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Abstract

Pneumatic conveying systems have become the most common transport sys-
tem for bulk materials such as granulates or powdery. An important pa-
rameter for flow measurement is the so called volume concentration. This
thesis investigates the capability of electrical capacitance tomography (ECT)
to estimate the volume concentration in pneumatic conveying processes from
capacitive sensor data. ECT is a non-invasive imaging technique, providing
information about the spacial material distribution within the sensor. The
reconstruction of the material distribution by means of ECT is a so called
ill-posed inverse problem. In order to solve this kind of problem, meaning-
ful prior information about the material distribution has to be incorporated.
For this reason the different flow patterns occurring in pneumatic conveying
systems are investigated. To formulate a prior distribution for those flow
regimes a sample based approach is presented. Within the Bayesian frame-
work different reconstruction algorithms are derived and adapted for this
specific application. The reconstruction result of ECT is given by the spacial
distribution of the relative permittivity. This information is used to esti-
mate the volume concentration within the sensor. A framework is presented
for a comprehensive statistical analyses of the estimation quality of different
reconstruction algorithms and material distributions. In the course of this
analyses it is shown, that the incorporation of specific prior knowledge about
flow patterns leads to a significant improvement of the estimation result.
Lastly selected parameter studies are implemented in order to analyse the
impact on the estimation results.





Kurzfassung

Pneumatische Fördersysteme zählen zu den wichtigsten Transportsystemen
für die Beförderung von Schüttgütern wie Granulaten oder Pulvern. Zur
Erfassung des Durchflusses eines pneumatische Förderprozesses ist die Er-
mittlung der Volumenkonzentration erforderlich. In dieser Arbeit wird die
Schätzung dieses Parameters mittels elektrischer Kapazitätstomografie (ECT)
aus kapazitiven Messdaten untersucht. Die ECT ist eine nicht invasive bild-
gebende Technik, welche Informationen über die räumliche Materialvertei-
lung innerhalb eines Sensors liefert. Die Rekonstruktion der Materialvertei-
lung mittels ECT stellt ein schlechtgestelltes inverses Problem dar. Die Ein-
bringung sinnvoller Vorinformation über die Materialverteilungen ist nötig,
um Probleme dieser Art lösen zu können. In der pneumatische Förderung
von Schüttgut bildet das Förderregime eine Quelle für die Konstruktion von
Vorwissen. Um diese Strömungsprofile als A-priori-Verteilung zu formulie-
ren wird ein Sample basierter Ansatz präsentiert. Im Bayesschen Rahmen
werden verschiedene Rekonstruktionsalgorithmen abgeleitet und für die spe-
zifische Anwendung adaptiert. Das ECT Rekonstruktionsergebnis ist durch
die räumliche Verteilung der relativen Permittivität des Schüttgutes gege-
ben. Aus dieser kann die Volumenkonzentration innerhalb des Sensors be-
stimmt werden. In der Arbeit wird ein Framework präsentiert welches um-
fangreiche statistische Analysen der Schätzqualität für verschiedene Rekon-
struktionsalgorithmen und Materialverteilungen ermöglicht. In Zuge dieser
Analysen wird gezeigt, dass die Einbringung von spezifischer Vorinformation
für Strömungsprofile eine signifikante Verbesserung der Schätzergebnisse mit
sich bringt. Zudem werden die Eigenschaften des Messsystems hinsichtlich
des Einflusses auf das Messergebnis untersucht.
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1 Introduction

1.1 Problem Statement and Motivation

Pneumatic conveying has become an important transport system for bulk
materials such as powdery or granulates. In pneumatic conveying processes
the solid bulk material is transported by means of streaming gas within a
closed process pipe. One important parameter to determine the state of the
conveying process is given by the mass flow rate ṁ(t) defined by

ṁ (t) =

∫∫
ΓROI

ρ (x, y, t) v (x, y, t) dxdy. (1.1)

Herby ρ(x, y, t) denotes the instantaneous density at position (x, y) in kg/m3

and v(x, y, t) denotes the instantaneous velocity at the same position in
m/s [1]. ΓROI denotes the cross section of the process pipe in m2. Com-
mon techniques for the continuous determination of the mass flow rate of
solid bulk material are for example scale based techniques or baffle plates.
In pneumatic conveying those mentioned techniques are limited applicable
due to several reasons. To outline the drawbacks of common methods for the
measurement based determination of the mass flow rate, one has to discuss
the processes within pneumatic conveying systems in more detail.

Different spacial material distributions occur in pneumatic conveying pro-
cesses, which are termed flow regimes. Those flow regimes mainly depend
on the gas velocity. Figure 1.1 sketches the often used phase diagram to de-
scribe the relation between the gas velocity and the pressure drop and depict
the resulting flow regimes [2]. High gas velocities and low pressure drops
cause the so called dilute flow. This flow regime is characterized by a low
density, with particles distributed over the whole cross section of the process
pipe. For decreasing gas velocities a growing ground layer appears until the
so called slug flow is reached. Slug flow is caused by very low gas velocities
and high pressure drops also termed dense flow. Here the ground layer can
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Figure 1.1: Flow regimes in pneumatic conveying as a function of the gas
velocity and the pressure drop [2].

cover the whole cross section of the pipe [2].

Given this overview about the occurring flow regimes in pneumatic convey-
ing systems the drawbacks of methods like scale based techniques or baffle
plates becomes evident.

Scale based techniques requires the bulk material to causes a gravitational
force on the weighting instrumentation. In the case of dilute flow the solid
particles are distributed over the whole cross section of the process pipe with a
low density. Therefore the particles are not able to cause a gravitational force
on the weighting instrumentation. For this reason scale based techniques are
unsuitable for the determination of the mass flow rate in pneumatic convey-
ing systems.

Baffle plates use the impact force of the bulk material on the plate to con-
tinuously determine the mass flow rate. This highly invasive measurement
principle causes significantly increased pressure props along the process pipe.
For this reason this measurement principle makes the conveying process more
likely to clog, especially for dense flow regimes.
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Having addressed the limiting properties of common mass flow rate measure-
ment techniques for bulk materials with respect to pneumatic conveying, the
necessity of a non-invasive measurement principle becomes obvious. There
are several non-invasive sensing techniques available. Amongst them are
electrical measurement principles such as capacitive sensing. In capacitive
sensing a number of electrodes are mounted on the process pipe. The ma-
terial distribution within the pipe influences the capacitances between the
electrodes. Given the capacitive sensor data, conclusions about the material
distribution within the sensor can be made. One possible approach for this
task is tomographic signal processing leading to the technique of electrical
capacitance tomography.

1.2 Electrical Capacitance Tomography

Electrical capacitance tomography (ECT) is an imaging technique, which
provides information about the spacial permittivity distributions within the
cross section of the process pipe. Although the achievable resolution of ECT
is comparatively low, it was already shown that ECT is a suitable technique
to estimate flow profiles within pneumatic conveying systems [3]. This is of
particular interest with respect to pneumatic conveying since the behaviour
of the conveying process depends on the different flow regimes. For this
reason it is reasonable to investigate ECT also about the usability for the
estimation of the mass flow rate ṁ(t). Therefore, this section is intended
to provide the reader with the measurement principle and the properties of
ECT.

A scheme of an ECT sensor is depict in figure 1.2. A number of Nelec elec-
trodes is mounted on the surface of a non conductive tube. The measure-
ments of the ECT sensor are the capacitances between the electrodes, the so
called inter-electrode capacitances. A typical measurement pattern is shown
in figure 1.3 [7]. For a sensor with Nelec electrodes, the number of independent
measurements is given by

M =
Nelec (Nelec − 1)

2
. (1.2)

The task is to reconstruct the material distribution within the sensor, which
is referred to as region of interest (ROI). The material distrubution within
the ECT sensor modulates the inter-electrode capacitances. This measure-
ment process is used to determine the spacial material distribution in the
ROI from the measurements [7].
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Figure 1.3: Typical ECT measure-
ment pattern [7].

The estimation of the spacial material distribution is an indirect measure-
ment problem, also termed inverse problem, since the quantity of interest can
not be measured in a direct way. The inverse problem of ECT is of ill-posed
nature since there usually exists no unique solution [5]. This circumstance
is given by the fact, that the information obtained by the measured inter-
electrode capacitances is not sufficient for the reconstruction of the spacial
material distribution with an acceptable resolution.

Tomography systems can be classified by the way, the physical quantity used
for the measurement system interacts with the object. Tomographic meth-
ods like for example x-ray tomography, where the direction of the physical
quantity is not influenced in its direction are termed as so called hard field
tomography. The beam passes straight trough the object and is influenced
only in its intensity. Tomographic systems where the physical quantity is
influenced in its direction between material transitions are classified to be
so called soft field tomography systems. Since the distribution of the dis-
placement currents and consequently also the inter-electrode capacitances
are influenced by material transitions, ECT belongs to the class of soft field
tomography. For this reason ECT systems suffers from drawbacks in resolu-
tion compared to hard field systems [7].

The interaction of the field with objects also results in different achievable
resolutions for different regions within the ECT sensor. In other words, soft
field systems are suffering from a spatial dependence of the sensitivity. For
capacitive measurement systems like ECT, the sensitivity is usually decreas-
ing with the distance to the electrodes. This causes a lower sensitivity in the
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center of the pipe compared to regions near the electrodes.

Because of this circumstances, the inverse problem of ECT is generally hard
to solve and the achievable resolutions are comparatively low with respect
to hard field systems. Nevertheless ECT has several advantages, which may
make it preferable compared to other tomography systems. The main ad-
vantage of electrical methods like ECT is the simple hardware concept, since
only some electrodes and the measurement circuitry are necessary. Therefore
ECT also requires less space to mount. It should also be kept in mind, that
ECT produces no ionizing radiation, which makes it a save sensing technol-
ogy compared to methods like x-ray or γ-ray [7].

Even though the real ECT sensor is always a three dimensional system, the
solution of the inverse problem is usually done for a two dimensional model.
Thus, the reconstruction result provides only the cross section of the material
distribution. This simplification of the simulation model is only reasonable,
if the electrodes have a certain length with respect to the diameter of the
process pipe [7] due to boundary effects. Generally the 2D model is accurate
enough, if the length of the electrodes is in the range of the diameter of the
tube [8]. If this does not hold, 3D effects are not negligible and the 2D model
will provide wrong results.

Also the number of electrodes is a crucial parameter for the design of a
ECT sensor. Sensors with a number of electrodes between 8 and 16 are typ-
ically [8]. As the number of information obtained from an ECT sensor is
increased with the number of electrodes, there where also designs of ECT
systems with an increased number of smaller electrodes. Certainly the num-
ber of measurements is increased with this design. However such systems
also suffer from a decreased signal to noise ratio (SNR). The inter-electrode
capacitances decrease due to the smaller areas of the electrodes [7].

1.2.1 Inverse Problems

Since the estimation task of ECT is an ill-posed inverse problem, this sec-
tion should provide a short introduction into the basics of inverse problems.
Inverse problems are problems where a quantity of interest φ can only be
observed in an indirect way [9]. In the case of ECT, φ is given by the spacial
permittivity distribution within the sensor. To draw conclusions about the
quantity of interest measurements d̃ ∈ RM are made, which are affected by
φ. In this particular case d̃ is a vector holding the measured inter-electrode
capacitances. The physical relation between the quantity of interest φ and
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the measurement d̃ is given by the measurement process P [10]. Given this,
the problem can be formulated by

d̃ = P (φ,v) , (1.3)

where v denotes the measurement noise. To obtain information about φ from
the data d̃, the development of a mathematical model, which describes the
measurement process P is necessary.

The first step of this modeling process concerns the representation of φ it-
self. φ presents the continuous cross sectional material distribution within
the ECT sensor. For the mathematical model the continuous material distri-
bution has to be presented with single numbers. For this reason a mapping
D : φ 7→ x has to be formulated to describe the quantity of interest φ by
means of the so called state vector x ∈ RN . This step is often referred to as
data modeling. One way to do so, is the discretization of the cross section.
For this representation of φ the further modeling of the measurement process
by means of the finite element method is obvious. Given this approach the
material values of the finite elements within the ECT sensor can be summa-
rized by means of the state vector x. Note that the representation of φ is
always a problem dependent task and there is no predetermined way for this
step of the modeling process.

In the next step the measurement process P itself has to be formulated
by means of a mathematical expression leading to the so called measurement
model. The mapping F : x 7→ y is referred to as forward map with the claim
that

F (x) = P (x) ∀x, (1.4)

holds. In other words, the model output y ∈ RM is equal to the noise free
data d = P(x) [10]. As it is usually not possible to consider every physical
effect and due to numerical inaccuracy the relation given by equation (1.4)
will not exactly hold, but

F (x) ≈ P (x) , (1.5)

holds instead. The model error e is introduced given by

e = P (x)− F (x) . (1.6)

Calibration schemes are needed to reduce model errors. Using calibration
techniques, the inverse problem can be solved for real measurements or for
simulated measurements coming from a more detailed process model [10].
This is necessary for the real testing of reconstruction algorithms. Generat-
ing the simulated measurement with the same model, which is used for the
reconstruction algorithms is referred to as inverse crime [9].
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For the consideration of measurement noise v the so called noise model is
necessary. For the statistical properties of the measurement noise usually
Gaussian distributions with zero mean v ∝ N (0,ΣV ) are assumed. ΣV de-
notes the covariance matrix of the measurement noise. For a fully description
of the measurement noise, not only the the statistical properties are neces-
sary but also how the noise free measurements are corrupted by the noise v.
For example

d̃ = P (x) + v, (1.7)

is referred to as additive noise model.

The definition of well posed problems was introduced by Hadamard [5] given
by the properties that:

• A solution exists.

• The solution is unique.

• The solution continuously depends on the data.

If one of these points do not hold, the problem is of ill-posed nature. Since
the size of the state vector N is usually much larger than the number of
measurements M , the inverse problem of ECT is of ill-posed nature. To
obtain stable solutions for ill-posed inverse problems the so called prior model
is required. With this model prior information about the state vector x is
incorporated. To construct this model, the knowledge about the properties
of φ has to be transformed into conditions for x.

1.3 Volume Concentration Estimation by means

of ECT

To determine the mass flow rate by means of ECT, equation (1.1) has to be
modified. Assuming bulk materials with a constant density ρS, the instanta-
neous density can be replaced by

ρ (x, y, t) = ρSβS (x, y, t) , (1.8)

with the unitless instantaneous solid volume concentration βS (x, y, t) at po-
sition (x, y). For uniform flows, where the particles moves along their flow
lines with constant velocity, equation (4.2) is simplified to [4]

ṁ (t) = ρSΓROIv̄ (t) β̄S (t) . (1.9)
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Here, v̄ (t) denotes the cross-sectional average velocity of the solid particles
and β̄S (t) denotes the cross-sectional average solid volume concentration at
time instant t. Thus the mass flow rate ṁ(t) can be described by means
of the two parameters v̄(t) and β̄S(t). The aim of the present thesis is the
estimation of the cross-sectional average solid volume concentration β̄S by
means of the spacial permittivity distributions provided by an ECT sensor.
This estimation is based on the assumption, that the instantaneous density
ρ(x, y, t) is related to the relative permittivity εr by

ρ (x, y, t) ∝ εr (x, y, t)− 1 = χ (x, y, t) . (1.10)

Hereby χ (x, y, t) denotes the instantaneous susceptibility. This assumption
enables the application of ECT to the task of volume concentration estima-
tion in pneumatic conveying systems.

The continuous metrological registration of the mass flow rate is required
for the state determination of the conveying process. For this reason the is-
sue of computational costs has to be taken into account. The imaging task of
ECT is of ill-posed inverse nature and the relation between the measurements
and spacial permittivity distribution is highly non-linear. For this reasons
the reconstruction of the material distributions within the ECT sensor can be
a computational expensive problem. A multitude of different reconstruction
algorithms is available for the solution of such problems. Amongst others
are also linear back projection type algorithms. This kind of algorithms are
given by a simple matrix vector multiplication, using linear approximations
of the problem. The main drawback of linearisation techniques is given by
the fact, that they will fail for large deviations from the linearization point.
In the case of ECT and pneumatic conveying this means that the differences
in the permittivity values of the bulk materials and the gas used for the con-
veying process has to be small. This usually is indeed the case in pneumatic
conveying systems [6]. The permittivity values for common bulk materials
are usually low. This enables the application of ECT for the continuous de-
termination of flow parameters in pneumatic conveying systems. Therefore
the main focus of this thesis lies on the estimation of the cross-sectional av-
erage solid volume concentration β̄S by means of linear back projection type
algorithms.

1.4 Thesis Outline

This section contains the outline of this thesis given by a short summary of
the content attributed to each chapter.
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• The second chapter provides the computational framework of the
sensor. This framework contains the mathematical model of the mea-
surement process and gives also access to derivative informations such
as the Jacobian matrix. In the first sections the physical effects within
the sensor and the measurement process are discussed leading to a stan-
dard FEM simulation model. For an efficient solution of the forward
problem and fast access to derivative informations adaptations of the
standard FEM are presented. This leads to a simulation framework
with superior numerical performance.

• The third chapter concerns the solution of the ill-posed inverse prob-
lem of ECT. For this reason the fundamentals of Bayesian inversion the-
ory are provided. The construction of a sample based prior is presented
and different way to incorporate this information to the reconstruction
algorithms. Within the Bayesian framework different reconstruction
algorithms are derived, which are classified by linear back projection
type algorithms and non-linear iterative algorithms.

• In the fourth chapter the particular application of ECT for the es-
timation of flow parameters is addressed. Therefore, flow patterns oc-
curring in pneumatic conveying systems are investigated to construct
a meaningful sample based prior for reconstruction of flow patterns.
In the next section the intrinsic information of this sample based prior
is analysed and compared to sample based priors for arbitrary mate-
rial distributions. The reconstruction result of ECT is given by the
relative permittivity values of the finite elements. A linear approach
is presented to relate these electrical material values with the flow pa-
rameter of interest. In the last section of this chapter the setup of each
implemented reconstruction algorithm is discussed in detail.

• The fifth chapter contains case studies for the behaviour of different
algorithms in order to estimate the cross-sectional average solid vol-
ume concentration β̄S. Hence comprehensive statistical analysis of the
estimation results for linear back projection type algorithms are imple-
mented. For non-linear iterative algorithms only a few examples are
illustrated. Lastly selected parameter studies are presented in order to
analyse the impact of particular process parameters on the estimation
results.



