
Sebastian Krell, BSc

Design and Implementation of

Real-time Histogramming

for LiDAR

MASTER’S THESIS

to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme: Telematics

submitted to

Graz University of Technology

Supervisor

Ass.Prof. Dipl.-Ing. Dr.techn. Christian Steger

Institute for Technical Informatics (ITI)

Advisor

Ass.Prof. Dipl.-Ing. Dr.techn. Christian Steger
Dr. Norbert Druml (Infineon Technologies Austria AG)

Graz, May 2018

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other

than the declared sources/resources, and that I have explicitly indicated all ma-

terial which has been quoted either literally or by content from the sources used.

The text document uploaded to TUGRAZonline is identical to the present master‘s

thesis dissertation.

Date Signature

Kurzfassung

Light Detection and Ranging (LiDAR) ist ein bildgebendes Verfahren, welches eine drei-
dimensionale Repräsentation der Umgebung abbilden kann. In den letzten Jahren gewann
es immer mehr an Beliebtheit, sowohl in der Unterhaltungs- als auch in der Industrie-
elektronik. Es deckt ein breites Spektrum an Anwendungsfällen ab und wird sowohl vom
Boden als auch aus der Luft betrieben. Es können sowohl topographische Vermessung als
auch Dokumentation von lokalen Szenerien erstellt werden. Die Signalanalyse als auch
-verarbeitung wurden in den letzten Jahren so weit vorangetrieben, dass auch Eigenschaf-
ten wie Reflektivität oder Geschwindigkeit von Objekten klassifiziert werden können. Es
können auch strukturelle Schwächen in Betongebäuden gefunden und analysiert werden.
Durch den immer kleiner werdenden Formfaktor findet diese Technologie auch Einzug in
die Robotik und den autonomen Fahrassistenzsystemen. Diese Bereiche benötigen auch
Echtzeit Signalverarbeitung der gelieferten Daten, da Entscheidungsfindungen System-
und Sicherheitskritisch sind.

Diese Masterarbeit präsentiert ein Echtzeit-Datenverarbeitungssystem inklusive Si-
gnalanalyse eines 1bit diskreten LiDAR Systems. Dies ist möglich unter der Verwen-
dung der Xilinx Artix 7 FPGA Plattform. Hardware-beschleunigte Komponenten sind
mit VHDL entwickelt und in einem Artix 7 FPGA umgesetzt. Diese Art der Hardwa-
reintegration ermöglicht high-speed Datenverarbeitung. Ein integrierter MicroBlaze Mi-
kroprozessor wird verwendet, um die entwickelten Komponenten zur Laufzeit zu steuern.
Durch die Analyse der abgetasteten Lichtreflexionen können verschiedene Attribute wie
relative Reflektivität, Pulsbreite und Distanz zum Objekt extrahiert werden. Die dar-
aus resultierenden Daten werden danach mittels Ethernet und USB an eine PC Software
übertragen. Dieses Hardware-beschleunigte System ermöglicht zusätzliche Informations-
extraktion und gleichzeitige Datenreduktion bei gleichzeitiger Beibehaltung von höchstem
Datendurchsatz.

In dieser Masterarbeit wird ein bereits bestehender Prototyp eines LiDAR Systems
verwendet, um Messdaten mit dem erstellten System zu generieren. Der Prototyp be-
steht aus einem Empfangsboard mit 32 Avalanche Photo Dioden (APDs), einem mikro-
elektromechanischem Spiegel, Empfangsoptik und einer Steuerplatine. Sämtliche Kompo-
nenten des Prototyps wurden von der Firma Infineon Technologies entwickelt. Die Emp-
fangsleitungen der 32 APDs werden zu den Anschlüssen des Artix 7 FPGA geführt und
danach von dem in der Masterarbeit entwickelten System abgetastet. Das präsentierte
System ist ansonsten unabhängig von der verwendeten Hardware und kann in jeglichem
FPGA-basierten LiDAR System verwendet werden. Mit den bestehenden Hardwarelimi-
tierungen kann das implementierte System 40 000 Messungen pro Sekunde verarbeiten.
Dies entspricht, angewendet auf den Prototypen, 300 Bildern pro Sekunde.

Das erarbeitete System wird unter Verwendung von verschiedenen Materialien mit un-
terschiedlicher Reflektivität evaluiert. Sowohl das Rauschen in den resultierenden Daten

5

als auch das Sensor Übersprechverhalten werden dabei analysiert. Extrahierte Attribute
aus dem Signal werden verwendet um die Qualität der produzierten Bilddaten zu verbes-
sern. Ein weiterer LiDAR Prototyp wird verwendet um ein möglichst störendes Umfeld
zu generieren und das System darin zu testen. Die Signalmittelung wurde dabei evaluiert
und zeigt sehr stabile Resultate.

6

Abstract

Light Detection and Ranging (LiDAR) is a 3D imaging technique to generate a represen-
tation of the surrounding environment. It has become very popular during the last year
in consumer and industrial electronics. It covers a wide variety of applications, ranging
from airborne to terrestrial assemblies. It is used for topographical survey as well as doc-
umentation of local scenes. Signal analysis and processing of LiDAR data have advanced
so far, that nowadays features like reflectance and velocity of objects can be determined.
It is even used for finding structure integrity problems of concrete buildings. Due to the
decreasing form factor of LiDAR systems, it is also applied to robotic and automotive
areas for navigation assistance and similar systems. The application fields of automated
driving and robotics require real time data analysis since fast decision making may be
crucial for functional safety.

This thesis presents a novel real-time signal analyzing system capable of extracting
features out of 1bit LiDAR data. This is accomplished by using the Xilinx Artix 7 plat-
form. Hardware-accelerated components are designed in VHDL and implemented into
the Artix 7 FPGA. The hardware-integrated solution allows high speed processing. An
integrated MicroBlaze micro controller is used for configuration of the developed compo-
nents during run-time. Feature extraction in form of pulse width, position and assumed
relative reflectance is accomplished by analyzing the incoming digitalized light reflections.
Additionally, a new technique for signal averaging is performed. The resulting data is then
transmitted over Ethernet or USB to PC software. This powerful hardware system enables
feature extraction while reducing required data throughput and still achieving essential
speed-up in hardware.

In this work an existing prototype is extended in order to also gather real-world data
with the proposed system. The prototype consists of a receiver board containing 32
Avalanche Photo Diodes (APDs), a microelectromechanical mirror system (MEMS), re-
ceiver optics and an controller board. All of these components are developed by Infineon
Technologies. The 32 Low Voltage Differential Signal (LVDS) lines are fed into the Artix
7 FPGA and are then controlled by the system developed in this work. The presented
algorithms can be applied to any generic LiDAR system with FPGA unit. In the existing
system, the resulting work is capable of processing 40 000 measurements per second. With
system specific settings, this corresponds to 300 FPS.

The system is tested with materials of different reflectivity at a variety of distances.
Noise levels and cross talk phenomena are analyzed, while extracted features are used
to improve the image quality. A second LiDAR prototype is used to create a noisy en-
vironment. Under these conditions, the signal averaging is analyzed and shows stable
results.

7

Danksagung

Diese Diplomarbeit wurde am Institut für Technische Informatik an der Technischen Uni-
versität Graz durchgeführt. Der praktische Teil der Arbeit konnte bei Infineon Technolo-
gies Austria AG in Graz absolviert werden. Allen voran möchte ich mich bei all jenen
bedanken, die am Entwicklungsprozess dieser Arbeit beteiligt waren.

Ich möchte mich für die Bemühungen und die Unterstützung meines Betreuers Ass.Prof.
Dipl.-Ing. Dr.techn. Christian Steger bedanken. Durch hilfreiche Anmerkungen und
Ratschläge hat er nicht nur zur Qualitätsverbesserung dieser Arbeit beigetragen, son-
dern hat auch dadurch erst einen positiven Abschluss möglich gemacht. Weiters bin ich
dankbar für die Unterstützung und Hilfe meines Betreuers Dipl.Ing. Dr. Norbert Druml
bei Infineon Technologies. Durch ihn habe ich nicht nur die Möglichkeit erhalten, eine
Masterarbeit im Bereich LiDAR durchzuführen, sondern konnte darüber hinaus noch viel
tiefer in diese Thematik eintauchen. Dank der stets konstruktiven Ratschläge und der pro-
fessionellen Unterstützung konnte diese Arbeit erfolgreich zum Abschluss gebracht werden.

Weiters möchte ich mich bei meinen Freunden und Studienkollegen bedanken. Ohne
die anhaltenden Ermutigungen und auch Ablenkungen wäre das Studium nicht zu so einem
bemerkenswerten Erlebnis geworden. Hierbei freut mich besonders, dass aus Studienkolle-
gen mit der Zeit Freunde fürs Leben wurden. Besonderer Dank gilt meiner Lebensgefährtin
Theresa, der ich mehr zu verdanken habe als ein paar Zeilen fassen könnten. Danke für
die unablässige Unterstützung und dein endloses Verständnis.

Schließlich möchte ich auch noch einen großen Dank meiner Familie aussprechen,
ohne deren Geduld und letzten Endes auch finanzielle Unterstützung mein Studium nicht
möglich gewesen wäre. Obwohl das Studium eine beträchtliche Distanz zwischen uns ge-
bracht hat, so hat es dem Zusammenhalt nicht geschadet. Und ein Besuch im schönen
Niederösterreich brachte immer wieder den notwendigen Ausgleich, durch den ich mein
Studium mit Erfolg abschließen konnte. Vielen Dank.

Graz, im Mai 2018 Sebastian Krell

9

Contents

1 Introduction 21

1.1 Motivation . 21

1.2 Objectives . 23

1.3 Outline . 23

2 Related Work 25

2.1 Laser ranging principle . 25

2.2 LiDAR Systems - State-of-the-Art . 26

2.2.1 Field of Application . 26

2.2.2 Time-of-Flight Measuring . 26

2.2.3 Illumination/Sensing . 26

2.2.4 Receiver . 27

2.2.5 Signal Processing . 29

2.3 State-of-the-Art . 30

2.3.1 Calibration for Reflectance . 31

2.3.2 Fog classification . 34

2.3.3 Wavelet-Based Echo Detector . 37

2.3.4 TOF-LIDAR signal processing using the CFAR detector 39

3 Design 45

3.1 Requirements . 45

3.2 Existing Platform . 46

3.2.1 LiDAR System Hardware . 46

3.2.2 System Software . 49

3.3 Histogramming . 50

11

3.3.1 Principle . 51

3.3.2 Algorithm Evaluation . 51

3.3.3 Memory Consumption . 52

3.3.4 Confidence . 54

3.4 Encoding . 55

3.4.1 Principle . 56

3.4.2 Memory reduction . 57

3.5 Communication . 58

3.5.1 Ethernet . 58

3.5.2 USB . 60

3.5.3 UART . 61

3.6 PC Software . 62

3.6.1 ROS / RVIZ . 62

3.6.2 USB to PCL2 . 63

3.6.3 UDP to PCL2 . 64

3.6.4 ROS Filter . 64

4 Implementation 67

4.1 Development . 67

4.1.1 Tools . 67

4.1.2 Work-flow . 69

4.2 Overall System Architecture . 70

4.3 Encoding . 71

4.3.1 Parallelizer . 72

4.3.2 Transition Encoder . 73

4.3.3 Maximum Point Holder . 75

4.4 Histogrammer . 75

4.4.1 Computation . 77

4.4.2 Data structure . 79

4.4.3 State machine . 80

4.5 Communication . 80

4.5.1 Ethernet . 82

4.5.2 USB . 83

12

4.5.3 UART . 86

4.6 Software . 86

4.6.1 Receiving . 87

4.6.2 ROS Filter . 89

5 Results 91

5.1 Implementation . 91

5.1.1 Utilization . 91

5.1.2 Throughput . 92

5.2 Time-of-Flight Processing Measurements . 94

5.2.1 Testing environment . 94

5.2.2 Pulse Width . 95

5.2.3 Confidence . 97

5.2.4 Histogram . 98

6 Conclusion and Future Work 101

6.1 Conclusion . 101

6.1.1 Future Work . 102

A Terminology 105

Bibliography 107

13

List of Figures

1.1 Sensor equipment of an Audi to cover 360 degree around the car [AG.17]. . 21

1.2 Overview of the LiDAR system implemented in this thesis. Orange blocks
are extended to an already existing system. 22

2.1 Direct time-of-flight principle. 25

2.2 Two different illumination/sensing technologies for LiDAR systems [CC13]. 27

2.3 Comparison of ordinary photo diode, linear mode and Geiger mode Avalanche
Photo Diode (APD)s [Lab]. 28

2.4 Illustration of analog discrete return and full-waveform return LiDARs
[HGF13]. 29

2.5 The system response (green line) of a received signal can be described as
convolution of emitted laser pulse (red line) and target signature (black
line) [UP11]. 30

2.6 A typical waveform of a response of the VZ-400 [HGF13]. 32

2.7 The collected measured waveforms are aligned using a cubic spline fit in
order to receive a 3D representation for each response pulse [HGF13]. . . . 32

2.8 Waveforms of backscattered signals with different incident angles (on the
left side with a distance of 32 m, on the right side with 160 m). The
amplitude does not change as much, regarding to the changing incident
angle, as expected [HGF13]. 33

2.9 Amplitude peaks for the three different reflectance targets covering the en-
tire distance range. The black lines on the left side show the measured
results for the three targets while the gray lines show estimated peak values
for reflectances of 30% and 62% depending on the measured values for 99%
reflectance. The image on the right side shows the same results but plotted
on logarithmic axes [HGF13]. 34

2.10 Setup of the experiment for measuring inside a fog chamber [PWWU14]. . . 35

2.11 Results of the experiment in a turbid medium. The left column shows the
results without fog, the middle column for a fog density with 40 m visibility
and the right column with 10 m visibility. The blue points show first hit
targets, the green points second targets.[PWWU14] 36

15

2.12 Recording of the waveform of fog at different visibility ranges [PWWU14]. . 37

2.13 Example for echo detection using continuous wavelet transformation [Wan12]. 38

2.14 Results for echo detection with different SNR levels for the zero-crossing
and wavelet-based detectors [Wan12]. 39

2.15 Basic design of a CFAR operator [OW16]. 40

2.16 Design of the extended CFAR operator [OW16]. 40

2.17 Intensity integration over neighboring cells [OW16]. 41

2.18 Example results showing the difference between a constant and an adaptive
threshold for the detector [OW16]. 41

2.19 Experimental setup [OW16]. 42

2.20 ROC curves for both detectors [OW16]. 42

2.21 TP rates for both detectors at varying ranges [OW16]. 43

2.22 Recording of a scene for comparison of the conventional and the proposed
detector [OW16]. 44

3.1 Overview of the LiDAR system and its interconnections. Orange compo-
nents and interfaces are designed and implemented in this work. 45

3.2 The existing LiDAR prototype and its components. 47

3.3 Receiver board with 32 APDs and LVDS lines. 48

3.4 Illustration of 3 measurements being accumulated into one histogram. . . . 51

3.5 Left: Uncertain measurements with high time distribution. Right: Time
distribution is narrow, therefore a lower uncertainty factor U 55

3.6 A simulated reflection signal with the encoding scheme. In blue, the cap-
tured signal is presented. The red stems represent sampled measurements.
The rectangles P1 to P3 mark valid peaks which informations needs to be
preserved. The rectangle between P2 and P3 marks the signal part which
can be omitted. 56

3.7 Illustration of he developed software components and their interaction through
the ROS system. 63

4.1 System architecture illustrated for the hardware modules in the FPGA.
Most components are interconnected via an AXI bus and controlled by the
MicroBlaze. The USB communication is independent of the micro controller. 71

4.2 Overview of the encoder module. 72

4.3 Flowchart of the transition encoder algorithm. It analyzes a 10bit input
stream and detects pulse start indexes and their width in it. 74

4.4 Interface of the implemented histogrammer module including input/output
signals as well as generic component options. 76

16

4.5 Overview of the inner structure of the histogrammer module. With receiv-
ing the encoded data the state machine starts and controls the computation
of the histogram. 77

4.6 (a) Sample measurements with highlighted start and end samples for accu-
mulation. (b) Flowchart of the intersection evaluation algorithm. 78

4.7 Memory layout for storing multiple measurements per shot line. 79

4.8 Flow diagram for the histogram state machine. 81

4.9 (a) Signal waveforms in case of an empty FIFO buffer. (b) Signal waveforms
in case of full internal FT601 chip memory. 85

4.10 Signal waveforms in case of concurrent FIFO buffer empty and chip memory
full scenario. (a) shows the signals when FIFO buffer empty signal is high
shorter, (b) when it is high longer then the chip memory full signal. 85

4.11 Instantiation interface of the histogram settings block. 86

4.12 Graphical user interface of the ROS Filter program. 89

5.1 Implemented design utilization from Vivado placement view. Blue cells
mark used resources like flip flops (FF) or BRAM. 93

5.2 In (a), a RGB-picture of the environment seen from the LiDAR perspective
is shown. (b) shows the point-cloud of the scene. 95

5.3 Pulse width representation of a bike reflector. (a) shows the object itself,
(b) the point-cloud of a pedestrian holding the object. 96

5.4 Used target consisting of black felt and white paper to analyze confidence
feature. 96

5.5 Point cloud representation of carboard target on a tripod. (a) without
filtering, (b) with filtered pulses below 18 clock ticks. 97

5.6 Point cloud representing the testing environment color encoded with confi-
dence factor. 98

5.7 On the left side, the raw output of a scene with a second LiDAR is repre-
sented. On the right, a histogram of the same measurement is displayed. . . 98

17

List of Tables

2.1 Specifications of the VZ-400 . 31

3.1 Needed memory for different numbers of measurements per histogram Mh. . 54

3.2 Needed memory for different numbers of measurements per histogram Mh

and number of pulses P . Ibit = 16bit, L = 128, A = 32 58

3.3 Data structure of one measurement packet. This packet contains data from
histogrammed points of one line. Multiple measurement packets are part
of one UDP packet. 59

3.4 Data structure of one USB raw measurement packet. Each bit in a 32bit
time field represents a corresponding sample of an APDx. 61

3.5 Data structure of one USB encoded measurement packet. Each measure-
ment of one APD is represented by 3 points, containing time index and
pulse length. 62

4.1 FIFO buffer settings for the Ethernet transferring FIFO. 82

4.2 FIFO buffer settings for storing and transferring USB data. 84

4.3 Packet format of a PointCloud2 message in ROS. 87

5.1 Used resources of FPGA implementation. 92

19

Chapter 1

Introduction

1.1 Motivation

In the last years, the interest in automated driving has increased enormously. Due to
technological progress, basic sensors and algorithms are already available and automated
driving is not a futuristic idea anymore. But in order to accomplish reliable decision mak-
ing by these algorithms, reliable data of the surroundings is required. Ideally, the sensors
are able to reconstruct the entire environment of the car. State-of-the-art implementa-
tions therefore work with multiple sensors in order to generate a 360 degree coverage
surrounding the car. In Figure 1.1, the sensor equipment of a level 3 automated driv-

Figure 1.1: Sensor equipment of an Audi to cover 360 degree around the car
[AG.17].

