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Abstract

IDEAL-fat-water separation for analysis of subcutaneous haemorrhage

degradation

The detection and age of subcutaneous haematoma is necessary in forensic
medicine for the reconstruction of events. The current clinical standard
for this is visual assessment. This approach is highly subjective and sev-
eral attempts have been made to find more objective methods. This work
ascertains a new possible method for age assessment through water-fat
decomposition of MRI images via the IDEAL-algorithm (iterative decompo-
sition with echo asymmetry and least-squares estimation). The fat and water
images of haematoma at different time points from several test subjects were
used to attain the sizes and mean water fractions. The normalized size and
mean water fraction trends were analysed through the means of regression
analysis. The calculated regression models show that both size and mean
water fraction trends are subject to exponential decay. The similar water
fraction decay rate for all test subjects indicates possible age dependency of

the haematoma’s mean water fraction.

Keywords: IDEAL, Dixon Methods, fat water separation, subcutaneous

haematoma, chemical shift



Kurzfassung

IDEAL-Fett-Wasser Trennung fiir Analyse der Degradierung subkutaner

Blutungen

Die Detektion und Altersbestimmung subkutaner Hamatome ist essen-
tiell fiir die Rekonstruktion von Tatbestdnden in der Gerichtsmedizin. Der
derzeitige klinische Standard ist die visuelle Begutachtung der Himatome.
Dieses Vorgehen fiihrt zu sehr subjektiven Resultaten, daher wurden einige
Versuche unternommen um objektivere Methoden zu ermitteln. Diese Ar-
beit untersucht einen neuen Ansatz der Altersbestimmung anhand von
Wasser-Fett-Trennung der MR-Bilder durch den IDEAL-Algorithmus (Itera-
tive Dekomposition mit Echo Asymmetrie und Least-Squares Schitzung).
Anhand der getrennten Wasser und Fett Bilder der Hamatome zu un-
terschiedlichen Zeitpunkten wurde der zeitliche Grofienverlauf und der
zeitliche Verlauf des mittleren Wasseranteils fiir verschiedene Probanden
berechnet. Die Regressionsmodelle fiir den normalisierten Gréfien- und den
Wasseranteilverlauf zeigen jeweils einen exponentiellen Zerfall. Eine dhn-
liche Zerfallsrate fiir den Wasseranteil bei allen Probanden deutet auf einen
moglichen Zusammenhang zwischen Alter und mittleren Wasseranteil eines

Hamatoms hin.

Schliisselworter: IDEAL, Dixon Methode, Fett Wasser Trennung, subkutane

Héamatoma, chemische Verschiebung
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1. Introduction

The signal detected by clinical magnetic resonance imaging (MRI) appli-
cations is generated by protons, as they make up over go % of nuclei in
the human body [1]. These protons are mostly part of water, bound to
molecules, or are present in fatty tissue. Because of relatively short T; re-
laxation time of the fat signal (about 230 ms at 1.5 T), fatty tissue appears
hyper-intense in many clinical imaging sequences and therefore obscures

underlying pathology such as oedema, inflammation, enhancing tumours

or mild haemorrhage, as shown in figure 1.1.

(a) Water-only image (b) Fat-only image (c) Original image

Figure 1.1.: Images of the internal anterior side of the thigh with a subcutaneous
haematoma (circled in red). In the original image the haematoma is hardly dis-
tinguished from its surrounding. The haematoma is prominent in the water and

fat image, as it either appears hyper-intense or hypo-intense to its surrounding.

To avoid misdiagnoses due to high fat signals, reliable fat suppression is
necessary in many areas of clinical MRI. Additionally it may improve con-

trast if the anatomical origin of interest is embedded in or contains fatty
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tissue.

Most clinical protocols use fat suppression methods to eliminate the fat sig-
nal and improve the visualization of these abnormalities. Such methods are
chemically selective fat suppression pulses (FAT-SAT), which partly saturate
the fat tissue, spatial-spectral pulses (water excitation), which directly excite
the water signal or short inversion time inversion recovery (STIR), which

times its initial inversion pulse in a way that neutralises the fat signal. [1]

These fat suppression methods suffice for many clinical applications, how-
ever fat saturation routinely fails for extremity, off-isocenter and large field
view imaging. In addition for some body areas such as the brachial plexus
and the skull base. [2] This failure can be due to the sensitivity of spectrally
selective RF pulse to both B; non-uniformity and By inhomogeneity or the
sensitivity of STIR to B; non-uniformity.

Another approach to the problem of hyper-intense fat signals is to separate
the water and fat signals based on the chemical shift in post processing.
The additionally gained information about the relative composition of fat
and water can improve the diagnosis of bone marrow disease, some liver

diseases and adrenal masses.[3]

One application for the fat suppression or water-fat separation methods is
the enhancement of contrast between a haemorrhage and its surrounding
tissue. The use of MRI for detection and analysis of intracranial haemor-

rhage is routine for clinical radiologists. The same cannot be said about
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extracranial haemorrhage. This is mainly because the detection and inves-
tigation of extracranial haemorrhage, such as subcutaneous haematoma,
rarely have diagnostic or therapeutic consequences.

This futility does not apply in the domain of forensic medicine, as haematoma
and other injuries build the basis for the reconstruction of events. The cur-
rent clinical standard for detection and age determination of a haematoma is
visual assessment. This technique is highly subjective, thus several attempts
to find objective and quantitative methods have been made. The application
of MRI for detection of haematoma for forensic cases has gathered more

interest recently, however there is still only limited experience. [4] [5] [6]

The aim of this thesis is to (a) use an iterative least-squares fat-water separa-
tion method to detect subcutaneous haematoma, (b) determine their relative
size and the average water fraction and (c) to analyse the time-dependent
change of the size and the water fraction.

The used separation method is the iterative decomposition with echo asym-
metry and least-squares estimation (IDEAL) algorithm. This method is a
refined version of the chemical shift based original Dixon water-fat separa-

tion.

1.1. Chemical shift

Depending on their molecular surrounding, protons experience different
strengths of electronic shielding. The triglyceride molecules shield the pro-

tons on average stronger than the dihydrogen molecules. This results in
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different microscopic magnetic fields and consequently different larmor
frequencies for the individual protons depending on the molecular sur-
rounding.