2 ECT Framework

This chapter is intended to give the reader a basic understanding of the
physical effects within an ECT sensor. Given this insight a finite element
framework for the simulation of the ECT sensor will be provided. This
framework comprises a set of functions to simulate the measurement process,
which is referred to as forward map. The framework gives also access to
derivative information such as the Jacobian matrix. As computational costs
are an immanent issue for solving inverse problems, methods are introduced,
which provide superior numerical performance for the simulation of the ECT
sensor. Detailed informations about the fast simulation framework can be
found in [10]. Since the modeling process of the ECT Sensor includes some
simplifications and assumptions also model errors have to be considered. A
way to minimize the impact of model errors is a correction of the model
output, leading to the topic of calibration, which is also discussed in this
chapter.

2.1 The Physics of ECT

The sensing principle of ECT is of electrical nature. The partial differential
equations (PDE) describing the dominating physical effects within the sensor
are given by Maxwell’s equations [11]

∇×H = J +
∂D

∂t
, (2.1)

∇× E = −∂B

∂t
, (2.2)

∇ ·B = 0, (2.3)

∇ ·D = ρ. (2.4)

H denotes the magnetic field in Am−1, E denotes the electric field in Vm−1, B
denotes the magnetic flux density in Vsm−2, D denotes the electric displace-
ment in Asm−2 and J denotes the current density in Am−2. Equation (2.1)
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is called Ampere’s circuital law. It states that electric currents as well as
time varying displacement current cause a magnetic field. Equation (2.2) is
termed Faraday’s law of induction and it says that E is generated by means of
a time varying magnetic field. Equation (2.3) is sometimes termed as Gauss’s
law of magnetism. It has the interpretation, that no magnetic sources ex-
ist. Equation (2.3) is called Gauss’s law and it states that charges ρ are the
source of the electric field. The three material equations are given by

B = µH, (2.5)

D = εE, (2.6)

J = σE, (2.7)

where µ denotes the magnetic permeability, ε denotes the dielectric permit-
tivity and σ denotes the conductivity. The permeability is given by µ = µ0µr,
with the absolute permeability µ0 = 4π · 10−7 VsA−1m−1 and the dimension-
less relative permeability µr. In the same way the permittivity is given by
ε = ε0εr with the absolute permittivity ε0 = 8,854 · 10−12 AsV−1m−1 and the
dimensionless relative permittivity εr. The third material equation results in
Ohm’s law. It describes the relation between the current density J and the
electric field E. The physical unit of the conductivity σ is given by Ω−1m−1.

2.1.1 ECT specific Simplifications

Maxwell’s equations describe the physical effects within the ECT sensor.
THowever, for ECT it is common to make specific assumptions given by [7]:

• The magnetic fields inside the sensor have no influence on the electric
field.

• The conductivity of the materials is zero.

• Absence of charges.

Given this simplifications the derivation of a partial differential equation,
which covers the important sensor effects is provided in this subsection. This
step is required for an efficient solution of the inverse problem since the
reduced set of Maxwell’s equations is more suitable for the simulation of the
sensor.



12 2 ECT Framework

The first assumption is the main simplification for the derivation of the ECT
simulation model as it reduces the type of the partial differential equation to
a Laplace type PDE. With this the second Maxwell’s equation is given by

∇× E = −∂B

∂t
= 0. (2.8)

This simplification is valid since the wave lengths due to the typical frequency
range are typically several times larger than the sensor dimensions [7].

As equation (2.8) states that the electric field E has no curl, the scalar
potential V in V (Volt) can be introduced. Then the electric field E can be
expressed by

E = −∇V. (2.9)

For general vector fields A the relation

∇ · (∇×A) = 0, (2.10)

holds. Hence the divergence of Amperes law (2.1) leads to

∇ ·
(

J +
∂D

∂t

)
= 0. (2.11)

For harmonic signals the Fourier transform can be applied

∇ · (J + jωD) = 0, (2.12)

with the circular frequency given by ω = 2πf and the frequency f in Hz.
Applying the material relations (2.6) and (2.7) results in

∇ · (σE + jωε0εrE) = 0. (2.13)

With the definition of the scalar potential given by equation (2.9), the relation
(2.13) becomes

−∇ · ((σ + jωε0εr)∇V ) = 0. (2.14)

Since the absence of conductive materials is assumed, equation (2.14) is re-
duced to

−∇ · (jωε0εr∇V ) = 0, (2.15)

which can be further simplified to

∇ · (εr∇V ) = 0, (2.16)

as neither jω nor ε0 has an impact on the solution V . This elliptic PDE will
be used for the simulation of the ECT sensor.
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2.2 Measurement Process

A A

Figure 2.1: Scheme of the measurement process [7].

The solution of the PDE (2.16) requires boundary conditions. These bound-
ary conditions are depending on the way the ECT sensor is operated in order
to determine the inter-electrode capacitances. This section provides the re-
alization of the measurement process to subsequently obtain the required
boundary conditions for the simulation model of the ECT sensor.

Figure 2.1 depicts the principle of the measurement process. Due to the
low input impedance of the measurement circuitry this scheme is stated as
low-Z measurement instrumentation. Detailed information about the cir-
cuitry for ECT can be found in [12].

The determination of the impedances between the electrodes is done by the
following steps:

• An AC voltage source is connected to one electrode, which is termed
as active electrode or transmitter electrode.

• The other electrodes are connected to ground potential through a low
input impedance circuitry. These electrodes are referred to as receiver
electrodes.
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• The inter-electrode capacitances are obtained by measuring the dis-
placement currents by means of the relation

i =
u
1

jωC

= jωCu. (2.17)

Although AC signals have to be used for the measurement process, an electro
static simulation is sufficient as i ∝ Q holds.

Given this measurement principle, the Dirichlet boundary conditions for the
partial differential equation (2.16) can be formulated as

VΓi
= V0, (2.18)

VΓj
= 0 ∀j 6= i, (2.19)

V∂Ω = 0. (2.20)

Γi denotes the surface of the ith electrode and ∂Ω denotes the shield of the
ECT sensor shown in figure 1.2 and 2.2. Using the solution Vi with the ith

electrode active and the relations (2.6) and (2.9), the total surface charge Qj

on the jth electrode can be computed by

Qj =

∫
Ωj

ρdΩ =

∫
Ωj

∇ ·DdΩ =

∮
Γj

DndΓ

= −
∮
Γj

ε0εr∇VindΓ.

(2.21)

This integral is known as Gauss’s law. The inter-electrode capacitance can
be determined with the relation Q = CV0, leading to the result

Ci,j = − 1

V0

∮
Γj

ε0εr∇Vin d Γ. (2.22)

2.3 Standard Finite Element Simulation

This section provides a standard finite element (FEM) forward map of the
ECT sensor [13]. The forward problem refers to the computation of the inter-
electrode capacitances for a given material distribution inside the domain
ΩROI. ROI denotes the region of interest, which in this case is the inner tube
of the ECT sensor. The different domains of the ECT model are depict in
figure 2.2.
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∂Ω

Ω

ROI

ROI

∂Ω

Figure 2.2: Domains of the ECT
sensor. Ω denotes the whole prob-
lem domain.

Figure 2.3: Exemplary mesh
with triangular FE.

The approach of the FEM is based on the discretization of the whole problem
domain Ω by means of so called finite elements (FE). Figure 2.3 depict an
exemplary FE mesh for the ECT sensor. Within the domain ΩFE of each FE
the scalar potential V is approximated by means of a superposition of the
basis functions Ni with the weights vi given by

V ≈
∑
i

viNi. (2.23)

Thereby the index i indicates the nodes of the FE. Figure 2.3 depict a exem-
plary FE discretization for the ECT sensor with triangular finite elements.
In the next step the element matrix K̃FE,i is assembled for each FE. The
coefficients of this matrix are given by

k̃i,j =

∫
ΩFE

(∇Ni)
T (∇Nj) dΩ, (2.24)

termed Ritz-Galerkin equation. Given the element matrices the so called
stiffness matrix is assembled by means of

K =

NFE⋃
i=1

εiK̃FE,i, (2.25)

whereby NFE denotes the number of FE and εi denotes the material value
of the ith FE. The stiffness matrix K forms a discrete representation of the
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PDE (2.16) for the approximation of the scalar potential V given by (2.23).
As no boundary conditions are yet incorporated to the problem, K forms a
singular matrix. Including the Dirichlet type boundary conditions presented
in section 2.2 to the problem leads to the non-singular matrix K̂. Detailed
information about the incorporation of the boundary conditions can be found
in [7]. Given this approach, the solution of the partial differential equation
(2.16) for the boundary conditions (2.18) to (2.20) results in a linear equation
system of the form

K̂v = r. (2.26)

Here v denotes the solution vector holding the potentials vi of each node and
r is referred to as right hand side vector.

Equation (2.26) provides the solution of one field problem also referred to
as solver run. The simulation of the ECT sensor requires one solver run for
each electrode is once set as active. Therefore the equation system (2.26)
can be extended to the form

K̂V = R, (2.27)

where K̂ is the common stiffness matrix. V is a matrix holding the Nelec

solution vectors v in each column, whereby Nelec denotes the number of
electrodes. R contains the Nelec right hand side vectors in each column

2.3.1 Charge Computation

To avoid the computation of the gradient ∇V , the charge computation shown
in equation (2.21) can also be done with the so called charge method [14]
given by

Qj =
∑
nj

(Kv)nj
. (2.28)

(Kv)nj
denotes the scalar product between the solution vector v and the

rows of the matrix K that correspond to the nodes of the finite element
mesh, which are located on the boundary of the electrode j. K is the stiffness
matrix without boundary conditions.

2.3.2 Computation of Derivatives

Some reconstruction algorithms presented in the later chapter 3 are using
linear approximations of the forward map. Therefore the computation of
derivatives, especially the Jacobian, defined by

J =
[
∇C1 ∇C2 . . .∇CN

]T
, (2.29)
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is of special interest with respect to the solution of inverse problem. ∇Ci
is the gradient of the ith inter-electrode capacitance with respect to the per-
mittivity values of the finite elements in ΩROI.

There are efficient methods for the the computation of the Jacobian such
as the so called adjoinet variable method [15] given by

dCi,j = γTi

[[
∂r

∂εk

]
−

[
∂K̂

∂εk

]
vj

]
dεk. (2.30)

For this approach the the adjoint solution γi has to be evaluated by solving

K̂γi =
∂Ci,j
∂vj

. (2.31)

Although the adjoint variable method is quiet efficient, still one computation
of the forward problem is necessary to obtain the adjoint solution. For this
reason more efficient methods are required, which are presented in the next
section.

2.4 Fast Simulation Framework

In this section methods are presented for a fast and efficient simulation of
the ECT sensor. This efficient framework provides the same results as the
standard methods presented in section 2.3 but has superior numerical prop-
erties. This enables the fast simulation the ECT sensor in order to solve the
ill-posed inverse problem within an appropriate time.

2.4.1 Fast Stiffness Matrix Assembly

The update of the stiffness matrix K̂ after a change in the material distri-
bution requires the evaluation of equation (2.25), which is computationally
expensive.

Given the domains depict in figure 2.2, the whole problem domain Ω within
the boundary ∂Ω can be decomposed into two domains. A material depend-
ing domain ΩROI within the boundary ∂ΩROI and a domain with constant
material values Ωini = Ω\ΩROI. This domain decomposition can be used to
derive a faster method for assembling the stiffness matrix K̂.
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The Dirichlet boundary conditions given by equation (2.18) to (2.20) are the
potentials on the electrodes and the shield of the ECT sensor. Therefore Ωini

also contains the boundary conditions. With this the FE equation system
can be assembled by

K̂ = K̂ini

⋃
KROI, (2.32)

where K̂ini is the constant part of the stiffness matrix representing the domain
Ωini, which already contains the boundary conditions. KROI is the material
dependent part of K̂ representing the domain ΩROI. Similar to equation
(2.25) the assembly of KROI is done by

KROI =

NFE,ROI⋃
i=1

εiK̃FE,ROI,i, (2.33)

where NFE,ROI denotes the number of FE in ROI and KFE,ROI denotes the
element matrices of the FE within ROI. This approach already reduces the
computational effort, though the assembly of (2.33) by means of a loop imple-
mentation is still slow. A faster way is based on an eigenvalue decomposition
of the element matrices K̃FE,ROI,i [10]. For an arbitrary quadratic matrix A
the eigenvalue decomposition is given by

A = VDV−1. (2.34)

The columns of the matrix V hold the eigenvectors of the matrix A. D
is a diagonal matrix holding the eigenvalues of A. For the matrix A being
symmetric, which holds for the element matrices, the inverse V−1 in equation
(2.34) can be replaced by the transposed VT . The further procedure to
obtain an efficient way for the assembly of K̂ by means of this eigenvalue
decomposition is now illustrated for one 3× 3 element matrix K̃FE,ROI. The
eigenvalue decomposition is given by

K̃FE,ROI =
[
v1 v2 v3

] d1 0 0
0 d2 0
0 0 d3

vT1
vT2
vT3

 , (2.35)

where vi denotes the eigenvectors and di denotes the eigenvalues of KFE,ROI.
Since the finite element matrices of the considered partial differential equa-
tion are positive semi-definite one eigenvalue is zero. Hence the matrix
KFE,ROI can be assembled by the eigenvectors of the two non zero eigen-
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values by

K̃FE,ROI =
[
v1 v2 v3

] d1 0 0
0 d2 0
0 0 0

vT1
vT2
vT3


=
[√
d1v1

√
d2v2

] [√d1v
T
1√

d2v
T
2

]
= a1a

T
1 + a2a

T
2 ,

(2.36)

where the vectors ai are given by

ai =
√
divi. (2.37)

The vectors ai of each finite element in ΩROI are now used to assemble the
sparse matrix Ai by the following principle:

• The vectors ai are in each case assigned to one column of Ai.

• The global numbers of the finite element determine the row positions
of the vectors ai.

Given this approach the matrix KROI can be computed by

K̂ = K̂ini + A1EAT
1 + A2EAT

2 , (2.38)

where E denotes a sparse diagonal matrix holding the permittivity values
of the finite elements in ΩROI. This equation only contains sparse matrix
operations, which reduces the computational effort for the assembly of the
stiffness matrix K̂ significantly.

2.4.2 Charge Map

Given the concept of the domain decomposition depict in figure 2.2, also the
computation of the charges can be done in a more efficient way. This is done
by separating the Nelec ×Nelec charge matrix Q in a constant part Qa and a
part Qc depending on the potential distribution on ∂ΩROI by [10]

Q = Qa + QcV∂ΩROI
. (2.39)

Hereby V∂ΩROI
denotes a matrix holding the finite element solutions v∂ΩROI

on ∂ΩROI as column vectors. The matrix Qc : v∂ΩROI
7→ ∆Q is referred to as

charge map.
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Computation of Qa

The constant part Qa is obtained by solving the partial differential equation
(2.16) in the domain Ωini for the boundary conditions

VΓi
= V0, (2.40)

VΓj
= 0 ∀j 6= i, (2.41)

V∂Ω = 0, (2.42)

V∂ΩROI
= 0, (2.43)

and subsequently computing the charges on the electrodes.

Computation of Qc

To obtain the charge map Qc : v∂ΩROI
7→ ∆Q again the solution of the partial

differential equation (2.16) in Ωini is necessary. This time the PDE is solved
for the boundary conditions

VΓi
= V0 ∀i, (2.44)

V∂Ω = 0, (2.45)

V∂ΩROI
= δ

[
z− z∂ΩROI,i

]
. (2.46)

Thereby δ[z − z∂ΩROI,i
] denotes applying the potential of 1 V to the ith FE

node on ∂ΩROI. The subsequent computation of the charges on the electrodes
yield the charge map.

This method requires N∂ΩROI
solutions of the PDE (2.16) in Ωini where N∂ΩROI

denotes the number of FE nodes on the boundary ∂ΩROI. Since the matrices
Qa and Qc are computed in the pre-processing phase, the charge matrix Q
is obtained by means of a simple matrix multiplication.

2.4.3 Green’s Functions

In this subsection a Green’s functions approach for the computation of the
forward map is presented. A detailed derivation of this approach and a proof
for the applicability of Green’s functions to the finite element equation sys-
tem for the PDE (2.16) can be found in [10] and [16]. Since K̂ is symmetric
and real valued the property of self adjointness holds for the ECT forward
problem. Therefore Green’s functions can be applied to the equation sys-
tem (2.26).
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The evaluation of the charge matrix Q given by equation (2.39) requires
the nodal potentials on the boundary ∂ΩROI. This can be done by solving
the standard ECT forward problem (2.26) and using the components of v on
∂ΩROI. Instead of doing so, the equation system

K̂gi = ei, (2.47)

is solved, where gi denotes the ith Green’s function and ei is the ith unit
vector. The index i belongs to the nodes on ∂ΩROI. Given the Green’s
function gi, the potential of the ith node vi can be computed by

vi = gTi r. (2.48)

For the evaluation of the charge matrix Q this concept has to be extended
to the equation system

K̂G = E∂ΩROI
. (2.49)

The matrix G holds the N∂ΩROI
Green’s functions and the matrix E∂ΩROI

holds the corresponding unit vectors. The potentials of the nodes on the
boundary ∂ΩROI are now given by

V∂ΩROI
= GTR. (2.50)

To overcome the computation of the N∂ΩROI
Green’s functions, the equation

system (2.49) can be manipulated by the right side multiplication by QT
c

K̂GQT
c = E∂ΩROI

QT
c , (2.51)

K̂GQ = RQ. (2.52)

This approach reduces the number of equation system down to the original
number of Nelec. The charge matrix Q can be computed by

Q = Qa + GT
QR. (2.53)

The computational steps of the whole forward map are now reduced to three
operations of linear algebra given by equation (2.38), (2.52) and (2.53).

2.4.4 Summary of the Forward Map

This subsection summarizes the computational steps of the ECT forward
map. The steps can be distinguished by the pre computation of the constant
matrices and the final equations for the simulation of the sensor.
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The pre-computation contains the following steps:

• Assembly of the constant part of the stiffness matrix K̂ini and the ma-
trix holding the right hand side vectors R.

• Computation of the matrices A1 and A2 by means of the eigenvector
decomposition of the element matrices in ΩROI.

• Computation of the constant part of the charge matrix Qa.

• Computation of the charge map Qc.

• Computation of the right hand side vectors RQ = E∂ΩROI
QT

c .

After this pre-computation the ECT sensor can be simulated by

K̂ = K̂ini + A1EAT
1 + A2EAT

2 ,

K̂GQ = RQ,

Q = Qa + GT
QR.

This three equations are used to simulate the ECT sensor and they are
referred to as forward map F(ε).

2.4.5 Jacobian Operations

Derivative informations about the forward map are of special interest for
the solution of inverse problems as mentioned in section 2.3. The Green’s
function approach can also be used for an efficient evaluation of Jacobian
operations. Operating on the Jacobian is referred to the computation of a
matrix vector product of the form Jx without the explicit computation of
the Jacobian J. For the vector x for example holding a small change in the
permittivity values x = dε, the operation Jdε results in a linear approxima-
tion of the forward map, evident in the definition of the Jacobian given by
equation (2.29).