21

22 CHAPTER 1. INTRODUCTION

ing car is illustrated. As it can be seen, multiple different sensors are used to generate
multiple sources of data for analyzing. The sensors used are radar, camera, ultra sonic
and Light Detection and Ranging (LiDAR). These are mounted on different sides of the
car and cover a different, sometimes overlapping area. For ensuring the functionality of
automated assistance functionality, the system requires both redundancy and diversity.
Further, the system needs robust sensor data.

In order to be capable of processing all the sensor data and fuse them, the noise
of the sources needs to be kept as low as possible. Another key aspect is the ability
of processing the data in real time. In this thesis, a real-time data processing LiDAR
system is presented. This system reduces the data to the essential information as well
as increases the Signal-Noise Ratio (SNR) through signal averaging. All these processing
steps are performed in real-time on a Field Programmable Gate Array (FPGA). Figure

Pointcloud

Transmitter

Receiver Encoder HistogrammingTDCRAW

RAW / Encoded

ControllerTrigger FPGA

Figure 1.2: Overview of the LiDAR system implemented in this thesis. Orange
blocks are extended to an already existing system.

1.2 illustrates an overview of the system presented in this thesis. Blue components are
already present in the existing prototype while orange colored modules are designed and
implemented in this work. Generally, as in most existing LiDAR systems, a transmitter
illuminates a scene, while a receiver samples the reflected light. The location of objects
in the scene can be computed with a time-to-digital converter (TDC). The developed
encoder then extracts all necessary information. This is passed on to the histogramming
module, which performs signal averaging in order to increases SNR. Both components
can transmit their data via an interface to a post-processing system. It is then possible
to generate a 3D representation of the observed scene.

1.2. OBJECTIVES 23

1.2 Objectives

This thesis focuses on the signal processing of 1bit LiDAR system. The signal processing
techniques are designed and implemented for real-time processing and evaluated in a
working prototype. The main goals of this work are:

• Extension of an existing 1bit LiDAR prototype implementation by adding encoding
and histogramming to the signal processing path.

• Development of a data compression encoding on a FPGA meeting real-time con-
straints.

• Transfer and visualization of the gathered encoded data-stream

• Development and implementation of a histogramming module to increase the SNR.

• Provision of a software capturing and displaying histogrammed data.

• Evaluation of feature extraction of 1bit LiDAR data.

The implementation of the encoding and histogramming module will evaluate the us-
ability of feature extraction on 1bit LiDAR data. In case of succeeding, LiDAR systems
without analog-to-digital converter (ADC)s and therefore with lower costs could be con-
structed. Due to the real-time computation and the lower data rate, algorithms can
provide decision making in automated driving systems faster.

1.3 Outline

The structure of this thesis is as follows. In Chapter 2, the theoretical part of this work
is covered. The current state-of-the-art of LiDAR signal processing is described. The
principle of time-of-flight as well as its current applications is presented. Additionally,
different methods of feature extraction and their interpretation are explained. Chapter
3 contains the requirements for the work in this thesis. Further, it gives an overview of
the components this work is split into. It also describes the structure of the processing
algorithms used in detail. The workflow of the development as well as implementation
related details are explained in Chapter 4. It also presents the implemented modules and
their behavior. In Chapter 5, the results of this thesis are documented and discussed.
It analyzes the implemented system regarding its performance and its limits. Finally,
Chapter 6 summarizes the results while suggestions for further work based on this thesis
are presented.

Chapter 2

Related Work

This chapter starts with an introduction to LiDAR technology and gives an overview of
related topics. First, the concept of 3D imaging based on time of flight is explained. Next,
possible features are listed and analyzed that can be extracted out of these measurements.
Finally, certain state-of-the-art applications and currently investigated research topics are
introduced.

2.1 Laser ranging principle

Light detection and ranging (LiDAR), also known as laser detection and ranging (Ladar),
relies on the time-of-flight principle (see Figure 2.1). Therefore, light pulses are emitted
by the illumination unit of the LiDAR, reflected by the scene, travel back to the LiDAR
and are detected by its receiving unit. The time t between emission and receiving of the
light pulses is measured. By knowing the propagation speed of light c, the distance r can
be derived according to Formula 2.1 [CC13].

r =
c · t
2

(2.1)

Figure 2.1: Direct time-of-flight principle.

25

26 CHAPTER 2. RELATED WORK

2.2 LiDAR Systems - State-of-the-Art

In the following Section, different state-of-the-art technologies for LiDAR systems are
introduced. These include different technologies regarding the illumination unit, the re-
ceiving unit and signal processing approaches. Additionally, LiDAR systems can be dis-
tinguished by their field of application.

2.2.1 Field of Application

Depending on the field of application, mainly three different types of LiDAR systems are
distinguished. These are: terrestrial, airborne and mobile LiDARs. Terrestrial LiDARs
are mounted on a tripod and usually perform a 3D scanning with one range measurement
and two angle measurements. Airborne LiDARs are mounted on an aircraft and mobile
LiDARs on a ground-based vehicle. Usually, airborne and mobile LiDARs perform two
dimensional scanning with one line scan in one scan angle. [UPb]

2.2.2 Time-of-Flight Measuring

In general, there exist three different approaches for the time-of-flight measurement. For
the first one, pulsed modulation, discrete light pulses are emitted and the time-of-flight
is directly measured by measuring the passing time between emission and receiving of
the light pulses. With the second approach, continuous wave modulation, a continuous
waveform is modulated onto the emitted light signal and the phase shift between outgoing
and incoming signal is measured. A pseudo-random number sequence is encoded with
the third approach, pseudo-random number modulation, and then an autocorrelation is
performed with the received signal. [CC13]

2.2.3 Illumination/Sensing

Depending on the illumination and sensing technology, two different types of LiDAR sys-
tem can be distinguished. These types will be described more in detail in the following
Section.

Scanning LiDARs

Scanning LiDARS have a narrow laser beam that is swept over the field of view in order
to scan the scene. This approach is illustrated in Figure 2.2a. Either a single detector
or an array of detectors is used to receive the reflected light. A system of mirrors, lenses
or similar devices enables this system to sweep the narrow laser beam. By knowing the
direction of the laser beam and the measured time-of-flight, a 3D point cloud can be
obtained.

An advantage of scanning LiDAR systems is that they provide a high resolution at
high precision. A typical application field is tracking of objects. While the system of

2.2. LIDAR SYSTEMS - STATE-OF-THE-ART 27

(a) Example for a scanning LiDAR system. (b) Example for a detector array LiDAR system.

Figure 2.2: Two different illumination/sensing technologies for LiDAR systems
[CC13].

mirrors provides a high precision of the direction of the laser beam on the one side, these
moving parts can wear out or lead to hardware problems on the other side. [SKKK]

Flash LiDARs

Flash LiDARs illuminate the entire scene at once, as it is illustrated in Figure 2.2b. The
receiving unit is formed by a more-dimensional array of detectors. This means, that each
pixel measures the time-of-flight of the reflected light it senses. With this method, a
3D image is obtained by combining the 2D pixel information with the measured time-of-
flights. An advantage of detector array LiDARs over scanning LiDARs is that they are less
failure-prone since they do not have any moving parts. However, since several detectors
are used for the receiving unit, the complexity of calibration is increasing. [SKKK]

2.2.4 Receiver

For detection of the light pulses, APDs are used. APDs are fast photo diodes that produce
electrons via photo-electric effect and use the avalanche breakdown for internal amplifica-
tion. These APDs can be driven in Geiger mode or linear mode. In this Section, these
two different types for receiving are explained and their advantages and disadvantages are
discussed.

Linear Mode

When an APD is used in linear mode, the via photoelectric effect produced current is
proportional to the incoming photons. Most systems working with APDs in linear mode
use a single laser and a single receiver that are swept over the field-of-view by reflecting
and refracting elements [UPa]. These specifications yield in the fact that data is acquired
sequentially.

Usually, ADCs are used to convert the output of the APDs into a stream of samples. In
the first step, this stream is analyzed by separating noise and signal in order to detect the
received echo signals, hence the targets. Therefore, a threshold is used that distinguishes

28 CHAPTER 2. RELATED WORK

between noise and a target. In the next step, the temporal position of these detected
targets is determined and subsequently the distances to these targets can be derived. Ad-
ditionally, information such as signal strength and reflectance of the target are estimated.
A characteristic of LiDARs using linear APDs is a high distance resolution.

Geiger Mode

LiDARs in Geiger mode use APDs that are biased above their breakdown voltage. This
means, that already a single photons triggers the APD. A comparison between linear and
Geiger mode APDs can be seen in Figure 2.3. Another difference to linear mode is that a
pixel can be triggered just once per laser pulse. As a result,the distance resolution depends
on the recovery time of the APD. If the first target reflects enough photons, this target
will be detected and targets near behind the first are ignored, since the APD already broke
through. Another characteristic resulting from the effect of being triggered by a single
photon is that no information like signal strength can be extracted. However, an advantage
of Geiger mode LiDARs is that they can be used for very high range applications thanks to
their high sensitivity, resulting from single photon triggering. [UPa] This high sensitivity

Figure 2.3: Comparison of ordinary photo diode, linear mode and Geiger mode
APDs [Lab].

also leads to issues regarding solar background. It is an important point to minimize this
solar background as far as possible. Therefore, different considerations play a role. First
of all, the wavelength used for the system has a high impact and has to be taken into
consideration. Further methods for reduction of solar background are listed from Stoker
et al. [SANW16]:

• minimization of the system aperture

• implementation of a bandpass filter in the receive path

• reduction of the instantaneous field of view of the detector

• minimization of the range gate duration

• operation at night

2.2. LIDAR SYSTEMS - STATE-OF-THE-ART 29

2.2.5 Signal Processing

In this Section, different aspects and technologies regarding signal processing for feature
extraction and classification are introduced. The processing steps can happen in real-time,
but also be applied on offline data after the measurements. The possible signal processing
steps are highly dependent on the type of data available through one measurement.

Analog Discrete vs Full-Waveform Return LiDARs

Mainly two different kinds of LiDARs exist regarding the waveform of the return signal,
analog discrete return and full waveform LiDARs. These are illustrated in Figure 2.4.
With analog discrete return, each reflection is represented by a discrete peak at a certain
time. Usually, TDCs are used for these kinds of LiDARs. The electric signal generated
by photo-electric effect of the APDs triggers a TDC. By knowing the time when a peak
returns, the range to the detected object can be calculated. The only information that
can be obtained from the peak, is that there was a reflection. But no information about
the signal strength of the return peak or its pulse width is gained.

Contrary, full-waveform LiDARs receive a continuous waveform of the return signal
instead of discrete peaks. Usually, this is achieved by the usage of APDs in linear mode and
fast ADCs for digitization. Full-waveform return signals provide additional information
beside the distance, such as signal strength or pulse width. With these signal properties,
features like reflectance, classification of targets’ surface or object classification - just to
mention a few of them - can be extracted. [UPa]

Figure 2.4: Illustration of analog discrete return and full-waveform return
LiDARs [HGF13].

Feature Extraction with Full-Waveform Return LiDARs

As assumed by Ullrich and Pfennigbauer [UP11], the system response sE(t) of a received
signal is a convolution of the emitted laser pulse sR(t) with the target signature T (t)
[PWWU14]:

sE(t) = sR(t) ∗ T (t) (2.2)

This is also illustrated in Figure 2.5. The red line represents the shape of the laser pulse
sR(t), the black line the target signature T (t) and the green line the system response

30 CHAPTER 2. RELATED WORK

sE(t). However, if it is possible to extract the target signature by a reverse convolution,
properties about the detected target could be derived. This deconvolution is the current
aim of full-waveform analysis. In general, there exist two kinds of approaches for this
reverse convolution. The first one is a rigorous deconvolution. A disadvantage of this
approach is that it is prone to noise. Another idea for the extraction of the backscattering
properties is the attempt to reconstruct the received signal by the combination of basic
functions. The most popular approach for this is Gaussian decomposition.

Figure 2.5: The system response (green line) of a received signal can be de-
scribed as convolution of emitted laser pulse (red line) and target signature
(black line) [UP11].

2.3 State-of-the-Art

For this Section, five different papers are presented that cover current research topics
regarding LiDAR technology. These cover different techniques of feature extraction and
their use. Since this work implements a histogram and analyzes the data of a discrete
LiDAR system, the main focus on the presented papers is on signal processing. Full
waveform LiDARs are more and more used in the research field since these provide the
most feature-rich signals. But the underlying physical properties of these signals are also
valid for discrete LiDAR systems.

2.3. STATE-OF-THE-ART 31

2.3.1 Calibration for Reflectance

In this Section, the work of Hartzell et al. [HGF13] is presented. The authors aim to de-
velop templates for system response waveforms empirically. These templates should cover
the dynamic range of terrestrial laser scanners when Gaussian fitting appears inapplicable.
As a result, it should be possible to estimate the reflectance of an object by fitting the
measured system response to a matching beforehand derived template.

Experimental Setup

The used hardware consists of a VZ-400. This is a tripod laser scanner from Riegl. In
order to be capable of recording full waveform of the backscattered laser beam, a firmware
upgrade was accomplished by the manufacturer. The most important specifications of the
VZ-400 are summarized in Table 2.1.

Longe Range Mode High Speed Mode

Effective Pulse Rate (Hz) 42000 122000

Max. Range (reflectivity 90%)(m) 600 800

Max. Range (reflectivity 29%)(m) 280 160

Beam Divergence (mrad) 0.3 0.3

Angular Resolution (◦) 0.0005 0.0005

Laser Wavelength (nm) 1550 1550

Table 2.1: Specifications of the VZ-400

Along with the VZ-400, the authors encountered two main issues. The first one is
that very few points are captured of the response pulse. This effect results from the
short pulse width of the outgoing signal on the one hand, and the low digitization rate
on the other hand. A typical waveform of such a response pulse is illustrated in Figure
2.6. The second problem arises from the fact that the response pulse does not describe
a Gaussian distribution. Hence, Gaussian fitting is not very applicable for this laser
scanner. Further, the user receives hardly any information about the internal properties
of the scanner. Therefore, three 12”x 12”reflectance targets out of spectralon are used in
order to measure with known reflectance and geometric configurations. At a wavelength
of 1550 nm, these three targets have a reflectance of 99%, 62%, and 30%.

Measurement Performance

Several thousand measurements are performed at different distances (2m - 260m) in order
to cover the dynamic range of the VZ-400 comprehensively. Then, the authors use cubic
spline fit to align the waveforms. Thus, a 3D representation of the system response is
achieved for each return pulse amplitude. This can be seen in Figure 2.7b, while Figure
2.7a illustrates a sample of a splined response pulse. All aligned waveforms for a certain
distance are combined to obtain an averaged waveform that is representative for this

32 CHAPTER 2. RELATED WORK

Figure 2.6: A typical waveform of a response of the VZ-400 [HGF13].

distance. All averaged waveforms over the different distances are then combined and form
a template for a certain reflectance.

(a) Sample system response at certain distance
and reflectance.

(b) Alignment of several waveforms to obtain 3D
representation.

Figure 2.7: The collected measured waveforms are aligned using a cubic spline
fit in order to receive a 3D representation for each response pulse [HGF13].

Additionally, not only the distance was varied, but also the incident angle. The mea-
surements were performed at incident angles of 0◦, 20◦, 40◦, and 60◦. This topic is covered
more in detail in the next section.

2.3. STATE-OF-THE-ART 33

Incident Angle

Hartzell et al. [HGF13] observed interesting effects regarding the incident angle. When
observing the response waveform at the same distance with different incident angles, they
expected the amplitude to decrease along with an increasing angle. This expectation was
only met for distances above 160 m, but not for shorter distances.

Figure 2.8: Waveforms of backscattered signals with different incident angles
(on the left side with a distance of 32 m, on the right side with 160 m). The
amplitude does not change as much, regarding to the changing incident angle,
as expected [HGF13].

Figure 2.8 illustrates this effect. On the left side, the response pulse for different
incident angles at a distance of 32m is shown, while the right side presents the results
for a distance of 160m. As explanation, the authors refer to [PWKJ07]. The authors of
this paper claim, that the spectralon targets do not act as perfectly diffuse lambertian
surfaces. Further, Hartzell et al. cite the manufacturers of the VZ-400 who explain that
non-linearity occurs in the process of signal detection for shorter ranges resulting from a
stronger returned echo signal.

A second unexpected observation is the fact that an increasing incident angle does not
change the pulse width of the returned pulse waveform remarkably. This phenomenon is
explained by the authors with the small divergence of the VZ-400.

Absolute Reflectance

The returned peak amplitude of common laser scanners is usually uncalibrated. There-
fore, it does not provide information about the reflectance of the object that was hit by
the laser beam. With the VZ-400 from Riegl however, the manufacturers provide two
information about the recorded system response that they call calibrated amplitude and
relative reflectance. The first one is a value provided in DB and is depending on the
distance to the target. The second one, relative reflectance, describes the ratio between
the calibrated amplitude of the measured target to the calibrated amplitude measured
to a white reflectance target at the same distance. Hence, a relative reflectance value is
obtained.

Hartzell et al. instead aimed to get an estimation of the absolute reflectance of a

34 CHAPTER 2. RELATED WORK

Figure 2.9: Amplitude peaks for the three different reflectance targets covering
the entire distance range. The black lines on the left side show the measured
results for the three targets while the gray lines show estimated peak values
for reflectances of 30% and 62% depending on the measured values for 99%
reflectance. The image on the right side shows the same results but plotted
on logarithmic axes [HGF13].

target. Therefore, they interpolated the peak amplitude values over the entire distance
range. Additionally, this was performed for all three reflectance targets. The reason for
this can be seen in Figure 2.9 on the left side. The black lines show peak amplitudes
for all distances for the three different reflectance targets. For the gray lines instead, the
expected peaks for the reflectances of 62% and 30% were calculated by taking 62% and
30% of the measured peaks for the reflectance of 99%. As it can be seen in the left image,
for distances lower than 200 m, the real measured peak amplitudes for reflectances of 62%
and 30% are higher than the calculated/expected ones. The right side of Figure 2.9 shows
the same results as the left side, just on logarithmic scaled axes.