This phenomenon is called the chemical shift ¢:

v -V
5 — _sample — Tref (1.1)
Vref
Eq. 1.1 shows the chemical shift § in ppm of a sample compound, where
Vsample 18 the absolute resonance frequency of the sample and v,y is the
absolute resonance frequency of a standard reference compound. Generally,

the standard reference compound used in medical MRI is water. [7]

Afes = %Bo 51070 (1.2)

As defined in equation 1.2, the resonance frequency offset Af.s between
the sample and the reference compound is directly proportional to the
main magnetic field By, the gyromagnetic ration <y and the chemical shift ¢

between sample and reference. [1]

Figure 1.2 shows the nuclear magnetic resonance (NMR) spectrum of a
water-fat mixture at 3 T. The spectrum demonstrates a single resonance
peak for water and the main fat peak resonating 420 Hz slower.

Fat has a complex spectrum with multiple peaks due to the different in-
dividual fat molecules. Despite these complexities, the main contributing

fat molecules are methylene and a few other proton species. The resonance
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water

main fat peak

| |
I I

0Hz -420 Hz

Figure 1.2.: NMR spectrum of water-fat mixture acquired at 3 T demonstrates the chemical
shift between fat and water. (*) notes several additional fat peaks. Adapted

from [1]

frequencies of these few lipid species are clustered around approximately
3.5 ppm down-field from the single water resonance peak. Aside from this
fat species, a slight fat peak very closely to the water peak at approximately
0.5 ppm up-field from water is also noticeable. These multiple fat signal
contributors generally result in a complex magnetization for fat, however
for simplicity most separation techniques approximate the fat spectrum as
consisting of two broadened peaks, with one at 3.5 ppm down-field from
water and the another at its resonance. This approximation is satisfying
for most applications, as the single fat resonance peak at approximately
3.5 ppm usually contains more than 10 times the signal energy of any other

fat peak. [8]
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1.2. Dixon Methods

The Dixon techniques achieve fat-water separation in post-processing after
a modified data acquisition encoded the chemical shift difference into the

signal phase.

1.2.1. Signal Model in Dixon Methods

Most Dixon techniques assume that water and fat are the only two signal-
contributing chemical species. Under this assumption, the complex signal

of a pixel at the spatial coordinates (x,y) is given as:

S(x,y) = [W(x,y) +F(x,y) - 4] - e . eitolxy) (1.3)

W(x,y) and F(x,y) are generally real, non-negative numbers and propor-
tional to the magnitudes of the water or fat magnetizations. The phase
differences between the fat and water magnetization are represented by a.
The signal experiences further phase shifts because of ¢, an error phase
due to the By inhomogeneity, and ¢, another error phase caused by other
system imperfections, such as spatial dependence of RF penetration and
different signal time delays in the receiver chains. The vector relationship of

equation 1.3 is illustrated in figure 1.3.

Typically Dixon techniques require several images with a specific set of «
values. To achieve a desired value of «, the echo time (TE) is changed. This

time change in the gradient echo sequence or time shift from a spin echo
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Figure 1.3.: Vector representation of the complex signal S as defined in equation 1.3.

Reprinted from [8]

in the spin echo sequence is given by At. The resulting « caused by At is

defined in equation 1.4.

o =y-By-d-At (1.4)

Where 1 is the proton gyromagnetic ration, ¢ is the chemical shift of fat
relative to water and By is the externally applied magnetic field. The phase
angle due to By inhomogeneity ¢ is also proportional to At (see equation

1.5).

¢ = ABy- At (1.5)

Besides W(x,y) and F(x,y), ¢, ¢o and ABy are also spatially dependent and
may vary from pixel to pixel. Though « is principally affected by changes in
ABy, these changes are negligible compared to the magnitude of By. There-

fore, & can be considered as independent of By and only affected by At and
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the chemical shift § (see equation 1.4).[8]

The major distinctions between particular Dixon techniques consist in the
amount of images acquired per slice, different sets of « values, the sampling
and post-processing strategies. Counting on the amount of images acquired
for post-processing, the techniques are classified as the one-, two-, three-,
or four-point Dixon technique. Algorithms that are adaptable to different
amounts of images are called multi-point Dixon techniques. Furthermore,
these procedures are distinguished by the specific & values. The original ap-
proach requires two images and is usually known as the Original Two-Point

Dixon Method (2PD).

1.2.2. The Original Two-Point Dixon Method

The two images needed for the fat-water separation applying the origi-
nal 2PD method are acquired using the RF spin echo sequence shown in
figure 1.4. The in-phase image Ij is acquired when the fat and water magne-
tization are in phase (At = 0). The RF pulse for the out-of-phase image I; is
either advanced or delayed by At/2, thus creating a phase angle a between
the water and fat magnetization of = 180°. Therefore, the original Dixon
approach can be referred to as a two-point Dixon technique with a (0,4£180°)

or (o, £7) acquisition scheme.
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TE

RF
Frequency
encoding
INS
—p
Signal :
H

Figure 1.4.: 2PD RF spin echo pulse sequence. The RF spin echo is delayed by At if the 180°
RF Impulse is delayed by At/2. Adapted from [3]

The magnitude of At depends on the resonance frequency offset Afcs be-

tween water and fat (see Eq. 1.6).

1

At =
20

(1.6)

The image contrast of the two acquired images is heavily determined by the
peak signal amplitude that occurs at ky = 0. Assuming that the water and
fat magnetization are as shown in figure 1.5, the complex images Ip and I

can be approximately given by:
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where W and F are the water and fat image, respectively.

Iy 1 (p+1)/2 (ly— )2

"Il I

(1.7)

Figure 1.5.: Fat and water magnetization for the in-phase image Iy, the out-of-phase im-

age I; and combined images assuming no By inhomogeneity or magnetic

susceptibility perturbation. Adapted from [3]

The original 2DP assumes perfect By homogeneity (¢ = 0) and no image

weighting from T relaxation, diffusion and flow or from other phase shifts

that occur due to hardware group delays, eddy currents and B; receive-field

nonuniformity (¢ = 0).

Therefore, W and F can be determined directly by adding or subtracting Iy

and I;, as shown in Eq. 1.8.

1
W= 5(10 + 1)

1
F=_—([H—1
2(0 1)

10

(1.8)
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The assumption of ABy = 0 and thus ¢ = 0 is virtually never valid. The
additional phase shift due to ABj prevents a clean water and fat separation

as shown in figure 1.6.

