those are split up into two areas of double row headers spaced by
2 millimetres. +5VDC powering can be done via this board or the XEM7310.
Additionally an JTAG interface is integrated.

Using this board, one is able to handle all 80 FPGA IO pins. This helped a lot in
debugging problems by usage of a SALEAE digital analyser.

3.2 MAX98374 Evaluation KIT

As slave device for testing the SoundWire interface, the MAX98374 class-D
amplifier was chosen. The evaluation kit consists of the MAX98734 (3.2.2)
board and a Audio interface (AUDINT 1 3.2.1) board. Both can be interlocked
via an 3x13 pins connector. Additionally an evaluation software is delivered.
MAX98374 can be packaged in either Wafer Level Package (WLP) or a Quad
Flat No Leads Package (QFN).

32

3 Design of the SoundWire Controller Interface

(a) MAX98374 (b) AUDINT1

Figure 3.3: MAX98374 Evaluation Kit

3.2.1 AUDINT 1

The audio interface board AUDINT 1 can be used to configure the MAX98374.
I2C and I2S interfaces are provided. Those can be controlled by a PC via the
USB connections to bring up audio and controlling data. Having the evaluation
software installed, one is easily able to configure the amp. Master clock sources
are being provided by this board. Different voltages (1.2 to 3.3) can be selected
for powering the evaluation board. There are two modes available. Demo mode
is used if no PC is available/wanted. Using customized firmware, it’s possible
to operate via one USB connector. For every other usage, the EVAL mode is
applied, controlled by a pc including relevant software. Regarding SoundWire
interface, there is no usage for having the AUDINT 1 board connected as there
is no controller interface present. Thus it’s possible to drive the board Class-
D amplifier in stand-alone mode as it was done for testing the SoundWire
protocol.

3.2.2 Class-D Amplifier MAX98374

The MAX98374 is a high-efficiency, mono Class D speaker amplifier featuring
dynamic headroom tracking (DHT) and brownout protection. As the power-
supply voltage varies due to sudden transients and declining battery life, DHT
automatically optimizes the headroom available to the Class D amplifier to
maintain a consistent listening experience. A wide 5.5V to 16V supply range
allows the device to exceed 16W into an 8Ω load. The flexible digital interface
supports either the MIPI SoundWire compatible interface for audio and control
data, or the PCM interface for audio data and a standard I2C interface for
control data. The PCM interface supports I2S, left-justified, and TDM audio data
formats at 16-, 32-, 44.1-, 48-, 88.2-, and 96kHz sample rates with 16-, 24-, and
32-bit data. In TDM mode, the device can support up to 16 channels of audio
data. A unique clocking structure eliminates the need for an external master
clock for PCM communication, which reduces pin count and simplifies board
layout. Active emissions limiting (AEL), spread spectrum modulation (SSM),
and edge rate control minimize EMI and eliminate the need for the output

33

3 Design of the SoundWire Controller Interface

Figure 3.4: ADAU1452

filtering found in traditional Class D devices. Thermal foldback protection
ensures robust behavior when the thermal limits of the device are reached.
When enabled, it automatically reduces the output power when the temperature
exceeds a user specified threshold.

This allows for uninterrupted music playback even at high ambient temper-
atures. Traditional thermal protection is also available in addition to robust
over-current protection. A flexible brownout-detection engine (BDE) can be
programmed to initiate various gain reductions, signal limiting, and clip func-
tions based on supply voltage status. Threshold, hysteresis, and attack/release
rates are programmable. The device is available in a 0.4mm pitch, 25-bump
waferlevel package (WLP), or in a 0.4mm pitch, 22-pin FCQFN package. The
device operates over the extended -40°C to +85°C temperature range (compare
MaximIntegrated, 2018).

3.3 ADAU1452

ADAU1452 is an automotive-qualified audio processor that far exceeds the
digital signal processing capabilities of earlier SigmaDSP devices. Its restruc-
tured hardware architecture is optimized for efficient audio processing (see
AnalogDevices, 2014).

ADAU1452 is not a must have for this project. It has been used after functional
testing SoundWire protocol to bring up I2S audio data to the FPGA further to the
novel interface and playback music over a speaker attached to the MAX98374.
A sine signal can be sent as well as connecting a mobile phone with 3.5mm
jack cable to it and provide any kind of audio. ADAU setup was done via USB
and SigmaStudio software. A pre setup configured by a employee of USound
was available just for this kind of application. In appendix C SigmaStudio setup
is pictured. Right side of this shows enable buttons to changing number of
transmitted channels. Audio jack input to the board is shown via the path called
FreqGen and on the upper paths different kinds of sine/noise sweep signals
can be adjusted and added up. For each path, a volume control is available.

34

3 Design of the SoundWire Controller Interface

3.4 SoundWire Module Integration (FPGA)

FPGA structure is mainly split into two parts. One concerning digital part of
Leda and the other responsible for control. It was essential to not interfere the
development of Leda. The controlling unit of the digital chip on FPGA was
found to be the best placement.

Before going into details, an overview of current structure is given. Figure 3.5
depicts the insight into upcoming description.

FrontPanel SDK is the physical frontend connecting the board via USB to the
PC. FrontPanel SDK allows the user to either download new FPGA configuration
or perform operations like register read write on the modules by a Python
script.

Mux BM Bus facilitates switching between digital Leda configuration or data
transfer to the control part of it.

Leda1 dig testmux is the digital part of Leda consisting in turn of I2S & I2C
interfaces, switched by the MUX, and modules like filters, upsamling, DCDC-
control and ADC-control.

PWM transmits information to the power stage whether to increase or de-
crease voltage according to the width of the pulse.

Leda1 ctrl is the controlling unit for Leda. Thus, both interfaces I2S and I2C
are present in addition to a realtime debug interface, a stimulus generator for
sine (and other specific signal forms) generation and an additional control block
including enable, clock GPIO’s and interrupt request handling. The modules
highlighted in red are the newly added sources, that includes the SoundWire
interface and a stimulus generator for it being a copy of the already existing
one. Modules within the Leda1 ctrl are connected via a Advanced Peripheral
Bus (APB) interface similar as in the digital Leda.

3.5 Common SoundWire Design Structure

This section is related to the general SoundWire-Controller interface IP by
Arasan (see Arasan, 2020). Other IP providers like cadence have little differences,
but overall it’s the same. Due to some restrictions and lowering expenditure thus
saving power, several modifications have been done and are discussed in section
3.7. The main structure of a SoundWire controller interface consists of three

35

3 Design of the SoundWire Controller Interface

Figure 3.5: Setup for Leda evaluation on the FPGA

subdivisions. These are: Transport, Framer and PHY. First one is responsible
for data handling to and from the module. The framer does everything about
mapping and de-mapping data, on transmission line to be transmitted or
received. PHY is related to physical interface part. Things like encoding and
bus clash detection are placed here.

3.5.1 Transport

Concerning the SoundWire module different ports for data, depending on field
of application, are included here. Especially, all audio data is provided in both
directions by those. In certain circumstances, data can be cached in a FIFO Reg-
ister in-between the ports and connected equipment. Furthermore, test signals
can be generated either static or Pseudo Random Binary Sequence (PRBS) ones.
Another important part of the Transport area is the ”Control Port”. The whole
setup and configuration of controller module is done in here. Operations like
reset or frame size changing is controlled by this. For communication an APB
slave is implemented writing to the internal and command registers. Bulk Reg-
ister Access (BRA) is used for a fast initial configuration of a SoundWire slave
providing more than one 8-bit register data (up to 511) per frame. Interrupts for
error handling and informing the main component of special states is captured
by the control port as well.

36

3 Design of the SoundWire Controller Interface

Figure 3.6: Arasan SoundWire Controller Block Diagramm (see Arasan, 2020)

37

3 Design of the SoundWire Controller Interface

3.5.2 Framer

The Framer is again split into two main sections. Control word is responsible for
all 48-bit related to the first column of a frame (BRA excluded). Particularly, the
operation sequences read, ping and write handling is done in here, including
the addresses and dynamic synchronization bits generation. Calculation of
parity is another task of the controlling interface, helping to detect bus clash
errors in PHY whether data can be stored or should be discarded. Core of the
whole protocol is a Mapper/Demapper. Each bit, no matter if it’s audio or
control data, is put to transmission by this module. Furthermore, all received
data has to be assigned to its place of destination. Shape control is necessary
after the primary setup (always 48x2 frame) to create other desired frame sizes.
Last part of the Framer is a so called ”Lane Map”. The interface is capable of
transmitting audio data of more than one device. This means more than one
data port is feeding/receiving data. Positioning of the data on a frame is done
via this lane mapper.

3.5.3 PHY

The third block of this overview is the physical connection with other SoundWire
devices. Modified NRZI encoding and decoding belongs to this. Testing features
for PHY and Bus Clash detection related to the parity calculation are further
blocks in here. Clock handling at start-up or pausing while the slave is working
in stand-alone mode or being switched off is placed in PHY as well. If the
reference clock signal is too fast or too slow, the clock generation can be done
here and even slowing or speeding up the clock is possible.

3.6 Measurement and Supply Hardware

3.6.1 SALEAE - Digital Analyser

SALEAE develops signal analysers specially for digital signals. Still, analogue
measurement is possible but for that a much lower sampling rate available
being not capable to show 12.288MHz signals. Thus, analogue testing has been
done using a Gwinstek GDS-2204A. A Logic Pro 8 device has been provided
by the company for development phase including two test lead sets, four lines
each, capable testing 100MHz digital signals.

3.6.2 Oszilloscope

For analogue measuring the signals, a Gwinstek GDS-2204A was available.
This oscilloscope is capable of displaying digital signals by using a plug-in

38

3 Design of the SoundWire Controller Interface

card. Unwieldiness and a poor overview using several digital inputs lets the
previously mentioned SALEAE come into considerations.

3.6.3 Power Supply

HMC 8043, developed by Rhode&Schwarz, has been used as a power supply
due to its capability of outputting three different voltages, whereas at least two
(1.8V and 10V) were needed.

3.7 Modifications

Several modifications were implemented compared to previous controller struc-
ture. This section discusses those as well as hardware modifications such as
ferrite bead de-soldering on XEM7310. All changes here were known and con-
sidered before actual implementation began. Some special effects are coming up
in the development phase. Those are explained in the implementation chapter.

3.7.1 XEM7310

Necessary for a functional SoundWire implementation is providing 1.8V for
signal transmission. The XEM7310 allows setting different I/O voltages to
support various standards. Installed on the board are ferrite beads to both
VCCO banks attaching 3.3V supply. Thus, de-soldering ferrites is inevitable
to prevent destructing devices. Two ferrite beads (FB8 & FB9) are placed on
the board. FB8, shown as blue ring in figure 3.2a is responsible for SoundWire
development. The power of 1.8V is supplied then by the additional onboard
connection shown as yellow in 3.2b.

3.7.2 MAX98374

When connecting MAX98374 to a SoundWire compatible controller interface,
some hardware configuration must be done. Internal behaviour of the amp
differs as well due to fact register handling is done by the same interface.

Hardware Modification

Referring to evaluation kit MAX98374 development board is used in stand-alone
setup without the AUDINT 1 board being connected.

39

3 Design of the SoundWire Controller Interface

Figure 3.7: Back Side of MAX98374

Wiring: FPGA output is conjuncted by two wires to the Digital Audio Input
(DAI) designated J3 header. Pin 2 connects clock whereas 6 is the data line. To
avoid floating ground potential one of the pins 1,3,5,7 has to be additionally
applied to the XEM board. Furthermore, wires for powering the board and
supply for the speaker were put to DVDD (1.8V) and PVDD (10V). Digital
amplifier outputs are FOUTP and FOUTN. A 8Ω dynamic speaker is plugged
in capable processing 16W according to the specification.

Soldering: The possibility to connect more than one amplifier, of the same
kind, to a SoundWire (or I2C) interface demands a distinct characterisation.
Integration of a slave device unique ID enables this. On MAX98374, jumper JU6
is responsible for that. 0Ω resistors have to be placed on the board according
to table 7 in the specification (marked on the board as shown in figure 3.7)
depending on desired device ID. Upon delivery, no pre-configuration is done
and all connections related on unique ID are openly circuited. In this case, only
one slave is put together, thus placing R21 and R25 ,meaning short-circuit them,
is sufficient (green rectangle in figure 3.7).

Software Modification

Software modification for a correct FPGA setup was necessary as the registers
of the SoundWire interface are now included. The register placement has to be
described for enabling the APB bus access.

Python Leda Control Software: For debugging Leda, a large amount of
python software has been implemented. Using this, a direct ”live” connec-
tion via the USB Front Panel SDK to the FPGA further the APB bus in the
Leda Control part is enabled. Software for the novel interface is extended as
following.

40

3 Design of the SoundWire Controller Interface

Instantiation of Modules: Both new modules (StimGEN & SDW Controller)in
the Leda control part got their own address assigned to be independently
accessible.

Listing 3.1: extension
1 . . .
2 SDW ADDR = 0 x2500

3 STIMGENSDW ADDR = 0 x2600

4 def i n i t (s e l f) :
5 . . .
6 s e l f . sdw = f p g a r e g i s t e r . FPGA Reg sdw ()
7 s e l f . sdw . applyAddrOffset (s e l f .SDW ADDR)
8 s e l f . stimgensdw = f p g a r e g i s t e r . FPGA Reg stimgen ()
9 s e l f . stimgensdw . applyAddrOffset (s e l f .STIMGENSDW ADDR)

10 re turn
11 def getRegName (s e l f , addr) :
12 . . .
13 reg = s e l f . sdw . getRegName (addr)
14 i f (reg != ”−”):
15 s re turn ”SDW ” + reg
16 reg = s e l f . stimgensdw . getRegName (addr)
17 i f (reg != ”−”):
18 re turn ”STIMGENSDW ” + reg
19 re turn ”unkown”

Testcase Config. extension: For accessing implemented configuration files over
the Graphical User Interface (GUI) adding the SDWMaster paraphrase.

Test configuration: For setting the registers test configuration register files are
being created. Several, such as the listed below, were added to setup the de-
vices.

Listing 3.2: Registerconfig
1 def test SDWMasterWrite00GLOBEN (s e l f , param str ing =”−1”):
2 ”””[No Parameter] , Write Global Enable ”””
3 reg sdw = s e l f . fpga . reg . sdw
4 s e l f . fpga . sim . i n f o (” Write Global Enable ”)
5 s e l f . fpga . bm write (reg sdw .SDW SLVDEV ADDR, 0 x00000001 , 1)
6 s e l f . fpga . bm write (reg sdw .SDW SLVLOW ADDR, 0 x000000 f f , 1)
7 s e l f . fpga . bm write (reg sdw .SDW SLVHIGH ADDR, 0 x00000020 , 1)
8 s e l f . fpga . bm write (reg sdw . SDW SLV ADDR, 0 x00000001 , 1)
9 s e l f . fpga . bm write (reg sdw . SDW SLV OP ADDR, 0 x00000002 , 1)

All processes behind python GUI were already implemented and didn’t require
further action.

Register Modification: In contrast to later discussed registers of the Sound-
Wire controller, this part concentrates on slave register values to be modified.
MAX98374 registers are separated in ones belonging to SoundWire slave inter-
face and others to general controlling. In turn, SoundWire registers are split up
in audio related Data Port (DP) and essential ones Slave Control Port (SCP) for
start-up and functionality. Be aware of different nomenclature of hexadecimal
numbers. In documentations, often ”0x” as separator before the actual number
is used. For System Verilog primary number defines bit size followed by an ”’h”
and then the actual number is set (0x0001 vs. 4’h0001).

SoundWire SCP:
To establish a connection and configure any of the registers on MAX98374 slave,
the very first change is due to the enumeration phase classifying the slave by
a Device Number 1 - 11. Register 0x046 with a POR 0x00 will be set to 0x01.
All other SCP related values are not varied by the controller (in the case of this

41

3 Design of the SoundWire Controller Interface

thesis) but some give behavioural information about the slave like the 0x0041

interrupt register.

