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Abstract

The role of nuclear quadrupole spin resonance in the design of a
new class of MRI-contrast agents

The administration of contrast agents (CAs) in magnetic resonance imaging (MRI) is
an indispensable technique to improve image quality and contrast and is thus sup-
porting medical diagnostics for many diseases and pathologies. In September 2015,
a research project has been started suggesting a novel contrast agent type, relying
upon quadrupole relaxation enhancement (QRE) instead of the currently exploited
paramagnetic relaxation enhancement (PRE) effect. The former effect is based on a
magnetic dipole-dipole interaction between nuclear spins, the latter between proton
and electron spins.

Both techniques aim at enhancing the spin-lattice relaxation rate of proton spins
in water molecules sensed by MRI. The enhanced relaxation then leads to an in-
creased contrast in the MRI scan. As the QRE effect is intrinsically selective on the
strength of the applied magnetic field in a quantized manner, it is expected that
QRE-based CAs have the potential to add several useful methodical features to CA-
supported MRI. Also, the QRE effect depends on the electronic structure of the QRE-
active molecule, which allows for electronic sensitivity. From these properties, two
mechanisms are conceivable: First, on-off switching the contrast effect by an ex-
ternal stimulus i.e. shifting the scanner field. Second, molecular imaging due to
modulation of the QRE effect upon electronic alterations. Another argument for al-
ternative CAs is that PRE agents mostly contain Gadolinium (Gd) (encapsulated in
stable chelates) and can thus not be administrated to patients with kidney diseases.
Lately, it has also been reported that Gd-CAs from particular chelates can be found
to remain in the brains of healthy patients.

Central research interest of this work is to support proof-of-concept research
for QRE-based contrast agents. In particular, focus is set on the role of nuclear
quadrupole resonance within the total magnetization transfer effect from the po-
larized protons via a close by quadrupole nuclei to the lattice. Mostly by the use
of nuclear quadrupole resonance (NQR) spectroscopy, promising compounds con-
taining Bismuth (Bi) are preselected, fulfilling basic requirements of the envisaged
application. Also, their spin-spin and spin-lattice relaxation behaviour is studied
and assessed with respect to their influence on the QRE effect. To support the struc-
tural and morphological design of complete nanoparticle systems, made up of QRE
active core compounds and a carrier particle, studies are presented discussing the
dependence of NQR transitions upon molecular structure. At the end of this work,
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besides first promising results of the QRE effect of triphenylbismuth nanoparticles in
aqueous solution, a guideline regarding physical and chemical properties is outlined
which shall be considered in further particle design.

Kurzfassung

Die Rolle von Kernquadrupol-Resonanz in der Entwicklung
neuartiger MRT Konstrastmittel

Die Verabreichung von Kontrastmittel zur Verbesserung von Bildqualität und
Bildkontrast in der Magnetresonanztomographie (MRT) ist eine unverzichtbare
Methode um die medizinische Diagnostik verschiedener Krankheiten und Sym-
ptome entscheidend zu unterstützen. Im Jahr 2015 wurde ein Forschungs-Projekt
gestartet in dem ein völlig neuartiger Kontrastmittel-Typ, basierend auf Kern-
quadrupol Relaxations-Verstärkung (QRE) anstatt der üblichen paramagnetischen
Relaxations-Verstärkung (PRE), vorgeschlagen wird. Beide Effekte zielen darauf ab,
die Spin-Gitter Relaxationsrate jener Protonen-Spins in Wassermolekülen zu ver-
stärken, welche mittels MRT detektiert werden. Durch die beschleunigte Relaxation
entsteht ein verstärkter Bildkontrast.

Im Unterschied zum PRE Effekt, welche auf magnetische Dipol-Dipol Wech-
selwirkung zwischen Elektronen- und Protonenspins basiert, wechselwirken bei
QRE Protonenspins mit nahegelegenen Quadrupol-Kernspins. Durch die intrin-
sisch diskrete Selektivität des QRE Effektes im Bezug auf die Stärke des an-
gelegten, äußeren Magnetfeldes ergeben sich neue methodische Möglichkeiten
welche herkömmliche, kontrastmittelunterstütze Untersuchungen erweitern kön-
nen. QRE ist außerdem von der elektronischen Konfiguration und Umgebung
des QRE-aktiven Moleküls abhängig, sodass eine molekulare/elektronische Sensi-
tivität der Kontrastverstärkung entsteht. Aufgrund dieser Eigenschaften sind zwei
Mechanismen vorstellbar: Erstens, ein von außen getriggerter Ein-Aus Schalter des
Kontrasteffektes durch Veränderung des angelegten Scanner-Magnetfeldes. Zwei-
tens ermöglicht die Sensitivität auf elektronische Veränderungen eine Modulierung
des QRE Effektes auf molekularer Ebene und könnte so einen Beitrag zu moleku-
larer Bildgebung erbringen. Ein weiteres Argument für die Entwicklung alterna-
tiver Kontrastmittelsysteme liefern die verwendeten Materialien bzw. chemischen
Elemente. PRE- basierte Kontrastmittel enthalten Gadolinium (Gd) (eingeschlossen
in stabile Chelate) und können bei Patienten mit Nierenproblemen nicht eingesetzt
werden. Kürzlich wurde außerdem gezeigt, dass sich Gd im Gehirn gesunder Pa-
tienten anlagern kann. Auf QRE basierende Kontrastmittel können mit alternativen
Elementen realisiert werden.

Zentraler Forschungsinhalt dieser Arbeit ist die Rolle der Kernquadrupol-
Resonanz im gesamten Magnetisierung-Transfer Effekt bei QRE; vom pola-
risierten Proton über benachbarte Quadrupol-Kernspins zum Gitter. Getragen
durch Untersuchungen mittels Kernquadrupol-Resonanz Spektroskopie konnten
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verschiedene Bi-Verbindungen identifiziert werden, welche einige grundlegende
Voraussetzungen für eine spätere Verwendung als Kontrastmittel in medizinischen
MRT’s erfüllen. Zusätzlich wurden Spin-Spin und Spin-Gitter Relaxationsver-
halten dieser Verbindungen untersucht und im Hinblick auf ihren Einfluss auf
den QRE Effekt beurteilt. Um einen geeigneten strukturellen und morpho-
logischen Aufbau des Kontrastmittel-Gesamtsystems aus QRE-aktiven Molekülen
auf Träger-Nanopartikel zu gewährleisten, wurde der Einfluss molekularer sowie
morphologischer Struktur der Verbindungen und ihrer Umgebung auf die quanten-
mechanischen Kernquadrupol-Übergänge untersucht. Zuletzt werden erste, viel-
versprechende Beobachtungen des QRE Effektes, erzeugt durch Triphenylbismuth-
Nanopartikel in wässriger Lösung, präsentiert. Des Weiteren werden chemische,
physikalische sowie dynamische Voraussetzungen und Eigenschaften des Spin-
Systems zusammengefasst, welche eine Weiterentwicklung der bisherigen Modell-
systeme ermöglichen soll.
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Preface

This thesis is composed in a cumulative manner, which means that the main body
consists of four peer reviewed articles published in different international scien-
tific journals. These works were created during the employment at the Institute
of Medical Engineering at Graz University of Technology as well as during short
term stays at the University of Oulu and the University of Umeå. Several ideas have
also been initialized during scientific meetings and conference attendances in Olsz-
tyn, Turin, Prague and Graz within the EURELAX1 research network (COST action
15209) which was superbly coordinated by Prof. Danuta Kruk.

To give a better understanding about the interconnection of the publications and
their train of though, their context, connection and theory background is given in a
frame text surrounding the main articles. Thus, the thesis is organized in three parts:
In the first part, an introduction and the motivation is given. Also, relevant basic the-
ory is reviewed on an extended level including historical development which could
not be covered within the limited and compact style of journal articles. Then, in the
center part, three first-author articles are printed as they were published (accepted
manuscripts). Also, one coauthor article is summarized and the results are high-
lighted. In the final part, a joint, compact conclusion is drawn from all presented
papers, where the before mentioned works are referenced. In a subsequent outlook
chapter, most recent results from other groups are presented and recommendations
for future scientific investigations are given.

1http://eurelax.uwm.edu.pl/

http://eurelax.uwm.edu.pl/
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Chapter 1

Introduction and motivation

In September 2015, the European Commission-funded project CONQUER1 (Con-
trast by Quadrupole Enhanced Relaxation) was launched with the aim of developing
a novel type of contrast agent (CA) for magnetic resonance imaging (MRI). The
project team comprises five European universities from Poland, Slovenia, Sweden
and Austria and was lead by the Institute of Medical Engineering at Graz University
of Technology. Further facts and information on the project can be found here2.

MRI forms a cornerstone of diagnostic imaging in modern medicine, provid-
ing spatially highly resolved scans of human body regions featuring excellent soft
tissue contrast. From a physical point of view, MRI relies on detecting the magnetic
response of proton spins placed in an externally applied magnetic flux density3

B0 by a pick-up coil upon on-resonance excitation by a sequence of short radio-
frequency pulses. The resonance condition is given by the proton Larmor frequency
νL which is determined by the Zeeman interaction of a proton with nuclear spin
I = 1/2 with the magnetic field B0 and depends on the proton’s gyromagnetic ratio
γ1 H. Applying a field gradient along the scanned region rather than a constant field
allows for spatially resolving the signal due to the varying resonance condition.
Image contrast evolves from tissue dependent spin relaxation times T1 (spin-spin)
and T2 (spin-lattice), as well as from the proton density distribution.

Due to the Boltzmann distribution, the energetically rather weak energy splitting
of the proton spin states leads to a quite small population difference. In consequence,
signal strength in magnetic resonance techniques is generally low. Remedy is found
to some degree by the application of relatively high magnetic fields of typically 1.5 T
or 3 T in medical scanners. The resulting, still moderate signal strength of MRI can
be improved by the administration of exogenous relaxation enhancers that shorten
the proton’s spin-lattice relaxation times. A larger steady-state magnetization along
the z-axis in tissues with faster T1 relaxation results in larger image intensity and

1www.conquer.at, Initiators: Andreas Petrovič, Hermann Scharfetter and Stefan Spirk from Graz
University of Technology

2https://cordis.europa.eu/project/rcn/196966/factsheet/en: CORDIS EU research results of the
European Comission

3Further, simply called magnetic field, as this is the common term in the MRI community.

https://www.conquer.at
https://cordis.europa.eu/project/rcn/196966/factsheet/en
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contrast [1]. Different strategies for designing such contrast agents are in the focus
of researchers ever since the development of MRI [2, 3, 4, 5, 6, 7].

Conventional MRI contrast agents rely on paramagnetic relaxation enhancement
(PRE), which is caused by a strong electron-proton dipole dipole (D-D) coupling
between the electron spin of the paramagnetic agent and the spin of the water pro-
ton detected in MRI [1]. Such PRE-CAs, mostly based on stable chelates containing
Gadolinium (Gd), have been proven to support and improve daily medical diag-
nostics routine for years. Gd-based contrast agents predominantly enhance contrast
in T1-weighted images [1], others, as e.g. nanoparticles made of paramagnetic iron
oxides mostly affect T2 [8].

A review on contrast-enhanced MRI is given by Lohrke et al.[9], where it is stated
that in 2016 about 25% of all MRI examinations were supported by the administra-
tion of CAs. In the work of Alvares et al. [10], an overview of different CAs regarding
their relaxivity r [L mmol−1s−1] (concentration independent measure of the ability
of enhancing the relaxation rate) as well as their sensitivity is given. As an example,
r1 of Gadovist R©, a Gd-based CA, is about 5.1 L mmol−1s−1. Administration a con-
centration of 1.3 mmol/l would lead to an increase of R1 of blood from about 0.6 s−1

to more than 7 s−1.
Without going into any details it is mentioned here, that nowadays the versatility

of MRI goes far beyond producing T1, T2 or spin density weighted, morphological
images of the body only. For example, there is real time imaging of moving objects
(e.g. the heart) [11], magnetic resonance spectroscopy [12], functional imaging [13],
diffusion and perfusion weighted imaging [14] , magnetic resonance angiography
[15] and dynamic contrast-enhanced imaging [16].

Proton relaxation behaviour of different materials is typically captured by mea-
suring R1 versus B0 - so called nuclear magnetic relaxation dispersion (NMRD) pro-
files. This is achieved by means of field cycling relaxometers [17], capable of mea-
suring R1 at different field strengths. The typical dependence of NMRD profiles in
diamagnetic systems, where coupling by D-D interactions to neighbouring nuclear
spins is the dominant relaxation mechanism, is a smooth decay with increasing field
strength where no noteworthy variation occurs. However, in the presence of para-
magnetic compounds (e.g. Gd-based CAs), the proton spins experience a strong
relaxation enhancement as well as dependence on the magnetic field strength (PRE,
compare relaxation curves in figure 1.1). Reason is the quadratic dependence of the
relaxation rate on the electron gyromagnetic ratio, which is about 656 times larger
than the gyromagnetic ratio of protons.

Theoretically, NMRD profiles are described by the Solomon-Bloembergen-
Morgan equations [18, 19, 20]. The exact form of a relaxation curve depends on
the motional conditions of the coupled spin system and is influenced by parameters
like the rotational correlation time τr of the CA particle in solution. In figure 1.1,
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FIGURE 1.1: Schematic behaviour of the proton relaxation rate of pure water and
water in the presence of an EDTA-Gd CA. The shape of the curve and the enhance-
ment effect is strongly dependent on the rotational correlation time τr of the CA
particles (τr,2 > τr,1). Upon binding of the CA to e.g. bovine serum albumin (BSA),
the strongest enhancement is achieved due to immobilization.

schematic NMRD profiles of pure water and a solution of a paramagnetic CA in wa-
ter are shown. The enhancement effect of Gd3+ encapsulated in ethylenediaminete-
traacetic acid (EDTA) is clearly visible as well as the strong dependency on the CA
dynamics: the slower τr, the stronger the effect. A very interesting phenomenon
in this context is what’s happening when CA chelates are attached to protein amino
acid residues, as for example bovine serum albumin (BSA) [21]: The relaxation curve
strongly changes in amplitude and shape due to de facto immobilization of the EDTA
complex. Unfortunately, PRE-CAs have in common that their enhancement effect
becomes weaker for high fields, also the strong bump of the EDTA-BSA curve typi-
cally occurs below 3 T. Moreover, safety concerns about the toxicity of Gd-CAs have
arisen due to reports on Gd deposition in human brain tissue [22, 23, 24]. In reaction,
the FDA has announced respective warnings.

Even though different techniques providing cellular and molecular imaging are
increasingly used in MRI [25], compared to radiotracers or optical probes, they are
inferior in sensitivity and functionality. For example, it is desirable to switch on and
off the contrast by external stimuli. Recently suggested gas-filled protein nanos-
tructures [26] can be deactivated by ultrasound but not be re-established. Chemical
exchange saturation transfer (CEST) [27] is a promising technique concerning
switching by selective pulses but still has moderate sensitivity. Paramagnetic
macromolecules based on nitroxide are free of Gd and shorten T2 [28], but typically
have a short in vivo lifetime and cannot be switched.

Another effect capable of enhancing spin-lattice relaxation of protons is based
on the so called quadrupole relaxation enhancement (QRE). In contrast to PRE, the
resulting enhancement effect exhibits narrow, discrete peaks (QRE-peaks, or dips,
when T1 is plotted) in the NMRD profile (see figure 1.2 (c)). The earliest observation
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of such features were made by Woessner and Gutowksy [29] as well as Goldman
[30] in p-dichlorobenzene and by Voigt and Kimmich [31] in poly(vinyl chloride)
and were attributed immediately to a magnetization transfer effect between the
ensemble of protons under observation and neighbouring quadrupole spin nuclei
(QNs), exhibiting a spin number I > 1/2. Until the CONQUER project, this effect
has only been observed in solid samples. QRE results from a coupling of proton
spins to close-by quadrupole spins (several Å) by magnetic D-D interactions. The
QN acts as an energy sink, taking over the magnetization from the polarized proton
and transferring it further to the surroundings (lattice). The discrete nature of
the enhancement effect stems from the resonance condition between the Larmor
frequency νL of the proton spin and one of the QN transition frequencies νQ

which has to be fulfilled for QRE, as indicated in figure 1.2 (b). While the proton
Larmor frequency is determined by the Zeeman interaction only (red curve), the
quadrupole transitions (blue curves) result from a superposition of Zeeman and
pure quadrupole spin transitions. The frequency positions of the QN transitions at
zero field are determined by the nuclear quadrupole resonance (NQR) parameters
of the molecule containing the QNs: The quadrupole coupling constant Qcc and the
asymmetry parameter η. The origin of NQR transitions and NQR theory is closer
discussed in section 2.1. However, it is anticipated already here that these NQR
parameters depend on the electric field gradient (EFG) generated by the molecules’s
electronic configuration at the site of the QN and the QN’s quadrupole moment Q.

The QRE effect has been observed also in proton relaxation of biopolymers as
e.g. proteins and other biological samples as DNA and muscles due to the presence
of 14N-1H groups [32]. In the work of Lurie et al [33], this observation is used to
produce contrast in in vivo MRI images arising from muscle proteins. The authors
used a field cycling MRI scanner, able to shift the nominal field strength. In that
way, two images could be produced where one is gathered with the scanner field
at the QRE peak position and a second image is taken at a field strength where no
QRE effect is present. The difference of the two scans then shows contrast due to
QRE peaks arising from present 14N-1H groups only. However, QRE peaks from
14N nuclei appear at very low fields, so that the experiment was performed below
100 mT, which - in comparison to standard medical scanners at 1.5 T or 3 T - leads to
a quite low sensitivity and resolution.

The core idea of the CONQUER project is thus to facilitate the QRE effect for MRI
contrast enhancement at standard medical field strengths of 1.5 T or 3 T. This shall be
achieved by the injection of CA particles, carrying QRE-active compounds exhibit-
ing quadrupole spin transition frequencies which cross the proton Larmor frequency
at e.g. 3 T. The idea is illustrated in figure 1.2 (a): Nanoparticles act as carriers for
QRE-active molecules and allow water exchange so as to relax close by polarized wa-
ter protons. Exactly this point adds a complication compared to conventional QRE
observed in solids, where protons are affected which are bound to the QN containing
compound. Here, the goal is to address the protons on water molecules which are
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FIGURE 1.2: Schematic overview on the QRE effect acting as MRI contrast agent:
Panel a) shows an indefinite carrier nanoparticle containing QNs which can be ap-
proached by water protons from the surroundings. Magnetic D-D interactions are
indicated by arrows. In panel (b), the behaviour of the proton Larmor frequency
and an arbitrary QN transition frequency in an external magentic field is presented.
The plot captures only the behaviour of a certain, fixed angle between the EFG of
the QRE active compound the the applied magnetic field. In panel c), the hypothet-
ical shape of a resulting NMRD profile is shown. At the crossing points derived
from panel b), relaxation enhancement features (QRE peaks) can be expected.



6 Chapter 1. Introduction and motivation

not bound to the dissolved QRE-CA particles. Moreover, the agent must be biocom-
patible and non-toxic. Also, the QRE active compound must exhibit a quadrupole
spin transition frequency spectrum to guaranty level crossing with the proton Lar-
mor frequency close to or at a the scanner frequency e.g. 3 T (see 1.2 (b) and (c)).
There are several interactions and coupling effects between all participating spins
which can be considered, as magnetic D-D coupling or J coupling. For QRE, most
important is the magnetic D-D coupling between QN and proton spins which forms
the basis of the QRE magnetization transfer effect (see e.g. [34]).

It must be noted, that the pictures drawn in figure 1.2 are very simplified and
shall only demonstrate the basic idea of CONQUER. For example, the transition
frequency diagram for the QNs in panel (b) is only valid for a single crystal placed
in an external magnetic field, in which all QN are in an electronically equivalent
state. In fact, the Zeeman contribution to the QN transitions is angle dependent
with respect to the quadrupole spins and dynamics of the particle must be taken
into account in liquids. Also, not every crossing will lead to a QRE peak as indicated
by the figure as the QRE peak amplitude also depends on the quantum mechanical
transition probability of the quadrupole transitions. For high spin QNs, even more
transitions are possible than indicated in panel (b).

The advantage of a QRE based CA upon a conventional PRE based CA lies in
the discrete character of the NMRD profile. Due to the resonance condition, the en-
hancement effect is frequency selective and can be switched on and off by (1) either
shifting the nominal field of the scanner or by (2) manipulating the position of the
quadrupole transition frequencies (compare figure 1.3). The former possibility relies
on suitable MRI hardware able to shift the nominal field. Such scanners are in use al-
ready at different clinical field strengths for research purposes [35]. The latter way of
manipulating the enhancement effect relies on alteration of the electronic structure
of the QRE active molecule (more exactly, the EFG at the QN) which determines its
quadrupole spin transition frequencies (see chapter 2.1). These, in turn, determine
the level-crossings with the proton Larmor frequency and thus the QRE peak posi-
tions. In short: The QRE peak position can be shifted by electronic alteration of the
QRE active molecule in the CA. This property opens up the possibility of respon-
sive imaging, sensitive to chemical changes. Strategies to enable a contrast effect
responsive or sensitive on a molecular level are in the focus of MRI research since a
long time [36, 37, 38, 39], and QRE-CAs have the potential to be added as another
mechanism.

To compete with conventional CAs, QRE peaks should reach at least a relaxivity
of about 5 mM−1s−1, which is common for PRE-CAs [10]. Or, there must be an-
other unique useful feature which cannot be provided by other mechanisms as the
frequency selective nature of the NMRD profiles from QRE active compounds. The
QRE peaks should be narrow and appearing at the desired field positions. Two im-
portant studies, both based on the stochastic Liouville approach for spin relaxation,
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are describing the theory of QRE in slow tumbling amide groups [40] and for arbi-
trary QN spin number and dynamical conditions for molecular crystals [34]. In a
more recent study a simple expression for QRE in slowly tumbling molecules valid
at low fields is presented [41]. From these works, two requirements for a possible
QRE-based CA can already be derived:

• For efficient D-D coupling (∼ 1
r6

QN−1 H
), the interspin distance rQN−1 H between

proton and QN should be only a few Ångstroms.

• The rotational correlation time τr of the nanoparticle, creating a necessary mod-
ulation of the D-D coupling (fluctuations), must be long (2πνQτr > 1). This
parameter can be controlled by the particle size.

Another important issue, which also plays a role in PRE based CAs, is the water
exchange lifetime τex and the accessibility of the QNs for protons. This mainly de-
pends on chemistry and structure and must be optimized during the particle design
process.

Still, several open questions remain concerning the static and dynamic NQR
properties of the QRE active compound so as to be suitable for the envisaged ap-
plication. The transition spectrum of the QN spins defines the potential appearance
of QRE peaks. Another key factor is the quadrupolar relaxation itself and its influ-
ence on the width of the QRE peaks and on the additional modulation of the above
mentioned D-D coupling.

Central research interest of this work is thus to understand the role of the
quadrupole nucleus in the QRE effect with regard to a potential application as con-
trast agent for MRI. This is indicated also in figure 1.2 (a) by the red square in dashed
lines, surrounding the QRE-active QN. The square is emphasizing that focus is set
on the second part of the two-step magnetization transfer effect from the proton to
the QN and further to the lattice. Model systems of pure quadrupole spin ensem-
bles will be investigated experimentally mainly by the use of nuclear quadrupole
resonance spectroscopy (NQRS), i.e. determining NQR parameters as well as spin
relaxation behaviour without the application of an external magnetic field. Also,
theoretical calculations are performed by the use of quantum mechanical relaxation
theory and quantum chemistry (QC) methods. The following research questions are
in the focus of the thesis:

• Which molecules and which nuclei are suitable to form the QRE active com-
pound?

• What is a suitable model system that can be studied by NQRS and what are
the NQR parameters of this system?

• What is the sensitivity of the frequency positions upon changes of the elec-
tronic environment? Can they be tuned to a desired frequency?
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• What is the predictive power of ab initio quantum chemistry calculations in
calculating NQR paramters of the envisaged model systems?

• How strong is the temperature dependence of the frequency positions?

• What are the spin relaxation properties of the model system? Which influence
is expected on the QRE effect?

• How can the QRE effect be predicted from the sole nuclear quadrupole reso-
nance parameters of the model system?

• Are there any morphological or structural requirements for the joint system
nanoparticle - QRE active compound that should be considered in the design?

It is possible to roughly group the properties of interest of the QRE active compound
into static and dynamic properties, where static should be understood as the residual,
non-vanishing mean of the always present molecular and nuclear dynamics, perceiv-
able on the time scale of the experimental observer. Static properties are manifested
in constants as the EFG strength or the dimensions the of molecule’s structure; they
determine resonance conditions as for example the positions of the QRE peaks. Dy-
namic properties comprise the description of fluctuations around the static mean,
responsible for relaxation phenomena, transferring excited systems back to the equi-
librium condition.

NQR beyond CA research

Apart from the above motivated, very special topic in CA research for MRI, NQRS
has a very wide field of applications and can deliver structural and dynamical in-
sights to materials on a molecular level [42]. This is due to the origin of the under-
lying electric interaction between the quadrupole moment of a QN and the electric
field gradient (EFG) at it’s location, which is generated by the surrounding electron
cloud (see section 2.1). The transition frequency positions are related to the electronic
structure of the molecule under observation, their spin relaxation rates are associated
with molecule dynamics (EFG fluctuations). By measuring the pure quadrupole re-
laxation rates using NQRS and applying quantum mechanical relaxation theory, dy-
namical parameters of the molecule can be extracted. Experimentally determined
NQR parameters can be used for material characterization. Of more general rele-
vance is, that relaxation data from quadrupole spins can also be used to validate
and test theoretical relaxation models. Equally, experimentally determined NQR
parameters can be a reference for theoretical calculations of the electron density dis-
tribution of molecules using modern ab initio quantum chemistry methods. Thus,
throughout this thesis NQRS is considered as a very fruitful method rich in physical
information, which can deliver insights into problems beyond CA research.
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1.1 Content and structure of the main part

Given the above made general introduction, the content of the main three works of
this cumulative thesis is briefly summarized below:
Paper 1 (chapter 3) is dedicated to select promising compounds that can be used
in further research on QRE-CAs for MRI. Besides experimental NQR data demon-
strating suitable frequency ranges of Bi-aryl compounds, also, a quantum chemistry
calculation framework is presented to theoretically predict positions of NQR fre-
quencies of yet unmeasured compounds.
Paper 2 (chapter 4) shows a simple calculation method for predicting the frequency
position of QRE peaks in solids, when NQR parameters of the QRE active molecule
are known. Due to an assumption made in this work, it is possible to forgo the ap-
plication of quantum mechanical relaxation theory but still obtaining predictions in
accordance with experiments.
Paper 3 (chapter 5) treats the spin-spin relaxation of the pure quadrupole nu-
clei due to EFG fluctuations in solids and allows to calculate the lineshape of
quadrupole transitions. From experimental relaxation data, dynamical parameters
of the molecules under observation are determined by the application of Redfield
theory. The calcuated lineshape also helps to model the lineshape of QRE peaks,
which was only treated phenomenologically in paper 2.
Paper 4 (contribution as coauthor) (chapter 6) discusses aspects of structural order with
respect to detection and line broadening of NQR transitions in solids. The question
is addressed, if an amorphous solid - produced by melting and shock-freezing a
molecular crystal - is still exhibiting a detectable signal. It could be shown, that
only in case of a crystalline structure, narrow NQR peaks can be detected, but for an
amorphous solid, the signal strength is below the noise floor. By accident, a yet un-
known, metastable crystal structure of the investigated sample could be identified.



1.1. Content and structure of the main part 11

1.1.1 List of publications

Below, a full list of publications is given where only a coherent selection is part of
the thesis (papers 1-4).

1. Gösweiner Christian, Lantto Perttu, Fischer Roland, Sampl Carina, Umut
Evrim, Westlund Per-Olof, Kruk Danuta, Bödenler Markus, Spirk Stefan,
Petrovic Andreas; Scharfetter Hermann. Tuning Nuclear Quadrupole Resonance:
A Novel Approach for the Design of Frequency-Selective MRI Contrast Agents.
In: Phys. Rev. X 8, 021076 (2018), ISSN: 21603308, DOI: 10.1103/Phys-
RevX.8.021076

2. Gösweiner Christian, Kruk Danuta, Umut Evrim, Masiewicz Elzbieta, Böden-
ler Markus, Scharfetter Hermann. Predicting quadrupole relaxation enhancement
peaks in proton R1-NMRD profiles in solid Bi-aryl compounds from NQR parameters.
In: Molecular Physics, 117:7-8, 910-920 (2018), DOI:
10.1080/00268976.2018.1519201

3. Gösweiner Christian, Westlund Per-Olof, Scharfetter Hermann. Spin-spin relax-
ation of nuclear quadrupole resonance coherences and the important role of degenerate
energy levels.
In: Molecular Physics, 8976, e1743888. DOI: 10.1080/00268976.2020.1743888

4. Scharfetter Hermann, Gösweiner Christian, Krassnig Paul Josef, Sampl Ca-
rina, Thonhofer Martin, Fischer Roland, Spirk Stefan, Stana-Kleinschek Karin,
Umut Evrim, Kruk Danuta. Aspects of structural order in 209 Bi-containing
particles for potential MRI contrast agents based on quadrupole enhanced relaxation.
In: Molecular Physics, 117:7-8, 935-943 (2018), DOI:
10.1080/00268976.2018.1511869

5. Hermann Scharfetter, Roland Fischer, Paul Krassnig, Martin Thonhofer, Fe-
lix Theyer and Christian Gösweiner. Tris(2-Methoxyphenyl)Bismuthine Polymor-
phism Characterized by Nuclear Quadrupole Resonance Spectroscopy.
In: Crystals, 9(9), 446 (2019), DOI: 10.3390/cryst9090446

6. Kruk Danuta, Gösweiner Christian, Masiewicz Elzbieta, Umut Evrim, Sampl
Carina and Scharfetter Hermann. Model – free approach to quadrupole spin relax-
ation in solid 209Bi-aryl compounds.
In: Phys. Chem. Chem. Phys., 2018,20, 23414-23423 (2018), DOI:
10.1039/C8CP03848A

7. D. Kruk, E. Umut, E. Masiewicz, C. Sampl, R. Fischer, S. Spirk, C. Goesweiner
and H. Scharfetter. 209Bi quadrupole relaxation enhancement in solids as a step to-
wards new contrast mechanisms in magnetic resonance imaging.
In: Phys. Chem. Chem. Phys., 2018,20, 12710-12718 (2018), DOI:
10.1039/C8CP00993G

https://doi.org/10.1103/PhysRevX.8.021076
https://doi.org/10.1103/PhysRevX.8.021076
https://doi.org/10.1080/00268976.2018.1519201
https://doi.org/10.1080/00268976.2018.1519201
https://doi.org/10.1080/00268976.2020.1743888
https://doi.org/10.1080/00268976.2018.1511869
https://doi.org/10.1080/00268976.2018.1511869
https://doi.org/10.3390/cryst9090446
https://doi.org/10.1039/C8CP03848A
https://doi.org/10.1039/C8CP03848A
https://doi.org/10.1039/C8CP00993G
https://doi.org/10.1039/C8CP00993G


12 Chapter 1. Introduction and motivation

8. Bödenler Markus, Basini Martina, Casula Francesca Maria, Umut Evrim,
Gösweiner Christian, Petrovic Andreas, Kruk Danuta, Scharfetter Hermann.
R1 dispersion contrast at high field with fast field-cycling MRI.
In: Journal of Magnetic Resonance 290, 68–75 (2018). DOI:
10.1016/j.jmr.2018.03.010

9. Bödenler Markus, de Rochefort Ludovic, Ross P. James, Chanet Nicolas, Guil-
lot Genevieve, Gareth R. Davies, Gösweiner Christian, Scharfetter Hermann,
Lurie David J., Broche Lionel M. Comparison of fast field-cycling magnetic reso-
nance imaging methods and future perspectives.
In: Molecular Physics, 117:7-8, 832-848, DOI: 10.1080/00268976.2018.1557349

1.1.2 Conference participations

• 2nd Workshop of Nuclear Magnetic Resonance Relaxometry, 04.02.2019 -
06.02.2019, Prague, Czech Republic (Talk)

• Conference on NMR Relaxometry and Related Methods, 29.01.2018-31.01.2018,
Torino, Italy (Talk)

• 10th Conference on Fast Field-Cycling NMR Relaxometry, 05.06.2017 -
07.06.2017 Mikolajki, Poland (Talk)

• ISMRM 2017 Congress, 22.04.2017-27.04.2017, Honolulu, USA (Poster Session)

• ESMRMB 2016 Congress, 29.09.2016-01.10.2016, Vieanna, Austria (Talk)

https://doi.org/10.1016/j.jmr.2018.03.010
https://doi.org/10.1016/j.jmr.2018.03.010
https://doi.org/10.1080/00268976.2018.1557349


13

Chapter 2

Theory review

Within the limited frame of journal articles, theory parts are typically given in a
compact style omitting longer derivations and explanations. Thus, the following
sections are meant to review the origin of the used theory just up to the point when
they are introduced in the articles. The discussion comprises historical development,
approximations and limiting cases of validity.

2.1 Nuclear electric quadrupole Hamiltonian

The first reported observation of zero field quadrupole resonance dates back to 1947,
when Nierenberg et al. [43] showed 23Na halides (I=3/2) resonance lines with the
molecular beam method at very low magnetic field. Pure quadrupole resonance
was observed first by Dehmelt and Krüger [44, 45] for the chlorine isotopes 35Cl and
37Cl in solid transdichloroethylene. The theory of nuclear quadrupole interactions in
solids was described first by R.V. Pound [46] in 1950 whereas the expression for the
scalar nuclear quadrupole moment Q was given much earlier by H. B. G. Casimir
[47] in 1936. A first very comprehensive review of the phenomenon summarizing
experiments and theory until 1958 is given by T.P. Das and E.L. Hahn [42].

Below, the quantum mechanical Hamilton operator of the interaction associated
with a nuclear quadrupole moment in an electric field gradient is derived in con-
densed form, following the book Principles of Magnetic Resonance of C. Slichter [48]
and an article of Cohen and Reif [49].

Classically, the interaction energy E associated with a charge distribution ρ(x) of
a nucleus with atomic number Z and total electric charge Ze in an external electro-
static potential V(x) is

E =
∫

ρ(x)V(x)d3x , (2.1)

integrated over the volume of the nucleus where x are Cartesian coordinates. Taylor-
expanding V(x) about the origin (nuclear center of mass) gives

E = V(0)
∫

ρ(x)d3x + ∑
i

Vi

∫
xiρ(x)d3x +

1
2! ∑

i,j
Vi,j

∫
xixjρ(x)d3x + ... (2.2)
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where xi (i = 1, 2, 3) stands for cartesian coordinates x, y and z and with Vi ≡ ∂V
xi
|0

and Vij ≡ ∂2V
xixj
|0. Vij is the electric field gradient (EFG) tensor which must satisfy the

Laplace equation ∇2V = 0. This has the consequence that Vij is traceless:

∑
i

Vii = 0 . (2.3)

The first term of equation 2.2 corresponds to the electrostatic energy of a point
nucleus. The second term contains the electric dipole moment of the nucleus, which
is zero. The only term depending on the orientation of the nucleus within the poten-
tial (and thus spin dependent) is the third one, containing the nuclear quadrupole
moment tensor Q′ij =

∫
ρ(x)xixj∂

3x and the EFG tensor Vij (higher order terms can
be neglected). Both Q′ij and Vij are symmetric, second rank tensors.