The starting point for the derivation of the Jacobian operation is the fi-
nite element equation system given by equation (2.26) [10]. A small change
in the stiffness matrix dK̂ results in a change in the solution vector dv. This
can be formulated by (

K̂ + dK̂
)

(v + dv) = r. (2.54)
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As K̂v = r holds, this relation can be rearranged to

K̂dv = −dK̂ (v + dv) . (2.55)

Since the product of differentials cancels out, the change in the solution
vector can by expressed by

dv = −K̂−1dK̂v. (2.56)

Given this relation the derivative with respect to one material value εj can
be expressed by

dv

dεj
= −K̂−1 dK̂

dεj
v. (2.57)

By taking use of the chain rule this expression can be extended to all material
values ε of the finite elements. This results in

dv = Jε = −
∑
j

K̂−1 dK̂

dεj
vdεj

= −K̂−1

[∑
j

dK̂

dεj
dεj

]
v

= −K̂−1K̂dεv.

As the problem is self adjoint [10], the use of Green’s functions is possible.
Hence the inverse K̂−1 can be replaced by GT . With this dv can be expressed
by

dv = −GT K̂dεG. (2.58)

With this result no matrix inversion is necessary to evaluate Jdε.

To directly work on the charges by means of a Jacobian operation, G can
be replaced by GQ due to the linearity of the charge map. With this the
Jacobian operation becomes

dQ = −GT
QK̂dεGQ. (2.59)

By taking use of the fast stiffness matrix assembly procedure presented in
subsection 2.4.1, the Jacobian operation can be evaluated by

dQ = −GT
Q

[
A1dEAT

1 + A2dEAT
2

]
GQ, (2.60)

where dE denotes the diagonal matrix holding the changes in the material
values.
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If an explicit expression of the Jacobian J is needed it is also possible to
apply this procedure. As this approach results in a matrix vector product,
it is possible to apply identity vectors to the diagonal matrix in such a way
that

diag(dE) = ei, (2.61)

holds. Afterwards the Jacobian J is assembled out of the single results of
Jei.

2.4.6 Exact Fast Low-Rank Updates

For solution of the inverse problem an approach for a numerical efficient
computation of the forward map for a marginally changed material distribu-
tion could be advantageous. This occurs for example when only the material
value of one finite element has changed. An appropriate method for this task
is the linear approximation by means of the Jacobian. Since this is only an
approximation an exact method for this problem is desirable. A method for
the exact solution of the forward problem for low rank material updates is
given by the Woodbury matrix identity [17]

(A + LU)−1 = A−1 −A−1L
(
I + UA−1L

)−1
UA−1. (2.62)

With this it is possible to evaluate the update of the inverse of a matrix
without inverting the whole matrix. A is a quadratic matrix with the known
inverse A−1. The small change in the matrix A is given by the matrix prod-
uct LU. (I+UA−1L) is referred to as Woodbury matrix which is a quadratic
matrix of the size of the rank of the update. So for the update of the inverse
(A + LU)−1 only the Woodbury matrix has to be inverted.

Considering the ECT problem, the matrix (A + LU) is given by [10]

(A + LU) = K̂new = K̂old +
(
A1∆EAT

1 + A2∆EAT
2

)
, (2.63)

where ∆E denotes the change in the material distribution. With this, the
change of the matrix is given by

γLU = γ
(
A1∆EAT

1 + A2∆EAT
2

)
, (2.64)

with the scaling variable of the update term γ. This decomposition can be
done by the so called LU-decomposition. If only the material value of one
finite element is changed, L is given by a Nnode × 3 matrix, where Nnode
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denotes the total number of nodes. The matrix L has only entries in the
rows C which correspond to the nodes of the finite element.
By taking use of Green’s functions it is possible to replace the inverse A−1 =
K̂−1

old. According to [18] only the Green’s functions of the nodes C have to be
computed. With this the low-rank update is given by [10]

∆Q = −γGT
QL (I + γU:,CGC,CLC,:)

−1 UGQ. (2.65)

GC,C denotes the Green’s functions of the nodes C which are evaluated by
solving (2.47) and U:,C and LC,: denotes taking only the components which
correspond to the nodes C. Hence the forward map has to be solved for
C identity vectors to obtain GC,C . Subsequently the result for an arbitrary
scaling of ∆E by the factor γ can be evaluated by inverting the Woodbury
matrix once.

2.5 Calibration

One important issue with respect to the solution of ill-posed inverse problem
is given by model errors as already mentioned in 1.2.1. These errors are
caused due to several reasons such as:

• Two dimensional modeling of a three dimensional problem.

• Discretization of the problem domain.

• Simplifications during the derivation of the forward map.

• Not considering the effects of the measurement hardware.

• Further effects, which were not considered.

To minimize the model error given by equation (1.6) calibration strategies
has to be introduced.

An often used calibration approach for ECT sensors is given by a Offset-
Gain calibration [7] of the form

d̃calib. = F (εempty) +K
(
d̃− d̃empty

)
, (2.66)

with

K =
F (εfull)− F (εempty)

d̃full − d̃empty

. (2.67)
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Thereby d̃calib. denotes the calibrated data, F(ε) denotes the simulated data
by means of the forward map and d̃ denotes the real sensor data. The
index empty labels the simulation or the measurement for an empty sensor.
The index full labels, that the simulation or the measurement was done for
a sensor homogeneous filled with a certain material. This material should
exhibit a permittivity value in the range of the materials occurring in the
measurement process. With this approach a correction of the measurements
is performed. In a similar way the output of the simulation model can be
calibrated by

Fcalib. (ε) = d̃empty +K (F (ε)− F (εempty)) , (2.68)

with

K =
d̃full − d̃empty

F (εfull)− F (εempty)
. (2.69)

Thereby Fcalib. (ε) denotes the calibrated output of the forward map.



3 Reconstruction Algorithms

This chapter outlines the solution of the ill-posed inverse problem of ECT.
All reconstruction algorithms presented in this chapter are derived within
the Bayesian framework, which is termed Bayesian inversion or statistical
inversion theory [9]. With this approach different estimators can be derived,
which are suitable for solving the ill-posed inverse problem of ECT. The
following reconstruction algorithms are presented in this chapter:

• Linear back projection type algorithms:

– Sample based back projection algorithms.

– Linearized MAP and ML type estimator.

• Non-linear iterative methods:

– Kalman Filter.

– Gibbs Sampler.

A further topic discussed in this chapter is the concept of state reduction.
The estimation task of ECT is typically of high dimension with respect to
the quantities of interest. This causes an immanent issue concerning the
computational effort for the solution of the problem. Therefore an approach
is presented to reduce the dimension of the state space based on principal
component analysis [19]. Furthermore it is shown, how to apply this approach
to the reconstruction algorithms.

3.1 Bayesian Inversion

The Bayesian approach is based on the principle, that all variables are consid-
ered to be random variables. These random variables are described by means
of probability density functions (pdf) π. With this concept it is possible to
connect the measurement data d̃ ∈ RM and the state vector x ∈ RN . The
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data vector d̃ is holding the measured inter-electrode capacitances C1 . . . CM
and the state vector x is holding the quantities of interest, which in this case
are the material values of the finite elements εr,1 . . . εr,N . Bayes law is given
by

π
(
x|d̃
)

=
π
(
d̃|x
)
π (x)

π
(
d̃
) ∝ π

(
d̃|x
)
π (x) . (3.1)

The pdfs π(x|d̃), π(d̃|x) and π(x) are referred to as posterior distribution,
likelihood function and prior distribution, respectively. The posterior distri-
bution π(x|d̃) provides a probability measure for the state vector x, given
the measurement data d̃.

To construct the posterior pdf the so called likelihood function π(d̃|x) is nec-
essary, which is a pdf for the measurement data d̃ given the state vector x. It
is assumed, that the measurements are corrupted by additive measurement
noise

d̃ = d + v. (3.2)

Hereby d ∈ RM denotes the noise free measurement data and v ∈ RM is a
multivariate random variable representing the measurement noise with the
pdf πV(v). Given this noise model, the likelihood function is formulated by
[20]

π
(
d̃|x
)

= πV

(
F (x)− d̃

)
. (3.3)

F (x) is the forward map of the ECT sensor presented in chapter 2, which
simulates the noise free measurement process. For Gaussian distributed noise
v ∝ N (0,ΣV), with zero mean and the covariance matrix ΣV, the likelihood
function is given by

π
(
d̃|x
)

=
1

(2π)
M
2 |ΣV|−1

exp

(
−1

2

(
F (x)− d̃

)T
Σ−1

V

(
F (x)− d̃

))
. (3.4)

The aim is the solution of the ill-posed inverse problem of ECT. Hence prior
information about the state vector x is required to obtain stable estimation
results. This prior information is incorporated by means of the prior dis-
tribution π(x), which is a pdf for the material distribution within the ECT
sensor. As it is hard to find a meaningful mathematical formulation for the
prior information, one possible approach is that π(x) is also of Gaussian type.
Given the mean µX and the covariance matrix ΣX for the random variable x,
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it is assumed that π(x) ∝ N (µX,ΣX) holds. With this the prior distribution
is formulated by

π (x) =
1

(2π)
N
2 |ΣX|−1

exp

(
−1

2
(x− µX)T Σ−1

X (x− µx)

)
. (3.5)

Detailed information on how to find meaningful values for µX and ΣX by
means of a sample based approach can be found in the later section 3.2.
Another possible approach is given by

π (x) = exp
(
α‖Lx‖2

2

)
, (3.6)

where L is referred to as regularization matrix and α is an additional reg-
ularization parameter. One common prior in ECT is to assume a smooth
material distribution. In this case the regularization matrix L is chosen to
be a discrete version of the Laplace operator [7].

3.2 Sample based Prior and Gaussian Sum-

mary Statistics

One important issue with respect to ill-posed inverse problem is the incor-
poration of meaningful prior information to the reconstruction algorithms.
In the particular case of ECT the patterns of the material distributions are
often well known, though finding a meaningful mathematical formulation for
the prior information is difficult. Therefore the approach of sample based
prior is presented in this section. Hereby a set of random samples is gen-
erated, suitable to describe the occurring material pattern within the ECT
sensor. Subsequently a Gaussian summary statistic given by equation (3.5) is
calculated for this set of random samples. This Gaussian prior distribution
π(x) is afterwards incorporated to the Bayesian reconstruction algorithms
presented in the later sections 3.4 and 3.5.

3.2.1 Generation of Random Samples

For arbitrary material distribution two different sample generators are pre-
sented, namely one for rod type samples and one for Gaussian type sam-
ples [7]. Figure 3.1 depict exemplary random samples for both types of
patterns. For the generation of the samples, firstly a number of inclusions
#incl within the ECT sensor is randomly selected. In the next step the ma-
terial value εr, the center point [µx, µy] and the radius r for rod type samples
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(a)

(b)

Figure 3.1: Exemplary rod (a) and Gaussian (b) type random samples.
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or the standard deviation σ for Gaussian type samples of each inclusion is
randomly selected. Finally the inclusions given by this random parameters
are mapped onto the finite element mesh. For rod type samples the map-
ping is done by setting the material values of the finite elements within the
domain with the center point [µx, µy] and the radius r to the material value
εr. For Gaussian type samples the mapping is done by

xi = 1 + (εr − 1) exp

(
(µFE,x,i − µx)2 + (µFE,y,i − µy)2

σ2

)
. (3.7)

[µFE,x,i, µFE,y,i] denotes the center point of the ith finite element and xi is the
corresponding element of the resulting state vector x. With this the state
vector x of the random sample is given by a vector holding the elements
xi for i = 1 . . . N . A pseudo code for both pattern generators is given by
algorithm 3.1 [7].

Algorithm 3.1 Algorithm to obtain random samples for arbitrary
material patterns.

1: Draw #incl ∝ U(1,#incl,max)
2: for i = 1 to #incl

3: Draw [µx, µy] ∝ U(in ROI)
4: Draw εr ∝ U(εr,min, εr,max)
5: Draw r ∝ U(rmin, rmax) or σ ∝ U(σmin, σmax)
6: Create the inclusion out of the parameters
7: end
8: Map the inclusions onto the finite element mesh → x

3.2.2 Gaussian Summary Statistics

Given the approach for the generation of random samples, a method is re-
quired to incorporate the information held by these samples to the reconstruc-
tion algorithms. Therefore a Gaussian summary statistic π(x) ∝ N (µX,ΣX)
given by equation (3.5) is computed to formulate a prior pdf. This pdf is
parametrized by the mean µX and the covariance matrix ΣX.

To obtain µX and ΣX, a number of Nsample random samples is stored in
the N ×Nsamples matrix X, where each column represents one sample. Each
row i can be seen as a row vector holding realizations xij of the random
variable Xi. The mean µX is given by a column vector holding the means of
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each row of X

µXi
= E {Xi} =

1

Nsample

Nsample∑
j=1

xij. (3.8)

The N ×N covariance matrix is given by

ΣX = E
{

(X− µX) (X− µX)T
}

(3.9)

= E


(X1 − µX1)

2 . . . (X1 − µX1) (XN − µXN
)

...
. . .

...

(XN − µX) (X1 − µX1) . . . (XN − µXN
)2

 . (3.10)

With this, the Gaussian prior π(x) is fully parametrized.

3.3 Prior Based State Reduction

In this section the approach for a reduced state representation based on prior
information is presented. This concept is given by the approximation of the
original state vector x ∈ RN by a reduced state vector xR ∈ RNR , where
NR < N holds [19]. To describe the relation between the full state vector
x and the reduced state vector xR the so called projection matrix PNR

is
introduced. The projection is given by

x = PNR
xR. (3.11)

PNR
maps the reduced state space into the full state space PNR

: xR 7→ x.
The basis vectors of the reduced state representation are given by the columns
of PNR

. One way to construct those basis vectors is a principle component
analysis (PCA) of a set of random samples from the prior distribution π (x).
Therefore a N ×Nsamples matrix X is assembled where the Nsamples columns
are given by random samples from the prior distribution π (x). In the next
step a singular value decomposition of X is performed given by

UΣVT = X. (3.12)

The columns ui of the unitary N×N matrix U can now be used to construct
the projection matrix PNR

. The matrix Σ is a diagonal matrix holding the
singular values of X. The singular values are decreasing with the index
i [19]. They can be seen as an importance weight for the basis vectors ui.
This property can be used to assemble the projection matrix PNR

by

PNR
=
[
1 u1 u2 . . .uNR−1

]
. (3.13)
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The vector 1 forming the first column of PNR
is required to present constant

parts of the material distribution. With only the first NR−1 column vectors
of U the essential components of the material distribution within the ECT
sensor can be reproduced. This is possible due to the circumstance, that
the importance of the vecotrs ui is decreasing with the index i. Because the
vectors ui for i > NR − 1 are skipped the estimation result for a reduced
state representation exhibit a self regulating behaviour against noisy mea-
surements and model errors.

Given the matrix PNR
the reduced state vector xR can be calculated in

a least squares sense
x̂R,1 =

(
PT
NR

PNR

)
PT
NR

x, (3.14)

as equation (3.11) forms an overdetermined equation system [19]. To in-
corporate constraints to the state vector x the reduced state vector xR can
also be determined by means of a constrained least squares approximation
given by

x̂R,2 = arg min
xR

‖PNR
xR − x‖2

2

s.t xmin ≤ PNR
xR ≤ xmax.

(3.15)

Hereby xmin denotes the lower constraint and xmax denotes the upper con-
straint of the state vector x.

3.4 Linear Back Projection Type Algorithms

In this section linear, non-iterative back projection (BP) type reconstruction
methods are presented. These algorithms are given by a simple matrix vector
multiplication of the form

x̂ = Pd̃, (3.16)

where x̂ denotes the estimated state vector and d̃ denotes a vector holding
the measurement data. P is referred to as reconstruction matrix.

There are different principles for the derivation of P [20]. The first algorithm
consideren in this section uses a sample based technique for the construction
of P, termed optimal approximation (OA) [21].

The second BP type algorithm provided here is constructed by means of
the posterior distribution π(x|d̃) and a linear approximation of the forward
map F(x), leading to the so called linearised maximum a posteriori (MAP)
estimator.
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3.4.1 Sample based Back Projection Algorithms

In this subsection a sample based BP type reconstruction of form (3.16) is dis-
cussed. In particular the so called optimal first order approximation (OFOA)
and the optimal second order approximation (OSOA) techniques [21]. After
the derivation of those algorithms the application of the sample based state
reduction approach presented in 3.3 is discussed.

The concept of the methods termed optimal approximation is the incorpo-
ration of explicit prior knowledge in the construction of the matrix P. This
is done in a way that the expectation of the error between the reconstructed
material distribution and the real material distribution becomes a minimum
in a quadratic sense. Therefore an optimization problem is formulated given
by

P∗ = arg min
P
E
{
‖Pd̃a − x‖2

2

}
(3.17)

s.t. π (x) , (3.18)

where d̃a denotes an augmented data vector. In the following paragraphs the
assembly of the single components of equation (3.17) as well as the incorpo-
ration of the state reduction approach is discussed.

Augmented Data Vector d̃a

In the first step the construction of the augmented data vector d̃a is dis-
cussed. In both cases (OFOA and OSOA) the vector contains the measured
capacitances. The vectors are given by

d̃OFOA =
[
1 C1 C2 . . . CM

]T
, (3.19)

d̃OSOA =
[
1 C1 C2 . . . CN C2

1 C2
2 . . . C2

M

]T
, (3.20)

where d̃OFOA and d̃OSOA denote the augmented data vector for the OFOA
algorithm and the OSOA algorithm respectively. C1 . . . CN are the measured
inter-electrode capacitances.

Reconstruction Matrix P

The second step concerns the assembly of the reconstruction matrix P by
means of the approach given by equation (3.17). It is possible to generate
samples x from a meaningful prior distribution π (x) like discussed in section
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3.2. Given a set of random samples from π(x), the approach (3.17) can be
formulated as a least squares problem of the form

D̃aP
T = X. (3.21)

The rows of X and D̃a are given by the samples xTi from the prior distribution
π (x) and the corresponding augmented data vectors d̃Ta respectively. The
solution of this least squares problem is given by

PT =
(
D̃T
a D̃a

)−1

D̃T
aX. (3.22)

The incorporation of prior knowledge about the measurement noise can be
done by taking multiple use of the sample xi in X and using different noisy
realizations of d̃a in D̃a.