Iy 1'1 (f0+f1)/2 (I0—1'1)/2
w
w F rerr———
-~ ——
E

Figure 1.6.: Fat and water magnetization for the in-phase image Iy, the out-of-phase image
I; and combined images assuming that By inhomogeneity creates a phase
shift ¢ = 90° between in-phase and out-of-phase images, which causes an

overestimation of fat and unterestimation of water. Adapted from [3]

One solution to the By sensitivity is to form the magnitude of Iy and I;

before summation and subtraction (see equation 1.9).

1
W= §(|10| + pclL|)
(1.9)

1
F= (Il - pela])

With this approach every pixel value of the water image W is the dominant
signal of the corresponding pixel, regardless whether the dominant signal
contributor is fat or water. This requires a binary choice p. whether W
represents the water or fat image for every pixel. Several techniques for
calculating p. exist, such as the extended Two-Point Dixon Method or

Three-Point Dixon Methods (3PD). [3] [8]

11
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1.2.3. The Three-Point Dixon Methods

One way for compensate the By inhomogeneities is to acquire a third image
with the modified acquisition scheme of either (—«, o, «) or (o, &, 2a).
These 3PD techniques use the additional information to calculate a By
field inhomogeneity image (”field map”). The early 3PD techniques used
« = 180° and following the same notations as for equation 1.7, the third

image can then be written as:

Iy=(W=F)-e-¢% for(—180° 0,180°)

' . (1.10)
I = (W+4F)-e??.¢9  for (0, 180°, 360°)
can be calculated by combining equations 1.7 and 1.10.
¢ y g eq 7
L1 X o o
= 5 -arctan[l; - I*;] for (—180°, 0, 180°)
(1.11)

~ 1
$= 5 arctan[l, - Ij]  for (0, 180°, 360°)

Assuming that ¢ is determined correctly (i.e. ¢ = ¢), the By inhomogeneity
effects can be removed from the signal equation 1.7 and the water and fat
images can be calculated. The limitation of the arctan operator within the
range of —7t to 7T creates the problem of phase wrapping. As the equation
for «a (see eq. 1.4) indicates, phase wrapping occurs when ABj is more than
half the chemical shift difference (in the cases of water and fat: ~ 1.75 ppm).

Phase unwrapping is necessary in most 3PD approaches.

As most phase unwrapping algorithms lack the robustness for routine

clinical practice, other techniques have been introduced. Such procedures

12
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are direct phase encoding (DPE) or the IDEAL-algorithm that manage the

separation without phase unwrapping. [8]

13



2. Methods

2.1. Materials

This thesis used MRI scans from the same data set as in the papers [4]
and [9]. Scans of 34 test subjects were provided. Early on, 3 test subjects
were excluded because of technical reasons like severe motion artefacts.
Some scans of other test subjects with motion artefacts were also excluded,

however enough usable scans of the concerned test subjects remained.

The final data set consists of MRI scans of the thigh of the 31 healthy
test subjects (16 females, 15 male, mean age + standard deviation: 24,61 £
2,98 y). The haematoma was artificially created by an injection of 4 ml of
their own venous blood into the subcutaneous fatty tissue of the internal
anterior side of the thigh. The haematoma was examined with MRI (3T,
TimTrio, Siemens AG, Germany) directly after the injection and after 3
hours, 1 day, 3 days, 1 and 2 weeks. For 15 of the test subjects, an additional
base line scan before the injection was provided. These base line scans were
included into the calculation of the decomposition images. However later
on they were emitted from any size or water fraction determination. For

detailed information about the data set see appendix chapter B.

Besides other MRI sequences, the necessary sequence for the acquisition

scheme was applied. This obtained one image, in which fat and water are

14
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in quadrature and two images, in which they are £120° from quadrature.
The combination of phase shifts at (—7/6, /2, 77t/6) optimizes the noise
performance, as it provides an uniform sampling around the unit circle [10].
The spatial relationship of the water and fat magnetization at each phase

shift is illustrated in figure 2.1.

W F S

/ W\T/P

(a) 120° before quadrature (b) quadrature or 71/2 (TE;) (c) 120° after quadrature or

or —71/6 (TE;) 77t/6 (TE3)

Figure 2.1.: Spatial relationship of the fat and water magnetization during the different

phase shift of the acquisition scheme and the resulting complex signal vector.

The sequence parameters of the acquisition are listed in table 2.1. Table 2.2
shows the different echo times (TE) used to achieve the desired acquisition
scheme, where TE; is the TE for the in quadrature acquisition and TE; and

TE;3 are the echo times for the out-of-phase acquisition.

Table 2.1.: Acquisition parameters

Sequence Sequence In-plane resolution Slice thickness Sli
ices

Variation Type (mm?) (mm)

GR SP\OSP 0.625 X 0.625 1.5 3

Acquisition parameters of the used MR sequence for the IDEAL-algorithm

15
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Table 2.2.: Echo Times

TE; TE; TE;

4.72 5.54 6.36

Specific TE used for the acquisition of the 3 MR images

All calculations for the fat-water separation, the segmentation, size determi-
nation and regression analysis were produced using MATLAB 20015b ([11],
www.mathworks.com). The preliminary segmentation was done manually

using the ITK-SNAP software ([12], www.itksnap.org).

2.2. IDEAL-AIlgorithm

The IDEAL-algorithm can theoretically separate as many species with chem-
ical shift differences as required. The number of different species is only
limited by practicality and necessity. To achieve the decomposition of n
species, n 4+ 1 images of the same slice at different TEs are required. This
thesis” goal demands the separation of only water and fat, thus the theory
of the IDEAL-algorithm will be applied to only two species. For the more

generic formulas see paper [13].

2.2.1. Theory

The signal model from equation 1.3 can be rewritten as:

16
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Su(x,y) = W(x,y) + E(x,y) - 2 eln] . o200t (2.1)

where S, (x,y) is the complex signal from the pixel (x, y) of the nth acquired
image, 1(x,y) is the local magnetic resonance offset and t, is the echo time.
The signal model specific for the IDEAL algorithm sees W(x,y) and F(x, y)
as complex terms * with their own magnitude and phase. The phase shifts

due to ¢ and ¢y in equation 1.3 are combined to ¢ + ¢ = 27TYt.

Equation 2.1 contains 5 unknowns, the scalar unknown ¥(x,y), the mag-
nitudes and phases of the two complex unknowns W(x,y) and F(x,y). As
each acquired MRI image contributes a real and an imaginary measurement,
3 acquisitions are required to determine the system and separate fat from

water.