2.3.2 Fog classification

Pfennigbauer et al. [PWWU14] investigated how different technologies perform in an
turbid environment with an attenuating and scattering media. Therefore, they performed
their measurements in a fog chamber. The used LiDAR is a Riegl VZ-1000. For this
investigation, it is assumed that attenuation and the backscatter coefficient are constant
within the medium. Hence, the backscatter profile can be described as following:

T (t) = aδ(t0) + bσ(t− t0)e
−(t−t0)

τ (2.3)

In this equation, the first part describes the portion of diffuse reflection within the backscat-
ter cross section a at time zero. This means, this part handles the time when a turbid
medium is entered. Since the measurements for this experiment are performed only inside
the fog chamber, this part can be neglected. In the second part of the equation, the dis-
tributed reflectance inside the medium is handled, where τ denotes the penetration depth
and b the backscatter factor.

2.3. STATE-OF-THE-ART 35

Experimental Setup

Figure 2.10: Setup of the experiment for measuring inside a fog chamber
[PWWU14].

The measurements were performed inside a fog chamber that is capable of producing
spatially homogeneous fog remaining constant over time. The target was formed by a flat
board consisting of a black and a white surface providing a reflectance of 3% and 100% at
the LiDARs wavelength. The target and the LiDAR were both fix mounted at a distance
of 30m. The LiDAR was working with a frequency of 70 kHz in line scanning mode and
with 2.5 lines per second. Figure 2.10 shows the setup.

Results

The measurements were performed once without fog for reference results, once with a
lower density of fog with 40m visibility and once with a higher density with a visibility
of 10m. The left column in Figure 2.11 shows the results for the absence of fog. The
range is 30m, and the results for amplitude and reflectance show the difference between
the black and the white surface of the target. The pulse shape deviation is as expected
approximately zero.

The second column shows the results for the lower density of fog with a visibility of
40m. Having a look at the range results, the target at a distance of 30m is still detected,
but almost every measurement point detects another target at a distance of 2.5m. These
points result from the echoes of the fog. The results for the amplitude show that the echoes
of the fog have a higher amplitude than the ones from the target. This is a plausible result
since the fog causes the reflections at a shorter distance than the target board. The
reflectance results appear the same as the results without fog, because the atmospheric
attenuation has been taken into account. However, it can also be seen that the reflectance
of the fog is as high as the reflectance of the black surface of the target, while the white
surface has still a higher reflectance than the fog. A look at the pulse shape deviation
demonstrates that the deviation of the fog echoes is highly increased in comparison to the

36 CHAPTER 2. RELATED WORK

Figure 2.11: Results of the experiment in a turbid medium. The left column
shows the results without fog, the middle column for a fog density with 40 m
visibility and the right column with 10 m visibility. The blue points show first
hit targets, the green points second targets.[PWWU14]

deviation of the target. This circumstance can be used to distinguish between fog and
target.

The third column presents the results of the higher fog density with a visibility of 10m.
Now, the atmospheric attenuation is too high to still allow a detection of the target at the
distance of 30m. In this case, all measured results come from the fog echoes.

In the next step, Pfennigbauer et al. [PWWU14] analyzed the measured waveforms
with the aim to estimate the visibility range in a turbid environment. Therefore, they
recorded 1000 waveforms of the fog at different visibility ranges over time. This is il-
lustrated in Figure 2.12. Their approach is to determine the temporal distance DCOM

between the rising edge Tre of the waveform and its center of mass TCOM .

DCOM = TCOM − Tre =

∑
tisi∑
si
− Tre (2.4)

si refer to the sampling values and ti to the sampling instances, while Tre denotes the
position where the rising edge has reached the half amplitude of the peak.

2.3. STATE-OF-THE-ART 37

Figure 2.12: Recording of the waveform of fog at different visibility ranges
[PWWU14].

2.3.3 Wavelet-Based Echo Detector

In 2012, the work of Wang [Wan12] covered the investigation of overlapped and weak
return signals. Weak and overlapped waveforms may occur when multiple targets are
within a single measurement at different distances. While weak signals are hard to detect
because of their low SNR, overlapped signals are the harder to separate the more coincident
their peaks are. Hence, within this work a wavelet-based echo detection algorithm was
developed that should outperform common zero crossing detectors.

A continuous wavelet transformation (CWT) is a decomposition of a signal into wavelets
as base function. Therefore, a chosen wavelet is compared to the target signal at different
scales and also at different positions by shifting the wavelet. For each position and scale, a
wavelet coefficient (WC) is calculated that indicates the similarity between the signal and
the wavelet. Hence, applied to full-waveform analysis, each occuring WC peak implies an
echo from a target in the received waveform. This is illustrated in Figure 2.13.

In Figure 2.13a and 2.13b, two different scales for the wavelets were applied. In the
left image, the scale matches quite precisely with the received waveform in that all three

38 CHAPTER 2. RELATED WORK

(a) CWT at scale s1 (b) CWT at scale s1

Figure 2.13: Example for echo detection using continuous wavelet transforma-
tion [Wan12].

targets are detected at the correct position. Unlike the right image, where the scale is too
big and hence only two targets are detected. For this work, the author chose an Gaussian
wavelet as mother wavelet while the scale factor was determined by the detection results.

Experimental Setup

For this project, the author has decided to simulate waveforms aiming to investigate the
limitations of the proposed detector. Therefore, he describes a waveform as following,
where a Gaussian function is chosen to represent a return echo:

w(t) =
m∑
k=1

gk(t) + n (2.5)

g(t) = A · exp(−(t− µ)2

2s2
) (2.6)

w(t) is the simulated waveform, m the number of echoes, n the noises, µ the time domain
location and s is the echo width. Different SNR levels were chosen for the experiment
by increasing the power of the echoes. 1000 waveforms are generated for each SNR level.
For the evaluation of the results, the following three rates are considered: the rate of the
correctly detected echoes CR1, the rate of the missing echoes MR1 and the rate where
too many echoes are detected RR1.

CR1 =
number of detecting 1 echo

1000
· 100% (2.7)

MR1 =
number of detecting 0 echo

1000
· 100% (2.8)

RR1 =
number of detecting more than one echo

1000
· 100% (2.9)

2.3. STATE-OF-THE-ART 39

Results

The results of the wavelet-based detector are compared to the results for the same test
data fed to a zero-crossing detector. A zero-crossing detector calculates the first derivative
of the waveform and detects echoes at the zero-crossings of the derivative.

(a) Zero-crossing detector. (b) Wavelet-based detector.

Figure 2.14: Results for echo detection with different SNR levels for the zero-
crossing and wavelet-based detectors [Wan12].

Figure 2.14 shows the results for both detectors. The results show that the wavelet-
based detector reaches a CR of 100% at a lower SNR level than the zero-crossing de-
tector. Further, the wavelet-based detector hardly detects too many echoes unlike the
zero-crossing detector.

2.3.4 TOF-LIDAR signal processing using the CFAR detector

In 2016, Ogawa and Wanielik [OW16] presented their research in the field of detecting low
SNR targets. The authors state that there are two main approaches for increasing the
sensitivity for detection. The first approach is to improve the optical hardware, such as the
laser diodes, the photo detectors and advanced scanning systems. The second approach is
about applying signal processing techniques before the point detection for increasing the
SNR. The common technique therefore is filtering, such as low-pass, band-pass filtering or
coherent integration. At the end of signal processing, a threshold is applied for distinction
between noise and targets. Therefore, a Constant False Alarm Rate (CFAR) is used in
many cases. This is a mechanism that calculates the threshold dynamically depending
on the background conditions for achieving an improved detection performance at a lower
SNR. Additionally, Ogawa and Wanielik propose an algorithm that combines the features
of integrating signals and the CFAR approach.

CFAR Detector

Figure 2.15 shows the basic setup of a CFAR operator. It consists of cells under test,
guard and training cells. The cell under test refers to the point at which evaluation is
performed whether there is a target or not. The training cells are used to evaluate the
background level by analyzing its intensities. Therefore, either the mean or the median of
the intensities is calculated. The guard cells are used as range margin in order to isolate

40 CHAPTER 2. RELATED WORK

the training cells from the intensity of an existing object at the cell under test. This cell

Figure 2.15: Basic design of a CFAR operator [OW16].

configuration is then implemented as sliding window operator. Finally, by evaluating the
calculated mean/median values of the training cells, the background level is estimated and
further the threshold is chosen above the background level. As outlined by Ogawa and
Wanielik [OW16], this technique allows proper detection results in clutter, interference
and other uncertain environments.

Extended CFAR Detector

In the work of [OW16], the authors propose an extended CFAR detector. Their idea is to
combine coherent integration with the CFAR detector. Therefore, they extend the basic
CFAR sliding window with neighbor cells in a second dimension. This is illustrated in
Figure 2.16.

Figure 2.16: Design of the extended CFAR operator [OW16].

The neighboring cells are placed around the cell under test. This defines the region for
intensity integration. Additionally, a numerical value is added to each cell that specifies
the weight of the integration. For thresholding, the intensity is then evaluated with median
value according to the corresponding weights.

This approach makes use of the fact that the pulse width of an echo is broader than it
is high for the used LiDAR. Hence, an integration of the intensity over neighboring cells
is performed. This is illustrated in Figure 2.17.

2.3. STATE-OF-THE-ART 41

Figure 2.17: Intensity integration over neighboring cells [OW16].

Target Detection

Example results are presented in Figure 2.18. The above image shows the raw intensity
values in combination with a constant threshold. In this case, no target is detected since
all intensity values are beneath the threshold. In the lower image, the blue line indicates

Figure 2.18: Example results showing the difference between a constant and
an adaptive threshold for the detector [OW16].

the integrated intensity values and red dashed line the calculated, adaptive threshold. In
this case, the target is detected. By comparing both images, it can be seen that the SNR
is increased by integrating the intensities. Further, the adaptive threshold provides more
accurate results than the constant one.

42 CHAPTER 2. RELATED WORK

Experimental Setup

The experimental setup can be seen in Figure 2.19. The LiDAR is mounted fixed behind
the windshield inside of the car. The target object has a width of 0.5 m and a height of
1.75 m. Its surface has a diffuse reflection of 10 % in the near infra-red band of the used
LiDAR. The distance between the target and the car is altered in 5 m steps, while the
measurement is performed for 30 s at each distance. Finally, the raw data is processed
with the conventional and the proposed detector and the results are compared.

Figure 2.19: Experimental setup [OW16].

Results

First, the authors of [OW16] have a look at the Receiver Operation Characteristic (ROC)
curves for both detectors, the conventional and the proposed one, at a distance of 60 m.
These can be seen in Figure 2.20. The x-axis shows the false positive rate FP, a value that
indicates the ratio between the number of false detections and the number of bins without
target. The y-axis shows the true positive rate TP, so the ratio between the number of
detected targets and the total number of bins. It can be clearly seen in Figure 2.20, that
the proposed detector shows an improved performance in comparison to the conventional
detector.

Figure 2.20: ROC curves for both detectors [OW16].

Figure 2.21 shows, that the TP rate could be improved enormously for distances be-

2.3. STATE-OF-THE-ART 43

tween 40 m and 60 m with the proposed detector. As a result, targets at higher distances
can be detected with the proposed detector that would get lost in the noise resulting from
a too low SNR with a conventional detector. This is further shown in Figure 2.22, where a

Figure 2.21: TP rates for both detectors at varying ranges [OW16].

scene consisting of a street, a building, grass and a pedestrian is recorded. It can be seen,
that the proposed detector is able to detect the building at far higher distances. Further,
unlike the conventional detector, it detects the pedestrian and also the grass.

44 CHAPTER 2. RELATED WORK

Figure 2.22: Recording of a scene for comparison of the conventional and the
proposed detector [OW16].

Chapter 3

Design

In this Chapter, the design is discussed that was developed in this work.

HistogrammerEncoder

MicroBlaze

UDP to PCL2

USB to PCL2

ROS / RVIZ

Laser / Mirror

Receiver

LiDAR Hardware Artix 7 FPGA PC

Figure 3.1: Overview of the LiDAR system and its interconnections. Orange
components and interfaces are designed and implemented in this work.

In Figure 3.1 an overview of the designed system is illustrated. It can be roughly
separated into 3 domains: the LiDAR prototype hardware, the Artix 7 FPGA and the
software used to display the results. Orange outlined components are designed in this work
and described in detail in the following subsections. This includes the modules Encoder
and Histogrammer, as well as the interfaces to the PC. These receive the data from an
existing LiDAR prototype. On software side the programs USB to PCL2 and UDP to
PCL2 are designed.

First, the requirements of the resulting system are defined. Next, used frameworks
as well as the existing LiDAR prototype is described. Also the two main modules His-
togrammer and Encoder are discussed in detail. Last, the software design for presenting
the resulting data is presented.

3.1 Requirements

An existing LiDAR platform is extended in a way that it will suit the needs for automated
driving in real world. The key aspects of the resulting system are listed here:

45

46 CHAPTER 3. DESIGN

Hardware-accelerated Computation
Signal processing algorithms are implemented on a FPGA. This ensures real-time
data processing, which is crucial for tasks like collision detection and other real time
decision making.

Data Visualisation
Produced point cloud data should be transferred over User Datagram Protocol
(UDP) to a PC software. The software solution should be able to visualize and
also store the received data.

Debug Connectivity
Aside of the UDP connection, an Universal Serial Bus (USB) interface should be
used to transfer raw captured data out of the LiDAR system. This data should
also be captured and stored by a PC software. With this data, different off-line
post processing steps can be performed to evaluate the real-time processing or apply
different filters.

The FPGA should perform different tasks in real-time. These tasks have to be im-
plemented efficiently and provide additional data from the reflected light. In order to be
able to evaluate these steps, it should also be possible to alter their configuration during
runtime. The following task should be implemented:

Multiple Hit Receiver
The resulting system should be capable of receiving, analyzing and storing multiple
reflections of one light beam in the scene. This way, it is possible to identify semi-
transparent objects and filter false-positive detections.

Feature Extraction
When a light pulse is reflected by an object in the scene, the pulse shape is altered.
In order to be able to analyze and possibly extract object properties out of the pulse,
the duration of the received pulse should be recorded.

Histogramming
By performing a histogram on multiple scans of the same scene, it is possible to
increase the SNR. Different algorithms should be compared and the most suitable
should be implemented.

3.2 Existing Platform

In this section, the existing platform used for this thesis is presented. Therefore the
hardware and software components of the prototype are discussed in detail.

3.2.1 LiDAR System Hardware

The LiDAR system consists of multiple independent hardware components connected by
a controller board. These can be seen in Figure 3.2 and are described in the following

3.2. EXISTING PLATFORM 47

Figure 3.2: The existing LiDAR prototype and its components.

subsections.

Laser Module

The laser module is used to produce the required light-pulses for a measurement. It
produces light with a wavelength of 905nm and a Full Width Half Maximum (FWHM) of
12ns. With a pulse-repetition-rate of 40kHz, this component mainly restricts the available
time frame for the computation.

Micro-electro-mechanical System (MEMS) Mirror

Unlike most available MEMS mirrors on the market, the mirror used operates on a specific
oscillation frequency. In order to be able to trigger the laser module, when the mirror is
in the correct position, the frequency is measured by the controlling system.

Receiver Board

The receiver board, as seen in Figure 3.3, contains 32 APDs. Their signals are then
amplified and fed into a comparator logic. For each channel, one Low Voltage Differential
Signal (LVDS) is then provided for further analysis by the controlling system.

The threshold for the comparator logic, as well as other parameters, can be configured
over a Serial Peripheral Interface (SPI). Since 32 APDs are provided, 64 signal lines are

48 CHAPTER 3. DESIGN

Figure 3.3: Receiver board with 32 APDs and LVDS lines.

used. LVDS makes a high speed transmission possible and is more error-prone than single
transmission lines.

Artix Development Board

An Artix 7 development board for the signal-processing and needed controlling mechanism
is used. Specifically the micromodule TE0712-02 featuring an Artix-7 FPGA, 1GByte
DDR3 memory and 100MBit Ethernet from Trenz Electronic was chosen and comes with
following specifications:

• Xilinx Artix-7 XC7A200T-2FBG484C

• 32 MByte (256 MBit) Quad-SPI Flash-memory

• 1 GByte 32-Bit DDR3 SDRAM

• 10/100 MBit Ethernet PHY in RMII Mode

• MAC address EEPROM

• Low Jitter Phase Lock Loop (PLL) (Silicon Labs Si5338)

• 158 FPGA in- and outputs (78 differential pairs) over board to board connector

• Plug-on Modul with 2 x 100-Pin and 1 x 60-Pin High-Speed connectors

The used FPGA Artix-7 has following internal resources:

• Logic Cells: 215,360

3.2. EXISTING PLATFORM 49

• Slices: 33,650

• CLB Flip-Flops: 269,200

• Maximum Distributed RAM (Kb): 2,888

• Block RAM/FIFO w/ ECC (36 Kb each): 365

• Total Block RAM (Kb): 13,140

• Clock Resources CMTs (1 MMCM + 1 PLL): 10

• I/O Resources Maximum Single-Ended I/O: 500

• Maximum Differential I/O Pairs: 240

A basic Very High Speed Integrated Circuit Hardware Description Language (VHDL)
implementation of the controlling logic is also present. This implementation is capable of
triggering the laser module, monitoring the mirror frequency, reading out the LVDS lines
of the receiver and transmitting the data over the UDP interface. It also has a SPI bus
for setting the threshold on the receiver.

Controller Board

The controller board connects all of the before mentioned components. It also features
2 push-buttons and a Future Technology Devices International Ltd. (FTDI) chip D300,
responsible for the USB communication. These features are wired to and controlled by
the FPGA.

3.2.2 System Software

The interfaces from and to the receiver board as well as the connection to the FTDI
USB chip and the UDP peripheral are directly connected to the FPGA. This way, these
communication lines can be configured and controlled by the FPGA.

The FPGA is programmed in VHDL through the Xilinx Integrated Development En-
vironment (IDE) Vivado. Starting point of this work is a basic implementation on the
FPGA, capable of single-hit measurements and fundamental UDP communication.

MicroBlaze

MicroBlaze is a micro controller developed by the company Xilinx. It is fully implemented
in VHDL and therefore a so called soft-core CPU. It is a 32-bit RISC micro controller and
uses, depending on its configuration, between 700 and 2000 slices.

The firmware for the controller can be programmed in C and is put into the block
ram of the FPGA. Due to its flexibility, multiple different components can be connected
through VHDL to it. Xilinx provides multiple different libraries which can be used in the
firmware.