It is convenient to use the definition

Qij =
∫ [

3xixj − δijx2] ρ(x)∂3x , (2.4)

which corresponds to a subtraction of spherically symmetric terms from the
quadrupole tensor Q′ij and makes Qij traceless (∑i Qii = 0). Equation 2.4 expressed
in Qij gives ∫

xixj∂
3x =

1
3

[
Qij +

∫
δijx2ρ(x)∂3x

]
. (2.5)

which allows to rewrite the remaining, third term of equation 2.2:

E =
1
6 ∑

ij

[
VijQij + Vijδij

∫
x2ρ(x)∂3x

]
(2.6)

The second term vanishes due to equation 2.3 and one gets

E =
1
6 ∑

ij
VijQij . (2.7)

To find the quantum mechanical pedant of the classic energy E (the Hamilton oper-
ator Ĥ), ρ(x) of the nucleus must be replaced by the quantum mechanical operator
ρ̂(x):

ρ̂(x) = e
Z

∑
k=1

δ(x− xk) (2.8)

Thus, the quadrupole operator Q̂ij can be found by substituting ρ in equation 2.4
with ρ̂:

Q̂ij =
∫ [

3xixj − δijx2] ρ̂(x)∂3x

= e
Z

∑
k=1

∫ [
3xixj − δijx2] δ(x− xk)∂

3x

= e
Z

∑
k=1

[
3xikxjk − δijx2

k
]

(2.9)
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The quadrupole Hamiltonian is then:

ĤQ =
1
6 ∑

ij
VijQ̂ij . (2.10)

In the quantum mechanical description, one is interested in finding the matrix ele-
ments of ĤQ with respect to the nuclear wave functions |Im〉, characterized by the
nuclear spin number I and the magnetic quantum number m, labelling the orien-
tation of the nuclear spin. To describe quantum mechanical spin systems, the es-
tablished Dirac-notation (Bra-Ket notation) is used throughout the thesis. As a re-
minder, important eigenvalue and commutation relations for the components of the
total nuclear angular momentum operator Î are listed below, where the z-axis is cho-
sen for projecting the orientation of m (quantization axis):[

Îi, Îj

]
= ih̄εijk Îk[

Îi, Î2
]
= 0

Î2|Im〉 = h̄2 I(I + 1)|Im〉
Îz|Im〉 = h̄m|Im〉

(2.11)

For convenience, ladder operators are defined for rising or lowering m of a state for
given I:

Î± = Îx ± i Îy

Î+|Im〉 = h̄
√

I(I + 1)−m(m + 1)|I, m + 1〉

Î−|Im〉 = h̄
√

I(I + 1)−m(m− 1)|I, m− 1〉[
Î+, Î−

]
= 2h̄ Îz ,

[
Î2, Î±

]
= 0 ,

[
Îz, Î±

]
= ±h̄ Î±

(2.12)

In quadrupole resonance it is sufficient to consider only the nuclear ground
state as the separation to the first excited state is much larger than the quadrupolar
interaction. This means that it is sufficient to consider only matrix elements
〈Im|ĤQ|Im′〉 diagonal in I and considering only the submatrix ρmm′ to describe the
charge denstiy. This argument also makes clear, why the first and second term of
the energy in equation 2.2 are of no interest to the quadrupolar interaction: First,
the interaction is only depending on m and thus depending on orientation and
second, the nuclear ground state wavefunction has definite parity which makes
ρmm′(−x) = ρmm′(x) and the dipole moment vanishes.

However, the quadrupole operator of equation 2.9 is very complicated to han-
dle as it is containing all nuclear particles (many-particle problem). To overcome
this situation, the next step is to express the matrix elements of the quadrupole
operator Q̂ij in components of the angular momentum operators Î instead of
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Cartesian coordinates x. To achieve this, use is made of the equation

〈Im|Q̂ij|Im′〉 = C〈Im|3
2
( Îi Îj + Îj Îi)− δij Î2|Im′〉 (2.13)

which will not be derived completely here but which shall be sketched briefly:

Central for the derivation of equation 2.13 is the Wigner-Eckart theorem:

〈J′m′|TJm|J′′m′′〉 = C(J′′ J J′; mJ′′mmJ′)〈J′‖TJ‖J′′〉 , (2.14)

where m, m′ and m′′ are z-components of the total angular momenta J, J′ and J′′ of a
set of wave functions. C(J′′ J J′; mJ′′mmJ′) are the Clebsch-Gordan coefficients and TJm

are irreducible tensor operators which can be constructed from angular momentum
operators obeying the commutation rules

[J±, TJm] =
√

J(J + 1)−m(m + 1)TJm±1

[Jz, TJm] = mTJm

(2.15)

The quantity 〈J′‖TJ‖J′′〉 (sometimes called reduced matrix element) is constant for
given J,J′,J′′ but independent of m, m′ and m′′. Thus, equation 2.14 states that ma-
trix elements diagonal in I of traceless, symmetric, second rank tensors TJm are
proportional. The Clebsch-Gordan coefficient is the same for all functions TJm but
〈J′‖TJ‖J′′〉 depends on the variable used to construct TJm.

An important conclusion from that is, that TJm’s constructed from different vari-
ables q and p can be related via

〈J′m′|TJm(q)|J′′m′′〉 = 〈J′m′|TJm(p)|J′′m′′〉 〈J
′‖TJ(q)‖J′′〉
〈J′‖TJ(p)‖J′′〉 , (2.16)

Practically, this equation allows to relate TJm(J), constructed from angular momen-
tum operators J, to TJm(x), constructed from a coordinate x. The equation is also
valid for linear combinations of the form ∑ amTJm(J) and ∑ amTJm(x). Derivation of
the Wigner-Eckart theorem is given in [48].

An example for a set of irreducible tensor operators TJm(J) fulfilling equation
2.15 is

T22 = J2
+ = (Jx + i Jy)

2

T21 = −(Jz J+ + J+ Jz)

T20 =

√
2
3
(3J2

z − J2)

T2−1 = Jz J− + J− Jz

T2−2 = J2
− = (Jx − i Jy)

2

(2.17)
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Recalling the commutator relations of J, its components Jx,Jy,Jz and the coordinate x:

[Jx, y] = iz[
Jx, Jy

]
= i Jz

(2.18)

makes clear that simply replacing Jx,Jy,Jz in equation 2.17 with x,y,z will produce a
new set of irreducible tensor operators TJm(x) also fulfilling equation 2.15.

T22 = (x + iy)2

T21 = −2z(x + iy)

T20 =

√
2
3
(3z2 − x2)

T2−1 = 2z(x− iy)

T2−2 = (x− iy)2

(2.19)

Caution is necessary only when the components of operators do not commute
among themselves, as it is the case for T21(J) where the symmetrized product
Jz J+ + J+ Jz must be used instead of 2J+ Jz.

This concept can be applied to the quadrupole operator as derived earlier
(equation 2.9)

Q̂ij = e
Z

∑
k=1

[
3xikxjk − δijx2

k
]

(2.20)

depending on Cartesian coordinate x and forming a linear combination F(x) =

∑ amTJm(x) of expressions from 2.19. Also functions depending on the compo-
nents of the total angular momentum Î of the nucleus can be constructed G(Î) =

∑ amTJm(Î) by simply replacing x, y, z with Îx, Îy, Îz in the same manner as demon-
strated above. This is justified, as also the components of Î fulfil commutator re-
lations similar to equation 2.18. This becomes evident from the definition of their
commutation relations with the Cartesian coordinates: Îi is defined as

Îi =
Z

∑
k=1

l̂ik + ŝik =
Z

∑
k=1

Îi,k (2.21)

where l̂ik and ŝik are the i-th components of the orbital and spin angular momentum
of the k-th nucleus. They fulfil the following commutation relations, which is leading
to a relation similar to equation 2.18:[

l̂xk, yk

]
= izk and [ŝxk, yk] = 0 −→

[
Îxk, yk

]
= izk (2.22)
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To finally evaluate the matrix elements of the quadrupole operator as a function
of Î instead of x of equation 2.20, use is made of equation 2.16:

〈Im|Q̂ij|Im′〉 = 〈Im|e
Z

∑
k=1

[
3xikxjk − δijx2

k
]
|Im′〉 = 〈Im|F(x)|Im′〉

= 〈Im|G(Î)|Im′〉 〈I‖TJ(x)‖I〉
〈I‖TJ(Î)‖I〉

= 〈Im|3
2

(
Îi Îj + Îj Îi

)
− δij Î2|Im′〉C ,

(2.23)
which is the envisaged expression presented in equation 2.13. As the components Îi

do not commute among each other, the symmetrized product 1
2

(
Îi Îj + Îj Îi

)
has to

be used instead of Îi Îj.

The constant C originates from the ratio of the reduced matrix elements in
equation 2.23 and still remains to be determined. This can be done by defining
the maximum expectation value of the quadrupole moment operator for the case
m = m′ = I and i = j = z (which is the state in which the component of Î along the
z-axis is a maximum) as

〈I I|Q̂zz|I I〉 = 〈I I|e
Z

∑
k=1

[
3zk − x2

k
]
|I I〉 ≡ eQ , (2.24)

where eQ is the electric quadrupole moment of the nucleus in units of the proton charge
e. The right hand side of equation 2.23 yields

C〈I I|3 Î2
z − Î2|I I〉 = C

[
3I2 − I(I + 1)

]
= C [I(2I − 1)] , (2.25)

combining equations 2.24 and 2.25 one arrives at

C =
eQ

I(2I − 1)
. (2.26)

The quadrupole Hamiltonian of equation 2.10 then reads as:

ĤQ =
eQ

6I(2I − 1) ∑
ij

Vij

[
3
2

(
Îi Îj + Îj Îi

)
− δij Î2

]
(2.27)

It is interesting to note that even though the quadrupole tensor has nine compo-
nents, in the Hamilton operator only one scalar constant eQ is needed. This is due
to the fact that the nucleus can be described by a state of definite angular momen-
tum which is equivalent to the classic statement of cylindrical symmetry. eQ only
measures the departure from a spherical symmetry. This can be shown by taking the
difference between the charge distribution parallel and transverse to the symmetry
axis z: ∫

z2ρ∂3x−
∫

x2ρ∂3x =
∫
(z2 − x2)ρ∂3x =

1
2

∫
(2z2 − x2 − y2)ρ∂3x =

1
2

∫
(3z2 − x2)ρ∂3x

(2.28)
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The last expression corresponds to the classical quadrupole moment as in equation
2.4. eQ can be positive, indicating an elongated cigar-shaped charge distribution
along the z-axis. If eQ is negative, it means the charge distribution is flattened along
z.

Expression 2.27 can further be simplified by choosing a representation of the
EFG tensor Vij in the principal axis system (PAS) where Vij = 0 for i 6= j in which
the tensor is diagonal:

ĤQ =
eQ

6I(2I − 1)

[
Vxx(3 Î2

x − Î2) + Vyy(3 Î2
y − Î2) + Vzz(3 Î2

z − Î2)
]

. (2.29)

Making use of equation 2.3 and introducing the definitions

eq = Vzz

η =
Vxx −Vyy

Vzz

(2.30)

where eq is the strength of the electric field gradient q in units of e and η is called
asymmetry parameter, equation 2.29 becomes

ĤQ =
e2qQ

4I(2I − 1)

[
(3 Î2

z − Î2) + η( Î2
x − Î2

y)
]

. (2.31)

The term e2qQ is the so-called quadrupole coupling constant Qcc which gives the
strength of the quadrupole interaction. The asymmetry parameter η describes the
departure of the EFG from cylinder symmetry and can have values from 0 (cylin-
der symmetric) to 1. These two parameters are enough to describe the electric
quadrupole interaction of a I > 1/2 nucleus.

If, however, the EFG is spherically symmetric or has cubic symmetry one
gets Vxx = Vyy = Vzz and Vij = 0, which means the quadrupole interaction
vanishes due to equation 2.27. Also, only charges external from the nucleus
contribute to the EFG. The traceless EFG tensor is also the reason for averaging of
the quadrupole interaction in liquids due to rapid molecular tumbling (see e.g. [50]).

However, the representation of the quadrupole Hamiltonian (equation 2.31)
might differ slightly in the following chapters (see equations 3.3 and 4.1a) as it is
often necessary to express the Hamiltonian in a non-principal (arbitrary) set of axis
relative to a reference frame. This requires rotating the coordinate system using
Wigner-matrix elements, which is more conveniently done by using raising and
lowering angular momentum operators and writing ĤQ in terms of the sum of
irreducible tensor products. Also, raising and lowering operators provide useful
quantum mechanical selection rules.
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Electric field gradient and quadrupole coupling constant

Due to the proportionality of Qcc to the electron distribution ρ(x), no other spec-
troscopic method (besides microwave spectroscopy) gives such a direct access to
chemical bonding as NQR spectroscopy. The variation of the electric field is related
to the molecular electronic structure which connects Qcc with structural information
of the compound under observation. Provided the quadrupole moment Q of the
nucleus is known, the quantity eq, which is related to the EFG, can be derived from
experiments and compared with theoretical models. However, exact values of Q are
not always available or afflicted with errors. A catalogue is given e.g. by Raghavan
[51] and Stone [52]. For the particular case of 209Bi the work of Teodoro and Haiduke
[53] presents a calculation of Q as well as summarizes earlier results.

However, the contribution of the EFG (eq in Qcc) can be computed from the
charge distribution surrounding the nucleus of interest. The EFG depends on the
second derivatives Vij of the potential V which arises from external charges of sur-
rounding electrons and nuclei. From the preceding derivation of the quadrupole
Hamiltonian it is known that in the PAS computation of Vzz is sufficient. A charge e
at a point x produces a component Vzz of the EFG of

Vzz = e
3z2 − r2

r5

r2 = x2 + y2 + z2
(2.32)

where r is the distance from the origin. In spherical coordinates one gets:

Vzz = e
3cos2(θ)− 1

r3 (2.33)

From the 1/r3 dependence of equation 2.33 it is clear that charges close to the nu-
cleus are most important. This means, that in principle electrons belonging to the
atom containing the nucleus should contribute most. This is, however, not true for
closed shells where the charge distribution is spherically symmetric. In that case, no
quadrupole coupling occurs. Important contributions come from single p-electrons,
as calculated e.g. in [48]

Vzz = −e
4
15

(
1
r3

)
(2.34)

where
( 1

r3

)
is the average over the p-orbit. Relation 2.34 implies that large Z-atoms

(r ∼ 1
Z ) will have large field gradients which is confirmed by numerous observa-

tions.
For deriving the total electric field gradient arising in a molecule at the nucleus

of interest, one must consider the charge density ρ(x) instead of a point charge and
integrate equation 2.33 over the whole volume ∂3x. Also, in quantum mechanical
terms ρ(x) is replaced by the use of wave functions ψ∗ψ. Additionally, contributions



2.1. Nuclear electric quadrupole Hamiltonian 21

from external nuclei and electrons are separated and one arrives at [54]:

eq = Vzz = −e
∫

ψ∗
(

3cos2(θ)− 1
r3

)
ψ∂3x + ∑

i
Zie

(
3cos2(θi)− 1

R3
i

)
, (2.35)

where the index i goes over all nuclei in the molecule, treated as point charges.
The first therm in equation 2.35 is related to the electronic structure of the molecule,
whereas the second term is related to the geometry only and can be calculated straight
forwardly (including averaging over vibrational states might be necessary). From
this equation it becomes clear, that any structural change of the compound affecting
its electronic structure due to e.g. phase transition, ligand exchange, different lattice
site or another alteration, will be visible in NQR spectroscopy. This is why one can
speak of a unique "fingerprint" in terms of NQR frequencies for each NQR active
compound in a particular state at a particular temperature.

Calculation of the electronic part requires exact knowledge of the atomic and
molecular wave functions which still can be a very hard problem to tackle, depend-
ing on the system under observation. Roughly, three branches can be distinguished:
Molecular crystals, ionic and metallic materials.

For this reason, approximate methods have been used from the early days of
NQR spectroscopy, where more familiar chemical parameter as orbital populations,
bond hybridization and ionic character are used. Pioneer work on the calculation of
EFG’s was conducted by Townes and Dailey [55] and are also addressed in [54].

Very often one is only interested in relative changes of Qcc when a compound
changes slightly from one situation to another, e.g. due to phase transitions or
ligand substitution. Also bond character within similar compounds might be of
interest. Weiss and Wigand [56] have studied correlations of NQR parameter and
chemical bond parameters as e.g. ionic character, ionicity, electronegativity, bond
length and angles.

Modern ab initio quantum chemistry (QC) methods enable the calculation of
the electronic charge distribution of a molecular system [57, 58] from which molec-
ular properties, as e.g. the EFG can be derived. QC typically uses the Hartree-Fock
method for overcoming the many body problem and solving the Schrödinger
equation in combination with the density functional theory (DFT) for treating
electron correlations correctly to determine the electronic structure of chemical
compounds. However, exact knowledge of appropriate basis sets describing atomic
and molecular orbitals are of importance, which can become problematic for high Z
atoms. Also, relativistic effects might start to play a role for larger atoms. Of course,
also the geometry of the compound should be known as exactly as possible which
can be found either by experimental or theoretical optimization methods or both.

There are numerous QC packages available, as e.g. Gaussian, Quantum
Espresso, CASTEP, Wien2K, to only mention a few; all of which offering strength
and weaknesses for particular applications. Most of them are quite user friendly an
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it is not necessary to reconcile all mathematical details or computational methods
(but of course understanding of the methods is required for interpretation of the
outcomes). Even though computational power is quite impressive nowadays,
enabling for accurate results in reasonable time, finding the adequate functional,
basis set and corrections for the particular system can become quite cumbersome
and requires special expertise in computational chemistry as well as experience. A
sophisticated QC study for the calculation of the EFG at the Bi-site of triphenylbis-
muth will be presented in chapter 3.

Variation of Qcc is very large. Not only the EFGs can be quite different from
system to system, also the quadrupole moments (measured in barns, 1 b = 10−28

m2) of the resonant nuclei can differ by several orders. For example, in the quite
extensive NQR spectroscopy of the I = 1 nucleus 14N (contained in many drugs,
medicines or explosives), transition frequencies below 1 MHz down to just a few
kHz are observed [59] [60]. In contrast, transition frequencies much beyond 100
MHz are found in high mass, high spin nuclei as e.g. 209Bi or 121Sb and 123Sb [61,
62]. A quite large collection of chemical compounds and the NQR parameters of the
contained quadrupole nuclei is given in the Landolt-Börnstein catalogue [63].

2.1.1 The NQR spectrum

Pure quadrupole transition frequencies

Energy levels Em of the pure quadrupole spin system can be found by calculating the
matrix elements of ĤQ with respect to quantum states described by a complete set of
orthonormal wave functions. An appropriate base is the Zeeman basis {|Im〉} obey-
ing commutation relations and eigenvalue equations with respect to components of
the angular momentum operator Î as already presented in equations 2.11 and 2.12.
Additionally, recalling

〈I′m′|Im〉 = δmm′δI I′

∑ |Im〉〈Im| = 1
(2.36)

holds. A diagonal matrix representation of the Hamiltonian ĤQ contains the wanted
energy levels

〈Im|ĤQ|Im〉 = Em . (2.37)

In case of half-integer spins, the I + 1/2 energy levels are doubly degenerate in m,
reflecting the symmetry of the quadrupole Hamiltonian. For integer spins, the de-
generacy is broken and an odd number of energy levels evolves giving I doubly
degenerate levels and one non degenerate level.

For an axially symmetric EFG (η = 0) ĤQ is diagonal with respect to {|Im〉} and
one can easily derive:

Em =
Qcc

4I(2I − 1)
(
3m2 − I(I + 1)

)
(2.38)
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Experimentally, transitions between energy levels are usually induced by the appli-
cation of a short but powerful pulse of an oscillating magnetic field in the radio-
frequency (RF) regime produced by a solenoid coil. This can be described by the
time dependent operator

ĤRF(t) = −h̄BRFγ ÎxRF cos(ωRFt + φ) , (2.39)

where xRF is the direction of the RF field in the laboratory frame, γ is the gyromag-
netic ratio of the nucleus, ωRF = 2πνRF is the angular frequency of the magnetic AC
field with an amplitude BRF and phase φRF. The pulse represents a time dependent
perturbation of the spin system coupling with the magnetic moment of the nucleus
which allows for ∆m = 0 and ∆m = ±1 transitions only. Thus, observable signals
emerge at frequencies νQ = Em+1 − Em.

νQ,m,m±1 =
3Qcc

4I(2I − 1)
|(2m± 1)| (2.40)

However, for the general case of η 6= 0 this selection rule becomes weak as due to the
required diagonalization of ĤQ there is a mixing between ∆m = ±2 Zeeman states.
Analytical approximations for this purpose are available, however, diagonalization
is most conveniently done by numerical methods, e.g. provided by MATLAB R©. The
plot in figure 2.1 illustrates the behaviour of pure quadrupole spin transitions for
a nuclear spin number I=9/2 depending on η for Qcc = 668 MHz. The effect of
η 6= 0 is, that the transitions are not equidistantly separated any more. The color
code indicates the Boltzmann-weighted transition probability

Wmm′ = |〈Im|ĤRF|Im′〉|2 (2.41)

of spins in a powder sample (300 K) under the action of the perturbation HRF (as
introduced in equation 4.5) and multiplied by the population difference according
to the Boltzmann distribution. The labelling of the transitions in figure 2.1 denotes
the involved states in case of η = 0. For non-zero η, the states are mixed and the
selection rule ∆m = 1 becomes weak and so also double quantum coherences can
appear.

Typically, experimentalists are interested in the calculation of the compound
specific and temperature dependent NQR parameters Qcc and η from measure-
ments of the pure NQR transition frequencies νQ. This can be done when at least
two transitions at a particular sample temperature have been determined and
assigned (as performed e.g. in chapter 3). For the case I = 3/2, however, only one
transition is available which requires the application of an external magnetic field or
the use of 2D nutation spectroscopy [64] to enable the determination of Qcc and η.
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FIGURE 2.1: Plot of νQ versus η for a I = 9/2 nucleus with an arbitrary Qcc =
668 MHz for a powder sample at 300 K. The color indicates the theoretical tran-
sition probability with respect to Îx (equation 2.41), multiplied by the population
difference according to the Boltzmann distribution and normalized to the maxi-
mum value. The labelling of the transitions denotes the involved states in case of
η = 0.
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Line broadening and peak shape

As in any spectroscopic method, one expects a certain shape and broadening of the
observed resonances which contain valuable information for e.g. materials science,
provided their origin can be explained. It is possible to discriminate between static
and dynamic contributions to line broadening, depending on its source. Also, ho-
mogeneous and inhomogeneous broadening effects can be distinguished if either all
nuclei are affected equally or differently. An early review is given in [42] which shall
only be summarized briefly here. Also in [65] some aspects are discussed.

The most obvious static contribution to the linewidth are crystal imperfections,
leading to a certain distribution of EFGs in the sample from crystal site to crystal
site. Sources of this inhomogeneous broadening are impurities, lattice defects and
even small temperature gradients across the sample. The resulting randomly dis-
tributed EFG variations are inhomogeneous and typically described by a Gaussian
distribution.

Also of static nature, but homogeneous, are magnetic interactions between
neighbouring nuclei. There is the direct magnetic dipole-dipole interaction between
the resonant nucleus and neighbouring nuclei. Also, there is the indirect spin-spin
interaction (also called J-coupling) transferred through bonding electrons. These ef-
fects can generate hyperfine splitting of the spectra of the resonant nuclei or lead to
a line broadening, when the distance between the nuclei is not very close. However,
these effects are not in the focus of this work.

Dynamic broadening of the transitions results from the finite lifetime of excited
states during excitation and subsequent relaxation of the spin system. The sources
for spin relaxation are molecular and lattice dynamics producing fluctuations of the
EFG at certain frequencies. These fluctuations can induce transitions between energy
levels and thus redistribute the spin population to the equilibrium distribution upon
excitation. The line broadening is inversely proportional to the relaxation time which
means that fast relaxing (T2) systems show a broader peak shape. In case of mono
exponential decay, the shape will be Lorentzian. This issue is discussed in more
detail in chapter 5.

The contributions of each influence to the total linewidth can vary quite strongly
when comparing different systems. Typically, for molecular crystals one observes
linewidths from below 1 kHz up to several 10 kHz. For example, in high quality
crystals, static broadening might play a minor role and broadening is predominantly
due to finite lifetime of the excited states and so the lineshape will be Lorentzian.
However, also relaxation times do vary a lot (ms to µs), and so also here quite dif-
ferent values are observed. Both linewidth and shape depend very much on the
system under investigation and especially the linewidht can be quite sensitive. It is
therefore important to have a close look on all possible nuclear interactions and the
molecular dynamics of the sample to interpret the lineshape in a reasonable manner.
Particular experimental methods (as e.g. different pulse sequences, high resolution
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measurements, measurement of the relaxation times, thermostatisation) and careful
sample preparation can help to analyse data and apply theoretical models.

Excitation and free magnetic induction decay

The formation of a free magnetic induction decay upon resonant excitation of a
quadrupole spin ensemble under the action of a radio frequency (RF) pulse is re-
capitulated briefly. Using a pulse type spectrometer is not the only possibility to
access NQR transitions but by far the most popular one and it also has been used to
gather data presented in the following chapters.

One of the earliest descriptions is given by Bloom et al. (1955) [66]. Ever since
the first descriptions of the NQR theory, comparisons to NMR pulse excitation are
drawn. This is, however, a tricky task as the origins of the interactions are quite
different. NMR relies on a magnetic interaction of the nuclear dipole moment of the
nucleus and an external magnetic field, whereas NQR relies on an electric interaction
of the nuclear quadrupole moment with its surrounding EFG. The similarity arises
due to the excitation, which is in both cases coupling of an alternating magnetic
field with the magnetic dipole of the nucleus able to manipulate nuclear spin states.
Already in [66], the similarity of the solutions for NQR to the two level Zeeman case
(as in NMR) is pointed out.

Three different ways to derive an equation for the signal induced in a coil after
a single pulse will be sketched briefly in the following paragraphs. The first one (1)
follows [66], and uses time dependent perturbation theory to solve the Schrödinger
equation for the total Hamiltonian for a I=3/2 spin ensemble with symmetric field
gradient (η=0). The second route (2) follows the more recent work of Cordier et
al. (2005) [67], who applied density matrix theory to derive a signal equation for
a I=1 spin system, also for η=0. The third route (3) follows a numerical approach
according to Possa et al. [68].

In all approaches, the RF-pulse Hamiltonian ĤRF (see equation 4.5) is treated
as a time dependent perturbation of the much larger static (time independent)
quadrupole Hamiltonian ĤQ (see equation 2.31):

ĤQ � ĤRF . (2.42)

This condition is of importance to be able to apply time dependent perturbation
theory [69] and for several simplifications applied in the following derivations.

(1) Bloom et al. (1955) [66] In time dependent perturbation theory, the Schrödinger
equation

ih
∂ψ

∂t
= Ĥtot (2.43)

is solved for the total Hamiltonian

Ĥtot(t) = ĤQ + ĤRF(t) (2.44)
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for a linearly polarized RF pulse ĤRF(t) (equation 4.5 in x-direction). Use is then
made of the Ansatz for the wave function ψ

ψ =
m=3/2

∑
m=−3/2

Cm(t)φme−i(Em/h̄)t , (2.45)

where φm are the eigenfunctions of the time independent Schrödinger equation
ĤQφm = Emφm. Cm(t) are time dependent coefficients which are determined by sub-
stituting equation 2.45 into 2.43 leading to a set of differential equations for Cm(t).
Use is then made of the near-resonance conditions in angular frequencies ω = 2πν:

ωRF ≈ ωQ (2.46)

Next step is to evaluate the expectation value of Îx which is proportional to the nu-
clear magnetization in the xy plane which produces the free induction signal.

〈 Îx〉 = 〈ψ∗| Î+|ψ〉 = (
√

3/2)sin(
√

3ω1tw)sin(ω0(t− tw)) (2.47)

where tw is the pulse length, ω1 = γBRF represents the strength of the rf-field with
amplitude BRF and the quantity

√
3ω1tw = β is the flip angle through which the

magnetization is rotated from the equilibrium. 〈 Îy〉 and 〈 Îz〉 are zero in case of linear
polarized excitation. This result is identical for all quadrupole transitions and differs
only in multiplicative constants.

The signal S for a single pulse applied for a duration tw, taking into account a
powder sample with randomly oriented EFGs at an angle θ with respect to the coil
as well as the induction law, reads as

S ∼
∫ π

0
sin2θsin

(√
3ω1twsin(θ)

)
∂θ (2.48)

In the later work of Weber and Hahn [70] (1960), the treatment is expanded to circu-
larly polarized RF-pulses, consecutive double pulses and the application of a small
external magnetic field.

(2) Cordier et al. (2005) [67] A similar result is gained for I=1 but also for η = 0
in [67], derived via a different route. Starting point is the Liouville von Neumann
equation

dρ

dt
= i
[
ρ, Ĥtot

]
(2.49)

where ρ is the spin density operator. After a rotating frame transformation, similar
to the procedure used in NMR, using

T = exp(iωRF Îzt) (2.50)
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and the decomposition of the RF-Hamiltonian into two counter rotating terms with
half amplitude, an effective total Hamiltonian is found which reads as:

Ĥe f f = ĤQ + ωRF Îz −
ω1√

2
Îx . (2.51)

The spin density after the pulse (ap) of length tw is then found via the equation

ρap = exp(−iĤe f f tw)ρeqexp(iĤe f f tw) (2.52)

using the equilibrium spin density ρeq. After finding a proper basis for a spin I = 1
ensemble and expressing ρap in matrix representation, use is made of the resonance
conditions in equation 2.46. Then, the quantity

〈 Î+〉 = Tr(ρ Î+) (2.53)

leads to
〈 Î+〉 = (ω0/

√
2)sin(ω1tw) (2.54)

which is the same form as equation 2.47 from above (in the rotating frame). Again,
considering averaging over a powder (micro-crystallites with EFG angle θ with re-
spect to the coil) and the induction law, the signal S can be found

S ∼
∫ π

0
sin2θsin (ω1twsin(θ)) ∂θ , (2.55)

which differs from equation 2.48 only by a multiplicative factor. This approach is
generalized to arbitrary η and spin number in [71].

Physically, the results can be interpreted as a macroscopic oscillating nuclear
magnetization along the x axis. Also, the equations are of the same form as for the
NMR case except from different flip angles. In [67], it is shown that the NQR flip
angle equals the NMR flip angle times a factor of 2. This is due to the fact, that
in NMR, Îz is involved in the Hamiltonian, whereas it is Î2

z in the NQR case. The
consequence is, that in NQR both oscillation directions of the RF field from the
coil contribute to the spin flip (rotation of Î2

z ), whereas in NMR only one rotation
direction is active. A quite similar explanation is given in [66] by using a quasi
classical vector model. However, these simple pictures only apply when assuming
a symmetric EFG with η = 0 and no external magnetic field applied. For the more
complicated cases one has to trust on the straightforwardly applied equations and
the entries in the density matrix.

The description and application of more complicated sequences than a single
pulse are given in the literature [42, 72, 73, 74] and follow, in principle, the strategies
presented above.
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(3) Possa et al. (2011) [68] As a third possibility, the work of Possa et al. is men-
tioned here, where a numerical approach is presented. It is universally applicable
to different spin numbers, pulse sequences and it is possible to include an external
magnetic field. The procedure is based on finding a solution for the spin density
operator using the interaction picture and the average Hamiltonian theory [75]. The
software, implemented in Mathematica, is available freely and can be accessed via a
link which can be found in [68]. The software also allows for implementing circu-
larly polarized RF excitation field which are of importance for solid state quantum
computing using NQR.

Remarks on the interpretation of signal formation

It is worth mentioning that signal formation in NQR is, for good reasons, often com-
pared to signal formation in NMR, as both can be described by a quantum mechan-
ical two level system. The excitation techniques (pulse sequences) applied in both
methods are indeed quite similar and theory shows that also the signal equations
are similar- at least for the simplest cases (NQR: axial symmetric field gradient, no
external field applied, well separated transitions; NMR: the Bloch equations). How-
ever, the visually comfortable, simple and widespread magnetization vector model
used in many NMR and MRI introductions is, under a critical look, not satisfying
for several applications and sometimes leading to misconceptions. Already the for-
mation of a simple π/2 pulse rises contradictions when viewed in the vector model
and being compared with quantum mechanical laws. Are there really just two pos-
sible directions (up and down) of the magnetization? How is it possible to transfer
half a quantum? Is there really something like a transition, a sudden quantum jump,
as in photon emission, happening? There are several reasons for the misconcep-
tions. Sometimes, the behaviour of a single spin is confused with the behaviour of
an ensemble. Also, classical and quantum mechanical explanations and pictures are
mixed. Both of them give valuable explanations and for the simplest cases, the clas-
sical description is completely sufficient and still must form the fundamental basis of
physical understanding (just because, our human perception is set, predominantly,
classical).

For a quantum mechanical treatment, an alternative can be the "balls and arrows"
explanation, as given in the book of Malcolm Levitt [72], visualizing populations
and coherences in the density operator formalism. "Mathematical minds" might be
completely happy with the entries of the spin density matrix and do not need any
pictures at all [76].

In a very interesting book from 2015, edited by Csaba Szántay, Jr. [77], a clarify-
ing discussion of the classical and quantum mechanical nuclear magnetic resonance
phenomena is started, trying to reconcile and straighten misconceptions in visual
and narrative explanations.
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As one example, the appearance of a quantum state after a π/2 pulse shall be
considered closer. Lets consider a general, arbitrary quantum state |ψ〉 of the two-
level I = 1/2 Zeeman spin system expressed by the two eigenstates | 1/2 〉 and
| − 1/2 〉 associated with the measurement of the spin component in z-direction:

|ψ〉 = a|1/2〉+ b| − 1/2〉 (2.56)

The weighting coefficients of this superposition of eigenstates a and b fulfil
| a |2 + | b | 2 = 1, as the probabilities of finding one of the eigenstates must
sum to 1. An analogue formulation, quite similar to the description of a classical
spin, is

|θ, φ〉 = cos(θ/2)|1/2〉+ sin(θ/2)| − 1/2〉exp(iφ) , (2.57)

where the polar angle θ reflects the amplitude of the up and down states and the
azimuthal angle φ their phase difference. While the phase of a single state is without
physical relevance, the phase difference in a superposition matters. Expression 2.57
is the so-called Bloch vector which can be defined for any quantum mechanical two-
level system. In the NMR case, this Bloch vector is proportional to the magnetic
moment in 3-D space. A transversal magnetization along the x-axis at time t=0 right
after excitation can be expressed by setting e.g. θ = 90◦ and φ = 0◦:

|ψ(t = 0)〉 = |θ = 90◦, φ = 0◦〉 = cos(90◦/2)|1/2〉+ sin(90◦/2)| − 1/2〉 . (2.58)

This is a weighted sum of energy eigenstates, also called stationary states. Stationary
states |ψE〉 have a well defined energy and the property of not evolving into any
other state in time, as long as the interaction does not change. Their time dependence
is only a linear phase evolution at the rate of their definite energy E

|ψE(t)〉 = exp(−iEt/h̄)|ψE(t = 0)〉 . (2.59)

If one is now interested in the time evolution of the transversal state in 2.58, it is
necessary to apply equation 2.59 to each term in equation 2.58. The result is

|ψ(t)〉 = cos(90◦/2)|1/2〉+ sin(90◦/2)| − 1/2〉exp(−iω0t) = |θ = 90◦, φ = ω0t〉
(2.60)

where ω0 = E1/2− E−1/2 is the energy difference of the two eigenstates representing
the precession frequency of the phase. This result is quite interesting, as it shows
that the signal detected in an NMR or NQR signal upon an 90◦ excitation is nothing
but the phase evolution of a superposition of eigenstates of the involved energy
levels. Therefore, the term transition, commonly used for the phenomenon which
is borrowed from photon emission, is in fact misleading, as no quantum jump or
transition is involved in the detection process. Despite that finding, throughout this
work the term "transition" is used, as it is the common expression in the literature
and has some practical advantages and carries elements of truth. There is indeed
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a statistical redistribution of the single spins in the ensemble, but what is being
measured is the oscillating coherence of two stationary energy levels.

Finally, the book of K. Blum [76] on density matrix theory is recommended,
where the concept of coherent superposition and its connection with signal for-
mation is described in general for two-level quantum systems ("quantum beats").
Excitation as well as relaxation of quantum systems is demonstrated and discussed
by the help of density matrix theory in a detailed and understandable way; besides
others, examples from magnetic resonance phenomena are given.

2.1.2 Applications of NQRS

Since its first theoretical description and experimental observation, NQR has in-
spired numerous ideas and possibilities for applications in different fields. Here,
without any deeper treatment, some of these shall be mentioned and references are
given. The essence of most of the applications is the outstanding sensitivity of the
EFG on the electronic environment created by the molecular structure of the sample
under investigation. Molecular or structural changes can be detected quite easily
and compounds have an individual NQR "fingerprint", reflected by the frequency
position of the observable spin transitions. However, there are several limitations:

• NQRS is applicable only to solid state samples (compare e.g. [78]).

• Only nuclei with a spin number I > 1/2 are detectable.

• Crystal symmetry (octahedral molecular configuration ) can lead to zero EFG
(e.g. BiF3 [79]).

• Rather weak signal strength and thus need for averaging many measurement
cycles.

• Problems for the hardware can arise from the very broad frequency range of
occurring transition frequencies (Hz to MHz). This requires the development
of spectrometers covering wide fr-bands by the use of resonator circuits (which
are narrow-band).

• Possibility of tricky constellations of relaxation times: Long T1 times require
long measurement times (besides the need for averaging). Short T2 can become
a problem due to ring-down effects from the transmit (excitation) circuit.

