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Abstract

Due to an environmental, economic and political pressure, we observe undergoing
significant changes in automotive industries technology. Electrical energy storage is
becoming increasingly important, not only as a part of automotive industries but also
for renewable energy sources, like solar and wind power. One of the key technologies
nowadays are Lithium-ion batteries, both for automotive industries and renewable en-
ergy storage applications. In order to operate battery systems efficiently and safely,
besides the control, we need to be able to correctly estimate the battery state. Con-
cerning the safety and efficiency, two states are of particular importance, those are:
State of Charge and State of Health of the cell. Unfortunately, we still do not have
the technology to measure these states directly, hence we need to estimate them.

In this thesis different approaches are described to cell modeling and cell state es-
timation algorithms. Firstly, two different approaches to cell modeling are proposed,
a comparative study between RC and ARX model is shown, in order to describe cell
response to the cell input as precisely as possible. Next, the behavior of these two
models is examined, combined with the Extended Kalman filter algorithms for esti-
mating the SoC. Further, the Extended Kalman filter is enlarged into dual Extended
Kalman filter (DEKF), with the goal to be able to estimate the SoH. Both filters are
tested for a variety of scenarios, load profiles, temperature varying state and parame-
ter initialization, as well as different cell aging levels.

The simulation results show that the ARX model performs better in terms of com-
putation power and accuracy, the reason for this can be found in the fact, that with
the ARX-model approach a closed-loop model is obtained, but it is difficult to inter-
pret physical meaning of the parameters. However, one can assume that both models
provide satisfactory results and may be used as a cell model. It may be said that
both state estimation algorithms perform well in terms of accuracy of SoC estimation
and that they easily outperform the common Coulomb counting methods in terms of
robustness, flexibility, and accuracy. It turns out that the tuning of EKF parameters
seems to be a very important, but also time consuming-task. Finally, the results for
SoH estimation, using the DEKF are presented, this turned out to be challenging task
in terms of filter tuning. However, the long-term estimation of the nominal capacity
and internal resistance provides a much more stable SoC estimation at the different ag-
ing levels, but also that the cell SoH estimate is possible, with the acceptable accuracy
compared to test data.
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1 Introduction

1.1 Background and Motivation

The history of lithium-ion (Li-ion) batteries began in 1962, it was initially a battery
which could not be recharged after a single discharge. The negative electrode had the
lithium and the positive electrode was made from manganese dioxide. It was brought
on the market by the company Sanyo. The first rechargeable lithium-based battery
was developed in 1985 by Moli Energy, the Negative electrode was made of lithium and
the positive one was molybdenum sulfide. It had Safety problems due to the lithium
on the negative electrode [14].

The next step in the direction of lithium-ion batteries was achieved by the use
of materials on both sides of the electrodes, which enabled a storage and removal of
lithium, and had a great voltage potential. It was the first rechargeable lithium based
battery and was brought to the Market in 1991 by Sony. The active material of the
negative electrode was carbon, that of the positive electrode was lithium cobalt dioxide
[21]. After that the main development was done in Countries such as South Korea
and Japan and found there usage in many applications.

In 1991, lithium-ion batteries have entered the Market with usage in mobile de-
vices, cell phones, and laptops. Since then we have seen an increase in the research
field in order to improve the lifetime as well as the performance of those batteries [14].
After that, the lithium-ion batteries have entered the market of electric and hybrid ve-
hicles, due to their light weight and high Lithium density they were the best candidate
for this field of application. In order to minimize the effects of the climate change,
some organizations estimate that the Electric Vehicles will represent 60% of the total
passenger’s cars market by 2050 [4]. As the demand for Electric and Hybrid Vehicles
grows, so does the diversity in the implementation of the lithium-ion batteries increase.
Nowadays we have a wide range of different chemicals and materials used in lithium-
ion batteries, some of them are: Lithium Cobalt Oxide (LiCoO2), Lithium Manganese
Oxide (LiMn2o2), Lithium Nickel Manganese Cobalt Oxide (LiNiMnCoO2), Lithium
Ion Phosphate (LiFePO4) etc. The main difference between them is specific energy,
safety, performance, life span and cost [5]. In order to fulfill the automotive demands,
the batteries have to improve, they need to have more capacity, power, and energy
density, but also an important role is safety and long life. Automotive industry de-
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1 Introduction

mands battery life for regular usage to be at least ten years. Opposite to the ‘other‘
battery technologies, Li-ion batteries do not die suddenly, instead, they slowly lose
performances over their service life [31]. That means that the end of life (EOL) for
Li-ion batteries has to be determined by the manufacturers. We can say in the auto-
motive field that the battery has reached the end of life either by losing 20 − 30% of
initial capacity or by an increase of the internal resistance which is related to power
applications [4]. In conclusion, the Li-ion battery is not dead at the EOL, but it has
reached the pre-defined state that is considered to be the End of Life for application
in the automotive field.

In the area of electromobility and hybrid technology, the state estimation of lithium-
ion batteries is gaining importance, especially the part with the estimating the state
of charge and battery Aging [14]. For this purpose, a large number of measurements
were carried out at defined state in the course of an extensive aging experiment. These
measurements were carried out together with the industrial and scientific partners at
the VIRTUAL VEHICLE Research Center, within the project ALICe (Aging Model
for Lithium-Ion Cells). The main goal of this Thesis is to devise a model-based state
filter for a non-linear system. With the help of this model, it should be possible to
estimate the aging conditions of the cells. Within the ALICe projects, battery ag-
ing factors were defined. Over more than two years about 150 custom-built battery
cells were tested, under different conditions comprising ambient temperature, different
charge-discharge factors in order to obtain aging data. The cells were smaller, but
with the same chemistry as the ones being used in the Automotive industries.

1.2 Electrochemical cells

We adapted Figure 1.1 from [33], to show basic structure and the operation function
of rechargeable Li-ion cell. Between the two electrodes (anode and cathode), there is
an ionic conductive electrolyte and a separator. Separator is a permeable membrane
placed between two electrodes. During discharge, the migration of Li-ions from anode
to cathode may be observed. During charge we apply external electrical power and
thus force li-ions to migrate in reverse direction [14].

Depending on the application, one cell or several cells (= battery) are used, which
can be connected in series to build a module. Within module according to the required
capacity, several in series connected cells can then be connected in parallel. Several
modules may be used, to build a battery system [24]. In order to operate in a safe
range we need to control these battery systems. For this we use a Battery Management
System (BMS), which monitors the operating range of a battery system. Within the
BMS we have sensors for determining the cell voltages, temperature, current and allows
the connection and disconnection of the battery system [14].

2



1.2 Electrochemical cells

Figure 1.1: Depicted is the operation of a Li-ion battery during discharging and charg-
ing. Images: Thermo Fisher Scientific Inc.[33]

We can say that the, advantages of li-ion batteries and there derived systems, are
high specific energy, high specific power, high charging and discharging efficiency and
low self-discharge[14].

1.2.1 Definitions (Capacity, electrical energy, power and efficiency)

Here we provide a brief introduction to essential parameters, that are important for
cell specifications. These are used to characterize a battery cell or a whole battery
system.

Capacity is the amount of electrical charge delivered by a power source under
specific discharge conditions. It depends on the discharge current, discharge voltage,
temperature as well as on the type and amount of active materials in the cell. The
unit is Ah [16].

Energy of a cell is calculated according to the product of a capacity and average
discharge voltage. The unit is Wh. The specific energy refers to the mass of the
battery and has the unit Wh/kg [16].

Power is the product of current and voltage. It has the unit W [16].
Efficiency of li-ion cell is very high, mostly around 95%. It is defined as released

energy during discharge, divided by the stored energy during charge [16].

1.2.2 Safety of li-ion batteries

Based on a automotive battery system, we can consider: chemical, electrical, mechan-
ical and functional safety[14]. Chemical safety is determined by the design of battery
cell, for example, selection of the corresponding active materials and the structure
itself. Electrical safety is achieved by insulating the cables of a battery system and

3



1 Introduction

corresponding housing and sub-components. The mechanical safety may is accom-
plished by appropriate design, for example special crash boxes. Functional safety is
achieved by cell monitoring, battery control units, actuators and corresponding com-
munication interfaces [14].

1.2.3 Lithium-ion battery aging

Over time, the characteristics of a cell/battery system may change. The cells are
made of different materials that are in contact with each other and thus can react
with each other. At high temperatures, these reactions are accelerated. Subsequently
the capacity of the cell may decrease, and the internal resistance may increase, which
results in power decrease with time [14].

Degradation mechanisms are different for positive and negative electrode [31]. Neg-
ative electrodes are mostly composed of graphite, carbon, titan, or silicone. During
the manufacturing a layer is formed on the active material. This is referred to as ‘Solid
Electrolyte interphase‘ (SEI) [31]. Its purpose is to protect electrolyte from reduction
and the negative electrode form corrosion. Possible degradation mechanisms on a pos-
itive electrode are: electrolyte degradation, wear of active mass, electrolyte oxidation
and formation of the SEI interaction [4]. Further aging mechanisms are described in
[32] in detail.

1.3 Problem Statement

This thesis investigates the approaches of Lithium-ion cell modeling and different mon-
itoring techniques of the cell states that can not be directly measured. It is a state
estimation problem. These algorithms need to accurately monitor the cell state of
charge and state of health using real measured data. Although conventional methods
such as Coulomb counting may fulfill the requirements needed for certain applications,
they are not sufficient, if used alone, for the automobile applications.

In this work two different model-based methods i.e. RC- and ARX-model are
introduced in order to simulate the Lithium-ion cell response to the input. Kalman
filter algorithm is then applied to these model to obtain the robust and stable state of
charge and state of health estimation for long and short-term scenarios. The developed
methods use real data obtained from more than 400 Lithium-ion cells operating under
different cycling profiles.

1.3.1 Battery Test Bench [19]

In order to devise a good model we need adequate measurements. The measurement
data that we use was acquired by, VIRTUAL VEHICLE, MEET, and AVL;

• VIRTUAL VEHICLE: 138 channels 5-50A + 8 thermal chambers
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1.3 Problem Statement

• MEET: 4 channels 400A + 4 thermal chambers

• AVL: 4 channels 300A + 1 thermal chambers

Cell tests where divided into three main categories: load-cycling tests, driving cycle
tests and calendaric storage tests. In total, 18 calendaric 18650 cells were monitored
(current and voltage). The load point settings were designed according to the cell
specifications. For the capacity measurement and SoC settings, the cells are operated
within a window of 15% to 95% of their nominal voltage limits. The cells that are
used had the nominal capacities of 0.32Ah for the 18650 cells and 24Ah for the PHEV2
cells.

1.3.2 Reference Test Procedure RTP

For our model, we initially used the reference test procedure data which provides the
fundamental information for the ongoing cell aging experiment. The programming
was divided in three main sections:

• Capacity determination: This test gives insight into the loss of capacity by
cycling the cell at 1C (Cells are cycled within 15% - 95% SoC range)

• Capacity retention test: This yields insight on the capacity evolution under
varying C-rate

• Pulse test: At 7 SoC levels, a number of pulse tests are run, they provide infor-
mation about a cell’s resistance, capacity and parameters for fitting cell models.

1.3.3 Load Points programming

Load points are defined by a certain SoC and the delta-SoC (dSoC), which describes
the SoC operation window -see Figure 1.2. The cell is discharged with a defined C-rate
from the Design-of-Experiment (DOE) with the Peak Discharge current (PDC) in a
certain pulse rest sequence (defined by the frequency) until the minimum SoC has
been reached according to the dSoC. Then the cell is charged with a constant C-rate,
defined by the constant charge current CC.
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1 Introduction

Figure 1.2: Graphical demonstration of DOE parameters in the load point sequence

1.4 Structure of the thesis

The remainder of this work is organized as follows: In Chapter 2 we provide an
overview of Lithium-cell models. This is split into two approaches of RC- and ARX-
modeling. Further, we present obtained result using both algorithms for 5 RC- and
ARX parameters, under different aging stages, SoC and temperature. In Chapter 3 we
present the SoC-estimation on the basis of the previously defined models. We describe
the EKF-algorithm, as well as the implementation of the same in combination with
RC- and ARX-model. In Chapter 4 we combine two EKF-algorithms in order to obtain
a DEKF, where one EKF estimate the cell State and the other the cell parameters.
Further, we present the longtime SoC estimation combined with the cells capacity and
internal resistance tracking, these are related to the SoH estimation.
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2 Li-ion Battery Cell Models

This chapter introduces several approaches to model Li-ion battery cells. These mod-
els will later on provide a basis for model-based estimation of important quantities,
such as; SoC, SoH, available power, and available energy. One way to estimate these
quantities is by modelling cell input output (current/voltage) dynamics. The system
theory classifies models according to their degree of physical interpretability, as white
box, grey box and black box model [28].