SoundWire DP:
The data port registers shall be setup before enabling audio transmission and
playback. If the on-chip signal generator is used this can be skipped. DP1 and
DP1 - Bank 0 registers need to be configured such that the slave knows the
position of audio data in a frame. POR value 0x20 is correctly set for 0x0102
register specifying direction of data transmission and kind of transportation.
Register 0x0103 needs to be set to 0x0F for 16-bit audio data. Modifying 0x0120
to 0x01 will start data receiving for the amp. If more than one sample is being
transmitted within one frame, the incremental can be determined by the sample
interval 0x0122 & 0x0123 in the list. This is not used in the setup, thus it’s
configured to 0x5F repeating after one frame (96-bit). Registers 0x0124 - 0x0126
are set to 0x03, 0x00, 0x11.

General Control Register Map:
For audio playback following setup has to be configured:

0x20FF Global Enable => 0x01
0x2043 Speaker Enable => 0x01
0x2025 Interface Mode => 0x03
0x2028 Speaker Path Sample Rate => 0x80
0x203D Speaker Volume => 0x6F
0x2040 Tone Generator => 0x03

The last register is only set if signal generation by the tone generator is wanted
instead of transmitting it via the interface additional.

3.8 SoundWire-Controller Design

Inspired by the Arasan block design, the result for implemented controller is
shown in figure 3.11. Some indispensable changes had to be made especially
when referring to clocking.

3.8.1 Clocking

To establish a communication channel between FPGA SoundWire controller and
the MAX98374 a clock signal of 12.288MHz has to be provided. Leda is using
a 41.472MHz clock. As there is no possibility to generate an integer divided
SoundWire clock signal, the clock generation was done with an extra unit of
available clock management tile on the FPGA. If this system is being integrated
in the audio chip, either a change of the used clock is required or an additional
Phase Locked Loop (PLL) has to be implemented. Dividing the Leda system

42

3 Design of the SoundWire Controller Interface

clock by 27 delivers an 1.536MHz clock. Using a PLL and increasing this by
factor 8, the necessary clock can be produced.

The clock module was generated by the Xilinx Clocking Wizard (6.0). A 100MHz
input is used to acquire desired 12.288MHz. Thus, the clock is depicted in a
separated block in the diagram.

3.8.2 Transport

Modifications of modules related to the Transport block were unavoidable as a
result of clocking issues, in respect to arasan design, discussed in section 3.5
before. Data provided by the system has to be safely handed over using Clock
Domain Crossing (CDC) to avoid meta-stability conditions. Referring to figure
3.11 coloured in white, all data in system clock domain is processed. The orange
blocks are driven by the 12.288MHz SoundWire clock.

Audio data is provided at the Data Port. An AXI streaming interface is respon-
sible for data requesting and delivery. Three connections namely update, data,
valid are necessary. The update line is requesting for new set of data. Confirm-
ing new audio data is done by the valid connector. Third is the conjunction
of data to be implemented in desired sizing according the audio data. AXI
streaming interface is connected to a First In First Out (FIFO). As soon as Data
is taken from the FIFO new data is being requested by the AXI interface. The
idea behind this is collecting 2-3 samples and transmitting them in a package
per frame at a lower clock speed. The actual implemented design is not aware of
clock changes yet. Thus a FIFO is not crucial. Important for later considerations
and the conclusion of this thesis is the implementation effort of such a FIFO
(chapter 4.4).

Second communication port is the APB consisting of 10 lines. Already imple-
mented for Leda, only little name and register changing had to be done for
further module connection. Via this, all register read and write instructions
are processed. The main difference of overall connections in respect to the
specification is omitting a PSTRB (Peripheral Strobe = enabling sparse data
transfer on a write data bus) line.
An in-depth description of both interfaces can be found in Xilinx, 2011 and
ARM, 2004.

Register: SoundWire registers are structured in 8bits. Specified in MIPI Al-
liance, 2019, a placement of them should be done according to this. MAX98374

slave applied the address ranges in that way. As following, a controller interface
is being implemented for special application and integration into an already
existing system and the common register map is obsolete.
In Appendix E, the whole registry design is shown. Included in the list are
essential ones as well as not implemented ones, but reserved for later consider-
ation (e.g. all interrupt requests can be neglected). The list contains Addresses

43

3 Design of the SoundWire Controller Interface

, Register Names, Bit Names, Access, HW, HW-trigger, Privilege, MSB, LSB,
Reset and a Description:

- Address This is the value for register entries to be stored. The
range is given by the implementation specification of
Leda. Each module has a possible address range of
8’h00 to 8’hFF. For a higher address range a further
instance has to be made.

- Register Name 8-bit register names
- Bit Name The name of available sub grouping down to one bit

in each register
- Access Information about possible methods of accessing the

bits by the APB bus. Either read -r , write -w or both
rw is possible

- HW Described is the HW register access. data = can be
modified by hardware, cfg = hardware modification
not possible, const = constant value provided by HW,
pw1 and pw0 are used for single bit fields creating a
pulse if a one or zero are written to that bit

- HW-Trigger Triggers signalling a r, w, or rw access by APB
- Privilege Privilege modes are used to avoid unwanted access to

critical registers (no relevance here)
- MSB Is the Most Significant Bit of the bit subgroup
- LSB Is the Least Significant Bit of the bit subgroup
- Reset The value of the register after resetting the system
- Description Information about each register entry

Special registers are Addresses 8’hD0 - 8’hD5. Those are used to read or write
bit fields of MAX98374.

3.8.3 Framer

The Framer is responsible for a correct frame shape and mapping the control
data on the frame as well as audio data. Implementation does not necessarily
need any other frame shape than a required 48x2 form for the start-up thus no
other shapes are made for configuration. Further modules and functions placed
here are two Finite State Machine (FSM)’s (one for command handling and
one for the start up enumeration phase), a PRBS pattern creation for dynamic
synchronisation, a Bus clash detection (responsible for resetting in extreme
conditions) and a stream synchronization which is not implemented as it’s not
essential.

44

3 Design of the SoundWire Controller Interface

Ping Read

Write

Figure 3.8: Read, Ping, Write - Finite State Machine

3.8.4 FSM

Two finite state machines, one for the enumeration process and one for the
general functionality had to be designed. Figure 3.8 depicts the FSM responsible
for choosing the command words to be transmitted. Changing between each
available state without restrictions is possible. The SoundWire controller in idle
state sends ping commands as long as no new slave has been attached or no
read or write commands have to be sent.
Thinking about the later discussed enumeration process starting with pings.
When a slave is attached, read commands have to follow and afterwards a write
to a slave register is necessary. In the end, the process jumps to the ping state
again.
Hard implemented sequences of register read and writes can be executed. In
case of doing incremental read or writes using the Python software, one has to
consider the I2C, APB interfaces and, additionally the clock domain crossing.
Thus, in between write and read commands always some frames having a ping
command will be transmitted.

Enumeration describes the process in a start-up phase between controller and
the attached slave. Without successful enumeration, no communication is possi-
ble. This includes at least one ping (Idle), six read (R1-R6) and one write (W)
command. Pinging is necessary to see whether a slave is attached or not. This
is being signalled in the SlaveStat00 bit fields. Slaves demanding for enumera-
tion will indicate this in intended frame section. Included in the enumeration
process is a de-attaching functionality implemented in each slave to prevent
wrong communication attempts. The different stages of enumeration are listed
below:

45

3 Design of the SoundWire Controller Interface

1) Ping: Slave signals ready for enumeration state
2) Read: Controller reads SCP DevId 0 register
3) Read: Controller reads SCP DevId 1 register
4) Read: Controller reads SCP DevId 2 register
5) Read: Controller reads SCP DevId 3 register
6) Read: Controller reads SCP DevId 4 register
7) Read: Controller reads SCP DevId 5 register
8) Write: Controller writes to Device Number register

This sequence has to be followed strictly. Each interruption shall end in aborting
the process and restarting it if the slave is still attached, rather than retrying a
command at a advanced stage of enumeration. The reading submits integrated
and unchangeable hardware information about the slave. Last command is
necessary to give the slave a name to be remembered by the controller and for
distinction if other slaves (up to 11) would have been attached.

R1

R2

R3

R4

R5

R6

Idle

W

Figure 3.9: Enumeration Finite State Machine

3.8.5 Synchronization

Each control-word includes synchronization bits for a stable connection. Slaves
can derive the current position in a frame by them. The synchronization consists
of two parts. The static sync-word is transmitted in every frame on the same
position in the control word. For the dynamic pattern, a PRBS has to be imple-
mented. Using a Linear Feedback Shift Register (LFSR), the required dynamic
words can be generated in the desired sequence. Four Flip-Flops starting in state
1 each. The end of a frame signals enables generation of the next pattern. Input

46

3 Design of the SoundWire Controller Interface

Figure 3.10: Sequence of Dynamic Synchronisation Patterns

of FF two is the output of the first. This sequence is continued for the following
Flip-Flops. Output of FF number three and four are feedback including a XNOR
to the input of FF one. Depicted in 3.10 is one run through the pattern sequence
to be generated.

3.8.6 PHY

PHY is the module responsible for a DDR transmission. Controlling the ODDR
and Input Double Datarate Register (IDDR) is implemented here. Encoding the
NRZI and in combination the parity control was specified in the PHY to allow
a fast reaction time (max 2 clk periods).

ODDR and IDDR are used to handle the signal output for both clock edges.
One Flip-Flop is not aware of driving signals like this. Thus instantiating those
dedicated registers was necessary. FPGA’s include those functional modules in
their Output Logic (OLOGIC) and Input Logic (ILOGIC). Each in turn can be
split-up into two FF’s and two MUX’s. The block in-depth description can be
found in Xilinx, 2018. Configuration modes OPPOSITE EDGE and SAME EDGE
are valuable for timing issues.

- OPPOSITE EDGE: The date inputs are sampled at both rising and
falling clock edges

- SAME EDGE: Both data inputs to the ODDR are sampled at the
same time

The opposite edge is used for outputing the SoundWire signal. As the data
line can be driven by a master and slave having different driving slots, the line
switching has to be considered in the encoding for each other. Thus, the time
between rising and falling edge is needed. For the input signals, this can also
be applied.

Bus holder is another element placed in PHY. SoundWire connections submit
their information by changing the signal level. If no informational content has
to be transmitted, accordingly zero sequences, the voltage on the line must not
switch. A combination of two twisted inverters enable such a behaviour. The
bus-holder needs to be placed after the OLOGIC or before ILOGIC block.

47

3 Design of the SoundWire Controller Interface

Figure 3.11: Block Diagram of Implemented SoundWire Controller

48

4 Implementation and Evaluation of
the SoundWire Controller
Interface

In this chapter, the detail interface implementation is described. Displayed code
is written in System Verilog language. Xilinx Vivado 18.3 was the software used
for programming. In the following section, 4.1, some basic styles of System
Verilog code and the cell/block they will result in are shown.

4.1 System Verilog Basic

Each module is defined at the beginning by its inputs and outputs (lines 3-9
in 4.1). System Verilog is capable of recognizing net-types. To be aware and
self responsible of the actual design, it’s possible to prevent this by setting a
‘default nettype none in front of a module. This can be seen in the first line of
the example code snipped. At the end this must be reverted ‘default nettype
wire. Definitions like registers for counting, which are only used in this module,
are being placed below (lines 11-12). Afterwards, functional programming is
done.

Listing 4.1: example code snipped of System Verilog language
1 ‘ d e f a u l t n e t t y p e none
2

3 module sdw . . . (
4 input wire sdw clk ,
5 input wire sdw reset ,
6 input wire sdw x ,
7 output wire sdw y ,
8 output reg [4 : 0] sdw o
9) ;

10

11 reg [3 : 0] reg a ;
12 reg [3 : 0] reg b ;
13

14 a l w a y s f f @(negedge sdw clk or negedge sdw reset) begin
15 i f (˜ sdw reset) begin
16 reg a <= 4 ’ b0000 ;
17 reg b <= 4 ’ b0000 ;
18 end e l s e begin
19 i f (sdw x) begin
20 reg a <= reg a + 1 ’ b1 ;
21 reg b <= reg b + 2 ’ b10 ;
22 end
23 end
24 end
25

26 always comb begin
27 sdw o = reg a + reg b ;
28 end
29 endmodule
30 ‘ d e f a u l t n e t t y p e wire

49

4 Implementation and Evaluation of the SoundWire Controller Interface

Figure 4.1: Generated Flip-Flop and Combinatorial Blocks

Flip-Flop

Example 4.1 shows how to generate a Flip-Flop by adding ff to the always state-
ment. A clock input ”sdw clk” and a reset signal ”sdw reset” are mandatory.
For proper functionality, all signals shall be set to a value by the reset signal to
avoid unpredictable conditions. In this case, this is done by negative edge of
the signal. After reset conditions, the intended functionality can be set. reg a is
incremented by a value of one in binary and reg b by two. Line 19 indicates a
additional enable input for the FF. Both registers are incremented only if this is
true.

Combinatorial

Another block integrated in the example is a combinatorial. reg a and reg b are
added up and stored to sdw o. Always comb blocks are often used for case
statements e.g. a test multiplexer.

Further, two important behaviours are additionally shown in the example. There
is a significant difference between ”=” and ”¡=” statements. Primary is a so
called blocking assignment meaning the code is being handled in sequences. The
other is a non-blocking assignment. Those can be processed simultaneously.

4.2 SoundWire Implementation

In the following, not the whole code is being displayed but valuable snippets
have been taken out and are discussed.

4.2.1 Top

Instantiation of all sub-blocks is done in the SoundWire top module. Signals
are passed trough and split up here. By setting the right register, a switch from
audio data, generated by the stimgen module to the data via I2S, interface can
be done.

50

4 Implementation and Evaluation of the SoundWire Controller Interface

Listing 4.2: Audio Data Switch
1 . . .
2 3 ’ h0 : begin // STIMGEN
3 s d w d p t x s l v t d a t a i = s d w d p t x s l v s t i m g e n t d a t a i ;
4 s d w d p t x s l v t v a l i d i = s d w d p t x s l v s t i m g e n t v a l i d i ;
5 sdw dp tx s lv st imgentready o = sdw dp tx s lv t ready o ;
6 end
7 3 ’ h1 : begin // I2S
8 s d w d p t x s l v t d a t a i = s d w d p t x s l v i 2 s t d a t a i ;
9 s d w d p t x s l v t v a l i d i = s d w d p t x s l v i 2 s t v a l i d i ;

10 s d w d p t x s l v i 2 s t r e a d y o = sdw dp tx s lv t ready o ;
11 end
12 . . .

Testmux

For testing reasons, a so called Test-MUX is integrated into the top module.
By this, MUX, an easy swap between signals intended for output is realized.
Minimizing the actual amount of output pins as well as increasing the possi-
bility to display a huge number of signals via them is the advantage. In this
case a 8-bit (per signal) test-MUX is implemented. mcp test mux q (line 3) is
the register responsible for switching the signal set. Listed in 4.3 is the first
and later mostly used signal set (lines 7-15). Especially, the accurate slave sta-
tus slv ctrl word slv stat 01, physical output sdw phy data bit dd i phy o and
displaying enumeration steps by next enum step trig was helpful.

Listing 4.3: Testmux
1 always comb begin
2 t es t mux val = 16 ’ h0000 ;
3 case (mcp test mux q)
4 4 ’ h0 : begin
5 t es t mux val = 16 ’ h0000 ;
6 end
7 4 ’ h1 : begin
8 t es t mux val [0] = sdw clk o ;
9 t es t mux val [1] = sd w fr am e da ta b i t i on e ;

10 t es t mux val [2] = c n t r e s e t ;
11 t es t mux val [3] = sdw phy data bi t dd i phy o ;
12 t es t mux val [4] = sdw frame data b i t i two ;
13 t es t mux val [5] = sd w fr am e da ta b i t i on e ;
14 t es t mux val [6] = next enum step t r ig ;
15 t es t mux val [7] = s l v c t r l w o r d s l v s t a t 0 1 [0] ;
16 end

4.2.2 Control

Implementation of the SoundWire control part included four subcategories:
Handling the clock (along with turning it ON and OFF synchronously), the
start-up POR condition processing, a finite state machine and clock domain
crossing for reading and writing slave registers.