Still, many creative applications have been developed. A (by far not complete) list
of references is given below:

• Identification of pharmaceuticals and drugs: [80] [59] [81] [82]

• Detection of explosives: [82] [80] [83] [60] [84]

• Mining industry: [85] [86] [87]
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• Material science, crystallography, polymorphism: [56] [88] [89] [90] [91] [92]

• Quantum computing: [68]

• Atomic clock: [93]

• MRI contrast agent: [61]

• Molecular dynamics: [94]

• Temperature sensor: [95]
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2.2 Theory of spin relaxation

Theories for explaining spin relaxation phenomena in magnetic resonance have gone
through several steps of extensions and refinements since the first formulation by
F. Bloch in 1946 [2]. A first development was contributed by Bloembergen, Purcell
and Pound [18], who connected transition rates between energy levels with spectral
densities of field fluctuations. The next big step was the use of the density matrix
by Wangsness and Bloch [96]. The theory used in this thesis goes back to A. G. Red-
field1 (1965) [97], which is presented also in [48]. A compact review on the results,
conclusions and the derivation of the theory is given in a quite recent article (2007)-
compared to the first formulation- by the same author [98].

Before introducing the fundamental equations of relaxation theory, it makes
sense to start with some general comments about relaxation processes and how
thermal equilibrium of an open quantum system in contact with the classically
treated surrounding (lattice) is established. In the sense of thermodynamics relax-
ation is an irreversible process, meaning that the entropy of the total coupled system
increases during relaxation. This fact is somewhat problematic, as the quantum
mechanical equations of motions (Schrödinger and Liouville equation) - used to
describe spin dynamics - are strictly reversible. Therefore, relaxation must be
treated as a phenomenon of an ensemble of spins, which differs from the behaviour
of a single spin. In the derivation of the master equation (see section 2.2.1), the
treatment of this issue will be mentioned.

First, the definition of the thermal equilibrium and the driving force of relax-
ation in terms of the concept of statistical microstates and macrostates shall be
discussed 2. Lets start by assuming an ensemble of a large number of N spins µ1,
µ2,...µN occupying N different available states (corresponding to cells) in the fol-
lowing manner: spin 1 can be in cell 1, spin 2 in cell 2, spin 3 in cell 3: {µ1, µ2, µ3, ...}.
This would be one possible configuration- or microstate- defining the current state
of the system. Another possibility would be {µ3, µ1, µ2, ...}, which is essentially the
same microstate, as the spins are indistinguishable. A different microstate would
be {µ1µ2, , µ3, ...}, where the first cell contains two spins, but the second one none.
"Equal" microstates form a macrostate. For a macrostate, the only thing that matters
is how many spins are in a certain cell, but not which ones. If one now considers a
system where the spins are randomly distributed in time over the cells which are all
equally probable, it is easy to realize that some macrostates are compatible with a
higher number of microstates than others. If, for example, we consider only 4 spins,
the number of configurations Ω of each cell occupied by one spin is 4! = 24. But
there is only one microstate for the macrostate of having all 4 spins in the first cell. A
general statement is thus; the probability of finding a certain macrostate is proportional to

1You may consider the obituary for Alfred G. Redfield, who passed away on July 24, 2019.
2The discussion in this paragraph has been extracted from [77].

https://www.journals.elsevier.com/journal-of-magnetic-resonance/news/obituary-for-alfred-g-redfield
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the number of microstates accessible to that macrostate. The same considerations apply
to the lattice, only that there is a much higher number of available states. Further,
both for the lattice as well as for the spin system, a Maxwell-Boltzmann distribution
is assumed for the number of microstates associated with a distinct energy.3 The
difference is only that there are much more degrees of freedom of the lattice than of
the spin system, which leads to a narrower distribution in case of the lattice.

The next issue to consider is the energy of the total, combined system Etotal ,

Etotal = ∑ Epot
µ + ∑ Ekin

mol . (2.61)

Here, ∑ Epot
µ is the energy of the spin ensemble and ∑ Ekin

mol is the energy of the lattice,
made up of the kinetic energy of the molecules. The following applies: (1) the total
energy is conserved, (2) spin ensemble and lattice can exchange energy, (3) coupling
between the systems is weak and, (4) the lattice has much more degrees of freedom
and is much larger than the spin ensemble, so that the lattice remains unchanged no
matter how much energy is flowing into or out of the lattice (heat reservoir). Energy
transfer is made possible by fluctuating fields f (t)

∑ Epot
µ
←−−−→

f(t) ∑ Ekin
mol , (2.62)

which corresponds to spin-lattice relaxation. The phenomenon of energy transfer
only within the spin system is called spin-spin relaxation.

Important is now, that the energy defines the number of available states: The
probability of finding the spin ensemble to have the energy ∑ Epot

µ is proportional
to the number of microstates of the combined system Ωtotal(∑ Epot

µ ). This is a con-
sequence of the principle of a priori probabilities that at equilibrium all accessible
microstates of the combined system are equally likely. If the spin system has energy

∑ Epot
µ , it can be in any of its own Ωspin(∑ Epot

µ ) microstates. At the same time, the
lattice has energy ∑ Ekin

mol = Etotal −∑ Epot
µ and can be in Ωlattice(∑ Ekin

mol) microstates.
Also, any microstate of the spin system can be combined with every microstate of
the lattice. Together, the total number of microstates Ωtotal compatible with the spin
ensemble at energy ∑ Epot

µ is

Ωtotal(∑ Epot
µ ) = Ωspin(∑ Epot

µ )Ωlattice(∑ Ekin
mol) . (2.63)

The probability P(∑ Epot
µ ) of the spin ensemble having energy ∑ Epot

µ is proportional
to the result of equation 2.63:

P(∑ Epot
µ ) ∼ Ωspin(∑ Epot

µ )Ωlattice(∑ Ekin
mol) . (2.64)

A simple practical example shall illustrate the consequence of this finding. Lets as-
sume a total energy of the system of 10, able to change only in units of 1 among the

3Which is only valid for an ideal gas, but the exact shape of this distribution is not of importance
here
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two systems spin and lattice. Also, with the energy, a certain number of states Ω is
connected. Writing [(10), 200]spin means, that the spin system has energy 10 and is
connected with 200 possible microstates. Accordingly, the same accounts for the lat-
tice, where only the number of states is typically much higher. Following equation
2.63, it is possible to write down a fictitious example using very low (and arbitrary)
numbers of possible microstates:

[(0), 24]spin[(10), 200]lattice → [(10), 4800]total

[(−1), 18]spin[(11), 800]lattice → [(10), 14400]total

[(−2), 12]spin[(12), 1600]lattice → [(10), 19200]total

[(−3), 8]spin[(13), 5000]lattice → [(10), 40000]total

[(−4), 3]spin[(14), 9500]lattice → [(10), 28500]total

Obviously, the most probable macrostate is realised for line 4, where the energy of
the spin state is not the lowest, but the number of microstates is the highest of all
cases. This means that the equilibrium macrostate of our ensemble has energy (-3).
For a system out of equilibrium, the function 2.63 reacts quite sensitive: When the
spin system lowers the energy only by a small amount, the number of available mi-
crostates will decrease very fast, as it depends on the number of degrees of freedom.
As a reaction, the energy of the lattice is raised via the weak coupling (see equa-
tion 2.62) and the number of lattice microstates will increase even faster. The result
is, that the probability in equation 2.64 has a quite sharp maximum, defining the
equilibrium for a certain temperature.

In statistical thermodynamics, the system described above corresponds to a
Canonical ensemble. A thermodynamic quantity connected with the number of mi-
crostates is the Gibbs entropy S:

S = −kB ∑
i

pi ln(pi) (2.65)

where kB is the Boltzmann constant and pi is the probability of finding the microstate
pi. Irreversible processes, as will be treated here, always increase the entropy of
the total system. The driving force of relaxation is thus maximising entropy, not
lowering the total energy.

As a result of statistical thermodynamics [99], the thermal equilibrium of the
quantum mechanical density operator for a Canonical ensemble can be written as

ρeq =
e−Ĥ/kBT

tr
(

e−Ĥ/kBT
) . (2.66)

The two main conclusion from the considerations in this section are: (1) Irreversibil-
ity must be taken into account in relaxation theory by treating spin ensembles rather
than single spins. (2) The thermal equilibrium configuration at a certain temperature
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is given by equation 2.66, because according to statistcal physics spins behave like a
Canonical ensemble.

2.2.1 Redfield Theory

The theory4 describes relaxation of an open quantum system S, made up of an en-
semble of spins, which is in continuous contact with the lattice L. For such a system
it makes sense to use the reduced density operator ρ∗S(t)

5 for the spin system instead
of the density operator ρ∗(t) of the complete system.

ρ∗S(t) = trL {ρ∗(t)} (2.67)

The notation trL {} means that the trace considers elements diagonal in the lattice
states only (averaging over the lattice degrees of freedom). This means, ρ∗S(t) con-
tains information about the lattice from the viewpoint of the spin system only, and
elements having no effect on observables of the spin system are not considered.

When the quantum system S is in a non-equilibrium state, it will gradually be
transferred into its thermodynamic equilibrium driven by a weak coupling H1, en-
abling energy exchange with the lattice. However, this has no effect on L, as the
lattice is assumed to be very large, having many degrees of freedom and resting at
constant temperature at all times. The consequence of this assumption is, that the
time dependence of the total system HS + HL + H1 can be described by a density
matrix ρ∗(t) written as a product of the lattice and spin density operators:

ρ∗(t) −→ ρ∗(t) = ρ∗S(t)ρ
∗
L(0) (2.68)

H1(t) is small and averages to zero over time. ρ∗L(0) stays constant for all times
and thus S and L are uncorrelated. Also, ρ∗L(0) = ρeq applies (see equation 2.66).
Equation 2.68 is the basic condition of irreversibility.

In consequence, equation 2.67 can be further simplified to

ρS(t)∗ = trL {ρ∗S(t)ρ∗L(0)} (2.69)

The below derivation follows mainly [48], where the master equation is developed
at first for ρ∗S(t) considering only spin coordinates (ignoring the lattice density
operator in the first place). In a final step, the derived equation for ρ∗S(t) will be
corrected for the lattice influence. Care is taken when lattice operators appear
explicitly (as for example in section 2.2.1).

The equation of motion of the spin density ρ∗(t)6 for a large, time-independent
Hamiltonian H0, representing the spin system and a smaller time-dependent

4Derivation of the theory follows mostly [48] and [76].
5The star symbol ∗ means, this quantity is the interaction frame representation.
6Further, the indices S in ρS(t) is dropped
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perturbation term H1, representing the coupling to the lattice is

∂ρ

∂t
=

i
h̄
[ρ, H0 + H1(t)] (2.70)

Rewriting this equation (the Liouville von Neumann equation) in the interaction picture
by defining

ρ(t) = e−(i/h̄)H0tρ∗(t)e(i/h̄)H0t (2.71)

and substituting into the left side of equation 2.70 gives

∂ρ∗

∂t
=

i
h̄
[ρ∗, H∗1 (t)] (2.72)

where H∗1 (t) = e(i/h̄)H0tH1(t)e−(i/h̄)H0t.
Preceding integration of equation 2.70 from 0 to time t gives

ρ∗(t) = ρ∗(0) +
i
h̄

∫ t

0

[
ρ∗(t′), H∗1 (t

′)
]

dt′ . (2.73)

Performing an iterative step by substitution of ρ∗(t′) in equation 2.73 one gets

ρ∗(t) = ρ∗(0) +
i
h̄

∫ t

0

[
ρ∗(0) +

i
h̄

∫ t′

0

[
ρ∗(t′′), H∗1 (t

′′)
]

dt′′, H∗1 (t
′)

]
dt′

= ρ∗(0) +
i
h̄

∫ t

0

[
ρ∗(0), H∗1 (t

′)
]

dt′

+

(
i
h̄

)2 ∫ t

0

∫ t′

0

[[
ρ∗(t′′), H∗1 (t

′′)
]

, H∗1 (t
′)
]

dt′dt′′ ,

(2.74)

which is equivalent to second order perturbation theory. Finally, the derivative of
2.74 is

∂ρ∗(t)
∂t

=
i
h̄
[ρ∗(0), H∗1 (t)] +

(
i
h̄

)2 ∫ t

0

[[
ρ∗(t′), H∗1 (t

′)
]

, H∗1 (t)
]

dt′ . (2.75)

The integral in equation 2.75 depends on ρ∗(t′), which means the behaviour of the
system at time t depends on its past from t′ = 0 until t′ = t. However, the sys-
tem S is damped with a characteristic damping constant γ due to its coupling to
L. Also, we will later see that H1(t) acts in a way so that knowledge or memory of
any past configuration of H1(t) is destroyed within a characteristic time τc. As one
is typically interested in macroscopic timescales much larger than τc, the integral
can be assumed to depend only on the present value of ρ∗(t). One could also say
the system has no memory of its past during time steps at which equation 2.75 is
evaluated. This also means, that Redfield theory is only valid when the dynamics
of H1(t), characterized by τc is much faster than a typical macroscopic decay of S,
characterized by 1

γ :

τc �
1
γ

(2.76)
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This is the Markoff approximation which allows to replace ρ∗(t′) with ρ∗(t) in equation
2.75:

∂ρ∗(t)
∂t

=
i
h̄
[ρ∗(0), H∗1 (t)] +

(
i
h̄

)2 ∫ t

0

[[
ρ∗(t), H∗1 (t

′)
]

, H∗1 (t)
]

dt′ (2.77)

Equation 2.77 is the starting point of the derivation of Redfield theory. First, matrix
elements of the first term are computed:

〈α| [ρ∗(0), H∗1 (t)] |α′〉 = ∑
β

〈α|ρ∗(0)|β〉〈β|H∗1 (t)|α′〉 − 〈α|H∗1 (t)|β〉〈β|ρ∗(0)|α′〉

(2.78)
We now assume an ensemble of spins, where each element experiences a different
coupling or perturbation H1(t) which sum up to zero. In contrast, an applied al-
ternating field would act on every spin in an equivalent manner and thus is not
vanishing upon averaging. As we are dealing with a stationary perturbation, an
ensemble average is the same as a time average and we can write

〈α|H∗1 (t)|β〉 = 0 , (2.79)

where the bar indicates ensemble average. A consequence is, that H1(t) does not
produce any frequency shift to the total Hamiltonian H0 + H1(t). The first term
in equation 2.77 thus vanishes for a spin ensemble and the second term must be
computed.

Defining τ = t− t′ and remembering that

〈α|H∗1 (t)|β〉 = ei/h(Eα−Eα′ )t〈α|H1(t)|β〉 (2.80)

one can find for the second term of equation 2.77 by evaluating the double commu-
tator

∂ρ∗αα′

∂t
=

1
h̄2 ∑

β,β′

∫ t

0
[ 〈α|H1(t− τ)|β〉〈β′|H1(t)|α′〉e−i/h(Eα−Eβ)τei/h(Eα−Eβ+Eβ′−Eα′ )tρ∗ββ′

+ 〈α|H1(t)|β〉〈β′|H1(t− τ)|α′〉e−i/h(Eα′−Eβ′ )τei/h(Eα−Eβ+Eβ′−Eα′ )tρ∗ββ′

− ρ∗αβ〈β|H1(t− τ)|β′〉〈β′|H1(t)|α′〉ei/h(Eβ′−Eβ)τei/h(Eβ−Eα′ )t

− 〈α|H1(t)|β〉〈β|H1(t− τ)|β′〉ei/h(Eβ′−Eβ)τei/h(Eα−Eβ′ )tρ∗β′α′ ] dτ

(2.81)
Also on equation 2.81 an ensemble average is performed to consider the average
contribution of differing H1(t). This means, an ensemble of particles is considered
instead of a single spin and it is possible to find expressions Jαβα′β′(ν) in equation
2.81

Jαβα′β′(ν) =
∫ ∞

0
〈α|H1(t) |β〉 〈β′|H1(t + τ) |α′〉e−iντdτ (2.82)

where ν = 1/h(Eβ′ − Eα′). These expression are called spectral densities and shall
be discussed a bit closer. First, the argument for writing the integral from 0 to ∞ is
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the following: As we are discussing stationary perturbations, elements of the form
〈α|H1(t− τ)|β〉〈β′|H1(t)|α′〉 (autocorrelation functions of the fluctuations) are inde-
pendent of t. Also, they decay quickly to zero when τ exceeds the characteristic
decay time of the fluctuations of H1(t), τc. So, for times t greater than τc, we are
permitted to extend the integration of τ to ∞.

The correlation function contained in equation 2.82 is real and an even function
of τ, so real and imaginary parts can be written as:

ReJ(ν) =
1
2

∫ ∞

−∞
〈α|H1(t) |β〉 〈β′|H1(t + τ) |α′〉cos(νt)dτ

ImJ(ν) = −
∫ ∞

0
〈α|H1(t) |β〉 〈β′|H1(t + τ) |α′〉sin(νt)dτ

(2.83)

Further, only the real part will be considered, as the imaginary part can be shown to
lead to a second order frequency shift (sometimes called dynamical shift).

From equation 2.81 it becomes also clear, that only elements fulfilling Eα − Eα′ =

Eβ − Eβ′ contribute. Having this in mind and considering only the real part, it is
possible to rewrite matrix elements of equation 2.77 as

∂ρ∗αα′

∂t
= ∑

β,β′
Rαα′,ββ′e

i/h(Eα−Eα′−Eβ+Eβ′ )tρ∗ββ′ , (2.84)

where
Rαα′ββ′ =

1
2h̄2 [ Jαβα′β′(να′β′) + Jαβα′β′(νβα)

− δα′,β′ ∑
γ

Jγβγα(νγβ) + δα,β ∑
γ

Jγα′γβ′(νγβ′) ]
(2.85)

and
Jαβα′β′(ν) =

∫ ∞

−∞
〈α|H1(t) |β〉 〈β′|H1(t + τ) |α′〉e−iντdτ . (2.86)

It is noted here, that the definition of the indices might differ from textbook to text-
book, as their sequence is (to some degree), dependent on the definition of Jαβα′β′(ν).
The derivation above is following Slichter’s book [48]. When applying and evaluat-
ing these equations, it is of importance to follow one definition consistently.

One can see from equation 2.84 that the elements of the spin density matrix
obey a set of linear differential equations, where the elements Rαα′ββ′ are constant in
time. The exponential has the effect, that only terms fulfilling Eα − Eα′ = Eβ − Eβ′

contribute to spin relaxation. A non-zero exponential would lead to an oscillatory
term which is averaging to zero over time.

In the above derivation of equation 2.84 only spin variables are considered
and the lattice is ignored. The consequence is, that equation does not describe the
approach to an equilibrium at finite temperature. To include the lattice and the
consequences of irreversibility, equation 2.69 must be used to consider the total spin
density described by a product of spin and lattice density operators.
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The derivative for the total spin density can be written as

∂

∂t
trL {ρ∗S(t)ρ∗L(0)} =

∂

∂t
trL
{

ρ∗S(t)ρeq
}
= ρeq

∂

∂t
ρ∗S(t) , (2.87)

where the lattice remains in thermal equilibrium at all times (see equation 2.66). As
a result, equation 2.84 must be modified slightly by exchanging ρ(t)∗ with (ρ(t)∗ −
ρeq) which gives

∂ρ∗αα′(t)
∂t

= ∑
β,β′

Rαα′,ββ′e
i(Eα−Eα′−Eβ+Eβ′ )t

(
ρ∗ββ′(t)− ρ∗ββ′,eq

)
. (2.88)

A rigorous treatment of the total density operator and a detailed derivation and
discussion of equation 2.88 can be found in [100] and [101].

Finally, a back transform ρ∗ → ρ can be performed which brings back the static
Hamiltonian H0 into the equation for the spin density elements:

dραα′(t)
dt

=
β,β′

∑
ναα′=νββ′

(
iL0

αα′ββ′ − Rαα′ββ′

) (
ρ∗ββ′(t)− ρ∗ββ′,eq

)
, (2.89)

where ναα′ = 1/h(Eα − Eα′ are the transition frequencies of Ĥ0 and Eα are its Eigen-
values.

The Liouvillian L0 contains the static transition frequencies and is defined via a
commutator relation:

iL0ρ(t) =
i
h̄
[
Ĥ0, ρ(t)

]
(2.90)

The elements of L0 can be expressed by the difference between two energy levels
Eα:

L0
αβαβ = ναβ = 1/h

(
Eα − Eβ

)
= 〈Ψα|Ĥ0(I)|Ψα)〉 − 〈Ψβ|Ĥ0(I)|Ψβ〉

(2.91)

Equation 2.89 is the starting point of a study on quadrupole spin relaxation pre-
sented in chapter 5.

Correlation function and spectral density

The spectral density function J(ν) presented in equation 2.86 depends on the mo-
tional model that generates the stochastic modulation of the Hamiltonian H1(t). This
interaction operator can be written in the form

H1 = ∑
i

TiVi (2.92)

where Vi are time-dependent spatial operators describing the reservoir (thermal
bath) and Ti are spin operators acting on the variables of the spin system only. After
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inserting expression 2.92 into equation 2.86, J(ν) contains terms of the form:

trL{V(t)iV(t′)jρL(0)} = 〈V(t)iV(t′)j〉 . (2.93)

It is noted here, that the lattice density operator (which has been ignored during the
derivation of equation 2.84) is now considered explicitly. Equation 2.93 describes an
expectation value of a physical quantity taken at different times. This is the defi-
nition of a correlation function of V(t), which characterizes the correlation existing
on average between the interactions occurring at times t and t’. All information on
the reservoir (lattice) is contained in the correlation functions. The quantity in equa-
tion 2.93 reflects the memory of the reservoir about the interaction at time t at time t’.
As the reservoir is assumed to be large, effects of the interaction are dissipating fast
which means that interactions become progressively less correlated for t − t′ > τ

and uncorrelated for t− t′ � τ. As the correlation function depends only on t− t′,
the function is stationary; a property which has been used in the above derivation.

The correlation time τ is a measure of the time during which some memory of
the interaction is retained. Figuring out the nature of this quantity is a prime inter-
est of relaxation theory as well as experiments. In case of gases, τ may be given as
the mean time between two collisions. Accordingly, for liquids τ can describe dif-
fusion or rotations of molecules or particles. In solids, τ might reflect fluctuations
of molecular bonds or lattice vibrations. For example, a motional model for electric
field gradient fluctuations in molecular crystals will be given in chapter 5.

If the stochastic process can be described by an exponentially decaying correla-
tion function, a resulting spectral density function is a Lorentzian function. In case
of isotropic molecular tumbling, applying the well known rotational diffusion equa-
tion leads to a correlation function (see e.g. [101, 102])

Crot(t) =
1
5

e−t/τrot . (2.94)

The resulting spectral density, expressed in angular frequency ω = 2π, gives

Jrot(ω) =
1
5

τrot

1 + (ωτrot)2 . (2.95)

More complex stochastic motions might lead to multiple correlation times. It can be
seen from equation 2.95 that the fluctuations are most efficient for τrot ' ω−1, where
their frequency matches the transition energy of the spin system. In case of very fast
motions (e.g. fast tumbling of small molecules) (ωτc) � 1 leads to J(ω) ' J(0),
which is commonly known as extreme narrowing limit. In this regime, relaxation is
independent of the spin transition frequency (in case of NMR, the applied magnetic
field), and no dispersion can be observed.
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2.3 Stimulated emission, absorption and relaxation

In sections 2.1 and 2.2.1, excitation and relaxation have been treated separately. Dur-
ing a spin resonance experiment, however, both processes occur simultaneously. For
the sake of completeness, this situation is sketched briefly below.

A characteristic of transitions in the microwave and radiofrequency (RF) region is
the predominance of stimulated emission upon spontaneous emission. This follows
from Einstein’s theory of radiation which tells that the ratio between stimulated and
spontaneous transitions is proportional to the spectral radiation density r(ν) and the
wavelength λ: r(ν)λ3. In the RF regime, both are large and spontaneous emission
can be neglected.

In the absence of spontaneous emission, the transition probabilities for stimu-
lated emission and absorption are equal. An external RF field has thus the effect
of equalizing the populations. In contrast, relaxation tends to re-establish thermal
distribution of spins among the basis states (according to a Boltzmann distribution).
Under the influence of the three processes stimulated emission, absorption, and re-
laxation, a dynamical equilibrium is established. For the corresponding equation of
motion of the spin density, equation 2.89 must be expanded by a term accounting
for the excitation:

dραα′(t)
dt

=
β,β′

∑
ναα′=νββ′

(
iL0

αα′ββ′ − Rαα′ββ′

) (
ρ∗ββ′(t)− ρ∗ββ′,eq

)
− (i/h̄)〈α| [HIA(t), ρS(t)] |α′〉 .

(2.96)
HIA(t) is the interaction Hamiltonian, representing e.g. an external RF field. Dis-
cussion of this equation is out of scope of this work, but further information can be
found in [76].
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Abstract

The interaction between water protons and suitable quadrupolar nuclei (QN) can lead to
quadrupole relaxation enhancement (QRE) of proton spins, provided the resonance condi-
tion between both spin transitions is fulfilled. This effect could be utilized as a frequency
selective mechanism in novel, responsive T1 shortening contrast agents (CAs) for magnetic
resonance imaging (MRI). In particular, the proposed contrast mechanism is depending on
the applied external flux density- a property that can be exploited by special field-cycling
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MRI scanners. For the design of efficient CA molecules, exhibiting narrow and pronounced
peaks in the proton T1 relaxation dispersion, the nuclear quadrupole resonance (NQR) prop-
erties as well as the spin dynamics of the system QN-1H have to be well understood and
characterized for compounds in question. In particular, the energy-level structure of the QN
is a central determinant for the static flux densities at which the contrast enhancement ap-
pears. The energy levels depend both on the QN as well as the electronic environment, i. e.
the chemical bonding structure in the CA molecule. In this work, the NQR properties of a
family of promising organometallic compounds containing 209Bi as QN have been charac-
terized. Important factors like temperature, chemical structure and chemical environment
have been considered by NQR spectroscopy and ab initio quantum chemistry calculations.
The investigated Bi-aryl compounds turned out to fulfill several crucial requirements: NQR
transition frequency range applicable to clinical 1.5 T and 3 T MRI systems, low tempera-
ture dependency, low toxicity as well as tunability in frequency by chemical modification.

3.1 Introduction

Magnetic resonance imaging (MRI) is one of the most powerful diagnostic imag-
ing tools in modern medicine. The technique features high spatial resolution com-
bined with high penetration depth and superb soft tissue contrast without the use
of ionizing radiation. Tissue contrast in MRI is essentially based on the distribution
of water protons within the body (proton density) as well as their spin-lattice and
spin-spin relaxation times (T1, T2). To further increase contrast and consequently
sensitivity, signal enhancement strategies have been developed involving the use of
relaxation enhancers, so-called contrast agents (CA). The most widely used CAs are
gadolinium (Gd) based paramagnetic chelates that shorten T1 of free water protons
[1]. In contrast, nanoparticles composed of paramagnetic iron oxides predominantly
shorten T2 [8]. These CAs are administered to patients leading to an improved soft
tissue contrast in either T1 or T2 weighted sequences. As a consequence, MRI is
nowadays employed for both, morphological and functional imaging, such as dy-
namic contrast enhancement (DCE) in cancer diagnostics [16]. MRI is increasingly
used also in the context of cellular and molecular imaging [25], the aim of which
is to provide spatially and temporally resolved maps of biomarkers which contain
information on pathophysiological processes correlated with cancer and other dis-
eases [103]. This is usually achieved by administration of CAs that respond to their
chemical environment. Considerable effort has been directed into the development
of MRI CAs exhibiting a significant change in relaxivity upon activation in response
to physiological alterations such as temperature, metal ions, redox state, enzyme
activity or pH [104, 38]. One representative of such responsive CAs are based on
chemical exchange saturation transfer (CEST) [105, 106, 27] which has gained more
and more interest in the last years. CEST contrast can be switched on and off us-
ing a selective radio frequency (RF) saturation pulse. However, CEST suffers from
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low sensitivity, SAR restrictions and saturation spillover effects between bulk pro-
tons and protons of the CEST agent, which is due to insufficient frequency separa-
tion. Also, new nitroxide-based macromolecules have been reported as T2 shorten-
ing agents [28] which provide a system free of toxic heavy metals. As they contain
radicals, their in vivo lifetime may become a limiting factor and they are not in-
herently switchable. In this paper, we explore a novel alternative approach to the
established CAs making use of quadrupole relaxation enhancement (QRE) [31, 107,
32] induced by the interaction of protons with quadrupolar nuclei (i.e. nuclei with
spin quantum number I > 1/2) [40, 108, 109]. The ability of QRE for enhancing MRI
contrasts has been proven for the interaction between endogenous 1H and 14N in
the amide groups of muscle proteins at very low flux densities [33]. However, it
is completely unexplored for exogenous CAs at clinical fields such as 1.5 or 3 T. For
QRE, the dipole-dipole (D-D) interaction between a proton spin and the nuclear spin
of a quadrupolar nucleus (QN) is associated with a transfer of magnetization from
the proton to the QN and thus accelerates the proton spin relaxation. Designing a
CA based on QRE, however, is a complex task, as several conditions concerning e.g.
the 1H-QN distance and the time scale of the motional dynamics, must be met for
the phenomenon to take place. In particular, the process becomes effective when
the proton spin transition frequency (i.e. the Larmor frequency) matches to one of
the spin transition frequencies of the QN which depend on its quadrupole coupling
constant Qcc and the Zeeman splitting. QRE based CAs are selective to B0 due to
the field dependence of this resonance condition. Moreover Qcc is sensitive to the
temperature as well as the chemical surrounding of the QN, and subsequently to
subtle changes of the bonding structure e.g. by chemical reactions. Thus, contrast
can be modulated by e.g. either alterations of the chemical structure of the CA or
by shifting the main magnetic field B0 of a MRI system. Utilizing the combination
of fast field cycling (FFC) relaxometry with MRI (FFC-MRI), it is possible to cycle
the nominal B0 field during an imaging sequence [33, 110]. This technique gives
access to contrast types arising from the field dependency of the proton relaxation
rates R1(B0) = 1/T1(B0) and R2(B0) = 1/T2(B0), referred to as nuclear magnetic re-
laxation dispersion (NMRD). CAs exhibiting a strong R1 dispersion are especially
favourable to be imaged by delta relaxation enhanced magnetic resonance (dreMR)
imaging [111, 112], as the R1 dispersion of healthy tissue is inherently low at clinical
fields [113]. QRE is in principle capable of generating narrow peaks instead of just a
smooth slope in the proton T1-NMRD profile and so offering the possibility for mod-
ulating contrast by cycling the field of the scanner. The first step of the development
of a potential contrast agent is the identification of promising chemical compounds
which contain a suitable QN. Basic selection criteria are:

• high gyromagnetic ratio γQN to provide strong D-D coupling and hence strong
QRE

• high nuclear spin I, preferably I = 9/2, as the relaxation rate R1 scales with
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I [34], and a higher nuclear spin offers more possible quadrupole transition
frequencies that can fulfill the resonance condition

• low toxicity

• high natural abundance

• rich and well-known chemistry

• high Qcc, so that there exist transition frequencies close to the Larmor fre-
quency at clinical field strengths (1.5 T or 3 T). Qcc depends on both the
quadrupolar moment of the QN and the electric field gradient (EFG) produced
by the electronic environment of the QN, i. e. the chemical bonding structure
of the compound.

Among a number of potential QNs, 209Bi with I=9/2 appears particularly favorable
because it is considered as comparatively non-toxic and so Bi compounds are ex-
pected to have a higher biocompatibility [114] than e. g. Gd based CAs [24, 23].
209Bi has been suggested [115, 116, 117], also in X-ray contrast agents which makes
it an ideal candidate for dual-mode CAs for computer tomography (CT) and MRI
with only a single core element. The knowledge of the nuclear quadrupole reso-
nance (NQR) parameter Qcc and η (asymmetry parameter of the EFG, see Appendix
A) is of central importance for fulfilling the QRE resonance condition as they deter-
mine the NQR transition spectrum. The purpose of this paper is thus to character-
ize, in terms of these parameters, a set of Bi-aryl compounds which are promising
starting candidates for the development of QRE-based contrast agents. Moreover,
it is pivotal to identify and, if possible, quantify all relevant mechanisms which can
modify these parameters during the development cycle of the final CA. In this con-
text, the aim of this paper is twofold: 1) experimental characterization of Qcc and η

of a promising set of quadrupolar compounds in their crystalline state by means of
zero-field nuclear quadrupole resonance spectroscopy (NQRS) [42] (see Sec. III.B).
As a side-product also the quadrupole spin relaxation times T1,Q and T2,Q are de-
termined. 2) estimation of the influence of structural changes on Qcc and η, when
passing from the crystalline state to single isolated molecules in solution (It is not
possible to observe NQR-peaks directly in liquids [50] due to temporal averaging of
the tumbling molecules). This may serve as a first approximation for the situation in
the final CA and is achieved by ab initio quantum chemistry (QC) calculations (see
3.3.3).

The paper is organized as follows: First, the basic theoretical background on QRE
in protons (section 3.2) is given. Then, the proposed compounds are introduced as
well as the results on the two main points introduced above are discussed (3.3). In
3.4 the main conclusions are summarized and in 3.5 a brief outlook will be given. At
the end of the paper, the methods used for QC calculation and NQR spectroscopy
(3.6) are described in detail. Appendix A contains the mathematical description of



3.2. Quadrupole relaxation enhancement in protons 47

the NQR transition frequency spectrum. Details to the data analysis and fitting pro-
cedure are given in Appendix B. In Appendix C, results and related error estimations
are summarized.

3.2 Quadrupole relaxation enhancement in protons

At first, it is important to recollect the basics of NQR. The interaction of a high spin
nucleus (I>1/2) with the EFG generated by its surrounding charge distribution gives
rise to a quantized energy level system which can be studied by NQRS [42, 65, 54].
The emerging NQR transition frequency spectrum νQ,k (pure quadrupole transition
frequency, see Appendix A) can be fully described by Qcc and η. The number of tran-
sitions depends on the nuclear spin quantum number I; in case of 209Bi, four pure
quadrupole peaks (no external field B0) can be observed (see figure 3.1 (a)). The NQR
transitions provide a very direct and highly sensitive insight into the electronic en-
vironment of the molecule where the resonant QN is located. The position of the
transition frequency is sensitive to chemical or structural changes of the molecule as
well as to the temperature. If the relevant influences are well understood, the transi-
tion frequency of the QN can be tuned to a desired frequency and its response upon
slight chemical changes can be predicted. A more detailed mathematical deduction
of the NQR transition frequency spectrum and the origin of its parameters Qcc and η

is given in Appendix A. As soon as an external field B0 is applied, QNs and protons
experience a splitting of their energy level systems due to Zeeman coupling (see fig-
ure 3.1(b)). In consequence, the degeneracy in the magnetic quantum number mI

is cancelled, which leads to an observable peak at the Larmor frequency νL for pro-
tons as well as to a splitting of the pure NQR transition frequencies. The Zeeman
contribution to the two spin ensembles depends on γ1 H and γQN , respectively. For
the QN the angle Ω between its EFG and B0 has to be considered as well (definition,
see Appendix A). So, at particular flux densities it is possible that spin transitions
of both ensembles overlap, as indicated by the red area in figure 3.1(b). This is the
primary condition for QRE.

There is, however, still another important prerequisite for QRE to occur. As il-
lustrated in figure 3.2 (a), fluctuating D-D interactions must act as a coupling mech-
anism, because QRE is based on a magnetization transfer from a 1H spin ensemble
to a quadrupolar spin ensemble by cross relaxation [34]. Therefore it is required that
(1) the 1H-QN distance rH−Bi is small enough and that (2) the spectrum of the D-D
fluctuations, which can be described by the spectral density function J(ν), contains
strong components at those frequencies where the resonance condition is met (com-
pare figure 3.1 (b)). The latter condition depends on the time scale and model of the
motional dynamics (assuming an exponentially decaying correlation time function).
The first condition arises because the D-D interaction strength scales with the dis-
tance rH−QN between the proton and the QN as 1

r6 . The second condition implies
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FIGURE 3.1: Simple scheme of transition frequency crossing to produce QRE in pro-
tons. For illustration and simplicity, the lineshapes are assumed to be Lorentzian
(see Appendix B equation (15)) with equal width for each transition. Intensities
in a.u. correspond to Boltzmann weighted transition probabilities (Appendix A,
equation (10)). In panel a), the pure NQR pattern of a single crystal is shown (grey
pattern). In panel b), B0 > 0T leads to an observable 1H resonance (blue peak) at
the Larmor frequency νL as well as to a splitting of the NQR pattern (Appendix
A equation (9)). The four-line splitting of the lowest transition is a consequence
of non-zero off diagonal elements of the Hamiltonian [42]. A transition frequency
match at a particular field strength B0 -indicated by the red highlighted overlap
area- as well as the D-D fluctuations J(ν) at the corresponding frequency, are the
main condition for a QRE of the protons.
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that the correlation time τc of the spin fluctuations has to be long enough to fulfill
the condition 2πνQ,kτc > 1.