White box

Also known as physical models, white box models are based on the electrochemical
and physical partial differential equations (PDEs). This results in slow and numer-
ically sensitive simulation [28]. White box models are mostly low-level models with
high accuracy. They are designed, to describe the architecture of the materials and
illustrate the complex electrochemical phenomena inside the cell, such as thermody-
namics, kinetics etc [27]. This is often done with a FEM tool simulation, starting with
0D models, homogenized models, particle models (1D) and homogenized 2D models
to 3D models, with the increasing computational effort [27]. The micro structure may
be represented in the models either as a reconstruction of a real electrode, obtained by
the generic generation of a micro structure with defined parameters or considered as
homogenized [28]. Differential equations require, a considerable number of parameters,
along with detailed configuration effort to build a physical model. Models like this
may offer huge analytical insight, which might be interesting for material scientists.
In scope of this work, such insight is not necessary [27].

Grey box

Also known as abstract models, these models represent a different but interpretable
representation of the battery system, providing a substitute representation of the phys-
ical entity. There are different implementations possible, but the most important for
this work are the Equivalent-circuit models (ECMs). Equivalent-circuit models have
been used long before the use of lithium-ion batteries [10]. These models allow us
to represent the complex electrochemical processes by a simple electrical circuit [27].
Using this method, the correlation with battery dynamics is preserved, without com-
promising much of the accuracy [6]. The main disadvantage is that it cannot predict
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2 Li-ion Battery Cell Models

internal electrochemical state, but it can predict output voltage from current.

In general, equivalent circuit models have a low computational cost and can there-
fore be applied within real-time environments, as they permit fast and robust sim-
ulation. The parametrization of the equivalent circuit models is often performed by
fitting to measured impedance spectra, but also a parameter optimization on a cur-
rent and voltage profile is possible. However, the complexity compared to the physical
models is much lower, and look-up tables are still necessary if we want to match
experimental data. For example, equivalent circuit models make reasonably good pre-
diction when the cell is operated with currents similar to those used when fitting the
parameters (interpolation among the data seen when creating the model), but they
tend not to extrapolate well (cell being operated under very different current profiles
from the lab-test) [24]. More accurate although more complex models take effects like
aging, temperature and nominal capacity fade into consideration. Models like this are
commonly used in Kalman filters which are widely used in various forms [28].

Black box

Also known as Empirical models, because they are based on the empirical param-
eters which do not have any physical significance in most cases. Among the black
box models we can count artificial neural networks [22]- [29], fuzzy logic [30] and non-
linear autoregressive moving average model with exogenous inputs NARMAX models
[11]. These models are mainly used for diagnostic purposes but not for the physical
reproduction of the parameters. On the other hand, we have a fully automated pa-
rameterization and no necessary understanding of the physio-chemical processes in a
battery. The mathematical approaches used to define the transfer function from the
input to the output of the back box make these models easy to configure, and able to
deliver quick responses and predictions [28]. In order to improve the accuracy and the
physical insight, we can combine it with a low-level model.
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2.1 Simple models

2.1 Simple models

It is possible to use a voltage source, resistors and capacitors in order to predict the
behavior of a lithium ion cell. off course the cell itself does not contain internally
these electronic components, but its input/output relation can be similarly described
by these. Mentioned types of models are largely used in commercial battery packs.

2.1.1 Zero-time-constant Battery Model

In order to realize the objective of this work, an equivalent circuit model is used and
thus a gray box model chosen. If we want to implement a simple battery model, one
way would be a zero-order-constant electrical circuit as shown in Fig. 2.1.

Figure 2.1: Zero-time-constant battery model

Using Kirchhoff’s voltage law, we get the following Eq. (2.1).

U(t) = OCV (SoC(t))−R0 ∗ I(t) (2.1)

where OCV (SoC(t)) represents the cell’s Open Circuit Voltage (OCV). R0 describes
the cell’s internal ohmic resistance. Both, OCV and R0 may depend on SoC, SoH and
temperature. U(t) is the battery terminal voltage and I(t) is the output current,
positive when discharging and negative when charging [7].

This simple model may be used to describe the static behavior of the cell, but
it will not be suitable for describing cell dynamics. OCV is in a direct relationship
with the SoC [23]. We should notice that the temperature has a large influence on the
parameters, particulary at low temperatures. The main disadvantage of this model is
that it does not represent the transient behavior of lithium-ion cells, thus it is not the
best solution for accurate assessment of SoC during dynamical operation.
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2 Li-ion Battery Cell Models

2.1.2 First order RC-model

If we speak of equivalent-circuit models, there are several ways to devise the model and
its parameters. The general modeling approach can be divided into two categories:
time domain and frequency domain. Frequency domain based models use impedance
measurements and Nyquist plots, as shown in Figure 2.2 [15].

Figure 2.2: Nyquist plot for new battery at various SoC [3]

Another way to do this is the time domain using experimental data current and
voltage, as shown in Figure 2.3

Figure 2.3: Voltage response with respect to current [15]

For the purposes of this work, we are going to adopt the time domain based ap-
proach, using the voltage and current analysis. With the help of input/output (cur-
rent/voltage) information it is possible to obtain the corresponding parameters of the
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2.1 Simple models

cell model, as well as the model itself. Figure 2.4 shows a simple cell model that can
be used to represent transient behaviour of lithium-ion cells.

Figure 2.4: First order RC-model

The voltage source OCV is dependent on the SoC. We can describe the relation
between these two using Eq. (2.3). The resistor R0 represents the cell’s ohmic Re-
sistance. The resistor-capacitor pair describes the diffusion effects. Adding further
resistor-capacitors as shown in Figure 2.5 can improve model fidelity. Although the
transient behaviour of the model may be imprecise, we can rely on the fact that the
voltage prediction would be reasonable after some time has elapsed. If we consider
parameters R0,R1,C1 as a unit, they do describe the physical properties of the diffu-
sion process, but considered individually they do not describe physical property of the
cell [24]. The SoC in time domain can be calculated as shown in Eq. (2.2), SoC is the
ratio of standard remaining charge to the nominal capacity:

SoC(t) = SoC(t0)−
∫ t

0

ηi(t)

C
dt. (2.2)

Where SoC(t) is state of charge at the time t, SoC(t0) is the initial value of SoC,
i(t) is the current in/out of the cell, and η is the coulomb efficiency. The SoC at
discrete time k evolves according to Eq. (2.3)

OCV (SoCk+1) = SoCk −
ηkik∆t

Ctotal
. (2.3)

where ik is the input/output current at the time k, η is the Coulomb efficiency at
time k, ∆t is the sample period, and Ctotal is the total capacity of the cell. η and
SoC are unitless, that means if we measure current ik in Amperes and we have ∆t
in seconds, our Ctotal must be given in Ampere seconds. Again, we can calculate the
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2 Li-ion Battery Cell Models

output voltage using Kirchhoff’s voltage law, as shown in Eq. (2.4)

U(t) = OCV (SoC(t))− U1(t)−R0I(t). (2.4)

2.1.3 Second order RC-model

It is known that charging and discharging the battery can be related to a capacity and
resistance in terms of behavior. By testing the characteristics of a lithium-ion battery,
a distinct polarisation can be observed. It is possible, to simulate the polarisation
characteristic with a first order RC-model, however it is impossible to make a clear
difference between the concentration polarisation and electrochemical polarisation at
the end of charge or discharge [13]. That is one of the reasons we decided to use second
order RC-model also known as the dual polarization (DP) model, for the following
work, which is shown in Figure 2.5. Using the dual polarization model it is possible
to describe the dynamics and the characteristic of the lithium-ion cell.

Figure 2.5: Second order RC battery model

U̇1(t) = − 1

R1C1
U1(t) +

1

C1
I(t)

U̇2(t) = − 1

R2C2
U2(t) +

1

C2
I(t)

U(t) = OCV (SoC(t))− U1(t)− U2(t)−R0I(t).

(2.5)

From Eq.(2.2) and Eq.(2.5), we can write the continuous-time state-space equation in
time domain.

ẋ(t) = Ax (t) + Bu(t)

y(t) = C(x (t)) + Du(t).
(2.6)
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2.1 Simple models

where u(t) ∈ Rm is the input, y(t) ∈ Rp is the output, and where x(t) ∈ Rn is the
state vector.

x(t) =

 U1(t)
U2(t)
SoC(t)

 ; A =

− 1
R1C1

0 0

0 − 1
R2C2

0

0 0 0

 ; B =

 1
C1
1
C2

− η
Cnom∗3600

 ;

C =
[
−1 −1 δOCV

δSoC

]
; D = [−R0]

u(t) = [I(t)]; y(t) = [U(t)].

(2.7)

Look at the form of the Eq. (2.6) it can be conclude that it looks similar to a linear
state space system, but the dependence of the OCV on SoC makes the equations
non-linear, as shown in Fig. 2.6

Figure 2.6: OCVe vs. SoC

The continuous-time state-space model is transferred into the discrete-time state-space
model. Note, they have a similar form as the continuous-time state-space models. This
makes them suitable for numerical evaluation i.e. parameter identification.

x[k + 1] = Ax [k] + Bu [k]

y [k] = Cx [k] + Du [k].
(2.8)
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2 Li-ion Battery Cell Models

Again u [k] ∈ Rm is the input, y [k] ∈ Rp is the output, and the x[k] ∈ Rn is the state
vector. Considering continuous or discrete state-space model, the matrices A, B, C
and D describe the same system. We may convert continuous to discrete state-space
models by using:

A = eAcon.∆t

B = A−1
con.(e

Acon.∆t − I)Bcon.

C = Ccon.

D = Dcon.,

(2.9)

if the inverse of the Matrix A−1
con. exist. Using this we can rewrite Eq.(2.7) [20]:

x[k + 1] =

 U1(k + 1)
U2(k + 1)
SoC(k + 1)

 ; A =

e
−∆t
R1C1 0 0

0 e
−∆t
R2C2 0

0 0 1

 ; B =

R1(1− e
−∆t
R1C1 )

R2(1− e
−∆t
R2C2 )

−η∆t
Cnom∗3600

 ;

C =
[
−1 −1 δOCV

δSoC

]
; D = [−R0[k]];

u(t) = [I[k]]; y(t) = [U [k]]

(2.10)

In order to make our model fit as best as possible, the real measurements which have
been made on Lithium-ion battery cells are used. The measurements have been made
on cells in the Laboratory under different conditions: temperature, charge/discharge
current (C-rate), as well as different levels of State of Charge. The SoC is calculated
on the basis of the usable capacity of the battery. The parameters depend on the SoC,
current and the temperature. With these measurements and the parameter-fitting
method we estimated the model structure and unknown parameters. In order to have
a battery model with good performance, the model parameters need to be accurately
estimated. Figure 2.7 shows the simulated model that represents our lithium-ion cell,
the simulation was performed with the help of Matlab Simulink.
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2.1 Simple models

Figure 2.7: Simulink model of a cell model

Figure 2.8: Second order RC model in Simulink

2.1.3.1 The Least Squares fitting Method

In order to determine the best fit, we used the method of non-linear least squares which
is already implemented in MALAB lsqnonlin. In this chapter, the short introduction
of the mathematics behind this method is conducted. lsqnonlin is a non-linear least-
square solver, it solves the curve fitting problems of the form:

min
x

= ||f(x)||22 = min
x

(f1(x)2 + f2(x)2 + ...+ fn(x)2) (2.11)
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2 Li-ion Battery Cell Models

wit optional lower and upper bounds lb and ub on the components of x [1].

In our case, the parameters are optimized by minimizing the error between the
measured data and the simulated results. The accuracy of the parameters depends on
the iteration steps and a predefined termination tolerance of x. It does not make sense
to make too many iterations, due to computing power and the time needed. Figure 2.9
shows the optimization with 5 iteration steps, and Figure 2.10 optimization with 25
iteration steps. In Table 2.1 we can see the difference within the optimized parameters
where:

K1 =
1

R1C1
; K2 =

1

C1
; K3 =

1

R2C2
; K4 =

1

C2
. (2.12)

In order to simplify the Simulink model we switch to K1...K4 parameters, this way we
do not need to do division and multiplication directly in Simulink

Figure 2.9: Measured data vs Optimized data with 5 iteration steps

Figure 2.10: Measured data vs Optimized data with 25 iteration steps
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2.1 Simple models

Parameters 5-Iteration steps 25-Iteration steps

R0 0.0878 0.0914

K1 0.127 0.0633

K2 0.0083 0.0043

K3 0.0023 0.0070

K4 7.0542 · 10−4 6.2372 · 10−4

Table 2.1: Parameter values for 5-iterations vs 25-iterations

Furthermore, the RTP is divided into 7 steps, each having lower SoC as the one
before in order to obtain an even more accurate parameter fit. By dividing it we
ensure that we have as much voltage/current diversity as possible (rest, and high
dynamic responses). Figure 2.11 shows the fit from one step, SoC at ≈ 65%

Figure 2.11: Measurement vs Fit 25C at ≈ 65% SoC

These sets of parameters where then used as the initial values, in order to estimate
the cell’s states. More results are shown in the Chapter 2.2

17



2 Li-ion Battery Cell Models

2.1.4 ARX-Model

As mentioned in 2.1.2. the time domain modeling approach was used. We rely on
observed input and output sequences, without knowing characteristics and internal
principles of the system. This kind of modeling is widely used in stochastic optimal
control and adaptive control applications [34]. The dynamic output of the system -in
our case voltage- can be identified as zero-mean sequence if the input signal has zero-
mean white noise properties. For this reason, we bring in the concept of time series,
taking the current and dynamic voltage as two separated time series sequences [34].
In other words, current and voltage may be modeled as a time-series model. There is
a variety of the time series models, that can be selected for cell parameter estimation,
such as Box-Jenkins, ARMAX, ARMA ,ARX etc. [18]. For its simplicity, a specific
case of ARMAX model, the Auto regressive model with ”exogenous” input, so called
ARX-mode, was adopted for this work, see Figure 2.12 .