Incorporation of the State Reduction Technique

To apply the state reduction technique presented in section 3.3, equation
(3.21) has to be solved for XR, resulting in the reconstruction matrix PR [19]

PT
R =

(
D̃T
a D̃a

)−1

D̃T
aXR. (3.23)

The rows of XR are now given by the reduced representations xTR,i of the
samples. This reduced state vectors can be computed with the estimator
given in equation (3.14) or (3.15) if the incorporation of state constraints
is required. The reduced reconstruction matrix PR describes the relation
between the measurements and the reduced state vector xR. To obtain the
full state vector the projection matrix PNR

given by equation (3.13) has to
be incorporated. The reconstruction matrix P, describing the linear relation
between the measurement and the full state vector x is given by

P = PNR
PR. (3.24)

3.4.2 Linearised MAP and ML type Estimator

The MAP estimator is defined by maximizing the posterior distribution given
by equation (3.1) [22]. Instead of maximizing π(x|d̃) it is also possible to
maximize the logarithm of the posterior distribution ln(π(x|d̃)). This pro-
vides a more simple representation of the problem due to the exponential
form of Gaussian distributions. Hence the MAP estimator can be formu-
lated by

x̂ = arg max
x

ln
(
π
(
x|d̃
)
π (x)

)
. (3.25)
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Using the relations for the likelihood function (3.4) and the prior distribu-
tion (3.5) and skipping all terms, which do not depend on the optimization
variables x leads to the relation

x̂ = arg min
x

(
F (x)− d̃

)T
Σ−1

V

(
F (x)− d̃

)
+ (x− µX)T Σ−1

X (x− µX) .
(3.26)

This forms a nonlinear optimization problem as the forward map F(x) of the
ECT sensor is of nonlinear nature. Since the aim is the derivation of a linear
BP type estimator a linear Taylor-Series approximation

F (x0 + ∆x) ≈ F (x0) + J (x0) ∆x, (3.27)

is applied to the forward map. Thereby x0 is referred to as linearisation point
and J(x0) denotes the Jacobian in this point given by

J (x0) = [Ji,j (x0)] =

[
∂Ci
∂xj

∣∣∣∣
x0

]
. (3.28)

With this the linearized MAP estimator becomes

∆x̂ = arg min
∆x

(
F (x0) + J∆x− d̃

)T
Σ−1

V

(
F (x0) + J∆x− d̃

)
+ (x0 + ∆x− µX)T Σ−1

X (x0 + ∆x− µX) .
(3.29)

The estimation result is now the change in the material values ∆x̂ with re-
spect to the linearisation point x0. An obvious choice for the linearisation
point is the mean of the prior distribution x0 = µX. Due to the lineari-
sation it is possible to derive an analytical solution for this unconstrained
optimization problem given by

x̂ = µX +
(
JTΣ−1

V J + Σ−1
X

)−1
(
JTΣ−1

V

(
d̃− F (µX)

))
. (3.30)

To incorporate state constraints the optimization problem (3.29) has to be
solved with subject to xmin ≤ x ≤ xmax. Due to the fact that F(µX) and d̃
are constant the problem can be written as

∆x̂ = arg min
∆x

∆xT
(
JTΣ−1

V J + Σ−1
X

)
∆x

− 2
(
d̃− F (µX)

)T
Σ−1

V J∆x

s.t. xmin − µX ≤ ∆x ≤ xmax − µX,

(3.31)

which is a simple quadratic programming problem. As the estimation result
is again the change of the material values ∆x̂ with respect to the linearisation
point µX, the material values are given by

x̂ = µX + ∆x̂. (3.32)
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Incorporation of the State Reduction Technique

To incorporate the state reduction approach presented in section 3.3 to the
linearised MAP estimator, equation (3.29) has to be considered. Replacing
∆x with PNR

∆xR and performing the same derivation steps as before leads
to [20]

x̂ =µX + PNR

(
PT
NR

JΣ−1
V JPNR

+ PT
NR

Σ−1
X PNR

)−1 ·(
PT
NR

JTΣ−1
V

(
d̃− F (µX)

))
.

(3.33)

The incorporation of state constraints leads again to a quadratic program-
ming problem of the form

∆x̂R = arg min
∆xR

∆xTR
(
PT
NR

JTΣ−1
V JPNR

+ PT
NR

Σ−1
X PNR

)
∆xR

− 2
(
d̃− F (µX)

)T
Σ−1

V JPNR
∆xR

s.t. xmin − µX ≤ PNR
∆xR ≤ xmax − µX.

(3.34)

Since the estimation result is the change of the reduced state vector ∆x̂R
with respect to the linearisation point µX, the full state vector is given by

x̂ = µX + PNR
∆x̂R. (3.35)

Linearized ML Type Estimator for a Reduced State Representation

If the state reduction technique is applied to the estimation task, the size of
the state vector is reduced from the original size N to NR. Since the projec-
tion matrix PNR

is assembled from random samples of the prior distribution
π(x), the state reduction approach is an alternative way for incorporating
prior information. By choosing the size of the reduced state space to be
NR < M , it is possible to set the prior distribution to

π (x) = 1. (3.36)

Given this approach the estimation problem can be formulated as

x̂R = arg max
xR

ln
(
π
(
PNR

xR|d̃
))

. (3.37)

Estimators given by maximizing the likelihood function are usually referred
to as maximum likelihood (ML) estimators. Due to the incorporation of
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prior information by means of PNR
the resulting algorithm will be termed

ML type estimator. Doing the same derivation steps as before leads to

∆x̂R = arg min
∆xR

(
F (µX) + JPNR

∆xR − d̃
)T

Σ−1
V ·(

F (µX) + JPNR
∆xR − d̃

)
.

(3.38)

Again the linearisation point is chosen to be x0 = µX. The analytic result
for this linear ML type estimator is given by

x̂ = µX + PNR

(
PT
NR

JTΣ−1
V JPNR

)−1
PT
NR

JTΣ−1
V

(
d̃− F (µX)

)
. (3.39)

For the incorporation of state constraints, the problem can again be formu-
lated as a simple quadratic programming problem given by

∆x̂R = arg min
∆xR

∆xTRPT
NR

JTΣ−1
V JPNR

∆xR

− 2
(
d̃− F (µX)

)
Σ−1

V JPNR
∆xR

s.t. xmin − µX ≤ PNR
∆xR ≤ xmax − µX.

(3.40)

The full state vector x̂ is again obtained with the relation given by equa-
tion (3.35).

3.5 Non-linear Iterative Methods

In this section two iterative methods are presented, which are able to deal
with the non-linear forward map of the ECT sensor. The first algorithm con-
sidered, is the so called Kalman Filter, which belongs to the class of recursive
Bayesian algorithms. The second algorithm presented in this section is the
Gibbs Sampler, which is a Markov Chain Monte Carlo sampling method.

3.5.1 Kalman Filter

The Kalman Filter belongs to the class of recusive Bayesian algorithms [23].
The Kalman Filter was usually thought of as an estimator for a signal em-
bedded in noise, which is represented by means of a linear discrete time state
space model [22]

xk+1 = Φkxk + wk, (3.41)

yk = Hkxk + vk. (3.42)
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Hereby the system matrix Φk describes the dynamic evolution of the state
vector xk ∈ RN . The variable wk ∈ RN is referred to as process noise and
forms a random input for the system. Equation (3.42) is termed measurement
equation. It describes the dependence of the measurement vector yk ∈ RM

on the current state vector xk by means of the matrix Hk. The measurement
vector yk is corrupted by additive measurement noise vk ∈ RM . The Kalman
Filter is a recursive filter scheme that provides an estimator x̂ for the state
vector in such a way that

arg min
x̂
E
(
(x− x̂)2) , (3.43)

holds [24]. The filter equations are given by

x∗k = Φkx̂k−1, (3.44)

P∗k = ΦkPk−1Φ
T
k + Qk, (3.45)

Kk = P∗kH
T
k

(
HkP

∗
kH

T
k + Rk

)−1
, (3.46)

x̂k = x∗k + Kk (yk −Hkx
∗
k) , (3.47)

Pk = (I−KkHk) P∗k. (3.48)

It is assumed, that the process- and the measurement noise as well as the
state vector are Gaussian distributed random variables. This means, that the
variables can be described by a mean and a covariance matrix. For the noise
processes vk and wk zero mean is assumed. With this assumption the noise
processes are fully described by their covariance matrices. They are given
by the covariance matrix Rk for the measurement noise and the covariance
matrix Qk of the process noise.

In the first two Kalman Filter equations (3.44) and (3.45) the predicted state
is calculated, where x∗k denotes the mean and P∗k the covariance matrix of
the prediction. The state vector x̂k in equation (3.47) is the mean of the final
estimation result. The matrix Pk in equation (3.48) denotes the covariance
matrix, which provides information about the quality of the estimation result.

Algthoug the Kalman Filter was designed for the task of state estimation
in dynamic sytems of the form (3.41) and (3.42), it can also be used to solve
the ill-posed inverse Problem of ECT. However some adaptions of the origi-
nal Kalman Filter equations are necessary to deal with the non-linearity and
the ill-posed nature of ECT.
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Adaptations for the Incorporation of the Regularization Matrix L

One possible way to apply the Kalman Filter to the non-linear ill-posed in-
verse problem of ECT is the incorporation of a regularization matrix L to
obtain stable solutions [25]. To do so, a few adaptations of the Kalman Filter
equations are necessary.

In the first step the measurement vector is augmented by

yk =

[
d̃
0

]
, (3.49)

where d̃ ∈ RM is a vector holding the inter-electrode capacitances of the ECT
sensor. Given this measurement vector yk, also the measurement equation
has to be adapted by

Hk =

[
Jk (x∗k)
αL

]
. (3.50)

Jk (x∗k) denotes the Jacobian of the model output. The individual gradients
of the Jacobian ∇Ci are computed with respect to the predicted state vector
x∗k. The parameter α is a regularization parameter and L is referred to as
regularization matrix. With this regularization term it is possible to obtain
a stable solution for the ill-posed inverse problem. The augmentation of
equation (3.49) by 0 effects a minimization of the regularization term. One
possible choice of the matrix L is a discrete version of the Laplace operator.
Therefore the minimization of the regularization therm results in a smooth
material distribution. Because of the adaptation of the measurement vector
in equation (3.49) also the covariance matrix Rk has to be augmented to
obtain a positive definite matrix of correct dimension. This can be done by

Rk =

[
ΣV 0
0 σ2I

]
, (3.51)

where σ2 is chosen to be the mean of the variances of the measurements [26].
To deal with the non-linearity of the ECT problem the update equation of
the Kalman Filter (3.46) has to be extended by

x̂k = x∗k + Kk

(
yk −

[
F (x∗k)
αLx∗k

])
, (3.52)

which is the form of the so called extended Kalman Filter [7]. F (x∗k) denotes
the simulation of the non-linear forward problem of the ECT sensor for the
predicted state vector x∗k. As the system matrix Φk describes the dynamic
behaviour of the system it is chosen to be the identity matrix I for this
estimation task, what is referred to as random walk.
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For many applications the incorporation of state constrains is reasonable.
To incorporate pysical constraints to the state vector the so called maximum
probability method can be used [27]. This method seeks for an estimation
result by maximizing its probability with respect to certain constraints. As
the probability of the estimation result is given by the covariance matrix Pk

the correct result is found by solving the following optimization problem

arg min
xk

(xk − x̂k)
T P−1

k (xk − x̂k)

s.t. xmin ≤ xk ≤ xmax.
(3.53)

Hereby xmin and xmax denotes the lower and the upper constraint for the state
vector. As x̂k is constant for this optimization problem, it can be written as

arg min
xk

xTkP−1
k xk − 2x̂TkP−1

k xk

s.t. xmin ≤ xk ≤ xmax,
(3.54)

which forms a simple quadratic programming problem.

Adaptations for the Incorporation of a Gaussian Prior

In a similar way the regularization can be done by the incorporation of a
Gaussian prior to this estimation task. The Gaussian summary statistic is
given by its probability density function π(x), parametrized by means of the
mean µX and the covariance matrix ΣX like already mentioned in section 3.1.

To properly achieve this the measurement equation (3.42) has to be aug-
mented by

yk =

[
d̃
µX

]
, (3.55)

and

Hk =

[
Jk (x∗k)

I

]
, (3.56)

where I denotes the identity matrix. The covariance matrix Rk is adapted
by

Rk =

[
ΣV 0
0 ΣX

]
. (3.57)

Given this approach, the update equation (3.46) has the following form

x̂k = x∗k + Kk

(
yk −

[
F (x∗k)

x∗k

])
. (3.58)
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This augmentations causes the estimation result to be drawn towards the
mean of the prior distribution, which results in a stable solution for the ill-
posed inverse problem.

The incorporation of state constraints can be done by means of the max-
imum probability method [27] shown in equation (3.54).

Adaptations for the Incorporation of the State Reduction Ap-
proach

Another possible approach for the solution of the non-linear ill-posed inverse
problem of ECT is a extended Kalman Filter in combination with the state
reduction approach presented in section 3.3. For a proper choice of the re-
duced state space size by NR < M a solution for the ill-posed estimation
task can be found, as already mentioned in subsection 3.4.2. In this case the
prior is incorporated by the projection matrix PNR

, which is constructed by
means of random samples from the prior distribution π(x).

Given this approach, the full state vector x is replaced by the reduced state
vector xR. The relation between the reduced state vector and the full state
vector is given by equation (3.11). The system matrix Φ is chosen to be an
NR × NR identity matrix, what is referred to as random walk. Hence the
first Kalman Filter equation is given by

x∗R,k = Φx̂R,k−1. (3.59)

The measurement equation is again approximated by means of a Taylor series
linearisation leading to the measurement matrix

H = J
(
PNR

x∗R,k
)
. (3.60)

To overcome the non-linearity of the ECT forward map, the update equa-
tion (3.47) is replaced by

x̂R,k = x∗R,k + Kk

(
yk − F

(
PNR

x∗R,k
))
. (3.61)

In this case yk is given by the data vector d̃ since no regularization term is
required due to the state reduction.

The incorporation of physical constraints to the estimated state vector is
done by the maximum probability method [27]. Since the constraints for the
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reduced state vector xR are usually not known the projection matrix PNR

has to be incorporated to the approach shown in equation (3.54). Therefore

min
xR,k

xTR,kP
T
NR

P−1
k PNR

xR,k − 2x̂TR,kP
−1
k PNR

xR,k

s.t. xmin ≤ PNR
xR,k ≤ xmax,

(3.62)

has to be solved.

Since the Kalman Filter is an iterative algorithm a starting point for the
state vector x̂R,0 is necessary. An obvious choice is the mean µX of the gen-
erated samples from the prior distribution π(x), which were used to generate
the projection matrix PNR

. The computation of the reduced representation
of µX can be done in an least squares sense

x̂R,0 =
(
PT
NR

PNR

)−1
PT
NR
µX. (3.63)

For estimation tasks with known physical constraints, it has to be verified
if no constraints are violated by x̂R,0. To guarantee x̂R,0 to be within the
boundaries, also a constraint least squares approximation can be applied.

3.5.2 Gibbs Sampler

The Gibbs sampler belongs to the class of Markov chain Monte Carlo (MCMC)
techniques. MCMC algorithms are a class of random sampling methods,
suitable for the generation of independent random samples of the posterior
distribution π(x|d̃) [9]. Before going into a detailed description of the algo-
rithm the basic idea about Markov chains and Monte Carlo integration are
explained.

Markov Chains

The essential element within MCMC techniques are the so called Markov
chains. Let M = {Xn}∞n=0 be a sequence of random variables in the state
space X . A Markov chain is a process M = {Xn}∞n=0 with the property

Pr (Xn+1 = xn+1|Xn = xn, . . . , X0 = x0) = Pr (Xn+1 = xn+1|Xn = xn)
(3.64)

referred to as Markov condition. In words, the probability of Xn+1 con-
ditioned on X1 = x1, . . . Xn = xn is equals the probability conditioned on
Xn = xn. This means that the state Xn+1 only depends on the previous state
Xn [9]. The transition kernel K(xn, xn+1) describes the transition probability
between the two consecutive states Xn and Xn+1. This will be part of the
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algorithm to generate new candidates.

A detaild description of the proberties Markov chains offer can be found
in [28] and [29]. In particular two properties of Markov Chains are of spe-
cial interest to apply them for Monte Carlo integration, which are briefly
described in the following paragraph.

The first important property of the chain is given by the irreducibility. For
discrete state spaces, the property of irreducibility is given by the fact that
the transition kernel K has a non zero transition probability between each
combination of states.

The second important property is the so called periodicity of Markov chains.
If the state xn+j can become the state xn for j > 2 a Markov Chain is called
periodic. The kernel is aperiodic if xn+1 = xn is allowed.

If the properties of irreducibility and aperiodicity are fulfilled by the Markov
chain, the sequence M converges against the target distribution π for suffi-
cient large n. Hence Monte Carlo Integration can be applied [29].

Monte Carlo Integration

A Markov Chain provides a set of random samples from the probability
density function π(x). This samples xi of π(x) can be used to approximate
integrals of a function f(x) by

∫
RN

f (x) π (x) dx ≈ 1

N

N∑
i=1

f (xi) , (3.65)

which is referred to as Monte Carlo integration. With this method it is
possible to compute complex integrals by the mean of the samples generated
by the Markov chain. This can be useful, to compute the so called conditional
mean (CM)

xCM =

∫
RN

xπ
(
x|d̃
)

dx, (3.66)

and the conditional covariance

cov
(
x, d̃

)
=

∫
RN

(x− xCM)T (x− xCM) π
(
x|d̃
)

dx. (3.67)
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The MAP or ML estimator are also termed as point estimates, since the so-
lution is always one point given by the maxima of the posterior distribution.
The CM instead uses information of the whole posterior distribution. This
property makes the CM also suitable for multi-modal distributions. MCMC
techniques offers an efficient tool for the solution of those, often high di-
mensional integrals [9]. The evaluation of the conditional covariance given
by equation (3.67) enables also access to uncertainty information about the
estimation result.

The Algorithm

Given the concept of Markov chains and Monte Carlo integration a method is
needed to generate the samples from the posterior distribution π(x|d̃). One
possible algorithm for this task is the so called Gibbs sampler.

Detailed information about the Gibbs sampler can be found in [30]. The
main steps of the algorithm are given by:

1. The current state x = Xn is selected.

2. For every element i of the state vector x the following steps are per-
formed:

(a) All elements of x instead of xi are fixed.

(b) A sample from the conditional distribution

π(xi|x1, x2, . . . , xi−1, xi+1, . . . xN), (3.68)

is generated.