Subsequently, we will focus on the resonance-condition for QRE which can be
written as

νL = ν0,k(Ω), (3.1)

where νL = B0γH is the Larmor frequency of the protons, and ν0, k(Ω) one of the
allowed transition frequencies k of the QN, which result from transitions between
the energies levels of the total QN Hamiltonian:

H0(I)(Ω) = HQ(I)(Ω) + HZ(I). (3.2)

HQ is the pure quadrupole Hamiltonian, HZ is the Zeeman Hamiltonian (see Ap-
pendix A) and I is the nuclear spin of the QN, I > 1/2.

According to equation 3.1, the transition crossings occur only at particular flux
densities, which is one reason for the frequency selectivity of QRE. This fact is also
reflected in figure 3.2(b) (which is just another viewpoint of the situation in figure
3.1), where the qualitative transition patterns of both spin ensembles are shown in
dependence on B0. The pure quadrupole transitions νQ,k form transition frequency
bands with increasing B0. The bands are due to the fluctuations of the angle Ω be-
tween the EFG and the external field B0 caused by molecular rotation. For solid
powders, all intensity-weighted angles have to be considered. Crossings between
the proton Larmor frequency νL and the QN-transition bands fulfill the resonance
condition and open the possibility for QRE in protons. These regions (highlighted in
red) can be shifted to a desired flux density e.g. 3 T, by tuning the pure NQR spec-
trum (figure 3.2 b)). To accomplish this in a rational manner, a sound understanding
of the mechanisms involved in shifting the pure NQR pattern, in particular at the
human body core temperature, is of major importance for the application of QRE in
MRI CAs.

For convenience, in the following sections and tables pure NQR transitions νQ,k

are labeled consecutively from transition ′1′ to transition ′4′ starting from the lowest
|1/2〉− |3/2〉 to the highest |7/2〉− |9/2〉 coherence. It is noted, that as soon as η 6= 0
or the Zeeman field points into an arbitrary direction with respect to the EFG, the
states |m〉 are no pure Zeeman states anymore and labeling according to mI becomes
impracticable.

3.2.1 Quadrupole relaxation enhancement in protons

Although the description of QRE on protons given above is quite general, the aggre-
gation state (solid or liquid) as well as the exact proton pool (intra- or intermolecular)
of the considered system has to be clearly defined and distinguished. An important
difference is the source of D-D fluctuations responsible for the transfer of magneti-
zation. Whereas in solids the spectral density of the fluctuations may be due to bond
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FIGURE 3.2: Panel a) shows the schematic principle of QRE in protons due to the
interaction with close-by QN via magnetic D-D coupling. Panel b) shows the transi-
tion frequencies of both spin ensembles, νL for the protons (blue line) and νQ,k(Ω)
for the QNs (grey), depending on an externally applied flux density B0. Where
transitions of both spin ensembles match, QRE can be expected as for the consid-
ered case at 3 T. This area is indicated by the vertical red bands. Panel b) also gives
an impression of how the QRE peaks are shifted by tuning the pure quadrupole
frequency.
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vibrations, for solutions containing both protons and QRE based CA particles, diffu-
sion and rotation is the main source (compare figure 3.2(a)). To simulate relaxation
dynamics of QRE in the liquid state, the stochastic Liouville approach [34, 118, 119],
is necessary, as the dynamical conditions for the Redfield theory [97, 48], as used
in solids, are not fulfilled anymore. Both theories necessarily require the knowl-
edge of the NQR parameters Qcc and η. The most direct way for the determination
of these parameters is zero-field NQRS in solid powders. For stochastic Liouville-
simulations in liquids, however, these parameters are only approximately valid, be-
cause they differ slightly [120] between free molecules in solution and molecules
bound in a solid crystal. This issue will be discussed in Sec. III.C. Beyond that, the
QRE strength and position depends not only on the transition frequency match but
also on several additional parameters such as the correlation time of the D-D fluctua-
tions, the water exchange rate and the relaxation behavior of the quadrupole nuclei.
In the liquid state, there is no simple relationship such as illustrated in figure 3.1 and
figure 3.2, which allows predicting QRE peaks directly from the NQR parameters,
but relative changes of Qcc and η are expected to lead to very similar relative shifts
of the QRE peaks.

3.3 Results and discussion

3.3.1 Compound selection

As a group of model systems, we chose Bi-aryl compounds (in form of crystalline
powders) because of several practical reasons: Their most simple representative,
triphenylbismuth, is commercially available and possesses a versatile and compar-
atively simple organic chemistry with the possibility of incorporating or grafting it
onto nanoparticles for blood stream transportation. Moreover, at least partially com-
plete NQR datasets are available for several Bi-aryl molecules [63] and qualify some
of them as promising for QRE because they possess NQR transitions close to fre-
quencies which are required at clinical field strengths, i.e. 1.5 and 3 T. The structures
of the compounds are shown in figure 3.3 and labeled accordingly throughout the
paper. The compounds were synthesized according to established procedures (see
Appendix C, table 3.5). In total, eight compounds including triphenylbismuth (1)
were investigated; tris(4-fluorophenyl) bismuth (2), tris(4- dimethylaminophenyl)
bismuth (3), tris(4-methoxyphenyl) bismuth (4), tris(2-methoxyphenyl) bismuth (5),
tris(2-6-dimethoxyphenyl) bismuth (6), triphenylbismuth dichloride (7), and fully
deuterated triphenylbismuth (8). For samples 5 and 7 we identified two superim-
posed spectra corresponding to different Bi-sites in the crystal (5A, 5B and 7A, 7B
respectively).

The tricoordinate Bi(III) compounds 1-6 and 8 feature a trigonal pyramidal struc-
ture around Bi with sums of angles Σ C-Bi-C between 280◦ and 296◦ , where the
phenyl rings adopt a tilted conformation with respect to the principal axis of the
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1: R = H

2: R = F

3: R = NMe2

4: R = OMe

8: all H = D

5: R = OMe, R' = H

(Sites: 5A and 5B)

6: R = R' = OMe

7 (Sites: 7A and 7B)

FIGURE 3.3: Overview on Bi-aryl compounds and their structures: triphenylbis-
muth (1), tris(4-fluorophenyl) bismuth (2), tris(4-dimethylaminophenyl) bismuth
(3), tris(4-methoxyphenyl) bismuth (4), tris(2-methoxyphenyl) bismuth (5) (5A and
5B), tris(2-6-dimethoxyphenyl) bismuth (6), triphenylbismuth dichloride (7) (7A
and 7B), and fully deuterated triphenylbismuth (8).

molecule (see figure 3.7 and Appendix C, table 3.5). Compound 7, triphenylbismuth
dichloride, exhibits a pentacoordinate Bi(V) center adopting a trigonal bipyramidal
configuration with Cl in apical position trans to each other, while the ipso-carbon
atoms of the phenyl rings form the trigonal base and are in plane with the Bi atom.
The phenyl rings are again tilted with respect to the Cl-Bi-Cl vector. Both struc-
ture types show almost perfect cylinder symmetry with respect to the pyramid’s
height axis. Basic structural data as well as structure references of the Bi-aryl com-
pounds are summarized in Appendix C, table 3.5. A rather important selection cri-
terion already at this stage of development is the potential toxicity of the presented
molecules. Bismuth compounds are used in therapeutic treatment of gastrointestinal
disorders, suggesting a relatively low toxic potential after oral administration [121],
with Peptobismoltm being the most prominent example. Although there are a few
cases known, where bismuth compounds showed negative side effects (e.g. bismuth
subgallate, bismuth tryglycollamate [122]), in general, bismuth compounds are not
considered to feature a high degree of toxicity [114]. Particularly, arylbismuth com-
pounds with stable Bi-C bonds have not been reported to have high cytotoxic po-
tential. For instance, triphenylbismuth (1), 1-phenyl-2-trimethlsilyl-1-benzostilyl-1-
benzobismepine, tris(4-methylphenyl) bismuth, and tris(2-(methoxymethyl)phenyl)
bismuth, did not show cytotoxicity at 10 µM [123]. However, establishing Bi-
compounds for intravenous application certainly requires further studies to assess
their cytotoxicity also at higher concentrations as e.g. used in conventional Gd-CAs
(up to several mM, which corresponds to about 0.1 mmol/kg body weight, accord-
ing to the Gadovist R© product monograph). Promising data in this respect can be
found in a study of dextran coated bismuth-iron oxide nanohybrid contrast agents
[117]. In this publication, in vivo experiments on mice showed extraction of the
degradation products of the CA via kidneys and urine. The experiments were car-
ried out with a dosage of 350 mg Bi per kg body weight, i.e. more than 1.6 mmol/kg
body weight. The investigated particles have been identified as being biocompatible
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and biodegradable.

3.3.2 NQR spectroscopy

From the eight different crystalline Bi-aryl powder samples introduced above, NQR
parameters Qcc and η, relaxation times T1,Q and T2,Q as well as the line width of
all accessible transitions were determined and are presented in Appendix C, ta-
ble 3.6 and table 3.7. Every sample was characterized at 37◦C, for some of them
measurements were also carried out at the temperature of liquid nitrogen and
room temperature (RT). To our knowledge, NQR data have not yet been published
for tris(4- dimethylamino) bismuth (3), tris(2-methoxyphenyl) bismuth (4), tris(4-
methoxyphenyl) bismuth (5), tris(2-6-dimethoxyphenyl) bismuth (6) and deuterated
triphenylbismuth (8). Literature data was confirmed for the transition frequencies
determined for triphenylbismuth (1) at RT and 77 K by Robinson et al. [124] and
Weaver and Robinson [125] respectively, and for triphenylbismuth dichloride (7) by
Brill and Long [126] at 300 K as well as for tris(4-fluorophenyl) bismuth (2) at 300 K
by van der Kelen and Ketelaere [127].

NQR spectrum and target frequency

The collected data demonstrate the tuning possibilities of the quadrupole transition
frequency by attaching different substituents. Figure 3.4 illustrates the positions of
the transition frequencies of each sample measured at 37◦C (colored dots) and RT
(dots in brackets), respectively. In case that a particular transition could not be mea-
sured with the current experimental setup, its frequency was calculated using equa-
tion 3.9 of Appendix A, 3.7, and plotted as a grey square. Figure 3.4 shows also
a grey-shaded area which highlights the target frequency range for the pure NQR
peaks to create a QRE peak at a flux density range defined by a hypothetical FFC
MRI scanner (e.g. a standard medical system with nominal static flux density B0 of
1.5 T or 2.89 T, equipped with an additional insert coil which allows for shifting the
flux density by ± 200 mT). Given that case, all samples have a transition within the
required range (see figure 3.4). This field shift was chosen because it is technically
feasible as shown by B0 insert coils as used in Lee et al. [128] and Harris et al. [110].
Another FFC-MRI system has been reported working at a nominal flux density of
2.89 T ± 100 mT [129].

Of course, it must be kept in mind that a certain shift in transition frequency can
be expected when dissolving the solid powders in a solvent or grafting them onto
a nanoparticle (NP). There are two important factors influencing the Qcc, namely
structure and chemical environment of the compounds (see Sec. III.C). Additionally,
the D-D interaction between 209Bi and 1H nuclei, which transfers the magnetization
during QRE, is modulated by the relative motion (mainly rotation) between the CA
and water protons [34]. These influences can lead to frequency shifts of the QRE
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FIGURE 3.4: NQR frequencies of samples 1 to 8. The pure NQR target frequency to
create a QRE peak accessible for a FFC MRI scanner with a B0-shift of 1.5 T ± 200
mT and 2.89 T ± 200 mT is marked in grey. This frequency range can be calculated
using the resonance condition equation 3.1 and the transition frequency spectrum
as in Appendix A,3.7, equation 3.9 (also, compare to figure 3.2(b)). Colored circles
have been measured, grey squares mark calculated values (from equation 3.9 Ap-
pendix A, 3.7). Dots in brackets are measurements at RT; the rest has been obtained
at 37◦C.

peaks in liquid with respect to those in solids, depending on the rotational correla-
tion time between the two spin species. The frequency range illustrated in figure 3.4
shall therefore be treated only as a guideline rather than a precise decision rule for
pre-selecting promising compounds.

Observed NQR parameter variation

Qcc and η can be calculated from at least two experimentally determined NQR peaks
using equation 3.9 of Appendix A. When triphenylbismuth is considered as the ref-
erence system (Qcc = 668.3 MHz at 37◦C), Qcc shifts of several MHz can be observed
when adding particular substituents (see figure 3.5). The strongest impact is ob-
served when changing from three to five coordinate species (by adding two Cl atoms
(QN, I=3/2) directly to the Bi center) which leads to an increase in Qcc by about 400
MHz. More subtle changes can be realized, when incorporating substituents at dif-
ferent positions on the phenyl rings. Then Qcc shifts from about +47 MHz (methoxy-
group on the ortho position of the phenyl rings) to -11 MHz (F on the para position
of the phenyl rings) can be observed. The asymmetry parameter η on the contrary
is changing only slightly from sample to sample and ranges between 0 and 0.1 (see
Appendix C, table 3.6) since the cylinder-symmetric EFG around Bi is maintained for
all compounds. Compound 5 has the highest η with 0.105 whereas all compounds
containing mono-methoxyphenyl do not possess any asymmetry. All associated val-
ues including the transition frequencies for 37◦C as well as some measurements at
77 K can be found in Appendix C, table 3.6.
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FIGURE 3.5: Qcc-shifts of Bi-aryl compounds with respect to triphenylbismuth (1)
@ 37◦C (Qcc = 668.3 MHz) depending on the ligand type according to figure 3.3.

For sample 5 and 7 two superimposed 209Bi NQR spectra, labeled ′A′ and ′B′

have been observed. This is an indication for two different crystallographic sites
within the crystal. In the case of triphenylbismuth dichloride, they correspond to
crystallographically independent molecules on different lattice sites A and B [130].
For compound 5 Schuster et al. [131] reported two crystallographically independent
molecules in the unit cell where one is located on a threefold crystallographic axis
(space group R3), while the second one is located on a general site within the unit
cell with occupancies of 0.8802:0.1198. As the full width at half maximum (FWHM)
of the peaks in spectrum ’B’ is larger than in spectrum ’A’ at all transitions (see
Appendix C, table 3.7) we assign site B as the disordered species. Noteworthy is the
slight Qcc up-shift by 0.5 MHz of deuterated triphenylbismuth (8) due to an isotope
effect which is not treated closely here.

The influence of ligands

As the EFG at the QN due to a point charge located at distance r outside of the
nucleus is proportional to 1/r3 [42, 132], only charge redistributions in the closest
vicinity of the nucleus are relevant for shifting the transition frequency. Roughly,
two influences on the EFG inducing the observed shifts can be distinguished: First,
an additional substituent on whatever site will alter the electron density distribution
of the whole molecule to a stronger or lesser degree due to valence orbital forming
and charge polarization. This will, however, only have a considerable impact on the
quadrupolar coupling strength if these changes affect the closer surrounding of the
Bi center. For ligands at the outer position of the phenyl rings, this is expected to play
only a minor role. Secondly, ligands introduce a change of both, the molecular as
well as the crystalline structure; this fact is in any case likely to have an impact onto
the EFG. In figure 3.6, this second influence is visualized by plotting the measured
Qcc values versus the average Bi-C bond length (see Appendix, table 3.5) of each
sample. The plot indicates a negative trend for Qcc when increasing the average Bi-
C distance within each molecule. Notably, tris(4-dimethylamino) bismuth (3) is a
little bit off the trend. For this set of compounds the plot in figure 3.6 may serve as a
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very rough estimation of what shift can be expected as soon as the structure change
is known or vice versa.
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FIGURE 3.6: Qcc versus average Bi-C bond length. A trend for the investigated
Bi-aryl compounds can be observed: The closer the Bi-C distance, the higher Qcc.

Temperature sensitivity

The temperature dependency of the NQR-peaks was investigated by temperature-
swept NQRS experiments on selected samples. The temperature interval was se-
lected with ± 5◦C around the core temperature of the human body, i.e. 37 ◦C. For
reasons of simplicity, the temperature dependency of the transition frequencies is
assumed to be linear in the observed range. The strongest measured temperature
coefficient is about -10 kHz/K for transition 4 of compound 1, the weakest temper-
ature coefficient of -3 kHz/K was observed for transition 2 of compound 5A. The
results are summarized in Appendix C, table 3.8. The frequency shift within ±1◦C
is in general lower than a typical NQR-peak width (see Appendix C, table 3.7) and
is therefore not expected to play a major role in the application of the compounds as
CA.

Quadrupolar relaxation

Though the quadrupolar relaxation rates in the solid state are not of central inter-
est for the scope of this paper, they have been tabulated for completeness because
their determination formed part of our standard experimental procedure of the NQR
characterization of the compounds. For almost all NQR transitions of the presented
compounds, the relaxation times T1,Q and T2,Q were determined at 37◦C sample tem-
perature (see Appendix C, table 3.7). This table forms a comprehensive database for
deeper analysis in terms of relaxation theory, which is planned in follow-up papers.
Moreover it shows potential reasons why for some transitions the peaks could not be
identified: T1,Q ranges from as short as 50 µs for transition 4 of sample 7 to as long as
3 ms for transition 1 of sample 1. Also, for T2 the range is wide and spans from about
30 µs for sample 7 transition 4, up to 700 µs for sample 8 transition 4. T2,Q times
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somewhat lower than 30 µs cannot be measured reliably with the current experi-
mental setting. Thus we conclude that some peaks could not be detected, because
their T2,Q time is too short. In liquid nitrogen, the relaxation times usually increase
considerably thereby facilitating the identification of rapidly dephasing peaks.

3.3.3 Quantum chemistry calculation

As 209Bi is a rather heavy element, the Bi-aryl compounds require careful considera-
tions when performing quantum chemistry (QC) calculations of EFG tensors, espe-
cially when it comes to relativistic and electron correlation effects and their coupling
[133, 134, 135, 136, 53, 137]. In addition to the scalar relativistic (SR) effects, the
influence of relativistic spin-orbit coupling (SO) needs to be taken into account in
the heavy element magnetic resonance parameters [136, 137, 138]. While combining
relativistic theory with more elaborate electron correlation treatment with hybrid
functionals of the Density Functional Theory (DFT) is currently not feasible for peri-
odic solids, we follow closely the approach of Roukala et al. for the nuclear shielding
tensor of 195Pt in molecular solids [139]. The following nomenclature is introduced
to describe the calculation inputs: ’DFT Functional_Relativistic level_Basis Set’ e.g.
’PBE_SO-ZORA_TZ2P’ i.e. at SO-ZORA theory using PBE DFT functional and TZ2P
basis set, and will be used to discuss the results.

Qcc shift from a solid crystal to the CA

Though the presented data has been gathered from solid crystalline samples, in the
final application the QRE effect will be used in CAs dispersed in liquids. These
two states are expected to produce slightly different structures as the molecules are
integrated in different surroundings. The CA molecules are not embedded into a
periodic crystal anymore, which causes what we call a crystal effect on the EFG. Also,
the molecular structure itself is expected to relax (bond length and angles) in the al-
tered surroundings, thus causing a structure effect. As the particular surroundings of
the CA are not exactly known at present, an isolated gas-phase structure is assumed
as a reasonable approximation.

To figure out the role of these effects, three different cases have been considered
at PBE_SO-ZORA_TZ2P level for the reference system sample (1) (triphenylbis-
muth) which are shown in figure 3.7:

case 1) ... molecule optimized in periodic surrounding + crystalline, periodic
surrounding,
case 2) ... molecule optimized in periodic surrounding + isolated state,
case 3) ... molecule in isolated state (gas phase structure) + isolated state.
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FIGURE 3.7: Cases considered for QC calculations to estimate the crystal effect and
the structure effect onto Qcc. The average Bi-C distance of the CASTEP-optimized
crystal structure is rcrystal = 2.291 Å, while the distance is rgaseous = 2.263 Åin the
gas-phase [140] (see Appendix C table 3.5). 3D models of the molecule structures
are supplemented as .cif files [102].

TABLE 3.1: Comparison of QC results at PBE_SO-ZORA_TZ2P level with experi-
mental ones for Qcc and η for triphenylbismuth in different surroundings.

solid - CA comparison η (1) Qcc (MHz)

case 1 0.049 661.1
case 2 0.059 539.5
case 3 0.001 557.3
Experiment 0.087 668.3
(crystalline solid)

crystal effect -0.010 121.6
(case 1 - case 2)
structure effect 0.058 -17.9
(case 2 - case 3)

The sole crystal effect makes up the difference between case 1) and 2) whereas the
structure effect can be determined by taking the difference between case 2) and case
3).

Case 1 corresponds best to the experimental situation except that the QC calcu-
lations were performed for static geometries neglecting thermal (vibrational) effects,
whereas the experiment was carried out at 37◦C. Even though the data in table 3.1
indicates that periodic calculations yield a rather good agreement with experiment,
the comparison of absolute values shall be treated with care, as there is room for im-
provement in both many-electron correlation and one-electron basis set treatments.

The PBE_SO-ZORA_TZ2P results in table 3.1 show that for Qcc the crystal effect
of +18.2% is much more important than the structure effect of -2.7% due to the ge-
ometry change of the molecule from gas to solid phase. This means that when the
triphenylbismuth-molecule undergoes a transition from the solid crystalline to an
isolated state, a Qcc shift of about -15% can be expected. The asymmetry parameters
η are, in contrast to Qcc, more sensitive to the change of local geometry around Bi
than to e.g. ’global’ crystal effects. The changes in η are therefore not very strong
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TABLE 3.2: Changes of Qcc and η in a single triphenylbismuth molecule (case 2, if
not noted otherwise) due to better basis set (QZ4P with respect to TZ2P), hybrid
PBE0 functional and relativistic spin-orbit coupling (SO-ZORA, X2C, and DC with
respect to SR-ZORA, SF-X2C, and SF-DC, respectively). Nonrelativistic one- (NR)
and four-component (LL) results are displayed for comparison.

code level of theory, see section 3.6.2 η (1) Qcc (MHz)

ADF PBE_SO-ZORA_TZ2P 0.059 539.5
PBE_SO-ZORA_QZ4P 0.069 563.4
PBE0_NR_QZ4P 0.049 590.5
PBE0_SR-ZORA_QZ4P 0.060 590.1
PBE0_SO-ZORA_QZ4P (crystal, case2) 0.062 669.8
PBE0_SO-ZORA_QZ4P (gas, case3) 0.000 687.5

DIRAC PBE0_LL_RPF-4Z/cc-pVDZ 0.048 587.9
PBE0_SF-DC_RPF-4Z/cc-pVDZ 0.053 645.1
PBE0_DC_RPF-4Z/cc-pVDZ 0.049 674.0
PBE0_SF-X2C_RPF-4Z/cc-pVDZ 0.053 644.7
PBE0_X2C_RPF-4Z/cc-pVDZ 0.049 673.2

and the quadrupole tensor is practically cylindrically symmetric (η ≈ 0) in all cases.

QC-parameter study

The roles of different parameter improvements in QC calculations were tested in the
case 2 for a single triphenylbismuth molecule. Table 3.2 shows the role of the im-
proved QZ4P basis set, the better electronic correlation treatment with the hybrid
PBE0 functional, and the impact of relativistic spin-orbit coupling effect at approx-
imate SO-ZORA and exact two-component (X2C) relativistic theories, as well as at
fully relativistic four-component Dirac-Coulomb (DC) level of theory.

When turning from a TZ2P basis set to a QZ4P Qcc changes by +23.95 MHz (4%)
(η by +0.009). This indicates that with the lower basis set (TZ2P) the EFG has not
fully converged yet and QZ4P should be chosen if possible.

A change from the pure GGA (PBE) to a hybrid DFT functional (PBE0) includ-
ing 25% of exact Hartree-Fock exchange has a stronger influence onto the Qcc value
by an amount of 106.4 MHz (19%) (η by -0.006). According to Teodoro et. al. [53],
hybrid DFT functionals provide reasonable but slightly underestimated EFG val-
ues for 209Bi in diatomic molecules wrt. high-level ab initio DC-CCSD results. The
present magnitude increase due to PBE0 is most probably an improvement and,
hence, the hybrid DFT functional is preferred for the estimation of Qcc. The rather
large relativistic effect on Qcc of about +80 MHz (+14%, wrt. PBE0_NR_QZ4P)
associated with the heavy 209Bi isotope is well described at the best PBE0_SO-
ZORA_QZ4P level including both SR and SO relativistic effects. This is confirmed
by comparing it with the results from the fully relativistic four-component Dirac-
Coulomb (PBE0_DC_RPF-4Z/cc-pVDZ) and it’s much lighter exact two-component
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(PBE0_X2C_RPF-4Z/cc-pVDZ) approximation. While the 209Bi basis set is presum-
ably well converged in both cases, the small difference in η is probably due to a
different basis set of the ligands (TZ2P vs. cc-pVDZ). The seemingly quite large
relativistic SO effect (PBE0_SO-ZORA_QZ4P vs. PBE0_SR-ZORA_QZ4P) on Qcc, of
about +80 MHz (+14%) is clearly overestimated by the ZORA method. The same
effect at fully relativistic DC and approximative X2C level of theory is only about
+29 MHz (+4%) when compared to results with the corresponding scalar relativistic
SF-DC and SF-X2C results. Actually, the SR-ZORA value for Qcc is very similar with
values of both non-relativistic, one- (NR) and four-component (Levy-Leblond, LL),
theories. Therefore, for 209Bi in this complex, the so-called ZORA-4 scalar relativis-
tic approximation including a small-component density “picture-change correction
“[141] used in ADF gives very small scalar relativistic effect on EFG. This is an ex-
ample of somewhat arbitrary division of SR and SO relativistic effects by different
methods [142]. Therefore, the preferable SR approximation for EFG is obtained with
the Dyall’s spin-free Hamiltonian [143] used in the SF-DC and SF-X2C calculations
with DIRAC code, which provides reasonable estimation close to the fully relativistic
value. The methods of choice for the molecular modeling of Bi-complexes would be
PBE0_SO-ZORA_QZ4P or PBE0_X2C_RPF-4Z/cc-pVDZ combinations that provide
good approximations for the fully relativistic PBE0_DC_RPF-4Z/cc-pVDZ calcula-
tion with much lower cost (e.g. X2C takes ca. tenth of the time of DC calculation).
However, for the case study in section 3.3.3 we use PBE_SO-ZORA_TZ2P, as for the
treatment of a periodic surrounding (ADF-BAND code) no higher basis set is avail-
able. The PBE0_SO-ZORA_QZ4P calculation gives a Qcc value of about -17.65 MHz
(-2.6%) for the structure correction (see table 3.2, changes from case 3 to case 2). The
same relative change was predicted at much lighter PBE_SO-ZORA_TZ2P level (-
2.7%) as seen in table 3.1, even though the absolute values are much smaller there.
This shows that relative changes can be studied at less advanced method and theory
level as well.

3.4 Summary and conclusion

The experimental investigation of eight different Bi-aryl compounds by means of
NQR- spectroscopy is an important step towards the rational synthesis of QRE based
CAs. The acquired data represents a compendium of promising Bi-compounds with
their NQR parameters Qcc and η, quadrupole transition frequencies and associated
relaxation times T1,Q and T2,Q, mainly at the medically relevant body temperature of
37◦ C. Depending on the type of ligand and its molecular position, frequency shifts
of the quadrupole coupling constant (Qcc) from -10.8 MHz up to 400 MHz with re-
spect to triphenylbismuth (Qcc = 668.3 MHz) have been observed whereas the asym-
metry parameter η stays in a range of 0 to 0.1. According to our analysis, this NQR
parameter range is especially favorable for the utilization of QRE in clinical 1.5 T or
3 T MRI scanners, provided they are equipped with a fast field cycling insert-coil
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(FFC MRI). The temperature dependence of the transition frequencies found at the
human body core temperature (typically around 10 kHz/K) is not expected to af-
fect the QRE contrast adversely. The average Bi-C bond distance of each compound,
which depends on ligand type and position, has been found to be correlated with
Qcc; when increasing the bond distance, a decrease in Qcc is observed (for a bond
distance between 2.116 and 2.262 Å, Qcc decreases from 1071 to 675 MHz). From this
ligand induced frequency shifts, one can also think of applications for QRE enhance-
ment in fixed field scanners: An EFG change due to chemical interactions (e.g. in the
context of ligand targeting) would “tune “or “detune “the QRE peak to or from the
scanner frequency, e.g. 1.5 T, thus producing contrast in the image.

As the transition frequencies cannot be expected to be exactly the same in the liq-
uid state, it is of great interest to predict the expected discrepancies. In principle, this
can be achieved by calculating the EFG modification with modern ab initio quantum
chemistry (QC) methods. When modeling the transition of triphenylbismuth from
a periodic molecular crystal to an isolated gas-phase molecule our QC simulations
predict a Qcc shift of -18.2% due to the crystal effect and of 2.7% due to a compen-
sating structural effect. These results suggest a possible downshift of the transition
frequencies of about 15% when passing from solid to liquid.

Of course, the reliability of these findings depends on the validity of the model.
In order to select the best QC settings, a parameter study has been performed. In
particular we face the problem of calculating electron distributions in the vicin-
ity of high-mass, high-spin nuclei. It could be shown that the influence of rel-
ativistic effects, the chosen basis set and the density functional are of great rele-
vance; the resulting parameter set suggests PBE0_SO-ZORA_QZ4P with ADF code
or PBE0_X2C_RPF-4Z/cc-pVDZ with DIRAC code. As an interesting byproduct, the
generated NQRS database provides test-data for the validation of EFG calculations
with QC methods.

The strong variation of the T1,Q and T2,Q relaxation times for the different sam-
ples and NQR transitions point out the experimental difficulties of NQR spec-
troscopy: At 37◦C T1,Q times ranging from 3 ms down to 60 µs and T2,Q times from
700 µs down to 40 µs could be observed, which, on the one hand can lead to very
long measurement times and, on the other hand challenge the ring down speed of
the spectrometer. In several cases, measurements at low temperature (77 K) helped
to increase the signal quality due to slower T2,Q relaxation and an increased popu-
lation difference of the spin states. The relaxation data is particularly interesting for
modeling molecular dynamics and testing relaxation models for high spin systems
in the solid state, e.g. based on Redfield theory.

To summarize, the investigation of eight Bi-aryl compounds has identified them
as promising candidates for the use as QRE-based contrast agents. Due to their fre-
quency selective character, the compounds may add interesting options in molecular
MRI diagnostics in the future. Three of the above investigated solid samples sam-
ples, namely tris(2-methoxyphenyl) bismuth (5), tris(2-6-dimethoxyphenyl) bismuth
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(6) and triphenylbismuth dichloride (7) have already shown pronounced QRE peaks
in yet unpublished proton T1 relaxometry data at the expected frequencies. Further-
more, the comparatively low toxicity, mostly good stability against hydrolysis and
versatile as well as simple chemistry qualifies Bi-aryl compounds as fruitful research
objects in the context of MRI contrast agents.

3.5 Outlook

Though the discussion of QRE in solids is out of the scope of this paper, we would
like to mention that pronounced QRE peaks have already been observed. As an ex-
ample, in figure 3.8 the T1-NMRD profile of solid, crystalline tris(2-methoxyphenyl)
bismuth (5) is presented which shows pronounced QRE peaks from inherent pro-
tons. These findings are not primarily relevant for the envisaged CAs, nevertheless
the data are highly motivating for undertaking the next logical steps: grafting the
abovementioned core compounds onto NPs and solubilize them as to act as carriers
through the bloodstream. The contrast enhancing effect can then be investigated also
on free solvent protons of the system 1H containing solvent + NP + CA core compound
by relaxation measurements. In particular, questions concerning size and structure
of the carrier particles can then be addressed to shape dynamical conditions and wa-
ter exchange for optimizing D D coupling and thus magnetization transfer efficiency
of the QRE. Another key parameter is the 1H-QN distance during closest approach.
However, these questions need to be resolved before the expected increase in relax-
ivity of protons due to QRE CAs can be reasonably estimated.

FIGURE 3.8: Proton T1-NMRD profile of the solid powder-sample (5) at 298 K ob-
tained by a STELAR (Mede, Italy) Spinmaster relaxometer equipped with a mag-
net operating up to 3 T. Features A-E of the proton R1 relaxation dispersion can
be attributed unambiguously to QRE peaks superimposed on a background due to
proton-proton dipolar coupling.

From our current understanding, there are four points which should be focused
on in future research in some more detail: Firstly, it can be concluded from NMRD



3.6. Methods 63

data in figure 3.8 as well as from theory is that the 1H-QN distance is of great im-
portance for the D-D interaction ( 1/r6). An average 1H-QN distance of about 3-4
Åis estimated for the solid which can be, at best, also assumed for solution protons
exchanging with the coordination sphere of paramagnetic CAs (compare Gd-CAs
with about 2.5-4 Å[144]). In this context we expect approximately the same order of
magnitude as in paramagnetic CAs. The second important parameter is the water
exchange rate which is expected to increase the enhancement per QN considerably
when passing from solid to liquid. So far there are no data available about this pa-
rameter in Bi-Aryl compounds, which should be investigated also for a possible NP.
The third parameter is the gyromagnetic ratio of the QN which is a lot smaller than
that of the electrons in paramagnetic CAs. In this aspect QRE CAs are clearly inferior.
However, on the other hand the relaxation enhancement seen with paramagnets is
known to remain far below the maximum theoretical value because of the fast relax-
ation of the electrons. Here we find a clear advantage in the QN compounds because
the quadrupolar relaxation is usually much slower than that of electrons. This fourth
parameter is thus probably essential for making QRE agents competitive.

In future QC studies, a refinement of the molecular surrounding of the CA can
be considered. Furthermore, calculations to predict the EFG change of Bi-aryl com-
pounds upon chemical modifications, i.e. different ligand types, can be envisaged.
This could improve the CA-design procedure significantly by reducing the experi-
mental workload.

3.6 Methods

3.6.1 NQR spectroscopy

By means of NQR spectroscopy the relaxation of a nuclear spin ensemble to the equi-
librium distribution can be detected using a tank circuit. The most common NQR
instruments are pulse type FFT spectrometers [65], [145] that excite spin states using
an RF-pulse sequence, comparable to standard NMR-sequences but without expos-
ing the sample to an external static flux density. For our investigations we mainly
use well known sequences as for example spin echo (SE), free induction decay (FID)
and inversion recovery (IR) using rectangular pulses together with phase cycling.
Details concerning data analysis and fitting functions can be found in Appendix B,
equations 3.13 and 3.14.

Beyond characterizing QN spin systems, NQR spectroscopy has proven its sci-
entific versatility in several applications and studies as for example research on
molecular structure [146] [147], superconductor [148], semiconductor [149], phase
transition [150] [151], as well as quantum computing [68] or the authentication of
medicines [59].
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Experiments were done with two pulse-type NQR spectrometer working with
two complementary frequency sweep methods both using a variety of trans-
mit/receive coils. The self-built “Graz-NQRS-MK1 “[152] is particularly suitable for
fast wide band sweeps up to 30 MHz bandwidth whereas the commercially available
“Scout “(Tecmag, Inc., USA) allows for advanced pulse sequence programming. The
probe coil is driven during transmit by a 500 W amplifier and enables π/2 pulses
down to 300 ns. In combination, the two systems cover a frequency range of 20
MHz up to 150 MHz with an available temperature range from liquid nitrogen (spe-
cial cryo coils [153]) up to 50◦C (dry-air flow thermostatization). The temperature is
measured using a type K thermocouple close to the probe coil. For transportation,
storage and measurement the samples are stored in glass vials of 10 mm diameter
and 40 mm length in form of a crystalline, solid powder.

3.6.2 QC calculation

First, the ionic positions in a periodic crystal model were optimized at DFT level
using CASTEP [154] code keeping lattice parameters in their experimental values
of the starting geometry [155]. The PBE functional with TS dispersion correction
[156] was used with ultrasoft pseudopotentials [157] a cutoff energy of 240 eV, and
Monkhorst-Pack k-point grid 4 X 4 X 1 with spacing < 0.03 Å−1 between points in
each direction. After optimization, all forces acting on ions were less than 0.05 eV/Å.

The EFG at the site of 209Bi of triphenylbismuth was first computed for solid state
structures with the periodic ADF-BAND code of the Amsterdam Density Functional
modelling suite [158, 159, 160] using the parameter-free PBE [161] DFT functional at
zeroth order regular approximation (ZORA) level of theory including either SR (SR-
ZORA) or both SR and SO effects (SO-ZORA). The more detailed study of electron
correlations effects with hybrid PBE0 [162, 163] functional was then carried out for
a single triphenylbismuth molecule either in its optimized solid state or experimen-
tally found gas phase geometry (gas electron diffraction, GED), by Berger et al. [140].
The relativistic effects on the EFG tensor were also studied at the fully relativistic
four-component Dirac-Coulomb (DC) and the exact two-component (X2C) relativis-
tic approximation, as well as their spin-free counterparts (SF-DC and SF-X2C), with
PBE0 functional using the DIRAC [164] code.