Figure 2.12: ARX battery mode

The most used model structure of the ARX models is the simple linear difference
equation which relates the voltage output y(t) to a finite number of past outputs
y(t− k) and inputs u(t− k).

y(t) + a1y(t− 1) + ...+ anay(t− na) = b0u(t) + b1u(t− nk) + ...

+bnbu(t− nk − nb+ 1)
(2.13)

Equation (2.14) reveals that the additive noise is not the white noise but colored noise
that is strongly influenced by the nature of the A(z−1) [34].

y(k) =
B(z−1)

A(z−1)
u(k) +

1

A(z−1)
e(k) (2.14)

Further advantages of the ARX-Model:
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2.1 Simple models

• Very good approximation for every SISO linear and time invariant system dy-
namics

• Straightforward parameter identification

Disadvantages:

• Difficult physical interpretation

If we consider our ARX model as a nth order linear time invariant model, we obtain:

y[k]+a1y[k−1]+...+anay[k−na] = b0u[k]+b1u[k−1]+...+bnbu[k−nb]+e[k], (2.15)

where y ∈ Rna is the output sequence in our case voltage, u ∈ Rnb is the input sequence
- in our case current -, and ai and bj are the system coefficients to be identified. We
have a single-input, single output (SISO) system; ARX models are known for their
simplicity to identify such time invariant system dynamics [34]

The structure is entirely defined by integers na, nb where, na and nb represent
the model order. na is the auto-regression and nb is the moving average term,. Model
coefficients that need to be identified can be writen as [a1, ....ana , b0, b1, .....bnb

]. We
rewrite the above equation as [34]:

A(q)y(t) = B(q)u(t) + e(t)

where :

A(q) = 1 + a1q
−1 + ...+ anaq

−na

B(q) = b0 + b1q
−1 + ...+ bnb

q−nb

(2.16)

Term e(t) is the noisy disturbance due to sampling error, current sensor etc. We
chose our model order to be the same as in Chapter 2.1.3, i.e. a second order model
and we include three recent input samples. This means we have 5 parameters to
identify, i.e. ϑ = [a1, a2, b0, b1, b2] . To estimate such a model we used a pseudo-linear
regression, also known as the extended least square method [8]. We recorded the inputs
u(0), u(1),..,u(N) and the outputs y(0), y(1),...,y(N) with N >> max(na, nb) [34] .
We introduce the matrix:

Φ(k)T = [−y(k − 1),−y(k − 2), ...,−y(k − na), u(k − 1), u(k − 2), ..., u(k − na)],
where:

ϑ = [a1, ....ana , b0, b1, .....bnb
]T

Thus we can write the output as:

ŷ(k, ϑ) = Φ(k)Tϑ
(2.17)
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2 Li-ion Battery Cell Models

We use the iterative method in order to determine the coefficients.

φ(i) =


y(na − 1) ... y(0) u(na − 1) ... u(na − nb)
y(na) ... y(1) u(na) ... u(na − nb + 1)
. . . . .
. . . . .

y(N − 1) ... y(N − na) u(N − 1) ... u(N − nb)


(2.18)

As described in the paper from (Shifei Yuan 2013) [34] four steps are required to
determine the model order and to identify the five parameters.

• Define the vector y := [y(na, ..., y(N))]T and the matrix Φ(i) with i = 0;

• Calculate the unknown (na + nb)-dimensional parameter vector ϑ(0), based on
the least square estimation ϑ̂ = (ΦTΦ)−1ΦT y;

• Calculate the prediction errors ε(k, ϑ(0)), where ϑ = [a1, ....ana , b0, b1, .....bnb
] and

ε(k, ϑ) = y(k)− ŷ(k, ϑ);

• Given the prediction errors from an ordinary least-square estimation of the ARX-
parameters and the back to step two, until reaching the final termination crite-
rion.

Figure 2.13 shows the first RTP fit with the ARX-model. Again, more results are
shown in Chapter 2.2. Compared to the RC-mode we observe, much better accuracy
when fitting the voltage. The reason behind is that with the ARX-model we have a
closed-loop models, compared to the RC-model where we have the open-loop model.
In the open-loop model, the output voltage error can barely be controlled, this may
lead to error accumulation, thus provide harmful information. This can be avoided
using the closed-loop model [34], which computes a one-step prediction.

Figure 2.13: Measured data vs Optimized data with ARX model
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Figure 2.14 shows parameter fitting for the same cell with different sampling times
0.1s and 0.001s. Here, we can see that the better accuracy is achieved by using the
smaller sampling time, but on the other hand, we face an increased demand of comput-
ing power. We observe that sampling the data with 0.001s, it took us approximately
then times longer in order to obtain the results shown below using Matlab. At the
cost of computation time, the voltage error using 0.1s is between ± 0.02V, while using
0.001s between ± 0.001V.

(a) Measurement vs fit at 35C and 65% SoC with sampling time 0.1s

(b) Measurement vs fit at 35C and 65% SoC with sampling time 0.001s

Figure 2.14: Cell 1002 at same step with different sampling time

We summarize our ARX model as:

x(k + 1) = Ax(k) + Bi(k)

y(k) = Cx(k) + Di(k)
(2.19)
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SoC(k + 1)
ud(k + 1)
ud(k)

 =

1 0 0
0 −a1 −a2

0 1 0

  SoC(k)
ud(k)

ud(k − 1)

 +

 ηi∆t
Cnom∗3600 0 0

0 b1 b2
0 0 0

 i(k + 1)
i(k)

i(k − 1)


y(k) = OCV (SoC(k)) + ud(k) + b0i(k).

(2.20)

2.2 Results and Discussions

In this Chapter, the results of the parameter identification are presented, as well as
the comparison between the measured voltage and the model output (voltage). As
mentioned in Chapter 1.3.1, the measurements have been performed, within 2.5 years.
That is why the ′′long-term′′ changes in the parameters have been investigate, in order
to draw a conclusion between the parameters of the ′′new′′ cells and the ′′old′′ cells.

2.2.1 RC-model

After devising the RC model section 2.1.3, the parameters of the model were identified
and analysed. We aimed, to see if there is a connection between the cell’s aging-state
and the changes of the parameters. Five parameters were estimated for each cell.
The cells are operated within the window from 15% to 95% of their nominal potential
limits. This means that the capacity is always measured over a range of 80% of the
dSoC and then divided by 0.8 to obtain the corresponding 100% capacity. At 7 stages
of SoC, a series of pulse tests were performed to obtain information about the cells
characteristics, such as resistance, capacitance and cell parameters. The initial cell
characterization involves RTP (Chapter 1.3.2) testing at five temperatures (5, 15, 25,
35, 45 ◦C) for all cells. Thereafter, the RTP runs at 25 ◦C every 21 days and every
third RTP is tested at three temperatures (5, 25 and 45 ◦C) [19]. Figure 2.15 shows
input currents and measured voltage (output) of the 18650 mini-cell’s ALICe1 (cell
No. 1001 at 25 ◦C). The first parameter estimation was performed for a complete RTP
to test the model quality.
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Figure 2.15: 18650 Mini-Cell ALICe1 cell 1001

Figure 2.16 compares the model response estimated voltage to the measured voltage
(Data) and the error achieved with this pure feed-forward simulation.

Figure 2.16: Measured vs estimated cell voltage cell 1001 at 25◦C

We see that the error stays between ± 0.1V and that the model could reasonably
represent the cell in many applications. To get an even more accurate estimate, we
divided the RTP into 7 SoC stages (see next Figures) and performed the parameter
identification for each step.
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Fit and model error at 25% SoC

Fit and model error at 35% SoC

Fit and model error at 45% SoC
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2.2 Results and Discussions

Fit and model error at 55% SoC

Fit and model error at 65% SoC

Fit and model error at 75% SoC
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Fit and model error at 85% SoC

Figure 2.17: Measurement vs estimated cell voltage of cell 2013061248 at 25 ◦C at SoC
= (25%, 35%, 45%, 55%, 65%, 75%, 85%) RC model

The voltage error lies between −0.03V and 0.03V . It would be possible to make the
error even smaller if the sampling time is further reduced. For a reasonable application,
the sampling time was set to 0.1s. The parameters depend on the SoC, Temperature
and the cell’s aging conditions. In order to be able to analyze the parameters as good
as possible for different cells, we have divided them into three groups:

• Parameter dependence of temperature and SoC

• Parameter dependence of temperature and aging conditions

• Parameter dependence of SoC and aging conditions

Parameter dependence of temperature and SoC

As assumed, the cells differ from each other due to production variability. This
justifies why the cell parameters are different even under almost identical conditions
(T, SoC, age) for different cells. Figures 2.18-2.23 show two different cells of the same
type (18650) under the same conditions. At the beginning of the test (same age), we
see that the internal resistance as well as the capacitance (C1, C2) and the resistances
(R1, R2) have different values. In addition, we can also see that the model parameters
are highly dependent on cell temperature and cell SoC. Resistor R0 represents the
internal ohmic resistance. The polarization resistances include R1 and C1 to represent
the fast kinetic effects and R2 and C2 to represent the concentration polarization. As
expected, the higher the SoC, the lower the internal resistance. We can also observe
an increase in capacity C1 at higher SoC.
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(a) R0, cell 1009 (b) R0, cell 1010

Figure 2.18: Estimated internal resistance R0 for two different cells of the same age

(a) R1, cell 1009 (b) R1, cell 1010

Figure 2.19: Estimated resistance R1 for two different cells of the same age

(a) R2, cell 1009 (b) R2, cell 1010

Figure 2.20: Estimated resistance R2 for two different cells of the same age
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(a) R2 zoom, cell 1009 (b) R2 zoom, cell 1010

Figure 2.21: Estimated resistance R2 for two different cells of the same age

(a) C1, cell 1009 (b) C1, cell 1010

Figure 2.22: Estimated capacitance C1 for two different cells of the same age

(a) C2, cell 1009 (b) C2, cell 1010

Figure 2.23: Estimated capacitance C2 for two different cells of the same age

From the Figure above, it can be concluded that low temperature, in our case 5 ◦C,
stands out, compared to the higher temperature.
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Parameter dependence of temperature and aging conditions

As mentioned earlier, the main objective is to establish a link between the estimated
parameters and the aging conditions. Below, the parameter changes as a function of
temperature and cell aging are presented. In the figures below we can see different
cells at the beginning of the test and after about 1.5 years, in the temperature range
from 5 to 45 ◦C. To see clearly what happens to the internal resistance R0 over time,
we plot the parameters R0 for the cells 1001 and 1032 at the same temperature 25 ◦C
and SoC = 45%.

(a) R0,cell 1001 SoC = 45% (b) R0, cell 1032 SoC = 45%

Figure 2.24: Estimated resistance R0 over time and temperature

Figure 2.25: Estimated resistance R0 over time for different cells at constant temper-
ature 25◦C and SoC = 85%

Figure 2.25 shows that the cell resistance R0 slowly decreases over time (here it is
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meant that the cell is further cycled), but at some point it starts to increase. Clearly,
the resistance also depends on the temperature and SoC.

(a) R1, cell 1001, SoC = 45% (b) R1; cell 1032, SoC = 45%

(c) R2; cell 1001, SoC = 45% (d) R2, cell 1032, SoC = 45%

(e) C1, cell 1001, SoC = 45% (f) C1, cell 1032, SoC = 45%
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(g) C2, cell 1001, SoC = 45% (h) C2, cell 1032, SoC = 45%

Figure 2.26: Estimated parameters over time for constant SoC = 45%

The figures above show the rest of the model parameters. It is important to note
that the measurement data was taken from cell 1032 until about mid-2014, and the
cell 1001 data was taken almost until the end of 2015. Cell 1032 was removed from
the test bed as planned due to having reached approximately half of its lifetime for
detailed chemical analysis.