50 CHAPTER 3. DESIGN

Advanced eXtensible Interface (AXI) Bus

The AXI bus is especially prevalent in Xilinx’s Zynq devices. It is providing the interface
between the processing system and programmable logic sections of the chip. It consists
of one master and multiple slaves. Each slave has an address range and can provide
functionality like writing or reading this memory. It is also possible to provide different
commands over this interface.

Most of the components are interconnected via an AXI bus. This way, the MicroBlaze is
able to control these and exchange data. Contrary to this, the USB dataflow is established
without configuration or controlling by the FPGA. As soon as the encoder transmits data
into the USB FIFO, this data is gathered by the external FTDI chip. This provides also
higher data throughput because it is not limited by the MicroBlaze clocking.

Clocking

In the existing implementation, 3 clocks are used to control the system:

100 MHz
This clock is mainly used for the AXI bus and components connected to it. It is
generated by an clock wizard IP by Xilinx.

625 MHz
This clock is used for the input lines from the receiver, described in 3.2.1.

125MHz
The LVDS lines are serialized by a factor of 10. Serialization is done by the Serialize
Input Intellectual Property (IP) from Xilinx. Serialized data is presented in 1

10 of
the driving clock (625 MHz). Since the lines are sampled with dual data rate, the
resulting clock is 125MHz.

cdata =
cser · 2
sfactor

=
625MHz · 2

10
= 125MHz (3.1)

3.3 Histogramming

In this work, histogramming denotes the process of saving measured peaks into their cor-
responding distance bins for further processing. By accumulating multiple measurements
of the same point in the scene, a histogram of received reflections can be built.

This section first describes the principle of the histogramming and its benefits. Next,
different algorithm approaches are discussed and analyzed. In the last section, a confidence
factor for measurements extracted out of the histogramming is proposed.

In this work, the histogramming is implemented in VHDL, in order to be able to
compute it in realtime on the FPGA hardware. This is accomplished by generating a
independent intellectual property in Vivado.

3.3. HISTOGRAMMING 51

3.3.1 Principle

The existing system scans the scene in lines. With each shot line, 32bit-streams can be
received from their corresponding APDs. Each APD measures the reflections of the scene
at one specific point. When measuring the same point multiple times, by shooting the
same line and reading out the same APD, these measurements can be combined to a
histogram for this part of the scene. Since noise is assumed to have a uniform distribution
in the signal, even the noise exceeding the threshold in power can be filtered out.

Figure 3.4: Illustration of 3 measurements being accumulated into one histogram.

In Figure 3.4, three already binned measurements are illustrated. Measurements M1

and M3 contain one reflection with a specific pulse width while M2 contains 2 reflections.
These have do be taken from independent shots of the same point in the scene. After
accumulating all measurements of the same point and applying an arbitrary threshold, the
most present points are extracted. As it can be seen, the second reflection of measurement
M2 is below threshold and therfore considered noise and ignored. Since the noise occurred
as only measurement at this exact distance, it is unlikely it represents a valid object.

One drawback of the histogramming approach is the time delay induced. Since the
measurements are taken independently, during the time between them, objects in the scene
can move.

3.3.2 Algorithm Evaluation

For the histogramming, a suitable algorithm has to be chosen. The algorithms are analyzed
by their memory consumption, needed computation time and its limitations. Primarily,

52 CHAPTER 3. DESIGN

following three different approaches were analyzed:

Frame first

The first approach is called frame first. In this setting, the LiDAR will first measure all
vertical lines in a scene. The whole scene will then be saved in memory before the next
frame gets shot. This way, the desired number of frames is captured before the histogram
is calculated over the saved data.

One advantage is that this approach is independent of the point shot sequence since
it will analyze only complete frames. A drawback is the high memory consumption, since
all measurements need to be preserved over multiple frames. The computation time is
considerably low because the measurements can already be combined during sampling the
next points.

Histogram first

Histogram first prioritizes the histogram over the frame. This means that the same points
are shot multiple times before the next point in the scene is measured. It is then possible
to calculate the histogram for one point very quickly. The used memory can then be
reused for the next measurements.

With this principle, a faster histogramming is possible. One drawback is, that the
frames per second (FPS) are dropping due to the time that is needed, before all points in
a scene are shot. Also, a specific shot-sequence needs to be implemented.

Dynamic histogram

The final algorithm describes a combination of before mentioned principles. Each mea-
surement of a point is considered individually, as in histogram first. For each shot, the
measurements are saved in memory. When the desired number of measurements is reached,
the histogram is calculated. Contrary to histogram first, the measurements are not ac-
cumulated and then saved in memory, but the shots are saved individually. So, after
each shot, a new histogram can be calculated. When a point is measured again, the old-
est values are discarded, the new ones saved and the histogram recalculated out of all
measurements. With this dynamic approach the FPS drop is decreased.

The dynamic histogram is chosen to be implemented.

3.3.3 Memory Consumption

The chosen algorithm, dynamic histogram, needs the most memory compared to the other
approaches. One measurement results in a bit-stream of data, consisting of 1 for light, 0
for no light. Every bit-stream needs to be saved as a whole multiple times. After recording
the desired number of streams for one point, the histogram can be built by accumulating
them and extracting the reflections in the scene.

3.3. HISTOGRAMMING 53

The exact amount of memory which is required to store the data depends on different
variables, as defined in the following list:

Number of lines L
The number of lines which have to be shot to build up one full frame. Since the used
LiDAR system scans one line at the time, it needs to shoot the scene multiple times
to get a full representation of the scene. The number of needed shots depends on the
Horizontal Field of View (HFoV). This parameter itself depends on the maximum
deflection of the used MEMS. In the existing system, the HFoV is set to 30 deg with
128 lines, in order to get a horizontal resolution of 12 cm.

Number of APDs A
Each shot measures multiple points in one line. The used system has 32 APDs built
in, so each shot gives distance values for 32 different points. This variable is set
constant in the resulting system, since this parameter is hardware specific.

Stream length Sl
Since the system must be capable of detecting multiple reflections of one shot, the
whole stream needs to be stored. The length of the bit-stream depends on the
maximum distance that is required. Each bit in the stream represents one sample
of an APD at a given time. The time difference between two samples is defined
through the sampling frequency fs, which is set to 1.25 GHz. The desired maximum
distance dmax is 500m.

c = 299, 792, 458
m

s
= 0.2998

m

ns
(3.2)

∆tsample =
1

fs
=

1

1.25 · 109
= 0.8ns (3.3)

∆dsample = ∆ts · c = 0.2398m (3.4)

Sl =

⌈
dmax

∆dsample · 2

⌉
= 4171 (3.5)

As stated in equation 3.3, one bit in the bit-stream represents a time-difference
∆tsample of 0.8ns. This correlates to a traveled light distance of 0.2398 meters (equa-
tion 3.4). All samples, starting from 0m to the maximum distance of 500m, can then
be represented with a stream-length of 4171 bits, as stated in equation 3.5. The de-
nominator of 2 is used to take the light’s way back into account.

Measurements per Histogram Mh

For one full histogram, multiple measurements of the same point need to be saved.
The exact number of accumulated measurements will be evaluated by experiments
with the resulting system.

For the resulting memory needed, a simple product of the stated parameters is calcu-
lated (3.6).

54 CHAPTER 3. DESIGN

Mh
Memory

bit kByte MByte

1 17084416 2135.55 2.14

2 34168832 4271.10 4.27

3 51253248 6406.66 6.41

4 68337664 8542.21 8.54

5 85422080 10677.76 10.68

10 170844160 21355.52 21.36

15 256266240 32033.28 32.03

20 341688320 42711.04 42.71

Table 3.1: Needed memory for different numbers of measurements per his-
togram Mh.

Memory = Sl · L ·A ·Mh (3.6)

A compromise between noise reduction and performance needs to be found with a
reasonable Mh value. As it can be seen in Table 3.1, the approach with saving the full
stream with each measurement would use up much memory enormously. As stated in
section 3.2.1, beginning with 5 Mh, it would use up more memory than provided in the
Artix 7 as block ram.

A workaround using DDRAM is considered. The development-board from Trenz has
1GB DDRAM3 built in. But accessing and configuring this memory is much more com-
plicated and slower than using block ram.

In the end, another way of storing and organizing the data is used. Since the meaningful
part of a measured signal consists of the captured reflections, all other parts can be omitted.
When the APDs do not recognize any light, the generated bitstream holds no information.
More on the memory consumption after implementing this approach can be read in section
3.4.2.

3.3.4 Confidence

When the results of the histogramming are delivered to other systems, a confidence value
for the measured points is desired. In this work, a new confidence value for LiDAR systems
is induced.

The value is generated with respect to the measured peak width, its time of occurrence
and its position relative to the other measurements of the same point. In an ideal system
with a stationary scene and LiDAR, it is considered that measurements of the same point
in the scene always result in the same received signal form. So the reflections of one
object at one point in the scene occur always at the exact same moment. Therefore, when
accumulating multiple measured peaks of the same point, they should all be of same length
and at the same time index.

3.4. ENCODING 55

Due to object movements, ambient noise and other disturbance sources, the time of
recording the reflection can differ at each shot. This means, the exact location of the
object in the scene, which generated the reflection, can not be determined exactly. This
uncertainty can be expressed by measuring the difference of the time indexes between the
points in multiple measurements. When having 2 measurements of the same point, the
more those peaks differ in time occurrence, the more uncertain is the position.

The peak width of the resulting accumulated peak is used for the uncertainty, as it
can be seen in Figure 3.5.

M

Histogram

1

M2

M3

 U U

Figure 3.5: Left: Uncertain measurements with high time distribution. Right:
Time distribution is narrow, therefore a lower uncertainty factor U .

In Figure 3.5, two histograms of two different points in the scene are illustrated. In
the left, 3 measurements with high time distribution are accumulated, which results in a
high uncertainty factor U . In the right, time distribution is much narrow, therefore U is
lower.

Since the individual measured peaks in the measurements Mx can have different peak
widths, these have to be taken into consideration too. The amplitude of a received peak,
and therefore also its width, depends on the distance and the reflectivity of the hit material.
So, objects further away generate a more narrow pulse.

3.4 Encoding

In this Section, a new approach for the encoding of LiDAR data is proposed and analyzed.
First, the principles of the encoding is explained. It will explain the main attributes of
backscattered signals. Next, the impact of the encoding on the memory consumption of

56 CHAPTER 3. DESIGN

the system is calculated. For this part, the results of section 3.3.3 are used and extended.

The Encoding itself was manly designed and implemented in order to reduce the needed
memory consumption in exchange of computation time and hardware resources.

3.4.1 Principle

The sampled backscattered signal of an emitted pulse is very sparse. Most of the samples
are 0, since the light either has not hit a target or was already fully reflected. Due to
the fact that only pulses produced by reflections of objects in the scene are of interest, an
encoding exploiting these attributes is proposed.

As described in 3.2.1, the sampling of the reflected light is done by APDs and a
comparator. This system does not provide any amplitude information, but has only a
resolution of one bit. Reflections that have enough power to exceed the comparator voltage
threshold, can then be seen as rectangular signal on the LVDS lines.

The only information which can be extracted from this signal, is the time of the rising
edge, indicating the object’s distance, and the length of the pulse. These two attributes
need to be preserved by the encoding.

Figure 3.6: A simulated reflection signal with the encoding scheme. In blue,
the captured signal is presented. The red stems represent sampled measure-
ments. The rectangles P1 to P3 mark valid peaks which informations needs to
be preserved. The rectangle between P2 and P3 marks the signal part which
can be omitted.

In Figure 3.6, a sampled backscattered signal is illustrated. The blue signal is sampled
with constant time resolution when it is above an arbitrary threshold. Three reflections
are marked with P1, P2 and P3. Between two peaks, P2 and P3, a part of the signal,

3.4. ENCODING 57

which can be omitted, is also marked. By omitting this part of the signal, and other parts
which are below threshold, the data can be reduced to a great extent. The idea behind
encoding is to reduce the data needed to analyze while still preserving the information of
the reflections.

When a measurement starts, a counter is started at the exact same time. Its current
value will represent the time passed since the beginning of measurement. Each time, when
a rising edge is detected, the current counter is saved as starting index of this pulse. When
the next falling edge occurs, the current counter value is used as stop index. Start and
stop index can then be further used as pulse definition and also to extract the pulse width.

3.4.2 Memory reduction

As already calculated in Section 3.3.3, the maximum counter index, representing the high-
est possible distance, is 4171. For each detected pulse, two counter values need to be
saved. The equation for computing the memory consumption needs to be extended:

Measurement Index Bit-Width Ibit
Since a pulse can theoretically extend over the entire detection distance of 500m,
the required bit width is defined for storing the maximum counter index of 4171. A
counter with the resolution of the sampling rate (1.25 GHz) is used to determine the
time index ti for each sampled point.

Ibit = blog2(countermax)c+ 1 = blog2(4171)c+ 1 = 13bit (3.7)

13 bits are needed to represent the maximum index countermax. Since this value
needs to be saved into memory and also will be transmitted over USB and UDP, a
bit-width with power of 2 is chosen. Therefore, the next greater fitting bit-width is
16 bits.

Pulse amount P
Each pulse is saved separately. The number of pulses that can be maximally saved
within one measurement, will be limited by P . A suitable number has to be chosen
after analyzing real measurements. Also noise has to be considered.

With the encoding and the additional parameters, the needed memory can be com-
puted with Equation 3.8.

Memory = Ibit · 2 · P · L ·A ·Mh = 32bit · 2 · P · 128 · 32 ·Mh (3.8)

In Table 3.2, memory consumption for different settings of Mh and P are calculated.
Even with a high number of Mh = 20 and P = 10, the block ram resources of the Artix 7
FPGA are not fully used.

58 CHAPTER 3. DESIGN

Mh P
Memory

bit kByte MByte

2 2 1048576 131.07 0.13

2 5 2621440 327.68 0.33

2 10 5242880 655.36 0.66

5 2 2621440 327.68 0.33

5 5 6553 819.20 0.82

5 10 13107 1638.40 1.64

10 2 5242880 655.36 0.66

10 5 13107 1638.40 1.64

10 10 26214 3276.80 3.28

15 2 7864320 983.04 0.98

15 5 19660 2457.60 2.46

15 10 39321 4915.20 4.92

20 2 10485760 1310.72 1.31

20 5 26214 3276.80 3.28

20 10 52428 6553.60 6.55

Table 3.2: Needed memory for different numbers of measurements per his-
togram Mh and number of pulses P . Ibit = 16bit, L = 128, A = 32

3.5 Communication

Communication channels to the FPGA are implemented for configuration and retrieving
results from the system. Over Universal Asynchronous Receiver Transmitter (UART), it
is possible to configure different parameters for the histogramming and the USB transfer.
It is also used for debugging the implemented firmware.

The USB interface, provided by the FTDI chip, is used to transfer raw measured data
as well as the encoded detected pulses. The data source can be selected with a command
over the UART interface.

The ethernet interface is used for transferring the histogrammed results.

3.5.1 Ethernet

The used development board from Trenz provides a 100MBit ethernet interface. The
Physical Layer (PHY) is integrated with a Media Independent Interface (MII). First, a
hardware-only control of the MII was considered in order to be able to transfer the data
as fast as possible. But since the used MicroBlaze is already fast enough to utilize the
whole bandwidth and a software implementation of the IP-stack is more flexible, the open
source stack light weight IP (lwIP) is used. This stack is specially made for embedded
applications and has a wide set of features.

After the successful computation of the histogram of a line of points, the values are

3.5. COMMUNICATION 59

written into a First In First Out (FIFO) buffer. This buffer is constantly read out by the
MicroBlaze. As soon as enough data is available for one full UDP packet, it is sent as
broadcast onto the network.

UDP is used because it is a stateless transmission protocol, unlike TCP it does not
need to establish a connection with the endpoint beforehand. A drawback is that it can
not be guaranteed that every packet is received by the target system, since UDP has no
sequence value built in. It is also not possible to request a retransmit of a specific packet.

A broadcast is realized with setting the IP address of the receiver to 255.255.255.255.
This way, every system in the local network can receive the LiDAR data and the firmware
does not need to resolve a receiver IP to a corresponding MAC address. This saves time
and therefore increases the throughput.

Header Data

marker pktcnt line distance1 uncertainty1 - - -
distance32 uncertainty32

4 byte 2 byte 2 byte 2 byte 2 byte 2 byte 2 byte

Table 3.3: Data structure of one measurement packet. This packet contains
data from histogrammed points of one line. Multiple measurement packets
are part of one UDP packet.

One UDP packet consists out of multiple measurement packets. These packets contain
information about the distance measured of a specific line and the uncertainty values for
the points. In Table 3.3, the data-structure of one histogrammed measurement can be
seen. It consists of 136 bytes of data and the fields can roughly be separated as header
and data fields. Their purpose is described in the following list:

marker
Each measurement packet begins with the fixed marker 0xFFFFFFFF. This simpli-
fies the process of parsing packets as well as detecting missing data. The marker
value is chosen in a way that no other combination of field values can incidentally add
up to it. The maximum distance value as well as uncertainty value is 0x104B104B,
since the maximum distance is 4171 (0x104B) (see Equation 3.5).

packet
This value is a counter incremented with each measurement packet. It can be used
to analyze and detect missing packets during transmission.

line The line in the scene to which the values correspond to. Lines are counted from left
to right. With knowledge of the number of lines a scene is split, and the Vertical
Field of View (VFoV), a 3D reconstruction is possible.

distancex
This value gives the ticks passed from beginning of the measurement until the reflec-
tion is detected. With knowledge of the sampling frequency fs and the speed of light,
the distance can be calculated. There are 32 distance values in the measurement

60 CHAPTER 3. DESIGN

packet. The position of this value in the packet corresponds to the APD which has
sampled this point.

uncertaintyx
The corresponding uncertainty value to the previous distance value. Distance and
corresponding uncertainty are always in a tuple right after each other, starting with
the distance.

3.5.2 USB

The USB interface is provided through the FTDI chip FT600 on the controller board. The
chip is a USB3.0 to FIFO bridge [FTD15]. The main hardware features are as following:

• Support for USB3.0 SuperSpeed (5Gbps), USB High Speed (480Mbps) and USB 2.0
Full Speed (12Mbps) transfer

• Available with either 16bit/32bit wide parallel FIFO interface

• Supports 2 parallel slave FIFO bus protocols, with data bursting rate up to 400MBps

• Supports multi-channel FIFO interface

• Up to 8 configurable endpoints (pipes)

• Built-in 16kB FIFO data buffer RAM

A 32bit wide parallel FIFO interface with 1 endpoint is used. The control logic is
implemented in VHDL and programmed onto the FPGA. It fills up a FIFO buffer with
captured data and controls the read cycles from the chip. The USB interface is used for
raw data as well as encoded pulse information. Therefore, 2 FIFOs are used, so the source
of the data for the FT600 can be selected and switched during runtime.