To estimate how much the EFG of the isolated molecule is affected due to ge-
ometry changes, we performed a structure optimization with ADF code at the PBE-
D3_SR-ZORA_TZ2P level starting from the experimental gas phase structure [140].
The average changes in molecular geometry (see table 3.5 in Appendix C) due to
optimization caused a 1.2% decrease of Qcc (550.4 MHz, η = 0.001) at PBE_SO-
ZORA_TZ2P level of theory, which is rather small change compared to other in-
fluences (see table 3.1 and table 3.2). In the ADF-BAND calculations of EFG tensors
the Slater-type basis sets designed for ZORA calculations were used from the stan-
dard ADF basis set library [165]. Both triple-ζ with two (TZ2P) and quadruple-ζ
with four (QZ4P) polarization functions basis sets were employed.
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In calculations with DIRAC code, Gaussian-type nonrelativistic correlation-
consistent polarized valence triple-ζ (cc-pVTZ) basis sets [166] were used for light
H and C elements, whereas the relativistic prolapse-free quadruple-ζ (RPF-4Z) basis
set [167] was used for 209Bi.

All the calculated nuclear quadrupole coupling constants Qcc were obtained
from QC computed EFG tensors by using the most recent value for the nuclear
quadrupole moment (NQM) of 209Bi: Q(209Bi) = -415.1 mb, [137] which is within the
error bars of the other recent determination of Q(209Bi) = -420(8) mb [53]. One should
note that these values differ quite much from the old standard value of Q(209Bi) = -
516(15) [168].
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3.7 Appendix A: The NQR transition spectrum

There are basically two conditions that have to be met by the molecule under con-
sideration to develop an observable nuclear spin transition spectrum: 1) A nucleus
exhibiting a non-spherical charge distribution, so that its Taylor expansion gives a
non-zero quadrupolar term (valid for nuclear spin I>1/2), and 2), a non-zero EFG
generated by the charges external to the nucleus (derived from the spatial derivative
of the corresponding electrostatic potential φ: φij =

∂2φ
∂xi∂xj

where xi, xj are Cartesian
coordinates x,y,z and fulfilling ∆φ = 0 ).

The pure quadrupole Hamiltonian in some laboratory frame (LAB) can be ex-
pressed as the product of two irreducible rank two tensor operators T(2)

m and V(2)
m

[48]:

HQ(I)LAB =
Qcc

I(2I − 1)

2

∑
m=−2

(−1)mT(2)
m V(2)LAB

−m (3.3)

T(2)
0 (I) =

1
2
(3 Î2

z − I(I + 1))

T(2)
±1 (I) =

√
6

4
( Îz Î± + Î± Îz)

T(2)
±2 (I) =

√
6

4
Î2
±

(3.4)
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The product of the EFG strength eq = φzz and the quadrupole contribution eq
is called the quadrupole coupling constant Qcc = e2qQ/h̄. The Î’s denote the usual
spin operators. In the principal axis system (PAS, where φij = 0 for i 6= j ), which
is a reference frame bound to the molecule, the EFG tensor operator V(2)PAS

m can be
written as:

V(2)PAS
0 =

√
3
2

φzz =

√
3
2

eq

V(2)PAS
±1 = 0

V(2)PAS
±2 =

1
2

φzzη =
1
2

eqη

(3.5)

η =
φxx−φyy

φzz
is the asymmetry parameter of the EFG, ranges between 0 and 1 and

is a measure for the deviation from a cylindrically symmetric (η=0) EFG.
When applying an external flux density B0 to the spin system, the Zeeman

Hamiltonian
HZ(I) = −γQN B0 Î (3.6)

introduces an angle dependency Ω = (α, β, γ) of the EFG with respect to the
direction of B0 which has to be considered when adding both quadrupolar and Zee-
man interaction to the total Hamiltonian

H0(I)(Ω) = HQ(I)(Ω) + HZ(I) (3.7)

The tensor representation of HQ(I), equation 3.3, allows rotating the quadrupole
interaction by the Euler angles Ω = (α, β, γ) into the main quantization axis of the
total Hamiltonian, e.g. defined by B0. The rotation from the PAS to a LAB-system is
performed using Wigner-D matrix elements:

V(2)LAB
m (Ω) =

+2

∑
m′=−2

D(2)
m′,m(Ω)V(2)PAS

m′ (3.8)

The result of this transformation can be found in Possa et al. [68], and in equation
3.11.

The corresponding transition frequencies ν0,k (in case of B0 = 0, pure NQR transi-
tion frequencies νQ,k) can be calculated straightforwardly by diagonalizing the total
Hamiltonian H0(I) and thereby obtaining the energy levels Eα of the spin system
with respect to the eigenfunctions {|Ψα(Ω)〉}:

ν0,k = Eα − Eβ = 〈Ψα|Ĥ0(I)|Ψα〉 − 〈Ψβ|Ĥ0(I)|Ψβ〉 (3.9)

The eigenfunctions {|Ψα(Ω)〉} can be expressed as linear combinations of the
functions |I, mI〉 of the Zeeman basis {|I, mI〉} with the magnetic quantum number
mI = −I,−I + 1, ..., I: |Ψα(Ω)〉 = ∑2I+1

m=−I aα,m(Ω)|m〉.
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In case of 209Bi, the nuclear spin of I = 9/2 leads to four transitions with ∆m
when B0 = 0, as the energy levels are doubly degenerated in mI . As soon as B0 6= 0,
the energy levels and therefore the transition frequencies split up and form a more
complex pattern. The principal behavior of the NQR pattern depending on B0 is
shown in figure 3.1(a) 1(a) and figure 3.1(b). In case of a powder sample, an average
across a spherical distribution of Euler angles can be calculated. The intensity of the
spectrum in figure 3.1 is proportional to Boltzmann population weighted transition
probabilities:

I(νQ,k) = |〈Ψα(Ω)|HRF|Ψβ(Ω)〉|2 · e−
Eα−Eβ

kBT

∑i,j e−
Ei−Ej
kBT

. (3.10)

HRF is the radio frequency excitation Hamiltonian HRF ∼ Î−→x BRF where −→x is the
direction of the transmit/receive coil generating an oscillating flux density BRF. T is
the temperature and kB Boltzmann’s constant.

In this work, only pure NQR-transitions (no B0-field) of powder samples are pre-
sented where the EFG is chosen to be in the PAS α = β = γ = 0. Qcc and η can
be calculated numerically from two experimentally derived transition frequencies
using equation 3.9.

Performing the transformation according to equation 3.8 the irreducible tensor
operator elements have the form:

V(2)LAB
0 =

1
2

[
(3cos2β− 1)

2
+

η

4
sin2β(e−2iγ + e−2iγ)

]
V(2)LAB
±1 =

1
2

[
∓
√

3
8

sin2βe±iα +
η√
6

(
−1∓ cosβ

2
sinβe±i(α∓2γ) +

1∓ cosβ

2
sinβei(±α+2γ)

)]

V(2)LAB
±2 =

1
2

[√
3
8

sin2βe±2iα +
η√
6

(
(1∓ cosβ)2

4
e±2i(α∓γ) +

(1± cosβ)2

4
e2i(±α+γ)

)]
(3.11)

The matrix-representation of equation 3.3 in the Zeeman basis {|I, mI〉}, where
V(2)LAB

m (Ω) has to be included from equation 3.11, looks like:

HQ =



QccV0
2

QccVm1√
6

QccVm2
2
√

6
0 0 0 0 0 0 0

−QccVp1√
6

QccV0
6

QccVm1√
6

1
6

√
7
2 QccVm2 0 0 0 0 0 0

QccVp2

2
√

6
−QccVp1

2
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6
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12
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6
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7
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0 0 1
4

√
7
3 QccVp2 −QccVp1

6 −QccV0
3 0 5QccVm2

12 0 0 0

0 0 0 5QccVp2
12 0 −QccV0

3 −QccVm1
6

1
4

√
7
3 QccVm2 0 0

0 0 0 0 5QccVp2
12 −QccVp1

6 −QccV0
4 − 1

6

√
7
2 QccVp2

1
6

√
7
2 QccVm2 0

0 0 0 0 0 1
4

√
7
3 QccVp2

1
6

√
7
2 QccVp1 −QccV0

12 −QccVm2√
6

QccVm2
2
√

6

0 0 0 0 0 0 1
6

√
7
2 QccVp2 −QccVp1√

6
QccV0

6 −QccVm1√
6

0 0 0 0 0 0 0 QccVp2

2
√

6
QccVp1√

6
QccV0

2


(3.12)
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TABLE 3.3: Phase of pulses for SE and IR.

π (only for IR) 117◦ 117◦ 117◦ 117◦

π/2 0 1 2 3
π 1 1 1 1
RX 0 3 2 1

3.8 Appendix B: Data analysis and fitting procedure

The spin-lattice (T1,Q) and spin-spin (T2,Q) relaxation times of all found transition
peaks were experimentally determined using inversion recovery (IR) and spin echo
(SE) sequences with variable inversion time TI and echo time TE respectively (phase
cycling see table 3.3). The data was analyzed using standard fitting procedure of the
usual, well known models [169]:

MIR(TI) = M0(1− 2 · e−
TI

T1,Q ) + B (3.13)

MSE(TE) = M0 · e
− TE

T2,Q + B (3.14)

To fit the peak shape, a Lorentzian shape is assumed, which holds true for mo-
noexponential decays:

L(ν) =
I

1 + ( ν−νc
γ )2

+ B

FWHM = 2γ

(3.15)

An example of the application of the models is given in figure 3.9 and table 3.4 for
tris(4-methoxyphenyl) bismuth (4), transition 2 at 310 K: T1,Q = 958 µs, T2,Q = 369 µs,
νC = 56.88 kHz, FWHM = 51 kHz, stepsize ∆TE = 4 µs , ∆TI = 10 µs.

The temperature dependency of the transition frequency is assumed to be linear
in the range of several degrees (∆T ± 5◦C) around the target temperature of 310
K (37 ◦C). The linear temperature coefficient C37 is determined by measuring the
transition frequency νQ,k for several sample temperatures:

νQ,k(T) = C37∆T + ν37 (3.16)

Raw data as well as fitting parameters for each measurement are available anytime
in detail on request.

3.9 Appendix C: Experimental data and error estimation

General error estimation to the data in table 3.6 and table 3.7:

Temperature accuracy:
0.1 K (accuracy of temperature controller)
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TABLE 3.4: Example for fitting result of figure 3.9 including result and standard
error according to equations 3.13, 3.14 and 3.15.

IR M0 (arb. units) T1,Q (µs) B (arb. units) -

value 7.8286 · 10−1 958.3 1.4471 · 10−1 -
std. error 0.027· 10−1 7.8 0.0371 · 10−1 -

SE M0 (arb. units) T2,Q (µs) B (arb. units) -

value 9.5343 · 10−1 368.6 3.346 · 10−2 -
std. error 0.0295 · 10−1 2.5 0.136 · 10−2 -

L γ (kHz) νc (kHz) I (arb. units) B (arb. units)

value 25.38 56.882 · 103 9.63 · 10−1 8.2 · 10−3

std. error 0.50 0.00033 · 103 0.13 · 10−1 1.7 · 10−3

TABLE 3.5: Sample overview; crystal structures, structure info, references and
source.

Nr sample name crystal structure average Bi-C sum of angles structure
reference

hydrolytic
stability

synthesize
reference

distance (Å) C-Bi-C (◦)

1 triphenylbismuth monoclinic C2/c 2.260 281.68 [155] yes [170, 171,
172]

2 tris(4-fluorophenyl)
bismuth

monoclinic
P2(1)/c

2.262 285.38 n.a. yes [172]

3 tris(4-dimethylamino)
bismuth

triclinic, P-1 2.242 283.04 [173] yes [174]

4 tris(4-methoxyphenyl)
bismuth

trigonal, R-3 2.252 281.37 [172] yes [172]

5A tris(2-methoxyphenyl)
bismuth, site A

rhombohedral R3 2.248 282.62 /277.4 [131, 175] yes [176]

5B tris(2-methoxyphenyl)
bismuth, site B

disordered n.a. n.a. [131] yes [176]

6 tris(2-6-
dimethoxyphenyl)
bismuth

monoclinic P21/c 2.262 296.8 [177] yes [176]

7A triphenylbismuth
dichloride, site A

orthorhombic
P2(1)2(1)2(1)

2.129 n.a. [130] no [171, 178]

7B triphenylbismuth
dichloride, site B

orthorhombic
P2(1)2(1)2(1)

2.116 n.a. [130] no [171, 178]

8 triphenylbismuth
deuterated

monoclinic C2/c see Nr.1 see Nr.1 n.a. yes n.a.

n.a. triphenylbismuth, gas
phase

n.a. 2.263 284.13 [140], GED
structure

n.a. n.a.

n.a. triphenylbismuth, ADF
optimized, gas phase

n.a. 2.279 282.08 n.a. n.a. n.a.

n.a. triphenylbismuth,
CASTEP optimized,
periodic

monoclinic, C2/c 2.291 282.62 n.a. n.a. n.a.
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TABLE 3.6: Measured NQR transition frequencies νQ,k and derived NQR param-
eter Qcc and η at different temperatures (310 K, 300 K and 77 K) for eight Bi-aryl
compounds.

transition frequency νQ,k (MHz)a

Nr. sample name tempera-
ture (K)

1 2 3 4 Qcc (MHz)b η (1)c

1 triphenylbismuth 310 29.67 55.14 83.42 111.32 668.3 0.087
300 29.76 55.21 83.5 111.42 668.9 0.083
77 30.6 56.45 85.45 114.03 684.6 0.090

2 tris(4-fluorophenyl)
bismuth

310 28.60 54.51 82.11 109.54 657.5 0.071

77 28.65 55.86 84.02 112.06 672.5 0.053
3 tris(4- dimethylamino)

bismuth
310 28.34 54.94 82.52 110.06 660.6 0.058

77 28.23 56.20 84.35 112.47 674.8 0.020
4 tris(4-methoxyphenyl)

bismuth
310 28.49 56.88 85.34 113.77 682.5 0.000

77 29.17 n.a. n.a. n.a. n.a. n.a.
5A tris(2-methoxyphenyl)

bismuth site A
310 (29.82) 59.64 89.47 119.27 715.2 0.000

5B tris(2-methoxyphenyl)
bismuth site B

310 29.76 59.45 89.29 119.06 714.3 0.000

6 tris(2-6-
dimethoxyphenyl)
bismuth

310 30.14 54.40 82.45 110.06 660.90 0.105

7A triphenylbismuth
dichloride site A

310 (44.14) 86.4 129.91 173.30 1039.70 0.046

77 45.51 87.50 131.80 175.80 1055.3 0.063
7B triphenylbismuth

dichloride site B
310 (44.81) 89.20 133.86 178.50 1071 0.020

77 45.80 91.24 136.90 182.60 1095.4 0.020
8 triphenylbismuth

deuterated
310 29.68 55.20 83.49 111.40 668.8 0.086

300 29.82 55.25 83.58 111.56 669.9 0.098

n.a. : not available, italic values: theoretically predicted and have not been measured
yet, values in brackets have larger errors.
a ∆νQ,k = ± 10 kHz (310 K), ∆ νQ,k = ± 30 kHz (300 K and 310 K in brackets), ∆ νQ,k
= ± 5 kHz (77 K)
b ∆Qcc = ± 0.4 MHz (310 K), ∆ Qcc = ± 0.6 MHz (300 K and 310 K in brackets), ∆ Qcc
= ± 0.2 MHz (77 K)
c ∆η = ± 0.001 (310 K), ∆η = ± 0.004 (300 K and 310 K in brackets), ∆η = ± 0.001 (77
K)
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TABLE 3.7: Measured NQR relaxation times T1,Q and T2,Q, FWHM of Lorentzian
Peak shape and transition frequencies νQ,k

Nr. sample name transition temperature (K)a T1,Q (µs)b T2,Q (µs)c FWHM (kHz) d νQ,k (MHz) e

1 triphenylbismuth 2 310 1123 277 4 55.14
3 310 548 436 15 83.42
4 310 835 486 5 111.32
1 300 2915 80 10 29.76
2 300 1547 222 7 55.21
3 300 820 396 7 83.50
4 300 966 434 9 111.42
1 77 63738 102 27 30.60
2 77 18000 394 12 56.45
3 77 16400 802 4 85.45
4 77 17029 822 5 114.03

2 tris(4-fluorophenyl) bismuth 2 310 201 81 10 54.51
3 310 91 66 18 82.11
4 310 89 83 22 109.54
1 77 11182 48 22 28.65
2 77 2930 450 8 55.86
3 77 2322 581 9 84.02
4 77 1754 546 10 112.06

3 tris(4- dimethylamino) bismuth 2 310 238 109 19 54.94
3 310 193 108 32 82.52
4 310 231 115 20 110.06
3 77 2600 360 poor fit 84348.00
4 77 3700 400 poor fit 112469.00

4 tris(4-methoxyphenyl) bismuth 1 310 2897 51 17 28.49
2 310 958 369 51 56.88
3 310 768 245 43 85.34
4 310 872 294 66 113.77
1 77 n.a. 42 14 29.12

5A tris(2-methoxyphenyl) bismuth 1 (310) 1261 57 11 29.82
site A 2 310 570 370 25 59.64

3 310 334 284 36 89.47
4 310 426 315 41 119.27

5B tris(2-methoxyphenyl) bismuth 2 310 64 58 48 59.45
site B 3 310 64 51 45 89.30

4 310 61 67 63 119.06
6 tris(2-6-dimethoxyphenyl) bismuth 2 310 122 69 10 54.40

3 310 50 51 14 82.45
4 310 78 56 14 110.06

7A triphenylbismuth dichloride 1 (310) 98 52 poor fit 44.14
site A 2 310 63 50 25 86.40

3 310 46 44 36 129.91
2 77 940 310 7 87.50
1 77 1846 90 16 45.51

7B triphenylbismuth dichloride 1 (310) 241 40 6 44.81
site B 2 310 108 46 9 89.20

3 310 54 28 17 133.86
1 77 985 69 poor fit 45.80
2 77 397 311 8 91.24

8 triphenylbismuth deuterated 1 300 2381 418 20 29.82
2 300 1472 525 11 55.25
3 300 909 636 13 83.58
4 300 1049 693 16 111.56
2 310 1104 621 11 55.20
3 310 646 629 11 83.49
4 310 725 712 15 111.40

n.a.: not available, poor fit: due to poor frequency resolution, temperatures in brack-
ets have higher uncertainty
atemperature accuracy: 0.5 K
b,cat 300 K/310 K: For T2,Q > 200 µs ∆T1,Q: < 12%, ∆T2,Q: < 12%
For T2,Q < 200 µs ∆ T1,Q: < 22%, ∆T2,Q: < 22%
b,cat 77 K: For T2,Q > 200 µs ∆ T1,Q: < 7%, ∆ T2,Q: < 7% For T2,Q < 200 µs ∆ T1,Q: <
12%, ∆T2,Q: < 12%
d ∆ FWHM: ± 1 kHz, due to fitting, see table 3.4
e ∆νQ,k at 310 K = ± 10 kHz, ∆νQ,k at (310 K) = ± 30 kHz, ∆νQ,k at 300 K = ± 30 kHz
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FIGURE 3.9: Example for T1 and T2 measurement and fitted models; sample (4),
transition 2 at 310 K . Results see table 3.4.

0.5 K (experimental accuracy due to drift and offset (thermocouple position))

NQR-parameter:
at 310 K: ∆νQ,k = ±10 kHz (due to temperature stability during 1 h measurement)
∆Qcc: ±0.4 MHz (calculation variation within transition frequency limits)
∆η: ±0.001 (calculation variation within transition frequency limits)
at 300 K, at (310 K): ∆ νQ,k = ± 30 kHz (extended sample-thermocouple distance)
∆Qcc: ± 0.6 MHz (calculation variation within transition frequency limits)
∆η: ±0.003 (calculation variation within transition frequency limits)
at 77 K: ∆νQ,k = ±5 kHz (spectrometer accuracy)
∆Qcc: ±0.2 MHz (calculation variation within transition frequency limits)
∆η: ±0.001 (calculation variation within transition frequency limits)

linear temperature coefficient C37

±0.2 kHz/K (due to average deviation in 95% confidence bound)

Relaxation times:
Statistical fitting error:
∆T1,Q: < 2 % standard error (due to average deviation in 95% confidence bound)
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TABLE 3.8: Linear temperature coefficient C37 of selected NQR transition frequen-
cies of several Bi-aryl compounds.

Nr. sample name transition C37 (kHz/K)a

1 triphenylbismuth 3 -9.2
4 -10.4

2 tris(4-flurophenyl) bismuth 3 -5.9
4 -6.4

3 tris(4- dimethylamino) bismuth 3 -5.7
4 -6.4

4 tris(4-methoxyphenyl) bismuth 2 -4.7
3 -6.2
4 -7.1

5A tris(2-methoxyphenyl) bismuth site A 2 -2.9
3 -4.2
4 -4.9

7B triphenylbismuth dichloride site B 1 -8.7
2 -8.7
3 -8.9

a∆C37 = ± 0.2 kHz/K

∆T2,Q: <2 % standard error (due to average deviation in 95% confidence bound)
Systematic error: (mainly due to temperature drift during the experiment and
estimated from repeated T2 and T1 determination on a single transition, higher
errors for low T2 measurements due to low SNR)
at 300 K/310 K: For T2,Q > 200 µs ∆T1,Q: < 10%, ∆T2,Q: < 10%
For T2,Q < 200 µs ∆T1,Q: < 20%, ∆T2,Q: < 20%
at 77 K: For T2 > 200 µs ∆T1,Q: < 5 %, ∆T2,Q: < 5%
For T2 < 200 µs ∆T1,Q: < 10 %, ∆T2,Q: < 10%





75

Chapter 4

Predicting quadrupole relaxation
enhancement peaks in proton
R1-NMRD profiles in solid Bi-aryl
compounds from NQR parameters

Christian Gösweinera∗, Danuta Krukb, Evrim Umutb, Elzbieta Masiewiczb, Markus
Bödenlera and Hermann Scharfettera

aInstitute of Medical Engineering, Graz University of Technology, Graz, Austria
bFaculty of Mathematics and Computer Science, University of Warmia and Mazury in

Olsztyn, Olsztyn, Poland

published in:
Molecular Physics, 117:7-8, 910-920, DOI: 10.1080/00268976.2018.1519201 [179]

Abstract

We propose a simple method to calculate and predict quadrupole relaxation enhancement
(QRE) features in the spin-lattice nuclear magnetic relaxation dispersion (R1-NMRD)
profile of protons (1H) in solids. The only requirement is the knowledge of the nuclear
quadrupole resonance (NQR) parameters of the quadrupole nuclei in a molecule. These NQR
parameters- the quadrupole coupling constant Qcc and the asymmetry parameter η - can be
determined by NQR spectroscopy or using quantum chemistry calculations. As there is an
increasing interest in using molecules producing high field QRE features as e.g. for contrast
enhancing agents in magnetic resonance imaging, the experimental efforts of seeking for suit-
able compounds can be reduced by pre-selecting molecules via calculations. Also, the method
can be used to extract NQR parameter, and thus structural information, from R1-NMRD
profiles showing QRE features. In this article, we describe the calculation procedure and
present examples of comparing the result to experimental R1-NMRD data of two different
solid 209Bi-aryl compounds.

https://www.tandfonline.com/doi/full/10.1080/00268976.2018.1519201
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FIGURE 4.1: Scheme of the nuclear spin transition frequency for a proton νL and a
QN νQ with I=5/2 versus the magnetic evolution field. At the Bev field positions
of the level crossings, QRE features can be expected in case that there is a D-D
coupling present between QN and proton originating from spin fluctuations due
to molecular motions.

4.1 Introduction

An application of nuclear magnetic resonance (NMR), forming a field of research by
its own, is the measurement of spin-lattice relaxation rates R1 of nuclear spins. Ex-
periments can be performed on a great variety of materials from condensed matter
to liquids. As one is typically interested in molecular motions, such measurements
are done temperature and/or field dependent by means of NMR field cycling (FC)
relaxometry [180]. This method allows to study R1(νL) of protons on a broad band
Larmor frequency scale νL which is achieved by stepping the external magnetic field
value Bev (evolution field) applied to the sample at different cycles during a disper-
sion measurement. The experimental procedure uses an elaborate way of cycling the
magnetic field in a sequence for enabling polarization, evolution and detection of a
nuclear spin ensemble. The evolution field can typically be varied to create proton
Larmor frequencies from as low as 10 kHz to about 40 MHz. The experiments pre-
sented later in this article, however, are conducted between 20 MHz up to 128 MHz
by the use of an additional superconducting 3 T magnet [94]. An early detailed de-
scription of the method can be found in the work of F. Noack [181], a more recent
review is given in reference [180]. FC-NMR relaxometry nowadays is a standard
analysis method and is applied to a wide range of research fields as e.g. ionic crys-
tals [182], liquid crystals [183], lipids [184], polymer dynamics [185], porous media
[186] or, as formulated quite generally in another review [17], to molecular dynamics
in complex media. The resulting measurements of the frequency dependence of R1

is often referred to as nuclear magnetic relaxation dispersion (NMRD) profile. A
method for gaining insight into molecular dynamics from analysing NMRD profiles
is e.g. the Redfield relaxation theory [97].
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However, not only dynamical properties but also structural information from
solids is accessible from NMRD measurements. The quadrupole relaxation enhance-
ment (QRE, [29, 31, 119, 40, 34]) effect can create pronounced and prominent fea-
tures (peaks) in the R1-NMRD profile, depending on the type of quadrupole nuclei
(QN, I >1/2) and structure of their electronic surrounding. This so called QRE-
peaks (also called quadrupolar dips in case of a T1 = 1/R1 dispersion representation)
emerge due to a magnetization transfer from the protons to nearby (only several Å)
QN via magnetic dipole dipole (D-D) coupling which is manifested in an increase
of the relaxation rate R1 of the proton spins. The effect is frequency (magnetic field)
dependent, because QRE can only occur where both the transition frequencies νL of
the protons (their Larmor frequency) and νQ of a coupled pool of quadrupole nuclei
match (see figure 4.1). One of the first articles demonstrating this effect is dealing
with powdery polyvinylchloride containing 35Cl and 37Cl nuclei (I=3/2)[31]. Also,
studies on solids containing 14N [187, 188] were reported. Cases were presented,
where 14N (I=1) nuclei produce QRE peaks in the NMRD profile of biological sys-
tems e.g. proteins in muscles [189, 32]. Lurie et al. [33] have utilized this effect
for magnetic resonance imaging (MRI) and could demonstrate a contrast enhance-
ment in T1 = 1/R1 weighted images using a special field cycling MRI systems at
low magnetic field strengths (< 200 mT). Field cycling MRI has also been success-
fully demonstrated at clinical field strengths of 1.5 T [128, 112, 110] and 3 T [129].
Recently, strong and pronounced QRE peaks have been observed in NMRD mea-
surements of different Bi-aryl compounds [94]. The experimental data of this article
will be used to evaluate the herein presented simulation.

Aim of this work is to predict the location of QRE peaks in proton R1-NMRD
profiles of solids from the nuclear quadrupole resonance (NQR) parameters of the
QRE-active nuclei by calculating NQR transition probabilities. As we do not directly
include relaxation processes the approach is fairly simple to calculate and gives, as
is shown later, reliable results. This is especially favorable when considering the in-
creasing interest in QN compounds creating QRE peaks in proton R1-NMRD profiles
at high fields (e.g. 3 T) to use them as MRI contrast agents [61] while the measure-
ments of such is not yet straightforward and connected with technical challenges.
Also, the availability of such systems is not yet very high. The NQR parameters on
the contrary are accessible with NQR spectrometers working in the radio frequency
regime and to some degree also through quantum chemistry (QC) calculations. Of
course, the approach can also be used for the other way round: determining NQR
parameters from NMRD profiles showing QRE peaks which could be used to double
check NQR results or to support the determination of NQR parameters where NQR
spectroscopy is problematic.
The central idea can be summarized by formulating four assumptions:

Assumption (1): As in solid powders the nuclei cannot rotate freely their en-
ergy level structure is essentially static and determines the NQR powder spectra
νQ(Bev) in the presence of an external magnetic field by applying the unperturbed
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total Hamiltonian as a sum of quadrupole and Zeeman Hamiltonian. From that, the
transition probability pQ(Bev) can be calculated by summing up all contributions
over all orientations of the crystallites.

Assumption (2): QRE can only occur at magnetic fields Bev at which νL(Bev)

matches a QN transition frequency νQ(Bev).
Assumption (3) states, that the QRE amplitude at Bev depends on the joint tran-

sitions probability between eigenstates of the spin system of the QN - 1H pair medi-
ated by D-D coupling. As we neglect the proton relaxation, the sole QN transitions
probability pQ(Bev) is considered. This has the consequence, that the QRE ampli-
tudes will not be reproduced completely correct.

Assumption (4) proposes, that the relaxation of NQR transitions due to pertur-
bations of the QN energy level structure (which acts as the mechanism in the QRE
process for dissipating the magnetization to the lattice) can be regarded as small
and enters the calculation only phenomenological by the assumption of a certain
linewidth for zero field transitions.

4.2 Theory

4.2.1 The calculation procedure

Details of how to calculate the NQR powder spectrum will be matter of the following
sections, but to understand the calculation procedure, one has to know that a QN can
already exhibit excitable spin transitions νQ,k at zero magnetic field [42]. Depending
on its nuclear spin quantum number I, one can observe- in case of half integer spins-
I + 1/2− 1 transitions k. As νL is given by the product of the proton’s gyromagnetic
ratio γp times the applied field Bev in qualitatively the same way as the splitting
of quadrupole transitions is given by γQN times Bev, the only determinant of the
frequency locations of the transition crossings are the pure quadrupole transition
frequencies of the QN at zero magnetic field (see figure 4.1). These are the result
of an electrical interaction between the electric field gradient (EFG) at the nucleus of
interest and its quadrupole moment Q being present in the QN containing molecule.

Keeping this in mind, the calculation procedure can best be explained by an ex-
tension of figure 4.1 towards a more general case where the EFG is not aligned with
Bev but randomly uniformly distributed, thus leading to a powder spectrum at each
Bev (see figure 4.2). Also, the intensity of the NQR powder spectrum is included.
Again, the nuclear spin transition frequencies of a proton and a QN in the presence
of a magnetic evolution field Bev are plotted in the transversal plane. On the z-axis
additionally the intensity of the NQR powder spectrum is drawn. So, figure 4.2
shows the spectral NQR intensity as a function of frequency in dependence on the
magnetic field. In particular six selected NQR spectra are drawn and labelled with
colours from dark red to yellow, the brightness indicating the increasing Bev. The
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FIGURE 4.2: Scheme to illustrate the calculation procedure for predicting QRE peak
positions in NMRD measurements. The x-y plane of the 3D plot is spanned by the
spin transition frequency versus the magnetic field Bev which is applied to a pro-
ton and a QN. The z-axis gives the intensity of the NQR powder spectrum which
depends on the QN spin transition probability pQ. When following the proton Lar-
mor frequency along the x-y plane, the NQR spectrum intensity can be evaluated at
a set of points along the magnetic evolution field. Some evaluation positions, which
correspond to the transition crossings, are marked in green color. The thereby gen-
erated intensity profile in blue gives an estimate for the probability of a QRE feature
in an R1-NMRD profile of slowly rotating or static (in solids) systems.

oblique plane is aligned with the proton Larmor frequency νL and thus acts as an in-
dicator function which cuts out the quadrupole transition probability exactly at the
corresponding crossover points, as indicated exemplary by the vertical light green
lines ("evaluation points"). The resulting pattern along this indicator plane is used
for predicting the QRE transition probability and thus those bands where QRE most
likely can be expected. As it does not account for lineshapes or spectral densities of
the D-D fluctuations it must not be interpreted quantitatively, i.e. in terms of QRE
strength.

4.2.2 NQR powder spectrum

The required theory in order to obtain the quadrupole transition frequencies νQ

and their expectable NQRS intensities INQR(νQ) in the presence of an external static
magnetic field B0 is well described in references [42, 48, 68] and will be adapted and
summarized in the following section.

The interaction of nuclei exhibiting a quadrupole moment Q (for I > 1/2)
with an electric field gradient (EFG, Vij =

∂2V
∂xi∂xj

) resulting from surrounding binding
electrons forming the electrostatic potential V, gives rise to discrete energy levels of
the nuclear spin. A nucleus with e.g. spin number I = 5/2 has 2I + 1 = 6 energy
levels denoted with m = −I... + I.

The interaction can be fully described by just two parameters: the quadrupole
coupling constant Qcc and the asymmetry parameter η which appear in the pure
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NQR Hamiltonian ĤQ(I) in the laboratory frame (LAB):

ĤQ(I)LAB =
Qcc

I(2I − 1)

2

∑
m=−2

(−1)mT(2)
m V(2)LAB

−m (4.1a)

T(2)
0 (I) =

1
2
(3 Î2

z − I(I + 1))

T(2)
±1 (I) =

√
6

4
( Îz Î± + Î± Îz)

T(2)
±2 (I) =

√
6

4
Î2
±

(4.1b)

Qcc = e2qQ/h̄ is made up of the product of the EFG strength eq and the quadrupole
contribution eQ with the quadrupole moment Q. The asymmetry parameter η =
Vxx−Vyy

Vzz
is a measure for the deviation of the EFG from cylinder symmetry. The Î’s

denote the usual spin angular momentum operators.
As we are applying an external static magnetic field, the Zeeman Hamiltonian

ĤZ(I) has to be added to the total Hamiltonian Ĥ0(I)(Ω):

Ĥ0(I)(Ω) = ĤZ(I) + ĤQ(I)(Ω). (4.2a)

ĤZ(I) = −γQN
−→
B ev ·

−→
Î (4.2b)

ĤZ(I) introduces an angle dependency Ω = (α, β, γ) between the direction of the
EFG and the applied magnetic field

−→
B ev. γQN is the gyromagnetic ratio of the

quadrupole nucleus under investigation.
In order to account for the required rotation into the same coordinate system

(LAB), the spatial tensor operators V(2)
m have to be written in the following form

[68]:

V(2)LAB
0 =

1
2

[
(3cos2β− 1)

2
+

η

4
sin2β(e−2iγ + e−2iγ)

]
V(2)LAB
±1 =

1
2

[
∓
√

3
8

sin2βe±iα +
η√
6

(
−1∓ cosβ

2
sinβe±i(α∓2γ) +

1∓ cosβ

2
sinβei(±α+2γ)

)]

V(2)LAB
±2 =

1
2

[√
3
8

sin2βe±2iα +
η√
6

(
(1∓ cosβ)2

4
e±2i(α∓γ) +

(1± cosβ)2

4
e2i(±α+γ)

)]
(4.3)

To finally obtain the transition frequencies νQ, the total Hamiltonian from (4.2a) is
being diagonalized numerically and we end up with the energy levels Eα of the spin
system with respect to the eigenfunctions |Ψα(Ω)〉 = ∑2I+1

m=−1 aα,m(Ω)|I, m〉, where
{|I, m〉} is the orthonormal Zeeman basis, in short, written as {|m〉}. The angle
dependent NQR transition frequencies νQ(Ω) at an external magnetic field Bev can
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FIGURE 4.3: Simulated NQR powder spectrum at an external magnetic field of 100
mT for triphenylbismuth according to equation (4.7). The grey dots in the back-
ground correspond to the result of equation (4.6) evaluated for a single angle Ω.
The blue line gives the normalized summation of all grey points according to equa-
tion (4.7). Panel a) shows the whole spectrum from 0 to 120 MHz. Panel b) and
c) zoom into two selected bands which show the splitting of transition 1 and 3,
respectively. While transition 3 shows a typical Pake-pattern, the low-frequency
pattern corresponding to transition 1 is comparatively complex. The reason for this
shape has been described elsewhere [42]. Input parameters for triphenylbismuth
from reference[61]: Qcc = 668.87 MHz, η = 0.08, I = 9/2, γBi = 6.95 MHz/T,
FWHM of single intensity = 40 kHz. N = 200.

be expressed by the difference between two energy levels E:

νQ(Ω, Bev) = Eα − Eβ = 〈Ψα(Ω)|Ĥ0(I)(Ω)|Ψα(Ω)〉 − 〈Ψβ(Ω)|Ĥ0(I)(Ω)|Ψβ(Ω)〉
(4.4)

4.2.3 Intensity of the NQR powder spectrum

A NQR experiment can be performed by exciting a QN spin transition with an oscil-
lating magnetic field with amplitude

−→
B RF in an arbitrary direction (x,y,z) at angular

frequency ωRF and phase φRF described by the RF-Hamiltonian [68]

ĤRF = −γQN
−→
B RF ·

−→
Î · cos(ωRFt− φRF). (4.5)

The expected relative intensity for each transition νQ(Ω) when an evolution field
Bev is applied can be written as a product of the quantum mechanical transition
probability pNQR times the Boltzmann population difference pT of the energy levels
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at the ensemble temperature T:

INQR(νQ)(Ω, Bev) = pNQR · pT = |〈Ψα(Ω)|ĤRF|Ψβ(Ω)〉|2 · e
Eα−Eβ

kBT

∑i,j e
Ei−Ej
kBT

, (4.6)

where kB is Boltzmann’s constant.
To describe a powder spectrum, the frequencies from equation (4.4) and their

corresponding intensities (equation (4.6)) are being evaluated for a set of N random,
uniformly distributed angles Ω on a sphere. Then, each intensity value is assumed
to represent a Lorentzian peak with an experimentally determined and constant full
width at half maximum (FWHM) derived from zero-field NQR measurements. The
Lorentzians with γ = FWHM/2 are then summed up and averaged according to
equation (4.7).