Parameter dependence of SoC and aging conditions

In this section, we show the model parameter dependence of SoC and aging conditions.
Approximately 400 cells have undergone 2 years aging process, under different charge
and discharge cycles, different temperatures and different SoCs. Figure 2.27 shows
two different cells that have undergone the same aging process. As we can see, the
internal resistance is increasing with the use of the cell, this can be interpreted as one
possible effect of cell aging. The internal resistance is also dependent on the SoC.

(a) R0, cell 1016 (b) R0, cell 1054
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(c) R1, cell 1016 (d) R1, cell 1054

(e) R2, cell 1016 (f) R2, cell 1054

(g) R2, zoom, cell 1016 (h) R2 zoom, cell 1054

32



2.2 Results and Discussions

(i) C1, cell 1016 (j) C1, cell 1054

(k) C2, cell 1016 (l) C2, cell 1054

Figure 2.27: Estimated parameters over SoC and time at 25◦C

It is important to mention that our measured data is within the span of 5 − 45◦C
and 25%− 85%SoC. Later on, data outside these limits is extrapolated by Matlab
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2.2.2 ARX-model

In the case of the ARX model, the same procedure was applied as for the RC model.
The RTP was divided into 7-Steps in order to obtain the required parameters (test
data is same as in the RC model: same current, voltage, and cell type). It could be
noticed that the fit residual is much smaller compared to the RC model. With the RC
model the voltage error, was between −0.1V and 0.1V , using the ARX algorithm the
voltage difference between measured and estimated voltage lies between −0.05V and
0.05V , when fitting the whole RTP.

Figure 2.28: Mesured vs estimated cell voltage cell 1001 at 25◦C

Figure 2.28 shows the fit of the whole RTP as well as the voltage error. And in
Figure 2.29 we see the fitted the RTP divided in 7 steps.

(a) Fit and model error at 25% SoC
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(b) Fit and model error at 35% SoC

(c) Fit and model error at 45% SoC

(d) Fit and model error at 55% SoC

35
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(e) Fit and model error at 65% SoC

(f) Fit and model error at 75% SoC

(g) Fit and model error at 85% SoC

Figure 2.29: Measurement vs estimated cell voltage of cell 2013061002 at 25 ◦ C at
SOC = (25%, 35%, 45%, 55%, 65%, 75%, 85%) ARX model
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Figure 2.30: Progress of the parameter b0 over time for different cells

If we look at the mathematical description of the ARX-model output equation in
Chapter 2.1.4 it is obvious that the parameter b0 has the same role, compared to the
output equation of the RC-model as the parameter R0, thus should correspond to the
inner resistance of the cell. Figure 2.25 presents the progress of the parameter b0 over
the time.

Parameter dependence of temperature and SoC

Same as with the RC-model we are going to show the parameters for two different
cells under the same conditions, i.e. SoC, age, temperature. Again we can see that
the parameters for every cell are different, even though the cells have the same size,
capacity, and chemistry (”same cells”). With the ARX-Model it is hard to physically
interpret each individual parameter. We can only assume physical interpretation for
some parameters.

(a) b0, cell 1001 (b) b0, cell 1009
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(c) b1, cell 1001 (d) b1, cell 1009

(e) b2, cell 1001 (f) b2, cell 1009

(g) a1, cell 1001 (h) a1, cell 1009
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(i) a2, cell 1001 (j) a2, cell 1009

Figure 2.31: Estimated parameters over SoC and Temperature

Figure 2.31 shows the progress of individual parameters depending on the temper-
ature and under different SoC levels. The evaluated parameters are in the area, 25%
- 85% SoC. A similar progress as shown with the RC- parameters may be observed.
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Parameter dependence of temperature and aging conditions

In this section, we show how the model parameters depend on temperature and aging
conditions, for two different cells (same cell type) under same conditions see Figure
2.32.

(a) b0, cell 1001 (b) b0, cell 1009

(c) b1, cell 1001 (d) b1, cell 1009

(e) b2, cell 1001 (f) b2, cell 1009
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(g) a1, cell 1001 (h) a1, cell 1009

(i) a2, cell 1001 (j) a2, cell 1009

Figure 2.32: Estimated parameters over Temperature and time, SoC 25%

If we look at the individual parameter progress for different cells, it is obvious
that even under different temperatures the value of the individual parameters lies in
the same area regardless the individual cell. Unfortunately, this was insufficient to
draw some obvious conclusions, regarding the parameter dependency and cell aging
conditions. We should mention, the RTPs for five temperatures were done at the
beginning and the end of the cell tests, that is why the legend in figures shows five
temperatures but we may only see the progress of three temperatures, there are only
a few single data points for the 15◦C and 35◦C.
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Parameter dependence of SoC and aging conditions

In this section, we show the model parameter dependence of SoC and aging conditions.
Figure 2.33 shows two different cells that have undergone the same aging process.

(a) b0, cell 1001 (b) b0, cell 1009

(c) b1, cell 1001 (d) b1, cell 1009 temp

(e) b2, cell 1001 (f) b2, cell 1009
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(g) a1, cell 1001 (h) a1, cell 1009

(i) a2, cell 1001 (j) a2, cell 1009

Figure 2.33: Estimated parameters over SoC and time at 25 ◦ C

Again we see that the progress of a individual parameters compared between differ-
ent cells, of the same type, are of approximately the same magnitude. Compared to
the temperature dependency section above, we may say that the SoC has less influ-
ence on the parameters. The parameter progress here is kept narrow for different SoC
stages.

Conclusion

In this section different approach for battery modeling, i.e. the auto regressive exoge-
nous (ARX) model is presented. The ARX-model with model structure (na, nb) was
chosen, where na = 2 and nb = 3. This means that there were five parameters to be
identified. Similar as in the RC-model a least square method for parameter identifica-
tion was used, same data was used as in RC-models, 18650 cells were used, with the
nominal capacity 0.32Ah over its cycle lifespan.
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2.2.3 Dynamic parameter comparison

In this chapter, we show the course of the estimated internal resistance R0 fitted to-
gether with other degrees of freedom, as well as the progression of the R0 in case where
the other parameters are kept constant, and only internal resistance R0 is estimated.
With this, we want to separate the parameter dependencies from the cell’s internal
resistance R0, and find out if model could still describe the data reasonably well. Table
2.34 shows us the course that we did in order to achieve this.

Figure 2.34: Fit with only one degree of freedom1

The following Figure 2.35 demonstrate the difference between intern resistance R0

fitted with and without the rest of the parameters. It has been noticed that there
was no distinct difference, in the progress of the internal resistance, estimated along
with other parameters and estimated alone. Small changes in the progress have been
observed, but the magnitude is approximately the same in both cases. This was done
for different aging levels as well as for different temperature and SoC stages.

1K1 = 1
(R1C1)

, K2 = 1
C1

, K3 = 1
(R2C2)

, K4 = 1
C2
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Figure 2.35: Course of internal resistance R0 fitted allone vs. along with k1, k2, k3, k4,
SoC 45%

The same was then for the different SoC stages. Figure 2.36 shows us the course
of R0 adapted with the parameters k1, k2, k3, k4, as well as adjusted with constant
parameters k1, k2, k3, k4.

Figure 2.36: Course of internal resistance R0 fitted allone vs. along with k1, k2, k3, k4,
on 20.07.2015
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The same procedure is used for ARX models with parameters a1, a2, b1, b2. Figure
2.37 shows the estimation of all five parameters.

Figure 2.37: Estimated parameters b0 fitted alone vs. along with a1, a2, b1, b2 for cell
1001 on 06.03.2014.

Figure 2.38: Estimated parameters b0 fitted alone vs. along with a1, a2, b1, b2 for cell
1001 SoC = 45 %.
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The same conclusion as for the RC-model parameters can be drawn. The progress of
b0 does not change significantly, either estimated along with the rest of the parameters,
or estimated with the parameters held constant. The sign as well as the magnitude of
the b0 stays approximately the same, we observed some smoother progress but nothing
more that that.
Note: in the one degree of freedom estimation, the SoC was also estimated, and thus
is the SoC value not exact (e.g. 25% but between 23% 27%). while in the estimation
for all five parameters the SoC was not estimated, but held exactly corresponding to
the setpoint (for example 25%)
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The main goal of this Master-Thesis is the state estimation of the cells condition.
Some of these conditions, such as cells total capacity, internal resistance etc. can be
describe as slow changing quantities, these we call the cells Parameters. For example
cell resistance may change only few percent in value over the year. On the other hand
we have fast changing quantities, which we call states of the cells. These are cells SoC,
hysteresis state etc. For example some cells can be emptied in a matter of minutes.
The reason way the States and Parameters need to be estimated, is that we can not
measure these quantities directly.

In this Chapter we describe state estimation, mainly the SoC estimation, using
different methods and algorithms to do so. Estimating the SoC is required in order
to perform cell balancing, as well as to calculate the remaining power and energy. We
can consider the SoC as a kind of fuel sensor (in combustion engines), that has the
value between 0% and 100%, zero being empty and 100% being full. Among others, the
main reason for the need of accurate SoC estimation is the cell sensitivity on overcharge
and over-discharge. This can lead to fast irreversible cell damage (degradation), and
in some cases to thermal runaway (burning or even cell explosion ).

3.1 SOC estimation methods in general

There are different methods to determine the SoC of the cell, some of them are more
complex and some less. So how do we chose one? Firstly, it depends on the type of
the cell and the application for which the cell is used. In this work we are going to
focus on the lithium-ion cell’s (Li-cell’s). These are widely used in the automotive
area. First question that we have to ask our self is: what do we need, in order to
calculate/estimate the cell SoC? We need to somehow combine the measurements and
use our knowledge of the cell model in order to estimate SoC. Firstly we are interested
in the measured quantities current, voltage, temperature. Secondly, our model has to
deliver reasonable results, in order to depict the voltage response as the answer to an
input.
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3.1.1 SoC estimation using open circuit voltage

As previously shown in chapter 2.1.3 terminal voltage OCV is a function of SoC
Equation 2.5. This means if the cell is at rest the hysteresis and the diffusion voltage
can be ignored, so we have a relationship as shown in Figure 2.6. It is possible to
make a lookup-table with this relationship, i.e. measured terminal voltage vs. SoC.
The main problem with this method is that the cell has to be rested and the hysteresis
has to be negligible in order for this to be true. In summary we can say that this
method may be used in the applications where the cell is rarely under load, and often
at rest for a long time. One more use for this method may be to estimate the initial
SoC for other methods, e.g. Coulomb counting or Kalman filter.

3.1.2 Coulomb counting

Coulomb counting or ampere hour counting method is the most common method in
calculating the SoC. After all the charging and discharging is related to current flow
in/out of the cell. For accurate calculation of the SoC, we need starting point of the
SoC. This means that we can calculate the SoC, by adding the current [24]

SoC = SoC0 −
∆t

Cnom

k−1∑
j=0

ηjij (3.1)

If we look at the equation, it measures the amount of charge added to or removed
from the cell, normalized with the total capacity. However in real applications the
measured current comes with measurement noise, and if the initial value of the SoC is
incorrect, there is no mechanism to correct this error over time. This means that the
calculated error will sum up as same as we sum the current, and eventually it will not
be even close to the real/expected SoC value. Another uncertainty is that we have to
estimate the total capacity as well, we can expect capacity loss over time. All of these
things influence the SoC deviations from the real value. So, we can conclude that this
method is not the best choice to estimate the SoC, especially if its used in applications
where long term prediction is needed, and if there is no possibility of resetting the
initial values.

3.1.3 Model-based estimation

As we show both current and voltage based estimations have their advantages and
disadvantages, do not fulfill the needs in many use cases for estimating the states. So
the idea is to combine those two approaches somehow. This can be done by simulat-
ing cell input/output (current/voltage) behaviors, within a model-based estimation.
In model-based estimation we have to measure input and the output of the cell (cur-
rent and voltage). One issue that we are aware of, is the fact that the current and
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voltage sensors are not ideal, so we have to expect noisy measurements. We model
the uncertainty in current as processes noise, this will cause the change in the the cell
state, but the change can not be predicted as we don’t know the ratio between the
true and measured current. The uncertainty in the voltage can be represented as a
sensor noise, the uncertainty in the voltage will not effect the true state, but it means
that we can not fully trust the accuracy of the voltage measurement [24].

in order for our model-based estimation to work we need a feedback loop, to
compare the estimated and the measured voltage. If those two are different we know
that our model state estimate is not good and we need to adjust it. If those two
are same or the difference is small enough we have indicator that the model state
estimation is good. So we used this information in the feedback mechanism to correct
our model. Figure 3.1 shows us one possible model based estimation approach.