Raw data

Writing to and reading from the FIFO buffers is processed without any interaction from
the MicroBlaze, unlike the UDP transmission process. Since the processing through the
firmware with the clock of the MicroBlaze would be too slow this is necessary.

fPRR = 40kHz (3.9)

td =
1

fPRR
=

1

40000Hz
= 25µs (3.10)

Mb = APDs · Sl = 32 · 4171bit = 133.472kBit (3.11)

D =
1

fPRR
·Mb = 5.339

GBit

sec
(3.12)

3.5. COMMUNICATION 61

The time between 2 measurements is defined by the pulse repetition rate (PRR). The
frequency for the PRR is fPRR = 40 kHz, therefore the time available for transmitting the
data is 25µs. For the raw data transmission, the full bit-stream of one measurement needs
to be saved into a FIFO buffer and be read out by the FTDI chip. One measurement
generates 133.472kBit when saving the full bit-stream. Therefore, the data needed to
transmit per second can be calculated by multiplying it with the number of measurements
per second, resulting in D = 5.339GBit

sec . This is not possible with the selected chip.

For reducing the data, the distance recorded is reduced to 200 samples (Sl), represent-

ing a distance of d = c
∆tsample

· 200 =
299,792,458m

s
0.0000000008m

s
· 1000 = 74.95m. By reducing Sl, the

needed throughput is then D = 256MBit.

The data structure of the transmitted data packets contains the same header structure
as the UDP packets. As it can be seen in Table 3.4, a marker, packet-counter and line is
included. Their purpose is described in Section 3.5.1. In the data-section, each bit in one
32bit time field corresponds to a sample of the APD with the same index. For example,
the second bit of the third 32bit word corresponds to the third sample of the second APD.

Header Data

marker pktcnt line T3 T2 - - -
T19 T20

4 byte 2 byte 2 byte 32bit 32bit 32bit 32bit

Table 3.4: Data structure of one USB raw measurement packet. Each bit in a
32bit time field represents a corresponding sample of an APDx.

Encoded data

For debugging purposes and verification of the histogram, also the encoded data needs to
be transfered to an external system. Therefore, the encoded data is not only passed to
the histogram logic, but is also saved into a FIFO buffer.

The data structure for one encoded packet can be seen in Table 3.5. The header is
again the same as in Section 3.5.1, also the data structure is similar. The difference lies
in the data field, since the encoder produces multiple points and the length of them is
represented in 8bit. So, each APD measurement is represented by 3 points, containing a
time index, marking time of occurrence, and the pulse length.

3.5.3 UART

The UART interface is provided by the MicroBlaze processor and the AXI UartLite IP
from Xilinx. The Controller board then features a 5 pin connector for a connection to the
PC. The UART connection has a baud rate of 115200 and 8 data bits. An interrupt is
triggered in the firmware when new data is available on the interface.

This is used to control the system during runtime. It also provides additional debug
data in form of printing out its current state. In order to minimize the needed reading

62 CHAPTER 3. DESIGN

Header Data

marker pktcnt line
APD1

- - -

APD32

P1 P2 P3 P1 P2 P3

I L I L I L I L I L I L
4 byte 2 byte 2 byte 16bit 8bit 16 8 16 8 16 8 16 8 16 8

Table 3.5: Data structure of one USB encoded measurement packet. Each
measurement of one APD is represented by 3 points, containing time index
and pulse length.

buffer, each command consists of one character only. Following commands are supported:

a, s With this command pair, the threshold of the histogram can be controlled. It ba-
sically sets how many pulses need to overlap when accumulating multiple measure-
ments. If the accumulated signals exceed this threshold, it is considered a valid
reflection. With a, the threshold is decreased, s increases it. The response should
be the current threshold set after the modification.

y, x These commands can alter the number of measurements which will be accumulated
to form a histogram. y decreases the number, x increases it.

d, f In order to switch the USB output between raw and encoded transmission, these
commands can be used. d enables the encoded output, f the raw one.

3.6 PC Software

In this Section, the developed programs for visualizing, recording and debugging the data
of the system are presented. Figure 3.7 illustrates the software, its dependencies and the
communication channels. USBtoPCL and UDPtoPCL are used for processing the data
directly from the USB and UDP interfaces from the FPGA.

The programs produce point cloud data in form of messages readable by the Robot Op-
erating System (ROS). ROS has a built in Point Cloud Library (PCL) and can work with
LiDAR data out of the box. ROSFilter can use the produced data and filter out points
depending on different settings. All the data is then visualized with ROS Visualization
(RVIZ).

3.6.1 ROS / RVIZ

ROS is a flexible cross-platform framework for writing robust robot software. It includes a
selection of tools and libraries to simplify the development. First, a so called master node
is started. This node handles all the upcoming traffic from other nodes and coordinates
routing and messaging. Nodes can then publish messages on so called topics. A topic
is defined by a string and the type of message it publishes. Nodes can also subscribe to
topics and read messages which are published onto it.

3.6. PC SOFTWARE 63

Cygwin

USB to PCL2 UDP to PCL2

ROS.Net
Library

FTDI
Library

ROS Master RVIZ

ROS Filter

/USB_pcl /pcl_filtered /UDP_pcl

USB UDP

Figure 3.7: Illustration of he developed software components and their inter-
action through the ROS system.

The messages are transferred via TCP, therefore the master node can be run anywhere
on the local network. The self written programs are using the messages from the PCL to
describe and transfer the recorded pointcloud.

RVIZ is a stand-alone tool provided by ROS with a Graphical User Interface (GUI).
It is configured to read the topics that are published by the programs. It then displays
the point-cloud in a 3D representation which can be used to analyze the recorded data.
Additionally, multiple point clouds can be displayed at the same time, which makes it
possible to directly compare the encoded and histogrammed data.

In order to be able to run ROS on a Windows PC, Cygwin is used. Cygwin is an
environment for windows with a library providing PASIX API functionality. Therefore,
linux applications compiled in Cygwin can be run in Windows. After several tries to get
ROS and RVIZ running in this environment, a precompiled version of ROS within an
already provided Cygwin is used [Bri15]. This port of ROS includes binary releases of
ROS Jade and Indigo.

Since the messaging mechanism of ROS relies on the network stack, the programs could
be developed for Windows and still communicate with the master node in the Cygwin
environment. A library is used that enables ROS functions support under Windows is
used, the ROS.Net library [EM16]. It includes multiple message definitions and also the
ability to subscribe and publish onto topics.

3.6.2 USB to PCL2

This program is responsible for processing the data provided by the USB interface. It
first detects if the FPGA is plugged and establishes a communication channel. Next, it
publishes the ROS topic /USB pcl to the master node. If any of the steps fails, it aborts
and closes the program.

64 CHAPTER 3. DESIGN

After establishing all necessary connections, it starts reading the data from the USB
interface. The data is then interpreted and converted into the PCL message format. Each
time, a full frame is collected, the message is then published onto the topic, so it can be
visualized.

In order to read data from USB, the D3XX library is used. This library is provided by
FTDI [FTD16] and is able to open a data channel, configure the FTDI chip and perform
asynchronous read commands.

For encoded data stream, USBtoPCL2 provides the position of one point (x, y and z
coordinates) and the pulse width. Raw measurement data can not be represented in this
form, therefore it is ignored.

3.6.3 UDP to PCL2

For recording and interpreting histogrammed data from the system, the UDPtoPCL2
program is developed. It opens a socket and listens on an arbitrary port for UDP broadcast
packets on the network. Concurrently it publishes the topic /UDP pcl to the master node.
If one of the processes, trying to establish a connection, fails, the program closes itself.

When packets are captured on the UDP interface, the data of the histogrammed mea-
surements are extracted and interpreted. Since one UDP packet contains multiple mea-
surements, the data must be split and processed individually. After collecting one whole
frame, the measurements are converted into a PCL message and published onto the pre-
vious described topic.

The UDP program publishes PCL messages which contain points with x, y and z-
coordinates, but also an additional parameter, called confidence.

3.6.4 ROS Filter

The last program developed is used for more detailed analysis of the captured data. It
first lists all available topics from the master node. After selecting one topic, usually
/UDP pcl or /USB pcl, it is possible to filter out different points from the point-cloud
and republish it. Therefore, the program publishes the topic /pcl filtered to the master
node at startup.

The program provides a GUI in which the different filtering options can be set. It
also displays a processed data package counter and the widest point attribute seen. This
information can be used to determine the performance and quality of the received data.
It is possible to filter points by following attributes:

Point Attribute
With 2 sliders, the maximum and minimum value of a point attribute can be defined.
Depending on the source, UDP or USB, the attribute represents the pulse width or
the confidence of the point. This can be used to filter out points, where the real
distance is uncertain, depending on their confidence. It also can be used to filter out
pulses which have not the expected pulse width according to their detected distance.

3.6. PC SOFTWARE 65

Distance
Another pair of sliders can be used to define the maximum and minimum distance
to display. It can be used to restrict the displayed area.

HFoV
It is also possible to restrict the HFoV. Again, maximum and minimum values can
be set, which results in filtering the points out, which are beyond those values.

Chapter 4

Implementation

This Chapter is about the implementation details of this thesis. First the development
tools and the work flow is discussed. After this, the encoder, the first module in the signal
processing line, is presented. Next, the histogrammer module is explained. Finally, the
needed communication channels and their implementation is documented.

4.1 Development

This section describes the tools which are used for implementing the requirements. Af-
terwards, the used workflow is presented. The development process produced multiple
versions of the implemented modules, since bugs and improvements were discovered dur-
ing testing.

4.1.1 Tools

Multiple different tools are used during development. The most important ones are de-
scribed here.

Vivado Design Suite

The Vivado Design Suite [Inc16c] produced by Xilinx is a software suite for synthesis and
analysis of designs in form of a Hardware Description Language (HDL). It can work with
Verilog as well as Very High Speed Integrated Circuit Hardware Description Language
(VHDL). Since the used FPGA is also produced by Xilinx, the support for this hardware
is already integrated. It provides a programming interface to a connected FPGA as well
as debug features for running processes on the device.

Vivado can also be used to create so called Block Designs, in which predefined logic
IPs can be instantiated and connected through a GUI. This makes it highly intuitiv and
fast to design with already existing IPs from Xilinx.

Vivado itself splits the development process of a design in different main process steps:

67

68 CHAPTER 4. IMPLEMENTATION

Design
In the first step, the system and its modules are designed. Vivado provides many
different IPs ready to use from Xilinx. It also features an editor with syntax high-
lighting and the block diagram mechanism.

Simulation
Vivado supports multiple different HDL simulators. With them, it is possible to
simulate the digital designs to pre-validate their functionality. For simulation, a
testbench can be created, in which the module under test is instantiated. In the
testbench, different signals can be defined and scenarios created to fully evaluate
the module-under-test. Waveforms of the output-signals are then generated by the
simulator. This step is important since it reduces the development time significant.

Synthesis
After validating the functionality of the modules, a synthesis can be performed. In
this step, HDL designs are converted into networks out of the available resources.
Therefore, the designs are presented as combination of Flip Flops (FF), Look Up
Tables (LUTs) and other resources. After this step, runtime analysis and resource
usage can be inspected.

Implementation
With the synthesized modules, the implementation step can be run. In this step, the
design is placed onto the layout of the FPGA. New delay times can occur through
placement, which Vivado will try to automatically keep under certain limits. The
result of this step is a bit-stream which can be used to program the FPGA.

Program/Debug
Vivado also provides a way to automatically program a connected FPGA with the
previously produced bit-stream. When it is programmed, Vivado also provides a
way to trigger implemented debug cores and read out their results.

Xilinx SDK

The Software Development Kit (SDK) from Xilinx is used for creating the embedded
application. It can be used to develop applications for FPGAs already containing a micro
processor, like Zynq, but also for MicroBlaze soft-core systems. Multiple device drivers
and libraries for the supported micro processors are included, as well as a JTAG debug
console. The IDE is based on Eclipse 4.5.0 and CDT 8.8.0.

The Xilinx SDK is used to develop the firmware for the LiDAR system. In Vivado
Design Suit instantiated Xilinx IPs can directly be addressed in the C code through the
libraries and device drivers.

After compilation, the application is split into definition and binary files. These can
then be placed onto a SD card. The LiDAR then boots off of the SD card. Alternatively,
it is possible to directly program through the JTAG debugging interface, which reduces
the development process.

4.1. DEVELOPMENT 69

Visual Studio

The desktop applications implemented in this thesis are developed with Visual Studio
2017 [Mic17]. It is an IDE which supports multiple different programming languages like
C#, C++, Python and many others. It is mainly used for Windows applications and also
features a debugger for such applications. Since Version 2017 15.4, it is also capable of
handling CMake project structures.

For UDP and USB data processing, applications written in C++ are developed with
Visual Studio. It is also used to wrap a ROS.NET C# library into a C++ structure.
The functionality of retrieving and processing the data provided by the LiDR system
is implemented in native programs in order to ensure high performance. C++ is used
because it also leaves the option to compile it with a different IDEs for Linux systems.

Wireshark

Another tool used for debugging is Wireshark. In combination with pcap, an open appli-
cation programming interface, it is possible to intercept, filter and analyze network traffic.
Data streams are categorized and individual packets are split up into their different layers.
This way, it is possible to identify problems with checksums, byte alignment and many
other protocol specific flags. Wireshark can capture data on Ethernet as well as wireless
interfaces.

In this work, Wireshark is used to verify and inspect the UDP packets from the LiDAR
system. Hence it is not necessary to develop a receiving program just for debugging. It
also is used to detect malformed packet structure and identify optimization possibilities.

4.1.2 Work-flow

In this Subsection, the work-flow used in this thesis is presented. The system and its
requirements can be split up into two nearly independent parts. Since the communication
protocol is already defined, FPGA and firmware development can be done separately from
desktop application development.

Hardware/Firmware

Most of the time during development, not all of the components needed for a full working
LiDAR were available. Since the MEMS mirror as well as the receiver board were also
under development, their input is simulated. An arbitrary simulated scene is generated
and saved as binary stream data, simulating input from APDs. With these streams, only
a controller board with an attached FPGA is necessary to develop and implement the
required signal processing.

The existing system was already able to receive single hit reflections and transmit
data over an UDP interface. First, the TDC is replaced with the new designed encoder
module. This module is encapsulated into an IP, which simplifies updating and simulation.

70 CHAPTER 4. IMPLEMENTATION

The module is designed apart from the whole other system components and verified in an
isolated testbench. After verification of the basic functionality, the new model is integrated
in the system.

The same steps are performed for the design and implementation of the USB interface
and the histogram logic. Since the process of synthesizing and implementing a design is
very time consuming, the main focus rests on fully simulating and verifying beforehand.

Additional debug cores are added to an implementation in order to analyze signals
of the modules during runtime of a programmed FPGA. With these additional data, the
design models are then again modified to consider more scenarios and prevent failures.
The whole process is therefore iterated multiple times.

Software

Since the data structure of the expected packets from the system are known, the software
can be developed without finished hardware. The first step is to write the USB receiver
and evaluate its performance. Since the encoder module needs significant throughput, the
main focus in this software is on performance.

First, the USB software only needs to establish a connection channel, read data and
store it into a file for manual analysis. For evaluation, a simple hardware module is
designed which produces USB data with an incremental counter value. This way, missing
data and maximum throughput can be evaluated. After finishing the communication,
data interpretation is implemented with a manually created data file, simulating valid
measurements.

The UDP receiver first captures data of the existing system. With this data, the
receiving and storing functionality can be tested. After verifying that no data is lost, also
manually created data is used to implement the interpretation of measurements.

As soon as both programs are able to receive and convert measurement data, the
visualization protocol to ROS and RVIZ is implemented.

4.2 Overall System Architecture

Figure 4.1 the system architecture with the designed hardware modules in the FPGA.
The interfaces from and to the controller board as well as the connection to the FTDI
USB chip and the UDP peripheral are directly connected to the FPGA. This way, these
communication lines can be configured and controlled by the FPGA. Most components
are directly connected with an AXI bus and controlled by the MicroBlaze. The micro
controller can configure the system components through this bus and gather resulting data.
The signal processing path consists of the encoder module and the histogram module. The
encoder samples the raw data coming from 32 LVDS lines. It encodes detected reflections
into multiple points and pulse width indexes.

The encoded data is then stored into the USB output FIFO buffer and also passed
on to the histogram module. The USB output FIFO buffer is read out independently,

4.3. ENCODING 71

therefore the throughput is not limited by the AXI bus frequency.

Microblaze

AXI Interface

Encoder Histogrammer

Transmitter
Controller

Ethernet MAC
Histogrammer

Settings
Histogram FIFO

USB FIFO

UDP

FTDI

Control

I2C

Raw data

LVDS

Artix-7 Development Board

Controller board

Figure 4.1: System architecture illustrated for the hardware modules in the
FPGA. Most components are interconnected via an AXI bus and controlled
by the MicroBlaze. The USB communication is independent of the micro
controller.

The histogram module takes over the encoded data and saves it into the BRAM. As
soon as enough measurements are collected, whereby the number is configurable through
the histogrammer settings, the signals are reconstructed, accumulated and a threshold is
applied. Detected reflections are then written as point indexes into the histogram FIFO
buffer.

The MicroBlaze is constantly reading out the histogram FIFO and building UDP
packet buffers. As soon as one packet buffer is filled, it transmits the packet over the
ethernet MAC. The whole signal processing pipeline needs to be completed after 25 µs,
since the measurement frequency is 40 kHz.

The desktop applications presented in Section 3.6 are started independently from the
LiDAR system. As soon as data is available on either the USB or the UDP interface, the
data is captured, interpreted and visualized.

4.3 Encoding

The encoder is the first stage in the signal processing line. It is used for data reduction
and therefore allows the system to run with much less memory. The signal itself contains
mostly no reflection and hence is not needed for later analysis. So it is possible to omit

72 CHAPTER 4. IMPLEMENTATION

Figure 4.2: Overview of the encoder module.

this obsolete data and only focus on the received reflections.

An overview of the encoder can be seen in Figure 4.2. The raw LVDS from the APD-
receiver are used as input. Each instance of an encoder handles one LVDS. So, for the
whole system, 32 instances of this encoder are used. Received pulses are detected and
stored with their corresponding start- and end-time. This data is then merged with the
outcome of other encoder instances and used for histogramming. The merged data is also
written into the USB FIFO buffer, used for USB transmission.

The Encoder itself can be split into 3 different submodules, which are discussed in the
following subsections.