3. The new state is set to Xn+1 = x.

Since the element xi is the only variable of the conditional distribution given
by (3.68), a one dimensional sampling method is required. An efficient
scheme for this task is rejection sampling [30]. There are different versions for
rejection sampling. For this task a version is chosen, which provides the pos-
sibility to work an the logarithm of the posterior distribution. This provides
numerical advantages [10], if the condition holds that the target density g(x)
offers logarithmically concave behaviour [31]. The rejection sampler works
on the logarithm of the target density function h(s) = ln(g(x)). The algo-
rithm requires an upper u(x) and a lower l(x) bound of the h(x) so that
l(x) ≤ h(x) ≤ u(x) holds. The upper and the lower bound can be assembled
by piecewise linear functions and M supporting points of the conditional
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distribution. Given this, a sample of g(x) can be generated by the following
steps:

1. Sample a point x from u(x) and generate an uniform distributed sample
w ∝ U([0, 1]).

2. Accept x if w ≤ exp(l(x)− u(x)) holds.

3. If not, x is accepted in the case of w ≤ exp(h(x)−u(x)), or else repeat
this steps.

Given the exact fast low rank update approach presented in subsection 2.4.6,
the one dimensional sampling can be done in an efficient way. This enables
the solution of the ill-posed inverse problem within an appropriate time.

Gibbs Sampling for Bimodal Material Distributions

The most simple case is given by bimodal material distributions. In this case
the Gibbs sampler simplifies to the following scheme [10]:

1. Flip the value of one element xi of the state vector x to generate the
proposal x′.

2. Evaluate α = min
[
1, π(x′|d̃)

π(x|d̃)

]
.

3. The proposal x′ is accepted with the probability α.

The selection of the element i can be done by a loop, to update all elements of
x consecutively. For a small difference between the two material values, the
evaluation of π(x′|d̃) can be done by means of the Jacobian approximation.



4 Flow Parameter Estimation

This chapter discusses the application of electrical capacitance tomography
for flow parameter estimation in pneumatic conveying systems.

In the first section the prevailing flow patterns in pneumatic conveying sys-
tems are investigated for horizontal and vertical pipe systems. Out of this
flow patterns, random sample generators are constructed to obtain a sample
based prior for the reconstruction algorithms presented in chapter 3.

In the second section the intrinsic information of the random samples from
the different prior distributions is analysed by means of a principle compo-
nent analysis. This is also used to make a proper choice for the size of the
reduced state space presented in section 3.3. Also an intuitive approach for
the construction of basis vectors for a reduced state representation is pre-
sented for flow patterns.

The third section discusses the different flow parameters in pneumatic con-
veying systems and the definition of the solid volume concentration, which
is the process quantity of interest.

The last section of this chapter is indented to give an overview of the im-
plemented reconstruction algorithms and a detailed declaration of the setup
used for the implementation. Lastly the notation and the abbreviations are
explained, which are used for the different algorithms.

4.1 Flow Regimes in Pneumatic Conveying

Systems

This section is intended to provide an overview about the occurring spacial
concentrations of the material distributions in pneumatic conveying systems,
also referred to as flow regimes. The flow regimes in pneumatic conveying
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(a)

(b)

(c)

(d)
(a) (b) (c) (d)

Figure 4.1: Flow regimes in horizontal and vertical pneumatic conveying
systems [32] [33].

systems depend on several process parameters such as the pressure drop ∆p
(or the pressure gradient ∆p/L) along the length of the pipe L and the gas
velocity vg. Given this parameters a rough classification of the flow regimes
for horizontal and vertical upward conveying is depict in figure 4.1 [32] [33].

For horizontal pneumatic conveying systems the different flow regimes are
given by [33]

(a) Dispersive flow : For high gas velocities vg the particles are moving
homogeneous distributed over the whole cross-section of the process
pipe. The particles are occasionally colliding with other particles and
the pipe wall.

(b) Stratified flow : With decreasing gas velocities a part of the particles is
settling down and sliding along the bottom of the pipe. Only a part
of the solid particles is conveyed as dilute flow above the solid bottom
layer.

(c) Slug Flow and unstable flow : For a further decrease of the gas velocity
slugs are formed, which are slowly conveyed along the bottom of the
pipe. A repeated reduction of vg leads to dormant deposits on the
bottom of the tube sheet so that only a fraction of the whole cross-
section is used for conveying. This flow regime is greatly unstable since
uncontrolled plug formations can occur.
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(d) Plug flow : For very low gas velocities but high pressure drops the so
called plug flow can occur. Here, solid plugs are conveyed along the
pipe, occupying the whole diameter of the pipe. This is the character-
istic flow regime for the so called dense flow conveying.

For vertical upwards conveying analogous flow regimes as for horizontal con-
veying are occurring [33]. For high gas velocities the solid particles are ho-
mogeneous distributed over the cross-section and conveyed along the pipe.
For lower gas velocities the dispersive flow merges to the stratified flow. Due
to the formation of strands a local reverse flow of the particles can occur
in the opposite direction of the gas flow until the strands are again dissolv-
ing. For this reason installation positions of the ECT sensor were vertical
upward conveying is present are not suitable since the solid particles are
possibly moving in two directions. This complicates the estimation of flow
parameters significantly and is therefore not further considered in this thesis.

A further case considered is vertical downwards conveying, termed gravity-
driven flow. For a sufficient long straight process pipe ahead of the ECT
sensor the occurring flow pattern is given by a concentration of the bulk ma-
terial in the center of the pipe with an decreasing density towards the pipe
wall [34].

4.1.1 Random Samples for Flow Patterns

Given the prevailing flow regimes in pneumatic conveying systems the task
is now to generate random patterns, which are covering the possible states
of the conveying process. These samples for flow type material distributions
forming a sample based prior information. To incorporate this information
to the reconstruction algorithms a Gaussian summary statistic of a set of
random samples is computed, as presented in 3.2.

Random Samples for Horizontal Conveying Flow Patterns

Figure 4.2 depict exemplary samples for horizontal conveying flow regimes.
Since the samples are cross sectional representations of the prevailing flow
regimes, they can be summarized for this task by four cases. The first case
is a dilute flow with homogeneous distributed particles over the whole cross
section of the pipe depict in figure 4.2(a). This dilute flow is modeled by
means of a randomly selected constant material value in the region of in-
terest. The second case is also dilute flow but with a concentration of the
particles on the bottom of the pipe depict in 4.2(b). Therefore a random
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height h is generated, which divides the region of interest into two domains.
The randomly selected material value εr,1 is assigned to the lower domain and
εr,2 is assigned to the upper domain where εr,1 > εr,2 holds. The third case is
given by solid deposits on the bottom of the pipe and dilute flow in the upper
domain depict in 4.2(c). Therefore again a height h is randomly generated
and the material value εr,max is assigned to the lower domain and the ran-
domly generated value εr is assigned to the upper domain, where εr < εr,max

holds. The fourth case is given by solid deposits on the bottom only depict
in 4.2(d). In this case the material value of the upper domain is set to x = 1
and the material value of the lower domain is again set to εr,max. For the
generation of the samples the four different regimes are selected randomly.
Given the flow regime and the parameters, the inclusion is mapped onto the
finite element mesh, providing the random sample x. The pseudo code for
this pattern generator is given by algorithm 4.1.

Algorithm 4.1 Algorithm to obtain random samples for horizontal
conveying flow patterns.

1: Pick number #regime between 1 : 4 by random
2: if #regime = 1
3: Draw εr ∝ U(εr,min, εr,max)
4: Set whole ROI to εr

5: else if #regime = 2
6: Draw h ∝ U(hmin, hmax)
7: Draw εr,1 ∝ U(εr,min, εr,max) and εr,2 ∝ U(εr,min, εr,1)
8: Set ROI domain < h to εr,1 and > h to εr,2

9: else if #regime = 3
10: Draw h ∝ U(hmin, hmax)
11: Draw εr ∝ U(εr,min, εr,max)
12: Set domain < h to εr,max and domain > h to εr

13: else if #regime = 4
14: Draw h ∝ U(hmin, hmax)
15: Set domain < h to εr,max and the domain > h to εr,min

16: end
17: Map the inclusion onto the finite element mesh → x

Random Samples for Vertical Downwards Conveying Flow Patterns

Figure 4.3 depict exemplary samples for vertical downwards conveying flow
patterns. These samples are generated by means of a centred Gaussian in-
clusion. Since the center coordinate of the ECT sensor model is given by the
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(a) (b)

(c) (d)

Figure 4.2: Exemplary random samples for the different flow regimes in
horizontal pneumatic conveying systems. (a) dilute flow, (b) dilute flow with
concentration on the bottom, (c) solid bottom layer and dilute flow in the
upper layer, (d) solid bottom layer only.
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Figure 4.3: Exemplary random samples for vertical downwards conveying
flow patterns.

point [0, 0], the center point of the Gaussian inclusion is also chosen to be
[µx, µy] = [0, 0]. The standard deviation σ and the material value εr of the
inclusion are randomly selected by means of an uniform distribution. The
mapping of the inclusion onto the finite element mesh is again done by equa-
tion (3.7), providing the sample x. A pseudo code for the generation of this
samples is given by algorithm 4.2.

Algorithm 4.2 Algorithm to obtain random samples for vertical
downwards conveying flow patterns.

1: Center point [cx, cy] = [0, 0]
2: Draw σ ∝ U(σmin, σmax)
3: Draw εr ∝ U(εr,min, εr,max)
4: Create the inclusion out of the parameters
5: Map the inclusion onto the finite element mesh → x

4.2 Analysis of the Intrinsic Information of

the Prior Samples

In this section an investigation of the random samples from the different prior
distributions is done by means of an singular value decomposition given by
equation (3.12). Since the state reduction approach presented in section 3.3
is based on a principle component analysis of the random samples, the re-
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(a)

(b)

Figure 4.4: PCA basis vectors for horizontal conveying flow patterns, (a)
for low index numbers, (b) for high index numbers.

sults achieved in this sections are used to choose a proper size of the reduced
state representation NR. It should be mentioned that only the samples from
prior distributions for flow patterns are analysed here in detail. Detailed
investigations about the samples from arbitrary Gaussian and rod type prior
distributions can be found in [19]. Nevertheless the Gaussian and rod type
samples are mentioned here to draw a comparison between the prior infor-
mation for flow patterns and arbitrary material distributions.

The analysis of the intrinsic information of flow type random samples leads
to an intuitive approach for the construction of basis vectors ui for a reduced
state space. Therefore the construction of those basis vectors and the assem-
bly of the projection matrix PNR

is discussed in detain. The concept of state
reduction is presented in section 3.3.

4.2.1 Principle Component Analysis

In this subsection the intrinsic information of a set of random samples from
an prior distribution is analysed. Therefore a principle component analysis
by means of a singular value decomposition is implemented providing the
basis vectors ui. The procedure to accomplish this is explained in detail in
section 3.3. The focus in this subsection lies especially in the investigation
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(a)

(b)

Figure 4.5: PCA basis vectors for vertical downwards conveying flow pat-
terns, (a) for low index numbers, (b) for high index numbers.

of flow type samples.

In figure 4.4 and 4.5 some basis vectors for horizontal and vertical downwards
conveying flow samples are depict. The subfigures (a) exemplary depict the
basis vectors for low index numbers i. The subfigures (b) exemplary depict
the basis vectors for high index numbers. The index numbers i of the ba-
sis vectors correspond to the columns of the matrix U. It is evident, that
the basis vectors behave smooth for low index numbers and become more
oscillating for higher index numbers. The same characteristics are shown for
Gaussian and rod type samples in [19]. Although plotting the basis vectors
provides information about their behaviour it is not suitable for making a
proper decision for the size of the reduced state representation NR. Since the
singular values given by the diagonal matrix Σ can be seen as an importance
weight of the basis vectors, they are a more appropriate indicator for the
choice of NR. Figure 4.6 depict the trend of the singular values for different
sets of random samples. Note that the singular vectors are normalized to
make a meaningful comparison between the different sets of samples. The
singular values are decreasing in every case for higher index numbers. This
fact corresponds to the behaviour of the basis vectors since the become more
oscillating for high index numbers. These oscillating basis vectors have a
lower importance for the representation of the prevailing patterns. Although
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Figure 4.6: Trend of the singular values of matrices holding random samples
from different prior distributions.
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Figure 4.7: Intuitive basis vectors for horizontal conveying flow patterns.

a lot of structure is incorporated by means of the flow patterns, the decrease
of the singular values for the horizontal conveying flow patterns is in the
same scale as for the arbitrary Gauss and rod type patterns. This is ex-
plained due to the smooth behaviour of the basis vectors. The sharp change
in the material values in the transition between the top and the bottom layer
of the horizontal conveying flow patterns is hard to reconstruct by means of
this smooth basis vectors. However the vertical downwards conveying flow
patterns are modeled by means of centred Gaussian material distributions,
which are smooth functions. For this reason the singular values decrease
much faster since this patterns can be easily represented by means of a few
basis vectors.

4.2.2 An Intuitive Approach for the Reduced State
Representation for Flow Patterns

Since the structure of the flow patterns in the horizontal conveying as well
as in the vertical downwards conveying case is well known, this subsection is
intended to discuss an intuitive approach for the construction of basis vectors
ui for a reduced state representation.

The horizontal conveying flow patterns are modeled by means of different
layers with constant material values. Therefore one reasonable approach for
the basis vectors would be the use of non overlapping horizontal layers. This
basis vectors are exemplary depict in figure 4.7 for a reduced state space size
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Figure 4.8: Intuitive basis vectors for vertical downwards conveying flow
patterns.

of NR = 8. The main advantage of this intuitive basis vectors is given by
the fact, that non overlapping layers are suitable to model sharp material
transitions. A lower limit for the thickness of the layers is given by the size
of the finite elements of the ECT model. Therefore the size of the reduced
state space NR is also limited to certain values.

In a similar way it is possible to construct basis vectors for vertical down-
wards conveying flow patterns. Since the vertical downwards flow is modeled
by means of centred Gaussian material distributions, an intuitive approach
for the basis vectors is given by non overlapping concentrical rings with con-
stant material values. This basis vectors are exemplary depict in figure 4.8 for
a reduced state space size of NR = 8. The number of basis vectors relates to
the width of the rings, which represents the basis vectors. The minimal width
is limited by the size of the finite elements of the ECT model. In the case of
vertical downwards conveying flow patterns the intuitive approach may not
yield to more precise results than the state reduction approach by means of
a principle component analysis. Though due to the non overlapping basis
vectors of the intuitive approach the incorporation of state constraints can
be done more easily. In this case the constraints for the reduced state vector
are the same as for the original state vector. This fact may be advantageous
for several reconstruction algorithms, to easily incorporate constraints to the
estimation result.
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The basis vectors ui are now given by vectors holding the value of 1 for
the finite elements corresponding to the layers or the rings. The projection
matrix PNR

for the mapping between the reduced and the original state space
given by equation (3.11) can be constructed by

PNR
=
[
u1 u2 . . . uNR

]
. (4.1)

With respect to equation (3.13), the leading vector 1 is not necessary in
this case, as a constant material distribution can be constructed by a simple
combination of the basis vectors ui.

4.3 Estimation of the Volume Concentration

by means of ECT

Since the aim of this thesis is the estimation of the average solid volume
concentration β̄S(t), this section is intended to provide the taken approach
to accomplish this. In general the mass flow rate is given by

ṁ (t) =

∫∫
ΓROI

ρ (x, y, t) v (x, y, t) dxdy, (4.2)

where ρ(x, y, t) denotes the instantaneous density at position (x, y) and time
instant t in kg/m3 and v(x, y, t) denotes the instantaneous velocity at the
same position and time instant in m/s [1]. ΓROI denotes the cross section of
the process pipe in m2. Given a constant density of the solid particles ρS,
the instantaneous density can be expressed by

ρ (x, y, t) = ρSβS (x, y, t) , (4.3)

with the unitless instantaneous solid volume concentration βS (x, y, t) at po-
sition (x, y). For uniform flows, where the particles moves along their flow
lines with constant velocity, equation (4.2) is simplified to [4]

ṁ (t) = ρSΓROIv̄ (t) β̄S (t) . (4.4)

Here v̄ (t) denotes the average velocity of the solid particles and β̄S (t) de-
notes the average solid volume concentration.

The reconstruction result of the inverse problem of ECT is given by the in-
stantaneous spatial distribution of the relative permittivity εr(x, y, t) within
the sensor. For this reason a relation between the electrical material parame-
ter εr(x, y, t) and the parameter of interest β̄S(t) is required. The estimation



4.3. Estimation of the Volume Concentration by means of ECT 59

of the solid volume concentration is based on the assumption that the instan-
taneous density ρ(x, y, t) is related to the reconstructed electrical material
parameters by

ρ (x, y, t) ∝ ε (x, y, t)− 1 = χ (x, y, t) . (4.5)

Here χ (x, y, t) denotes the instantaneous susceptibility. Due to the assump-
tion of a constant density of the solid particles ρS given by equation (4.3),
the relation (4.5) can also be stated as

βS (x, y, t) ∝ χ (x, y, t) . (4.6)

The taken approach to describe this relation is the assumption of a linear
dependence of βS (x, y, t) on χ (x, y, t) of the form [1]

βS (x, y, t) =
χ (x, y, t)

χmax

, (4.7)

where 0 ≤ βS ≤ 1 holds and χmax denotes the true susceptibility of the solid
particles. Since χmax has to be known for this approach, the material value
used for the prior samples is used. The cross-sectional average of the solid
volume concentration is given by

β̄S (t) =
1

ΓROI

∫∫
ΓROI

χ (x, y, t)

χmax

dxdy. (4.8)

Since the simulation model of the ECT sensor is based on a finite element
discretization of the problem domain no continuous distribution of χ(x, y, t)
is available. Instead the material values of the single finite elements are
obtained by the reconstruction algorithms. For this reason the integral shown
in equation (4.8) can be approximated by means of a sum given by

β̄S (t) ≈ 1

ΓROI

NROI∑
i=1

χi (t)

χmax

Γi, (4.9)

where χi (t) denotes the susceptibility of the ith finite element at the time
instant t and Γi is the corresponding area of the finite element. NROI denotes
the number of finite elements within the cross-section ΓROI. Given this ap-
proach at least the two extremal values of χ results in the true solid volume
concentration. Since the susceptibility of air is given by χmin = 0. The solid
volume concentration of the domain of the ith finite element with the mate-
rial value χi = χmin yield a value of β̄S,i = 0. If the material value of the ith

finite element is given by χi = χmax the solid volume concentration for the
corresponding domain results in a value of β̄S,i = 1.
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4.4 Reconstruction Algorithm Setup and No-

tation

This section is intended to provide a detailed description of the setups of the
different reconstruction algorithms. Also the notation used for the algorithms
and their setup is explained in detail.

4.4.1 Algorithm Setup

The following subsections discuss the particular implementations of the in-
dividual algorithms in detail.

Optimal Approximation Algorithms

The optimal approximation algorithms (OA) are presented in subsection
3.4.1. The random samples required for the assembly of the matrix X are
provided by the random sample generators presented in subsection 3.2.1 and
4.1.1. A number of Nsample = 5000 samples is used for the implementation of
the optimal approximation algorithms.

The matrix D̃a is obtained by simulating the forward map F(x) of the ECT
sensor presented in chapter 2 for the single random samples.