Figure 3.1: Model based estimation approach [24]

3.2 Implementing an EKF using the cell models

As we know in Electric and Hybrid vehicle, a battery management system (BMS)
has to estimate values of the battery operating conditions: battery state of charge,
power fade, capacity fade and available power. It is possible to use extended Kalman
filtering (EKF) to estimate some of these states, on a lithium-ion battery. The HEV
environment is very challenging on the BMS and the battery systems, so the estimation
of some parameters should improve performance, robustness and useful lifetime of the
battery pack. With the help of Kalman filters we can make intelligent (and some-
times optimal) means for estimating the present value of the time-varying ”state” of
a dynamic system [25].
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Why do we use Extended and not Linear Kalman filters? The Kalman filtering
algorithm is the optimum state estimator for linear systems, and as we mentioned
earlier, we have a non-linear system (non-linearity is given by the OCV-SoC correla-
tion). For non-linear a system linearization process is computed at each time step,
to approximate the non-linear system as a linear time varying system (LTV). There
are some problems with this approach, but it is still popular and can work well if the
systems non-linearites are mild [24]. The EKF makes two simplifying assumptions:

1. When computing output estimates of a non-linear function, EKF assumes that
the expected value of a non-linear function, and the unknown state is equal to the
same non-linear function evaluated at the expected value of the state.

E[fn(x)] ≈ fn(E[x]) (3.2)

This is not true in general, it is only true when fn(x) is linear [24]

2. When computing the covariance estimate, EKF uses Taylor-series expansion to
linearize the system equations around an operating point. Higher order terms are to
be discarded from the expansion. This is the reason why EKF works best for systems
having only mild non-linearities [24].

To derive the EKF equations we follow six general steps, as shown in [24].
Our discrete non-linear state-space model whose states we would like to estimate looks
like:

xk = f(xk−1,uk−1, wk−1)

yk = g(xk,uk, vk),
(3.3)

where xk is the state vector, uk is the known input signal (current), wk is unmea-
surable process-noise, vk is unmeasurable sensor-noise, the system output yk is noisy
measurement of a cell voltage.

1a: State− prediction time update
Using assumption 1. and Eq. 3.3 we can approximate.

x̂−k = E[f(xk−1,uk−1, wk−1)|Yk−1]

≈ f(x̂+
k−1,uk−1, w̄k−1)

(3.4)

Where w̄k−1 = E[wk−1]. We assume that x̂+
k−1, w̄k−1 propagate through the state

equation, the approximate provides the expected value of the new state.

1b: Error − covariance time update
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We approximate x̃−k through:

x̃−k = xk − x̂−k
= f(xk−1,uk−1, wk−1)− f(x̂+

k−1,uk−1, w̄k−1),
(3.5)

using the assumption 2. the first term is defined by pk−1 = (x̂+
k−1,uk−1, w̄k−1)

xk ≈ f(x̂+
k−1,uk−1, w̄k−1) +

df(xk−1,uk−1, wk−1)

dxk−1

∣∣∣∣
pk−1︸ ︷︷ ︸

Defined as Âk−1

(xk−1 − x̂+
k−1)

+
df(xk−1,uk−1, wk−1)

dwk−1

∣∣∣∣
pk−1︸ ︷︷ ︸

Defined as B̂k−1

(wk−1 − w̄k−1),

(3.6)

From Eq. 3.6 follows:

x̃−k ≈ Âk−1x̃
+
k−1 + B̂k−1w̃k−1 (3.7)

To find the prediction error − covariance we substitute the Eq. 3.5 and we get:

P−x̃,k = E[(x̃−k )(x̃−k )T ]

≈ E[(Âk−1x̃
+
k−1 + B̂k−1w̃k−1)(Âk−1x̃

+
k−1 + B̂k−1w̃k−1)T ]

= Âk−1E[(x̃+
k−1)(x̃+

k−1)T ]ÂT
k−1 + B̂k−1E[w̃k−1]E[(x̃+

k−1)T ]ÂT
k−1

+ Âk−1E[x̃+
k−1]E[w̃Tk−1]B̂T

k−1 + B̂k−1E[w̃k−1w̃
T
k−1]B̂T

k−1

= Âk−1P
+
x̃,k−1ÂT

k−1 + B̂k−1Pw̃B̂T
k−1

= Âk−1P
+
x̃,k−1ÂT

k−1 +Qw,k−1,

(3.8)

Where we assume that the prediction is uncorrelated with the process noise at the
same time index, and the state-prediction error is zero mean [24]. We determine
analytically both matrices from Eq. 3.6 as shown below, both matrices are functions
of time.

Âk =



df1(xk,uk,wk)
dxk,1

df1(xk,uk,wk)
dxk,2

... df1(xk,uk,wk)
dxk,n

df2(xk,uk,wk)
dxk,1

df2(xk,uk,wk)
dxk,2

... df2(xk,uk,wk)
dxk,n

. . ... .

. . ... .
dfn(xk,uk,wk)

dxk,1

dfn(xk,uk,wk)
dxk,2

... dfn(xk,uk,wk)
dxk,n


We do the same to calculate B̂k−1.

In this case, it can be assumed that the terms duk−1/dxk−1 and dwk−1/dxk−1 are
zero since the present deterministic input nor the present process noise are functions

53



3 SOC Estimation

of the current system state. Hence that the partial differential is the same as the total
differential[24].

df(xk−1,uk−1, wk−1)

dxk−1
=
∂f(xk−1,uk−1, wk−1)

∂xk−1
, (3.9)

But we will see in Chapter 4, when there is a need for model parameter estimation,
that these are not the same. 1c: Predict system output yk
For linear Kalman filters we predict the system output using the model and the prior
information.

ŷk = E[yk|Yk−1]

= E[g(xk,uk, vk)|Yk−1],
(3.10)

Using the Eq. 3.10 and the assumption 1 we approximate the output by

ŷk = E[g(xk,uk, vk)|Yk−1]

≈ g(x̂−k ,uk, v̄k),
(3.11)

where v̄k = E[vk], usually v̄k = 0
2a: Estimator gain matrix Lk
In order to compute the Kalman gain we use the Taylor-series expansion of yk around
qk = {x̂k,uk, v̄k}. Same as in the step 1b we show that the total derivatives shown in
Eq. 3.12 are equal to partial derivatives.
Output prediction error:

ỹk = yk − ŷk = g(xk,uk, vk)− g(x̂−k ,uk, v̄k),

Taylor-series expansion of yk:

yk ≈ g(x̂−k ,uk, v̄k) +
dg(xk,uk, vk)

dxk

∣∣
qk︸ ︷︷ ︸

Defined as Ĉk

(xk − x̂−k )

+
dg(xk,uk, vk)

dvk

∣∣
qk︸ ︷︷ ︸

Defined as D̂k

(vk − v̄k)

ỹk ≈ Ĉkx̃
−
k + D̂kṽk,

(3.12)

From 1b follows:
dg(xk,uk, vk)

dxk
=
∂g(xk,uk, vk)

∂xk
dg(xk,uk, vk)

dvk
=
∂g(xk,uk, vk)

∂vk
,
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Using this we can compute the Kalman gain:

Pỹ,k ≈ ĈkP
−
x̃,kĈ

T
k + D̂kPṽD̂

T
k︸ ︷︷ ︸

R

Pỹx̃,k = P−x̃,kĈ
T
k

Lk = P−x̃,kĈ
T
k [ĈkP

−
x̃,kĈ

T
k + R]−1,

(3.13)

2b: State− estimate measurement update
We use the estimator gain Lk and the innovation (yk − ŷk) to compute the state
estimate. Same as with linear Kalman filter:

x̂+
k = x̂−k + Lk(yk − ŷk), (3.14)

2c: Error − covariance measurement update
We compute the covariance update as:

P+
x̃,k = (I− LkCk)P

−
x̃,k, (3.15)

Figure 3.2 shows the data flow within the EKF

Figure 3.2: Interaction within the EKF

A summary of the entire EKF algorithm is given in Appendix A.
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3.2.1 EKF for Second order RC-model

We apply the algorithm shown in section 3.2 on our second order RC-model described
in section 2.1.3. Our goal is to accurately estimate the cell state, mainly the SoC of
the cell, using the equivalent-circuit model and the EKF. By accurate SoC estimation
we can prevent over-charging or over-discharging the battery witch can lead to dam-
age or reduced lifetime of a battery, it also can make the Performance of a battery
better in terms of using the entire capacity. In order to do so we need to compute
the components of the state equation Âk and B̂k, as well as the components of the
output equation Ĉk and D̂k. Using the discrete battery model described in section
2.1.3, we calculate the Jacobian using the partial derivatives from the equations 2.10
with respect to state. The Jacobian Âk remains constant, its states are independent.
But we need to compute the state dependent component Ĉk. This can be done by ap-
proximating the partial derivative. For this we need a SoC vector with evenly spaced
points, and the corresponding open-circuit voltage vector OCV Figure 2.6.

Âk =

e
−∆t
R1C1 0 0

0 e
−∆t
R2C2 0

0 0 1

 ; Ĉk =
[
−1 −1 ∂OCV (sock)

∂SoCk

] ∣∣
sock= ˆsoc−k

(3.16)

We compute the matrix B̂k and D̂k as shown below:

B̂k =

R1(1− e
−∆t
R1C1 )

R2(1− e
−∆t
R2C2 )

−η∆t
Cnom∗3600

 ; D̂k = [R0] (3.17)

We simplify the model by making η = 1, and assuming that the measured current
and voltage already contain the Gaussian process-noise.

Having reduced the error between the measured data and the outputs from our
model to our satisfaction, we can proceed with the implementation of the extended
Kalman filter. The algorithm compares the output data obtained from the model
under load, with the measured cell voltage. The error is used to match the state of the
cell model to the measured cell voltages. It is important to note that the OCV curve
of lithium-ion cells usually has non-linearities. To cope with these non-linearities,
the EKF algorithm was designed. Figures (3.3-3.5) show the implementation of our
extended Kalman filter using Matlab Simulink. The input/output quantities, current
and voltage are measured and estimated/simulated values. Currents and voltages were
measured on 18650 Li-ion cells within the project.
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3.2 Implementing an EKF using the cell models

Figure 3.3: Extended Kalman filter Simulink model

As the output of the EKF we get the estimated voltage and the estimated SoC,
the voltage is compared with the measured data, and the reference for the SoC is the
calculated SoC with the help of Coulomb counting method.

Figure 3.4: Extended Kalman filter Simulink subsystem time update
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Figure 3.5: Extended Kalman filter Simulink subsystem measurement update

The sample results and discussions for RTPs and Loadpoints using the EKF algo-
rithm is shown in the chapter 3.3.

3.2.2 EKF for ARX-Model

The equivalent-circuit models are widely used in real applications, however we need
to consider some questions. By increasing the model order, the model precision is
improved but at the cost of model complexity. The second question is about dis-
cretization and implementation. That was one of the reasons we consider a more
straightforward approach, which was the ARX-model. Here we adopt the extended
Kalman filter algorithm in order to improve the proposed battery model. Figure 3.6
shows us the proposed ARX-model together with the EKF.

Figure 3.6: ARX battery model with EKF
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3.3 EKF Results and Discussion

Where:

• i(k) Measured current

• ud(k) Transient voltage

• uocv(k) Open-circuit voltage

• V ∗(k) Estimated voltage

• V (k) Measured voltage

ARX models are very popular for discrete systems with single input and single output
(SISO). Main disadvantage is that we can not assign physical value to the estimated
parameters, Depending on the error between the measured and estimated voltage,
the EKF adapts the SoC in order to change the output voltage from the model, and
thus minimize the voltage error. After some iterations, the error converges towards
optimum, and the SoC converges towards its optimal value [34]. In contrast to the EKF
with RC-model, the implementation of the ARX-model as well as the EKF algorithm
was done using Matlab -script, without Simulink. We used the same general six steps
as described in the section 3.2, our state space equation can be expressed as:

xk+1 = f(xk, ik) + wk

yk = g(xk, ik) + vk
(3.18)

where xk is the [soc(k) ud(k) ud(k−1)], g(xk, ik) is the output equation, k is the time
index, wk is a process white noise with covarianceQk = diag(Qsoc(k), Qud(k), Qud(k−1)),
and vk is observation white noise with covariance Rk. The data flow is here the same
as in Figure 3.2

3.3 EKF Results and Discussion

RTPs are used to characterize the cells before starting the long-term testing of the
load cycles or driving cycles, as well as to characterize the cells every three weeks and
for the final characterization. Duration of each RTP is ca. 38 hours. Figure 3.7 shows
an example RTP on the cell 1002.
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Figure 3.7: RTP for the cell 1002 at ≈ 25◦C

Different load cycles are tested on the different cells in the long term. The cells are
kept in the operating area according to their specification. For this purpose, a basic
version for the operation of the load points was written and individually adjusted for
each load point according to the influencing factors (profile parameters). Duration of
each load cycle is ca. 3 weeks. Figure 3.8 shows an example of the load cycle.

Figure 3.8: Example of the load cycle
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3.3 EKF Results and Discussion

Figure 3.9: Same example of the load cycle zoomed in

Due to the simple feed-forward SoC calculation based on device-logged, charge
offsets, without feedback to the measured cell voltages, all SoC data is still untrust-
worthy. At low dSoC (very short pulses), a systematic drift can also be detected [6].