For simplicity the explicit dependence of W, F, ¥ and S, on the spatial
coordinates (x,y) will be left out hereafter. The IDEAL-algorithm uses

Gaus-Newton algorithm [14] to approximate the true field map.

Given an initial estimation of the field map ¢ (e.g. o = 0), equation 2.1

can be rewritten as:

gn — Sn . e*i27'(1,l)0tn —W4+F- eiZn’Afcsi’n (2.2)

'The generic signal model for Dixon model in chapter 1 explained the complex signal
S(x,y) as sum of the magnitudes of water and fat. The adapted signal model for the
IDEAL-algorithm assumes water and fat as complex signals with their own magnitude and

phase.
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2. Methods
Equation 2.2 can be split in its real and imaginary parts:

Sy =S8R 4is!
= WR 4 FRcos(27tA festn) — FLsin(2A fusty) (2.3)

+ i[W! + FRsin(27tA festy) + FLcos(2A festy)]

As 3 images are acquired for each slice (n = 0...2), the equation 2.3 results

in a linear system of equations, which can be written in matrix format:

S=Ap (2.4)

with S as the estimated signal vector, A as the system matrix and p as
the component vector, which contains the real and imaginary parts of the

signals contributed by water and fat (see 2.5 - 2.7).

. 4T
S= |k SR Sk g1 8l g (2.5)
T
p= [WR wl FR FI} (2.6)
(10 cos(2mAfusty) — Sin(27TA fusto) |
1 0 cos(2mAfesty) —sin(2mAfesty)
A= (2.7)
0 1 sin(2mAfesty)  cos(2tAfesto)
0 1 sin(2mAfesty)  cos(27TA festy)
0 1 sin(2mAfestz)  cos(2mAfestn)
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With ¢y, t; and f; representing the echo times of the three acquired images.
Solving the linear systems of equations using a least-squares fitting approach

it can be shown that:

p = (ATA)1ATS (2.8)

The estimation of the real and imaginary part of water and fat only holds
true if 9 = ¢ (see 2.2). To obtain a better estimation for p the initial field

map o has to be refined.

Assuming that WR = WR + AWR, Wl = W! + AW!, FR = FR 4+ AFR,
FI' = FI + AF' and ¢ = ¢ + Ay, then equation 2.1 can be written as:

S, ~ [W + AW + (ﬁ + AF) _eiZNAfCStn] _eiZm/)Otn _ei27rA1/;t,, (2.9)

Using the Taylor approximation e?™¥*n ~ 1 + i2;tAyt,, dividing each side

by ¢/2™¥ofn and accounting for equation 2.2 leads to:

SR i8], =
[WR + AWR +i(W! + AWT) + (ER + AFR +i(FT + AFT)) (2.10)

Equation 2.10 is rearranged and split into its real and imaginary components

to obtain a better approximation:

19
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§5 = SR_WR _ R . cos(2mA festn) + FL - sin(2wAfesty)
= 21AY - [-W! — FR . sin(2mA fusty) — EL - cos(2mAfusty)]  (2.11)
+ AWR + AFR . cos(2tA fusty) — AFT - sin(27tA fusty)

§fl = SA,Q — WR_ fR. cos(27TA festn) — Ja sin(27tA festy)
= 27tAY - [WR 4+ ER . cos(27A fosty) — FL - sin(27tA fusty)] (2.12)
+ AW! 4+ AFR - sin(27A fosty) + AFL - cos(27tA fosty)

The new system of linear equations can be written in matrix format:

w»

~ By (2.13)

with B as the coefficient matrix and y as the error vector, which contains
the differences between the old and refined values for ¢, WR WI FR and

F! (see 2.14 - 2.17).
A A A A A ar a7t
S|k Sr SR &1 &1 4] (2.14)

T
y = [A¢ AWR  AW! AFR AFI] (2.15)
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gR 1 0 cos(2mAfesty) —sin(27Afesto)
gl 1 0 cos(2mAfest1) —sin(2mAfesty)
B 1 0 cos(2mAfesty) — sin(2mwA fost
B — 82 ( fest2) ( fest2) (2.16)
gd 0 1 sin(2mAfesty)  cos(27A festo)
gl 0 1 sin(2nAfest1)  cos(2mAfesty)
gb 0 1 sin(2Afesta)  cos(2mAfesty)
gﬁ = 27tt, - [—WI — ER Sin(27tA festy) — 2 cos(27tA festn)] (2.17)
A A A 2.17
gl =2mt, - [WR + ER cos(27tA fusty) — Elsin(271A fusty)]
As with the system 2.4 the estimates of y can be calculated by:
y = (BTB)—13T§ (2.18)

The calculated error terms in y are used to recalculate §n (see equations 2.11
and 2.12). This refinement is repeated until Ay is small enough (e.g. < 1
Hz). After this least-squared approach has been completed for each pixel,
the final field map 1 is spatially filtered with a low pass to reduce noise. As
the last step the final estimation of water and fat are calculated with the

equation 2.4. [13]

The flow chart in figure 2.2 visualizes the IDEAL-method.

21



2. Methods

[ Set initial guess for ¥y ]

.......................................... i ...........................................

( N

Calculate S

(equation 2.2)

!

Calculate p

(equation 2.8)

!

Recalculate §

v

(equations 2.11 and 2.12)

!

Calculate y

(equation 2.18)
= J

!

[ Recalculate i and p J

for each pixel

Calculate final S

(equation 2.2)

|

Calculate final p

(equation 2.8)

Figure 2.2.: Flowchart illustration of the IDEAL-algorithm. The dotted red bordered part is

performed for each pixel individually.
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2.2.2. Implementation

The IDEAL-algorithm was implemented in MATLAB 2015b. The created

script consists of three main steps:

1. Import and preprocessing of the MRI data
2. Separation via the IDEAL-algorithm

3. Export of the decomposed images

The location of the MRI data acquired for the IDEAL approach is determined
by the function getpaths(). Using the folder paths provided by getpaths(),
the function get files() reads in the MRI data sets and preprocesses it. The
magnitude images are not changed after read in, however the phase images
are normalized to a range of —7t to 7r. The IDEAL-algorithm expects com-
plex images, so the imported magnitude and phase images are recombined.
The complex images, a vector storing the relevant chemical shifts, a vector
including all echo times, a matrix containing the initial guess of the field
map (e.g.: Po = 0) and the resonance frequency are the inputs for the func-

tion ideal ().