To take measurement noise into account, respectively 5 noisy realizations
of d̃a are generated to assembly D̃a.

For the incorporation of the state reduction approach the computation of the
reduced state vector xR is done by the estimator given in equation (3.15).
The incorporation of a lower constraint is reasonable as the estimation re-
sult is given by relative permittivity values which, have an lower physical
boundary of 1.

Linearised MAP and ML Type Estimators

The linearised MAP and ML type algorithms are presented in subsection
3.4.2. An explicit noise model is necessary to implement these algorithms.
Therefore the covariance matrix ΣV is assembled by

ΣV = diag
(
σ2
i

)
, (4.10)

where the variance σ2
i is given by the noise power of the corresponding mea-

surement.
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The parameters µX and ΣX of the Gaussian prior distribution π(x) are
obtained by the procedure given in subsection 3.2.2. The random samples
needed for the construction of π(x) are provided by the random sample gen-
erators presented in subsection 3.2.1 and subsection 4.1.1. A number of
Nsample = 5000 random samples is used to compute the Gaussian summary
statistic.

The Jacobian required for the linearisation of the forward map is obtained
by the procedure presented in subsection 2.4.5.

To ensure valid solutions a lower constraint of 1 is incorporated to the solu-
tion vector x since εr ≥ 1 has to hold. To do so the optimization problem of
the LMAP and LML estimator is solved in each case by means of a constraint
quadratic programming problem given by equation (3.31), (3.34) and (3.40).

To investigate the impact of the state constraints also a linear MAP esti-
mator without constraints is implemented given by equation (3.30).

Kalman Filter

The Kalman filter is presented in subsection 3.5.1. The same noise model
as described for the linearised MAP and ML type estimators is used. The
covariance matrix of the noise ΣV is given by equation (4.10).

The construction of an Gaussian prior pdf π(x) by means of the mean µX and
the covariance matrix ΣX is done with the procedure presented in subsec-
tion 3.2.2. The samples needed for this approach are provided by the sample
generators presented in 3.2.1 and 4.1.1 whereby a number of Nsample = 5000
random samples are used.

The Jacobian required for the adaptation of the measurement matrix Hk

is obtained by the procedure presented in subsection 2.4.5. The forward map
F(x) of the ECT sensor used in the measurement equation of the Kalman
filter is derived in chapter 2.

In each of the different Kalman filter implementations the maximum prob-
ability method is applied given by equation (3.54) to guarantee that εr ≥ 1
holds for the estimation result.

Since the Kalman filter is an iterative algorithm, initial values for the state
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vector x̂0 and for the covariance matrix P0 are necessary. One obvious choice
for x̂0 is given by the mean of the prior distribution µX. The initial value for
P0 is chosen to be be the the covariance matrix of the prior distribution ΣX.

Gibbs Sampler

The Gibbs sampler is presented in subsection 3.5.2. The posterior distribu-
tion used for the generation of the samples is constructed by means of Bayes
law shown in equation (3.1) with the likelihood function (3.4) and the Gaus-
sian prior distribution presented in subsection 3.2.2. The bimodal version of
the Gibbs sampler uses only the likelihood function (3.4). The prior infor-
mation in this case is given by the use of only two material values.

The noise model is described by the covariance matrix ΣV given by equa-
tion (4.10).

The required random samples for the Gaussian summary statistic used as
prior information are provided by the random sample generators presented
in subsection 3.2.1 and 4.1.1.

Since the Gibbs sampler is an iterative algorithm a starting point for the
Markov chain is necessary. One obvious choice is the mean of the prior
distribution x0 = µX.

4.4.2 Summary and Notation of the Algorithms

Table 4.1 depict the abbreviations used for the different reconstruction al-
gorithms, the different prior informations and the different state reduction
techniques.

Here the term prior is referred to the incorporation of an prior distribution
π(x) to the algorithm. If no prior knowledge by means of π(x) is incorpo-
rated, a proper state reduction technique is applied. The prior distribution
π(x) as well as the projection matrix PNR

are assembled by means of the
same random samples. Therefore the state reduction approach is an alter-
native way for the incorporation of prior knowledge. One exception is the
bimodal Gibbs sampler. In this case the prior knowledge is given by the use
of only two material values.

The construction of the Gaussian prior obtained from random samples is
explained in detail in subsection 3.2.2. The state reduction approach based



4.4. Reconstruction Algorithm Setup and Notation 63

Reconstruction algorithms
OFOA Optimal first order approximation
OSOA Optimal second order approximation
LMAP Linearized MAP estimator
LMAPnc Non-constrained linearizerd MAP estimator
LML Linearized ML type estimator
KF Kalman filter
GS Gibbs sampler
BGS Bimodal Gibbs sampler

Prior
Random samples sample based prior used for the OA algorithms
Gaussian: µX, ΣX Gaussian summary statistic from random samples
- no prior by means of π(x) is incorporated

State reduction (SR)
- no state reduction is applied
PCA principle component analysis approach
INT intuitive approach

Table 4.1: Abbreviations for the different reconstruction algorithms, the
priors and the state reduction techniques.

on an principle component analysis (PCA) is presented in section 3.3 and
the intuitive approach for a reduced state representation (INT) is shown in
subsection 4.2.2. The same set of random samples is used for the PCA based
state reduction, the assembly of the reconstruction matrix of the optimal ap-
proximation algorithms as well as for the construction of the Gaussian prior
pdf. The available pattern generators are given by

• Pattern generators for arbitrary material distributions presented in sub-
section 3.2.1:

– Rod type patterns.

– Gauss type patterns.

• Pattern generators for pneumatic conveying flow patterns presented in
subsection 4.1.1:

– Horizontal conveying flow patterns.

– Vertical downwards conveying flow patterns.



5 Case Studies for the Recon-
struction Behaviour

In this chapter case studies for the reconstruction behaviour are presented.
The different methods presented in the previous chapters are compared with
respect to their capability of estimating the solid volume concentration dis-
cussed in section 4.3.

• The first section provides an overview about the implemented recon-
struction algorithms and their specific setups.

• In the second section the simulation setup is explained in detail. This
discussion contains issues such as the parameters of the forward map,
the generation of the measurement data, the noise model and the prior
knowledge incorporated to the reconstruction algorithms.

• The third section provides a detailed statistical analysis of the estima-
tion results obtained with linear back projection type algorithms.

• In the next section estimation results of some particular non-linear
iterative algorithms are presented in order to show their capability to
reconstruct different material distributions.

• The last section of this chapter contains selected parameter studies.
Here the influence of variations in parameters such as the number of
electrodes, the measurement noise, the material value and the flow
profile is analysed.

5.1 Reconstruction Algorithm Overview

This section is intended to provide an overview about the implemented re-
construction algorithms and their specific setups used for the case studies
presented in this chapter. The available algorithms are listed in table 5.1.
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Nr. Algorithm State reduction Prior

1 OFOA − Random samples
2 OFOA PCA Random samples
3 OFOA INT Random samples
4 OSOA − Random samples
5 OSOA PCA Random samples
6 OSOA INT Random samples

7 LMAP − Gaussian: µX, ΣX

8 LMAPnc − Gaussian: µX, ΣX

9 LMAP PCA Gaussian: µX, ΣX

10 LMAP INT Gaussian: µX, ΣX

11 LML PCA −
12 LML INT −

13 KF − Gaussian: µX, ΣX

14 KF PCA −
15 KF INT −

16 GS − Gaussian: µX, ΣX

17 BGS − −

Table 5.1: Reconstruction algorithm overview.

The table also lists information about the prior and the state reduction tech-
nique applied to the algorithm. Note that the abbreviations introduced in
subsection 4.4.2 are used in this chapter.

An example for the notation used in this chapter is given by OSOA/PCA30.
The first letters denote the algorithm by means of the abbreviations listed
in table 4.1. The abbreviation after the slash denotes the applied state
reduction approach. The number at the end indicates the size of the reduced
state representation NR. For this example the notation would stand for the
optimal second order approximation algorithm using the PCA based state
reduction approach with NR = 30. If no state reduction approach is applied,
the notation is given by OSOA/−.
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5.2 Simulation Setup

In this section the general simulation setup is discussed in detail. Unless
otherwise indicated, this specific setup is used for the simulation studies. In
the later section 5.5 some particular parameter will differ from the setup
presented here.

5.2.1 Simulation Procedure

π(x)

Coarse
FE mesh

Algorithm

µX, ΣX

PNR

β̄S,est

π(x)

FE mesh
Fine

β̄S,true

v

Measurement data ~d

Calibration data

random samples random samples

X

x

Figure 5.1: Flow chart of the simulation procedure.

Figure 5.1 depict the flow chart of the simulation procedure. The random
sample generators presented in subsection 3.2.1 and 4.1.1 are used to gener-
ate the measurement data as well as the prior information.

To obtain the measurement data d̃, a random sample x is generated with
the material value εr,true ∝ U(εr,min,true, εr,max,true). This sample is simulated
by means of the forward map F(x) presented in chapter 2. In this case a
fine finite element (FE) mesh is used, depict in figure 5.2. This mesh uses a
high number of finite elements to reduce the discretization error. The mea-
surement data d̃ is given by the model output corrupted by additive white
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Figure 5.2: Fine FE mesh used
for the generation of the measure-
ment data.

Figure 5.3: Coarse FE mesh used
for the reconstruction algorithms.

Gaussian measurement noise v with a certain signal to noise ratio (SNR).
The indicated SNR is referred to the measurements for an empty ECT sensor.

Out of the random sample x on the fine FE mesh, the true average solid
volume concentration β̄S,true is calculated by means of equation (4.9). Here
the material value χmax = εr,max,true − 1 is used.

Given the calibration approach presented in section 2.5, also the measure-
ments d̃empty and d̃full are generated on the fine FE mesh.

The random samples used as prior information for the algorithms are pro-
vided by the same random sample generators used to generate the measure-
ment data. A material value of εr,prior ∝ U(εr,min,prior, εr,max,prior) is used to
generate the samples. This prior information contains:

• The matrix X holding random samples to assemble the reconstruction
matrix P of the optimal approximation algorithms.

• The Gaussian summary statistic of the random samples given by µX

and ΣX.

• The projection matrix PNR
of the prior based state reduction approach.

The forward map F(x) used for the reconstruction algorithms is implemented
by means of the coarse finite element mesh depict in figure 5.3. The use of a
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reduced number of finite elements is necessary to reduce the computational
costs. Hence the solution of the inverse problem can be done within an ap-
propriate time.

Given the measurement data d̃ and the prior information, the reconstruc-
tion algorithms provide the estimate of the true material distribution x̂. The
estimated average solid volume concentration β̄S,est is obtained by applying
equation (4.9) on x̂. Here the material value χmax = εr,max,prior − 1 is used.

5.2.2 Simulation Parameters

Considering the simulation procedure depict in figure 5.1 several parameters
have to be specified. Figure 1.2 depict the scheme of the ECT sensor. The
geometric dimensions of the ECT sensor used in this simulation study are
given by:

• Radius of the shield: rshield = 45 mm.

• Outer radius of the process pipe: ro,pipe = 40 mm.

• Inner radius of the process pipe: ri,pipe = 35 mm.

• Thickness of the electrodes: delec = 0,5 mm.

In general the number of electrodes is chosen to be Nelec = 16 and they are
equidistant arranged around the circumference of the ECT sensor. Nelec is
varied for some particular simulations in the later section 5.5. For this reason
it is mentioned at this point, that the cover angle ∆ϕelec of the electrodes is
given by

∆ϕelec = 0,7
360

Nelec

, (5.1)

for arbitrary Nelec.

Since the simulated measurement data d̃ is corrupted by additive white
Gaussian noise the SNR has to specified. For the standard simulation setup
a signal to noise ratio of SNR= 60 dB is chosen.

The material values used for the generation of the random samples are chosen
to be εr,min,true = εr,min,prior = 1 and εr,max,true = εr,max,prior = 2.
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Figure 5.4: Exemplary scatter plot.

5.2.3 Representation of the Simulation Results

Given the procedure to obtain the true and the estimated value of β̄S the
representation of the simulation results has to be discussed. Figure 5.4 de-
pict a exemplary scatter plot holding the estimation results for the individual
samples. Here β̄S,true is depict on the axis of abscissas and β̄S,est is depict on
the axis of ordinates. In the case of β̄S,est = β̄S,true the samples would lie on
a straight line with an angle of 45◦ and zero offset. This line is additionally
depict in the scatter plots to indicate the nominal values.

For a statistical analysis of the estimation results the normalized mean square
error (MSE) is calculated for the results. The normalized estimation error of
the individual samples is given by

ei =
β̄S,true − β̄S,est,i

β̄S,true

. (5.2)

The normalized MSE is given by

MSE = E
{
e2
}
≈ 1

N
eTe, (5.3)

with the column vector e holding the individual normalized estimation errors
of the samples and the number of samples N . The normalization by means of
β̄S,true is required to draw a comparison between the results for different ma-
terial distributions. The true value β̄S,true can accept low values near to zero.
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This causes large normalized errors ei � for this particular samples. Thus,
only samples with β̄S,true ≥ 0,01 are taken into account for the evaluation of
the normalized MSE.

5.3 Simulation Study for Different Material

Distributions

The following subsections depict the simulation results for some selected lin-
ear back projection type reconstruction algorithms with different configura-
tions. Note, that not all available combinations of reconstruction algorithms
and state reduction techniques are investigated since this would exceed the
scope of this section. However the selected set of algorithms is chosen to
provide a meaningful overview of the behaviour of the available techniques.

The following subsections present the simulation results for different material
distributions. The title of each subsection indicates the material distribution
used to generate the measurements. The random samples used as prior infor-
mation corresponds in each case to the measurement data. The description
of each plot shown in the following subsections indicates the reconstruction
algorithm and the state reduction technique used to generate the particular
plot. Therefore the notation discussed in section 5.1 is used.

5.3.1 Simulation Results for Rod Type Samples
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Figure 5.5: OFOA/−.
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Figure 5.6: OSOA/−.
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Figure 5.7: OSOA/PCA30.
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Figure 5.8: LMAPnc/−.
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Figure 5.9: LMAP/−.
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Figure 5.10: LMAP/PCA30.
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Figure 5.11: LML/PCA30.

Algorithm MSE

OFOA/− 4,975e−02
OSOA/− 4,005e−02
OSOA/PCA30 1,654e−01
LMAPnc/− 1,270e−01
LMAP/− 5,041e−02
LMAP/PCA30 2,587e−02
LML/PCA30 2,586e−02

Table 5.2: Normalized mean
square errors.
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In this subsection the simulation results for rod type samples are provided.
Figure 5.5 to 5.11 depict the scatter plots discussed in subsection 5.2.3 for
different reconstruction algorithms. Table 5.2 depict the normalized MSE
achieved with the individual algorithms. The following paragraphs discuss
different issues regarding the simulation results.

General Properties

Considering the simulation results presented in this subsection it becomes
evident, that the samples are not covering the whole range of 0 ≤ β̄S ≤ 1.
Rod type samples are intended to provide a sample based prior for the re-
construction of rod type material distributions, as the name suggests. Since
those rods are not filling the whole cross section of the ECT sensor, the
true solid volume concentration β̄S,true is limited to certain values whereby
β̄S,true < 1 holds.

Mean and Variance of the Samples

Rod type samples exhibit a large variance of the estimation results, especially
for higher values of β̄S,true. The different LMAP and LML implementations
show a lower variance for small values of β̄S,true compared to the OFOA and
OSOA implementations. These high variances are caused by several reasons.
For arbitrary material distribution the construction of a meaningful prior is
difficult due to the large amount of possible material patterns within the
ECT sensor. A further issue is given by the sharp material boundaries of
the rod type samples. Due to the soft field behaviour of ECT, these sharp
transitions between different materials are difficult to reconstruct.

Despite the large variance, the mean of the samples is approximately follow-
ing the trend of the the nominal values indicated by means of the straight
line. Considering the LMAP and LML algorithms a slightly non linear course
of the mean is evident.

The simulation results obtained by means of the OSOA/PCA30 algorithm
depict in figure 5.7 exhibit a larger deviation from the nominal value for
small values of βS. The course of the mean converges to the nominal value
for increasing volume concentrations. This circumstance is also evident by
considering table 5.2, where the normalized mean square errors are depict.
Due to the larger deviation of the estimation result for small volume concen-
trations the MSE for the OSOA/PCA30 algorithm show the largest mean
square errors due to the normalization of the MSE by βS,true.
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Impact of State Constraints

Regarding the estimation results obtained with the LMAPnc/None algo-
rithm depict in figure 5.8 it becomes obvious, that the incorporation of state
constraints is reasonable. Estimation results with volume concentrations
βS,est < 0 are obtained with this specific algorithm, which are not valid re-
sults. The incorporation of state constraints prevents the estimated material
values to be εr < 1 since εr = 1 is the lower physical boundary of the relative
permittivity. For estimates where εr < 1 holds, the susceptibility χ becomes
negative. Considering equation (4.9), this circumstance can result in nega-
tive estimates for β̄S,est. This negative estimates are also the reason for the
high value of the normalized MSE of the LMAPnc/− algorithm depict in
table 5.2, since they occur for small values of βS,true.

The optimal approximation algorithms are given by a simple matrix vec-
tor multiplication. For this reason it is not possible to incorporate state
constraints to this kind of algorithms. Therefore optimal approximation al-
gorithms are also able to achieve negative estimates for β̄S,est. Although this
behaviour is possible, the simulation showed no negative results in this study.

Impact of a Reduced State Space

Considering the different LMAP implementations, the PCA based state re-
duction approach involve an improvement of the estimation result. For
an applied state reduction approach, the variance of the samples is signif-
icantly decreased for low values of βS,true. The difference between the the
LMAP/PCA30 and the LML/PCA30 algorithm is only given by the prior
distribution π(x), as discussed in subsection 3.4.2. Considering table 5.2 it
is obvious, that these algorithms achieved very similar results. Therefore
excluding the prior distribution π(x) from the algorithm has only a minor
impact on the estimation results in the case of rod type random samples.

Although the application of the PCA based state reduction approach brings
improvements for the LMAP estimator, the opposite effect occurs for the
OSOA algorithm. Considering table 5.2 a significantly increased normalized
MSE is obvious for the OSOA/PCA30 algorithm compared to the OSOA/−
implementation. This increased error is given due to the fact, that the sam-
ples obtained with the OSOA/PCA30 algorithm show a large deviation from
the nominal value for low volume concentrations β̄S,true.
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5.3.2 Simulation Results for Gaussian Type Samples
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Figure 5.12: OFOA/−.
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Figure 5.13: OSOA/−.
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Figure 5.14: OSOA/PCA30.
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Figure 5.15: LMAPnc/−.
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Figure 5.16: LMAP/−.
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Figure 5.17: LMAP/PCA30.
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Figure 5.18: LML/PCA30.