Clock Core of each interface is a proper performing master clock. To process
the MAX98374, a 12.288MHz SDW-Clock is necessary. As mentioned in design
chapter 3, the clock is generated by an extra module (created using a Vivado
clocking wizard) on the FPGA and couldn’t be created by an internal divider due
to a non-integer division. Configuration of the SoundWire module is all done by
the 41.472MHz system clock. That includes switching the generated sdw-clock

51

4 Implementation and Evaluation of the SoundWire Controller Interface

ON and OFF. Doing so a synchronization of the clock enable signal is needed.
In the code snippet sdw master clk i represents the generated 12.288MHz clock.
mcp ctrl clkoff i is the register related switch in system clock domain. By this
mcp ctrl clkoff en is generated. A synchronized signal, capable of turning ON
and OFF the clock, avoids metastability (lines 8-15).

Listing 4.4: SDW Clock
1 s t d s y n c 2 f f r n u sdw clk en sync (
2 .RN (sd w r es e t n i) ,
3 .CLK(sdw master c lk i) ,
4 .D (m c p c t r l c l k o f f i) ,
5 .Q (m c p c t r l c l k o f f e n)
6) ;
7

8 always comb begin
9 i f (m c p c t r l c l k o f f e n) begin

10 s d w d a t a c l k s i g = sdw master c lk i ;
11 end e l s e begin
12 s d w d a t a c l k s i g = 1 ’ b0 ;
13 end
14 end

POR At each start-up or reset, the controller performs a special procedure. A
sequence of at least 4096 continuous ones has to transmitted on the data line.
Therefore, DDR has to be considered. A high level of sdw ctrl por start o (line 4)
is the stimulus for a power on reset start condition till sdw ctrl por end o goes
high. This signal is the result of the counter displayed from row 11 to 22 and the
combinatorial afterwards. As soon as the counter attains hexadecimal 12’h7FF
sdw por cnt ff is being reset and the POR-phase ends thus sdw ctrl por end o
is on high level (line 25). Hexadecimal 7FF is 2048 in decimal. Due to the fact
that in one clock period two bits are being transmitted, this results in 4096
bits.

Listing 4.5: POR
1 a l w a y s f f @ (negedge sdw data clk or negedge s d w r e se t n i) begin
2 i f (˜ s dw r es e t n i) begin
3 s d w c t r l p o r s t a r t o <= 1 ’ b1 ;
4 end e l s e begin
5 i f (sdw ctr l por end o) begin
6 s d w c t r l p o r s t a r t o <= 1 ’ b0 ;
7 end
8 end
9 end

10

11 a l w a y s f f @(negedge sdw data clk or negedge s d w r e se t n i) begin
12 i f (˜ s dw r e se t n i) begin
13 s d w p o r c n t f f <= 12 ’ h000 ;
14 end e l s e begin
15 i f (sdw ctr l por end o) begin
16 s d w p o r c n t f f <= 12 ’ h000 ;
17 end e l s e
18 i f (s d w c t r l p o r s t a r t o) begin
19 s d w p o r c n t f f <= s d w p o r c n t f f + 12 ’ h001 ;
20 end
21 end
22 end
23

24 always comb begin
25 sdw ctr l por end o = (s d w p o r c n t f f == 12 ’ h 7 f f) ;
26 end

Register FSM In this section the finite state machine for processing slave
register read and write commands is discussed. The first lines (5-11) of the code
are reset values of following signals.

52

4 Implementation and Evaluation of the SoundWire Controller Interface

- sdw slv rdy: Low if an read or write process is going on
- sdw slv read start: Signals starting a read command
- sdw slv write start: Signals starting a write command
- sdw slv op read den ff: Signals finished read command
- sdw slv op write den ff: Signals finished write command

At the beginning, the FSM stays in IDLE mode. If mcp ctrl enumen i (row 14)
is set, enumeration can not be processed due to repeatedly IDLE state. As soon
as enumeration is done, read or write commands can be processed depending
on the slaves ready status. Incoming trigger slv rw trig causes a jump to line
26 CMD DEC. Determined by slv rw, either a read or write command will
follow. Exceptions are if both emerge at the same time or the content of slv rw
is low. A jump to SLV ERROR and further to IDLE mode will follow restarting
requests.

As the FSM reaches CMD READ EXE, sdw slv read start which is part of
cmd read exe state is set high. This is needed to grant a successful transmission
via the clock domain crossing explained in the next section. Response by the
CDC in sdw slv op read den ff leads to a finished read command, thus a jump
to CMD DONE (row 86) where signals are set to default mode again and further
to IDLE happens. The same procedure is followed by a write condition.

Listing 4.6: Register FSM
1 always comb begin // f f @(posedge c l k or negedge s d w r es e t n i) begin
2 i f (˜ s dw r es e t n i)
3 f sm irq = 1 ’ b0 ;
4 next = IDLE ;
5 sdw slv rdy = 1 ’ b0 ;
6 s d w s l v r e a d s t a r t = 1 ’ b0 ;
7 s d w s l v w r i t e s t a r t = 1 ’ b0 ;
8 sdw slv op read den f f = 1 ’ b0 ;
9 s d w s l v o p w r i t e d e n f f = 1 ’ b0 ;

10 case (s t a t e)
11 IDLE : begin
12 i f (mcp ctrl enumen i) begin
13 next = IDLE ;
14 sdw slv rdy = 1 ’ b1 ;
15 end e l s e
16 i f (s l v r w t r i g) begin
17 next = CMD DEC;
18 sdw slv rdy = 1 ’ b0 ;
19 end e l s e begin
20 next = IDLE ;
21 sdw slv rdy = 1 ’ b1 ;
22 end
23 end
24 CMD DEC: begin
25 sdw slv rdy = 1 ’ b0 ;
26 case (slv rw)
27 SLV IDLE : begin
28 next = IDLE ;
29 f sm irq = 1 ’ b0 ;
30 s d w s l v r e a d s t a r t = 1 ’ b0 ;
31 s d w s l v w r i t e s t a r t = 1 ’ b0 ;
32 sdw slv op read den f f = 1 ’ b0 ;
33 end
34 SLV READ : begin
35 next = CMD READ EXE;
36 f sm irq = 1 ’ b1 ;
37 end
38 SLV WRITE : begin
39 next = CMD WRITE EXE ;
40 f sm irq = 1 ’ b1 ;
41 end
42 SLV ERROR : begin
43 next = IDLE ;
44 f sm irq = 1 ’ b0 ;
45 s d w s l v r e a d s t a r t = 1 ’ b0 ;
46 s d w s l v w r i t e s t a r t = 1 ’ b0 ;
47 sdw slv op read den f f = 1 ’ b0 ;
48 end
49 d e f a u l t : begin

53

4 Implementation and Evaluation of the SoundWire Controller Interface

50 next = IDLE ;
51 f sm irq = 1 ’ b0 ; ;
52 end
53 endcase
54 end
55 CMD READ EXE: begin
56 sdw slv rdy = 1 ’ b0 ;
57 sdw slv op read den f f = 1 ’ b0 ;
58 case (cmd read exe s ta te)
59 2 ’ b00 : begin
60 next = CMD READ EXE;
61 s d w s l v r e a d s t a r t = 1 ’ b1 ;
62 sdw slv op read den f f = 1 ’ b0 ;
63 end
64 2 ’ b10 : begin
65 next = CMD READ EXE;
66 s d w s l v r e a d s t a r t = 1 ’ b1 ;
67 sdw slv op read den f f = 1 ’ b0 ;
68 end
69 2 ’ b11 : begin
70 next = CMD DONE;
71 sdw slv op read den f f = 1 ’ b1 ;
72 end
73 2 ’ b01 : begin
74 next = CMD DONE;
75 sdw slv op read den f f = 1 ’ b1 ;
76 end
77 d e f a u l t : begin
78 next = IDLE ;
79 sdw slv op read den f f = 1 ’ b0 ;
80 end
81 endcase
82 end
83 CMD WRITE EXE : begin // Write R e g i s t e r to Slave
84 . . .
85 end
86 CMD DONE: begin
87 next = IDLE ;
88 sdw slv rdy = 1 ’ b0 ;
89 f sm irq = 1 ’ b0 ;
90 s d w s l v r e a d s t a r t = 1 ’ b0 ;
91 s d w s l v w r i t e s t a r t = 1 ’ b0 ;
92 s d w s l v o p w r i t e d e n f f = 1 ’ b0 ;
93 sdw slv op read den f f = 1 ’ b0 ;
94 end
95 endcase
96 end

Register CDC Processing the steps of enumeration is captured all over in
SoundWire clock domain as no input from the outside is required. Thus, crossing
clock domains is not necessary. In case of transmitting data to slave registers,
by the APB related registers in system clock domain, a switch to SDW clock
is unavoidable. To prevent metastability, a CDC has been implemented in
accordance to the example block diagram 4.2.

In the following, actual code snippets related to each part of the block diagram
will be listed and discussed to get into the functionality.

At the beginning, a start signal reg cdc start is captured by the FF (sign 1).

Listing 4.7: Register CLock Domain Crossing Start Signal
1 a l w a y s f f @(posedge c l k or negedge s dw r e se t n i) begin
2 i f (˜ s dw r es e t n i) begin
3 r e g c d c s t a r t f f <= 1 ’ b0 ;
4 end e l s e begin
5 r e g c d c s t a r t f f <= r e g c d c s t a r t ;
6 end
7 end

The resulting Q signal reg cdc start ff is part of two further steps that are both
still in system clock domain. Information necessary for reading or writing slave
registers like addresses, device number, op-code and data will be ”prestored”
by FF’s when the start signal enables this (see 4.8 line 7). Shown in the block
diagram, this captured by the big sized flip-flop numbered as 2.

54

4 Implementation and Evaluation of the SoundWire Controller Interface

Figure 4.2: Clock Domain Crossing

Listing 4.8: Register CLock Domain Register Data
1 a l w a y s f f @(posedge c l k or negedge s dw r e se t n i) begin
2 i f (˜ s dw r es e t n i) begin
3 r e g a d d r e s s s y s c l k f f <= 16 ’ h0000 ;
4 r e g r w s y s c l k f f <= 3 ’ b000 ;
5 r e g w r i t e d a t a s y s c l k f f <= 8 ’ h00 ;
6 end e l s e begin
7 i f (r e g c d c s t a r t f f) begin
8 r e g a d d r e s s s y s c l k f f <= {sdw slvhigh addr i , sdw slvlow addr i } ;
9 s d w s l v d e v a d d r s y s c l k f f <= sdw slvdev addr i ;

10 . . .

Further usage of reg cdc start ff is synchronizing into SDW clock domain. A
pre-made cell std sync2 ff rn is instantiated for this. The cell consists of two
flip-flops related to number 3 in the figure. Triggered by the new SoundWire
clock signal, the reg cdc start ff can be safely passed through without causing
metastability problems.

Listing 4.9: Register CLock Domain Synchronization Cell
1 s t d s y n c 2 f f r n u s d w r e g s t a r t s y n c (
2 .RN (sd w r es e t n i) , // I ; async r e s e t (a c t i v e low)
3 .CLK(sdw data clk) , // I ; c lock
4 .D (r e g c d c s t a r t f f) , // I ; data in
5 .Q (r e g c d c s d w s t a r t s y n c q) // O; r e g i s t e r e d data
6) ;

The output of the synchronization cell is then transformed into a pulse. Combi-
natorial AND delivers this by applying input signals reg cdc sdw start sync q
and negated reg cdc sdw start sync q ff which is the output of another FF,
capturing again reg cdc sdw start sync q. This can be seen in the block design
enumerated as point 4.

55

4 Implementation and Evaluation of the SoundWire Controller Interface

Listing 4.10: Register CLock Domain Pulse
1 a l w a y s f f @(posedge sdw data clk or negedge s d w r e se t n i) begin
2 i f (˜ s dw r es e t n i) begin
3 r e g c d c s d w s t a r t s y n c q f f <= 1 ’ b0 ;
4 end e l s e begin
5 r e g c d c s d w s t a r t s y n c q f f <= r e g c d c s d w s t a r t s y n c q ;
6 end
7 end
8

9 always comb begin
10 r e g c d c s d w s t a r t = r e g c d c s d w s t a r t s y n c q & ˜ r e g c d c s d w s t a r t s y n c q f f ;
11 end

The resulting pulse reg cdc sdw start of previous processing steps provides the
enable for all register data FF’s (number 5) to take over the output data of data
FF’s in system clock domain (number 2). All of this securely handled data is
transmitted to the slave either to read or write registers.

Listing 4.11: Register SDW CLock Domain
1 a l w a y s f f @(posedge sdw data clk or negedge s d w r e se t n i) begin
2 i f (˜ s dw r es e t n i) begin
3 r e g a d d r e s s s d w c l k f f <= 16 ’ h0000 ;
4 r e g r w s d w c l k f f <= 3 ’ b000 ;
5 r e g w r i t e d a t a s d w c l k f f <= 8 ’ h00 ;
6 reg cdc rw req <= 1 ’ b0 ;
7 sdw slvdev addr sdw clk f f <= 4 ’ b0000 ;
8 end e l s e begin
9 i f (r e g c d c s d w s t a r t) begin // r i s e request condi t ion f o r frame fsm

10 r e g a d d r e s s s d w c l k f f <= r e g a d d r e s s s y s c l k f f ;
11 sdw slvdev addr sdw clk f f <= s d w s l v d e v a d d r s y s c l k f f ;
12 r e g w r i t e d a t a s d w c l k f f <= r e g w r i t e d a t a s y s c l k f f ;
13 r e g r w s d w c l k f f <= r e g r w s y s c l k f f ;
14 reg cdc rw req <= 1 ’ b1 ;
15 end e l s e begin
16 i f (reg cdc sdw done) begin
17 reg cdc rw req <= 1 ’ b0 ;
18 end
19 end
20 end
21 end

The slave responds by ACK that operation was functional or by Not Ack-
lowledge (NAK), that a failure occurred. This answer is processed by the framer
and if implemented, another try to process the request can be started or it must
be aborted. However after finishing this reg cdc sdw done (signed in figure as
7), it results in finishing the CDC (see listing 4.12).

Listing 4.12: Register SDW CLock Domain Done
1 a l w a y s f f @(posedge sdw data clk or negedge s d w r e se t n i) begin
2 i f (˜ s dw r es e t n i) begin
3 reg cdc sdw done pre <= 1 ’ b0 ;
4 end e l s e begin
5 reg cdc sdw done pre <= (reg cdc rw req && r e g c d c d a t a h a n d f i n i) ;
6 end
7 end
8

9 a l w a y s f f @(posedge sdw data clk or negedge s d w r e se t n i) begin
10 i f (˜ s dw r es e t n i) begin
11 reg cdc sdw done <= 1 ’ b0 ;
12 end e l s e begin
13 reg cdc sdw done <= reg cdc sdw done pre ;
14 end
15 end

Another synchronization cell is placed now in the system clock domain (number
3). Input to this is the flip-flop captured reg cdc sdw done. The same is used to
take over register data, read from the slave signed as 6.

56

4 Implementation and Evaluation of the SoundWire Controller Interface

Listing 4.13: Register SYS CLock Domain Done
1 s t d s y n c 2 f f r n u sdw reg stop sync (
2 .RN (sd w r es e t n i) , // I ; async r e s e t (a c t i v e low)
3 .CLK(c l k) , // I ; c lock
4 .D (reg cdc sdw done) , // I ; data in
5 .Q (reg cdc sys done sync q) // O; r e g i s t e r e d data
6) ;

Now, the signal is back, triggered by the system clock. The same procedure
as previously seen in enumeration 4 is then processed. The resulting signal
reg cdc sys done is then used to pass data (sign 8), read from the slave, safely
into system clock domain as shown in 4.14 if available and to finalize the
whole read or write processes by setting the signals sdw slv read end and
sdw slv write end high (see listing 4.14 from lines 11 to 30).