Figure 3.10: Example of the driving cycle
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Figure 3.10 shows the driving cycle, it covers one week with the aim to represent
real driving conditions from Monday to Friday and rest during the weekend. On
Monday two current profiles are run with a rest of 8h in between. From Tuesday to
Thursday tree profiles are run on each day with 8 hours rest between first and second.
Friday routine is basically identical to the previous days, except that the last current
simulation file is repeated.
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3.3 EKF Results and Discussion

3.3.1 EKF for Second order RC-model

Here we present the results, and the differences between the measured and estimated
data using the EKF. The tests were performed on the RTPs, load cycles and driving
cycle, for individual cycles of three weeks, as well as coupled together.

Figure 3.11: Estimated vs Measured voltage using EKF cell 1001

Figure 3.12: Estimated vs calculated SoC and the error between them for cell 1001

Figure 3.12 shows the estimated SoC using the EKF versus the calculated SoC using
the coulomb counting method for RTP, as well as the SoC uncertainty between these
two. In the top frame we see that the SoC tracking by EKF, observed in a absolute
sense is quite good. The bottom frame shows the SoC error. The root-mean-square
(RMS) for this example was 1.106%.
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Figure 3.13: Estimated vs calculated SoC for cell 1239

Figure 3.13 shows load profile started at 27.11.2013 and was finished approxi-
mately at 16.12.2013. The top frame shows, the progress of a calculated and estimated
SoC, for the whole load profile, in bottom frame we see the zoom on the same plot.

As mentioned earlier, we have RTPs between the load cycle, and there might have
been some couple of hours breaks in the cell cycling, due to time needed to change the
cycling protocol. In Figure 3.14 we can see load cycles coupled together with RTPs.
This, as well as all further long time estimation, was done without breaks in simulation
between load cycle and RTPs. The finale states at the end of the load cycle/RTPs
were applied as an initial value of the next load cycle/RTP, the transferred states are
state vector xk and covarance matrix Pk. The OCV-curve and the RC-parameters are
kept constant, although they are diverse for different temperatures. This is the main
reason, this implausible peaks in SoC values for 5◦C RTPs (see fig. 3.14 occur.)

Figure 3.14: Estimated SoC for cell 1239
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Temperature during the load cycle was set to 20◦C, while for RTPs we have 4
different temperatures see section 2.2.1. We noticed that there might be slight drift in
the temperature, calculated mean for load cycles is 20.3◦C.

We can see from Figure 3.15 that even during operation errors in SoC calcula-
tions may occur, and that some implausible values in SoC can be expected. This can
be related to systematic measurement error. Figure 3.15 shows the calculated and
estimated SoC, only for load cycles, now plotted over each other. We see that SoC
tracking is quite good.

Figure 3.15: Estimated vs Calculated SoC for cell 1239 load cycles

Figure 3.16 shows, the estimated and calculated SoC for the driving cycles, again
for single driving cycles, as well coupled together. The SoC uncertainty is slightly
greater compared to load cycles, reason for that can be found in fact that we used
same set of parameters P+

x̃,0, Qw,R as used for load cycles. But now we have different
current stimulation on the cell. This was one thing we encountered during the EKF
tuning, we could find one parameters set which would work very well for one driving
profile, but we would have bigger deviation in SoC estimation for different driving
profile. So we could say that, we need different parameters sets for EVs and HEVs.
Of course it would be possible to find one parameter set for both, but we would have
to take higher SoC deviation into account.
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Figure 3.16: Estimated vs calculated SoC for cell 1126 (taken on 03-2014,04-2014,08-
2014)

Figure 3.17 shows estimated SoC for coupled driving cycles together with RTPs.

Figure 3.17: Estimated SoC for cell 1126 and RTPs

In addition we performed evaluations on new Panasonic cells, of same dimensions
(18650 cells) with a rated capacity 3.25Ah. Measurements were obtaind within second
project, the cells went under a similar cycling procedure, with some small adjustment
in DoE. Again we have RTPs, load profiles, and different driving profiles. We have
noticed that the EKF algorithm was much more robust, in terms of temperature
dependency, and adjusting the OCV/SoC curves and RC-parameters for single cells,
as well as finding the right parameter set for the EKF. One of the reasons for this may
lie in the bigger cell capacity, but it can also be related to the different cell chemistry.
Here we used slightly different EKF parameters (see Chapter 6), but again only one
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3.3 EKF Results and Discussion

parameter set for different cycling profiles. Figure 3.18 shows a load cycle coupled
together for cell 070, without RTPs in-between, which yields satisfying results.

Figure 3.18: Estimated vs. calculated SoC for cell 070

As we can see from Figure 3.19, for smaller dSoC we have larger deviation in SoC
tracking. Again we have to notice, that we used one parameter set for EKF, as well
as one OCV/SoC curve, for different cycle profiles.

Figure 3.19: Estimated vs. calculated SoC for cell 100
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Conclusion

Some time was spend adjusting the initial parameters P+
x̃,0, Qw,R in order to

obtain satisfactory results. Some example parameter sets are shown in the Appendix
A. The aim was to find a single parameter set, which would be acceptable in terms
of results for all data-sets. This can be done by hand which is the case here, or in an
optimization program loop [24]. There is also some literature on the adaptive version
of EKF, but the experiences using this methods are mixed, since these seem to work
very well for some application, but may have problems with others. Theoretically, we
could find an expression for P+

x̃,0 using the initial voltage uncertainty and the SoC vs.
OCV curve uncertainty, the value of the Qw could be derived from the variance of the
current-signal, and R could be derived based on the voltage-signal variance. However
our EKF assumptions described in section 3.2 are not fully fulfilled. That is why,
derived quantities can be only used as a starting point in the parameter adjustments.

At last we found one parameter set that was partly satisfactory, this was used
in above shown results. We saw that in some cases with the low temperatures, and
certain data-sets, the SoC tracking was slightly off. But we also saw that we can
expect some uncertainty in the calculated SoC, that is one of the reason we did not
plot boundarys, as this might lead to false conclusions. As expected, using the test
data collected at warmer temperatures did yield better estimation results, while for
the data sets collected at low temperatures, in order to get a satisfactory results we
had to use the appropriate SoC/OCV curve, and change the initial parameter sets. We
witnessed, that using the same SoC/OCV curve and fitted parameters R0,R1,R2,C1,C2

for different cells, did not provide adequate results.
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3.3 EKF Results and Discussion

3.3.2 EKF for ARX-model

In this section the results for estimated SoC, obtained with EKF for ARX-model are
shown. The data-sets are the same as shown in section 3.3.1. Again we aimed to find
a single satisfactory set of parameters P+

x̃,0, Qw,R, these are shown in the Appendix A.
Figure 3.20 shows fitted and measured voltage-response using the ARX-based EKF.

Figure 3.20: Estimated vs Measured voltage using ARX-based EKF cell 1001

Next we show the estimated and calculated SoC trend for cell 1001 at 25◦C, as well
as the SoC deviation between those two.

Figure 3.21: Estimated vs calculated SoC using ARX-based EKF cell 1001

In Figure 3.22 we see the estimated SoC compared with calculated SoC, for the
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single load cycle on cell 1239, at the beginning of cell testing 04.09.2013. Figure 3.23
shows the SoC course for the same cell, at a different time 04.02.2015.

Figure 3.22: Estimated vs calculated SoC using ARX-based EKF cell 1239 load cycle

Figure 3.23: Estimated vs Measured SoC using ARX-based EKF cell 1239 load cycle

Further we see the coupled data- set, where we estimated the SoC for RTPs and
load cycles together, using one set of parameters for P+

x̃,0, Qw,R. Values for parameters
a1,a2,b0,b1,b2 are randomly picked from a spreadsheet, that we obtained after fitting
all cells under different aging stages and different conditions, such as temperature,
SoC etc. We can see that even for long-term estimation the SoC progress is stable, we
observe some peaks, but need to say that we did not spend as much time tuning the
EKF for ARX-model as we did for RC-model.
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Figure 3.24: Estimated vs calculated SoC using ARX-based EKF cell 1239 load cycle

Next we show SoC course for the driving cycle, same as in section 3.3.1. Again
the same set of EKF parameters was used as for load cycles and RTPs, nevertheless
the SoC progress may be taken as trustworthy, except some peaks in the estimation,
which could be dealt with SoC limits and extend filter tuning.

Figure 3.25: Estimated vs calculated SoC using ARX-based EKF cell 1216 load cycle
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Conclusion

In this section, one way for cell modeling using the ARX model combined with EKF
algorithm is presented. The approach for estimating the SoC for Li-ion cells are pre-
sented as well as obtained results using this method. It is shown that the ARX-model
in combination with EKF algorithm provides a decent performance and robustness
in SoC estimation, and it can significantly boost the accuracy of the model output
voltage. If we want to improve the convergence rate, we could adjust the sampling
rate to smaller time intervals. Shorter sampling time interval leads to more iterations
and more feedback, this will be favorable to the SoC convergence, on the other hand it
requires a greater computing power. This approach should be applicable in real-time
applications.
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The state of health (SoH) is the measured condition of the cell at the moment, com-
pared to a fresh cell. Depending on the definition, it summarizes as capacity retention
and possibly increase of the inner resistance. Depending on the cells usage in a battery
pack, the cells will age and it will come to performance degradation. Eventually, the
cell will reach the state where it no longer meets the performance requirements, this
might be considered as the end of life of the cell or battery pack. In comparison to
other battery technologies, Li-ion batteries do not undergo so called ‘sudden-death‘
(this can happen to lead-acid batteries) [9]. Rather they go through a gradual de-
crease in performance over their life. According to literature, battery packs for the
xEV1 application are expected to operate between 10 and 15 years, or between 20000
and 30000 cycles, respectively [2]. One way to fulfill these expectations is through
over-sizing of battery packs by designing, this may lead to unwanted cost increase,
storage space decrease and increased vehicle weight.

We need to make sure that we have the needed knowledge regarding the cells degra-
dation, between the beginning and the end of life, in order to be able to accurately
calculate the SoC, available energy and available power. It is important to note that
‘normal‘ aging may be one cause of failure, but there can be many more failures, such
as design faults, impurities in the materials during manufacturing process (such cells
may appear normal at the beginning of life but later degrade rapidly), abuse etc. The
method described in this chapter, can not prevent these conditions but it may help
us track the SoH of the cell and maximize the safety if the cells are near there End of
Life (EoL).

1Here we refer to any vehicle having electric drive-train components (HEV, PHEV, EV)
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4.1 Approach to SoH estimation

The most used term in literature for cell aging is SoH. One indicator of SoH, is capac-
ity loss. During our cell test we determine the capacity by the RTPs under different
temperatures and discharge rates, these we use as a reference for our capacity estima-
tion methods. For better comparison of capacity loss, we can calculate the relative
cell capacity as Eq. 4.1 [17] - [12]:

Crelative =
Cn
Cn0

(4.1)

Where Cn is the capacity of the current cells, Cn0 is the initial capacity of cell before
cycle test, and Crelative is the relative capacity of current cells. Generally we consider
that the cell has reached the EoL when its capacity fades to 80% of its initial value.
There are different methods to estimate the aging level, the following Table 4.1 is
adapted from [17] and shows us cells aging estimation methods and their performances:

Adaptation Precision Real-time Prediction Operate
without
data

Physical
measure-
ment

Excellent Excellent Very poor Very poor Excellent

equivalent
circuit
model

Very poor Fair Good Fair Good

electro-
chemical
model

Very poor Excellent Fair Fair Fair

Semi-
empirical
model

Very poor Good Fair Good Poor

Analiytical
model

Very poor Good Poor Poor Poor

Statistical
model

Fair Good Good Good Very poor

Table 4.1: Methods for cells aging estimation, performance comparison [17]
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Following Figure 4.1 shows capacity evolution during the cell aging. We calculate
the points for RTPs and interpolate between them. This was done for all test cells,
Figure 4.1 shows us two random cells.

Figure 4.1: Capacities evolution for cells 1001, 1009, 1019, 1020

As the cell ages, beside the capacity degradation other cell model parameters will
change as well see chapter 2.2 such as cells OCV relationship due to side reactions
and capacity lost [24]; however, we do not track all of these, we are interested in the
internal resistance and the total capacity because these have the leading impact on
the BMS (Battery management system) performance. Degradation of Li-ion cells is a
complex process, that depends strongly on the chemistry used in the cell production,
but we rely on the fact that dominant outcomes can be well described by changes in cell
total capacity and internal resistance. In chapter 3 it is shown that using EKF we are
able to estimate the fast time-varying states of the cell, in this chapter the possibility
of using the EKF in order to estimate the slow time-varying parameter quantities is
examined. It will be shown that that it is possible to estimate the internal resistance
with a reasonable grade of accuracy using these methods, on the other hand finding a
good total capacity estimate might be a challenging task.