Algorithm MSE

OFOA/− 1,230e−02
OSOA/− 2,149e−02
OSOA/PCA30 3,729e−02
LMAPnc/− 1,338e−02
LMAP/− 6,005e−03
LMAP/PCA30 5,367e−03
LML/PCA30 5,373e−03

Table 5.3: Normalized mean
square errors.

This subsection contains the simulations for Gaussian type samples. The
simulation results obtained with the individual reconstruction algorithms are
depict in figure 5.12 to 5.18. The normalized MSE for each algorithm is shown
in table 5.3. Again the discussion is subdivided into different paragraphs,
each dealing with different issues regarding the simulation results.
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General Properties

Also the Gaussian type samples are not covering the whole possible range of
0 ≤ β̄S ≤ 1. This circumstance has the same reason like already explained
for rod type samples in subsection 5.3.1.

Mean and Variance of the Samples

Considering the simulation results it becomes obvious, that the variance of
the samples is significantly decreased compared to the reconstruction re-
sults for rod type samples presented in subsection 5.3.1. Gaussian type sam-
ples also exhibit a multitude of possible material distributions. Though the
smooth material transitions of the Gaussian samples are easier to reconstruct
by means of the ECT. Considering the normalized MSE, this circumstance
results in lower values compared to the results obtained for rod type samples.

Also the non linear course of the mean of the samples is significantly de-
creased compared to the results presented in 5.3.1. In this case the mean of
the samples is following the trend of the nominal value over the whole range
of βS. Only the results of the OSOA algorithms are staring to differ from
the nominal value for higher volume concentrations.

Impact of State Constraints

For this simulation the LMAPnc/− algorithm as well as the OFOA/− and
OSOA/− algorithms achieved negative estimation results with βS,est < 0.
This is given by the fact, that no state constraints are incorporated to these
algorithms, like discussed in subsection 5.3.1. For this reason the OFOA/−
and the LMAPnc/− algorithm achieved the highest MSE values for the re-
construction of Gaussian type material distributions.

Impact of a Reduced State Space

Regarding the PCA based state reduction approach, the behaviour is similar
to the results presented in subsection 5.3.1. The application of the reduced
state space to the OSOA algorithm caused an increased normalized MSE
compared to the OSOA/− algorithm. For the LMAP algorithms the state
reduction involves a slightly improvement of the estimation result. In com-
paring the LMAP/PCA30 and LML/PCA30 algorithm it becomes obvious
that the errors are again in the same scale.



5.3. Simulation Study for Different Material Distributions 77

5.3.3 Simulation Results for Horizontal Conveying Flow
Samples
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Figure 5.19: OSOA/−
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Figure 5.20: OSOA/PCA30

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Figure 5.21: OSOA/INT30
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Figure 5.22: LMAPnc/−
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Figure 5.23: LMAP/−
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Figure 5.24: LMAP/PCA30
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Figure 5.25: LMAP/INT30
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Figure 5.26: LML/PCA30
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Figure 5.27: LML/INT30

Algorithm MSE

OSOA/− 2,216e−04
OSOA/PCA30 2,114e−03
OSOA/INT30 1,835e−04
LMAPnc/− 2,120e−02
LMAP/− 6,299e−03
LMAP/PCA30 1,049e−02
LMAP/INT30 1,049e−02
LML/PCA30 1,041e−02
LML/INT30 1,041e−02

Table 5.4: Normalized mean
square errors.
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The simulation results for material patterns occurring in horizontal pneu-
matic conveying processes are discussed in this subsection. The individual
results obtained with different algorithms are depict in figure 5.19 to 5.27.
The corresponding normalized MSE is depicted in table 5.4. In the following
paragraphs different issues with respect to the simulation results are discussed
in detail.

General Properties

The prevailing material distributions in pneumatic conveying systems are
reaching from dilute flow regimes to dense flow regimes like discussed in
section 4.1. The random sample generators presented in subsection 4.1.1 were
designed to simulate this occurring flow regimes. For this reason the volume
concentration β̄S,true is covering the whole possible range of 0 ≤ β̄S,true ≤ 1
for this specific type of random samples.

Mean and Variance of the Samples

By taking a look on the simulation results a further decrease of the variance
is evident. This is given by the fact that meaningful prior knowledge is incor-
porated to the estimators since the structure of the flow regimes occurring
in pneumatic conveying systems is well known.

The OSOA algorithms achieved remarkable results with respect to the nor-
malized MSE. This is given by the circumstance that the multitude of pos-
sible material patterns is significantly reduced for flow patterns compared
to arbitrary material patterns. For this reason the training of the optimal
approximation algorithms for a set of data obtained from horizontal flow
samples works especially well.

The mean of the samples is following in every case the nominal value of
the volume concentration. For large values of β̄S the samples are starting
to differ slightly from the nominal value for the different LMAP and LML
implementations.

In each simulation result, more than one course with concentrated samples is
evident. This is given by the fact that the same volume concentration can be
achieved in different flow regimes. The volume concentration β̄S depends on
the relative permittivity εr and the area of the domain. Therefore large areas
with low permittivity values can exhibit the same β̄S then small areas with
large permittivity values. The quality of the estimation result slightly de-
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pends on the specific flow regime. A detailed investigation of the dependence
of the estimation quality on the flow regime is done in subsection 5.3.5.

Impact of State Constraints

Considering the results obtained with the LMAPnc/− algorithm, again neg-
ative estimates for β̄S,est are obtained for small values of β̄S,true. This is given
by the fact that no state constraints are incorporated to the LMAPnc/− algo-
rithm like already discussed in subsection 5.3.1. Although also no state con-
straints are incorporated to the OSOA algorithms, this estimators achieved
valid results for this specific type of flow patterns.

Impact of a Reduced State Space

The estimation results achieved by means of the algorithms using the intuitive
state reduction approach are of comparative quality as the results achieved
by means of the PCA state reduction approach. For the OSOA/INT30 al-
gorithm the results are even more precise. This behaviour is given by the
fact, that the PCA based basis vectors are showing smooth behaviour. The
intuitive basis vectors in contrast can describe the sharp material transitions
between the layers of the horizontal flow regimes.

5.3.4 Simulation Results for Vertical Downward Con-
veying Flow Samples

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Figure 5.28: OSOA/−
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Figure 5.29: OSOA/PCA30
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Figure 5.30: OSOA/INT30
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Figure 5.31: LMAPnc/−
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Figure 5.32: LMAP/−
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Figure 5.33: LMAP/PCA30
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Figure 5.34: LMAP/INT30
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Figure 5.35: LML/PCA30
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Figure 5.36: LML/INT30

Algorithm MSE

OSOA/− 3,194e−02
OSOA/PCA30 3,193e−02
OSOA/INT30 3,205e−02
LMAPnc/− 8,298e−03
LMAP/− 6,714e−03
LMAP/PCA30 1,016e+00
LMAP/INT30 1,016e+00
LML/PCA30 4,644e−03
LML/INT30 4,643e−03

Table 5.5: Normalized mean
square errors.

In this subsection simulation results for material distributions occurring in
vertical downward conveying are provided. The figures 5.28 to 5.36 depict
the results achieved with different reconstruction algorithms. The normalized
MSE achieved with each algorithm is depict in table 5.5. The following
discussion is subdivided into different paragraphs, each dealing with certain
issues regarding the simulation results.

General Properties

Also the random samples for vertical downward conveying material distribu-
tions are designed to simulate flow patterns. Still only approximately 90%
of the range 0 ≤ β̄S ≤ 1 is covered by this specific type of random samples.
This is due to the modeling of the material patterns by means of a centered
Gaussian distribution. The range of the randomly selected standard devia-
tion was chosen to generate samples approximately uniform distributed over
the range of β̄S,true. This does not enable volume concentrations above a
certain value.

Mean and Variance of the Samples

The variance of the samples obtained by the OSOA algorithms is decreasing
for higher values of β̄S,true. This behaviour is given by the fact, that the
vertical downwards conveying flow patterns are modeled by means of cen-
tred Gaussian material distributions. The sensitivity within a ECT sensor is
decreasing with the distance to the electrodes. Therefore a change of the ma-
terial values in the center of the ECT sensor has only a small impact on the



5.3. Simulation Study for Different Material Distributions 83

measured capacitances. Due to the similarity of the measurement data for
this samples, the matrix D̃a required for the assembly of the reconstruction
matrix P suffers from a poor condition number, given by equation (3.21).
The normalization of the MSE by β̄S,true causes high errors for low values of
β̄S,true. For this reason the estimation results exhibit higher mean square er-
rors compared to the results for horizontal conveying flow samples presented
in subsection 5.3.3 for this particular algorithm.

The difference between the LMAP/PCA30 and the LML/PCA30 or rather
the LMAP/INT30 and the LML/INT30 is given by the prior distribution
π(x) like discussed in subsection 3.4.2. For the LML implementations the
prior pdf is given by π(x) = 1. Therefore the prior distribution seems to
cause a higher variance for this particular algorithms.

Considering the mean of the samples, a well matching with the nominal
values is evident. Only the different LMAP implementation exhibit a small
deviation from the nominal value for high values of β̄S,true.

Impact of State Constraints

Considering the algorithms without state constraints, similar behaviour com-
pared to the results presented in the previous subsections are evident. Again
negative estimates for β̄S,est are obtained by means of the LMAPnc/− al-
gorithm for low values of β̄S,true. Despite the absence of state constraints,
the different OSOA implementations achieved valid results with β̄S,est > 0 in
every case.

Impact of a Reduced State Space

The LMAP and LML algorithms with an applied state reduction approach
are not able to provide estimation results for the volume concentration lower
than an certain minimal value. This behaviour is given by the combination
of lower state constrains and the reduced state representation. The basis vec-
tors of the reduced state space are not able to describe material distributions
with an low volume concentration without violating the state constraints.
Obviously the incorporation of the prior distribution has an additional neg-
ative influence since this behaviour is significantly more pronounced for the
LMAP algorithms. Due to the large errors for low values of β̄S,true, the
LMAP/PCA30 and LMAP/INT30 algorithms exhibit the largest normalized
MSE values.
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Applying the intuitive as well as the PCA based state reduction approach
provides results with a normalized MSE in the same scale. In this case PCA
based basis vectors as well as the Gaussian material distributions exhibit
smooth behaviour. Therefore the PCA based approach has no drawback
with respect to the intuitive approach.

5.3.5 Detailed Error Analysis

In this section the estimation results for two particular simulation setups is
analysed given by:

• OSOA/INT30 algorithm for horizontal conveying flow patterns depict
in figure 5.21.

• LML/INT30 algorithm for vertical downwards conveying flow patterns
depict in figure 5.36.

Considering this results it is evident, that the variance of the samples from
the OSOA/INT30 algorithm seems to be slightly larger. The normalized
mean square error depict in table 5.4 and 5.5 is still significantly lower for
the OSOA/INT30. For this reason a detailed analysis of the normalized er-
ror e between the true and the estimated volume concentration β̄S given by
equation (5.2) is done.

Figure 5.37 depict the absolute values of the errors for the individual samples
obtained from the before mentioned algorithms. The error for low values of
β̄S,true is for the LML/INT30 algorithm significantly larger compared to the
OSOA/INT30 algorithm in the same range of β̄S,true.

Figure 5.38 depict a detailed view on the errors in the range 0,4 ≤ β̄S,true ≤ 1.
The errors of the LML/INT30 algorithm becomes smaller than those of the
OSOA/INT30 algorithm from a certain value of β̄S,true. For this reason the
variance of the LML/INT30 algorithm seems to be smaller. The large errors
of this algorithm for low values of β̄S,true however have a large impact on the
MSE.

Given the individual errors depict in figure 5.37 two different courses are
evident in both cases, where the errors are concentrated. This can be at-
tributed to the fact, that the same value of β̄S can be obtained by means
of different flow regimes. The volume concentration depends on the relative
permittivity and the area of the domain filled with the material, given by
equation (4.9). The vertical downwards conveying flow patterns for example
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Figure 5.37: Absolute values of e, (a) for horizontal conveying flow samples
and the OSOA/INT30 algorithm, (b) for vertical downwards conveying flow
samples and the LML/INT30 algorithm.
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Figure 5.38: Detailed view on the absolute values of e, (a) for horizontal
conveying flow samples and the OSOA/INT30 algorithm, (b) for vertical
downwards conveying flow samples and the LML/INT30 algorithm.
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are modeled by means of centred Gaussian material distributions with a ran-
dom material value εr and a random standard deviation σ. Given this the
same volume concentration β̄S can be achieved by an large value of εr and
a small value of σ or reverse. Due to the spatial dependence of the sensitiv-
ity within the ECT sensor, this circumstance result in different estimation
qualities for the same value of β̄S depending on the particular flow regime.

5.4 Simulations with Non-linear Iterative Al-

gorithms

This section is indented to provide some reconstruction results obtained by
means of non-linear iterative reconstruction algorithms. Due to the already
remarkable results obtained with linear back projection type algorithms and
the computational costs of non-linear, iterative algorithms, no comprehensive
statistical analysis is implemented. Only the reconstruction results for a
selected set of samples is presented in order to show the capability of these
type of algorithms to reconstruct different material distributions.

5.4.1 Simulation Results

Figure 5.39 depict the reconstructed material distributions by means of the
KF/− and the BGS/− algorithm as well as the true material distributions.
One exemplary reconstruction result for each type of material distribution is
shown. The different material distributions are given by:

(a) A rod type sample.

(b) A Gaussian type sample.

(c) A horizontal conveying flow sample.

(d) A vertical downward conveying flow sample.

In each case 20 iterations were performed by the algorithms to obtain the
reconstructed material distributions presented in figure 5.39.

Considering the results it becomes evident, that the general pattern of the
true material distribution was reconstructed in every case. Sharp transitions
between materials are blurred due to the soft field behaviour of ECT.
Table 5.6 depict the resulting average volume concentrations given by equa-
tion (4.9). Since no comprehensive statistical analysis was implemented for
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(a)

true KF/− BGS/−

(b)

(c)

(d)

Figure 5.39: Reconstruction results for different material distributions ob-
tained with non-linear iterative algorithms. (a) rod type samples, (b) Gaus-
sian type sample, (c) horizontal conveying flow samples, (d) vertical down-
ward conveying flow samples.
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Pattern β̄S,true β̄S,est

KF/− BGS/−
(a) 0,355 0,376 0,332
(b) 0,303 0,333 0,356
(c) 0,467 0,476 0,487
(d) 0,433 0,458 0,472

Table 5.6: True and estimated average volume concentrations for different
material distribution.

non-linear iterative algorithms, comparing the results with those obtained by
means of liner back projection type algorithms is not meaningful.

5.5 Selected Parameter Studies

This section contains selected case studies, where the influence of certain
sensor and process parameters on the estimation result is investigated.

• In the first subsection the behaviour of ECT sensors with different
numbers of electrodes is analysed.

• The second subsection contains an investigation of the impact of in-
creased and decreased measurement noise on the estimated volume
concentration β̄S,est.

• In the third section deviations of the material value εr are investigated.
Therefore the material values used to generate measurements differ
from the material values used as prior information.

• The last subsection provides an investigation of differing flow profiles
with respect to the flow profiles used to generate the prior.

5.5.1 Variation of the Number of Electrodes

This subsection contains a study of the behaviour of the ECT sensor with
different numbers of electrodes Nelec. The simulations are implemented for
horizontal and vertical downward conveying flow samples with an selected
set of reconstruction algorithms. The set of algorithms is chosen to provide
a meaningful overview of the behaviour of the available techniques. Except
the number of electrodes Nelec, the simulation setup discussed in section 5.2
is used for the studies in this subsection.
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Simulation Results
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Figure 5.40: Normalized mean square errors for different numbers of elec-
trodes, (a) horizontal conveying flow patterns, (b) vertical downward con-
veying flow patterns.

Figure 5.40 depicts the normalized mean square errors of a selected set of
reconstruction algorithms for different numbers of electrodes. Figure 5.40(a)
depict the results for horizontal conveying flow patterns and 5.40(b) depicts
the simulation results for vertical downward conveying flow patterns. The
simulation was implemented for Nelec = {8, 12, 16, 20}.

For horizontal conveying material patterns Nelec has a negligible small impact
on the estimation results obtained with the different LMAP algorithm imple-
mentations. However the quality of the estimation result achieved with the
OSOA/− algorithm show a dependence on Nelec. The largest MSE was ob-
tained for Nelec = 16. For both, higher and smaller numbers than Nelec = 16
the normalized MSE is decreasing for the OSOA/− algorithm. Applying the
PCA based state reduction approach to the OSOA algorithm results in a
similar behaviour like for the LMAP implementations. The dependence of
the estimation result on Nelec is significantly decreased in the case of the the
OSOA/PCA30 algorithm.

For vertical downward conveying flow patterns depict in figure 5.40(b), the
different LMAP implementations show similar behaviour like for horizontal
conveying flow patterns. The impact of Nelec on the estimation results is
marginal. The trend of the normalized MSE with respect to Nelec achieved
with the OSOA/− algorithm exhibit the same behaviour like for horizontal
conveying flow patterns. Again the error shows a maxima for Nelec = 16.
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This characteristic of the OSOA/− algorithm is even more pronounced for
vertical downward conveying flow patterns. A further interesting circum-
stance is given by the fact, that the trends of the OSOA algorithms seems
to be congruent in this case. This characteristic corresponds to the sim-
ulation results presented in subsection 5.3.4, since the OSOA/− and the
OSOA/PCA30 algorithm achieved very similar results in the case of vertical
downward conveying flow patterns.

5.5.2 Impact of Measurement Noise

In this subsection the influence of measurement noise on the estimation re-
sult is analysed. The simulation is implemented for horizontal and vertical
downward conveying flow patterns for different signal to noise ratios. The
results are provided for a meaningful set of reconstruction algorithms. Ex-
cept for the value of the SNR, the simulation setup presented in 5.2 was used
to obtain the simulation results provided in this subsection.

Simulation Results
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Figure 5.41: Normalized mean square errors for different signal to noise ra-
tios, (a) horizontal conveying flow patterns, (b) vertical downward conveying
flow patterns.

The normalized mean square errors of a selected set of reconstruction algo-
rithms for different noise levels is depict in figure 5.41. Figure 5.41(a) depict
the results for horizontal conveying flow patterns and 5.41(b) depicts the
simulation results for vertical downward conveying flow patterns. The simu-
lation was implemented for SNR = {20, 40, 60, 80} dB.
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For horizontal conveying flow patterns, the achieved normalized MSE of all
investigated algorithms are decreasing with increasing noise levels until a
value of SNR = 60 dB. A further increase of the SNR to a value of 80 dB
results in a increased MSE in the case of the OSOA/−, the OSOA/PCA30
and the LMAPnc/− algorithm. For the OSOA implementations, this be-
haviour can be traced back to the poor condition number of the matrix D̃a

like discussed in subsection 5.3.4. These kind of algorithms require a certain
variation in the measurement data.