4.3.1 Parallelizer

As parallelizer, the LogicCore IP SelectIO (v 1.5) from Xilinx [Inc16b] is used. This IP
can be configured with the SelectIO Interface Wizard. Following configuration options
and settings for this system are used:

Data Rate Dual Data Rate (DDR). This way, the block samples the input lines on rising
and falling edge.

I/O Signaling Type Differential LVDS 25. This specification is given by the receiver
board.

4.3. ENCODING 73

External Data Width 1. Since each encoder works with data from one APD only, one
input line is used.

Serialization Factor 10. With this option, the output is a 10bit bus with 1
10 of the

sampling frequency update rate.

The output signal of this block is called data in to device and is, in this configuration,
a 10bit wide bus. It also generates an internal clock called diff clock, which is 1

10 of the
input sampling clock. The block is driven with a 625MHz clock for sampling and therefore
generates a 125MHz diff clock.

It is worth to mention that the SelectIO fills up the output bus in reverse. This means,
that the Least Significant Bit (LSB) represents the first sampled value. In order to analyze
the signal in terms of time of occurrence, this order needs to be considered.

4.3.2 Transition Encoder

The transition encoder converts the raw bit-stream into pulse information. The pulse
information is presented as 16bit start index and 8bit pulse width. Input signals into the
block and their use is described in following list:

clk diff
The clock that is used for the input bit-stream. It is fed into the block from the
SelectIO block.

enable
When this signal is logic high, the transition encoder starts to read and process the
input bus.

dev data
This bus holds the parallelized sampled data from the SelectIO block.

reset
With the reset signal, all internal counters and signals are reset.

Additional configuration parameters, like serialization factor and the time to mea-
sure tof measure time, can be set as generics when instantiating this block. The serial-
ization factor defines the input bit-width of dev data, while tof measure time defines the
bit-width of the internal counter as well as the number of clock-cycles that are required
by the transition encode for measuring.

As output, two different bus signals are provided: tof enc ind and tof enc val. In
combination, these buses provide the index and width values of the detected peaks. The
maximum number of peaks able to be detected in one 10bit measurement is given by an
alternating signal. This means, in case of 10bit samples, the signal 1010101010 would hold
5 peaks, each peak with the width of 1. Therefore the bit-width of the output buses can
be calculated as follows:

tof enc indbw = 16 ·
⌈
serialization factor

2

⌉
(4.1)

74 CHAPTER 4. IMPLEMENTATION

tof enc valbw = 8 ·
⌈
serialization factor

2

⌉
(4.2)

When the enable signal changes from low to high, an internal counter tof abs index
is started. With each rising edge of clk diff the counter is incremented by 10 and reflects
the current measured distance. Additionally, the input bus dev data is analyzed bit by
bit. Therefore, a loop is implemented which tests each bit. Figure 4.3 illustrates the loop

Test Bit n

In_pulse?

 0

YesWrite tof_enc_val[p]

In_pulse = 1

 1 In_pulse? Yes

Write tof_enc_ind[p]

 No

pulse_width ++Increment n

n = 0
p = 0

 No

In_pulse = 0
pulse_width = 0

n > 10 No

done

 Yes

p++

Figure 4.3: Flowchart of the transition encoder algorithm. It analyzes a 10bit
input stream and detects pulse start indexes and their width in it.

processing the 10bit samples. It begins with resetting the internal signals to 0. n represents
the index of the bit to analyze and p a running counter of detected pulses. Only two signal
states are kept between clocks. These are in pulse, which basically represents the state of
the previous analyzed bit, and pulse width. If the bit under test is 0 and also in pulse is
0, then no peak is detected, n gets incremented and the loop continues. If the bit is 1,
representing a starting pulse (in pulse = 0), the current index is written to tof enc ind
at offset p. The index is the sum of n and tof abs index. After writing the current index,
the signal pulse width is incremented and in pulse is set to 1. In each following iteration,
every high sample bit increments pulse width again. The next transition from a 1 to a 0
sample bit then completes the pulse. pulse width is then written to tof enc val at offset
p, completing the pulse information. p gets incremented, so the next detected pulse will

4.4. HISTOGRAMMER 75

not overwrite the result. Since pulse width as well as in pulse states will be preserved
between 2 clocks, also pulses split over two or more 10bit sample streams can be correctly
detected.

The whole processing loop is implemented in VHDL and completes and computes the
output within one clock cycle of the 125MHz clock. When tof abs index reaches the
set tof measure time, an output signal done is set high for one clock cycle. With these
signals, other blocks can detect the end of the measurement.

4.3.3 Maximum Point Holder

The next block in the signal processing line is the Maximum Point Holder (MPH). This
block is implemented in order to detect pulses with the highest pulse width. The block
takes the buses from the transition encoder block as input. As output, it provides one
16bit measurement index and one 8bit width value. Additionally, it has also output buses
with the same width as the input buses, so multiple MPH can be cascaded.

Internally, the block holds one pulse information. Initially, this is set to all 0. When it
is enabled and a rising edge occurs on the input clock, the block sorts the pulses in both
input buses by the corresponding pulse width in tof enc val. If the highest pulse width
on the input is higher than the internally stored pulse information, the stored pulse gets
replaced. Additionally, the previous stored pulse gets written into the pulse buses, so the
next block can compare it with his stored value.

After each clock cycle, the block holds the pulse information with the highest pulse width
to which the input buses are set to. Three MPH blocks are cascaded in the implemented
system, which adds an addition signal processing delay of 3 clock cycles. One major chal-
lenge in the implementation is the tight time constrictions in sorting the incoming pulse
information.

4.4 Histogrammer

The histogrammer block is the main component of this thesis. It is implemented as own IP
in Vivado. The main purpose of this block is to take the encoded pulse information, store
it in Block Memory (BRAM) and accumulate it with previous measurements of the same
scene. When the accumulated pulses exceed a given threshold, this pulse is considered a
valid reflection and gets written into a FIFO buffer. As already discussed in Section 3.3,
the dynamic histogramming approach is implemented. Therefore, each measurement is
stored and replaces the oldest one. When the required amount of measurements for one
histogram is reached, the signals are accumulated and analyzed. From this point forward,
each new measurement triggers a histogram computation.

Figure 4.4 illustrates the instantiation interface as well as its input and output signals.
In order to work properly, a FIFO buffer as well as an external BRAM module need to be
connected to it. The FIFO buffer is later used for the transmission of the resulting data to
the MicroBlaze, the BRAM module is used for storing the measurement data. The main
input signals are defined in following list:

76 CHAPTER 4. IMPLEMENTATION

Figure 4.4: Interface of the implemented histogrammer module including in-
put/output signals as well as generic component options.

num pix i
This signal gives the line number of the current measurement. Since the LiDAR
system illuminates the scene in lines, this signal is a reference to the 3D position of
the resulting points.

measure done i
When the encoder is finished with extracting pulse information out of the sampled
bit-stream, it sets this signal to high. It is used to trigger the histogram computation.

measurement i
This bus holds all the pulse information from the encoder block. It is split into
pulses ·16 ·APDs bit index values and pulses ·8 ·APDs bit pulse width information.

In Figure 4.5 an overview of the modules used for the histogram computation is pre-
sented. Besides the BRAM and FIFO buffer for data storage, two main modules are used:
Sorter and Intersector. These modules are used for the histogram computation and con-
trolled by the state machine of the histogrammer. Two sorters are used in order to sort
the start- and end-index values independently. Also, two intersectors are instantiated in
order to accelerate the computation by parallelizing the processing.

In the following Subsections, the internal workings of the histogrammer are explained.
First, the implemented computation process is explained which gives more detailed insight
into the used blocks. Next, the data structure used in the BRAM is outlined. And in
the last subsection, the connection of these components and the state machine of the
histogrammer, which makes use of them, is described.

4.4. HISTOGRAMMER 77

Sorter

Sorter

State Machine

Intersector

FIFO

Intersector

ParallelizerBRAM

Encoded data

Figure 4.5: Overview of the inner structure of the histogrammer module.
With receiving the encoded data the state machine starts and controls the
computation of the histogram.

4.4.1 Computation

One approach for computing the intersections of the pulses is to iterate through all possible
indexes and accumulate the pulses recognized at this distance. But this would take one
clock cycle for each index, which would be too slow. Instead, since the start and end index
of each recognized pulse is known, this information is used to reduce the time needed.

Figure 4.6a presents sample measurements, their accumulation and a set threshold.
The start and end indexes of the pulses in the measurements M1 −M3 are labeled with
S and E. When accumulating, it can be noticed that the level is only modified when a
pulse starts or ends. Otherwise it would keep the same value. It does not matter, to which
pulse the start or end labeled sample belongs to, as far as the level is concerned.

In Figure 4.6b, the flowchart of the used algorithm is presented. It requires one list of
sorted start and one list of sorted end indexes of all pulses. They are sorted by time of
occurrence and stored in list S and E. The elements in the list can be accessed by the
indexes Si and Ei. At first, the elements in the list with the current index get compared.
Depending on which type of change occurs first, the level gets increased or decreased. Also
the index for the corresponding list gets increased. If both, one start and one end, happen
at the same time, the level is not modified and the index of both lists gets increased. After
adjusting index and threshold, these get compared. If the level exceeds or is equal to the
threshold, the parameter pulse width gets increased. After this, it is checked if all start
and end samples are read, otherwise the loop continues. One special condition is when the
detected overlapping area is considered finished. This occurs if an end index gets counted
(E < S) and the level would get decreased beyond threshold. Therefore, the data of the
measured pulse gets written into the output FIFO buffer. The pulse information includes
pulse width as well as the start index start = E[Ei]− pulse width.

78 CHAPTER 4. IMPLEMENTATION

(a)

level = 0
Si = 0
Ei = 0

S[Si] == E[Ei]
Si ++
Ei ++

Yes

S[Si] < E[Ei]
level ++

Si ++
Yes

 No

level >=
threshold

No

level - -
Ei ++

Yes

Write FIFO

No

Done

level >=
threshold

Yes

pulse_width ++

NoAll read?

Yes

No

(b)

Figure 4.6: (a) Sample measurements with highlighted start and end samples
for accumulation. (b) Flowchart of the intersection evaluation algorithm.

4.4. HISTOGRAMMER 79

With this implementation, the runtime of the intersection detection is drastically re-
duced. Considering that one iteration of the loop takes one clock cycle, the runtime Ir of
this approach can be calculated with:

Ir = pulse number · 2 ·measurments (4.3)

4.4.2 Data structure

A data structure with focus on performance and compression is implemented. The Block
Memory Generator 8.3 [Inc16a] from Xilinx is used to instantiate the BRAM module. It
is a Single Port RAM with 32bit read and write width. By disabling the primitive output
register, the read latency is only 1 clock cycle. Figure 4.7 illustrates the layout implemented
onto the BRAM memory space. The data for each line shot is placed into a different

Line

M2 M15

APD2 APD32 APD1 - APD32 APD1 - APD32

P1 P2 P3 P1 -P3 P1 -P3

32 bit 32 bit 32 bit 96 bit 96 bit 3072 bit 3072 bit 16 bit 16 bit

M2 M15

APD2 APD32 APD1 - APD32 APD1 - APD32

P1 P2 P3 P1 -P3 P1 -P3

32 bit 32 bit 32 bit 96 bit 96 bit 3072 bit 3072 bit 16 bit 16 bit

M2 M15

APD2 APD32 APD1 - APD32 APD1 - APD32

P1 P2 P3 P1 -P3 P1 -P3

32 bit 32 bit 32 bit 96 bit 96 bit 3072 bit 3072 bit 16 bit 16 bit

⁞

0x80

M1

…
Hcurrent HactiveAPD1

…

0x02

M1

…
Hcurrent HactiveAPD1

…

Measurements Metadata

0x01

M1

…
Hcurrent HactiveAPD1

…

Figure 4.7: Memory layout for storing multiple measurements per shot line.

memory offset. Since the LiDAR system illuminates the scene with 128 lines, the maximum
offset is 0x80. For each line, the measurements M1 to Mmax, in the implementation M15,
are saved. Additionally, 32bits of metadata can be stored. This metadata is used for
storing the last saved measurement offset as well as how many active measurements are
already stored for this line.

One measurement M includes all received pulse information for each APD APD1 −
APD32. Each APD on the other hand contains the three pulses P1 − P3 extracted by the
encoder block. The pulse information consists out of 16bit start and 16bit end index of
the pulse. The pulse width can then be determined by subtracting the start index from
the end index.

By storing the APD values of the same measurement successively, writing of the infor-
mation is kept simple for the histogrammer block. The input buses from the encoder are
only needed to be piped into the memory, since they already contain the information for
all APDs in one line. Further the memory offset for each line simplifies the addressing of
the memory block. The required memory space can be calculated with following equation:

80 CHAPTER 4. IMPLEMENTATION

Memory = (32bit · P ·APDs ·M +Metadata) · Lines (4.4)

For the configuration of the implemented LiDAR with P = 3, APDs = 32, M = 15
and Lines = 128, the resulting memory consumption is 737.792 kByte.

4.4.3 State machine

The internal logic of the histogrammer block is implemented as state machine. The steps
and transitions are illustrated in Figure 4.8. When the encoding block is finished and valid
data is provided on the input bus, the state machine begins with reading out meta data for
the currently shot line. The metadata includes the number of already stored measurements
for this line, as well as an running index pointing to the latest saved measurement. In the
next step, the histogrammer updates the BRAM with the new captured measurement. As
soon as enough measurements are stored, the oldest one is automatically replaced, since
the pointer to the latest measurement is increased and points to already used memory.
Only when enough measurements are already stored, the histogrammer continues with the
computation, otherwise it is set back into the IDLE state.

The computation process begins with writing out the available information to the FIFO
buffer. This contains the marker 0xFFFFFFFF, a packet counter and the line number (see
Section 3.5.1). The next step is to read out the data from the BRAM module. All pulses
P1−P3 out of all measurements M1−M15 stored for one APD are read. The start indexes
and the end indexes of each pulse are separately stored in a list. These lists are then
used to find the intersections of the detected pulses (see Section 4.4.1). When this step is
completed, the detected pulses, or 0x00, are written into the output FIFO buffer and the
measurements for the next APD are read and analyzed. This loop is iterated until all 32
APD measurements are processed.

The loop iterating over the APD measurements is the time critical component in the
implementation. In order to reduce the needed runtime, the loop is partially parallelized.
The sorter and the intersection computation module are implemented in separate blocks.
Two instances of the sorter block are generated, where one sorter is used for the starting
indexes, the other one for the ending indexes. As sorter, an open implementation [Vas16] is
used, which only needed as many clocks as elements are in the list. Next, also two instances
of the intersection computation module are generated. Each module needs both lists in
order to analyze the measurements, but also require longer time to finish than the sorting
module does. Therefore, while intersector 1 is running, the next APD measurements are
read and fed into the sorter module. So, while intersector 1 is running, intersector 2 could
already start with the next measurements. In the end, this technique is able to nearly
halve the needed time for one full histogram.

4.5 Communication

Three different communication channels are implemented in order to transfer the resulting
data and for debugging the system. The encoder block directly puts out its encoded pulse

4.5. COMMUNICATION 81

IDLE Read metadata

Update Histogram

Encoding
done

hist reached? NO

Histogram
BRAM

Write FIFO
marker & meta

Read histogram

Yes

Sorter

Run
intersector

Write points to FIFO

All APDs done

No

Yes

UDP
FIFO

Figure 4.8: Flow diagram for the histogram state machine.

82 CHAPTER 4. IMPLEMENTATION

information over a USB interface, connected to a FTDI FT601 [FTD15] chip. The control
of this chip is implemented in a separate block. Additionally, an Ethernet interface is
used to transfer the histogram results with UDP. Contrary to the USB interface, the
data transferred with UDP is provided by the MicroBlaze firmware. Finally, an UART
interface is used to control and debug the system during runtime. These interfaces and
their implementation are described in the following Sections.

4.5.1 Ethernet

The Ethernet PHY transceiver used on the Trenz Micromodule Artix-7 XC7A200T is a
chip manufactured by Texas Instruments TLK106. This chip is controlled by an AXI
Ethernet Lite MAC IP by Xilinx. For the communication between EMAC and PHY, an
additional IP, MII to RMII v2.0, is used. The PHY transceiver is responsible for converting
the control-signals to the corresponding signals on the Ethernet port. The AXI Ethernet
Lite MAC enables controlling the Ethernet PHY very easily over the implemented AXI
interface. This interface is connected to the internal micro-controller, the MicroBlaze.

In order to correctly assemble a valid UDP packet and control the Ethernet Lite MAC,
the LWIP-library is used. Light Weight IP is an open source IP stack and provides a
lightweight IP-stack implementation which can be easily used in C. This stack is specially
crafted for embedded systems and needs very little memory.

For the data storage, the FIFO Generator (13.1) [Inc17] from Xilinx is used. This FIFO
buffer provides the endpoint for the histogrammer module and is read by the MicroBlaze.
The settings used for instantiation can be seen in Table 4.1.

Setting Value

Implementation Built-in FIFO

Width 32bit

Depth 4096

Empty Threshold 339

Read Clock Frequency 100 MHz

Write Clock Frequency 125 MHz

Table 4.1: FIFO buffer settings for the Ethernet transferring FIFO.

This FIFO has asynchronous write and read clocks, since 2 different parts of the
implementation need to access it. The histogrammer module uses the differential clock
from the encoder therefore it writes the data with 125 MHz. The MicroBlaze, on the other
hand, is clocked with 100 MHz. As implementation, Built-in is chosen, so the FPGA’s
BRAM resources are not used for the FIFO. The BRAM resources are mostly needed
for the histogrammer. The depth of the FIFO buffer is high enough to hold multiple
histogram calculation results.

The throughput is one major problem in the default implementation of the LWIP
stack. The intended usage in the C driver is to first create an netif struct and define
the IP address, network mask and gateway IP address. After this, a buffer payload is

4.5. COMMUNICATION 83

instantiated and filled with the data to send. As last step, the function udp sendto is
called. The parameters for this function include the network interface struct filled before,
as well as the payload buffer, the IP address of the target and the target port. This
function then starts a process which builds up an IP packet. During the process, an ARP
request is created in order to get the MAC address of the target, since it is required for the
IP packet header. Multiple buffers are created, spliced and concatenated in order to build
the packet. Also, checksums of the payload are calculated and written into the header
fields. Finally, the resulting IP packet is then transmitted to the Ethernet PHY.

The whole internal process of building up an IP packet needs so much time that, even
at constant transmitting 0x0 buffers, the throughput is limited to 30 Mbit. In order to
increase this limit, the buffer creation of the different needed headers are implemented
beforehand:

UDP Header
The UDP header contains source port, destination port, data length and a checksum.
Both ports as well as a packet length can be predefined and filled into a buffer. The
checksum would be calculated over the header fields as well as the data, so it cannot
be precomputed since the data is not known beforehand. But since the checksum is
optional, it is be set to 0x0.