Listing 4.14: Register Read Slave Data
1 a l w a y s f f @(posedge c l k or negedge s dw r e se t n i) begin
2 i f (˜ s dw r es e t n i) begin
3 sdw slv data d o <= 8 ’ h00 ;
4 end e l s e begin
5 i f (reg cdc sys done) begin
6 sdw slv data d o <= r e g r e a d d a t a s d w c l k f f ;
7 end
8 end
9 end

10

11 a l w a y s f f @(posedge c l k or negedge s dw r e se t n i) begin
12 i f (˜ s dw r es e t n i) begin
13 r e g c d c s y s d o n e f f <= 1 ’ b0 ;
14 sdw slv read end <= 1 ’ b0 ;
15 sdw slv write end <= 1 ’ b0 ;
16 end e l s e begin
17 i f (s d w s l v r e a d s t a r t & reg cdc sys done) begin
18 r e g c d c s y s d o n e f f <= reg cdc sys done ;
19 sdw slv read end <= 1 ’ b1 ;
20 end e l s e
21 i f (s d w s l v w r i t e s t a r t & reg cdc sys done) begin
22 r e g c d c s y s d o n e f f <= reg cdc sys done ;
23 sdw slv write end <= 1 ’ b1 ;
24 end e l s e begin
25 sdw slv read end <= 1 ’ b0 ;
26 sdw slv write end <= 1 ’ b0 ;
27 r e g c d c s y s d o n e f f <= 1 ’ b0 ;
28 end
29 end
30 end

This whole approach ensures safely passing data in-between two clock domains
without problems of metastability. Especially for audio related systems, this is
needed to avoid glitches. Thus, I2S data needs the same process (as can be seen
in following subsection).

4.2.3 Data Port

Soundwire protocol would be capable of organizing multiple audio data ports.
Due to the field of application, only one input port is implemented. As the trans-
port of audio data is enabled, a request to pass I2S data is sent by the framer to
provided data port (line 1 in listing 4.15). The request sets sdw rx update tgl ff
to a high level and after a successful clock domain crossing this is converted
into sdw rx done signal responsible to reset the start signal to it’s primary zero
condition (line 11).

57

4 Implementation and Evaluation of the SoundWire Controller Interface

Listing 4.15: Data Port CDC start
1 ass ign sdw rx data cnt rdy = new samp trig ;
2

3 a l w a y s f f @ (posedge sdw data clk or negedge s d w r e se t n i) begin
4 i f (˜ s dw r es e t n i) begin
5 s d w r x u p d a t e t g l f f <= 1 ’ b0 ;
6 end e l s e begin
7 i f (sdw rx data cnt rdy) begin
8 s d w r x u p d a t e t g l f f <= 1 ’ b1 ;
9 end e l s e begin

10 i f (sdw rx done) begin
11 s d w r x u p d a t e t g l f f <= 1 ’ b0 ;
12 end
13 end
14 end
15 end

Regarding block diagram 4.2 in this case the process starts at sign 7 as the
requests origin is in SDW clock domain. Flip-Flops signed as 2 and 5 for
transmitting data in the other direction can be neglected. After synchronizing
(listing 4.16), the request to system clock it’s used to demand data from the
FIFO via sdw rx update q.

Listing 4.16: Data Port CDC synchronization
1 s t d s y n c 2 f f r n u tx sdw req sync (
2 .RN (sd w r es e t n i) , // I ; Async Reset (Active Low)
3 .CLK(c l k) , // I ; Clock
4 .D (s d w r x u p d a t e t g l f f) , // I ; Data IN
5 .Q (s d w r x u p d a t e t g l s y n c c l k) // O; Regis tered Data
6) ;
7

8 a l w a y s f f @ (posedge c l k or negedge s dw r es e t n i) begin
9 i f (˜ s dw r es e t n i) begin

10 s d w r x u p d a t e t g l s y n c c l k q <= 1 ’ b0 ;
11 end e l s e begin
12 s d w r x u p d a t e t g l s y n c c l k q <= s d w r x u p d a t e t g l s y n c c l k ;
13 end
14 end
15

16 always comb begin
17 sdw rx update <= s d w r x u p d a t e t g l s y n c c l k & ˜ s d w r x u p d a t e t g l s y n c c l k q ;
18 end
19

20 a l w a y s f f @ (posedge c l k or negedge s dw r es e t n i) begin
21 i f (˜ s dw r es e t n i) begin
22 sdw rx update q <= 1 ’ b0 ;
23 end e l s e begin
24 sdw rx update q <= sdw rx update ;
25 end
26 end

In the following section, the instantiation of a 32 bit FIFO register is shown.
This structure was taken over completely from the generated VIVADO FIFO
implementation. As the decision fo maximum 16-bit data was made later, this
has not been changed. This led to an interesting point for comparison in area
expense being discussed in later result section 4.4. Taking data output of the
register dp fifo data launches another data requesting sequence related to the
AXI - streaming interface.

Listing 4.17: Data Port FIFO Instantiation
1 sdw fifo w32 d8 A #(
2 .DATA WIDTH (3 2) , // Data width
3 .ADDR WIDTH (8) , // Address width
4 .DEPTH (6 4) // depth
5) u sdw fifo w32 d8 (
6 . c l k (c l k g a t e d) , // I ; Gated Clock
7 . r e s e t n i (s d w r e se t n i) , // I ; Active low Reset
8 . c l e a r () , // Clear FIFO
9 . i f empty n (f i f o i f e m p t y n) , // O; FIFO Empty

10 . i f r e a d c e () , // I ; FIFO read
11 . i f r e a d () , // I ; FIFO read
12 . i f d o u t (d p f i f o d a t a) , // O; FIFO Data output
13 . i f f u l l n (f i f o i f f u l l n) , // O; FIFO f u l l
14 . i f w r i t e c e (sdw rx data cnt rdy) , // I ; STIMGEN DATA ready
15 . i f w r i t e (sdw rx data cnt rdy) , // I ; STIMGEN DATA ready
16 . i f d i n (sdw dp rx st imgen tdata) // I ; FIFO Data Input
17) ;

58

4 Implementation and Evaluation of the SoundWire Controller Interface

sdw rx update transmits data request information to the streaming interface.
In case of available valid data (sdw dp tx slv tvalid i), the FIFO is allowed to
take over audio data sdw dp rx stimgen tdata. This cycle ensures a stable and
ongoing audio data transportation.

After audio data has been taken out of the FIFO based on sdw rx update q
inquiry (line 5 in 4.18 and point number 8 in the block diagram), the process of
turning the request into sdw rx done signal starts. Further explanation can be
seen in previous register clock domain crossing as the process is the same.

Listing 4.18: FIFO Data
1 a l w a y s f f @ (posedge c l k or negedge s dw r es e t n i) begin
2 i f (˜ s dw r es e t n i) begin
3 dp rx data pre sync <= 32 ’ h00000000 ;
4 end e l s e begin
5 i f (sdw rx update q) begin
6 dp rx data pre sync <= d p f i f o d a t a ;
7 end
8 end
9 end

4.2.4 Framer

The SoundWire Framer is responsible for the mapping, de-mapping and correct
assignment of audio and control data on the tranmission/receiver line. Thus, all
input and output data is processed by it. As previously mentioned, frame sizing
is placed here. Despite only 48x2 frames are used, others would be available
via setting register, but will not work properly due to uncorrelated and not
implemented bit mapping. The most relevant modules for proper protocol
functionality are instantiated here. The LFSR responsible for dynamic synchro-
nization as well as the finite state machines for enumeration and read,ping,
write commands. Further, the data line output enable and handling of various
inquiries coming from e.g. enumeration or control module are controlled here.

The beginning of list 4.19 displays requests passed by the control unit. Either
register-write or reads can be further operated (lines 1-4). The remaining part
is handling the next steps to be processed. Distinction can be made between
enumeration or register related. enum fsm ack in row 14 enables treatment of
enumeration concerning steps and refuses any others. Lines 15 to 22 are needed
to signal further device ID readings.

The last step of enumeration is writing a device number to the slave. This has to
be accepted by the slave signalling via an ACK. If the combination of enum pos
, cmd ok and end of frame is matching, the process can be finalized causing
the slave to be available via his new ID and enabling register read or write
command starting from lines 31 to 38. As before, those commands have to be
acknowledged by the slave or aborted if not.

59

4 Implementation and Evaluation of the SoundWire Controller Interface

Listing 4.19: Request Management
1 always comb begin
2 r e g c d c r a c k = s d w s l v r e a d s t a r t i && reg cdc rw ack ;
3 reg cdc w ack = s d w s l v w r i t e s t a r t i && reg cdc rw ack ;
4 end
5

6 always comb begin
7 i f (˜ s dw r e se t n i) begin
8 r e g r e a d d a t a s d w c l k f f = 8 ’ h00 ;
9 r e g c d c d a t a h a n d f i n = 1 ’ b0 ;

10 reg enum read data f f = 8 ’ h00 ;
11 next enum step = 1 ’ b0 ;
12 n e x t s l v i d = 1 ’ b0 ;
13 end e l s e begin
14 i f (enum fsm ack) begin
15 i f ((r e g c d c a c k c n t >= 12 ’ h040) && end of frame) begin
16 next enum step = 1 ’ b1 ;
17 n e x t s l v i d = 1 ’ b0 ;
18 reg enum read data f f = s l v c t r l w o r d r e a d r e g d a t a ;
19 end e l s e begin
20 next enum step = 1 ’ b0 ;
21 n e x t s l v i d = 1 ’ b0 ;
22 end
23 end e l s e begin
24 i f (enum pos == 3 ’ b111 && (cmd ok && end of frame)) begin
25 next enum step = 1 ’ b1 ;
26 n e x t s l v i d = 1 ’ b1 ;
27 end e l s e begin
28 next enum step = 1 ’ b0 ;
29 n e x t s l v i d = 1 ’ b0 ;
30 r e g c d c d a t a h a n d f i n = 1 ’ b0 ;
31 i f (r e g c d c r a c k | reg cdc w ack) begin
32 r e g c d c d a t a h a n d f i n = 1 ’ b0 ;
33 end e l s e begin
34 i f ((r e g c d c a c k c n t >= 12 ’ h040) && (cmd ok && end of frame)) begin
35 r e g r e a d d a t a s d w c l k f f = s l v c t r l w o r d r e a d r e g d a t a ;
36 r e g c d c d a t a h a n d f i n = 1 ’ b1 ;
37 end e l s e begin
38 r e g r e a d d a t a s d w c l k f f = 8 ’ h00 ;
39 end
40 end
41 end
42 end
43 end
44 end

The whole process of acceptation or aborting requests is done by evaluating
slaves ACK and NAK responses stored in the nak ack signal. A combinatorial
decides in respect to nak ack how to further process requests.

Listing 4.20: Acknowledge and Not Acknowledge handling
1 ass ign nak ack = {s lv c t r l word nak , s l v c t r l w o r d a c k } ;
2

3 always comb begin
4 case (nak ack)
5 2 ’ b00 : begin
6 cmd ignored = 1 ’ b1 ;
7 cmd ok = 1 ’ b0 ;
8 cmd abort = 1 ’ b0 ;
9 cmd fai led = 1 ’ b0 ;

10 end
11 . . .

After a decision is made whose operation is accepted and can be treated further,
the control word structure can be set. Different combinations of slots regarding
register addresses or reading data in contrast to write data has to be considered.
Combinatorial decision of structure is made based on cdc enum rpw. Shown
in the listing below is the composition of a ping request. Just like there are
switching parts of the protocol, there are some always stuck with the same
data or manager of data. Especially the synchronization is considered to be
controlled by the same.

60

4 Implementation and Evaluation of the SoundWire Controller Interface

Listing 4.21: Control Word Structure
1 ass ign cdc enum rpw = {read ping data , enum fsm ack , r e g c d c r a c k , reg cdc w ack , mcp ctrl enumen i } ;
2

3 always comb begin
4 case (cdc enum rpw)
5 5 ’ b10001 : begin
6 wri te check = 1 ’ b0 ;
7 c t r l w o r d p i n g r e q = 1 ’ b0 ;
8 ctrl word prw = 3 ’ b000 ;
9 c t r l w o r d s s p = 1 ’ b0 ;

10 ctr l word dev addr [3] = 1 ’ b0 ;
11 ctr l word dev addr [2] = c t r l w o r d s s p ;
12 ctr l word dev addr [1] = c t r l w o rd b u s r e q ;
13 ctr l word dev addr [0] = c t r l w o r d b u s r e l ;
14 c t r l word reg addr = 4 ’ h0000 ;
15 c t r l w o r d w r i t e r e g d a t a = 8 ’ h00 ;
16 end
17 . . .

LFSR - Dynamic Synchronization

A LFSR is needed to create the dynamic synchronization patterns in the correct
sequence. In section 3.8.5, the chronology is shown starting by pattern 1111.
Line 2 in the listing defines a reset condition active low resulting in executing
the following statement. If the signal sdw reset ni switches to a low level, the
lfsr dyn sync pattern is set to the starting 1111 word. The same as previous
has to be performed after a power on reset condition when 2048 ones are
transmitted and then the first frame is sent. cnt reset defines the end of a frame
and results in generating a new bit-word (rows 8-11). Depending on the end of
frame state, the lfsr dyn sync is shifted by one to the left. Bit 0 is the result of
merging the last two by an XOR.

Listing 4.22: LFSR
1 a l w a y s f f @(negedge sdw data clk or negedge s d w r e se t n i) begin
2 i f (˜ s dw r e se t n i) begin
3 l f s r d y n s y n c <= 4 ’ b1111 ;
4 end e l s e begin
5 i f (s d w p o r s t a r t i) begin
6 l f s r d y n s y n c <= 4 ’ b1111 ;
7 end e l s e
8 i f (c n t r e s e t) begin
9 l f s r d y n s y n c <= l f s r d y n s y n c << 1 ’ b1 ;

10 l f s r d y n s y n c [0] <= l f s r d y n s y n c [3] ˆ l f s r d y n s y n c [2] ;
11 end
12 end
13 end

RPW-FSM

The Read Ping Write - Finite State Machine handles requests for different
opcodes and controls the order of consecutive frames. After a maximum of
32 frames read or write commands, at least one ping command has to follow.
Shown in the first part of the code is a counter responsible for that. Basic
transmission opcode is a ping command, thus it’s set in the reset condition.
In case of a read or write (read ping data o equals a high level), the counter
next ping cnt is incremented after a frame shown in rows 14-15. Line 6 is
an input of the FSM, signalling a sent ping and resetting the counter. When
incrementation catches up, 32 signal ping slv is set high to force a ping op-
code.

61

4 Implementation and Evaluation of the SoundWire Controller Interface

Rows 21-31 set states for the state machine. cnt reset i enables determining the
state for the next frame. Otherwise results are either remaining in the same
state or a reset to PING. The FSM itself can be separated into mainly two
functionalities. Ping command starting in line 35 on the one hand and read or
write on the others starting at 46. Listed signals below come up in both.

- reg cdc rw ack o: If a read or write is requested this signal is set high
if conditions match.

- enum fsm ack o: The Enumeration is done primary after POR condi-
tion and is privileged

- read ping data o: This is used for resetting previous mentioned ping
command incremental counter

- ctrl word prw o: The control word which has to be transmitted in the
op-code to enable a ping (000), read (010) or write
(011)

In state PING, a query by the if statement in line 41 is responsible to determine
whether remaining in the same state or jumping to state READ WRITE. Two
conditions have to be fulfilled. The main thing is a finished POR and the
other is either a read-write request or the Enumeration-FSM signalling that an
enumeration of a slave is pending. In turn, those two are the main contributors
to the READ WRITE state. Starting at row 47, the enumeration is treated. At 57,
the start condition for a register read or write is coded. This can only be accessed
if the process of enumeration is finished. Both of them can be suspended by the
ping slv if no ping command was sent within 32 frames.