This procedure implements the algorithm shown in figure 2.2. As with the
theoretical algorithm, the MATLAB function ideal() is capable to separate
more than two compounds (e.g. fat, water and silicone). Mostly the theoreti-
cal algorithm and the implemented procedure concur. Differences exist in

two places:
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1. The matrix B (see equation 2.16) can become singular if the current
complex pixel is zero (e.g.: due to measurement errors). A singular
matrix has no inverse, thus rendering the solution of equation 2.18
impossible. To prevent MATLAB warning in such cases, the function
ideal () tests for singularity before executing the matrix division. If
the matrix is singular, the pseudo inverse is used to solve the linear

system of equations, as shown in the listing 2.1.

if rcond(B.’*B) > eps

y = (B.”*B)\ (B.’*S);
else

y = pinv(B.’ *B)*B.’ xS;

end

2. The requirement Ay < 1 Hz can lead to an endless loop. A counter was
introduced to escape the iterative least-squares phase of the algorithm

after 10000 tries.

The function ideal () returns a 3 dimensional complex matrix. This matrix
contains all decomposed complex images and the complex source image at
quadrature. The calculated field map ¥ and a binary map showing instances,

in which the iterative approach has diverged, are optional outputs.

After the decomposition the magnitude of the calculated fat and water
images and the original one at quadrature are written into a result folder by

the MATLAB function dcmsave().

The flow chart in figure 2.3 illustrates the MATLAB script, in which the
implemented IDEAL-algorithm was embedded.
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The IDEAL-algorithm determines the field map by minimizing a cost func-
tion. This makes the algorithm vulnerable to local minima entrapment. The
initial estimation for the field map ¢ heavily influences the success of the
decomposition (see figures 3.2 and 3.3). The default assumption of no By
inhomogeneities (i = 0) is suitable for a large set of the data. However,
for some MRI scans, this assumption of homogeneity caused imperfect
decomposition. In these cases different values for ¢y were tested. As a rather
homogeneous By field was still likely, values in the range of —0.3 to 0.3
were declared as the new initial field map. The specific values for each MRI
scan are listed in appendix table B.2. Some MRI scans were excluded as no

correct decomposition could be achieved. [15] [16] [17] [18]
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Start

Initialize variables

.

getpaths()
returns paths = folder

paths to the MRI data

v

Initialize for loop

c1++

yes

c1 >
length(paths)

:DO

getfiles()

reads and pre-processes

the MRI data

v

Initialize for loop

c2=1

savedcm()

c2 > slices

:1’10

reg_slices()

v

c2++

.

save images

A

ideal()

Figure 2.3.: Flowchart illustration the MATLAB script that calls the IDEAL-algorithm
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2.3. Size Determination

2.3.1. Segmentation

After the decompensation the test subject P33 was excluded from further
analysis, as too few data points remained (see table B.2). The water image
was chosen for segmentation due to the hyper-intense appearance of the
haematoma. The haematoma was manually outlined using the software
ITK-SNAP (see figure 2.4). This rough segmentation was exported as a
«.mha file and then imported into MATLAB by the function import_seg().
The function import_seg uses functions of the file exchange package Read

Medical Data 3D [19] to import the *.mha files correctly.

A refined segmentation was accomplished by first multiplying the water
image with the ITK-SNAP mask and then applying the MATLAB function
multithresh(). This function was applied instead of the more obvious func-
tion graythresh(), because the thresholds calculated by multithresh() are
in the same range as the input image. This is unlike graythresh(), which
returns a normalized threshold in the range o to 1 [20]. The result of the
segmentation was binarized. The pixel size of each haematoma was deter-
mined by the calculation of the summation of the final segmentation map.

The average size over all three slices was determined for each session.
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"N water_reg_1_mag.dcm - New Segmentation - [TK-SNAP

- X

File Edit Segmentation Workspace Tools Help
ITK-SNAP Toolbox =]
Main Toolbar ®
wRIIF Lo a
haladi 4 @
Paintbrush Inspector
HRB WS
Brush Style:

/[ [¢
Brush Sze:

s 4]

Brush Options:
k) Isotropic
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Figure 2.4.: Screenshot of the software ITK-SNAP, which was used to roughly segmenting

the hyper-intense haematoma from its surround

28



2. Methods
2.3.2. Regression Analysis

Initially, one linear regression analysis [21] and an exponential regression
analysis were performed on all the included data points. The linear re-
gression analysis was implemented via a simple MATLAB script. For the
exponential regression analysis the MATLAB function fitnlm() was used.

The performed regression models were:

flinear(t) =st+m

fexponential (t) = ab’

(2.19)

After calculating the normal and the adjusted coefficient of determination
R? and Rﬁ dj of each model [22], the nonlinear regression model was deemed

suitable to be applied to each test subjects” data individually.

To facilitate the comparisons between the test subjects, the included data
points were normalized between o and 1. Having done that the model was

applied to each test subject individually.

2.4. Water Fraction

2.4.1. Segmentation

The calculated water and fat images were merged, as described in equation

2.20, to obtain the water and fat fraction images.
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Wat
Water Fraction = __yvarer
Water + Fat
(2.20)
Fat Fraction = L
Water + Fat

The binary mask obtained during the size determination was used to set
every pixel value of each fraction image outside the determined haematoma
area to zero. Thereafter, the image matrix was summed up and divided
by the haematoma’s size to calculate the mean. This is used as the mean

fraction value for the haematoma at each slice and time point.

A local minima entrapment during the decomposition can lead to a correct
estimation whether the dominant species is water or fat, however the correct
ratio between these two is only estimated if the global minima is found.
Images that were presumed to be the result of a local minima were excluded.
Decomposed images that featured areas of strong hyper-intensity and im-
ages that introduced a point of strong inflexion into the water fraction trend

were assumed to be caused by a false ratio (see figure 2.5).

— 1.5lice
— 25lice
3.Slice
Mean

a)

Water fraction
s o
g g
/ 19

Time in days

(a) Water image with strong hyper- (b) Water fraction trend with point of

intensity strong inflexion

Figure 2.5.: Water image and mean water fraction trend due to local minima
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2.4.2. Regression Analysis

Only the water fraction was used for further regression analysis. Two
different regression models were tried first for all data points (see equations

2.21).

flinear(t) =st+m

fexponential (t) = ab'

(2.21)

As with the regression models for the haematoma’s size the best regression
model was determined and then applied to all test subjects. No normaliza-

tion was necessary.
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3.1. Fat-Water Separation

The IDEAL-algorithm decomposed 98 of the 189 MRI data sets with the
proposed default value Py = 0 for the initial field map. Figure 3.1 shows
one of the resulting fat and water images and the corresponding field map

and one of the source images.