4.1.1 Internal resistance estimation

To estimate internal resistance we used the model output equation together with the
random walk model, and formulate it as follows:

Rk+1 = Rk + rk

yk = OCV (SoCk)− U1,k − U2,k − ikRk + ek.
(4.2)
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Rk represents the cell internal resistance, we can see that the Rk is modeled as constant
value. In order to allow the adaptation of Rk we add a fictitious noise process rk. Again
yk is the estimate of cells voltage, ik is the cell current, U1,k and U2,k are voltage drop
off on the parallel circuit, and ek is the measurement error. We use an SoC estimation
described in Chapter 3 and we apply an EKF to this model in order to estimate the cell
internal resistance. We compare the prediction of yk with the measured cell voltage
and use the difference to adapt Rk+1 [26].

4.1.2 Nominal capacity estimation

Again we use the model to create a capacity estimation, this we formulate as following:

Cnom,k+1 = Cnom,k + rk

0 = SoCk − SoCk+1 +
−η∆t

Cnom ∗ 3600
+ ek

(4.3)

We compare the right-hand side of the second equation, and compare it to zero during
the computation, we used the difference to update the nominal capacity estimation.
Again we need good estimation of the present and previous SoC [26].
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4.2 Implementing DEKF using the cell model

In order to ensure a correct SoH estimation of a cell/battery pack, it is necessary to
obtain information about the cell SoC and the cell resistance as well as, ideally, about
possible changes in cell dynamics. For this purpose, we use a Kalman filter again,
which can estimate the model parameters based on measurements with low dynamics.

Figure 4.2: Parameters and state estimation in the form of a cascaded system

In order to map the long-term aging estimation and short-term state estimation.
We cross two systems as shown in Figure 4.2 [25]. Two separated extended Kalman
filters are used, to estimate the state on the one hand and the parameters set on the
other hand. Cell states such as SoC, diffusion magnitude and hysteresis, are changing
rapidly, while others, such as capacity, internal resistance and SoH, are changing very
slowly. This is the reason why we used two different sampling times, when imple-
menting the DEKF. One sampling time was used for the state and inner resistance
estimate, and the other ten times slower, for the capacity estimate. In Figure 4.2 we
see the dual estimation process, where EKFx represents the state estimate, and the
EKFΘ is the parameter estimate.

As already mentioned, using the extended Kalman filter, it is possible to esti-
mate the parameters of a dynamic system using noisy input/output measurements if
the state is known. Since the SoH of a battery cell is summarized by the cell model

77



4 SoH Estimation

parameters values, this approach seems very promising [24]. We assume that the
parameter values change very slowly, so we model the current parameter vector as
equal to the previous parameter vector plus a small perturbation rk. This means the
unknown parameters will be modeled as random walk Eq. 4.4.

Θk = Θk−1 + rk−1 (4.4)

However, we do not assume small zero-mean white-noise error for input rk, this is used
only to force input for the slow change in the parameter values. Instead we use the
covariance matrix Qr̃ to set how fast we believe the parameter values may change, and
for the Kalman filter to adjusts how fast the parameter value estimates are updated.

dk = g(xk, uk,Θk, ek) (4.5)

We have the same six steps of ‘sequential-probabilistic inference‘ that we introduce
in section 3.2.

EKFΘ 1a: Parameter prediction time update.

Θ̂−k = Θ̂+
k−1 (4.6)

The predicted parameter vector for this time step is equal to the estimated parameter
vector calculated at the end of the previous time step. We see that the changes in
the parameter vector due to the degradation are detected only via the measurement
feedback since the prediction step does not predict any deterioration of the values.

EKFΘ 1b: Error covariance time update.

P−
θ̃,k

= P+

θ̃,k−1
+Qr̃ (4.7)

After assuming that the zero-mean fictional noise is uncorrelated with the parameter
prediction error [24], mathematically, the time update parameter error covariance is
equal to the covariance before the time update, but with additional uncertainty due to
the notional noise rk, which is assumed to drive the change of the parameter values.

EKFΘ 1c: Output prediction

d̂k = g(xk, uk,Θ, ek) ≈ g(xk, uk, , Θ̂
−
k , ēk) (4.8)

The measurable system output is based on the parameter model prediction of Eq. 4.8
and EKF assumption 1. see section 3.2

EKFΘ 2a: Estimator gain matrix

LΘ
k = P−

Θ̃,k
(ĈΘ

k )T [ĈΘ
k P
−
Θ̃,k

(ĈΘ
k )T +RΘ]−1 (4.9)
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We obtain the Kalman gain matrix by linearizing the output dk with the help of the
Taylor series expansion, and the EKF assumption 2. see section 3.2. Here we have to
be very careful when computing ĈΘ

k . This requires a total differential expansion, we
use:

ĈΘ
k =

dg(x̂−k , uk,Θ)

dΘ

∣∣∣∣
Θ=Θ̂−

k

dg(x̂−k , uk,Θ)

dΘ
=
∂g(x̂−k , uk,Θ)

∂Θ
+
∂g(x̂−k , uk,Θ)

∂x̂−k

dx̂−k
dΘ

dx̂−k
dΘ

=
∂f(x̂+

k−1, uk−1,Θ)

∂Θ
+
∂f(x̂+

k−1, uk−1,Θ)

∂x̂+
k−1

dx̂+
k−1

dΘ

dx̂+
k−1

dΘ
=
dx̂−k−1

dΘ
− Lxk−1

dg(x̂−k−1, uk−1,Θ)

dΘ

(4.10)

If we want to obtain ĈΘ
k , we need to calculate all of the partial derivatives in or-

der to find the total derivative. We initialize total derivatives dg
dΘ ,

dx̂−k−1

dΘ to be zero at
k = 0 and compute recursively[24].

EKFΘ 2b: Parameter estimate measurement update

The parameter estimate is updated by the forecast of the estimator gain and the
predicted output error.

Θ̂+
k = Θ̂−k + LΘ

k (dk − d̂k) (4.11)

EKFΘ 2c: Error covariance measurement update

Finally, we calculate the parameter estimation error covariance as:

P+
Θ̃,k

= (I − LΘ
k C

Θ
k )P−

Θ̃,k
(4.12)

Note: the superscript notations Θ is used to keep parameter estimation matrices dif-
ferent from state estimation matrices. DEKF is summarized in Appendix A.

In order to summarize the cell/battery pack SoH we need the total available ca-
pacity and the internal resistance of the individual cells. An accurate estimate of the
total capacity and internal resistances makes it possible to reliably calculate the total
energy and available power for the battery pack over its lifetime.
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4.2.1 DEKF for Second order RC-model

Reason for DEKF implementation lies in the fact, that in order to determine the SoH
we need to somehow estimate the cells state and the cell parameters. That is why
we use one EKF for state estimation and a second EKF for parameter estimation,
with their signals mixed. Our first idea was to implement a full DEKF, where we
could track the progress of all six parameters R0,R1,R2,C1,C2,Cnom. This was done,
but after some testing the results were inconclusive, in terms that some parameter
progress was plausible, and others not as much. As we experienced with parameter
tuning for EKF, that it was time consuming task, here was clear from start that we
need much more time in order to get the satisfactory results, on the other hand these
are computationally intensive methods. For this reason we decided that the full cell
parameters estimation is not necessary. Figure 4.3 shows DEKF implementation to
determine cell state, cell capacity, and cell internal resistance using Matlab Simulink.

Figure 4.3: Simulink model of DEKF
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Different approaches have been conducted, with the sampling rate, starting with the
same sampling rate for booth EKF. Obtained results were inconclusive, either state
estimation or the parameter estimation was good, it was hard to get both estimations
to be plausible. Here we speak in terms of adjusting the ratio of parameters Qw and
R in a way that the system may be influenced to put more trust in the measured
data or the model data 2. It is known that if we compare the state and parameters
changes, it is obvious that the state changes are much faster than the parameters
changes. The change in SoC may be visible in a matter of minutes, while SoH change
should be visible in matter of months. As shown in Figure 4.3 the sampling rate for
state estimation and internal resistance estimation is 0.1, and for nominal capacity
estimation sampling rate is 10. We have summarized the method in Appendix A.

4.3 DEKF Results and Discussions

In section 3.3 we have shown examples of the state estimation using 18650 cells. We
have also described the different approaches to cell testing and characterization RTP,
load cycle and driving cycle. We use the same data sets as in chapter 3. Here, we fo-
cus on dual estimation, state and parameters, mainly internal resistance and nominal
capacity. Again the tuning of the parameters was done by hand, we also tested a new
parameter tuning method like normalized innovation square method. This seems to
work very well for some applications, but in our case it was only for short data sets
possibly to follow χ2 distribution. It can be conclude that tuning of Kalman filters is
a very important task, and that adjustments need to conducted if faced with different
cell properties.

4.3.1 DEKF for RC model

In this section, obtained results for SoC, capacity and internal resistance estimation
at the different aging levels, using DEKF are presented. Firstly, we show the SoC
estimation compared with the calculated SoC, same as in section 3.3.1. Then we move
on to the the capacity estimation, which we compare to the calculated capacity for
RTPs at different aging levels. Finally, the progress of the cells internal resistance
estimation is shown.

It should be noted that using DEKF the requirements of initial covariance matrices
was more critical and sensitive compared to the EKF, especially when starting values
of several connected parameters, SoC and cell capacity, were uncertain. Here, we
observe filter tracking the capacity and SoC to the plausible values despite poor initial
values of model parameters and OCV(SoC) curve. We also found that the DEKF was

2Choosing larger R compared to Q leads to more trust in the model and vice versa.
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able to plausibly estimate the internal resistance progress, and quickly converges to
the actual value.

Please note that the temperature dependence for different aging levels, as well
as for different RTPs was not taken into account. After comparing the estimated
quantities with the calculated one, we may conclude that the filter is converging to the
correct value. We do not adjust our temperature dependent parameters to OCV/SoC
curve, model parameters, initial capacity and internal resistance. These were set
for one temperature -mostly the set temperature of a load cycle or driving cycle.
Unfortunately, we have no way of absolutely validating the estimated quantities, but
the advantages of DEKF over the EKF are clearly illustrated, especially for long-term
estimations.

4.3.1.1 SoC estimation using DEKF

In this section we present the results obtained from DEKF, for SoC estimation. We
also show the accuracy for the cell’s terminal voltage estimation, this has improved
especially at later aging levels, due to the fact that the model parameters are updated.
First, we shows the estimation values for a RTP as well as the error between the
estimated and measured/calculated quantity. We see that the error between estimated
and measured voltage is small.

Figure 4.4: Voltage for RTP cell 1189

Next we show the SoC progress for a single load cycle. Here we expect slightly
better SoC estimation results, especially at later aging levels, compared to the EKF
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4.3 DEKF Results and Discussions

due to the fact, that we adapt the new values for the internal resistance and nominal
capacity. The important reason in order for SoC estimation not to drift from expected
value is the nominal capacity, as the cell ages the cells nominal capacity will reduce.
This means that SoC level for new cell and aged cell will not be at the same level if
the nominal capacity reduces.

Figure 4.5: Estimated vs calculated SoC for load cycle

Figure 4.6 shows calculated vs. estimated SoC for load cycles at the different aging
levels plotted over each other. Here, we see that the estimated SoC corresponds to the
calculated value and that we can be satisfied with the obtained results.

Figure 4.6: Estimated vs calculated SoC for load cycle at different aging levels

We conducted the experiment on different profiles, Figure 4.7 shows the SoC
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progress for a driving cycle.

Figure 4.7: Estimated vs calculated SoC for a driving cycle at different aging levels.

Again one set of EKF parameters is used for load cycles as well for RTPs and
different driving profiles, in Figure below we see the estimated SoC for driving cycle
coupled together with RTP’ for different aging levels.

Figure 4.8: Estimated vs calculated SoC for load cycle at different aging levels.
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4.3.1.2 Capacity estimation using DEKF

In this section we show the capacity degradation at different aging levels. We compare
the estimated with calculated capacity, also conducted at different aging levels. It
should be noted that the capacity was calculated for RTPs at 25◦C, and the data used
for estimating the capacity vary in the temperature as described in section 2.2.1 As
mentioned earlier, the nominal capacity is strongly dependent on the temperature,
thus jumps in estimated capacity may be related to the temperature.

Figure 4.9: Estimated vs measured capacity at different aging levels cell 1189

Figure 4.10: Estimated vs measured capacity at different aging levels cell 1126 driving
cycle
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Figure 4.11: Estimated vs measured capacity at different aging levels cell 1028

Figure 4.12: Estimated vs measured capacity at different aging levels cell 1244
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4.3 DEKF Results and Discussions

4.3.1.3 Internal resistance estimation using DEKF

In following figures we show the internal resistance estimation using the DEKF at
the different aging levels. Compared with the calculated internal resistance, again
the internal resistance was calculated for RTPs at 25◦C, and different aging levels
(Interpolated between RTPs). Again we can relate the jump in the estimation, to the
temperature and more data points.