Listing 4.23: RPW-FSM
1 a l w a y s f f @(negedge sdw data clk or negedge s d w r e se t n i) begin
2 i f (˜ s dw r e se t n i) begin
3 n e x t p i n g c n t <= 5 ’ b00000 ;
4 p in g s lv <= 1 ’ b1 ;
5 end e l s e begin
6 i f (read ping data o) begin
7 n e x t p i n g c n t <= 5 ’ b00000 ;
8 p in g s l v <= 1 ’ b0 ;
9 end e l s e

10 i f (n e x t p i n g c n t == 5 ’ b00111) begin
11 p in g s l v <= 1 ’ b1 ;
12 end e l s e begin
13 p in g s l v <= 1 ’ b0 ;
14 i f (c n t r e s e t i) begin
15 n e x t p i n g c n t <= n e x t p i n g c n t + 1 ’ b1 ;
16 end
17 end
18 end
19 end
20

21 a l w a y s f f @(negedge sdw data clk or negedge s d w r e se t n i) begin
22 i f (˜ s dw r e se t n i) begin
23 s t a t e <= PING ;
24 end e l s e begin
25 i f (c n t r e s e t i) begin
26 s t a t e <= n e x t s t a t e ;
27 end e l s e begin
28 s t a t e <= s t a t e ;
29 end
30 end
31 end
32

33 always comb begin
34 case (s t a t e)
35 PING : begin
36 reg cdc rw ack o = 1 ’ b0 ;
37 enum fsm ack o = 1 ’ b0 ;
38 read ping data o = 1 ’ b1 ;
39 ctr l word prw o = 3 ’ b000 ;

62

4 Implementation and Evaluation of the SoundWire Controller Interface

40 i f (˜ s d w p o r s t a r t i & (r e g c d c r w r e q i | enum fsm req i)) begin
41 n e x t s t a t e = READ WRITE ;
42 end e l s e begin
43 n e x t s t a t e = PING ;
44 end
45 end
46 READ WRITE : begin
47 i f (enum fsm req i) begin
48 reg cdc rw ack o = 1 ’ b0 ;
49 enum fsm ack o = 1 ’ b1 ;
50 read ping data o = 1 ’ b0 ;
51 ctr l word prw o = 3 ’ b010 ;
52 i f (p i ng s lv) begin
53 n e x t s t a t e = PING ;
54 end e l s e begin
55 n e x t s t a t e = READ WRITE ;
56 end
57 end e l s e i f (r e g c d c r w r e q i && enum fsm done i) begin
58 reg cdc rw ack o = 1 ’ b1 ;
59 enum fsm ack o = 1 ’ b0 ;
60 read ping data o = 1 ’ b0 ;
61 i f (p i ng s lv) begin
62 n e x t s t a t e = PING ;
63 end e l s e begin
64 reg cdc rw ack o = 1 ’ b1 ;
65 n e x t s t a t e = PING ;
66 end
67 end e l s e begin
68 n e x t s t a t e = PING ;
69 end
70 end
71 d e f a u l t : begin
72 ctr l word prw o = 3 ’ b000 ;
73 n e x t s t a t e = PING ;
74 end
75 endcase
76 end

Enumeration-FSM

The enumeration process is turned off by default. Incoming slv stat zero unlike
zero (line 5) enables the operation. As long as the slave 00 status is not zero,
the enumeration process will stay in ON state. Conditional operator in line 26
delivers the information to the RPW-FSM 4.2.4. Section 28-39 is responsible for
tracking the actual position in the enumeration process. Seven commands have
to be fulfilled for a correct finalization. next enum step trig i triggeres a jump
to the next position. A check if the command was acknowledged or not has
already been done.

In total, 11 slaves could be enumerated. As we know that only one will be in
use, this was reduced to avoid errors by a wrong device number assignment.
Rows 42-50 only emit 0001 for numbering the slave. After accepting the device
number by the slave a check, whether there are more slaves attached, is done
in line 60. Meeting required conditions the signal enum fsm done ff is set to a
high level enabling further read or write commands in the RPW-FSM 4.2.4.

Two combinatorials at the lower part are responsible for assignment of input
slave data to provided registers and sending the valid op-codes, including ad-
dresses for register handling. The six 8-bit words read from the slave containing
basic information are delivered in reg enum read data i. Lines 97-102 show the
allocation to corresponding register sets. Starting at 113, the address related to
the registers to be read are allocated depending on the enumeration position.
Further, the op-code read is delivered. Last command for finalization of the
process is a write to slaves register 0046 (lines 142-146). Attached is the device
number for naming (enum write data o).

63

4 Implementation and Evaluation of the SoundWire Controller Interface

Listing 4.24: Enumeration-FSM
1 always comb begin
2 case (s t a t e)
3 OFF : begin
4 enum stat = 1 ’ b0 ;
5 i f (s l v s t a t z e r o == 2 ’ b01 | s l v s t a t z e r o == 2 ’ b10 | s l v s t a t z e r o == 2 ’ b11) begin
6 n e x t s t a t e <= ON;
7 end e l s e begin
8 n e x t s t a t e <= OFF ;
9 end

10 end
11 ON: begin
12 enum stat = 1 ’ b1 ;
13 i f (s l v s t a t z e r o == 2 ’ b00) begin
14 n e x t s t a t e <= OFF ;
15 end e l s e begin
16 n e x t s t a t e <= ON;
17 end
18 end
19 d e f a u l t : begin
20 n e x t s t a t e <= OFF ;
21 enum stat <= 1 ’ b1 ;
22 end
23 endcase
24 end
25

26 ass ign enum fsm req o = s l v c t r l w o r d s l v s t a t 0 0 i == 2 ’ b00 ? 1 ’ b0 : enum stat ;
27

28 a l w a y s f f @(posedge sdw data clk or negedge s d w r e se t n i) begin
29 i f (˜ s dw r e se t n i) begin
30 enum pos <= 3 ’ b000 ;
31 end e l s e begin
32 i f (n e x t e n u m s t e p t r i g i) begin
33 enum pos <= enum pos + 1 ’ b1 ;
34 end e l s e begin
35 i f (enum pos == 3 ’ b111 && n e x t e n u m s t e p t r i g i) begin
36 enum pos <= 3 ’ b000 ;
37 end
38 end
39 end
40 end
41

42 a l w a y s f f @(posedge sdw data clk or negedge s d w r e se t n i) begin
43 i f (˜ s dw r e se t n i) begin
44 enum write device num next <= 4 ’ b0001 ;
45 end e l s e begin
46 i f (n e x t s l v i d i) begin
47 enum write device num next <= enum write device num next ;
48 end
49 end
50 end
51

52 a l w a y s f f @(posedge sdw data clk or negedge s d w r e se t n i) begin
53 i f (˜ s dw r e se t n i) begin
54 enum fsm done ff <= 1 ’ b0 ;
55 end e l s e begin
56 i f ((enum write device num next > 4 ’ b0001) && ˜ s t a t e) begin
57 enum fsm done ff <= 1 ’ b1 ;
58 end e l s e begin
59 i f (s l v c t r l w o r d s l v s t a t 0 1 i [0] && ˜ s l v c t r l w o r d s l v s t a t 0 0 i [0]) begin
60 enum fsm done ff <= 1 ’ b1 ;
61 end
62 end
63 end
64 end
65

66 ass ign enum fsm done o = enum fsm done ff ;
67

68 always comb begin
69 i f (˜ s dw r es e t n i) begin
70 s l v 1 d e v i d 0 v e r s d = 8 ’ h00 ;
71 slv1 devid1 manid0 d = 8 ’ h00 ;
72 slv1 devid2 manid1 d = 8 ’ h00 ;
73 slv1 devid3 partnum0 d = 8 ’ h00 ;
74 slv1 devid4 partnum1 d = 8 ’ h00 ;
75 s l v 1 d e v i d 5 c l a s s d = 8 ’ h00 ;
76 enum irq = 1 ’ b0 ;
77 end e l s e
78 case (enum pos)
79 3 ’ b001 : begin
80 s l v 1 d e v i d 0 v e r s d = reg enum read data i ;
81 enum irq = 1 ’ b0 ;
82 end
83 3 ’ b010 : begin
84 slv1 devid1 manid0 d = reg enum read data i ;
85 enum irq = 1 ’ b0 ;
86 end
87 3 ’ b011 : begin
88 slv1 devid2 manid1 d = reg enum read data i ;
89 enum irq = 1 ’ b0 ;
90 end
91 3 ’ b100 : begin
92 slv1 devid3 partnum0 d = reg enum read data i ;
93 enum irq = 1 ’ b0 ;

64

4 Implementation and Evaluation of the SoundWire Controller Interface

94 end
95 3 ’ b101 : begin
96 slv1 devid4 partnum1 d = reg enum read data i ;
97 enum irq = 1 ’ b0 ;
98 end
99 3 ’ b110 : begin

100 s l v 1 d e v i d 5 c l a s s d = reg enum read data i ;
101 enum irq = 1 ’ b0 ;
102 end
103 d e f a u l t : begin
104 enum irq = 1 ’ b1 ;
105 end
106 endcase
107 end
108

109 always comb begin
110 i f (˜ s dw r es e t n i) begin
111 enum write data o = 8 ’ h00 ;
112 end e l s e
113 case (enum pos)
114 3 ’ b000 : begin
115 enum rw addr o = 16 ’ h0000 ;
116 enum rw o = 3 ’ b000 ;
117 end
118 3 ’ b001 : begin
119 enum rw addr o = 16 ’ h0050 ;
120 enum rw o = 3 ’ b010 ;
121 end
122 3 ’ b010 : begin
123 enum rw addr o = 16 ’ h0051 ;
124 enum rw o = 3 ’ b010 ;
125 end
126 3 ’ b011 : begin
127 enum rw addr o = 16 ’ h0052 ;
128 enum rw o = 3 ’ b010 ;
129 end
130 3 ’ b100 : begin
131 enum rw addr o = 16 ’ h0053 ;
132 enum rw o = 3 ’ b010 ;
133 end
134 3 ’ b101 : begin
135 enum rw addr o = 16 ’ h0054 ;
136 enum rw o = 3 ’ b010 ;
137 end
138 3 ’ b110 : begin
139 enum rw addr o = 16 ’ h0055 ;
140 enum rw o = 3 ’ b010 ;
141 end
142 3 ’ b111 : begin
143 enum rw addr o = 16 ’ h0046 ;
144 enum rw o = 3 ’ b011 ;
145 enum write data o = {4 ’ b0000 , enum write device num next } ;
146 end
147 endcase
148 end
149

150 ass ign enum pos o = enum pos ;

Data Slot Enable

Each bit in a frame has to be driven by the controller or slave. Responsibilities
to whom bits are related is decided according to the actual opcode. An example
is given again for a ping request in the listing below. The result is a sequence of
zeroes and ones to be converted into DDR, either enabling the controller signal
output or rejecting it. If this is not properly handled, it’s not comprehensible
which device has to switch the level and which sent a bit.

Listing 4.25: Enable
1 always comb begin
2 case (ctrl word prw)
3 3 ’ b000 : begin
4 ping en = 1 ’ h0 ;
5 opcode en = 3 ’ hf ;
6 device address en = 4 ’ hf ;
7 re g ad re ss en = 16 ’ h0000 ;
8 s t a t p h y s y nc e n = 9 ’ h f f f ;
9 r e a d w r i t e r e g e n = 8 ’ h00 ;

10 dyn sync par en = 5 ’ h f f ;
11 nak ack en = 2 ’ h0 ;
12 end
13 . . .

65

4 Implementation and Evaluation of the SoundWire Controller Interface

Due to DDR a special consideration had to made. This is captured in another
section 4.3.2.

4.2.5 PHY

In PHY module a encoding following the NRZI principle is realized. Combined
to that, the double data rate had to implemented. Both are important for reading
information from the transmission line or writing to the slave. Calculation of
even or odd parity is added here to facilitate a fast result generation. This is
due to the fact that the protocol allows a maximum of one clock period using
the 48x2 frame for this operation.

NRZI

Audio and control data is passed between framer and phy module on two
connections per direction. Input to the ODDR are two signals created by
the NRZI implementation (sdw ddr pipe a o and sdw ddr pipe b o). Follow-
ing, sdw phy sig o eval a is explained. The other is self-descriptive as the
same method is applied. For both, a combinatorial decision is made based
on three signals combined in a evaluation signal sdw phy sig o eval a and
sdw phy sig o eval b (lines 2-3 in the listing below).

- sdw phy data o bit one: This is the framer data passed trough to the
output

- sdw phy o: Output of the ODDR register is captured in
this signal

- sdw pad data: Is the actual level of the SoundWire data
connection

Special behaviour of the modified NRZI encoding is based on the line switch
leading to a transmitted one. Remaining on the same level, either high or low is
related to zero transmission. If a zero is applied to the evaluation for output via
sdw phy data o bit one and sdw phy o, sdw pad data are low and additionally
this leads to a low level sdw ddr pipe a o (lines 8-10). As mentioned before
zero transmission has to take over the transmission line level. Thus, a high
SDW Data level requires a one for sdw ddr pipe a o as shown in rows 11-13.
The next case is, in turn, an intended zero transmission combined with a high
DDR output whereby the physical SDW Data is low. Possible occurrence can be
due to changes of the data line drivers. This is necessary to track the actual line
behaviour. Consequential as from line 17 to 19 this is repeated. Case 3’b100 is
the most primitive one where the transmission level has to be changed from zero
to one for delivering a one to the slave. The lower three are flipped compared
to case 2-4 as the one transmission is followed by the same behaviour of ODDR
output and sdw pad data.

66

4 Implementation and Evaluation of the SoundWire Controller Interface

Listing 4.26: NRZI Implementation
1 always comb begin
2 sdw phy sig o eval a ={sdw phy data o bit one , sdw phy o , sdw pad data} ;
3 sdw phy sig o eval b ={sdw phy data o bit two , sdw phy o , sdw pad data} ;
4 end
5

6 always comb begin
7 case (sdw phy sig o eval a)
8 3 ’ b000 : begin
9 sdw ddr pipe a o = 1 ’ b0 ;

10 end
11 3 ’ b001 : begin
12 sdw ddr pipe a o = 1 ’ b1 ;
13 end
14 3 ’ b010 : begin
15 sdw ddr pipe a o = 1 ’ b0 ;
16 end
17 3 ’ b011 : begin
18 sdw ddr pipe a o = 1 ’ b1 ;
19 end
20 3 ’ b100 : begin
21 sdw ddr pipe a o = 1 ’ b1 ;
22 end
23 3 ’ b101 : begin
24 sdw ddr pipe a o = 1 ’ b0 ;
25 end
26 3 ’ b110 : begin
27 sdw ddr pipe a o = 1 ’ b1 ;
28 end
29 3 ’ b111 : begin
30 sdw ddr pipe a o = 1 ’ b0 ;
31 end
32 endcase
33 end

Parity

Even or odd parity has to be calculated and set to the output within one clock
period as the related window starts after the last dynamic synchronization bit.
Due to predictable LFSR synchronization values, this can be achieved although
the ODDR requires one cycle for setting the output. Again, an evaluation signal
is implemented including the following.

- sdw parity ff: This is related to the calculated parity value
up to bit 43 (ctrl word dyn sync[1]) of the
Frame

- sdw pad data ff: Corresponds to actual SoundWire pad data
- ctrl word dyn sync i: Comprises the last dynamic synchroniza-

tion bit

Listing 4.27 shows three proceedings out of the eight cases. The first one includes
an even parity calculated over the frame by sdw parity ff. As sdw pad data ff
and ctrl word dyn sync i are low no further switch has to be applied for the
new parity signal. Case two is different due to a dynamic synchronization
pattern even parity is incremented to odd. Change of pad data occurs in the
last displayed evaluation case. Again this leads to a switch from even to odd
parity.