As mentioned in section 2.2.2 the implemented IDEAL-algorithm can be-
come entrapped in a local minima. Figures 3.2 and 3.3 displays the water
image and the corresponding field map with different initial guesses for y.
Figures 3.4a and 3.4c illustrate the results due to local minima entrapment
and ?? and 3.4d the the results with a newly chosen guess for the initial

tield map.

Adapting the initial guess for ¥y lead to successful decomposition in 60 of
the previous 91 imperfect separated images. Any further calculations were

preformed with the 158 of 189 images where separation was possible.
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(a) water image (b) fat image

(c) Field map (d) Source image at quadrature

Figure 3.1.: Results of the IDEAL-algorithm
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(@) o = —1 (b) o = —0.8

(d) g0 = —04 () o =0

(8) Yo =02 (h) po = 04 (i) Yo = 0.6

() o =08 ) po=1

Figure 3.2.: Water-only image as the result of different initial ¢p’s
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() Yo =10.8

Figure 3.3.: Field maps as the result of different initial y’s
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(a) water image ¢ = 0 (b) water image g = 0.2

(e) field map g =0 (f) field map ¢y = 0.2

Figure 3.4.: Incorrect (right) and correct (left) decomposition of IDEAL-algorithm. (a) - (b)

water images (c) - (d) fat images (e) - (f) final field maps

36



3. Results

The calculated field maps varied between the individual scans, as can be

observed in figure 3.5.

(a) Field map of the 2. slice (b) Field map of the 1. slice (c) Field map of the 3. slice
of test subject P6’s third of test subject P31’s fifth of test subject P7’s sixth

session session session

Figure 3.5.: Different calculated field maps of several test subjects.

If the assumptions made in chapter 1.2.1 are correct, recombining the fat and
water images (see equation 3.1 and figure 3.6a) should theoretically yield the
original image at quadrature (see figure 3.6b). In praxis the recombination
differs from the original image due to inhomogeneities other than AB,

however it is still a valid comparison.

Sy = |[W| +ilF|
. (3.1)
|Sa| = [[W] +i[F|]
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(a) recombined image (b) original image at quadrature

Figure 3.6.: lllustration of the merged and original MRI image

Figure 3.7.: SSIM map

For the assessment of the image quality of the decomposed images the
root mean squared error (RMSE), the mean structural similarity (MSSIM)
and the Peak Signal to Noise Ratio (PSNR) were calculated for all images
and the mean, standard deviation (SD) and coefficient of variation (CV)
were determined (see table 3.1). Figure 3.7 shows the MSSIM map of the
images 3.6a and 3.6b. The map shows the highest dissimilarities around the

haematoma and in regions of fatty tissues.

Of all three quality metrics in table 3.1 MSSIM is most noteworthy. The

MSSIM ranges from 0 to 1, where 1 is only possible if two identical images
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Table 3.1.: Quality metrics
Measure | RMSE MSSIM ~ PSNR

Mean | 28.5218 0.9991 68.52 dB
SD 19.3363 0.0026 19.34 dB
Cv 67.8%  0.26%  67.8 dB

Mean, standard deviation, coefficient of variation of

RMSE, MSSIM and PSNR

are compared.

The IDEAL-algorithm was mainly calculated in MATLAB, however the
algorithm was also implemented in Java and Python for comparison. The
average execution times per MRI slices are listed in table 3.2 and execution
time for different amount of MRI images are displayed in figure 3.8. For

further analysis of the three implementations look at appendix chapter A.

Table 3.2.: Mean and standard deviation of the over all execution times per MRI slice
Matlab Python Java
Mean SD Mean SD Mean SD

3.0529 S 0.0899s 6.6965s 0.4843s 0.5286s 0.0789 s
Mean and standard deviation of the over all execution times per MRI

slices for all 3 implementations of the IDEAL-algorithm
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6000 |-
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Figure 3.8.: Execution time of Matlab, Java and Python implementation.

3.2. Size Determination

3.2.1. Segmentation

Figure 3.9 shows the water image at several stages of the chain process to
obtain the haematoma'’s sizes. The manual segmentation (see figure 3.9 (b)),
refined segmentation (see figure 3.9 (c)) and binarization (see figure 3.9 (d))
are done for all three slices individually. After obtaining the size trend for

all three slices, the mean at the desired time points is calculated (see figure

3.9 (e)).
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summate

Figure 3.9.: Process to obtain haematoma’s size. (a) Calculated water MRI images. (b) MRI
image with rough segmentation of ITK-Snap overlaid. (c) MRI images with
final segmentation map overlaid. (d) Binarized image with haematoma area in
white. (e) Haematoma’s sizes of all three slices and the average over time for

one test subject.
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3. Results

All obtained mean sizes from figure 3.9 (e) for every test person are displayed
in figure 3.10. The size trend illustrates the disappearance of the haematoma
for most test subjects after one or two weeks (marked as red circles). The

test subjects P21 and P32 show differing behaviour.

600

300 TN

Size in pixel

A\ T
200 WS

100

Time in days

Figure 3.10.: Absolute haematoma mean size over time for all test subjects with mean (black
solid line) and corresponding SD (shaded area). The haematoma disappeared
for most test subjects after one or two weeks (see red circles). The size trend

for test subjects P21 and P32 appear to differ.

Figure 3.11 displays the results of figure 3.10 with each test subject’s sizes
individually normalized between o and 1. The relative size graph illustrates
that the haematoma’s size maxima occurred as late as 1 day after injection

(see blue circles). If the test subject shows differing behaviour in the absolute
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size graph, it shows this behaviour in the relative size graph too. The
normalization revealed the additional differing behaviour of test subject

P30. Test subject P13 experiences the steepest decline.

1.2

Relative size (a.u.)

Time in days

Figure 3.11.: Relative haematoma mean size over time for all test subjects with mean (black
solid line) and corresponding SD (shaded area). The haematoma disappeared
for most test subjects after one or two weeks (see red circles). The haematoma’s
size maxima cluster directly after injection and one day after injection (see
blue circles). The size trend for test subjects P21, P32 and P30 appear to differ.