INQR(νQ)(Bev) = ∑
Ω

 INQR(νQ)(Ω, Bev)

1 + ν−νQ(Ω,Bev)
γ

 /N (4.7)

In figure 4.3, the result of such a procedure is demonstrated for triphenylbismuth in
a field Bev of 100 mT. The clouds of single grey stars in the background represent the
intensity values for each of the randomly chosen angles Ω on a unit sphere according
to equation (4.6), the blue solid line is the average according to (4.7) and shows the
calculated NQR spectrum at a field strength of 100 mT. The noisy, oscillatory shape
of the spectrum is a result of the random input parameters and the frequency step
size. For higher number of angles N and a smaller step size the lineshape of the
spectrum becomes smoother.

4.2.4 The relevant intensity of the NQR powder spectrum

The intensity INQR(νQ)(Bev) as described in section 4.2.3 is the intensity that can be
expected from a measurement using a NQR spectrometer. Typically, ĤRF in equation
(4.6) reduces to Îx, when the RF field oscillates perpendicular to the applied magnetic
field. But we are interested in the QRE effect which is manifested in magnetic field
selective R1-relaxation enhancement features in NMRD profile measurements. In
this case two spin species and their corresponding transitions are involved. To fig-
ure out what are the allowed transitions, we should have a closer look at what is
happening at the level crossings: Assuming that the proton with I=1/2 in a mag-
netic field is performing a transition from | − 1/2〉 to | + 1/2〉 during spin-lattice
relaxation, the angular momentum changes by ∆m = +1. To act like an energy
sink and take over the corresponding magnetization, the QN has to perform a spin
transition with the same energy by ∆m = −1 (e.g. | − 3/2〉 to | − 5/2〉), which cor-
responds to an excitation. The operator that can mediate such a transition within
the QN energy level system is the lowering operator Î−. In that case, the intensity of
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NQR transitions available for the protons for performing QRE can be written as:

IQRE(νQ)(Ω, Bev) = pQRE · pT = |〈Ψα(Ω)| Î−|Ψβ(Ω)〉|2 · e
Eα−Eβ

kBT

∑i,j e
Ei−Ej
kBT

IQRE(νQ)(Bev) = ∑
Ω

 IQRE(νQ)(Ω, Bev)

1 + ν−νQ(Ω,Bev)
γ

 /N,

(4.8)

where the angle averaged intensity IQRE(νQ) is formed assuming Lorentzian peaks
of constant width γ.

From the simulation’s point of view, the definition of the direction of the applied
evolution field Bev decides whether raising operator Î+ or the lowering operator Î−
should be used. In our case, Bev points into the positive z direction, which means that
the proton state |+ 1/2〉 has lower energy and R1-relaxation therefore is connected
with an angular momentum change by ∆m = +1. Therefore, the operator of choice
to calculate the NQR spectra is the lowering operator Î−. However, as shown in
section 4.3.2, this is not a strict rule for all transitions.

4.2.5 The indicator function for QRE peaks

Taking together the above derived equations (4.4) and (4.9), we are ready to write
down an indicator function fQRE for the potential of finding QRE peaks in a R1-
NMRD measurement of protons coupled to a QN in solids:

fQRE(νL) = IQRE(νQ(Bev)) |νL , (4.9)

which simply means, that the intensity of the NQR powder spectrum IQRE seen by
a proton 1H coupled to a QN at a particular magnetic field Bev is evaluated at the
corresponding proton Larmor frequency νL.

In principle, equation (4.9) can also be used to consider double quantum transi-
tions by using Î− Î− and involving two protons.

4.3 Results

Equation (4.9) is evaluated for tris(2-6-dimethoxyphenyl) bismuthine and tris(2-
methoxyphenyl) bismuthine based on their NQR parameters taken from [61]. The
used input parameter Qcc, η, γ and the step sizes for Bev and νQ for the calculations
are summarized in table 4.1. Simultaneously, the results are compared to experimen-
tal R1-NRMD profiles which can be found in reference [94]. The molecular structure
of the Bi-aryl compounds is included as an insert in figures 4.4 and 4.5.

As already addressed in section 4.2.1, the result of the QRE simulation is some-
what noisy due to the random character in the calculation of the NQR spectrum.



84
Chapter 4. Predicting quadrupole relaxation enhancement peaks in proton

R1-NMRD profiles in solid Bi-aryl compounds from NQR parameters

TABLE 4.1: Simulation input parameters for Bi-aryl compounds tris(2-6-
dimethoxyphenyl) bismuthine and tris(2-methoxyphenyl) bismuthine. NQR pa-
rameter Qcc, η and linewidth γ = FWHM/2 at 310 K from reference [61].

Compound molecular formula Qcc (MHz) η (1)
γ

(kHz)a
smoothing

spanb
step size
Bev (mT)

step size
νQ (kHz)

tris(2-6-dimethoxyphenyl)
bismuthine BiPh3(DiOMe)3 ortho 660.9 0.105 20 11 2.1 (=̂ 88 kHz) 13.8
tris(2-methoxyphenyl)
bismuthine site A BiPh3(OMe)3 ortho A 715.3 0 20 15 2.8 (=̂ 120 kHz) 15.4
tris(2-methoxyphenyl)
bismuthine site B BiPh3(OMe)3 ortho B 714.2 0 20 15 2.8 (=̂ 120 kHz) 15.4

a an average value has been assumed for all transitions
b low pass filter with coefficients equal to 1/span with span in percentage of number
of data points

Because of that, a post processing step is performed by smoothing the result using a
moving average filter (filter parameters for coefficients see table 4.1).

4.3.1 Tris(2-6-dimethoxyphenyl) bismuthine

The result for BiPh3(DiOMe)3 ortho is illustrated in figure 4.4. The upper panel
shows the experimental NMRD data at 295 K with many pronounced QRE peaks
A-E. The positions of peaks C-E are well reproduced by the simulation according to
equation (4.9) (input parameters see table 4.1) in the lower panel. Also, their shape
(shoulder to higher frequencies) is reproduced well. For the low frequency features
(< 40 MHz) A and B on the contrary, no such good correspondence can be found.

4.3.2 Tris(2-methoxyphenyl) bismuthine

BiPh3(OMe)3 ortho has two crystal sites A and B with their Qcc only differing by
about 1 MHz and a similar η (see table 4.1). Correspondingly, the NMRD profile (at
295 K) shows single peaks (A-E), where both nuclei contribute on the same frequency
(within experimental accuracy). This is illustrated in figure 4.5, where the lower
panel shows the simulation for both sites in blue and green solid line according to
equation (4.9) and using the input parameters of table 4.1. The locations and shapes
of peaks C-E are well reproduced by the calculation. The low frequency features
(< 40 MHz) A and B, on the contrary, are very strong in the experiment, but are
estimated weaker by the simulation. Reasons for that will be discussed in addressed
in section 4.4.3. Also, a frequency match is only present for feature A. Peak B has no
correspondence in the simulation.

4.3.3 Double quantum transitions

Calculations were performed to look for double quantum transitions using the Î− Î−
operator and also allowing double proton transitions (crossings with 2 · νL). Equa-
tion (4.9) is therefore applied using Î− Î− instead of Î− and evaluated at 2 · νL with
the input parameter of table 4.1.
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FIGURE 4.4: Comparison of QRE prediction calculation according to equation
(4.9) (lower panel) at 310 K with experimental R1-NMRD profile of tris(2-6-
dimethoxyphenyl) bismuthine (upper panel) at 295 K.
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FIGURE 4.6: Comparison of QRE prediction calculation according to equation
(4.9) (lower panel) at 310 K with experimental R1-NMRD profile of tris(2-6-
dimethoxyphenyl) bismuthine (upper panel) at 295 K. In blue, the calculation based
on single quantum transitions is shown, for the red solid line, the calculation is
based on double quantum transitions

The results are shown in figures 4.6 and 4.7, where the low field features are
marked in red in the upper panel with simulations for both cases in the lower panel.
The blue line corresponds to the simulation using Î−, the red line to the simulation
using Î− Î−. An overlay of both procedures suggests a slightly better match in the
low field region to the experimental data than the sole Î− calculation.

Possible reasons for the comparably poor reproduction of the low field features
and the meaning of the additional peaks in the simulation in the high field region
are addressed in section 4.4.

4.4 Discussion

The proposed procedure for predicting the appearance of QRE peaks in 1H-NMRD
profiles of the R1 relaxation rate of molecular crystals performs well for several ex-
perimentally investigated Bi-aryl compounds in the higher field range, though a
couple of assumptions have been applied. In some sense the method represents an
extension to the QRE peak allocation of a previous work [94], where rather broad
frequency bands attributed to QRE locations could be defined.

4.4.1 The low field regime <1 T

As the correspondence between simulation and experiment in the low field regime
is not satisfactory when considering only single quantum transitions (figures 4.4 and
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FIGURE 4.7: Comparison of QRE prediction calculation according to equa-
tion (4.9) (lower panel) at 310 K with experimental R1-NMRD profile of tris(2-
methoxyphenyl) bismuthine site A (upper panel) at 295 K. In blue, the calculation
based on single quantum transitions is shown, for the red solid line, the calculation
is based on double quantum transitions

4.5), also the role of possible double quantum transitions is discussed.
The low field features A and B in the NRMD profiles of the two Bi-aryl species

most likely originate from the lowest NQR transitions, | ± 3/2〉 to | ± 1/2〉 , simi-
lar to the spectrum shown in figure 4.3 panel b). This is a special transition com-
pared to higher ones, as in case of Zeeman-splitting, the corresponding Hamiltonian
Ĥ0(I)(Ω) (equation 4.2a) exhibits large off-diagonal elements which induce a mix-
ing of the |+ 1/2〉 and | − 1/2〉 states [42]. Due to that mixing, the selection rule due
to the conversion of angular momentum is not restricted to ∆m = −1 any more. In
that case, also double quantum transitions ∆m = −2 are allowed and the simula-
tion should also include contributions from the Î− Î− operator. Also, one must take
into account, that for such a transition, two protons have to be involved to maintain
angular momentum.

The result when including double quantum transitions is shown in figures 4.6
and 4.7. The data suggest that double quantum transitions can contribute to QRE in
the frequency range/field range associated with the lowest NQR transition.

4.4.2 The high field regime >1 T

QRE peaks occurring at νL >40 MHz can be predicted well both in location and
shape by assuming only single quantum transition. This is demonstrated in figures
4.4 and 4.5
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The slight mismatch in frequency (down-shifted simulation) can be attributed to
the temperature difference (simulation at 310 K, experiment at 295 K) and experi-
mental errors both in the R1-NMRD profile and in the used NQR parameter for the
simulation. As has been shown in [61], the temperature coefficient of NQR transi-
tions around 310 K is expected about 10 kHz/K, at worst. For an assumed temper-
ature difference of about 20 K , this means one can expect a shift of 0.2 MHz for the
QRE peaks, which is of the order of the experimental resolution.

However, the exact relative intensities of the QRE features and the baseline shape
due to a relaxation background cannot be reproduced. This is not surprising as
corresponding models have not yet been included.

The additional peaks at higher frequencies from the simulation of double quan-
tum transitions (red lines in figures 4.6 and 4.7) do not originate from such special
conditions as addressed above and are thus also not observed in the experiment (as
such transitions are forbidden). Although, in principle also these higher states are
subjected to a mixing due to non-zero η and the angle dependency of the Zeeman
Hamiltonian, this effect is significantly lower than for the lowest transition. There-
fore corresponding features cannot be observed in the experiment.

4.4.3 Possible improvements

Most worth mentioning is the fact that the actual D-D coupling mechanism between
QNs and protons has not been included into the formulation. Also, no other re-
laxation mechanism, as e.g. the proton D-D background, has been considered. The
method is solely based on the probability of the QN NQR transitions which are avail-
able for the QRE effect.

One attempt to include relaxation processes could be a model based on D-D cou-
pling between heterogeneous nuclei extended by a suitable model for the quadrupo-
lar spin fluctuations. This could increase the accuracy of the simulation of predicting
also the exact intensities of possible QRE features, which are not perfectly repro-
duced by the current method. Also, a model for the proton relaxation background
based on dipolar coupling could be used to add a more realistic baseline to the pre-
sented calculations.

In particular, a high spectral density at the matching frequency enabling efficient
QRE can be responsible for the strong mismatch in predicting the relative QRE peak
intensities (see figure 4.4 and 4.5) between low field and high field QRE peaks.

The next step would be to consider the whole spin system and all relaxation
effects directly in a Redfield theory [97] approach, which is considerably more com-
plex and requires more computational resources.

Another point for improvement is the calculation of the static NQR powder spec-
trum depending on an external magnetic field. Instead of assuming a constant width
for all transitions, a proper model based on Redfield theory can be applied to cal-
culate the lineshape throughout the whole spectrum. In that way, the actual peak
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widths, which are different for each transition, could be included which would cer-
tainly better resolve the experimentally observed QRE peak shape.

4.4.4 Conclusion

The comparison between experiment and simulation is satisfactory in the high field
region (>1 T) and so the presented method can be used to plan R1-NMRD mea-
surements in advance by predicting QRE peak positions in QN and 1H containing
molecular crystals. The necessary NQR parameters Qcc, η and the linewidth can
be determined either experimentally from NQRS measurements or by ab initio QC
calculations as already has been shown to give reasonable results [61].

As the actual relaxation effect between 1Hs and QNs is not included, the proce-
dure does not provide quantitative information and shall therefore be treated as a
prediction tool for frequencies where QRE peaks are likely to occur. More precisely,
the presented procedure shows at which field strengths there is no or little chance for
a QRE peak and so states a necessary condition that can serve as a basis for further
considerations.

When it comes to an application of the presented method we would like to men-
tion that the tool can support ongoing research on MRI contrast agents based on the
QRE effect [34, 61, 94] which is especially suitable for FFC-MRI systems [129]. Of
course, the requirements and conditions for a particle acting as MRI contrast agent
in biological tissue are rather complex and not straightforward to fulfill. However,
in a rational particle design process it makes sense to start with the simplest system
and extracting promising compound candidates already from the solid state. By do-
ing so, to some degree the frequency (magnetic field) positions where the QRE effect
most likely occurs can already be restricted. In a next step, the selected particles can
be brought into solution (water) by e.g. incorporate them in a nano particle acting
as blood stream carrier. For this overall particle system further properties, as e.g.
water exchange, rotational dynamics and solubility have to be shaped. This topics
are matter of ongoing work where further research is desirable. In a quite recent
work aspects of structural order of QRE active particles based on 209Bi are discussed
with the outcome, that also in solution, particles with a highly ordered molecular
structure are beneficial [91].
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Abstract

We present an extension of a Redfield approach for calculating spin-spin relaxation rates of
zero-field nuclear quadrupole resonance (NQR) coherences, which was published in [Kruk
et al., PCCP, 2018, 20, 23414-23426]. The oversimplification of the secular approximation
made in the recent paper makes the calculation invalid for zero-field NQR and has led to
partially large deviations between predicted and experimental data from 209Bi-containing
molecular crystals. Furthermore, these deviations led to speculations about an additional
dipole-dipole relaxation mechanism besides the main electric field gradient (EFG) fluctua-
tions. Here, we demonstrate how a complete application of the Redfield relaxation expression
eliminates the deviation from experimental data without the need for additional assump-
tions. In particular, we point out the important role of off-diagonal elements in the Redfield
relaxation matrix within the 3/2-1/2 block appearing due to degenerate energy levels. The re-
sulting coupling between single and double coherence spin density elements leads to a faster
coherence decay than for all other transitions. The pseudo rotational model for EFG fluc-
tuations, as proposed in the earlier publication and usually applied for isotropic liquids, is
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extended in a second analysis by introducing a vibrational mode to account for the case of
crystalline solids.

5.1 Introduction

Nuclear spin relaxation phenomena in condensed matter offer a rich source of in-
formation on the molecular dynamics of the system under observation [101, 48, 191,
102]. Measurements of spin-lattice (R1) and spin-spin relaxation rates (R2) encode
information on the type of fluctuations leading to relaxation and the shape of their
spectral density. This fact is extensively used e.g. by field cycling relaxometry on
protons [17], where the molecular dynamics of complex, often liquid samples can
be revealed by acquiring a nuclear magnetic relaxation dispersion (NMRD) profile.
Typically, such measurements are also performed at different temperatures.
In nuclear magnetic resonance (NMR) spectroscopy, relaxation measurements are
used for the assignment of molecular groups, to investigate exchange processes and
to study the influence of different quantum mechanical interactions that can be a
source for relaxation [192]. One of the most prominent applications of proton re-
laxation is magnetic resonance imaging (MRI). Of major interest in that field are
techniques and mechanisms able to enhance or manipulate image contrast by the
application of chemical agents that influence the relaxation process [104, 38].

Another, less popular method to access nuclear spin relaxation is nuclear
quadrupole resonance (NQR) spectroscopy [45, 42]. In contrast to NMR, where
mostly protons are in the center of interest, in NQR nuclei with spin number I > 1/2
in solids are addressed directly and the application of an external magnetic field is
not necessary. Instead, an electric interaction between the quadrupole moment of
the nucleus and an electric field gradient (EFG), produced from the surrounding
atoms and molecules, is the origin of discrete spin states. Though, the measure-
ment procedure is closely related to NMR where the application of a sequence of
radio frequency pulses redistributes the occupation of spin states. High spin nuclei
exhibit a richer, but also more complex energy level system which requires a very
careful treatment when applying quantum mechanical models as e.g. Redfield the-
ory [97]. As NQR is much less extensively used than NMR techniques, there are no
standard procedures available as e.g. the intensively used Solomon-Bloembergen-
Morgan (SBM) equation for the field dependent R1 relaxation of protons in para-
magnetic systems [18, 19, 20]. Several works treat temperature dependence of R1

relaxation of pure NQR transitions [193, 194, 195, 196], but less studies were per-
formed on the coherence decay (R2) or the lineshape of NQR spectra [197]. Though,
the total experimental lineshape carries information of quite practical nature as e.g.
crystal homogeneity, or nanoparticle size, which is connected with the EFG distribu-
tion [198, 199, 200, 201]. However, one can only address this issue trustfully when
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the portion of line broadening due to dephasing and finite lifetime of spin states is
exactly known.

In this work, we present an extension of an earlier article [94] where spin-spin
relaxation rates of quadrupole transitions at zero field where calculated for I=9/2
nuclei using Redfield theory [97, 98]. In [94], fluctuations of the electric field gra-
dient according to the simple two parameter pseudo rotational (PR) model are as-
sumed, which is originally used for modelling fluctuations of the zero field splitting
interaction in electron spin relaxation [202]. The calculation includes only single co-
herence elements of the spin density and no possible off-diagonal elements of the
Redfield matrix are considered, leading to uncoupled equations of motions for each
transition. Comparison with and fitting to experimental data from deuterated and
non-deuterated triphenylbismuth in powder form were not completely satisfactory,
as for the lowest transition the errors are high. This discrepancy was attributed to an
additional relaxation mechanism resulting from dipole-dipole interactions between
the quadrupole nuclei (209Bi) and surrounding protons.

However, in the zero field case and for half-integer spin nuclei, NQR states are
doubly degenerate and the secular approximation is not restricted to the diagonal
elements any more. Only in case of very small off-diagonal elements, they can be
ignored which we show here, is not the case. Including the complete relaxation ma-
trix according to the Redfield theory complicates the calculations slightly, as more
elements of the spin density must be included and the equations can become cou-
pled. Performing a Fourier-Laplace transform of the spin density equation of mo-
tion allows to evaluate the decoherence-broadened NQR spectrum including any
coupling. Also, a closed form solution for each single quantum coherence is given.
From the linewidth of the resonance peaks, their spin-spin relaxation rate can be
extracted. The respective Redfield relaxation matrix elements are calculated ana-
lytically for two different motional models for the fluctuations of the electric field
gradient (EFG) at the 209Bi-site.

It is not an easy task to capture all features of motion of molecular crystals [203,
204], as treated in this study, and how these affect the EFG at the site of a particu-
lar nucleus. In general, in such a solid lattice and molecular motions are expected.
Lattice motions comprise phonon modes while molecular motions comprise molec-
ular torsional oscillations as well as intra molecular and molecular reorientations
[194]. As we do not intend to discuss in detail all possible motions in a molecular
crystal, we formulate, in a heuristic manner, an as simple as possible model for the
EFG fluctuations to keep the number of parameters low while maintaining physical
reasoning. Instead of the PR model used in [94], we introduce a so called flicker-
ing amplitude (FA) model [205], using a monoexponetial correlation function for the
EFG amplitude which is extended in a second step with a vibrational mode to form
the flickering vibrational amplitude (FVA) model. For the assumption of an isotropic
distribution of fluctuation directions, the FA model becomes equivalent with the PR
model.
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Experimental relaxation data are discussed from three different Bi-aryl com-
pounds at two different temperatures (77 K and 310 K) (mostly taken from [61]).
The applied spin echo measurements provide spin-spin relaxation rates from homo-
geneous effects only. The two dynamical models are tested on these data and so
dynamical parameters reflecting time-scale and amplitude of the EFG fluctuations
are determined. It should be noted, that the presented method is not applicable to
very slow molecular motions, as in this case the Redfield condition is not fulfilled
and the stochastic Liouville approach must be applied (see e.g. [206]).

5.2 Methods

5.2.1 Lineshape calculation

The concept of the spin density operator [76] and the semi classical model for relax-
ation developed by Bloch, Wangsness and Redfield are summarized and discussed
extensively in several works [96, 97, 101, 48]. Thus, here only a brief collection of the
used equations and the derivation of the lineshape function adjusted to our case is
given. A great deal of the equations is defined in appendix 5.5.

The time evolution of a spin ensemble is described by the stochastic Liouville
equation for the spin density operator ρ̂

d
dt

ρ̂(t) = −i
[
Ĥ(t), ρ̂(t)

]
, (5.1)

which can be solved for a stochastic time dependent Hamiltonian Ĥ(t) = Ĥ0 + Ĥ1(t)
by applying second order time dependent perturbation theory and following the
approximations of Redfield relaxation theory. From the result [97, 48, 100, 98] it
follows that equation 5.1 can be written in Liouville space as

d
dt

ρ(t) =
(
−iL0 − Γ

)
ρ(t) , (5.2)

where L0 is the Liouvillian generated by the time independent Hamiltonian Ĥ0 and
Γ is the relaxation superoperator which is generated by the stochastic Hamiltonian
Ĥ1(t). In Liouville space formulation, an operator basis projection {|α〉 〈α′|} is used
where |α〉 are the usual Zeeman states with the magnetic spin quantum number
α ∈ [−I, I] and the spin quantum number I. Using such an operator basis, the
spin density operator can be expanded in the complete set of operators |α〉 〈α′| as
ρ̂ = ∑α,α′ ραα′ |α〉 〈α′| and thus forms a column vector in equation 5.2 with the el-
ements ραα′ = 〈α| ρ̂ |α′〉, while the Liouvillian and relaxation superoperators be-
come matrices. Their elements are defined in appendix 5.5, equations 5.25 and 5.26a.
Equation 5.2 written element-wise reads as

d
dt

ραα′(t) =
β,β′

∑
ναα′=νββ′

(
−iL0

αα′ββ′ − Γαα′ββ′

)
ρββ′(t) , (5.3)
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where ναα′ = Eα− Eα′ are the transition frequencies of Ĥ0 and Eα are its Eigenvalues.
The condition for the sum results from the secular approximation which can best
be understood by looking at equation 5.2 in the interaction frame, where ρ∗αα′ =

eiL0tραα′ :
d
dt

ραα′(t)∗ = ∑
ββ′

Γαα′ββ′e
i(Eα−Eα′−Eβ+Eβ′ )tρββ′(t)∗ (5.4)

Any terms for which Eα − Eα′ 6= Eβ − Eβ′ give oscillating contributions and thus do
not contribute to the relaxation of ρ(t). In the absence of degenerate terms this leads
to diagonal single and double coherence blocks in the relaxation matrix and so no
cross relaxation between off-diagonal elements can occur [48, 207]. We will see that
for NQR this is different. In NQR, the energy levels of the |±α〉 quantum states
are doubly degenerate in case of half integer spins and no external field is applied.
This means that more elements fulfill the secular approximation than e.g. in nuclear
magnetic resonance (NMR) phenomena. As a consequence, (1) equation 5.26a for
calculating the elements of Γ has been altered slightly compared to the standard
formulation (see appendix 5.5), (2) more elements are entering ρ(t) and (3), it is
possible that also off-diagonal elements appear in the single and double coherence
blocks of the relaxation matrix.

As we are interested in spin-spin relaxation, we have to evaluate the expectation
value of the Îx and Îx Îx operators

〈
Îx
〉

and
〈

Îx Îx
〉

respectively, that encode single
and double quantum coherences (transversal component of the magnetization). A
corresponding signal G(t) can then be written as

G(t) ∼
〈

Îx
〉
+
〈

Îx Îx
〉
=

tr
{

ρ(t) Îx
}

tr
{

Î2
x
} +

tr
{

ρ(t) Îx Îx
}

tr
{

Î2
x Î2

x
} . (5.5)

The equation picks out the right elements from the spin density vector ρ(t) contain-
ing the signal. A convenient way to solve this coupled system of differential equa-
tions is by applying Fourier-Laplace transform and solve the equation in frequency
domain [208]. First, the transform L [ρ(t)] = ρ̃(s) is applied and the differential
equation is solved. Then, a variable transformation s → iν is performed to produce
the Fourier transform (see appendix 5.5 equation 5.27).

ρ(ν) =
(
iν1+ iL0 + Γ

)−1
ρ(0) (5.6)

ρ(ν) can be identified as the spin density in frequency domain. For evaluating
equation 5.6, the matrices L0 and Γ need to be calculated according to appendix 5.5,
equations 5.25 and 5.26a. ρ(0) is the initial condition which follows the Boltzmann
equilibrium distribution of the spin system.

Instead of calculating the signal in time domain from equation 5.5, we can now
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evaluate the lineshape F(ν) (NQR spectrum) which is just its Fourier transform:

F(ν) =
tr
{

ρ(ν) Îx
}

tr
{

Î2
x
} +

tr
{

ρ(ν) Îx Îx
}

tr
{

Î2
x Î2

x
} =

∑
αα′

〈α| ρ(ν) |α′〉 〈α′| Îx |α〉
tr
{

Î2
x
} + ∑

αα′

〈α| ρ(ν) |α′〉 〈α′| Îx Îx |α〉
tr
{

Î2
x Î2

x
} (5.7)

Using equation 5.7 together with 5.6, the NQR spectrum can be calculated which
eventually contains information on the spin-spin relaxation rates R2 in the linewidth
of the transitions.

5.2.2 Quadrupole interaction

The static part of the total Hamiltonian, Ĥ0, in equation 5.1 is the usual quadrupole
Hamiltonian expressed in spherical tensor operators (see 5.28a). Two parameters
are enough to fully describe the interaction between a nuclear quadrupole (I > 1/2)
and it’s local electric field gradient (EFG) generated by the surrounding molecule:
The quadrupole coupling constant Qcc = e2qQ/h̄ is formed by the product of the
EFG strength Vzz = eq and the quadrupole contribution eQ with the quadrupole
moment Q. The asymmetry parameter η =

Vxx−Vyy
Vzz

describes the deviation of the
EFG from cylinder symmetry. Ĥ0 is responsible for the transition frequencies of the
quadrupole spin resonance and enters the lineshape calculation via the elements
of the Liouvillian L0 (appendix 5.5, equations 5.25 and 5.32). As solid powders of
molecular crystals are treated, in some cases a powder average has to be considered.
Reasons could be the presence of an external magnetic field or if one is interested
in the intensity of a spin transition that can be detected by the solenoid coil of a
spectrometer also creating the RF field for excitation. This requires a transformation
of the principal axis system (P) of the EFG with respect to the laboratory system (L),
defined by the spectrometer coil or an external field. However, in the presented case,
no external field is applied and no intensity analysis is performed so it is convenient
to use the (P) representation of the quadrupole Hamiltonian (see appendix 5.5,
equations 5.28a-5.28d and explanations).

As the main source of relaxation in pure NQR spin ensembles we consider
fluctuations of the quadrupole Hamiltonian (defining the spin states) due to fluctu-
ations of the EFG itself. This EFG fluctuation is connected with the molecular fixed
frame (M) and has to be transformed into the (P) frame defined by the static part
of the EFG. According to this assumption, the total Hamiltonian Ĥ carries a time
and angle depending part Ĥ1(t)(ΩMP) describing random, stochastic fluctuations
of the EFG. To fulfill the conditions of Redfield theory, this Hamiltonian has to
average to zero in a time period much faster than a typical relaxation time of the
spin system under observation. The choice of the explicit time dependence of the
EFG tensors V(2)

m (rank 2 spherical tensor operators) is discussed in section 5.2.3.
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Ĥ1(t)(ΩMP) formally has the same form as Ĥ0 and enters the relaxation matrix
Γ via equations 5.26a and 5.26b. In order to display the transformations between
coordinate systems (L) Lab, (M) molecular fixed and (P) the principal coordinate
system of the EFG it may be written:

L→ΩPL P←ΩMP M (5.8)

5.2.3 Motional model of the EFG fluctuations

As the main source of fluctuations that induce quadrupole spin relaxation in the
addressed Bi-aryl molecular crystals, we assume that the EFG at the 209Bi nucleus
experiences changes due to random motions from the surrounding phenyl groups
and ligands and, probably of less importance, from the motions of neighbouring
molecules. The main contribution to the EFG origins from the binding orbitals at the
Bi nucleus which are not considered as reorienting groups, so the transient fluctuat-
ing magnitude can be considered to be only a small fraction of the total Hamiltonian.
As a second mechanism modulating the EFG fluctuations, wagging and rocking mo-
tions of covalent bonds and torsional motions of the whole molecule are considered.
From the point of view of the total EFG, this might lead to an oscillating or vibrating
amplitude of the fluctuations. This type of modulation can be described by peri-
odically modulated EFG tensor elements. Also phonons of the crystal lattice might
account for such a periodically modulated EFG. A review summarizing different
contributions of motions to relaxation is given in [194].

On the basis of the introduced mechanisms, we present two ways of describing
the EFG fluctuations: The first one (concept (1)) corresponds to the widely used
pseudo rotational (PR) model [101, 209, 210, 102] and will only be summarized
briefly. It assumes time dependent reorientations via rotations of the EFG tensor at
constant amplitude and has been applied for example in [202] for proton relaxation
in metal aquo complexes due to zero field splitting as well as to describe EFG fluc-
tuations in solids [94]. The second derivation (concept (2)), on the contrary, assumes
a time dependent amplitude of the EFG fluctuations along certain directions with
respect to the main EFG. It will be discussed in more detail and represents the mo-
tional model for the EFG used in this work. A quite similar model was presented by
Friedman et al. [205] (flickering model) for electron paramagnetic resonance (EPR)
relaxation of Ni2+ ions.

Figure 5.1 helps to visualize the concepts. For both, a fluctuating, time dependent
portion of the total EFG (blue arrows) forming Ĥ1(t)(ΩMP) is assumed which can be
rotated at a certain angle with respect to the main, averaged EFG that produces Ĥ0

(red arrow). Addition of both EFG’s gives the total Hamiltonian of equation 5.1. In
case of concept (1), the angles are time dependent and the amplitude is constant. For
concept (2), a certain constant distribution of directions of the fluctuations with time
dependent magnitudes is assumed. From figure 5.1 also the term pseudo rotational
becomes clear as only the fluctuation, but not the total Hamiltonian is performing



98
Chapter 5. Spin-spin relaxation of nuclear quadrupole resonance coherences and

the important role of degenerate energy levels

rotations. In both cases, the EFG fluctuations are of stochastic nature and can be
described by their autocorrelation function. It’s Fourier transform (compare equa-
tion 5.26b) is proportional to the envisaged spectral density J(ν) of Ĥ1(t)(ΩMP) .

resultin
g E

FG

fluctuating EFG from H
1

FIGURE 5.1: Visualization of the EFG fluctuations (blue, small arrows) with respect
to the main molecule EFG (red, large arrow). To add both Hamiltonians correctly,
Wigner rotations by Euler angles ΩMP have to be performed to rotate the fluctu-
ating Hamiltonian Ĥ1(t)(ΩMP) into the PAS system defined by the static Hamilto-
nian Ĥ0. A possible instantaneous EFG is indicated by the black arrow. A spherical,
random distribution of the fluctuation directions is assumed. Such an isotropic dis-
tribution averages to zero in space and so no asymmetric contribution has to be
added to the static Hamiltonian.

Concept (1): Rotational reorientation. We start with a general description of the
fluctuating tensor elements V(2)P

m depending on time and some internal coordinates
(qi) [202]. We simplify this approach and consider only a dependence due to one
component q:

V(2)P
m (q(t)) = V(2)P

m (q0) + ∆q(t)
∂V(2)P

m

∂q
+ higher order terms (5.9)

The first term V(2)P
m (q0) is the low symmetry part of the EFG which is fluctuating

due to motions of the molecule and the second term ∂V(2)P
m
∂q represents the coupling of

the EFG to the lattice coordinate q.
An angular reorientation of the EFG of equation 5.9 can be described by a trans-

form of the tensor components V(2)
m from a molecular fixed frame (M) to the prin-

cipal axis system (P) of the main Hamiltonian using the Wigner rotation matrix
D(2)

m′,m(ΩMP(t)) [211] and time dependent Euler angles ΩMP(t).