67

4 Implementation and Evaluation of the SoundWire Controller Interface

Listing 4.27: Parity Implementation
1 ass ign p a r i t y e v a l s i g = {sdw par i ty f f , sdw pad data ff , c t r l w o r d d y n s y n c i } ;
2

3 always comb begin
4 case (p a r i t y e v a l s i g)
5 3 ’ b000 : begin
6 sdw parity new = 1 ’ b0 ;
7 end
8 3 ’ b001 : begin
9 sdw parity new = 1 ’ b1 ;

10 end
11 3 ’ b010 : begin
12 sdw parity new = 1 ’ b1 ;
13 end
14 . . .

4.2.6 Generated Modules

Previous modules have all been self implemented. Additional ones like APB
interface including all registers, audio data FIFO and the 12.288MHz clock were
generated by the help of different tools.

APB Interface

APB interface is in charge of handling all registers. Module sdw apb reg is
generated including a package sdw apb reg p. As this interface is already
present on the FPGA, there was a simple expansion by another slave, having a
different address for communication, necessary. A tool for generating register
APB linkage has been written using programming language Pearl. All automatic
produced code can be recognized by surrounding as shown below.

Listing 4.28: Register Generation
1 //m a r k e r t e m p l a t e s t a r t
2 //[% PROCESS template/general . template%]
3 //[% PROCESS template/apb . template%] [%
4 // SET RegList = data . sdw reg . data ;
5 // INCLUDE a p b r e g f f r e s e t ;
6 // %]
7 //marker template code

Input to the Pearl script is an Excel table. In appendix E the used register Excel
list is shown. Each register is instantiated following rules depending on values
like MSB, LSB, Reset etc. set in the table. E.g. placement of values in a register
require different parameters. Thus sdw apb reg pkg is supplied. Code snippet
in listing 4.29 displays register MCP CTRL ADDR on address 8’h10. On bit
related to this is an enable EN and the width of it is one. As the bit is placed on
the first position of the 8-bit register, no shift operation is needed. As a register
write would change all bits of it this, can be bypassed using a mask (line 7
in the listing). Setting values after reset conditions is implemented by the last
parameter.

Listing 4.29: Register Package
1 // R e g i s t e r MCP CTRL
2 parameter b i t [7 : 0] MCP CTRL ADDR = 8 ’ h10 ;
3 // B i t f i e l d EN
4 parameter i n t MCP CTRL EN WIDTH = 1 ;
5 parameter i n t MCP CTRL EN SHFT = 0 ;
6 parameter b i t [3 1 : 0] MCP CTRL EN MSK = (2**1)−1 << 0 ;
7 parameter b i t MCP CTRL EN RESET = 1 ’ b0 ;

68

4 Implementation and Evaluation of the SoundWire Controller Interface

Figure 4.3: Clock Module Generation

FIFO

Vivado Software is delivered with an IP-Catalogue that includes FIFO IP’s . AXI
streaming interface can be chosen for related data transport in the wizard to
customize the IP. Listing 4.17 shows the generated FIFO sdw fifo w32 d8 A.
According to value w32 in the naming, this points out the width of input data
up to 32-bit. Depth in turn is related to d8. Address size is needed to reproduce
placing and state of data in the FIFO. By d8, the address is defined as 8-bit wide
thus a 64 values deep FIFO is generated.

Accompanied by data transport connections are two signals fifo if empty n
and fifo if full n. In case of too fast or slow data passing, those signals show
extraordinary FIFO data filling.

12.288MHz Clock

The most important module for functional SoundWire operation is the generated
12.288MHz clock. Again, this IP is being delivered by Vivado’s design suite.
The set input clock is 100MHz. Mixed-Mode Clock Manager (MMCM) can be
considered as a superset of PLL enabling phase shifting. Naming is due to the
analogue PLL part and digital implementation of Delay Locked Loop (DCM)
part. In another tab, the desired 12.288MHz clock can be configured. If the
wizard is capable of producing this, it can be seen in a slot displaying actual
generated clock. As duty cycles were already set to 50%, no change related to
this had been done.

Instantiation of generated clock module according to listing 4.30 is done on
the same level as previous described Leda-Control Module. Input okClk is the

69

4 Implementation and Evaluation of the SoundWire Controller Interface

Figure 4.4: Behavioural Simulation

100MHz clock from the Opal Kelly FPGA board to be converted into desired
12.288MHz sdw gen clk.

Listing 4.30: Clock Instantiation
1 // SDW CLOCK−−−
2 sdw clk 12m288 u sdw clk 12m288 (
3 . c l k o u t 1 (sdw gen clk) , // O: SDW 12 ,288 MHz CLK
4 . r e s e t n (p o r r e s e t n) , // I : Reset
5 . locked () , // i n d i c a t e s s t a b l e output c l k
6 . c l k i n 1 (okClk) // Input Clock
7) ;

4.3 Testing

Error detection and improvement of implemented SoundWire controller follows
a sequence beginning with a behavioural simulation. In general, all signal edges
will be perfect in time thus no statement about real behaviour can be made at
this point. Setting delays to simulate special behaving or standard detention
of units is possible for all pins in the provided constraints file. Specifically,
clock signals are configured there. Figure 4.4 shows an example of simulation
results. On the left side, signals concerning desired test cases are displayed.
okCLK is the first signal in the picture which is used to generate the SoundWire
clock responsible for all further signals along with Leda’s 41.472MHz clock. The
purple line on the lower side is the controller input and output SDW DATA
signal. Zooming in to single edges can be done for exact treatment.

Processing a behavioural simulation of a SoundWire interface requires a con-
troller and a slave as both are driving different bit slots of the protocol. Conse-
quently a test-slave had to be implemented discussed in the following section.

70

4 Implementation and Evaluation of the SoundWire Controller Interface

4.3.1 Test Slave

ACK or NAK is a small selection of required responses to test the SDW protocol.
As the final design on the FPGA does not include the same easier imple-
mentation regarding the variables can be done. Nevertheless, proportional a
huge amount of the test-slave is copy and paste of previous implemented con-
troller PHY and Framer module. Input and output related DDR transmission
is adopted here. Tiny configuration changes are made regarding the output
enable signal due to different bit responsibility. The automated response to the
different opcodes read, ping and write is shown in listing 4.31.

Simulation of the controller enumeration process requires a slave answer to
register read accesses. Starting by line 19 in the listing, a response to such a
read request is given. The standard reaction due to pings are shown from 8 to
18. Depending on enumeration status, slave stat 00 and slave stat 01 are treated
differently.

Listing 4.31: Test Slave Implemenation
1 always comb begin
2 i f (˜ s dw r es e t n i) begin
3 c t r l w o r d s l v s t a t 0 0 = 2 ’ b00 ;
4 s a m p l e i n t e r v a l t e s t = 8 ’ h00 ;
5 ctr l word nak = 1 ’ b0 ;
6 end e l s e begin
7 case (s lv c t r l word opcode)
8 3 ’ b000 : begin
9 i f (c tr l word dev addr != 4 ’ h0) begin

10 c t r l w o r d s l v s t a t 0 0 = 2 ’ b00 ;
11 c t r l w o r d s l v s t a t 0 1 = 2 ’ b01 ;
12 ctr l word nak = 1 ’ b0 ;
13 end e l s e begin
14 c t r l w o r d s l v s t a t 0 0 = 2 ’ b11 ;
15 c t r l w o r d s l v s t a t 0 1 = 2 ’ b00 ;
16 ctr l word nak = 1 ’ b0 ;
17 end
18 end
19 3 ’ b010 : begin
20 i f (s l v c t r l w o r d r e g a d d r == 16 ’ h0050) begin
21 c t r l w o r d s l v s t a t 0 3 = 2 ’ b00 ;
22 c t r l w o r d s l v s t a t 0 2 = 2 ’ b10 ;
23 c t r l w o r d s l v s t a t 0 1 = 2 ’ b00 ;
24 c t r l w o r d s l v s t a t 0 0 = 2 ’ b01 ;
25 . . .

Together, test-slave implementation is required to check basic functionality but
no further SoundWire operations were done here.

4.3.2 Synthesis and Implementation

Synthesization of System Verilog code converts RTL-code into the Gate-level
net-lists whereas the implementation takes the net-lists and checks placement,
routing and possibilities of optimization in respect to FPGA design.

A single error popped up when synthesis was tested due to wrong reset
condition of a flip-flop. One has to ensure all flip-flops are reset by the same
sdw reset ni signal.

However, running the implementation was associated with more changes to
be done. Most relevant change was due to the ODDR. At the beginning this
was not only used for the actual output signal, but also the enable signal in the

71

4 Implementation and Evaluation of the SoundWire Controller Interface

Framer module was created using a ODDR. As those specific blocks can only
be accessed at latest point of pin description, an instantiation within the Framer
module was impossible. Despite dis-functional FPGA structure regarding the
enable ODDR. It was taken as model to implement DDR enable signal as shown
in following listing 4.32. Two FF’s are necessary to comply a consistent enable in
each case of the signal edge. Lines 1 to 16 are related to the flip-flop in charge of
falling edge whereas the other from rows 18 to 30 is enabling the audio signal
on rising edge. An inverted clock signal can cause confusion here.

Last in the list is putting together both of the signals generating a DDR enable.

Listing 4.32: DDR Enable generation
1 a l w a y s f f @(posedge d d r e n i n v c l k or negedge s d w r e se t n i) begin
2 i f (˜ s dw r es e t n i) begin
3 q0 out <= 1 ’ b0 ;
4 qd2 posedge int <= 1 ’ b0 ;
5 end e l s e begin
6 i f (s dw r e se t n i == 1 ’ b1 && s i n == 1 ’ b1) begin
7 q0 out <= 1 ’ b1 ;
8 qd2 posedge int <= 1 ’ b1 ;
9 end e l s e begin

10 i f (c e i n == 1 ’ b1 && s d w r e se t n i == 1 ’ b1 && s i n == 1 ’ b0) begin
11 q0 out <= s d w c t r l d a t a o e n ;
12 qd2 posedge int <= sdw audio data o en ;
13 end
14 end
15 end
16 end
17

18 a l w a y s f f @(negedge d d r e n i n v c l k or negedge s d w r e se t n i) begin
19 i f (˜ s dw r es e t n i) begin
20 q1 out <= 1 ’ b0 ;
21 end e l s e begin
22 i f (s dw r e se t n i == 1 ’ b1 && s i n == 1 ’ b1) begin
23 q1 out <= 1 ’ b1 ;
24 end e l s e begin
25 i f (c e i n == 1 ’ b1 && s d w r e se t n i == 1 ’ b1 && s i n == 1 ’ b0) begin
26 q1 out <= sdw audio data o en ;
27 end
28 end
29 end
30 end
31

32 ass ign sdw data o en = d d r e n i n v c l k ? q0 out : q1 out ;

After finishing the implementation-run, transferring the code via a generated
bitstream to the FPGA is done by the SDK-FrontPanel and testing real behaviour
including the MAX98374 is possible.

4.3.3 Implementation Testing Setup

The board setup used for testing can be seen in figure 4.5. On the left side,
the speaker is connected to outputs of MAX98374. SoundWire is then the link
between digital amp and the FPGA. As previously mentioned, a third wire is
used to avoid floating ground potential. Blue board is used after functional
SDW setup to transfer an I2S audio signal from the jack socket. Power supply
for all boards and the USB Laptop connection used to set registers are not
shown for a clear sight.

Two problems caused major circumstances during testing phase. The first
one detected has been a huge ringing 4.3.4 on data an clock wire. The other
challenge was caused by a too little data signal to clock delay 4.3.5 causing
unstable sampling of data.

72

4 Implementation and Evaluation of the SoundWire Controller Interface

Figure 4.5: Implementation Testing Setup

Figure 4.6: Ringing on SoundWire connection

4.3.4 Ringing

Ringing is related to the overshooting of signals. A rapid level change does not
achieve desired state at the first moment, but overshoots it depending on wire
capacitance as well as inductance. In case 4.6, a oscillation of the SDW Clock
voltage is shown in blue. The yellow signal displays the data line after applying
a 100Ω resistor in between. The value was chosen by an iteration including
50Ω and 200Ω resistance. An acceptable amount of reduced ringing and little
slope change using the medium version emphasise usage of this. Thus, both
connections were expanded by a 100Ω resistor.

4.3.5 Signal Delay

Taking a look at the signals in figure 4.7 b), one recognizes almost no time
delay between data signal (yellow) and clock signal (blue). This little difference

73

4 Implementation and Evaluation of the SoundWire Controller Interface

(a) Signals including a delay (b) Signals without delay

Figure 4.7: SoundWire Signal Delay

implies a limited time for a correct decision threshold sampling the data. Either
too fast or slow data acquisition can occur, delivering wrong data.

The first attempt to resolve this was again done including resistors, leading to
further problems due to a too flat slope. The idea to redirect the data signal
back into the FPGA and out again brought success without a significant change
of signal behaviour. The difference of a few nano seconds on a signal period of
about 80ns enabled the proper functionality of the protocol. Redirection has been
included into the PHY module as displayed in the listing. The output of ODDR
is sdw phy o. This signal is led by sdw pad data del o to a FPGA pin and on a
pin besides returned by sdw pad data del i. Actual SoundWire data in-out line
is the sdw pad data driven including the enable signal sdw phy data o en

Listing 4.33: Signal Delay
1 ass ign sdw pad data = sdw phy data o en ? sdw pad data del i : 1 ’ bz ;
2 ass ign sdw pad data del o = sdw phy o ;

Solving these issues enabled a successful protocol transport. Thus, enumeration
could be done including the finishing device ID naming. Furthermore, register
read and write operations were handled properly.

4.4 Results

By implementation of the interface, an effective reduction of wiring was shown.
Although a lot of possible functionality had been omitted, a successful exchange
of data was possible. Nevertheless, the goal to control the MAX98374 had been
achieved.

Due to measurement restrictions, an actual energy consumption of the Sound-
Wire module related to the extended FPGA expense couldn’t be shown. For the
complete setup, depending on turned on parts, between 3mA in idle state up to
8mA, driving additional speaker and audio I2S transmission, were drawn by
the circuitry. This can not be handled as a valid statement for on-chip energy
consumption .

74

4 Implementation and Evaluation of the SoundWire Controller Interface

Instead of this area expenditure and expense on flip-flops is discussed in
the following being a valuable output of this implementation followed by a
measurement of the audio signal.

4.4.1 Area Expenditure

Turning RTL code into actual hardware components is the main feature of
the GENUS synthesis tool. It’s part of CADENCE design tools and is only
accessible having licences. Inputs are a timing constraints file to define required
signal behaviour, especially related to the clock, and a synthesis script including
library cells, effort to be exposed, input files (RTL modules) etc. Listing 4.34

shows some of instantiated hardware.

Listing 4.34: Genus Report
1 I n s t a n t i a t e d /
2 R e g i s t e r I n f e r r e d Type
3 −−−
4 u apb reg/d p 1 b 0 b l o c k c t r l 3 b l o c k p k g m o d e f f r e g i n f e r r e d f l i p−f l op asynchronous r e s e t
5 u apb reg/dp1 b0 chanen chan1 en f f reg i n f e r r e d f l i p−f l op asynchronous r e s e t
6 u apb reg/ d p 1 b 0 h c t r l s t a r t f f r e g [4] i n f e r r e d f l i p−f l op asynchronous r e s e t
7 . . .

Overall, 1481 FF’s have been implemented causing an area expenditure of
about 0.15 square millimetres. Key result picked out of this file is a majority
of flip-flops related to the generated FIFO register. 1024 can be assigned to
this, opening up possibilities for improvement. As stated before, only 16 bit of
audio data will be used. Thus, a change from 32-bit FIFO to 16-bit can be done.
Furthermore, the address-width thus depth of the register can be minimized by
a lot. As a view at least the half of related flip-flops can be obviated decreasing
in turn the area expense.