Test subject P13 shows the steepest decline.

The mean, standard deviation and coefficient of variation of the haematoma
sizes at selected time points are listed in table 3.3. The coefficients of varia-

tion increase over time.
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Table 3.3.: Mean, standard deviation and coefficient of variation of haematoma’s sizes
absolute Size relative Size

Time point Mean SD (@AY Mean SD (@Y

o hours 359.5303 95.3201 26.51 % | 0.9632 0.069 7.16 %
3 hours | 313.5294 90.0364 28.72% | 0.8839 0.1613 18.25 %
1 day 273.3226 87.9468 32.18 % | 0.7727 0.1938 25.08 %
3 days 179.5402 70.918  39.5 % | 0.4947 0.1704 34.45 %
1 week 76.55072 66.8314 87.3 % | 0.2266 0.1907 84.14 %
2 weeks | 10.60317 24.0445 226.77 % | 0.0316 0.0743 235.28 %

Mean, standard deviation and Coefficient of Variation of the absolute and relative

haematoma’s sizes at selected time points.

3.2.2. Regression Analysis

The visual representation of the preliminary tested regression models is
illustrated in figure 3.12. The specific values of the preliminary tested linear
and exponential regression models (table 3.4) confirm the assumption that
the exponential regression model approximates the area decline of the
haematoma more accurately.

As both regression models were applied to the same size of data samples,
the normal coefficient of determination R? obtained sufficed to choose the

exponential regression model for further analysis.

For better comparison between all test subjects the exponential regression
model was applied to the normalized data set of haematoma sizes (see
figure 3.11). This boosted the regression model, as is shown by comparing

the coefficients of determination in table 3.5 to the values of table 3.4.
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Figure 3.12.: Preliminary regression models

Table 3.4.: Preliminary regression model values

linear model exponential model
R? 0.628 0.725
Ridj 0.626 0.723
RMSE 86.9 74.7
p-value | 4.2:107%2 25810774

Normal and adjusted coefficient of determination (R?, Ri 4 ].),

root mean squared error (RMSE) and pvalue for the

preliminary regression models.
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Table 3.5.: Exponential regression model values for a normalized data set

normalized exponential model
R? 0.821
RZ4j 0.82
RMSE 0.154
p-value 4.55-1071

Normal and adjusted coefficient of determination (R?, R2, ].),

root mean squared error (RMSE) and pvalue for the

normalized data set.

The normalized exponential regression model is shown in figure 3.13.

14
o Data
121 Exponential regression line
95 % Confidence interval
1 » Zg 95 % Prediction interval
2 08f °
! :
g 06 § g ]
%) © g 6
2 04 g $
= &
& 02f .
0+ o ) @
—02|
_0.4 1 1 1 1 1 1 |
0 2 4 6 8 10 12 14

Time in days

Figure 3.13.: Normalized regression model

Finally, the chosen regression model was applied to each test subject indi-
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vidually. Figure 3.14 displays the regression model of one test subject. For

the regression models of all test subject see appendix chapter C.2.
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Figure 3.14.: Exponential regression model of test person P18

Upon analysing the regression models for each test subject, one was ex-
cluded. This exclusion was necessary because only one MRI scan showed a
haematoma of any kind and therefore too few data points remained for a

meaningful regression analysis (see figure 3.15).

The values for the coefficients of the exponential regression line all reside in
the same range, except for P10, P23, P29 and P32 in the case of coefficient a.

Notable exceptions for coefficient b are P8 and P13. (see figure 3.16).

The normal and adjusted coefficients of determination are valuable metrics

to determine the relevance of the regression model. The bar char 3.17 shows
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Figure 3.15.: Exponential regression model of excluded test person P21

these values for each test subject. Test subjects P10, P23 and P32 stand out

with low coefficients of determination.

Figure 3.18 shows the p-values of the coefficients presented in figure 3.16.
For coefficient a only P8, P24 and P27 exceeds a p-value of 0.05. The p-value

of coefficient b is exceeding 0.05 for several test subjects (P8, P13, P24).

The bar chart in figure 3.19 depicts the p-values of the regression models

for each test subject. P24 and P27 have a p-value higher then o.05.

The means, standard deviations and coefficients of variation over all regres-

sion models for both regression parameters a and b are listed in table 3.6.

Table 3.7 shows the mean, standard deviation and coefficient of variation

for the quality metrics of the regression models.
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(a) Bar chart for coefficient 4, with the mean plotted as a dotted black line and the standard

deviation as shaded area.
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(b) Bar chart for coefficient b, with the mean plotted as a dotted black line and the standard

deviation as shaded area.

Figure 3.16.: Bar charts for regression model coefficients

Table 3.6.: Values (mean, SD, CV) for the nonlinear model’s coefficients and its parameters

Coefficient a Coefficient b
Mean SD Ccv Mean  SD Ccv
Estimate | 0.9568 0.0868 9.07 % | 0.7728 0.1201 15.54 %
SE 0.1241 - - 0.0573 - -
p-value | 0.0211 - - 0.0126 - -

Mean, standard deviation and the coefficient of variation for the estimates of

coefficients and the mean for standard error (SE) and p-value for the exponential

regression models of each test subject.
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Figure 3.17.: Bar charts for the normal and adjusted Coefficient of determination

Table 3.7.: Values (mean, SD, CV) of the nonlinear model for each test subject
Mean  SD Ccv

R? 0.9085 0.0994 10.94 %
Ridj 0.8726 0.1401 16.05 %

RMSE | 0.1161 0.0507 43.66 %

p-value | 0.0155 - -
Mean, standard deviation and coefficient of variation

for the normal and adjusted coefficient of confidence (R?, Ri ’ ].)

and Root mean square error(RMSE) and the mean of the p-value

for the exponential regression model of each test subject.
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Figure 3.18.: Bar charts for the p-values of the coefficients of the regression models
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Figure 3.19.: Bar chart for pvalue of the regression models, with the mean plotted as a

dotted black line and the standard deviation as shaded area.
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Figure 3.20a is the boxplot for the coefficients of the regression line and the

normal and adjusted coefficients of determination

The boxplot for the p-values of the coefficients of the regression line and

the regression model is represented in figure 3.20b.
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(a) Coefficients, R? and Ri 4j (b) p-values

Figure 3.20.: Box plots for coefficients, R? and Ridj and p-values of the coefficients and the

regression models

3.3. Water Fraction

3.3.1. Segmentation

Figure 3.21 depicts the process of obtaining the haematoma’s water frac-

tion.