V(2)M
m (ΩMP(t)) =

+2

∑
m′=−2

D(2)
m′,m(ΩMP(t))V

(2)P
m′ (5.10)
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This transform is needed to be able to add the static and the stochastic Hamiltonian
to a total Hamiltonian (see figure 5.1). Inserting equation 5.9 into 5.10 gives

V(2)M
m (t) = ∑

m′
D(2)

m,m′(ΩMP(t))V
(2)P
m′

= ∑
m′

D(2)
m,m′(ΩMP(t))

[
V(2)P

m′ (q0) + ∆q(t)
∂V(2)P

m′

∂q

]

= ∑
m′

[
D(2)

m,m′(ΩMP(t))V
(2)P
m′ (q0) + D(2)

m,m′(ΩMP(t))∆q(t)
∂V(2)P

m′

∂q

] (5.11)

To form the autocorrelation function of equation 5.11, 〈V(2)M∗
m (t)V(2)M

n (t + τ)〉, a
couple of assumptions are made. The only non-zero tensor element is VP

0 and advan-

tage is taken of the relation 〈D(2)∗
n,m (ΩMP(t))D(2)

n′,m′(ΩMP(t + τ))〉 = δm,m′δn,n′
1
5

e−t/τr

which is only valid for isotropic rotational diffusion [191, 102] with the reorientation
correlation time τr. But as the averaged motion of the angles in a solid might not

be isotropic, a non-zero average term D(2)
0,m(ΩMP(t)) 6= 0 has to be considered and

relaxation is due to ∆D(2)
0,m(ΩMP(t)) ≡ D(2)

0,m(ΩMP(t)) − D(2)
0,m(ΩMP(t)). Altogether,

an expression for the spectral density according to equation 5.26b of the first term of
equation 5.11 reads as:

Jαβα′β′(ν) ∼ 〈|∆D(2)
0,m(ΩMP(t))|2〉(VP

0 (q
0))2 1

5
τr

1 + ν2τ2
r

, (5.12)

which is the PR model. For the second term in equation 5.11 it is further assumed

that the coupling term ∂V(2)P
0
∂q is constant and the internal coordinate q(t) is pro-

portional to a normal mode of the harmonic oscillator Hamiltonian that describes
vibrations in a lattice with frequency νv, amplitude 〈∆q2〉 and relaxation time τv:
〈∆q∗(t) ∆q(t + τ)〉 ∼ 〈∆q2〉 cos(νvt)e−t/τv . Thus it can be found that

Jαβα′β′(ν) ∼ 〈|∆D(2)
0,m(ΩMP(t))|2〉(

∂V(2)P
0
∂q

)2〈∆q2〉1
5

τe f f

1 + (ν− νv)2τ2
e f f

, (5.13)

where 1
τe f f

= 1
τr
+ 1

τv
. With all the mentioned approximations, the spectral density

of the rotational reorientations model is a simple Lorentzian (equation 5.12). With
the inclusion of a vibrational mode from the lattice a shifted Lorentzian is formed
(equation 5.13). This result corresponds to the model presented in [202]. However,
the core of the derivation is the solution of the three dimensional diffusion equation
which is mostly used for molecules in liquids. Also, the properties of Wigner matrix
elements can only be utilized for an isotropic case. This concept appears somewhat
ad hoc and may not be adequate for solid as it is quite restricted and makes use of a
couple of assumptions.
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Concept (2): Fluctuating EFG amplitude. Instead of a time dependent orientation
of the EFG, we assume that the directions ΩMP of the fluctuations are constant but
their magnitudes qcc(t) are stochastically fluctuating (see equations 5.29a and 5.29b).
We call this the flickering amplitude (FA) model. Again, a transform of the EFG ten-
sor components V(2)

m from a molecular fixed frame (M) to the principal axis system
(P) of the main Hamiltonian is needed to describe a certain fluctuation direction:

V(2)M
m (t, ΩMP) =

+2

∑
m′=−2

D(2)
m′,m(ΩMP)V

(2)P
m′ (t) = qcc(t)dm(ΩMP) (5.14)

This time, the transform is performed explicitly and the result can be found in equa-
tion 5.29b. For the last relation in equation 5.14, time and spatial dependence of
V(2)M

m (t, ΩMP) is separated into the time dependent amplitude qcc(t) of Ĥ1(t, ΩMP)

and an angle dependent factor dm(ΩMP). Forming the autocorrelation function of
the time dependent tensor elements V(2)M

m (t, ΩMP) yields:

〈V(2)M∗
m (0)V(2)M

n (t)〉 = dm(ΩMP)dn(ΩMP)〈qcc(t)∗q0
cc〉

= dm(ΩMP)dn(ΩMP)〈q2
cc〉e−t/τc

(5.15)

The only assumption made is that the autocorrelation function of the amplitude of
the fluctuations is mono exponential and independent of direction: 〈qcc(t)∗q0

cc〉 =
〈q2

cc〉e−t/τc , with fluctuation amplitude qcc and correlation time τc. This is justified
as the amplitude’s motion can be approximated by a damped mass-spring system
excited by the environment. Such systems frequently occur in nature and are often
described by a Lorentzian. Beyond that, e.g. molecular dynamics (MD) simulations
of the electron proton dipole-dipole correlation time of hydrated Gd ions support a
mono exponential behavior [212]. The spectral density for the FA model is:

Jαβα′β′(ν) ∼ 〈q2
cc〉

τc

1 + ν2τ2
c

dm(ΩMP)dn(ΩMP)

= J̃(ν)dm(ΩMP)dn(ΩMP)
(5.16)

Coupling of the EFG to a lattice mode introduces a vibrational mode to the am-
plitude fluctuations. This is in accordance with the result of concept (1) with the
only difference that instead of the angles, the amplitude of the EFG is oscillating:
〈qcc(t)∗q0

cc〉 = 〈q2
cc〉 cos(νvt)e−t/τc , with frequency νv, amplitude qcc and correlation

time τc. The oscillating contribution is a consequence of the inclusion of the second
term of equation 5.9. It considers possible vibrational modes in solids that can mod-
ulate the EFG amplitude. We call this flickering vibrational amplitude (FVA) model
and the spectral density reads as:

Jαβα′β′(ν) ∼ 〈q2
cc〉

τc

1 + (ν− νv)2τ2
c

dm(ΩMP)dn(ΩMP)

= J̃(ν)dm(ΩMP)dn(ΩMP)
(5.17)
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The resulting spectral densities are again a simple Lorentzian and a shifted
Lorentzian, respectively (equations 5.16 and 5.17). In contrast to concept (1),
however, it was not necessary to make use of the orthogonal properties of Wigner
matrices and no assumption is made about the EFG tensor elements. Their influence
is encoded in dm(ΩMP) which can be evaluated explicitly (equation 5.29b). This
also means, that the fluctuation needs not necessarily be assumed isotropic as it
is possible to average over a certain arbitrary set of Euler angles {ΩMP}. In case
of spherical distribution of this angles, concept (1) and concept (2) are essentially
equal with the only difference, that the elements V±1 and V±2 of the fluctuation
Hamiltonian Ĥ1 need not be assumed zero. A downside of course is, that with con-
cept (2) it is necessary to calculate the relaxation matrix Γ for all assumed directions
{ΩMP} numerically and form the average which is leads to larger computation time.

The two above introduced mechanism (FA and FVA model) and the derived
mathematical expressions for the correlation functions of the EFG motions shall
be seen as the result of considering the sum of all possible molecular motions in
the solid and their effect on the EFG in a very simplified manner. A sophisticated
treatment would require the inclusion of e.g. different torsional modes of the
molecule, states of vibrations of covalent bonds as well as a density of states for the
phonon dispersion and their interaction with the nuclear spin system via Raman
processes [193, 194, 195, 196]. Therefore, we also forgo an explicit description of
the temperature dependence of the introduced parameters, which is quite elaborate
for this system and would introduce even more unknowns. Even though, the free
parameters fluctuation amplitude qcc, correlation time τc and vibration frequency νv

are expected to be temperature dependent.

5.2.4 Explicit evaluation

As we have now defined the formalism of the lineshape calculations, included the
assumed interactions and formulated the motional model of the stochastic Hamil-
tonian, the question remains which elements of the spin density ρ(ν) have to be
considered. To do so, equation 5.7 can be evaluated formally for an ensemble with
nuclear spin number I = 9/2 (see appendix 5.5 equation 5.30 and 5.31). Thus, all
together 17 elements (9 single coherence and 8 double coherence terms) are picked
out and the corresponding set of Liouville basis operator states is:
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2
〉 } (5.18)

In all further treatments, the order of the operator states given above is maintained
for the vectors and matrices contained in equation 5.7.



102
Chapter 5. Spin-spin relaxation of nuclear quadrupole resonance coherences and

the important role of degenerate energy levels

The evaluation of the Liouville matrix L0 and the relaxation matrix Γ has been
performed according to equations 5.25 and 5.26a for the operator states of equation
8.1 and the spectral densities formulated in equations 5.16 and 5.17. The analytical
results are presented in appendix 5.5, equations 5.33, 5.34 and 5.35 and were calcu-
lated with the help of a Mathematica code (see supplemental materials) supported
by the SpinDynamica toolbox [213]. The found elements Γαα′ββ′ are depending on
the directions of the fluctuations with respect to the main Hamiltonian via the angle
dependent factors dm(ΩMP). These factors can be interpreted as angle depending
weighting factors for the efficiency of a certain direction inducing relaxation. We
have chosen a set of NΩ Euler angles {ΩMP} describing a spherical distribution (see
figure 5.1) and calculated an averaged relaxation matrix Γ = ∑Ω Γ(Ω)/NΩ thus rep-
resenting the chosen distribution.

A closer look at the Γαα′ββ′ elements illustrates the typical features of spin-spin
relaxation: It is possible to identify non-adiabatic fluctuations that cause transitions
between states which results in a finite lifetime and thus lead to the decay of co-
herences due to an uncertainty in the energy levels. Such fluctuation also lead to a
redistribution and equilibration of populations (R1 decay). These terms contain the
angle dependent part of the tensor operators V(2)M

m (t, ΩMP), d+1, d−1 and spectral
densities J̃(ν∆m=1) for single, and d+2, d−2 and J̃(ν∆m=2) for double quantum transi-
tions. Adiabatic fluctuations are represented by terms containing d0 and zero quan-
tum transitions at J(0). These terms generate variations in the energy levels of the
spins which lead to random fluctuations of the transition frequencies and so, over
time, coherences are running out of phase. This contribution only acts on R2, and not
on R1 relaxation as it cannot induce transitions for redistributing populations [214].

As the analytical expressions for the elements of the Liouvillian and the relax-
ation matrix are rather long, matrix plots containing the evaluated elements for a
particular set of parameters are given in figure 5.2. The relaxation matrix on the
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FIGURE 5.2: Matrix plot of the evaluation of the Liouvillian (according to equation
5.25) and the relaxation matrix (according to equation 5.26a). The labeling of rows
and columns is given on the lefthand side according to the operators of equation
8.1. The secular approximation (see equation 5.4) has already been applied. An in-
teresting feature is the appearence of off diagonal elements in the relaxation matrix
as a result of degenerate energy levels and double coherence elements. Parameters:
I = 9/2 Qcc = 668.8, η = 0.086, qcc = 4.46 MHz, τc = 4e-9 s/rad, νv = 0, NΩ = 150,
T = 310 K. Analytical expressions can be found in equations 5.33, 5.34 and 5.35.
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right hand side determines the lineshapes of the spin transitions with center fre-
quencies determined by the Liouvillian (left hand side matrix). The 4x4 block in the
upper left corner of Γ, determining the lineshape of the lowest, 3/2-1/2 transition,
contains off-diagonal elements which have to be considered when calculating its R2

relaxation rate. The relaxation rates of the higher transitions are, however, deter-
mined directly by the relaxation rate elements on the diagonal. The consequence of
this issue is discussed closer in section 5.3.1.

5.2.5 Lineshape analysis and fitting procedure

The NQR-spectrum obtained from the procedure above can be plotted by evaluating
equation 5.7. This numerical task is performed in Matlab. The following parameters
have to be defined:

• NQR parameter: Qcc, η and nuclear spin number I (defined by the sample)

• Sample temperature: T (for ρ0)

• Dynamics: EFG fluctuation amplitude qcc and correlation time τc for the FA
model, additionally the vibration frequency νv for the FVA model; Number of
angles considered for the spherical distribution of fluctuations NΩ.

The lineshape of a particular sample, deuterated triphenylbismuth at 310 K (see ta-
ble 5.1), is given in figure 5.3. The dynamical parameters are the same as used in
figure 5.2, where the structures of the underlying matrices L0 and Γ are displayed.
In accordance with spin number I = 9/2, four single coherence transitions can be
distinguished. The transitions are labeled from t1 (which is the lowest) to t4 (which
is the highest). Also, one quite small double quantum coherence transition is visible
at 84.88 MHz (labelled DQ), arising due to η 6= 0. This transition was not observed
experimentally, but might be detectable with a two-photon excitation method as de-
scribed by Eles and Michal [215, 216]. The peaks are all of Lorentzian shape (which
is confirmed by spin-echo NQRS experiments [61]) but their widths, which are the
result of spin-spin relaxation, are different. As a measure for the spin-spin relaxation
rate suggested by the simulation, the half width at half maximum (HWHM) δ(i) is
determined from the plot in figure 5.3 and we get

R(i)
2,sim(qcc, τc, νv) = δ(i), (5.19)

where (i) denotes the number of the transition. For the FVA model, there are three
free parameters, in case of the FA model, the frequency νv is zero. A sweep through
parameter space gives an example for the behavior of Ri

2,sim on the free dynamical
parameter τc and νv (see figure 5.4). The amplitude 〈q2

cc〉 is just a scale factor and is
fixed for the examples. The plot in panel (a) has been derived by evaluating a spec-
trum like the one presented in figure 5.3 for different correlation times τc and picking
out the widths δ(i) of each single coherence transition which are the relaxation rates
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FIGURE 5.3: Example of a simulated NQR spectrum (equation 5.7) for deuterated
triphenylbismuth at 310 K for arbitrary EFG dynamics (parameters see insert). In
the upper panel an overview is given and in the lower panels the four single quan-
tum coherences are zoomed out. Their lineshape is Lorentzian but the width at half
maximum (yellow line = 2δ(i) ) is different in each case. The intensity distribution
is additionally modulated by the initial condition ρ(0) that contains the Boltzmann
distribution differences. However, to get the intensities of an actual NQR experi-
ment, the resonances must be weighted with their associated transition probability
with respect to an applied excitation field produced by a coil (placed in a certain
direction in the laboratory frame (L)). Also, the induction law for detecting the sig-
nal must be applied. Crystal defects lead to inhomogeneous broadening which is
not considered here.
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R(i)
2,sim(τc). The overall tendency shows, that the relaxation rates become higher for

slower EFG dynamics. Clearly, a modulation of the strength of the relaxation rates
over the correlation time is visible which is different for each transition due to their
different transition frequencies. Interesting to see from the plot is also, that R(1)

2,sim

is decaying faster than all other transitions. The same procedure can be performed
when including vibration νv of the amplitude (FVA model), which is shown in panel
(b) of figure 5.4. For slow vibrations (νv = 105 MHz and below), a cut through the
surface plot along the τc axis will give quite the same result as in panel (a). But as
soon as the vibration frequency reaches the order of frequencies of the nuclear spin
transitions, the relaxation rates can be drastically altered. To demonstrate this effect
more clearly, in panel (c) a cut through the surface plot at constant τc = 2 · 10−8 s/rad
along νv is presented. Whenever νv matches one of the spin transition frequencies,
the corresponding relaxation rate is enhanced strongly (indicated by the red arrows
labeled with the transition number). Interestingly, not only the rate of the associ-
ated transition is enhanced but also all other transitions are enhanced to a lesser
or stronger extent. This is due to the occurrence of different spectral densities J(ν)
in each relaxation matrix element (see appendix 5.5, equations 5.33, 5.34 and 5.35).
Each element of the relaxation matrix eventually is a weighted sum of relaxation
terms from all spin states. The parameters that are fitted to the experimental data
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FIGURE 5.4: Behavior of the relaxation rates Ri
2,sim of the four single quantum co-

herences when sweeping through parameter space of the two EFG dynamics at
fixed fluctuation amplitude qcc. Panel (a) shows Ri

2,sim(τc) for the FA model. Panel
(b) shows a surface plot for Ri

2,sim(τc, νv) of the FVA model. The colors denote the
spin transitions: Dark blue: t1, light blue: t2, green: t3 and yellow: t4. In panel (c)
a cut through the 3D surface plot for the FVA model at τc = 2e-8 s/rad is shown to
demonstrate the effect of a vibrational EFG fluctuation. At the position of the red
arrows, the vibration frequency of the EFG fluctuation coincides with the frequency
of a spin transition. At resonance, the relaxation rates are enhanced strongly.

are qcc, τc and νv. The experimental relaxation R(i)
2,exp rates are provided by NQR
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relaxation measurements (see section 5.2.7). To get rid of qcc (which is just a scal-
ing factor), the ratios between the relaxation times of all available transitions are
calculated and compared to the ratios suggested by the experiment. Thus, the cost
function for a least squares optimization is:

S(τc) =
n

∑
i 6=j

R(i)
2,sim(τc, νv)

R(j)
2,sim(τc, νv)

−
R(i)

2,exp

R(j)
2,exp

2

(5.20)

where n is the total number of transitions per sample from which the relaxation rate
has been determined. The minimum of this cost function, found by an exhaustive
search algorithm, gives the best fit parameters.

5.2.6 Closed form solution

The calculation of the lineshape using the complete Liouville and Redfield matrix
according to the above presented procedure covers the most general case. Any form
of coupling will be considered. However, it is worth to have a closer look at the
particular form of the matrices and derive analytical expressions for the observable
single quantum coherences. Obviously, for the transitions t2 to t4, both the Liovillian
and the Redfield matrices are diagonal (compare figure 5.2). Thus, their R2 relaxation
rates are not coupled and the respective matrix elements can be calculated from
equation 5.33. Based on equation 5.6, the lineshapes of transitions t2 to t4 follow
a simple Lorentzian:

L(ν)t2 = Re
[[

i (ν− νQ,t2) + Γ 3
2

5
2

3
2

5
2

]−1
]

L(ν)t3 = Re
[[

i (ν− νQ,t3) + Γ 5
2

7
2

5
2

7
2

]−1
]

L(ν)t2 = Re
[[

i (ν− νQ,t4) + Γ 7
2

9
2

7
2

9
2

]−1
] (5.21)

The situation is different for transition t1, where off-diagonal elements appear in the
Redfield matrix. Taking advantage of the symmetry of the 4x4 submatrix (compris-
ing only relevant ±3/2↔ ±1/2 states), a Wang transform can be applied to form a
block symmetric shape. The total lineshape is then a sum of ρ1/2,3/2 and ρ−1/2,−3/2

(see appendix 5.5)

L(ν)t1 = Re

 (−1) · (Γ− 1
2

3
2

1
2

1
3
+ Γ 1

2−
3
2

1
2

3
2
) +

(
i(ν− νQ,t1) + Γ− 1

2
3
2−

1
2

3
2

)
−(Γ− 1

2
3
2

1
2

1
3
+ Γ 1

2−
3
2

1
2

3
2
)2 +

(
i(ν− νQ,t1) + Γ 1

2
3
2

1
2

3
2

) (
i(ν− νQ,t1) + Γ− 1

2
3
2−

1
2

3
2

)


(5.22)
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The relaxation matrix elements can be found in equations 5.33 to 5.35. In the pre-
sented case Γ 1

2
3
2

1
2

3
2
= Γ− 1

2
3
2−

1
2

3
2

applies which means equation 5.22 simplifies to:

L(ν)t1 = Re
[[

i (ν− νQ,t1) + Γ 1
2
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1
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2
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2
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2

1
2

1
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3
2

1
2

3
2

]−1
]

(5.23)

Equation 5.23 is again a Lorentzian where the relaxation rate is a sum of three Red-
field elements. Equations 5.21 and 5.23 give the same spectrum and lineshapes as
presented in figure 5.3.

5.2.7 Experimental relaxation rates and materials

Experimental data for testing the introduced model for quadrupole spin-spin relax-
ation is mostly taken from [61], where spin-spin and spin-lattice relaxation times,
T2 = 1/R2 and T1 = 1/R1, have been presented for a set of Bi-aryl compounds in
powder form. The 209Bi nucleus has nuclear spin I=9/2 and thus gives rise to four
observable spin resonances. We have decided to only discuss samples and tempera-
tures for which relaxation times of all four transitions are available. For triphenylbis-
muth, deuterated triphenylbismuth and tris(4-flourophenyl)bismuth complete data
sets are available at 310 K and 77 K. However, for all three samples, T2 of t1 at 310 K
was measured within this work to complement the data sets and has not been pub-
lished yet. The relaxation measurements were performed with a pulse type NQR
spectrometer (Tecmag, USA, "Scout") using a spin-echo sequence with variable echo
time so that T2 is connected with homogeneous broadening only. T2 was determined
by fitting a mono-exponential model to the signal. For all discussed samples the
NQR parameters Qcc and η as well as the experimentally found spin-spin relaxation
rates R(i)

2,exp are presented in table 5.1.
The selected Bi-aryl samples are monoclinic molecular crystals. The molecule

has a trigonal pyramidal structure with tilted phenyl rings forming the basis and
the tricoordinated Bi is at the top. Structure and synthesis information has been
published in [155, 172] and is summarized in [61], where also a 3D structure file
for triphenylbismuth is available. Standard safety precautions have to be met when
handling the mentioned chemicals according to their respective safety data sheet.

5.3 Results

5.3.1 The role of off-diagonal elements

The impact of the inclusion of off-diagonal elements via the lineshape treatment
compared to a calculation of only the diagonal single coherence relaxation rates is
illustrated in figure 5.5. Panel (a) shows R(i)

2,sim(τc) for the FA model, where R(i)
2,sim

has been derived from the widths δ(i) of the single spin resonances according to the
above presented procedure (same set of parameters as figure 5.4). In panel (b), how-
ever, each R(i)

2,sim(τc) is directly calculated from equation 5.26a for each observable
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FIGURE 5.5: In panel a), R(i)
2,sim(τc) is calculated from the widths of the lineshape

calculated from equation 5.7 as also shown in figure 5.4 a). For the same set of NQR
parameter, in panel b) R(i)

2,sim(τc) are just the diagonal elements of the relaxation
matrix Γ of the associated transition according to equation 5.33, without using the
lineshape approach (as in [94]). The relaxation rate for t1 is much larger in panel a)
then in panel b) due to the incorporation of off diagonal elements in the Redfield
matrix, which is indicated by the inserts. This behavior is marked with a red arrow.
Transitions t2 to t4 are not affected.
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in equation 5.33),
which is the same procedure as in [94] and corresponds to the assumption of a diag-
onal Redfield matrix without including double quantum coherence terms. A strong
difference occurs for R(1)

2,sim (dark blue) which is much larger in panel (a) than in
panel (b) (indicated by the red arrow). Transitions t2 to t4 are not affected, as all
off diagonal elements in the relaxation matrix next to these transitions are zero. For
t1, however, the non-zero off diagonal elements open up another relaxation route
via | − 1/2, 3/2) and | − 3/2, 1/2) double coherence states which are at the same
frequency as the single coherence terms (see figure 5.2). These non-zero off diago-
nal terms are a consequence of degenerate energy levels in pure NQR as well as the
consideration of double coherences. The matrix equation 5.6 mixes these terms into
the single expressions for the spin density elements, in particular ρ±3/2,±1/2(ν).

When an external magnetic field is applied, these additional relaxation pathways
and the enhanced relaxation disappear, as in that case degeneracy of ±m states is
cancelled. The reason is, that zero-field NQR energy levels as well as the resonance
peaks are split and the secular approximation (see equation 5.4) prohibits off diag-
onal elements. This effect is expected to lead to a prolongation of the T2 relaxation
time and thus might contribute to a signal enhancement in NQR experiments when
a small magnetic field is applied, as reported e.g. by Lehmann-Horn et al. on 75As
in FeAs2 [147].
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TABLE 5.1: Sample name, NQR parameter, experimental relaxation rates and sim-
ulation results with best fit parameter for the FA and the FVA model

Experimental FA model FVA model
sample NQR parameter tr. νQ (MHz) R2,exp (s−1) R2,sim (s−1) deviation (%) best fit parameter R2,sim (s−1) deviation (%) best fit parameter

triphenyl
bismuth

T (K) 77 t1 30.64 9803.9 7322 -33.9 qcc (MHz) 1.136 9533 -2.8 qcc (MHz) 2.081
Qcc (MHz) 684.6 t2 56.45 2538.1 2317 -9.5 τc (s/rad) 4.92·10−9 2616 3.0 τc (s/rad) 1.90·10−8

η (1) 0.09 t3 85.45 1246.9 1584 21.3 1149 -8.5 νv (MHz) 17.01
t4 114.03 1216.6 1564 22.2 1328 8.4

triphenyl bismuth

T (K) 310 t1 29.72 11770.02 10560 -11.5 qcc (MHz) 1.680 11300 -4.2 qcc (MHz) 2.114
Qcc (MHz) 668.3 t2 55.14 3610.1 3415 -5.7 τc (s/rad) 4.69·10−9 3655 1.2 τc (s/rad) 5.83·10−9

η (1) 0.087 t3 83.42 2293.6 2413 4.9 2286 -0.3 νv (MHz) 17.01
t4 111.32 2057.6 2346 12.3 2127 3.3

triphenyl bismuth
deuterated

T (K) 77 t1 30.72 1612.9 1305 -23.6 qcc (MHz) 0.207 1620 0.4 qcc (MHz) 0.214
Qcc (MHz) 685.6 t2 56.52 508.7 424 -19.9 τc (s/rad) 4.57·10−9 498.9 -2.0 τc (s/rad) 7.39·10−9

η (1) 0.095 t3 85.56 231.6 293 20.8 239.2 3.2 νv (MHz) 19.78
t4 114.19 215.3 278 22.7 211.9 -1.6

triphenyl bismuth
deuterated

T (K) 310 t1 29.78 3759.42 3623 -3.8 qcc (MHz) 1.664 3651 -3.0 qcc (MHz) 1.44
Qcc (MHz) 668.8 t2 55.25 1610.3 1717 6.2 τc (s/rad) 7.76·10−10 1719 6.3 τc (s/rad) 9.54·10−10

η (1) 0.086 t3 83.49 1589.8 1695 6.2 1687 5.8 νv (MHz) 4.84
t4 111.40 1404.5 1293 -8.6 1288 -9.0

tris(4-fluorophenyl)
bismuth

T (K) 77 t1 28.65 20833.0 11370 -83.2 qcc (MHz) 1.676 17940 -16.1 qcc (MHz) 1.71
Qcc (MHz) 672.5 t2 55.86 2222.2 3464 35.8 τc (s/rad) 5.54·10−9 4869 54.4 τc (s/rad) 1.67·10−8

η (1) 0.053 t3 84.02 1721.2 2293 24.9 1442 -19.4 νv (MHz) 20.24
t4 112.06 1831.5 2364 22.5 1540 -18.9

tris(4-fluorophenyl)
bismuth

T (K) 310 t1 28.35 19608.02 25210 22.2 qcc (MHz) 49.860 19490 -0.6 qcc (MHz) 6.572
Qcc (MHz) 657.5 t2 54.51 12346.0 12830 3.8 τc (s/rad) 1.70·10−10 12170 -1.4 τc (s/rad) 3.71·10−9

η (1) 0.071 t3 82.11 15152.0 13520 -12.1 15880 4.6 νv (MHz) 95.41
t4 109.54 12048.0 10580 -13.9 11750 -2.5

5.3.2 EFG dynamics

For the FA and the FVA model (equations 5.16 and 5.17) using isotropic fluctuations,
the best fit parameters for most fluctuation amplitudes qcc are found around 1 MHz,
which is about 0.15 % of a typical static Qcc. The timescales of the EFG fluctuations τc

give values between 1 ns/rad and 10 ns/rad. At low temperature (77 K) the ampli-
tudes are smaller and the correlation times are longer than at elevated temperatures
(310 K). Details of all best fit parameters can be found in table 5.1 and are graphically
presented in figure 5.6. These findings are in accordance with the observations in
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FIGURE 5.6: Summary of the best fit results for the parameters of the FA model
(panels (a) and (b)) and the FVA model (panels (c)-(e)) applied to three different Bi-
aryl compounds at two different temperatures (77 K and 310 K). The single fitting
results can be found in appendix 5.5 figures 5.8 and 5.9. Errorbars are discussed in
the supplemental materials. A dashed line serves as a guide to the eye.

the earlier work [94]. However, for tris(4-flourophenyl)bismuth at 310 K the best
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fit for the FA model gives an amplitude of 50 MHz in combination with a very fast
fluctuation of only 0.1 ns/rad. This result deviates from all the other examples as the
fluctuations are almost as strong as the static interaction itself and indicates that the
FA model cannot capture the experimental observation for this case. Only with the
help of a third parameter in the FVA model (the vibrational mode with frequency
νv), also for this case a reasonable amplitude and timescale for the fluctuations could
be found. Not surprisingly, the inclusion of νv as third parameter improves the aver-
aged deviation between experimental and simulated R2 from about 18 % for the FA
to 7 % for the FVA model (exact deviations see table 5.1). The values for νv settle be-
tween 5 MHz and 100 MHz. For most of the samples νv takes a value about 20 MHz,
which is about the frequency of the lowest (t1) spin transition. This enhances R2 of
the t1 transitions even further.

This behavior is illustrated in figure 5.7, where deuterated triphenyl bismuth
at 77 K has been picked out to present one result in more detail: The black dots
with errorbars are the experimentally found values plotted versus the corresponding
transition frequency. The dashed lines serve as a guide to the eye. This pattern is

triphenylbismuth deuterated, 77 K

experimental data

FA model

FVA model

literature

400
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2000

0
20 40 60 80 100 120

�Q (MHz)

R
2
 (

s-1
)

t1

t2

t3 t4

FIGURE 5.7: Experimental and fitted relaxation rates for deuterated triphenylbis-
muth at 77 K plotted versus the transition frequency. Data can be found in ta-
ble 5.1, errorbars are discussed in the supplemental materials. Dashed line serves
as a guide to the eye. Both best fit results for the FA (cyan) and the FVA model
(magenta) can reproduce the experimental observation (black). The FVA model
uses an additional parameter and performs better. For comparison, the literature
result (grey) from [94] is included, where the relaxation rates are calculated directly
without the use of lineshape calculation. For transitions t2 to t4, the results match
with the FA model as it uses an equivalent motional model, the PR model. Only a
constant shift is present due to different scaling, but t1 is clearly underestimated.

quite a usual result shared by all of the investigated samples: The lowest transitions
decays at a much higher rate than all other transitions. The cyan stars show the
result for the best fit of the FA model, the magenta stars for the FVA model. Even
though the FA model already fits relatively well, in the FVA model the additional
parameter shifts R(1)

2,sim even higher up. For comparison, another result from the
literature [94] (grey stars), which applies the PR model, has been added and gives
the same result as the FA model for transitions t2 to t4 (only shifted slightly down by
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a constant term of about 24 s−1 due to a different mean value). This is expected, as
both approaches employ the same dynamical model for the EFG. However, in [94]
t1 was not simulated satisfactorily, where R(1)

2,sim is generally underestimated since
off-diagonal elements of the relaxation matrix block were not included (see section
5.3.1). The rest of the results from table 5.1 are illustrated in appendix 5.5 figures 5.8
and 5.9.

5.4 Conclusions

There are two key findings which appear from this work that should be considered
when applying Redfield relaxation theory to zero-field NQR: (1) In case of spin relax-
ation due to EFG fluctuations, the complete set of Liouville basis operators for single
and double coherences should be considered when constructing the relaxation ma-
trix. The reason is that EFG fluctuations can also induce double coherence terms,
which becomes evident from the appearance of the Î2

+ operator in the quadrupole
Hamiltonian. (2) The secular approximation must be applied correctly for the pure
NQR case as the degenerate energy levels lead to non-zero off diagonal terms. A
comparable situation due to degeneracy occurs for two equivalent coupled I = 1/2
spins, where also additional secular terms occur in the relaxation matrix [217]. The
additional off-diagonal elements resulting from (1) and (2) are naturally considered
by the proposed lineshape method which is a convenient way to solve the coupled
differential equations for the spin density operator. Also, closed form analytical ex-
pressions could be derived for each single quantum coherence (see section 5.2.6). In
the particular case presented here, for the lowest observable quadrupole transition
between ±3/2 and ±1/2 states, the degeneracy opens additional relaxation path-
ways via double coherences which are not restricted via the secular approximation.
The consequence is, that R2 for this transition is enhanced by about a factor of 2 at
typically observed dynamical conditions (e.g. 5 ns/rad). The correct treatment of
this issue improves the result of an earlier work [94] considerably (see figure 5.7),
where a reduced spin density matrix was used. The large discrepancy between ex-
perimental and theoretical relaxation rate for the lowest transition was attributed to
an additional relaxation mechanism due to magnetic D-D coupling between protons
and 209Bi nuclei, which is sometimes considered as mechanism of line broadening in
pure NQR transitions [218, 194]. However, in the Bi containing molecular crystals
treated in this work (see section 5.2.7), this effect is considered as being small com-
pared to EFG fluctuations. An estimation of the dipolar coupling constant between
209Bi and the closest 1H atom (∼ 3.3 Å see [155]) gives about 550 Hz. In comparison,
a typical value for Qcc for the Bi-aryl compounds considered here is about 670 MHz
and results of this work show, that fluctuations are of the order of 1 MHz (see table
5.1). In conclusion, and supported by the results of this work, no other relaxation

2Data acquired within this work. All other experimental relaxation rates and frequencies are taken
from [61].
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mechanism besides EFG fluctuations needs to be involved to account for the experi-
mentally observed spin-spin relaxation rates.

The special case of the 3/2-1/2 transition is already pointed out in the earliest
works on NQR (see [42]), where a small external magnetic field splits the lowest
transition into four peaks while all other transition are only split into double lines.
This finding is particularly important, as lots of NQR studies are performed on I=3/2
nuclei where no comparison to the relaxation of higher transitions can be made and
this fact might be overlooked when e.g. analyzing the lineshape to reveal crystal in-
homogeneities [219, 200]. Knowledge of the finite lifetime NQR resonance lineshape,
as it is presented here, might also be interesting for predicting the correct lineshape
of the quadrupole resonance enhancement (QRE) effect in solids [29, 31]. This issue
has been addressed in [179] using only an approximated ad-hoc NQR lineshape and
could be improved.

The presented motional models (FA and FVA) for the EFG fluctuations are alter-
natives to the pseudo rotational (PR) model used in [94] (typically used for isotropic
rotations of molecules in liquids). Due to the explicit inclusion of spatial directions of
the fluctuations, also anisotropic motions can be considered in principle (e.g. in case
of linear molecules). Also, a vibrational mode is considered which is more adequate
for solids. The FA and the FVA model, both based on the assumption that isotropic
fluctuations of the EFG amplitude are the main source for nuclear quadrupole spin
relaxation, were able to capture the main features of the experimental R2 relaxation
rates quite well, whereby the FVA model performed better especially at elevated
temperatures (see section 5.3.2).

For discussing in more detail the fluctuation mechanism leading to R2 relaxation,
it helps also to have a look at the experimental R1 (spin-lattice) results, published in
[61]. At low temperature (77 K), R1 and R2 differ from each other quite significantly
(R2 is much higher than R1). As R1 relaxation is governed by phonon coupling [193,
194, 195, 196], inefficient R1 relaxation is a hint for little vibrations present in the
solid. So, fluctuations of the energy levels due to EFG changes according to the FA
model are the most efficient relaxation mechanism. The model can reproduce the ex-
perimental observations quite well. At elevated temperature (310 K), however, the
FA model does not perform so well any more. In that regime, R2 and R1 are closer
together indicating that R1 becomes more efficient and vibrations becoming more
important governing both relaxation phenomena. In that regime, the FVA model,
which allows a vibrational mode to modulate the EFG fluctuations, is able to repro-
duce the experimental data better than the FA model. However, in the supplemen-
tal material we propose an experiment that could demonstrate the role of vibrations
and thus support or oppose the FVA model. Whether phonons, torsional oscillations
or stochastic EFG fluctuations contribute most to the relaxation can only be distin-
guished when temperature profiles of R2 and R1 are known over a wider range and
with small spacing. R2 decay comprises adiabatic and non-adiabatic contributions
from EFG fluctuations whereas R1 decay is only due to non-adiabatic transitions.
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By measuring both temperature profiles, the contributions can be separated when
adequate models for the temperature dependency of the spectral densities of fluctu-
ations due to the different motions in molecular crystals are found [194, 210].

To generate a better understanding of the EFG fluctuations and their connection
to molecular motions, we encourage to perform ab-initio MD simulations for the
presented compounds, as e.g. has been done for solid and molten CHCl3 [220]. For
triphenylbismuth, to our knowledge only static EFG tensor calculations have been
reported using ab-initio quantum chemistry methods [61]. MD simulations could
be used to review the assumed spherical distribution of the fluctuations. This also
applies to the assumption of a mono exponentially decaying autocorrelation func-
tion, which is, however, supported by experimentally found quadrupole transitions
using a spin-echo sequence which show a Lorentzian lineshape [61].

In conclusion, it has been shown that it is worth the efforts to apply relaxation
theory to NQR spectroscopy for studying molecular motions in solids. The method
expands the amount of accessible solid materials where no protons are present or
other, NQR active nuclei are in the center of interest. An advantage is also, that the
experimental expenses for operating an NQR device are much lower than for typical
NMR machines or field-cycling relaxometers due to the lack of a magnet.
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Notes

If the reader is interested closer in the Mathematica code programmed for evalu-
ating the symbolic expressions for the elements of Γ (equation 5.26a and results in
5.33, 5.34 and 5.35), please consider the code provided in the supplemental materials
and/or contact the corresponding author.
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5.5 Appendix

Definitions and equations

The Liouvillian of equation 5.2 is defined as

− iL0ρ(t) =
−i
h̄
[
Ĥ0, ρ(t)

]
(5.24)

In Liouville space formulation L0 and Γ of equation 5.2 become matrices and their
elements can be written as:

L0
αα′ββ′ = tr

{
|α′〉 〈α|

[
Ĥ0, |β〉 〈β′|

]}
(5.25)

and

Γαα′ββ′ = −Jαβα′β′(ναβ)− Jαβα′β′(νβ′α′)

+ δα′,β′ ∑
γ

Jγβγα(νγβ) + δα,β ∑
γ

Jγα′γβ′(νβ′γ)

+ δα′,−β′ ∑
γ

Jγβγα(νγβ) + δα,−β ∑
γ

Jγα′γβ′(νβ′γ) (5.26a)

Jαα′ββ′(ν) =
∫ ∞

0
〈α|H1(t) |α′〉 〈β′|H1(t + τ) |β〉e−iντdτ (5.26b)

Jαβα′β′(ν) is the spectral density function of the stochastic Hamiltonian responsible
for the relaxation process. In general, the relaxation matrix Γ is complex. It’s real
part Re{Γ} contains the relaxation elements whereas it’s imaginary part Im{Γ} is
often called dynamical shift and its contributions add to the static term L0. Equation
5.26a deviates slightly from the standard formulation found in most books when
treating NMR phenomena. The last two terms are additionally entering the equation
as the secular approximation is fulfilled for more elements than e.g. in the NMR case.