Neglecting the FIFO register, 457 flip-flops remain as the basis of the SoundWire
interface. In relation this is about one third of the total amount of flip-flops
as well as the area (about 0.05 square millilitres). Optimizing the register for
audio input will lead to a successful improvement of the implementation and
expenditure. Related to Leda’s digital core area, the generated module consumes
about 5.4%. Reducing to one third, neglecting the FIFO this scales down to
1.8%. In comparison to integrated I2S and I2C interfaces (4.2%), this is less area.
Nevertheless, one has to be aware that SoundWire has been implemented in a
reduced functionality.

4.4.2 Audio Signal Measurement

For audio measurement, an Audio Precision work station was available in the
laboratory. MAX98374’s tone-generator is able to emit audio sine signals in
fractions of sampling rate. As a division of 48kHz by a set fraction-rate register
of 8 leads to 6kHz, this can be seen in the Fast Fourier Transformation (FFT)
of figure 4.8. A THD+N ratio of 0.287% has been computed as an acceptable
result.

75

4 Implementation and Evaluation of the SoundWire Controller Interface

(a) FFT

(b) THD+N

Figure 4.8: Audio Precision Measurement

76

5 Conclusion

An investigation of different improvement possibilities for an MEMS driver
ASIC was captured through the work of this thesis. Reducing energy con-
sumption, wiring or area-count were desired results. Overall, two sections are
delivered covering the behaviour of audio data encoding and a possible interface
for reducing wiring.

The encoding of audio data showed to be of little influence on the early stage
of investigation. Although statistically a reduced toggle rate could be reached,
this moved in a very limited area, strongly depending on applied signal-form
and level. Four encoding mechanisms were implemented, whereas only three
were applied to either serial or parallel wiring systems. A self designed pattern
encoding showed switching reduction for serial data transmission using a sine
plus noise signal. Full-scale related signals could be reduced in toggling by this.
For serial encodings, no other option was relevant due to a disproportional
expense. Regarding parallel data wiring, OEFNSC promised to be an effective
application which couldn’t be underpinned. The reason for this lies in a limited
useful operational capability. For an extremely optimized ASIC the energy
consumption of capacitive loads, in-between wires, have to be taken into account
(which is not corresponding to this case of application). For noise transmission
a switching reduction was detected. Overall, applying encoding techniques for
audio data is not recommended in respect to the methods tested.

Success in optimizing the ASIC was found by an investigation of available
interfaces for audio and control data transmission. SoundWire is a novel protocol
developed by the MIPI Alliance aware of transmitting both data types. Thus, a
reduction in wiring can be achieved. Previously, 5 wire connections due to the
I2S and I2C could be reduced to a two line connection. As the market doesn’t
display a huge increase of applied SoundWire interfaces, this is a draw back
right now and could change at any moment. As there is a need for a subwoofer,
regarding some applications of the MEMS speakers, another interface could be
needed. Such a case decreases an additional high amount of wiring to a little.
Implementing the interface showed a variety of configuration possibilities. A
decision for a minimum implementation was made, ensuring a normal register
interaction and audio transmission between an, amplifier MAX98374, slave and
the controller integrated on the FPGA responsible for control setup of the Leda
ASIC.

77

Appendix

78

A SoundWire Frame

Figure .1: Soundwire Frame Structure (see Pierre-Louis Bossart, 2014)

79

B Encoding Tables

Figure .2: Swithing Activity of Encoding Methods in %

Figure .3: Swithing Activity of Encoding Methods in Total

80

C ADAU1452 Configuration

81

D MAX98374 Register Map

82

83

84

85

86

87

88

89

SD
W

 re
gi

st
er

 li
st

Ad
dr

es
s

Re
gN

am
e

Bi
tN

am
e

Ac
ce

ss
H

W
H

W
Tr

i
g

Pr
iv

ile
g

e
M

SB
LS

B
Re

se
t

D
es

cr
ip

tio
n

D
es

cr
ip

tio
n

8'
h0

0
M

CP
_I

N
TS

TA
T

M
as

te
r C

on
tr

ol
 P

or
t I

nt
er

ru
pt

 S
ta

tu
s

Re
gi

st
er

s
TX

_E
M

PT
Y

r
da

ta
0

0
0

1'
b0

Tr
an

sm
itt

er
 e

m
pt

y
RX

_F
U

LL
r

da
ta

0
1

1
1'

b0
Re

ce
iv

er
 fu

ll
TX

_U
R

r
da

ta
0

2
2

1'
b0

Tr
an

sm
itt

er
 u

nd
er

ru
n

RX
_O

R
r

da
ta

0
3

3
1'

b0
Re

ce
iv

er
 o

ve
rr

un
SL

VR
W

r
da

ta
0

4
4

1'
b0

In
te

rr
up

t S
ta

tu
s

Pa
rit

y
BU

SC
LA

SH
r

da
ta

0
5

5
1'

b0
In

te
rr

up
t S

ta
tu

s
Bu

sc
la

sh
PO

RT
RD

Y
r

da
ta

0
6

6
1'

b0
In

te
rr

up
t S

ta
tu

s
Po

rt
 re

ad
y

PO
RT

1C
AS

CA
DE

r
da

ta
0

7
7

1'
b0

In
te

rr
up

t S
ta

tu
s

Po
rt

 1
 C

as
ca

de
8'

h0
4

M
CP

_I
N

TM
AS

K
M

as
te

r C
on

tr
ol

 P
or

t I
nt

er
ru

pt
 S

ta
tu

s
Re

gi
st

er
s

M
AS

K_
TX

_E
M

PT
Y

rw
cf

g
0

0
0

1'
b1

M
as

k
Tr

an
sm

itt
er

 e
m

pt
y

M
AS

K_
RX

_F
U

LL
rw

cf
g

0
1

1
1'

b1
M

as
k

Re
ce

iv
er

 fu
ll

M
AS

K_
TX

_U
R

rw
cf

g
0

2
2

1'
b1

M
as

k
Tr

an
sm

itt
er

 u
nd

er
ru

n
M

AS
K_

RX
_O

R
rw

cf
g

0
3

3
1'

b1
M

as
k

Re
ce

iv
er

 o
ve

rr
un

M
AS

K_
SL

VR
W

rw
cf

g
0

4
4

1'
b1

M
as

k
In

te
rr

up
t S

ta
tu

s
Pa

rit
y

M
AS

K_
BU

SC
LA

SH
rw

cf
g

0
5

5
1'

b1
M

as
k

In
te

rr
up

t S
ta

tu
s

Bu
sc

la
sh

M
AS

K_
PO

RT
RD

Y
rw

cf
g

0
6

6
1'

b1
M

as
k

In
te

rr
up

t S
ta

tu
s

Po
rt

 re
ad

y
M

AS
K_

PO
RT

1C
AS

CA
D

E
rw

cf
g

0
7

7
1'

b1
M

as
k

In
te

rr
up

t S
ta

tu
s

Po
rt

 1
 C

as
ca

de
8'

h0
8

M
CP

_I
N

TS
TA

TM
AS

KE
D

M
as

te
r C

on
tr

ol
 P

or
t I

nt
er

ru
pt

 M
as

k
Re

gi
st

er
s

TX
_E

M
PT

Y
r

co
ns

t
0

0
0

1'
b0

M
as

ke
d

St
at

us
 T

ra
ns

m
itt

er
 e

m
pt

y
RX

_F
U

LL
r

co
ns

t
0

1
1

1'
b0

M
as

ke
d

St
at

us
 R

ec
ei

ve
r f

ul
l

TX
_U

R
r

co
ns

t
0

2
2

1'
b0

M
as

ke
d

St
at

us
 T

ra
ns

m
itt

er
 u

nd
er

ru
n

RX
_O

R
r

co
ns

t
0

3
3

1'
b0

M
as

ke
d

St
at

us
 R

ec
ei

ve
r o

ve
rr

un
SL

VR
W

r
co

ns
t

0
4

4
1'

b0
M

as
ke

d
St

at
us

 In
te

rr
up

t S
ta

tu
s

Pa
rit

y
BU

SC
LA

SH
r

co
ns

t
0

5
5

1'
b0

M
as

ke
d

St
at

us
 In

te
rr

up
t S

ta
tu

s
Bu

sc
la

sh
PO

RT
RD

Y
r

co
ns

t
r

0
6

6
1'

b0
M

as
ke

d
St

at
us

 In
te

rr
up

t S
ta

tu
s

Po
rt

 re
ad

y
PO

RT
1C

AS
CA

DE
r

co
ns

t
0

7
7

1'
b0

M
as

ke
d

St
at

us
 In

te
rr

up
t S

ta
tu

s
Po

rt
 1

 C
as

ca
de

8'
h0

C
M

CP
_I

N
T_

CL
R

M
as

te
r C

on
tr

ol
 P

or
t C

le
ar

 In
te

rr
up

t S
ta

tu
s

Re
gi

st
er

s

TX
_U

R
rw

pw
1

0
2

2
1'

b0
Cl

ea
r t

ra
ns

m
itt

er
 u

nd
er

ru
n

in
te

rr
up

t b
y

w
rit

tin
g

1

RX
_O

R
rw

pw
1

0
3

3
1'

b0
Cl

ea
r r

ec
ei

ve
r o

ve
rr

un
 in

te
rr

up
t b

y
w

rit
tin

g
1

8'
h1

0
M

CP
_C

TR
L

M
as

te
r C

on
tr

ol
 P

or
t R

eg
is

te
r

EN
rw

cf
g

w
0

0
0

1'
b0

So
un

dw
ire

 M
as

te
r E

na
bl

e
CL

KO
FF

rw
cf

g
0

1
1

1'
b0

So
un

dw
ire

 M
as

te
r C

lo
ck

 In
pu

t O
ff

CL
KS

TO
P_

N
O

TF
IN

N
IS

H
ED

r
da

ta
0

2
2

1'
b0

So
un

dw
ire

 M
as

te
r C

lo
ck

 O
ut

pu
t S

to
p

N
ot

 fi
nn

is
he

d

E SDW Register

90

EN
U

M
EN

rw
cf

g
0

3
3

1'
b0

So
un

dw
ire

 M
as

te
r C

lo
ck

 O
ut

pu
t S

to
p

N
ow

/ u
se

d
as

en

um
er

at
io

n
of

f/
on

RE
SE

T
rw

da
ta

w
0

4
4

1'
b0

So
un

dw
ire

 M
as

te
r R

es
et

PH
YS

YN
C

rw
cf

g
1

5
5

1'
b0

So
un

dw
ire

 P
H

Y
co

nf
ig

ur
at

io
n

8'
h1

1
M

CP
_C

LK
CF

G
O

So
un

dw
ire

 C
lo

ck
 C

on
fig

ur
at

io
n

O
ut

pu
t

SD
W

CL
KS

EL
rw

cf
g

0
2

0
3'

b0
00

So
un

dw
ire

 C
lo

ck
 G

ea
r S

el
ec

t
0x

0:
 1

2,
28

8
M

hz
0x

1:
 1

2,
28

8
M

hz
0x

2:
 1

2,
28

8
M

hz
0x

3:
 1

2,
28

8
M

hz
0x

4:
 1

2,
28

8
M

hz
0x

5-
0x

7:
 1

2,
28

8
M

hz

SD
W

CL
KR

AT
E

rw
cf

g
0

4
3

2'
b0

0

So
un

dw
ire

 C
lo

ck
 R

at
e

0x
0:

0x

1:

0x
2:

0x

3:

0x
4:

0x

5-
0x

7:

8'
h1

2
M

CP
_D

PC
TR

L
EN

rw
cf

g
w

0
0

0
1'

b0
Da

ta
 P

or
t E

na
bl

e

W
O

RD
_S

IZ
E

rw
cf

g
0

3
1

3'
b1

01

W
or

d
si

ze
 fo

r t
ra

ns
m

itt
in

g
da

ta
0x

0:
 1

6b
it

0x
1:

 2
4b

it
0x

2:
 3

2b
it

0x
3-

0x
7:

 3
2b

it
8'

h1
3

M
CP

_B
AN

KC
TR

L
CU

RR
EN

TB
AN

K
rw

cf
g

0
4

4
1'

b0
8'

h1
4

M
CP

_T
ES

T
M

U
X

rw
cf

g
0

7
0

8'
b0

00
00

00
0

8'
h6

0
M

CP
_F

RA
M

EC
TR

L
M

as
te

r C
on

tr
ol

 P
or

t F
ra

m
e

Re
gi

st
er

CO
LU

M
N

rw
cf

g
0

2
0

3'
b0

00
Co

lu
m

n
Co

nt
ro

l
RO

W
rw

cf
g

0
7

3
5'

b0
00

00
Ro

w
 C

on
tr

ol
8'

h7
0

M
CP

_N
EX

TF
RA

M
E

M
as

te
r C

on
tr

ol
 P

or
t F

ra
m

e
Re

gi
st

er
CO

LU
M

N
rw

cf
g

0
2

0
3'

b0
00

Co
lu

m
n

Co
nt

ro
l

RO
W

rw
cf

g
0

7
3

5'
b0

00
00

Ro
w

 C
on

tr
ol

8'
h8

0
DP

1_
IN

TS
TA

T
Da

ta
 P

or
t 1

 R
eg

is
te

rs
TE

ST
_F

AI
L

r
da

ta
0

0
0

1'
b0

In
te

rr
up

t S
ta

tu
s

Te
st

 F
ai

le
d

PO
RT

_R
DY

r
da

ta
0

1
1

1'
b0

In
te

rr
up

t S
ta

tu
s

Po
rt

 R
ea

dy

91

8'
h8

1
DP

1_
IN

TM
AS

K
TE

ST
_F

AI
L

rw
cf

g
0

0
0

1'
b0

In
te

rr
up

t M
as

k
Te

st
 F

ai
le

d
PO

RT
_R

DY
rw

cf
g

0
1

1
1'

b0
In

te
rr

up
t M

as
k

Po
rt

 R
ea

dy
8'

h8
2

DP
1_

PO
RT

CT
RL

FL
O

W
_M

O
DE

rw
cf

g
0

1
0

2'
b0

1
Po

rt
 fl

ow
 m

od
e

DA
TA

_M
O

D
E

rw
cf

g
0

3
2

2'
b0

0
Po

rt
 d

at
a

m
od

e
N

EX
T_

IN
VB

AN
K

rw
cf

g
0

4
4

1'
b0

N
ex

t i
nv

er
t b

an
k

DI
R

rw
cf

g
0

5
5

1'
b0

Po
rt

 d
ire

ct
io

n
8'

h8
3

DP
1_

BL
O

CK
CT

RL
1

W
O

RD
_L

EN
rw

cf
g

0
5

0
6'

b0
00

00
0

W
or

d
le

ng
th

8'
h8

4
DP

1_
PR

EP
ST

AT
CH

AN
1_

N
O

TF
IN

r
co

ns
t

0
0

0
1'

b0
N

 fi
nn

is
he

d
Ch

an
ne

l 1
8'

h8
5

DP
1_

PR
EP

CT
RL

CH
AN

1_
PR

EP
rw

cf
g

0
0

0
1'

b0
Pr

ep
ar

e
Ch

an
ne

l 1
8'

hA
0

DP
1_

B0
_C

H
AN

EN
Da

ta
 P

or
t 1

 -B
an

k
0

Re
gi

st
er

s
CH

AN
1_

EN
rw

cf
g

0
0

0
1'

b0
Ch

an
ne

l E
na

bl
e

8'
hA

2
DP

1_
B0

_S
AM

PL
EC

TR
L1

IN
TE

RV
AL

_L
O

W
rw

cf
g

0
7

0
1'

b0
Sa

m
pl

e
In

te
rv

al
 L

ow
8'

hA
3

DP
1_

B0
_S

AM
PL

EC
TR

L2
IN

TE
RV

AL
_H

IG
H

rw
cf

g
0

7
0

1'
b0

Sa
m

pl
e

In
te

rv
al

 H
ig

h
8'