For vertical downward conveying flow patterns, the MSE achieved with the
different LMAP implementations is decreasing with an increasing SNR. How-
ever the decrease of the normalized MSE is negligible small for signal to noise
ratios larger than 40 dB. Also in the case of vertical downward conveying flow
patterns the different OSOA implementations exhibit the characteristic of an
increasing error for SNR > 40 dB. This is again due to the before mentioned
reason. Also in this case that the trend of the OSOA implementations seems
to be congruent corresponding to the simulation results presented in subsec-
tion 5.3.4.

5.5.3 Variation of the Material Values

In this subsection the influence of a deviation of the true material value from
the material value used as prior information is investigated. Two different
cases are analysed:

• A constant true material value higher than the prior material value
εr,max,true = 2,5 and εr,max,prior = 2.

• A constant true material value lower than the prior material value
εr,max,true = 1,5 and εr,max,prior = 2.

The simulation results in this subsection are presented for a small set of
reconstruction algorithms, chosen to provide a meaningful overview of the
characteristics of different algorithm setups. The results are only presented
for vertical downward conveying flow patterns. This is reasonable since the
reconstruction algorithms are using the strongest prior information for this
specific type of flow pattern. Therefore the variation of the material values
should show the strongest impact on the estimation results.
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Figure 5.42: OSOA/−
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Figure 5.43: OSOA/PCA30
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Figure 5.44: LMAPnc/−
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Figure 5.45: LMAP/−

Simulation Results: Constant True Material Value Higher than the
Prior Material Value

The figures 5.42 to 5.45 depict the simulation results for different recon-
struction algorithms. In this case the true material value material value was
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higher than the prior material value. The material values where chosen to
be εr,max,true = 2,5 and εr,max,prior = 2 for this specific simulations.

Considering the results it is obvious that the true values of the volume con-
centration β̄S,true were overestimated due to the higher permittivity of the
true material distributions. For this reason estimated volume concentrations
with values of β̄S,est > 1 were obtained.

The variance of the samples obtained with the different algorithms is very
similar to the simulation results presented in subsection 5.3.4. The samples
obtained with the LMAP implementations are following again a straight line
with a low variance, but the slope is significantly larger. Due to the absence
of state constraints, the LMAPnc/− algorithm achieved again estimation re-
sults lower than 0 for small values of β̄S,true. Despite the absence of state
constraints, no negative estimates were obtained by means of the different
OSOA implementations.

Considering the slopes of the courses it is obvious, that they are significantly
larger with respect to the nominal values. Since the fundamental behaviour
of the reconstruction algorithm is almost unchanged, the main reason for the
overestimation of β̄S,true seems to be given by the use of the wrong material
value in equation (4.9). To prove this statement two steps are necessary.
Firstly the slope of the samples g is determined. Therefore a straight line
is fitted to the samples in a least squares sense. Table 5.7 depict the slope
g of the simulation results for the different reconstruction algorithms. For
the second step equation (4.9) has to be considered. Due to the assump-
tion that the overestimation is cased by the differing material values in the
computation of β̄S the ratio

χmax,true

χmax,prior

=
εr,max,true − 1

εr,max,prior − 1
=

2,5− 1

2− 1
= 1,5. (5.4)

is evaluated. By considering the slopes of the samples, it becomes obvious
that they are approximately given by this ratio. Therefore, the overesti-
mation of the true values of β̄S,true is mainly caused by the use of the wrong
material value in equation (4.9). The incorporation of a wrong material value
in the prior information has only an minor impact on the estimation results.
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Algorithm g

OSOA/− 1,5655
OSOA/PCA30 1,5656
LMAPnc/− 1,4590
LMAP/− 1,4596

Table 5.7: Slopes of the samples for different algorithms.
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Figure 5.46: OSOA/−
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Figure 5.47: OSOA/PCA30
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Figure 5.48: LMAPnc/−
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Figure 5.49: LMAP/−
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Algorithm g

OSOA/− 0,5107
OSOA/PCA30 0,5107
LMAPnc/− 0,5143
LMAP/− 0,5184

Table 5.8: Slopes of the samples for different algorithms.

Simulation Results: Constant True Material Value Lower than the
Prior Material Value

The simulation results for different reconstruction algorithms are depict in
figure 5.46 to 5.49. The provided results are obtained for a the true material
lower than the prior material value. The maximal values where chosen to be
εr,max,true = 1,5 and εr,max,prior = 2 for this specific simulations.

The single sample are following approximately a straight line with a variance
in the same scale than the results presented in subsection 5.3.4. Though a
true material value εr,max,true lower than the prior material value εr,max,prior

results in an underestimation of β̄S,true. This is recognisable in a too small
slope of the samples compared to the line indicating the nominal value of
β̄S,est = β̄S,true.

Since no constraints are incorporated, the different OSOA implementations
achieved negative estimates with β̄S,est < 0. An interesting characteristic of
the optimal approximation algorithms is given by the non-linear course of
lower bound of the samples. Due to this non-linearity and the lower slope
of the samples the estimated value β̄S,est is decreasing in a certain range for
increasing values of β̄S,true for some specific samples.

The samples obtained with the different LMAP implementations are arranged
in a straight line with a low variance. This behaviour is corresponding to
the results presented in subsection 5.3.4. Due to the underestimation of the
result the mean of the samples exhibit a negative offset. For this reason the
LMAPnc/− algorithm achieved negative estimates with β̄S,est < 0 for low
values of β̄S,true due to the absence of state constraints. Because of the in-
corporation of state constraints the LMAP/− algorithm provides a constant
estimate with β̄S,est = 0 for a β̄S,true lower than a certain value.

There are minor differences in the characteristics of the reconstruction al-
gorithms compared to the result presented in subsection 5.3.4. However the
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main issue is given by the wrong slope of the samples. For this reason the
main cause of the error seems to be given again by the use of the wrong
material value in the calculation of β̄S given by equation (4.9). To prove this
statement again the slopes of the samples g are determined in an least squares
sense. The resulting slopes are depict in table 5.8 for different algorithms.
In the next step the ratio

χmax,true

χmax,prior

=
εr,max,true − 1

εr,max,true − 1
=

1,5− 1

2− 1
= 0,5, (5.5)

is calculated, corresponding to the procedure applied to the previous results.
Also in this case the slopes of the samples are approximately given by this
ratio. Therefore the main issue in the estimation of β̄S is given by the use of
the wrong material value in equation (4.9). The wrong material value in the
prior information has again only a minor impact on the estimation results.

5.5.4 Variations in the Flow Profile

This subsection provides an investigation of the impact of variations in the
flow profile on the estimation result. Variations of both, horizontal conveying
and vertical downward conveying flow patterns are implemented. Though the
prior information is still given by means of the random samples presented
in 4.1.1 to analyse the robustness of the algorithms against these variations.
The results are presented for a subset of available reconstruction algorithms,
chosen to provide a meaningful overview.

Variation of Horizontal Conveying Flow Patterns

Investigations of flow patterns in horizontal pneumatic conveying have shown,
that the transition between the bottom layer and the dilute flow in the upper
layer is often given by dune like shapes [35]. Figure 5.50 depicts two exem-
plary samples for those modified flow patterns. The general flow regimes
are still given by those presented in section 4.1. The only difference is the
shape of the transition between the layers. To randomly generate samples for
those modified patterns also the transition curve is selected randomly. The
transition is given by a curved section whereby the center and the radius of
the corresponding circle is generated by random.
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Figure 5.50: Exemplary samples for varied horizontal flow patterns.

Simulation Results for Varied Horizontal Conveying Flow Patterns
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Figure 5.51: OFOA/−
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Figure 5.52: OSOA/−
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Figure 5.53: LMAPnc/−
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Figure 5.54: LMAP/−
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Figure 5.55: LMAP/PCA30
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Figure 5.56: LMAP/INT30
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Figure 5.57: LML/PCA30
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Figure 5.58: LML/INT30
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Algorithm MSE Algorithm MSE

OFOA/− 2,328e−03 LMAP/PCA30 1,149e−02
OSOA/− 9,984e−04 LMAP/INT30 1,149e−02
LMAPnc/− 2,331e−02 LML/PCA30 1,135e−02
LMAP/− 7,340e−03 LML/INT30 1,135e−02

Table 5.9: Normalized mean square errors.

The simulation results for varied horizontal conveying flow patterns are de-
pict in figure 5.51 to 5.58. The corresponding normalized MSE is depict in
table 5.9. The results show a very similar behaviour compared to the simu-
lations presented in subsection 5.3.3.

The modified flow samples cause a slightly increase of the variance since
they do not correspond to the prior information incorporated to the algo-
rithms. This circumstance is also evident by considering the MSE depict
in table 5.9. Here a slightly increased MSE is evident in every case com-
pared to the results presented in 5.3.3. Though the OSOA implementations
show a larger deterioration of the MSE than the different LMAP and LML
algorithms. This behaviour is give by the fact that the OSOA algorithms
are trained for a specific set of random samples, which do not correspond to
the material patterns that have to be reconstructed. The LMAP and LML
algorithms in comparison are given by an optimization problem. Indeed a
wrong prior distribution π(x) is incorporated to the algorithms. However
due to the likelihood function π(d̃|x), still the physics of the ECT sensor are
incorporated to the problem. Therefore this kind of algorithm is more robust
against variations in the flow profile.

Considering the LMAPnc/− algorithm, the absence of state constraints causes
negative estimates for β̄S,est. The OSOA implementations however obtained
valid results with 0 ≤ β̄S,est ≤ 1 in every case although also no state con-
straints are incorporated. The same behaviour of the algorithms with respect
to state constraint was already shown in subsection 5.3.3.

Given this simulation results one can conclude, that the different LMAP
and LML algorithms exhibit a more robust behaviour against variations in
the flow profiles compared to the optimal approximation algorithms.
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Variation of Vertical Downward Conveying Flow Patterns

In the case of vertical downward conveying flow patterns the modified pat-
terns are given by eccentrical Gaussian material distributions. For gravity-
driven flow of bulk materials so called density waves can occur, caused by
interactions between the particles, the gas and the pipe wall [34]. A cross-
sectional representation of those density waves is approximately given by an
eccentrical Gaussian material distribution.

Due to the eccentricity the particles will accumulate in the area of the pipe
wall, in which the Gaussian distribution is displaced. This causes a higher
density in this area, modeled by means of higher material values. Two ex-
emplary samples for this flow profiles are depict in figure 5.59. The central
point µ of the material distribution is selected randomly by

µx ∝ U
(
−ri,pipe

2
,
ri,pipe

2

)
, (5.6)

µy ∝ U

(
−
√(ri,pipe

2

)2

− µ2
x,

√(ri,pipe

2

)2

− µ2
x

)
, (5.7)

where µx and µy are the x- and y-coordinate of the central point and ri,pipe

denotes the inner radius of the ECT sensor. With this the maximum eccen-
tricity is given by the value ri,pipe/2.

Figure 5.59: Exemplary samples for varied vertical downward conveying
flow patterns.
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Simulation Results for the Modified Vertical Downward Conveying
Flow Patterns
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Figure 5.60: OFOA/−
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Figure 5.61: OSOA/−
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Figure 5.62: LMAPnc/−
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Figure 5.63: LMAP/−
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Figure 5.64: LMAP/PCA30
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Figure 5.65: LMAP/INT30
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Figure 5.66: LML/PCA30
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Figure 5.67: LML/INT30

Algorithm MSE Algorithm MSE

OFOA/− 1,201e−01 LMAP/PCA30 9,132e−01
OSOA/− 1,837e−02 LMAP/INT30 9,132e−01
LMAPnc/− 1,488e−02 LML/PCA30 8,299e−03
LMAP/− 1,307e−02 LML/INT30 8,299e−03

Table 5.10: Normalized mean square errors.
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Figure 5.60 to 5.67 depict the simulation results obtained with different recon-
struction algorithms. The normalised MSE corresponding to the particular
algorithms are depict in table 5.10.

The variation of the flow pattern has a strong impact on the optimal ap-
proximation algorithms shown in figure 5.60 and 5.61. The estimation re-
sults obtained with the OFOA/− and the OSOA/− algorithm exhibit a large
variance of the single samples. Also the variances of the samples obtained
with the different LMAP and LML implementations is increased compared
to the results presented in subsection 5.3.4. However the deterioration of the
estimation results is significantly more pronounced for the optimal approx-
imation algorithms. This is also evident when considering the MSE depict
in table 5.10. The same behaviour was already shown for a variation of the
horizontal conveying flow profiles presented previously.

Since no constraints are incorporated by means of the optimal approximation
algorithms as well as the LMAPnc/− algorithm negative estimation result
with values βS,est < 0 were achieved. The described behaviour is most present
for the OFOA/− algorithm.

The LMAP algorithm with an applied state reduction technique is not able to
obtain estimation results below a certain value. This circumstance is result-
ing in large values for the normalised MSE. The same behaviour was already
demonstrated and discussed in subsection 5.3.4 for this particular algorithms.
The basis vectors of the reduced state representation do not correspond to
the true material distributions. Despite this circumstance the LML/PCA30
and LML/INT30 algorithms achieved the lowest MSE values.

Given this simulation results one can conclude, that the different algorithms
behave very similar to the results presented in 5.3.4. The variation in the
flow profiles causes an inceased variance of the sample in every case. Though
the different LMAP and LML algorithms exhibit a more robust behaviour
against variations in the flow profiles. Similar results are obtained for a
variation of horizontal conveying flow samples presented previously.
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In this thesis the application of ECT for volume concentration estimation in
pneumatic conveying systems is analysed. The main subject of this thesis
is the adaptation of ECT for this particular application. This covers several
topics starting from an investigation of the flow processes within pneumatic
conveying. Given this insight an approach is presented, to formulate this
knowledge as prior information for different reconstruction algorithms. The
estimation of flow parameters by means of ECT is based on the assumption,
that the parameter of interest is proportional to the reconstructed permit-
tivity distribution. Therefore an approach is presented to relate the electric
material values provided by ECT with the volume concentration. Given this
concept a framework is provided in order to implement comprehensive sta-
tistical analysis of the estimation performance. The contents of this thesis
can be summarized by the following points

• Investigation of the flow processes in pneumatic conveying system and
the formulation of meaningful prior information,

• Adaptations of ECT for flow parameter estimation and

• Analysis framework and statistical analyses of the estimation perfor-
mance.

The first part of this thesis addresses the application of ECT for flow parame-
ter estimation. Therefore the spacial material distributions within pneumatic
conveying systems are investigated. Since the reconstruction results are given
by a two dimensional material distribution within the sensor, the different
flow regimes are summarized by their cross sectional representations. Given
this knowledge an approach is presented to generate random samples, suit-
able to describe the different occurring flow regimes within the conveying
process. The random samples are subsequently used as so called sample
based prior.
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The sample based prior information is incorporated to the reconstruction al-
gorithms in different ways. The so called optimal approximation algorithms
are directly trained on a set of random samples X. For algorithms such as
the MAP estimator, the Kalman filter or the Gibbs sampler in contrast, the
prior information has to be formulated by means of a probability density func-
tion π(x). Therefore a Gaussian summary statistic is computed for a set of
random samples parametrized by its mean µX and its covariance matrix ΣX.

An alternative way for the incorporation of prior information is given by
the concept of state reduction. Therefore an projection matrix PNR

is as-
sembled in order to perform the mapping between a reduced state space xR
and the original state vector x. The construction of the projection matrix
PNR

requires prior information. One known approach is based on a princi-
ple component analysis of a set of random samples. Due to the information
obtained by the investigation of the spacial material distributions within
pneumatic conveying systems also an intuitive way is presented in order to
assemble PNR

.

To analyse the intrinsic information held by a set of random samples a prin-
ciple component analysis is performed. Herby the random samples for flow
type material distributions are compared to random samples for arbitrary
material distributions. This is used to choose a reasonable size for a reduced
state representation to incorporate a sufficient amount of prior information
by means of the projection matrix PNR

.

The reconstruction algorithms provide an estimate for the material distri-
bution within the ECT sensor by means of relative permittivity values εr of
the finite elements. In order to estimate the volume concentration β̄S, the
electrical material values εr have to be related to the flow parameter of in-
terest. The approach in order to accomplish this estimation is based on the
assumption, that the density is proportional to the susceptibility χ = εr− 1.
Under further assumptions such as a uniform flow and a constant density of
the bulk material a linear relation between the volume concentration and the
susceptibility is presented.

The second part of this thesis contains a variety of case studies concerning
the estimation of the volume concentration β̄S by means of ECT. Therefore
a framework is presented in order to implement comprehensive statistical
analysis of the estimation performance. This analysis framework contains
the simulation of measurement data using an accurate simulation model of
the measurement process. Hereby random samples for different material dis-
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tributions are generated and simulated on a fine discretization of the problem
domain. This provides the corresponding inter electrode capacitances as well
as the nominal volume concentration β̄S,true. The capacitances are corrupted
by additive white Gaussian measurement noise to provide the reconstruction
algorithms with realistic measurement data. Due to computational costs,
the reconstruction algorithms are implemented on a less accurate simula-
tion model of the measurement process based an a coarse discretization of
the problem domain. Out of the reconstructed material distributions on the
coarse discretization the estimate for the volume concentration β̄S,est is calcu-
lated. Given this concept a large number of samples is generated. In order to
make a statement about the estimation performance, the samples are depict
in scatter plots. Additionally the normalized mean square error is used as
a measure of quality for the estimation results. With this it is possible to
compare the estimation results for different material distribution and recon-
struction algorithms with each other.

Given the analysis framework firstly simulation results for different mate-
rial distributions are provided. The advantageous use of a dedicated prior
information for flow patterns is demonstrated. Statistical analyses of linear
back projection type algorithms have shown, that these type of algorithms
achieved remarkable results. Linear algorithms are preferable due to their
computational efficiency. In addition also a selected number of non-linear
and iterative methods have been studied.

Lastly selected parameter studies are implemented in order to investigate
the impact of variations of particular process parameters. Thereby parame-
ters such as the number of electrodes, the noise level, and the material values
analysed. Additionally variations of the material patterns are implemented.
Regarding the variation of the material value the reconstruction algorithms
show sufficient robustness against prior material values differing from the
true material values. Different material values result in an over- or underes-
timation of the true volume concentration β̄S,true. The mean of the samples
however is still following a straight line. Therefore this error is easily to
overcome by means of calibration. Regarding variation in the flow profiles
a large impact on the estimation results provided by the different optimal
approximation implementations is evident. The individual MAP and ML
type implementations exhibit a more robust behaviour with respect to these
variations of the flow profiles.
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