Transformation of the Liouville von Neumann equation (equation 5.2) into
frequency domain and formulation of the lineshape function:

d
dt

ρ(t) =
(
−iL0 − Γ

)
ρ(t) |L [ ]

sρ̃(s)− ρ(0) =
(
−iL0 − Γ

)
ρ̃(s)

ρ̃(s) =
(
s + iL0 + Γ

)−1
ρ(0) |s→ iν

ρ̃(ν) =
(
iν + iL0 + Γ

)−1
ρ(0) (5.27)

For further considerations we are dropping the tilde and can identify ρ(ν) as the
spin density in frequency domain.

The static part of the Hamiltonian in equation 5.1 is the usual quadrupole
Hamiltonian expressed in spherical tensor operators T(2)

m for the spin and spatial
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tensors V(2)
m for the EFG with respect to some possible laboratory (L) system:

Ĥ0(ΩLP) =
Qcc

I(2I − 1)

2

∑
m=−2

(−1)mT(2)
m V(2)L

−m (ΩLP) . (5.28a)

T(2)
0 (I) =

1
2
(3 Î2

z − I(I + 1))

T(2)
±1 (I) = ∓

√
6

4
( Îz Î± + Î± Îz)

T(2)
±2 (I) =

√
6

4
Î2
±

(5.28b)

V(2)L
0 (ΩLP) =

1
2

[
(3cos2β− 1)

2
+

η

4
sin2β(e−2iγ + e−2iγ)

]
V(2)L
±1 (ΩLP) =

1
2

[
∓
√

3
8

sin2βe±iα +
η√
6

(
−1∓ cosβ

2
sinβe±i(α∓2γ)

+
1∓ cosβ

2
sinβei(±α+2γ)

)]
V(2)L
±2 (ΩLP) =

1
2

[√
3
8

sin2βe±2iα +
η√
6

(
(1∓ cosβ)2

4
e±2i(α∓γ)

+
(1± cosβ)2

4
e2i(±α+γ)

)]

(5.28c)

The Î’s denote the usual angular momentum operators and I is the nuclear spin
number. Euler angles ΩLP = {α, β, γ} allow for a rotation of the Hamiltonian with
respect to a L system defined by e.g. an excitation/detection coil or an external
magnetic field. As no further interaction comparable in size is present in our case,
the principal axis representation (P) of Ĥ0 will be used which corresponds to the
case α = β = γ = 0. In the (P) frame, the EFG tensor is traceless and diagonal. The
corresponding spherical tensor operators are:

V(2)P
0 =

1
2

V(2)P
±1 = 0

V(2)P
±2 =

1
2

η√
6

(5.28d)

The stochastic, time dependent quadrupole Hamiltonian Ĥ1(t)(ΩMP) is defined as

Ĥ1(t)(ΩMP) =
1

I(2I − 1)

2

∑
m=−2

(−1)mT(2)
m V(2)M

−m (t, ΩMP) , (5.29a)

in a molecular fixed frame (M), where T(2)
m are similar to the ones defined in equation

5.28b and V(2)M
m can be found in equation 5.29b where rotations are defined by Euler

angles ΩMP. The time dependent amplitude qcc(t) of Ĥ1(t)(ΩMP) is contained in the
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expressions of V(2)M
m (t) and follows an autocorrelation function 〈V(2)M

m (t)V(2)M
n (t +

τ)〉 defined in equations 5.16 and 5.17, respectively.

V(2)M
0 (t, ΩMP) =

qcc(t)
2

[
(3cos2β− 1)

2
+

η

4
sin2β(e−2iγ + e−2iγ)

]
= qcc(t) · d0(ΩMP)

V(2)M
±1 (t, ΩMP) =

qcc(t)
2

[
∓
√

3
8

sin2βe±iα

+
η√
6

(
−1∓ cosβ

2
sinβe±i(α∓2γ) +

1∓ cosβ

2
sinβei(±α+2γ)

)]
= qcc(t) · d±1(ΩMP)

V(2)M
±2 (t, ΩMP) =

qcc(t)
2

[√
3
8

sin2βe±2iα +
η√
6

(
(1∓ cosβ)2

4
e±2i(α∓γ)

+
(1± cosβ)2

4
e2i(±α+γ)

)]
= qcc(t) · d±2(ΩMP)

(5.29b)

Equation 5.29a is inserted in equation 5.26b for the spectral density J(ν). Equa-
tion5.26a then leads to the analytical expressions for the relaxation matrix elements
Γαα′ββ′ (equations 5.33, 5.34 and 5.35). In the latter equations, also the spatial, angle
dependent factors dm(ΩMP) (depending on the direction of the fluctuation with
respect to the (P) frame) can be identified.

Formally evaluating parts of equation 5.7 gives for single quantum transitions:

∑
αα′
〈α| ρ |α′〉 〈α′| Ix |α〉 =

3
2

ρ9/2,7/2 + 2ρ7/2,5/2 +

√
21
2

ρ5/2,3/2

+
√

6ρ3/2,1/2 +
5
2

ρ1/2,−1/2 +
√

6ρ−1/2,−3/2 +

√
21
2

ρ−3/2,−5/2

+ 2ρ−5/2,−7/2 +
3
2

ρ−7/2,−9/2 ,

(5.30)

and for double quantum transitions one obtains:

∑
αα′
〈α| ρ |α′〉 〈α′| Ix Ix |α〉 = 3ρ9/2,5/2 +

√
21ρ7/2,3/2 + 3

√
7
2

ρ5/2,1/2

+ 5

√
3
2

ρ3/2,−1/2 + 5

√
3
2

ρ1/2,−3/2 + 3

√
7
2

ρ−1/2,−5/2

+
√

21ρ−3/2,−7/2 + 3ρ−5/2,−9/2

(5.31)

The elements of the Liouvillian L0 (equation 5.25) are calculated for the static
Hamiltonian (equation 5.28a) with respect to the set of basis operators presented in
equation 8.1. This gives a 17x17 matrix with the spin transition frequencies νQ,αβ
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on the diagonal L0
αβαβ. These are obtained by diagonalized numerically the static

Hamiltonian 5.28a in the PAS and we end up with the energy levels Eα of the spin
system with respect to the Eigenfunctions |Ψα〉 = ∑2I+1

m=−1 aα,m|I, m〉, where {|I, m〉}
is the orthonormal Zeeman basis written as {|m〉}. The NQR transition frequencies
νQ,αβ, and thus the elements of L0, can be expressed by the difference between two
energy levels E:

L0
αβαβ = νQ,αβ = Eα − Eβ

= 〈Ψα(Ω)|Ĥ0(I)(Ω)|Ψα)〉 − 〈Ψβ(Ω)|Ĥ0(I)(Ω)|Ψβ〉
(5.32)

The elements of the relaxation matrix Γ (equation 5.26a) are calculated for the
stochastic Hamiltonian (equation 5.29a) with respect to the set of basis operators
presented in equation 8.1. As the expressions of the single elements are rather
long, only the first column of the 17x17 matrix is presented here. A matrix-plot,
representing the value of each element for a particular plot is shown for a particular
case in figure 5.2 panel b). Evaluating equation 5.26a gives for the single coherence
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terms on the diagonal:
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)
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For the double coherence terms on the diagonal equation 5.26a gives:
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The remaining non-zero off diagonal elements are:
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Analytical lineshape

The following derivation concerns the solution of a coupled subset from equa-
tion 5.6, comprising | ± 1/2± 3/2) elements only (the first four basis operators of
equation 8.1). For convenience, the matrix elements are labelled the following way:
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FIGURE 5.8: Fitting results for the relaxation rates R(i)
2,sim (blue stars) for the FA

model applied to the experimental data (black stars) of three different Bi-aryl com-
pounds at two different temperatures. The red stars are literature results for com-
parison taken from [94]. Dashed line serves as a guide to the eye. Errorbars are
discussed in the supplemental materials.

Mtrans = W−1 ·Msub ·W
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Mtrans is block symmetric and only a 2x2 submatrix is used further:

Mbloc =

(
1
2 (A + B + 2(C + D)) A−B

2
A−B

2
1
2 (A + B− 2(C + D))

)
(5.39)

ρ(ν) = M−1
bloc · ρ =

(
− −B+C+D

AB−(C+D)2

B+C+D
AB−(C+D)2

)
(5.40)

The first element of equation 5.40 corresponds to ρ1/2,3/2 + ρ−1/2,−3/2 and thus to the
single quantum coherence lineshape of transition t1, as it is presented in equation
5.22.

Best fit results

All best fit results from table 5.1 are presented in figures 5.8 and 5.9 and compared
with experimental data. Error estimation is given in the supplemental materials.
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FIGURE 5.9: Fitting results for the relaxation rates R(i)
2,sim (blue stars) for the FVA

model applied to the experimental data (black stars) of three different Bi-aryl com-
pounds at two different temperatures. Dashed line serves as a guide to the eye.
Errorbars are discussed in the supplemental materials.

Supplemental Materials 1

Error estimation of best fit parameters

As the evaluated cost function (equation 5.20) is not based on a simple linear or poly-
nomial model and the minimum is found via an exhaustive search, error estimation
of the fitting result and their best fit parameters is not straight forward. Based on the
assumption that the found best fit result (from table 5.1 is correct, random, Gaus-
sian distributed, synthetic data (SD) was generated with the best fit result as the
mean values and a standard deviation s corresponding to the error bars of the ex-
perimental values (about 10 % experimental error). The fitting procedure has been
performed on NSD simulated data sets to obtain NSD fitting results and parameters
which are then used to estimate s (see [1]). Representative for all data sets presented
in table 5.1, the above described procedure was performed on triphenylbismuth at
310 K for a number of NSD simulated data sets for the FA (NSD=30) and the FVA
(NSD=15) model (see figure 5.10). The respective statistic for triphenylbismuth at
310 K is summarized in table 5.2, where the standard deviation s of the results and
their corresponding fitting parameters is given in % relative to the respective mean
of the set. The found values are considered as a valid estimation for all presented
samples, as their experimental errors and cost functions are very similar.

1References are given separately at the end of the section
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FIGURE 5.10: Visualized error estimation for simulation results and fitting param-
eters demonstrated for triphenylbismuth at 310K. Panels a) and b) show the cost
functions and fitting results for a simulated, Gaussian distributed data set for the
FA model, panels c) and d) for the FVA model. From the gathered fitting parame-
ters and relaxation rates, the standard deviation has been calculated.

TABLE 5.2: Summary of the estimation of the standard deviation s of the simulated
relaxation rates R2,sim for triphenylbismuth at 310 K and their corresponding fitting
parameters for the FA and the FVA model. s is given in % of the mean of the NSD
fitting results

s in % of mean τc qcc νv R1
2,sim R2

2,sim R3
2,sim R4

2,sim
FA 27 7 - 8 7 10 9
FVA 23 10 63 8 8 10 11
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Comments on the lineshape procedure and the provided Mathematica
code

The presented approach for calculating the lineshape of NQR spectra is rather flex-
ible and can also be applied to other related problems. The fluctuating quadrupole
Hamiltonian can be replaced by magnetic dipole-dipole (D-D) fluctuations. The el-
ements of the relaxation matrix Γ can be found quite fast by using the provided
Mathematica code. Choosing another dynamical model for the spectral densities of
the fluctuations can be done as long as general conditions of Redfield theory [2] are
met. A particular strength of the flickering amplitude (FA) model compared to the
frequently applied pseudo rotational (PR) model is the explicit consideration of the
spatial distribution of the fluctuations and their subsequent numerical averaging. In
that way, also non-spherical distributions of the fluctuations can be assumed which
generally can be expected in solids. This might also be interesting for e.g. linear
molecules. However, any anisotropy must be added to the static, main part of the
quadrupole Hamiltonian which will produce a shift of the quadrupole resonance
frequencies. Not much alterations are needed to simulate spin-lattice relaxation R1:
Instead of the expectation value for Ix, 〈Iz〉 has to be calculated which only means
that other elements of the spin density are picked out. The operator basis (as in
equation 18) is then formed by the populations of the spin density matrix instead of
the coherences. Calculation of Γ is straightforward but equation 3 has to be solved
in time-domain which requires diagonalization as well as time-domain evolution of
the populations. Also, the motional model for the EFG shall be adapted by e.g. ex-
plicitly considering lattice vibrations. However, this topic is beyond the scope of this
work.

Proposed experiment

It is possible to apply vibrations to the crystal lattice or the molecules from outside,
e.g. using a piezoelectric crystal, at the frequency of the spin transitions (here about
20 MHz up to 120 MHz) and thus, according to the FVA model it should be possible
to enhance the relaxation rate significantly. This is already done in nuclear acoustic
resonance (also known as paramagnetic absorption of sound) [3,4,5]. Say, if the exci-
tation is at the frequency of t2, the relaxation rate should be enhanced strongly as the
mechanism is very efficient. As the relaxation rates contain spectral density contri-
butions at many transition frequencies, this would be observable also at t3 (compare
figure 4, panel (c)). So, while sweeping the ultrasound excitation frequency around
t2, the resonance becomes visible while measuring e.g. t3 using NQRS due to line
broadening. This would be a means of detection of resonant absorption of coherent
acoustic energy from an external source that can be used to demonstrate coupling
between spin transitions. For this experiment, a single crystal is needed to maintain
sound coupling and propagation. Something quite similar has been done by Proctor
and Tantilla [6], they have shown acoustic nuclear quadrupole excitation on 35Cl,



5.5. Appendix 125

which has nuclear spin 3/2. Later, acoustic excitation of nuclear spin resonance was
also shown on metallic tantalum [7].
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Abstract

Quadrupole relaxation enhancement (QRE) has been suggested as the key mechanism for
a novel class of field-selective, potentially responsive magnetic resonance imaging contrast
agents. In previous publications, QRE has been confirmed for solid compounds containing
209Bi as the quadrupolar nucleus (QN). For QRE to be effective in aqueous dispersions, sev-
eral conditions must be met, i.e. high transition probability of the QN at the 1H Larmor
frequency, water exchange with the bulk and comparatively slow motion of the Bi-carrying
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particles. In this paper, the potential influence of structural order within the compounds
(‘crystallinity‘) on QRE was studied by nuclear quadrupole resonance (NQR) spectroscopy
in one crystalline and two amorphous preparations of Triphenylbismuth (BiPh3). The amor-
phous preparations comprised (1) a shock-frozen melt and (2) a granulate of polystyrene
which contained homogeneously distributed BiPh3 after common dissolution in THF and
subsequent evaporation of the solvent. In contrast to the crystalline powder which exhibits
strong, narrow NQR peaks the amorphous preparations did not reveal any NQR signals
above the noise floor. From these findings, we conclude that the amorphous state leads to a
significant spectral peak broadening and that for efficient QRE in potential contrast agents
structures with a high degree of order (near crystalline) are required.

6.1 Summary of motivation and results

In this section, only a brief summary of the above outlined work, containing the
most important results and consequences, shall be given. The full paper is available
open access [91] and contains complete, detailed information, as for example on
experimental methods and the analysis procedure.

The main motivation of this work is to address the importance of structural order
of the QRE-active core compound within a carrier nanoparticle. For the investiga-
tion, NQRS measurements were performed on different preparations of triphenyl-
bismuth (BiPh3), which comprise crystalline and amorphous solid state samples. As
a reference, BiPh3 is available in crystalline powder form. Further, two amorphous
preparations have been produced: (1) A shock-frozen melt of the original powder
sample and, (2) homogeneously distributed BiPh3 in a polystyrene matrix. Both
amorphous samples did not show any observable NQR peak (7/2-5/2 transition of
the 209Bi nuclear spin) above the noise level. This indicates a strong broadening of
the signal due to an increased EFG distribution.

For preparation (1), the evolution of the NQR signal has also been tracked
over time (see figure 6.1): The original sample produces a narrow and pronounced
resonance peak at room temperature (RT). From this sample, a supercooled melt
is produced by melting and subsequent immersion into liquid nitrogen. Then, the
evolution of the NQR signal is traced during recrystallization of the supercooled
melt at RT. In the amorphous state, the sample produces no signal. Reason is, that
in the amorphous state the distribution of EFG’s of each molecule is assumed to
be much broader than in the crystalline state. Thus, due to the broad distribution
of EFG’s, the signal is strongly dispersed in the frequency domain and remains
below the noise floor of the spectrometer. Over time, recrystallization of the
molecules in the sample sets in which results in re-establishing an ordered structure.
Surprisingly, the first signal appears at a shifted frequency (compared to the original
peak), which is due to the formation of a different crystal structure as in the original
sample. However, this polymorphous state (which has not been reported until this
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crystal

amorphous

metastable crystal

original crystal

FIGURE 6.1: NQRS experiment on crystalline and amorphous triphenylbismuth.
The NQRS signal is used to trace the recrystallization process over time: At the be-
ginning (light red, supercooled melt), the amorphous sample shows no signal. Dur-
ing crystallization, a metastable polymorphous crystal lattice is formed before the
original configuration is re-established. The upper most curve (dark blue) shows
the reference signal at RT to which the sample has returned after about 24 h. Parts
of the figure reproduced with permission from the authors of [91].

publication) is not stable. After several minutes, recrystallization to the original
state sets in- which is indicated by the re-appearance of the original NQR signal.
With progress of time, the metastable signal disappears and the original crystal
structure is re-established.

The findings of this work support the design process of a possible QRE-based
CA. It is expected, that a highly ordered structure which produces narrow NQR
peaks is beneficial to also produce narrow QRE peaks. This is indicated in figure 6.2,
where possible CA particle systems and their expected, resulting NMRD profiles
in aqueous solutions are shown. "Highly ordered" does not necessarily mean
crystalline, as it is for example possible to graft the QRE active core compounds
onto larger, symmetric molecules (e.g. cyclodextrine). This possibility is indicated in
the upper right panel of 6.2. Every QRE active molecule in the particle should have
a similar surrounding and bonding structure. Such a situation can also be achieved
by functionalizing surfaces of crystalline nanoparticles (e.g. silica nanoparticles).
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QRE active molecule

carrier nanoparticle

amorphous NP highly ordered NP

FIGURE 6.2: Schematic NMRD profiles resulting from different nanoparticle prepa-
rations. In case of amorphous systems, not every molecule is expected to exhibit the
same EFG. This is indicated by the distorted an not-ordered QRE active molecules
in the left panel. Such a condition is expected to produce broadened QRE peaks.
Ordered structures, as shown on the right panel, have the ability to produce nar-
row QRE peaks. Parts of the figure reproduced with permission from the authors
of [91].

6.2 Contributions of the author

The main contributions of the author were conceptualization of the work in close
reconcilement with the first author as well as experiment design and performing
NQRS measurements.
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Summarized conclusion

The first step in a systematic system design to realize the idea of a QRE-based MRI
contrast agent is to identify suitable molecules (compare figure 1.2). Most impor-
tant, besides bio-compatibility, is that these molecules contain quadrupole nuclei
located in an EFG produced by the surrounding molecular electron orbitals. The
values of the resulting NQR parameters Qcc and η must be in a range so as to pro-
vide a nuclear spin transition near or at a certain frequency which is defined by the
scanner’s Larmor frequency. This requirement is fulfilled by most of the 209Bi-Aryl
compounds presented in chapter 3 (eight in total), which were investigated by NQR
spectroscopy in the form of solid powders. At the human body temperature, their
Qcc ranges between 657 MHz and 668 MHz with η around 0.1 (see table 3.6). As
209Bi has I=9/2, it is possible to observe four single quantum coherences where two
of them have the potential to facilitate QRE at 1.5 T and 3 T nominal scanner fields.
Their temperature dependence of about -10 kHz/K around 37◦C is not critical for
the planned application (see table 3.8).

As it is not yet clear in which condensed form the selected molecules will appear
in the final system (e.g. as crystalline nanoparticles or embedded in an amorphous
matrix), the dependence of the NQR parameters on the molecules’ surroundings
has been investigated. This was done by calculating the EFG of one representa-
tive compound (triphenylbismuth) using ab-initio quantum chemistry (QC) meth-
ods. At first, the crystalline case was considered for developing and refining the
QC approach. The theoretical results could be compared with the experimentally
determined NQR parameters and are in close agreement (see table 3.1). In a second
step, the EFG of an isolated molecule was calculated by removing the crystalline
surroundings. In this way it is possible to estimate the contribution from the crystal
lattice to the EFG (crystal effect). Finally, the molecule itself was allowed to relax in
the isolated state which leads to a slight change of bond length and angles. Also for
this case, the EFG changed slightly which gives an estimation of what can happen
when the molecule is confined in different surroundings (structure effect). The re-
sults of the QC simulations predict a Qcc shift of -18.2% due to the crystal effect and
of +2.7 % due to a compensating structural effect, which in total gives a shift of about
-15% when the molecule is taken out of the crystalline structure and considered in its
isolated gas-phase (see table 3.1). This result is important for the design of contrast
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agents from the suggested compounds, as possible shifts due to e.g. surface effects
or different embedding of the molecules can be predicted by calculations. The per-
formed QC simulation is interesting also from the point of model and method vali-
dation. In case of 209Bi, one is confronted with a high mass, high spin nucleus which
makes calculations of the electron distribution quite elaborate. All presented QC
results were obtained from a parameter framework found by a preceding parame-
ter study which can also be used in future calculations. In this study, the influence
of the chosen basis set and density functional as well as consideration of electron
correlation and relativistic spin-orbit coupling was investigated (see table 3.2).

For particle and application design it is of interest to be able to control the fre-
quency position of the quadrupole transitions. This is, to some extent, possible by
the use of substituents or ligands to alter the electron distribution in close vicinity of
the QRE active nucleus. In case of the investigated Bi-Aryl compounds, manipula-
tions at different positions of the phenyl rings e.g. by methoxy groups or atoms like
fluorine influence both the molecule’s structure (bond length and angles) as well as
electron density. The relation between the length of the C-Bi bond and the experi-
mentally determined Qcc is illustrated for several Bi-Aryl compounds in figure 3.3.2.
Ligands which create a smaller C-Bi bond length tend to increase Qcc. With the find-
ing from the QC-study, it is in principle also possible to calculate and predict not only
different surroundings of the molecule and its influence on the NQR parameters, but
also what happens when different ligands are attached to the molecules. This might
help to reduce the experimental efforts, as the success of "tuning" the NQR frequen-
cies by different ligands can be anticipated before synthesising and measuring the
compounds (which can be very time consuming).

In a short paragraph in chapter 3, section 3.3.1, several studies on toxicity of Bi-
containing materials are collected which predict a relatively low cytotoxic potential.
However, this point certainly requires intensive research on the final CA system,
made up of a QRE-active core and a nanoparticle acting as carrier. One important
point is stability of the agent to avoid release of Bi, which makes covalently bound
systems preferable.

Besides experimentally determining Qcc and η of eight Bi-Aryl compounds, the
NQR study was complemented by measuring also the spin relaxation times T1 and
T2 by most of the observed transitions (table 3.7). Quadrupole relaxation forms the
second step in the two-step magnetization transfer effect of QRE from the protons
via QN to the molecular lattice. From the proton perspective, the relaxation of the
QN appears as an additional modulation of the proton-QN D-D coupling and can
thus be expected to have an impact on the total process. Also, an impact on the
QRE-peak lineshape is expected. Relaxation data thus can serve as input parameters
for simulating QRE with relaxation theory as presented in [34].

After selecting suitable QRE active compounds, as a next important step, strong
and pronounced QRE peaks were experimentally demonstrated on intrinsic protons
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by field cycling (FC) relaxometry on tris(2-methoxyphenyl) bismuth (see figure 3.8).
FC relaxometry means measuring the spin-lattice relaxation rate R1 of protons in
the sample at different magnetic fields strengths and is thus the most important
verification method for QRE before transferring the system to a MRI scanner. For
the intended contrast agent application, it is important to be able to predict the field
positions of the QRE peaks. This issue is addressed in chapter 4, where a simple
calculation procedure is presented which allows to calculate the appearance of QRE
peaks from protons when the NQR parameters at zero field of the involved QN’s
are known. The approach does not rely on relaxation theory, but uses quantum me-
chanical probabilities for single quantum coherences of nuclear quadrupole spins in
an external magnetic field. The calculation evaluates the NQR spectrum at different
field strength and extracts the probability value at the corresponding proton Larmor
frequency (see figure 4.2) i.e. at the crossings between Larmor frequency and
quadrupole transition frequency (compare figure 4.1). The shape of the QRE peaks
is phenomenologically introduced as Lorentzian distribution with an estimated
width taken from the spin-spin relaxation data found in chapter 3. The calculations
could reproduce well the QRE features measured in solid tris(2-6-dimethoxyphenyl)
bismuthine and tris(2-methoxyphenyl) bismuthine appearing above 1 T (see figures
4.4 and 4.5). The developed calculation tool supports contrast agent design as it is
possible to accurately determine the frequency position of possible QRE peaks from
any compound, where NQR parameters at zero field are known from experiments
or have been calculated. It should be noted, that the presented procedure has been
shown to work well for intrinsic protons in solids, but to simulate the effect of QRE
on external protons in liquid systems, the application of sophisticated relaxation
theory- based on the stochastic Liouville equation- is necessary.

An important contribution for a better understanding of the required CA par-
ticle morphology is given by the work summarized in chapter 6. The study
investigates the impact of structural order of different sample preparations of
Bi-aryl compounds on the appearance of zero-field NQR transitions. It could be
shown that solid, amorphous preparations containing triphenylbismuth (a shock
frozen melt and a granulate from polystyrene-substrate serving as matrix) do not
lead to measurable NQR signals above the noise level of the spectrometer. In
contrast, crystalline samples in powder form give rise to strong and narrow NQR
features. Reason for this observation is the differing width of the EFG distribution in
the samples. The result implies that QRE-active compounds in CA particles should
appear in a highly ordered form, so as to maintain a narrow EFG distribution and,
in turn, produce narrow QRE peaks (see figure 6.2).

As a side discovery, the study presents a yet unknown metastable polymorphic
crystal structure of triphenylbismuth detected by NQR spectroscopy. The structure
is formed during thermalization of the shock-frozen melt but is transferred into the
original structure after a few minutes (see figure 6.1).
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Most of the aspects considered up to here are dealing with the static, average
EFG of the compound which is responsible for the position of the transition
frequencies. Dynamics of the EFG, however, become visible from the relaxation
behaviour of the different spin transitions. In case of excited nuclear spins sponta-
neous emission, as it occurs for photons, is negligible and the decay to equilibrium
is due to induced relaxation. Thus, relaxation times are always connected with
fluctuations of the system capable of inducing transitions and can be used to
obtain dynamical parameters of molecular motions. The theory of choice to model
spin relaxation is commonly known as Redfield theory and has been applied in
chapter 5 to explain for the NQR relaxation data observed in chapter 3. Analysing
field dependent spin-lattice relaxation data from protons (NMRD profiles) in the
indicated manner is a very popular method to gain insights into dynamics of solids
and liquids. The study presented in chapter 5 shows how NQRS data- which is
connected with much less experimental costs and efforts than FC-relaxometry- can
be used to learn something about the dynamics of QN containing molecules in the
solid state.

The presented calculation assumes fluctuations of the EFG to be the most
important source for relaxation. In the particular case of Bi-aryl compounds, the
nuclear spin number I is 9/2 which leads to a higher complexity of the calculations
than for typically treated protons with I = 1/2. Moreover, due to the zero-field case,
the energy levels are degenerate in m. Especially these aspects must be considered
when correctly applying Redfield theory to model the relaxation behaviour of
the four observable single quantum coherences. A key finding of the study is the
important role of degenerate energy levels for the lowest, 3/2-1/2 transition, which
leads to a much faster relaxation than for all other transitions. The degeneracy opens
additional relaxation pathways via double quantum coherences enabled by the
appearance of off-diagonal elements in the Relaxation matrix (see figure 5.5). With
this observation, an earlier publication [94] could be corrected in which speculation
about additional relaxation mechanisms were made.

The presented findings have contributed to the design of different nanoparti-
cle systems containing selected, above suggested Bi-aryl compounds. The particles
were dissolved in different solvents and tested regarding their ability to enhance the
spin-lattice relaxation of solvent protons by means of FC-relaxometry. In chapter 8,
two of theses samples- which have shown first promising results- are discussed
closer.
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Chapter 8

Outlook

8.1 QRE in liquids

Following several confirmations of QRE peaks from the suggested Bi-aryl
compounds in the solid state for tris(2-methoxyphenyl) bismuthane, tris(2,6-
dimethoxyphenyl) bismuthane, triphenylbismuth dichloride and phenylbismuth
dichloride [221, 222, 179], encouraging proof-of-principle results were presented for
aqueous solutions containing particle preparations of triphenylbismuth [223, 224].
The nanoparticles were produced by a nanoprecipitation method in the presence
of a polymer (polyvinyl pyrrolidone, PVP) for stabilization. From these polymer-
coated, crystalline nanoparticles, two samples with an average hydrodynamic diam-
eter (HDD) of 400 nm and 750 nm were dissolved in water at a concentration range
of 1-2 mg/ml and measured by FC-relaxometry at 295 K. The gained NMRD pro-
files exhibit significant peaks which can be attributed to relaxation-enhanced bulk
protons (see figure 8.1). In accordance with the theory, slower tumbling particles
(larger in size) produce larger relaxation rates. Also, the peaks appear in the ex-
pected field region which would be suitable for e.g. 3 T scanners. Unfortunately, the
current relaxation rates are not large enough for testing the enhancement effect with
regard to image contrast by the use of suitable FC-MRI scanners [129, 35].

The results are promising but far from optimal which has, concluding from some
of the above made findings, several reasons:

• Shapes and sizes of the produced nanoparticles are not well characterized and
exhibit a wide distribution.

• The water accessibility and exchange lifetime with Bi-centres is unclear, must
be investigated and, where applicable, optimized.

• Structural order of the QRE compounds on the nanoparticle must be high to
produce a narrow EFG distribution. This point is yet unclear for the surfaces
of the investigated particles.

Another liquid system, where QRE-peaks have been observed, is a saturated
solution of tris(2-methoxyphenyl) bismuthane dissolved in tetrahydrofuran (THF)
which is presented by Kruk et al. [225] as well as in [223, 224] . In the former publi-
cation, the authors have investigated the potential of QRE to compete with current
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FIGURE 8.1: 1H NMRD profiles of aqueous solutions containing crystalline, PVP
coated nanoparticles of triphenylbismuth with average hydrodynamic diameters
of 400 nm and 750 nm. Reproduced with permission from the authors of [223].

PRE based systems using the presented NMRD data as well as spin relaxation the-
ory. At the moment, relaxivity of the observed QRE-peaks is about ten times lower
then for typical Gd- based agents (3-5.4 mM−1s−1). It is hypothesized, that the ob-
served QRE-peaks are produced by clusters of tris(2- methoxyphenyl) bismuthane of
about 4 nm in size as single molecules would be rotating too fast. In the closing sec-
tion of their work several points are emphasized which should be considered for a
further particle optimization. Besides the already addressed structural and morpho-
logical issues (which are predominantly chemical aspects), prerequisites concerning
the dynamics of potential QRE-CAs and the role of quadrupole spin relaxation are
discussed [225]:

• The rotational correlation time of the particle τr must be in a range so as to
produce strong QRE peaks and at the same time a high enough spectral density
J(ω) for mediating 1H-209Bi fluctuations. The value of τr should be slower than
2e−8 s. However, for very slow tumbling, J(ω) might be too weak at high
magnetic fields.

• In QRE, the spin-lattice relaxation time T1,Q
1 of the quadrupole nucleus ap-

pears as contribution to the D-D rotational correlation time τr forming an ef-
fective correlation time 1/τe f f = 1/τr + 1/T1,Q. So, T1,Q should be slower than
τr not to dominate 1/τe f f .

1The subscript "Q" emphasizes that the spin-lattice relaxation of the QN is meant, and not of the
proton.
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• The exchange lifetime τex has a double role as it modulates 1H-209Bi D-D cou-
pling in the same manner as T1,Q described before (so it should be slower than
τr), and is a measure for how many protons approach the QN in a certain
amount of time (with a faster τr more protons can be addressed). So, it might
be a parameter which has a certain optimum.

In chapter 3, T1,Q values of tris(2- methoxyphenyl) bismuthane and triphenylbis-
muth at different temperatures are presented which have a range from about 100 µs
to a few ms. Event though these values have been determined at zero field for crys-
talline solids, typically T1,Q is expected to be slower than τr.

The spin-spin relaxation time T2,Q of the QN, as discussed in chapter 5, should
also be slow so as to keep the contribution of lifetime-broadening to the widht of
QRE peaks low. Only narrow NQR peaks are able to produce the desired narrow
QRE peaks. The method presented in chapter 5 (based on Redfield relaxation
theory) to simulate the QN’s spin-spin relaxation T2,Q can also be used for a better
understanding of it’s spin-lattice relaxation T1,Q. In particular, such simulations
can become important for the complete CA system, as in a nanoparticle molecular
dynamics and thus relaxation behaviour might deviate from the experimental
observations made in chapter 3. A possible extension of the calculation presented in
chapter 5 from T2,Q to T1,Q is discussed in section 8.2.

When looking at the 1H-NMRD profiles in figure 8.1, it becomes evident that
a thorough reconsideration of the triphenylbismuth nanoparticles is necessary to
come closer to a QRE-CA system which is capable to fulfil the desired requirements:
(1) An "overall" relaxivity which is comparable to state-of-the-art PRE-CAs, and
(2) narrow, discrete QRE features. Only when achieving both requirements, QRE
based CAs can add valuable novel modalities to conventional MRI. A field selective
QRE-CA in combination with a FC-MRI scanner could realize molecular imaging as
well as contrast switching by an external trigger; two features which are expected
to improve daily medical diagnostic routine significantly. Thus, a continuation of
research based on the presented findings is recommended.

8.2 Spin-lattice relaxation of zero field NQR

The approach presented in chapter 5 for calculating spin-spin relaxation R2
2 and

lineshape of NQR spectra is rather flexible and can also be applied to other related
problems. Only a few alterations are needed to simulate spin-lattice relaxation R1:
〈Iz〉 must be calculated instead of 〈Ix〉, which means that other elements of the spin
density are picked out than in chapter 5. The operator basis (as in equation 8.1) is
then formed by the populations of the spin density matrix instead of the coherences.
Calculation of Γ is according to equation 5.26a but the Liouville - von Neumann

2in this section, the "Q" subscript is dropped
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equation (equation 5.3) has to be solved in time-domain which requires diagonal-
ization as well as time-domain evolution of the populations. An example, based on
the same model for EFG fluctuations as used in section 5.2.3 is given in figure 8.2.
Starting condition at t=0 for the populations of the assumed I=9/2 nucleus is follow-
ing a Boltzmann distribution where the populations of the levels m=5/2 and m=7/2
are exchanged (figure 8.2, left panel). This non-equilibrium situation corresponds
to the distribution right after the application of an inversion-pulse at the 5/2-7/2
resonance condition. In the simulation it is further assumed that only 5/2-7/2 is af-
fected and the (-5/2) - (-7/2) levels remain unchanged (such a situation can only be
achieved by circular polarised RF pulses [70, 68]). As evolving over time, the pop-
ulations restore their equilibrium values under the influence of the time dependent
relaxation Hamiltonian (EFG fluctuations). In particular, it is interesting to see that
not only the exchanged populations are involved in the relaxation process, but also
neighbouring states are "kicked" out of equilibrium for a short moment and even-
tually relax back to their equilibrium as well. In the right panel of figure 8.2, the
population difference is shown which is proportional to a hypothetical NQR signal
that could be gained by a T1 measurement (inversion recovery).
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FIGURE 8.2: Preliminary result for the time evolution of out-of-equilibrium popu-
lations of a quadrupolar nucleus with I=9/2. The starting condition corresponds
to Boltzmann distribution at 300 K, where the occupations of m=7/2 and m=5/2
states are interchanged. Parameters: Qcc=668.87 MHz, η = 0.083, qcc=6.68 MHz,
τc=1e-9 s. Assumed is a powder sample using N=150 spherically distributed Euler
angles (defining direction of the single EFG’s)

To be able to calculate the time evolution of the populations, it is necessary to
determine the Redfield relaxation matrix elements according to equation 5.26a. In
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case of zero-quantum transitions, the following operator states are involved:
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This set leads to a 10x10 Redfield matrix. The coupled differential equation for the
density operator elements (equation 5.3) can be solved by finding the eigenvalues
and using an Ansatz. The presented approach is not yet tested against experimental
findings but should only sketch how one could proceed. One reason is, that in case
of spin-lattice relaxation, the stochastic Hamiltonian should be extended by phonons
first to account for a more realistic dynamical model.

There are several applications for a complete relaxation model, where both T1

and T2 are considered. One is the support of QRE contrast agent design to predict re-
alistic dynamical parameters. Another one is the simulation of NQR based quantum
computers, as discussed in [68], where excitation is treated quantum mechanically
but relaxation is considered phenomenologically only. Also, further insights into
molecular dynamics from NQR spectroscopy can be expected when investigating
T1- which has already been demonstrated for T2 measurements in chapter 5.
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