hA
4

DP
1_

B0
_O

FF
SE

TC
TR

L1
O

FF
SE

T_
1

rw
cf

g
0

7
0

1'
b0

O
ff

se
t

8'
hA

5
DP

1_
B0

_O
FF

SE
TC

TR
L2

O
FF

SE
T_

2
rw

cf
g

0
7

0
1'

b0
O

ff
se

t
8'

hA
6

DP
1_

B0
_H

CT
RL

ST
O

P
rw

cf
g

0
3

0
1'

b0
H

 S
to

p
ST

AR
T

rw
cf

g
0

7
4

1'
b0

H
 S

ta
rt

8'
hA

7
DP

1_
B0

_B
LO

CK
CT

RL
3

BL
O

CK
_P

KG
_M

O
DE

rw
cf

g
0

0
0

1'
b0

Bl
oc

k
Pa

ck
in

g
M

od
e

8'
hB

0
DP

1_
B1

_C
H

AN
EN

Da
ta

 P
or

t 1
 -B

an
k

1
Re

gi
st

er
s

CH
AN

1_
EN

rw
cf

g
0

0
0

1'
b0

Ch
an

ne
l E

na
bl

e
8'

hB
2

DP
1_

B1
_S

AM
PL

EC
TR

L1
IN

TE
RV

AL
_L

O
W

rw
cf

g
0

7
0

1'
b0

Sa
m

pl
e

In
te

rv
al

 L
ow

8'
hB

3
DP

1_
B1

_S
AM

PL
EC

TR
L2

IN
TE

RV
AL

_H
IG

H
rw

cf
g

0
7

0
1'

b0
Sa

m
pl

e
In

te
rv

al
 H

ig
h

8'
hB

4
DP

1_
B1

_O
FF

SE
TC

TR
L1

O
FF

SE
T_

1
rw

cf
g

0
7

0
1'

b0
O

ff
se

t
8'

hB
5

DP
1_

B1
_O

FF
SE

TC
TR

L2
O

FF
SE

T_
2

rw
cf

g
0

7
0

1'
b0

O
ff

se
t

92

8'
hB

6
DP

1_
B1

_H
CT

RL
ST

O
P

rw
cf

g
0

3
0

1'
b0

H
 S

to
p

ST
AR

T
rw

cf
g

0
7

4
1'

b0
H

 S
ta

rt
8'

hB
7

DP
1_

B1
_B

LO
CK

CT
RL

3
BL

O
CK

_P
KG

_M
O

DE
rw

cf
g

0
0

0
1'

b0
Bl

oc
k

Pa
ck

in
g

M
od

e
8'

hC
0

SL
V1

_D
EV

ID
0

U
N

IQ
U

EI
D

VE
RS

r
co

ns
t

0
7

0
8'

b0
00

00
00

0
Sl

av
e

D
ev

ic
e

U
ni

qu
e

ID
8'

hC
1

SL
V1

_D
EV

ID
1

M
AN

ID
0

r
co

ns
t

0
7

0
8'

b0
00

00
00

0
M

an
uf

ac
tu

re
r I

D
8'

hC
2

SL
V1

_D
EV

ID
2

M
AN

ID
1

r
co

ns
t

0
7

0
8'

b0
00

00
00

0
M

an
uf

ac
tu

re
r I

D
8'

hC
3

SL
V1

_D
EV

ID
3

PA
RT

N
U

M
0

r
co

ns
t

0
7

0
8'

b0
00

00
00

0
Au

di
o

Pa
rt

 N
um

be
r

8'
hC

4
SL

V1
_D

EV
ID

4
PA

RT
N

U
M

1
r

co
ns

t
0

7
0

8'
b0

00
00

00
0

Au
di

o
Pa

rt
 N

um
be

r
8'

hC
5

SL
V1

_D
EV

ID
5

Cl
as

s
r

co
ns

t
0

7
0

8'
b0

00
00

00
0

Cl
as

s
M

ip
i R

es
er

ve
d

8'
hD

0
SD

W
_S

LV
_O

P
RE

AD
rw

da
ta

w
0

0
0

1'
b0

SD
W

 S
la

ve
 R

eg
is

te
r R

ea
d

W
RI

TE
rw

da
ta

w
0

1
1

1'
b0

SD
W

 S
la

ve
 R

eg
is

te
r W

rit
e

8'
hD

1
SD

W
_S

LV
DE

V
AD

DR
rw

cf
g

0
3

0
4'

b0
00

0
SD

W
 S

la
ve

 D
ev

ic
e

ID

8'
hD

2
SD

W
_S

LV
LO

W
AD

DR
rw

cf
g

0
7

0
8'

b0
00

00
00

0
SD

W
 S

la
ve

 R
eg

is
te

r A
dd

re
ss

 lo
w

er
 p

ar
t

8'
hD

3
SD

W
_S

LV
H

IG
H

AD
DR

rw
cf

g
0

7
0

8'
b0

00
00

00
0

SD
W

 S
la

ve
 R

eg
is

te
r A

dd
re

ss
 h

ig
he

r p
ar

t
8'

hD
4

SD
W

_S
LV

DA
TA

rw
da

ta
0

7
0

8'
b0

00
00

00
0

SD
W

 S
la

ve
 R

eg
is

te
r D

AT
A

W
rit

e
8'

hD
5

SD
W

_S
LV

RD
AT

A
DA

TA
r

da
ta

0
7

0
8'

b0
00

00
00

0
SD

W
 S

la
ve

 R
eg

is
te

r D
AT

A
Re

ad
8'

hF
8

RE
G

IN
FO

Re
gi

st
er

 fi
le

 in
fo

rm
at

io
n

re
gi

st
er

DA
TE

r
co

ns
t

0
17

0
18

'd
YY

05
D

D
Da

te

8'
hF

C
ID

ID
 re

gi
st

er
PE

RI
PH

ER
AL

_T
YP

E
r

co
ns

t
0

7
0

8'
h2

0
Pe

rip
he

ra
l I

D
VE

RS
IO

N
r

co
ns

t
0

15
8

8'
h0

1
Ve

rs
io

n
La

st
 li

ne
 o

f p
in

 li
st

 -
in

se
rt

 n
ew

 li
ne

s
ab

ov
e

93

Bibliography

Abdellatif Bellaouar, Mohammed Ibrahim Elmasry (June 30, 1995). Low-Power
Digital VLSI Design Circuits and Systems (cit. on p. 2).

Alexander Khazin, Lior Amarillio (2018). “Power reduction through clock man-
agement.” US20180032307A1 (cit. on pp. 19, 22).

AnalogDevices (Jan. 2014). SigmaDSP Digital Audio Processor ADAU 1452. Ed.
by AnalogDevices. url: https://www.analog.com/media/en/technical-
documentation/data-sheets/ADAU1452.pdf (cit. on p. 34).

Andrea Rusconi Clerici, Ferruccio Bottoni (May 22, 2018). “MEMS Loudspeaker
having an Actuator Structure and a Diaphragm spaced apart therefrom.”
9980051B2 (cit. on p. 1).

Arasan (2020). MIPI SoundWire Master Controller 1.1. Ed. by Arasan. url: https:
//www.arasan.com/products/mipi/soundwire/soundwire-master/#sec2

(cit. on pp. 35, 37).
ARM (Aug. 17, 2004). AMBA 3 APB Protocol. Ed. by ARM (cit. on p. 43).
Chennakesavulu, M., T. .Jayachandra Prasad, and V. Sumalatha (Dec. 12, 2018).

“Data encoding techniques to improve the performance of System on Chip.”
In: Computer and Information Sciences (cit. on p. 26).

CirrusLogic (Nov. 2019). Low Power Audio Codec with SoundWire and Audio
Processing. Ed. by CirrusLogic. url: https://www.cirrus.com/products/
cs42l42/ (cit. on p. 30).

Cutress, Dr. Ian (Dec. 11, 2019). Intel’s Manufacturing Roadmap from 2019 to 2029:
Back Porting, 7nm, 3nm, 2nm, and 1.4nm. url: https://www.anandtech.com/
show/15217/intels-manufacturing-roadmap-from-2019-to-2029 (cit. on
p. 4).

Freescale Semiconductor, Inc. (1994). Synchronous Serial Interface. Ed. by Inc.
Freescale Semiconductor. url: http://notes-application.abcelectronique.
com/314/314-68633.pdf (cit. on p. 17).

FreescaleSemiconductor (2000). Enhanced Serial Audio Interface. Tech. rep. Freescale
Semiconductor (cit. on p. 17).

Inc., AnalogDevices (2016). ADSP-SC5373 EZ-KIT Manual. Ed. by AnalogDevices
Inc. (cit. on p. 19).

Inc., MIPI Alliance (2008). MIPI Alliance Specification for Serial Low-power Inter-chip
Media Bus (SLIMbus). Tech. rep. MIPI Alliance Inc. (cit. on p. 20).

Inc., Motorola (2001). DSP56301 User Manual. Ed. by Motorola Inc. (cit. on p. 17).
Intel (2002). Audio Codec ’97. Tech. rep. Intel Corporation (cit. on p. 15).
Intel (2010). High Definition Audio Specification. Tech. rep. Intel Corporation (cit.

on p. 16).

94

https://www.analog.com/media/en/technical-documentation/data-sheets/ADAU1452.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/ADAU1452.pdf
https://www.arasan.com/products/mipi/soundwire/soundwire-master/#sec2
https://www.arasan.com/products/mipi/soundwire/soundwire-master/#sec2
https://www.cirrus.com/products/cs42l42/
https://www.cirrus.com/products/cs42l42/
https://www.anandtech.com/show/15217/intels-manufacturing-roadmap-from-2019-to-2029
https://www.anandtech.com/show/15217/intels-manufacturing-roadmap-from-2019-to-2029
http://notes-application.abcelectronique.com/314/314-68633.pdf
http://notes-application.abcelectronique.com/314/314-68633.pdf

Bibliography

Intel (Sept. 2019). Intel 300 Series Chipset Family On-Package Platform Controller
Hub. Tech. rep. Intel (cit. on pp. 20, 30).

Jafarzadeh, N. et al. (2014). “Data Encoding Techniques for Reducing Energy
Consumption in Network-on-Chip.” In: Transactions on Very Large Scale
Integration (VLSI), Systems22 22(3) 675-685 (cit. on p. 26).

MaximIntegrated (Mar. 2018). MAX98374 Digital Input Class D Speaker Am-
plifier with DHT. Ed. by MaximIntegrated. url: https : / / datasheets .

maximintegrated.com/en/ds/MAX98374.pdf (cit. on pp. 30, 34).
MIPI Alliance, Inc. (Jan. 23, 2019). Specification for SoundWire. Ed. by Inc. MIPI

Alliance (cit. on pp. 20, 43).
Nawrocki, W. (2011). “Physical Limits for Scaling of Electronic Devices in

Integrated Circuits.” In: Physical Properties of Nanosystems (cit. on p. 4).
NXP (Apr. 4, 2014). UM10204 I²C-bus specification and user manual. Ed. by NXP

(cit. on p. 11).
Panda Preeti Silpa, Shrivastava Aviral (Jan. 1, 2010). Power-efficient System Design.

isbn: 9781441963888. doi: 10.1007/978-1-4419-6388-8 (cit. on pp. 2, 6).
Pavel Bohacik, Automotive and Industrial Solutions Group (2012). MPC5604

Serial Audio Interface. Tech. rep. Freescale Semiconductor (cit. on p. 17).
PhilipsSemiconductors (1996). I2S bus specification. Tech. rep. PhilipsSemicon-

ductors (cit. on p. 14).
Pierre-Louis Bossart Juha Backman, Jens Kristian Poulsen (2014). SoundWire: a

new MIPI standard audio interface. Convention e-Brief 172. Audio Engineering
Society (cit. on pp. 20, 79).

Rakesh Chadha, Jayaram Bhasker (Dec. 5, 2012). An ASIC Low Power Primer:
Analysis, Techniques and Specification (cit. on p. 3).

Sanchez, Zeke van (Mar. 2018). XEM7310. Ed. by Zeke van Sanchez. url: https:
//docs.opalkelly.com/display/XEM7310/XEM7310 (cit. on p. 31).

SMSC (2010). Media Local Bus Specification. Tech. rep. SMSC (cit. on p. 18).
TDK (Jan. 8, 2020). TDK announces world’s first MIPI standard SoundWire® micro-

phone. Ed. by TDK. url: https://invensense.tdk.com/news-media/tdk-
invensense-announces-t5808-worlds-first-mipi-standard-soundwire-

microphone/ (cit. on p. 30).
TexasInstruments (2001). PCM CODEC. Tech. rep. TexasInstruments (cit. on

p. 12).
Xilinx (Mar. 7, 2011). AXI Reference Guide. Ed. by Xilinx. url: https://www.

xilinx . com / support / documentation / ip _ documentation / ug761 _ axi _

reference_guide.pdf (cit. on p. 43).
Xilinx (May 8, 2018). 7 Series FPGAs SelectIO Resources. Ed. by Xilinx (cit. on

p. 47).
CMOS Scaling into the Nanometer Regime (Apr. 4, 1997) (cit. on p. 5).

95

https://datasheets.maximintegrated.com/en/ds/MAX98374.pdf
https://datasheets.maximintegrated.com/en/ds/MAX98374.pdf
https://doi.org/10.1007/978-1-4419-6388-8
https://docs.opalkelly.com/display/XEM7310/XEM7310
https://docs.opalkelly.com/display/XEM7310/XEM7310
https://invensense.tdk.com/news-media/tdk-invensense-announces-t5808-worlds-first-mipi-standard-soundwire-microphone/
https://invensense.tdk.com/news-media/tdk-invensense-announces-t5808-worlds-first-mipi-standard-soundwire-microphone/
https://invensense.tdk.com/news-media/tdk-invensense-announces-t5808-worlds-first-mipi-standard-soundwire-microphone/
https://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf

	Zusammenfassung
	Abstract
	Table of Contents
	List of Figures
	Abbreviations
	Introduction and Motivation
	USound
	Leda - Target of Interest

	Motivation for Digital Low Power Design
	Switching Power Reduction
	Clock Gating
	Gate Sizing
	Voltage and Frequency Scaling
	Further Important and Decision Driving Influences

	State of the Art
	Interfaces
	I2C
	Audio Interfaces
	I2S - Inter IC Sound
	Bi-Directional I2S
	AC-97 - Audio Link 97'
	HDA Link - High Definition Audio Link
	SSI - Synchronous Serial Interface
	ESSI - Enhanced Synchronous Serial Interface
	ESAI - Enhanced Serial Audio Interface
	MLB - Media Local Bus
	A2B - Automotive Audio Bus
	SLIMBus - Serial Low-power Inter-chip Media Bus
	SoundWire
	Discussion and Results

	Audio Data Encoding Techniques
	Self-transition versus Coupling-transition
	Potential Field of Application and Related Encoding Techniques
	Investigation of Data Encoding Techniques
	Encoding Results & Conclusion

	Design of the SoundWire Controller Interface
	XEM7310 - Board
	ARTIX-7 - FPGA
	BRK7010

	MAX98374 Evaluation KIT
	AUDINT 1
	Class-D Amplifier MAX98374

	ADAU1452
	SoundWire Module Integration (FPGA)
	Common SoundWire Design Structure
	Transport
	Framer
	PHY

	Measurement and Supply Hardware
	SALEAE - Digital Analyser
	Oszilloscope
	Power Supply

	Modifications
	XEM7310
	MAX98374

	SoundWire-Controller Design
	Clocking
	Transport
	Framer
	FSM
	Synchronization
	PHY

	Implementation and Evaluation of the SoundWire Controller Interface
	System Verilog Basic
	SoundWire Implementation
	Top
	Control
	Data Port
	Framer
	PHY
	Generated Modules

	Testing
	Test Slave
	Synthesis and Implementation
	Implementation Testing Setup
	Ringing
	Signal Delay

	Results
	Area Expenditure
	Audio Signal Measurement

	Conclusion
	APPENDICES
	SoundWire Frame
	Encoding Tables
	ADAU1452 Configuration
	MAX98374 Register Map
	SDW Register

	Bibliography