Figure 4.13: Estimated vs measured internal resistance at different aging levels cell
1189

Figure 4.14: Estimated vs measured internal resistance at different aging levels cell
1216
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Figure 4.15: Estimated vs measured internal resistance at different aging levels cell
1216

Figure 4.16: Estimated vs measured internal resistance at different aging levels cell
1028

In addition, the state estimation for new cells was accomplished, these were cycled
within second project. It can be seen that the SoC progress looks trustworthy, but also
that nominal capacity and internal resistance estimation compared to measurement
provide satisfactory results. It has to be noted, that one OCV/SoC curve as well as
RC-parameters are used for different cells, as well as for different temperatures. For
some cycle profiles we need to adjust the covariance parameters that is responsible for
the nominal capacity drop (see Appendix A).
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4.3 DEKF Results and Discussions

Figure 4.17: Estimated vs measured SoC at different aging levels cell 070

In Figure 4.17 we can see the comparison between estimated SoC using DEKF
algorithm and calculated SoC using Coulomb counting method, for different aging
levels. Figure 4.18 below shows us only estimated SoC, but now from beginning of cell
testing (6.12.2016) till end (19.04.2018), test data is coupled together load cycles and
different RTPs. In top frame we see the whole progress, in bottom frame a zoom-in, as
we can see one RTP peak is out off plausible region above 100% SoC. This is related
to the RTP temperature. As said earlier we did not adapt OCV/SoC curve to the
temperature this could be easily done.

Figure 4.18: Estimated SoC at different aging levels cell 070

Further, we show nominal capacity progress estimated vs. measured. As mentioned
earlier the covariance parameter may be adjusted if we think the cell degradation is
more rapid or more slow. This means that for any new cell-chemistry we need a long
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term testing in order to truly adapt this parameter.

Figure 4.19: Estimated vs measured capacity at different aging levels cell 070

Figure 4.20 shows progress of the internal resistance R0 at different aging levels.

Figure 4.20: Estimated vs measured internal resistance at different aging levels cell
070

Conclusion

In this chapter we have shown, that the DEKF applications may be used in order to
estimate the SOC and SOH of the cell, combined with the RC-cell-model. According
to literature there are couple of different approaches in order to improve some disad-
vantages of the DEKF.

We have shown that the tracking of the cell degradation in terms of capacity fade
and internal resistance increase, during the cells aging levels, provides satisfactory re-
sults. It should be noted that requirements of initial covariance matrices was more
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critical and sensitive compared to the EKF, especially when starting values of sev-
eral connected parameters, SoC, cell capacity and internal resistance, were uncertain.
Here, we observe the filter tracking the capacity and SoC to plausible values despite
poor initial values. We also found that the DEKF was able to plausibly estimate the
internal resistance progress, and may quickly converge to the actual value. Again,
we need to mention that even the calculated data in some cases may not be reliable,
particularly in cases of SoC and internal resistance calculations. Measured capacity
shown in Figures 4.9 4.12 is taken for single RTPs and interpolated in between.
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5 Conclusion

This thesis main contribution lies in the testing and development of two different
state-space models of Li-ion cells combined with KF algorithms, in order to robustly
estimate the SoC and SoH, for long and short-term scenarios. Used data as well as
the obtained RC- and ARX model parameters are examined, in order to find a cor-
relation between the behavior of the model and cell aging levels. Unfortunately, the
clear correlation could not be concluded. Nevertheless the model parameter depen-
dencies on different temperatures, SoC-levels and different aging stages is presented.
In order to test the model parameter dependencies between each other, and to see if
the model will keep the same behavior and accuracy, the experiment with one degree
of freedom was conducted. The parameter linked to internal resistance (R0 and b0)
are identified together with the rest of the model parameters and alone, where the rest
of the parameters are kept constant at different aging stages. Although, the param-
eter dependency between themselves (when identifying all five parameters together)
is clear, a distinct difference could not be noticed. Small changes in the parameter
progress are observed, but the magnitude is approximately the same in both cases.
The experiment was conducted for different aging levels, temperature and SoC stages.

The implementation process started with the state EKF algorithm, obtained re-
sults are compared with the calculated states for different test and driving profiles as
well as different aging stages. It can be concluded that with suitable cell data, the
robust and stable offline SoC estimation for Li-ion cells using EKF is possible, and
that the estimation accuracy of the EKF depends on finding the proper temperature
dependent OCV / SoC curve. Additionally it was noticed, that cell nominal capacity
plays an important role for these algorithms, due to the systematic measurement error
of current.

Next, for the DEKF implementation again obtained results are presented and com-
pared to the references for different profiles and aging stages. It was clear that due
to the fact that DEKF was able to adapt to the parameter variations, it outperforms
the EKF especially for long-term scenarios, where parameter variations are noticeable.
Choosing the correct parameter set for Q and R was challenging task as it was not
know whether to put more trust into model or into data. It can be noted that the
ratio of Q to R need to be adjusted for different cycling profiles in order to obtain
constant accuracy. At the end, one parameter set was found that works sufficiently for
all our cycling profiles, but at the cost that the estimation state accuracy deviate. It
has to be noted that without long-term cell test and capacity observation (reference),
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5 Conclusion

tuning a DEKF part responsible for capacity degradation correctly would be almost
impossible. After concluding different test scenarios it can be concluded that tuning a
KF algorithm is a critical task with respect to the performance of cell state estimation
algorithms.

Future Work

In order to extend or improve this work a list of suggestions is done: The KF algo-
rithms are tested and developed using the simulations and offline data hence, a future
validation of online state estimation using the same techniques on the micro-controller
would give us an adequate overview of possible advantages and disadvantageous, espe-
cially if considering micro-controllers constraints on memory and computation power.
It would also be interesting to compare the obtained results with the different and
more demanding KF applications, like unscented KF and Sigma-point KF, and see if
the complexity and computation cost is worthy.
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6 Appendix A

Summary of the non− linear extended Kalman filter [24]

1: xk = f(xk−1, uk−1, wk−1)

2: yk = g(xk, uk, vk)

Definitions :

3: Âk =
df(xk, uk, wk)

dxk

∣∣∣∣
xk=x̂+

k

B̂k =
df(xk, uk, wk)

dw

∣∣∣∣
wk=w̄k

Ĉk =
df(xk, uk, vk)

dxk

∣∣∣∣
xk=x̂−k

D̂k =
df(xk, uk, vk)

dv

∣∣∣∣
vk=v̄k

Initialization :

For k = 0

4: x̂+
0 = E[x0]

5: P+
x̃,0 = E[(x0 − x̂+

0 )(x0 − x̂+
0 )T ]

Computation : for k = 1, 2, ..N

State− pred. time update
6: x̂−k = f(x̂+

k−1, uk−1, ¯wk−1)

7: P−x̃,k = Âk−1P
+
x̃,k−1Â

T
k−1 +Qw,k−1

State filter meas. update

8: Lk = P−x̃,kĈ
T
k [ĈkP

−
x̃,kĈ

T
k +R]−1

9: ỹk = yk − g(x̂−k , uk, v̄k)

10: x̂+
k = x̂−k + Lk(yk − ỹk)

11: P+
x̃,k = (I − LkCk)P−x̃,k

end for
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Summary of the non-linear dual extended Kalman filter [24]

1: xk = f(xk−1, uk−1,Θk−1, wk−1), Θk+1 = Θk + rk

2: yk = g(xk, uk,Θk, vk), dk = g(xk, uk,Θk, ek)

Definitions :

3: Âk =
df(xk, uk, wk)

dxk

∣∣∣∣
xk=x̂+

k

Ĉk =
df(xk, uk, vk)

dxk

∣∣∣∣
xk=x̂−k

ĈΘ
k =

dg(x̂−k , uk,Θ, ek)

dΘ

∣∣∣∣
Θ=Θ̂−

k

D̂Θ
k =

dg(x̂−k , uk,Θ, ek)

dek

∣∣∣∣
Θ=Θ̂−

k

Initialization : For k = 0

4: Θ̂+
0 = E[Θ0], P+

Θ̃,0
= E[(Θ0 − Θ̂+

0 )(Θ0 − Θ̂+
0 )T ]

5: x̂+
0 = E[x0], P+

x̃,0 = E[(x0 − x̂+
0 )(x0 − x̂+

0 )T ]

Computation : for k = 1, 2, ..N

Param/State− pred. time update
6: Θ̂−k = Θ̂+

k−1

7: P−
θ̃,k

= P+

θ̃,k−1
+Qr̃

8: x̂−k = f(x̂+
k−1, uk−1, Θ̂

−
k , ¯wk−1)

9: P−x̃,k = Âk−1P
+
x̃,k−1Â

T
k−1 +Qw,k−1

State filter meas. update

10: Lk = P−x̃,kĈ
T
k [ĈkP

−
x̃,kĈ

T
k +R]−1

11: ỹk = yk − g(x̂−k , uk, Θ̂
−
k , v̄)

12: x̂+
k = x̂−k + Lk(yk − ỹk)

13: P+
x̃,k = (I − LkCk)P−x̃,k
Param.− est. meas. update

14: LΘ
k = P−

Θ̃,k
(ĈΘ

k )T [ĈΘ
k P
−
Θ̃,k

(ĈΘ
k )T +R]−1

15: ỹΘ
k = yk − g(x̂−k , uk, Θ̂

−
k , ēk)

16: Θ̂+
k = Θ̂−k + LΘ

k ỹ
Θ
k

17: P+
Θ̃,k

= (I − LθkCθk)P−
Θ̃,k

end for
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Computing total derivative for dual EKF

ĈΘ
k =

dg(x̂−k , uk,Θ)

dΘ

∣∣∣∣
Θ=Θ̂−

k

dg(x̂−k , uk,Θ)

dΘ
=
∂g(x̂−k , uk,Θ)

∂Θ
+
∂g(x̂−k , uk,Θ)

∂x̂−k

dx̂−k
dΘ

dx̂−k
dΘ

=
∂f(x̂+

k−1, uk−1,Θ)

∂Θ
+
∂f(x̂+

k−1, uk−1,Θ)

∂x̂+
k−1

dx̂+
k−1

dΘ

dx̂+
k−1

dΘ
=
dx̂−k−1

dΘ
− Lxk−1

dg(x̂−k−1, uk−1,Θ)

dΘ
Initialization at k=0 and updates:

Θ = [R0 Cnom];

1:
∂g(x̂−k , uk,Θ)

∂Θ
=

[
∂g(x̂−k , uk,Θ)

∂R0
,
∂g(x̂−k , uk,Θ)

∂Cnom
,

]
= [−ik, 0]

2:
∂g(x̂−k , uk,Θ)

∂x̂−k
=

[
∂g(x̂−k , uk,Θ)

∂U1
,
∂g(x̂−k , uk,Θ)

∂U2
,
dg(x̂−k , uk,Θ)

∂SoC

]
= [−1 − 1

∂OCV (sock)

∂SoCk
]

3:
∂f(x̂+

k−1, uk−1,Θ)

∂Θ
=

0 0
0 0

0 η∆t
C2

nom
ik−1



4:
∂f(x̂+

k−1, uk−1,Θ)

∂x̂+
k−1

=

e
−∆t
R1C1 0 0

0 e
−∆t
R2C2 0

0 0 1


5:

dx̂−k−1

dΘ
=

0 0 0
0 0 0
0 0 0

 ; at k = 0.
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6 Appendix A

Tuning parameters and initialization values for Kalman filtering algorithms

1: RC −model with EKF algorithm

Tuning parameter Alice1 1 Alice2 2

Q diag[10−12, 10−12, 10−12] diag[10−8, 10−8, 10−8]
R 10−6 10−6

P diag[4, 10−6, 10−6] diag[10−8, 10−8, 10−8]

2: ARX −model with EKF algorithm

Tuning parameter Alice1 Alice2

Q diag[10−9, 10−6, 10−3] diag[10−9, 10−6, 10−1]
R 10−1 10−4

P diag[4, 10−6, 10−6] diag[4, 10−6, 10−6]

3: RC −model with dual EKF algorithm

Tuning parameter Alice1 Alice2

Q diag[10−4, 10−8, 10−8] diag[10−4, 10−8, 10−8]
R 10−6 10−6

QΘ diag[10−8, 5 · 0−3] diag[10−8, 5 · 10−3]3

RΘ
4 RΘ,r = 10−1, RΘ,c = 10−3 RΘ,r = 10−1, RΘ,c = 10−3

PΘ diag[10−4, 20−4, 2.8] diag[10−4, 20−4, 2.8]

1Alice1 - cell’s nominal capacity ≈ 0.35Ah
2Alice2 - cell’s nominal capacity ≈ 3.35Ah different cell chemistry compared to Alice1
3In some test cases where we observe a rapid capacity drop, wee need to set this parameters to

5 · 10−2 in order to follow the measurement.
4We split the RΘ in two, because different sampling time for R0 and Cnom
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