IP Header
All of the fields in the IP header are known beforehand. Since the checksum in
the header is only over the header itself, it can be also calculated beforehand. So,
another buffer containing the IP header is created.

Ethernet Header
With changing the destination IP to a broadcast address, also the MAC destination
address FF:FF:FF:FF:FF:FF is known beforehand. Therefore, no ARP requests are
required anymore and the Ethernet header could also be precomputed.

Since the buffers are precomputed, they can be used for every following packet without
the need of recalculating any information. After gathering the histogram data out of the
FIFO buffer, the IP packet is already complete and can be transmitted with the LWIP
mechanism. Therefore, the function XEmacLite Send was used. It takes a pointer to the
network interface to be used, a pointer to the data buffer and the length of the buffer as
parameters.

With this changes, the throughput is maximized to 100 MBit and only limited by the
speed of reading out the histogram FIFO buffer.

4.5.2 USB

For the USB interface, the FTDI chip FT601 was used. The chip is a USB3.0 to FIFO
bridge [FTD15] and the control signals are directly connected to the FPGA. The encoding
module produces already correct formatted packets in the FIFO buffer. The buffer then
only needs to be read by the chip and transferred to the requesting PC. For instantiating

84 CHAPTER 4. IMPLEMENTATION

the buffer, the FIFO Generator (13.1) from Xilinx is used. The settings for the generated
FIFO buffer can be seen in Table 4.2. Similar to the UDP FIFO instance, it is defined as
a Built-in FIFO with asynchronous read and write clocks. The writing encoder module is
clocked with the differential clock of the Xilinx SELIO module. The FT601 chip is clocked
by an external clock of 100MHz.

Setting Value

Implementation Built-in FIFO

Width 32bit

Depth 8192

Empty Threshold 5

Full Threshold 8175

Read Clock Frequency 100 MHz

Write Clock Frequency 125 MHz

Table 4.2: FIFO buffer settings for storing and transferring USB data.

A module is implemented which controls the data transfer to the FT601. When a
PC is connected over this interface, it can initiate a data transfer with the provided API
calls from FTDI. As soon as a data request is issued, the chip starts to read out of the
connected FIFO buffer in the FPGA. In order to read from the connected FIFO, the
signal lidar ren o is driven high. The delay of reading one 32bit word out of the buffer
is 1 clock cycle. After this time, the read data is applied onto the data bus data i. The
signal lidar empty i is set to high from the FIFO buffer when the last entry is read and
no further reading should be done. Additional to the read signals to the FIFO buffer
following control signals for the chip are used in the VHDL implementation:

TXE N
This signal is provided by the chip. When it is pulled low, a transaction can be
performed. A high state indicates a full internal chip buffer and no write transaction
can be performed.

WR N
In order to start a write transaction, this signal needs to be pulled to a low state.

BE When a write transaction is performed and data is provided on the data bus, this
signal defines which bytes are valid and should be written.

DATA
The signals on this bus are used in a write transaction.

One major problem while implementing the module is to assure the correct synchro-
nization between the chip and the read FIFO data. Since the read signal to the FIFO
buffer and the receiving of the current data has 1 clock cycle offset, it can happen that
the chip is already full while the next data is already read. In Figure 4.9 and Figure
4.10, four of the challenging scenarios are simulated and printed. For the simulation, the

4.5. COMMUNICATION 85

FIFO buffer is filled with an increasing single digit counter, which repeats itself. data i
represents the incoming data from the FIFO buffer, data o is the data providing to the
FT601 chip. data ftdi represents the successfully written internal buffer of the chip.

(a) (b)

Figure 4.9: (a) Signal waveforms in case of an empty FIFO buffer. (b) Signal
waveforms in case of full internal FT601 chip memory.

Figure 4.9a shows the signal waveform for the case that the FIFO is empty. When the
lidar empty i signal is set from the buffer, the read signal is set to 0. As it can be seen
on the signal data i, two additional words out of the FIFO buffer are read. This is due
to the read delay and the time that is needed to change lidar ren o. Therefore, the write
signal to the chip is hold for 1 clock cycle longer than the FIFO buffer is read. When
lidar empty i is back at 0 again, the write process is continued. Another stop scenario
is illustrated in Figure 4.9b. In this case, the internal memory in the FT601 is full and
therefore the signal txe n i is pulled to high. Immediately, the read signal to the FIFO
buffer is pulled low, since no data can be written. The already read words need to be
cached in the module itself. When txe n i is pulled back to low, indicating an empty chip
buffer, the cached data is instantly transmitted, concurrently to the next read command.

(a) (b)

Figure 4.10: Signal waveforms in case of concurrent FIFO buffer empty and
chip memory full scenario. (a) shows the signals when FIFO buffer empty
signal is high shorter, (b) when it is high longer then the chip memory full
signal.

The more complicated scenario, when both conditions apply at the same time, is
simulated and illustrated in Figure 4.10. There is a significant difference when one of the
conditions lasts longer than the other one. The case, when the buffer in the FT601 chip is
longer occupied than the FIFO reading from is empty, is presented in Figure 4.10a. In this
case, the signals need to behave as in Figure 4.9b and the write process needs to start as

86 CHAPTER 4. IMPLEMENTATION

soon as the chip buffer is available again. In Figure 4.10b, the FIFO buffer empty signal
is longer pulled to low than the transaction signal is pulled high. Here, as soon as the
chip buffer is available, the cached data is written to it. After this, the write process is
discontinued again until the FIFO buffer is filled with data again.

4.5.3 UART

The UART interface is used for configuring the system during runtime as well as getting
debug information. The firmware can configure the histogrammer block with the his-
togramm settings block shown in Figure 4.11. It is controlled over the AXI bus and allows
to set the number of measurements per histogram, the threshold as well as a static pulse
width. The static pulse width is mainly used for debugging purpose and was not used in
the resulting system.

Figure 4.11: Instantiation interface of the histogram settings block.

The block itself provides read and write commands over the AXI bus for these pa-
rameters. The number of measurements has a built in maximum value of 15, since the
hardware implementation limits it. For receiving the data on the interface, the function
XUartLite Recv from the XUartLite library is used. For writing into the settings block,
a self written wrapper for AXI component drivers is implemented.

4.6 Software

In order to receive the data of the system, three different programs are implemented. All of
these use the ROS.NET library in order to communicate to the ROS network. Depending
on their functionality, they publish different topics, as can be seen in Figure 3.7. In order
to publish point-cloud messages, the message sensor msgs/PointCloud2 [ROS15] is used.
The definition of the format can be seen in Table 4.3.

With the parameters width and height, a 2D structure for the points can be defined.
Since no priority order of the points is required in this system, height is set to 1. width
is then adjusted to the number of visible points in the specific calculated frame. The
next attribute fields is an array of field definitions. Each field definition includes a type,

4.6. SOFTWARE 87

Type Name

uint32 height

uint32 width

PointField[] fields

uint32 point step

uint32 row step

uint8[] data

Table 4.3: Packet format of a PointCloud2 message in ROS.

a name and an offset. For each packet the fields x, y, and z are defined as float32 type
with corresponding name string. The offset defines the order of the points, therefore x
has an offset of 0, y of 32 and z of 64. Depending on the data received from the LiDAR
system, additional fields like pulse width and confidence are appended. point step defines
the length of a point in bytes, row steps the number of points included in a packet. Finally,
the raw point information is written into data.

4.6.1 Receiving

In order to maximize the throughput on the receiving end, the software developed uses the
ping-pong buffer technique. Therefore, two buffers of the same size, A and B, are created
and initialized. When starting receiving, the data is first stored in buffer A. When this
buffer is full, it is used to process the data in it. Concurrently, the receiving process is
continued filling up buffer B. After finishing processing the data out of Buffer A, it is free
to be used again.

With this technique, a continuous receiving can be accomplished. Both implemented
programs are using this method. In order to receive the data from the interfaces provided
by the LiDAR system, following methods are used:

UDP
For receiving on the Ethernet interface, a socket was used. At the beginning of the
program, a socket on the LiDAR port 55056 is instantiated. The socket then listens
on the broadcast-address of the current network. When one receiving buffer is full,
a new thread begins to analyze the data. Packet-counter as well as UDP counter are
extracted in order to determine any packet loss. Additionally, the amount of data
received per second is calculated. After processing, all received points are converted
into the PointCloud2 message format.

USB
In order to be able to receive the data from the LiDAR USB interface, the library
provided by FTDI [FTD16] is used. For detecting the USB device the API call
FT Create is used. After successful execution, the command channel to the chip is
open. With another FTDI API call, FT ReadPipe, data available in the chip is read.
Again, this data is then stored in one of the ping-pong buffers. When processing

88 CHAPTER 4. IMPLEMENTATION

the data, the packet counter of the LiDAR encoder module is inspected. Warning
information is printed when a packet loss is detected. The extracted information out
of the USB data is then converted into PointCloud2 message format and transmitted
onto the ROS network.

4.6. SOFTWARE 89

4.6.2 ROS Filter

The third implemented program is used to filter points out of the point-cloud resulting
from either USB or UDP data. The program has a graphical user interface in which the
specific filter rules as well as the topic to be filtered can be selected.

Figure 4.12: Graphical user interface of the ROS Filter program.

Figure 4.12 shows the graphical user interface of the developed program. In the top, the
ROS topic which should be filtered is selected. This list of selectable topics is automatically
read from the running ros core. In order to reread the list, the refresh button can be used.
Next, the topic on which this program should publish its results needs to be filled out.
After completing the information, the process can be started with the Connect button. As
debug information, the packets processed as well as the minimum and maximum measured
peak width are then displayed. These counters can be reset with the included Reset button.
The sliders and their function are described in following list:

pulse width
With these two sliders, it is possible to filter points lower or higher than the selected
limit.

set offset/width
This filter defines the object position in respect to its pulse width. If the slider is set
to 50%, a pulse with 4 ticks width will be placed on y-axis for 2 ticks further back.
This option is included to extend the debug-functionality.

Distance filter
With these two limits, the maximum and minimum distance of points relating to

90 CHAPTER 4. IMPLEMENTATION

the y-axis can be defined. All points out of these limits are discarded.

horizontal filter
Also these two sliders limit the horizontal field of view. This is used for cropping
the displayed area.

In the program, first the received data from the selected topic is extracted. All the
included points are then filtered by the criteria selected in the user interface. If one point
is not within the limits, it is discarded. After filtering, the remaining points are again
combined into a PointCloud2 message format and retransmitted again.

Chapter 5

Results

This Chapter presents the results of the proposed real-time signal processing system for
one bit LiDAR. First, the implemented design is inspected. The used resources in the
FPGA as well as slack in the clock path are described. Next, the performance of the
system implemented into the prototype is discussed. The system is placed into one room
with a second prototype, which generates light pulses. This increases the noise level and
is used to test the histogramming feature. Finally, features extracted out of reflected light
pulses are examined. The features are gathered by inspecting different measurements on
different materials, but in the same environment. The used materials differ in reflectivity
and transparency and are placed at specific distances.

5.1 Implementation

In this Section, the implementation results are discussed. The Xilinx Vivado 2016.2 soft-
ware tool is used for synthesis and implementation of the hardware design. The target
system for creation of the FPGA hardware bit-stream is the Xilinx Artix 7 platform. The
bit-stream is then programmed through the software tool Xilinx SDK onto the FPGA
platform.

5.1.1 Utilization

The logic designed in VHDL is converted to netlists consisting out of FPGA resources
during synthesis. After this step, also slack is calculated. This gives an prediction of sig-
nals getting processed too slow to be available on time for the next block. After successful
synthesis, the design is implemented on the FPGA. Due to limited resources, routing
and placing, the modules again can be composed out of different resources. After imple-
mentation and bit-stream generation, the final used resources are presented by Vivado.

In Table 5.1, the used resources of the whole resulting system are listed. With 80.35%
the IO connections are the most used resource in the system. This results from the con-

91

92 CHAPTER 5. RESULTS

Resource Utilization Available Utilization %

LUT 31544 133800 23.58

LUTRAM 1751 46200 3.79

FF 29967 267600 11.20

BRAM 166.50 365 45.62

DSP 3 740 0.41

IO 229 285 80.35

BUFG 15 32 46.88

MMCM 3 10 30.00

PLL 1 10 10.00

Table 5.1: Used resources of FPGA implementation.

troller board connections, including LVDS lines from the receiver board, SPI connections
and other. Second, the global buffer (BUFG) resource is used by 46%. A BUFG is used
for sending the clock across in the clock network within the design. Since the design uses
multiple different clocks and is spread over most of the FPGA area, the clocks need to be
buffered frequently. Next, the block RAM (BRAM) resource is used up by 45 %. One of
the major causes is the histogrammer module, which uses up 78 BRAM modules in a con-
figuration with 15 measurements per histogram. Other resources like look up table (LUT),
flip flops (FF) and digital signal processing slices (DSP) are used up by the MicroBlaze
and other used IPs.

In Figure 5.1, the placement view of the Vivado Design Suite is presented. In this
view, blue cells mark occupied FPGA resources, not highlighted spots show available
ones. Originated from the connection pins left and right from the FPGA, Vivado begins
to place and route the synthesized design. The more area gets occupied, the less placement
options for different functionalities are possible and it can happen that the signal lines get
too long for a specific clock. Therefore, the so called slack occurs, which describes the time
a signal needs from one block to the next referring to the sampling clock. For example a
negative slack of 3 ns states that the required signal transition happens 3ns after the next
clock edge. In the implemented system it was possible to avoid any negative slack.

5.1.2 Throughput

The implemented LiDAR system provides an UDP and an USB interface. The LVDS lines
from the receiver are sampled by the encoding module with 1.25 GHz. The resulting system
samples 2500 bits from the input lines. Therefore the whole sampling process needs 2 µs in
theory. The measured time needed between rising trigger signal and encoder done signal
is 2.024 µs, since the maximum point holder modules also need to process the encoded
data. Two different times between the encoder done signal and the histogram done signal
are measured. In the first case, the histogrammer module has not enough measurements of
the sampled point to calculate a histogram. Therefore, it only describes the time of saving
the signal points. This is measured with 860 ns. In the second case, the histogrammer

5.1. IMPLEMENTATION 93

Figure 5.1: Implemented design utilization from Vivado placement view. Blue
cells mark used resources like flip flops (FF) or BRAM.

94 CHAPTER 5. RESULTS

module computes all intersections and writes the found points out to the FIFO buffer.
Here, the measured average time needed is 15 µs, the longest measured time with multiple
intersections is 17.06 µs. In the scenario, where no reflections are captured at all and every
point is 0, the time needed by the histogrammer is 14.004 µs. The highest Pulse Repetition
Rate (PRR) achievable by the prototype is 40 kHz, so the shortest period of time between
two measurements is 25 µs. Therefore, real-time signal processing is given, since the
modules finishes latest after 19.084 µs.

For the USB throughput measurement, the dataflow into the developed USB to PCL2
is analyzed. When directly connected to the FT600 chip during measurement, the program
starts capturing encoded data into the ping-pong buffer. The throughput measured is in
average 94MBit. Due to the packet line numbers, missing packets are also detected. During
an one hour measurement, 0.01 % of packets get lost. This may be due to the windows’
scheduling process, which sometimes suspends the USB receiving program.

UDP throughput is measured with the windows’ internal network monitor. During
measurement, the network traffic is around 27 % of the network link’s maximum through-
put. This is equal to 27MBit on the 100MBit Ethernet link.

5.2 Time-of-Flight Processing Measurements

In order to determine the quality of the features extracted from the LiDAR data, differ-
ent experimental setups and materials are used. For a better visual verification of the
histogramming, another LiDAR system is used to produce noise in the same light spec-
trum. Confidence is evaluated with a target of two different reflectance properties, while
the pulse width is analyzed with a variety of objects. The experiments and results are
discussed in detail in the following sections.

5.2.1 Testing environment

A company office is used as testing environment. Since the prototype is at the time of
testing not eye-save in terms of laser power, the tests are performed inside. In Figure 5.2a,
the prototype LiDAR in the test scenery is displayed. The LiDAR system can be seen
placed on a table in the bottom half of the picture. It faces away from the camera. On the
other side of the room, a reference object is hung from the ceiling. The reference object has
the size of a DIN A4 normed paper and is a diffuse white target. It is placed 6.629 meters
away from the LiDAR prototype. The camera right in front of the LiDAR is a thermal
camera and is used for monitoring the temperature of the system during measurements.

In Figure 5.2b, the point cloud representation of the testing environment is illustrated.
The color encoding of the points represents their placement on the y-axis. The color
scheme is from RGB(255,0,0) to RGB(0,0,255). So, the red dots are near the LiDAR
system, blue dots are the furthest away. The red half circle near the LiDAR represents the
reflections of the chair which can also be seen in Figure 5.2a. Another prominent object
is the white reference target, which can be seen in the middle of the point cloud colored
green.

5.2. TIME-OF-FLIGHT PROCESSING MEASUREMENTS 95

(a)

(b)

Figure 5.2: In (a), a RGB-picture of the environment seen from the LiDAR
perspective is shown. (b) shows the point-cloud of the scene.

All the following measurements and experiments are executed in this environment.
The background illumination of the room is not exactly determined. It was a cloudy day
and the measurements where taken during the afternoon.

5.2.2 Pulse Width

The pulse width information is extracted with the encoding module. This information
is then transmitted over the USB interface and captured by the USB to PCL software.
After converting into PCL format, the data is visualized with RVIZ. Additionally to the
point-cloud position, each point has a pulse width attribute. This attribute can further
be used to filter or classify objects. In this work, the reflectance of objects is analyzed.
Further, the pulse width is used to filter false detections out of the point cloud.

Reflectance

Since the amplitude of the received reflection correlates with the reflectivity of the objects,
also the pulse width has a weak correlation with it. In order to proof this assumption, a
high-reflective object is measured and the resulting points are color encoded with respect
to their pulse width. Figure 5.3a shows the used object, a bike reflector. This is a retro-
reflective material, meaning it has very high reflectivity and reflects light back with the
same incident angle.

The object is held in the left hand of a pedestrian facing the LiDAR system. The target
is held in a distance of 4 meters away from the prototype. In Figure 5.3b, the point cloud
representation of this scene is illustrated. The color encodings of the points represent their

96 CHAPTER 5. RESULTS

(a)

(b)

Figure 5.3: Pulse width representation of a bike reflector. (a) shows the object
itself, (b) the point-cloud of a pedestrian holding the object.

pulse width. As it can be seen, the bike reflector can be identified in the right side of the
point cloud very easily. It produces much wider reflections than its surroundings. It seems
that the distance is too small to prevent crosstalk to other receiving APDs, therefore a
vertical stripe of reflections can also be observed. Further, a horizontal reflection stripe is
visible, this may be due to not enough focus of the laser beam when measuring a different
part of the scene. Since retro reflective material reflects the light back to its source, it is
also detected as object in line of sight.

Filtering

Since the sampling frequency as well as the emitted pulse width is known, the pulse width
of the received reflected light can be used for filtering. Depending on the distance of the
light traveled and the reflectivity of the hit target, the amplitude and therefore the pulse
width of the reflection decreases. Within a certain close range, these effects can be ignored,
as described in [HGF13].

Figure 5.4: Used target consisting of black felt and white paper to analyze
confidence feature.

5.2. TIME-OF-FLIGHT PROCESSING MEASUREMENTS 97

Figure 5.4 shows the used object to verify the extracted pulse width. A cardboard
with the dimensions of 42cm x 29.7cm is cut out and covered with two different materials.
The left side is cloaked with black felt, the right side with a white sheet of paper. The
target is then mounted onto a tripod and placed at 3.75 meters distance to the LiDAR
prototype.

(a) (b)

Figure 5.5: Point cloud representation of carboard target on a tripod. (a)
without filtering, (b) with filtered pulses below 18 clock ticks.

In Figure 5.5a, the unmodified captured 3D point-cloud is presented. Again, the points
are color encoded with respect to their distance to the LiDAR. As it can be seen, especially
on the edges of the object, non existing target points are falsely detected. It is assumed
that this is due to the light scattering on edges of the object. With the developed filter
program ROS Filter, points with lower confidence factor of 18 clock ticks are filtered out.
The result can be seen in Figure 5.5b. The LiDAR system transmitter emits light pulses
with an average duration of 15 ns. Since the light reflections are sampled with 1.25 GHz,
the expected full pulse reflection has a duration of 18.75 clock ticks.

This sort of filtering can be used to improve the quality of the resulting 3D point-cloud
representation and exclude false detected points.

5.2.3 Confidence

The confidence feature is examined with the data provided over the UDP interface. The
histogram module provides beside the 3D position of the individual points also a confidence
factor, as described in Section 3.3.

In Figure 5.6, a measurement of the empty testing environment is illustrated. In the
middle of the room, a reference target is hanging from the ceiling. All other obstacles are
removed. The color encoding of the points represents the confidence factor, as calculated
from the histogramming module. The color palette starts with green and transits into red,
while green states a constant confidence. During multiple measurements, only few points
are classified as uncertain. These points always occur at edges of objects, independent of
their distance to the LiDAR. This factor may be used for edge detection or filtering.

98 CHAPTER 5. RESULTS

Figure 5.6: Point cloud representing the testing environment color encoded
with confidence factor.

5.2.4 Histogram

For validating the histogramming module, both data streams provided over USB and UDP
are captured and compared. Since the mechanism reduces noise by inspecting overlapping
pulses of multiple measurements, higher noise in the data best represents this feature. Af-
ter setting up the prototype in the test environment, the difference between both streams
is visible but not significant. Therefore, a second LiDAR system with the same specifi-
cations is set up. This reference LiDAR faces against the LiDAR system under test. It
is mounted onto a tripod and placed 2.94 meters away from the second LiDAR. Since it
produces also light pulses in the same spectrum while scanning the scene, those scan lines
are also captured by the implemented system. These scan lines occur when the LiDAR
scanning patterns happen to be nearly or fully synchronized.

(a) (b)

Figure 5.7: On the left side, the raw output of a scene with a second LiDAR is
represented. On the right, a histogram of the same measurement is displayed.

In Figure 5.7a, the encoded data received over USB is displayed. The reference LiDAR

5.2. TIME-OF-FLIGHT PROCESSING MEASUREMENTS 99

beside the object hanging from the ceiling can be seen in green on the tripod. Also, purple
stripes appearing behind the captured scene can be observed. These stripes result from the
scanning pattern of the reference LiDAR and can be seen as noise. In Figure 5.7b, the same
measurement concurrently captured over UDP is displayed. In this 3D representation, the
data is histogrammed by the hardware module implemented. It can be seen that every
noise measurement is filtered out. Both data streams are having the same Frames per
Second (FPS), while the histrogrammed UDP version has a delay of 15 FPS.

During measurement, different amounts of measurements per histogram are tested. As
reference, the noise in the encoded USB data stream is taken. After increasing the number
of measurements above 6, no additional effect is observed in the histogrammed data. So
it seems that 6 measurements are sufficient for noisy environments.

Chapter 6

Conclusion and Future Work

6.1 Conclusion

The Light Detection and Ranging technology has especially attracted interest in the field
of Advanced Driver Assistance Systems (ADAS) in recent years. This technology provides
the perfect extension to the already used sensors, since it is capable of producing a 3D
representation of the observed environment. Further, it can provide additional proper-
ties of the object in a scene. Full waveform LiDARs open up the possibility to analyze
the returning signals for more features of objects. The systems get therefore more ex-
pensive since the sampling rate is increased and the digital converters at higher speeds
increase component costs. Since the full waveform analysis has emerged in recent years,
the discoveries can be utilized and applied to 1bit LiDAR systems.

In this work, a hardware-accelerated 1bit LiDAR system is proposed, which is able
to extract different features out of a sampled reflection bit-stream. Furthermore, it re-
duces the Signal to Noise Ratio with a signal averaging which additionally provides a new
confidence attribute to each detected point. The FPGA-based system is independent of
the hardware which is used to provide incoming LiDAR data. It is capable of providing
resulting data-streams concurrently to give the opportunity of applying external signal
processing techniques. With this system, a framework for capturing and displaying the
processed point-cloud is proposed.

To fulfill the requirements, the Xilinx Artix 7 platform is used, which allows complex
and resource intensive hardware-accelerated implementations. A MicroBlaze is used as
micro processor to control the different components in the VHDL design. The core com-
ponents can be split into an encoder and a histogrammer module. The encoder module
samples the incoming reflections and encodes the information. During encoding, the pulse
width as well as the elapsed time until the reflection are extracted. Out of the time-stamp,
the distance of the object with respect to the LiDAR can be calculated. The resulting
points can then directly be transmitted over an USB interface for further processing. This
encoding provides the first feature, pulse width, as well as a significant data reduction,
since it omits all remaining data, which does not contain any pulse information.

The next component in the signal processing is the histogramming module. This

101

102 CHAPTER 6. CONCLUSION AND FUTURE WORK

takes the encoded data and detects intersections of measured pulses. Therefore, it merges
multiple measurements and filters pulses with high deviation. Additionally, it provides
every pulse with a confidence value, taken from the degree of intersection. The resulting
data is then processed by the implemented MicroBlaze and transmitted over an Ethernet
connection.The whole signal processing path is executed in real-time, since encoding and
histogramming takes less than 20 µs.

Three different software programs are developed in order to display generated point-
clouds and evaluate the implemented system. With different experiments, the basic func-
tionality of the LiDAR as well as the different extracted features are analyzed. It is shown
that even one bit resolution LiDAR systems allow basic filtering with pulse width infor-
mation. Additionally, the histogramming method achieves extensive noise reduction while
preserving high performance.

6.1.1 Future Work

The presented work proves the feasibility of a real-time signal processing LiDAR system
extracting features out of a 1bit data stream. The design VHDL modules as well as
the produced software can be further improved and extended to improve accuracy and
performance. Moreover, the evaluation process can be further improved. Future work
might involve following topics:

Parallelization of Hardware Components
With additional parallelization of different hardware components, the performance
of the system could be increased even further. Especially in the histogramming algo-
rithm, the measurements of the different APDs do not have any dependencies to one
another. Therefore, by generating multiple instances of the sorter and intersector,
the computations performance can be maximized.

Additional FPGA-Resources
With additional FPGA resources, the limiting parameters of encoding and his-
togramming can be increased. In the current implementation, the number of pulses
detected per measurement is limited to three. Also, the number of measurements per
histogram is limited to 15. With more BRAM resources, it is possible to overcome
these limitations.

Hardware-only UDP Transmission
In the current implementation, calculated points are stored in a FIFO buffer and
later read by the MicroBlaze. The micro processor then creates a UDP packet and
transmits it over an Ethernet interface. This process can be implemented with a
VHDL design, making the MicroBlaze obsolete, finally resulting in more free FPGA
resources.

System Response Calibration
In order to be able to correctly classify reflection pulses, the system response of the
LiDAR has to be known. This could be achieved with multiple different measure-
ments and analyzing the analog waveforms of the receiver.

6.1. CONCLUSION 103

Reflectance Calibration
As stated in [HGF13], the LiDAR system could be calibrated regarding the re-
flectance of objects. With a calibrated template for different distances, also features
like pulse width and confidence could be interpreted more accurately.

Reference LiDAR System
For evaluation of the implemented system, reference data could be gathered with a
second full waveform LiDAR. Also, the different features extracted could be com-
pared and validated more efficiently.

Appendix A

Terminology

ADC analog-to-digital converter

APD Avalanche Photo Diode

AXI Advanced eXtensible Interface

CFAR Constant False Alarm Rate

CWT continuous wavelet transformation

DDR Dual Data Rate

FIFO First In First Out

FPGA Field Programmable Gate Array

FPS frames per second

FTDI Future Technology Devices International Ltd.

FWHM Full Width Half Maximum

HFoV Horizontal Field of View

IDE Integrated Development Environment

IP Intellectual Property

LiDAR Light Detection and Ranging

LVDS Low Voltage Differential Signal

lwIP light weight IP

MEMS Micro-electro-mechanical System

MII Media Independent Interface

PHY Physical Layer

105

106 APPENDIX A. TERMINOLOGY

ROC Receiver Operation Characteristic

SNR Signal-Noise Ratio

SPI Serial Peripheral Interface

TDC time-to-digital converter

UART Universal Asynchronous Receiver Transmitter

UDP User Datagram Protocol

USB Universal Serial Bus

VFoV Vertical Field of View

VHDL Very High Speed Integrated Circuit Hardware Description Language

WC wavelet coefficient

Bibliography

[AG.17] Audi AG. Audi pre sense 360. https://www.audi-mediacenter.com/de/

technik-lexikon-7180/fahrerassistenzsysteme-7184, 2017. [Online; ac-
cessed 1.2.2018].

[Bri15] Gregory Brill. Cygwin port of ROS. https://github.com/codenotes/ros_
cygwin, 2015. [Online; accessed 6.8.2017].

[CC13] John A. Christian and Scott Cryan. A Survey of LIDAR Technology and its
Use in Spacecraft Relative Navigation. In AIAA Guidance, Navigation, and
Control (GNC) Conference, Reston, Virginia, aug 2013. American Institute
of Aeronautics and Astronautics.

[EM16] University of Massachusetts Lowell Robotics Lab Eric McCann. ROS .NET
Library. https://github.com/uml-robotics/ROS.NET, 2016. [Online; ac-
cessed 6.11.2017].

[FTD15] Future Technology Devices International Ltd FTDI. FT601 Datasheet Ver-
sion 1.05. http://www.ftdichip.com/Support/Documents/DataSheets/

ICs/DS_FT600Q-FT601QICDatasheet.pdf, 2015. [Online; accessed
30.09.2017].

[FTD16] Future Technology Devices International Ltd FTDI. D3XX Drect USB
Drivers. http://www.ftdichip.com/Drivers/D3XX.htm, 2016. [Online; ac-
cessed 12.10.2017].

[HGF13] Preston J Hartzell, Craig L Glennie, and David C Finnegan. Calibration of
a Terrestrial Full Waveform Laser Scanner. ASPRS 2013 Annual Conference
Proceedings, page p. 7, 2013.

[Inc16a] Xilinx Inc. Block Memory Generator. https://www.xilinx.com/products/
intellectual-property/block_memory_generator.html, 2016. [Online;
accessed 15.6.2017].

[Inc16b] Xilinx Inc. SelectIO Interface Wizard. https://www.xilinx.com/products/
intellectual-property/selectio_interface_wizard.html, 2016. [On-
line; accessed 15.6.2017].

[Inc16c] Xilinx Inc. Vivado Design Suite. https://www.xilinx.com/products/

design-tools/vivado.html, 2016. [Online; accessed 15.6.2017].

107

https://www.audi-mediacenter.com/de/technik-lexikon-7180/fahrerassistenzsysteme-7184
https://www.audi-mediacenter.com/de/technik-lexikon-7180/fahrerassistenzsysteme-7184
https://github.com/codenotes/ros_cygwin
https://github.com/codenotes/ros_cygwin
https://github.com/uml-robotics/ROS.NET
http://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT600Q-FT601Q IC Datasheet.pdf
http://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT600Q-FT601Q IC Datasheet.pdf
http://www.ftdichip.com/Drivers/D3XX.htm
https://www.xilinx.com/products/intellectual-property/block_memory_generator.html
https://www.xilinx.com/products/intellectual-property/block_memory_generator.html
https://www.xilinx.com/products/intellectual-property/selectio_interface_wizard.html
https://www.xilinx.com/products/intellectual-property/selectio_interface_wizard.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html

108 BIBLIOGRAPHY

[Inc17] Xilinx Inc. FIFO Generator v13.1 LogiCORE IP Product Guide (PG057).
https://www.xilinx.com/support/documentation/ip_documentation/

fifo_generator/v13_1/pg057-fifo-generator.pdf, April 5, 2017.
[Online; accessed 22.6.2017].

[Lab] MIT Lincoln Laboratory. Geiger-Mode Avalanche Photodiodes. https:

//www.ll.mit.edu/mission/electronics/ait/imaging-technology/

geiger-mode-photodiodes.html. [Online; accessed 4.12.2017].

[Mic17] Microsoft. Visual Studio. https://www.visualstudio.com/de/, 2017. [On-
line; accessed 12.10.2017].

[OW16] Takashi Ogawa and Gerd Wanielik. TOF-LIDAR signal processing using the
CFAR detector. Adv. Radio Sci, 14:161–167, 2016.

[PWKJ07] Thomas J. Papetti, William E. Walker, Charles E. Keffer, and Billy E. John-
son. Coherent backscatter: measurement of the retroreflective BRDF peak
exhibited by several surfaces relevant to ladar applications. page 66820E, sep
2007.

[PWWU14] Martin Pfennigbauer, Clifford Wolf, Josef Weindopf, and Andreas Ullrich.
Online waveform processing for demanding target situatons. Proc. SPIE 9080:
Laser Radar Technology and Applications XIX and Atmospheric Propagation
XI, 2014.

[ROS15] ROS. Point Cloud Message Format. http://docs.ros.org/api/sensor_

msgs/html/msg/PointCloud2.html, 2015. [Online; accessed 16.8.2017].

[SANW16] Jason Stoker, Qassim Abdullah, Amar Nayegandhi, and Jayna Winehouse.
Evaluation of Single Photon and Geiger Mode Lidar for the 3D Elevation
Program. Remote Sensing, 8(11):767, sep 2016.

[SKKK] Hocheol Shin, Dohyun Kim, Yujin Kwon, and Yongdae Kim. Illusion and
Dazzle: Adversarial Optical Channel Exploits against Lidars for Automotive
Applications.

[UPa] A Ullrich and M Pfennigbauer. Linear LIDAR versus Geiger-mode LIDAR:
Impact on data properties and data quality.

[UPb] Andreas Ullrich and Martin Pfennigbauer. Echo Digitization and Waveform
Analysis in Airborne and Terrestrial Laser Scanning 53 rd Photogrammetric
Week, Stuttgart, September 2011.

[UP11] Andreas Ullrich and Martin Pfennigbauer. Echo digitization and waveform
analysis in airborne and terrestrial laser scanning. Photogrammetric Week,
pages 217–228, 2011.

[Vas16] Joshua Vasquez. Sort faster with FPGAs. https://hackaday.com/2016/01/
20/a-linear-time-sorting-algorithm-for-fpgas/, 2016. [Online; ac-
cessed 22.6.2017].

https://www.xilinx.com/support/documentation/ip_documentation/fifo_generator/v13_1/pg057-fifo-generator.pdf
https://www.xilinx.com/support/documentation/ip_documentation/fifo_generator/v13_1/pg057-fifo-generator.pdf
https://www.ll.mit.edu/mission/electronics/ait/imaging-technology/geiger-mode-photodiodes.html
https://www.ll.mit.edu/mission/electronics/ait/imaging-technology/geiger-mode-photodiodes.html
https://www.ll.mit.edu/mission/electronics/ait/imaging-technology/geiger-mode-photodiodes.html
https://www.visualstudio.com/de/
http://docs.ros.org/api/sensor_msgs/html/msg/PointCloud2.html
http://docs.ros.org/api/sensor_msgs/html/msg/PointCloud2.html
https://hackaday.com/2016/01/20/a-linear-time-sorting-algorithm-for-fpgas/
https://hackaday.com/2016/01/20/a-linear-time-sorting-algorithm-for-fpgas/

BIBLIOGRAPHY 109

[Wan12] C K Wang. Exploring Weak and Overlapped Returns of a Lidar Waveform
With a Wavelet-Based Echo Detector. ISPRS - International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXIX-
B7(September):529–534, 2012.

	Introduction
	Motivation
	Objectives
	Outline

	Related Work
	Laser ranging principle
	LiDAR Systems - State-of-the-Art
	Field of Application
	Time-of-Flight Measuring
	Illumination/Sensing
	Receiver
	Signal Processing

	State-of-the-Art
	Calibration for Reflectance
	Fog classification
	Wavelet-Based Echo Detector
	TOF-LIDAR signal processing using the CFAR detector

	Design
	Requirements
	Existing Platform
	LiDAR System Hardware
	System Software

	Histogramming
	Principle
	Algorithm Evaluation
	Memory Consumption
	Confidence

	Encoding
	Principle
	Memory reduction

	Communication
	Ethernet
	USB
	UART

	PC Software
	ROS / RVIZ
	USB to PCL2
	UDP to PCL2
	ROS Filter

	Implementation
	Development
	Tools
	Work-flow

	Overall System Architecture
	Encoding
	Parallelizer
	Transition Encoder
	Maximum Point Holder

	Histogrammer
	Computation
	Data structure
	State machine

	Communication
	Ethernet
	USB
	UART

	Software
	Receiving
	ROS Filter

	Results
	Implementation
	Utilization
	Throughput

	Time-of-Flight Processing Measurements
	Testing environment
	Pulse Width
	Confidence
	Histogram

	Conclusion and Future Work
	Conclusion
	Future Work

	Terminology
	Bibliography