All obtained mean water fractions from figure 3.21 (e) for every test subject

are displayed in figure 3.22.

Some test subjects” water fractions differ significantly from the other. These

test subjects are marked with an arrow. Upon closer inspection some data
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Figure 3.21.: Process to obtain haematoma’s water fraction. (a) Calculated water and fat
MRI images. (b) Water fraction image (Water / (Fat+Water)) (c) Water fraction
image with final segmentation map from size determination in green overlaid.
(d) Final images that will be used to calculate average. (e) Haematoma’s water

fraction of all three slices and the average over time for one test subject.
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Figure 3.22.: Haematoma mean water fraction over time for all test subjects with mean
(black solid line) and corresponding SD (shaded area). Test subjects that show

differing behaviour are marked with an arrow.
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points of some test subjects were excluded as an inaccuracy due to imperfect
decomposition was suspected.

The test subject P7 was excluded, because the water fraction showed al-
most no variation over time. The data points for P34 (7 days), P27(3 days),
P10(3 days), P11(14 days) and P15(14 days) were also excluded. Test subject
P27 was then totally excluded, as too few data points remained. Test subject

P30 was excluded too.

These exclusions are accounted in all following calculations and illustrations

The water fraction without these outliers is presented in figure 3.23.
Figure 3.24 shows the fat ratio of all remaining test subjects.

The mean, standard deviation and coefficient of variation of the haematoma’s
water and fat fraction at selected time points are listed in table 3.8. The CV

of the water fraction increases with time.

Table 3.8.: Mean, SD and CV of haematoma’s water and fat fraction
Water Fraction Fat Fraction

Time point | Mean  SD cv Mean  SD Ccv

ohours | 0.6644 0.0878 13.22% | 0.3356 0.0878 26.17 %
3 hours | 0.6644 0.1104 16.61 % | 0.3356 0.1104 32.88 %
1 day 0.6374 0.1202 18.86 % | 0.3626 0.1202 33.15 %
3 days 0.4639 0.1406 30.3 % | 0.5361 0.1406 26.22 %
1 week 0.2594 0.1313 50.61 % | 0.7406 0.1313 17.73 %
2 weeks | 0.1666 0.0817 49.02 % | 0.8334 0.0817 9.8 %

Mean, standard deviation(SD) and Coefficient of Variation(CV) of the haematoma’s

water and fat fraction at selected time points.
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Figure 3.23.: Haematoma mean water fraction over time for test subjects with correct

separation with mean (black solid line) and corresponding SD (shaded area).
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Fat fraction (a.u.)
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Figure 3.24.: Haematoma mean fat fraction over time for test subjects with correct separa-

tion mean (black solid line) and corresponding SD (shaded area).
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3.3.2. Regression Analysis

The preliminary tested regression models are depicted in figure 3.25. Based
on the specific values of the preliminary regression models (see table 3.9)

the exponential regression model was selected as the best fitted model.

Table 3.9.: Preliminary regression model values

linear model exponential model
R? 0.664 0.726
Rgdj 0.661 0.723
RMSE 0.129 0.117
p-value | 2.25-1073! 6.7-10784

Normal and adjusted coefficient of determination (R?,

Rg f) j)’ root mean squared error (RMSE) and p-value for

the preliminary regression models.
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Figure 3.25.: Preliminary Regression Models

At the end, the chosen exponential regression model was applied to each
test subject individually. Figure 3.26 displays the regression model of one
test subject. For the regression models of all test subjects see appendix

chapter C.3.

The values of coefficient b of the exponential regression line all reside in
the range of 0.7774 to 0.9484 and the values of coefficient a vary more

significantly (see figure 3.27).

The bar char 3.28 shows normal and adjusted coefficient of determination

for each test subject. Test subject P10 shows the lowest R? value.
Figure 3.29 displays the p-values of the coefficients.

The bar chart in figure 3.30 depicts the p-values of the regression models
for each test subject. Only test subject P36 is outside the 95%-Confidence

interval.
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Figure 3.26.: Exponential regression model of test person Pg

The means, standard deviations and coefficients of variation over all re-
gression models for both regression parameters a and b are listed in table

3.10.

Table 3.10 shows the mean, standard deviation and coefficient of variation

for the quality metrics of the regression models.

Figure 3.31a is the boxplot for the coefficients of the regression line and the

normal and adjusted coefficients of determination

The boxplot for the p-values of the coefficients of the regression line and

the regression model is shown in figure 3.31b.
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(a) Bar chart for coefficient 4, with the mean plotted as a dotted black line and the standard
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Figure 3.27.: Bar charts for regression model coefficients

Table 3.10.: Values (mean, SD, CV) for the nonlinear model’s coefficients and its parameters

Coefficient a

Mean SD

Ccv

Coefficient b
Mean SD (@AY

Estimate
SE

p-value

0.6792 0.1009 14.85 %

0.0467 -
0.00686 -

0.8834 0.0487 5.55 %
0.0286 - -

0.0022 - -

Mean, standard deviation and the coefficient of variation for the estimates of

coefficients and the mean for standard error (SE) and p-value for the exponential

regression models of each test subject.
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Figure 3.28.: Bar charts for the normal and adjusted coefficient of determination

Table 3.11.: Values (mean, SD, CV) of the nonlinear model for each test subject

Mean SD Cv
R? 0.92254 0.05257 5.7 %
R2, ; 0892  0.0735 8.24 %

RMSE | 0.06613 0.03405 51.49 %

p-value | 0.00929 - -
Mean, standard deviation and coefficient of variation

for the normal and adjusted coefficient of confidence (R?, Rﬁ ) ].)

and Root mean square error(RMSE) and the mean of the p-value

for the exponential regression model of each test subject.
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Figure 3.29.: Bar charts for the p-values of the coefficients of the regression models
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Figure 3.30.: Bar chart for p-value of the regression models, with the mean plotted as a

dotted black line and the standard deviation as shaded area.
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Figure 3.31.: Box plots for coefficients, R? and Ridj and p-values of the coefficients and the

regression models
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4.1. Fat-Water Separation

The thesis’” goal of fat-water separation through the IDEAL-algorithm was
successfully accomplished for most of the provided data sets. In these cases
the algorithm presents itself as an effective method to decompose the fat
and water parts of the MRI signal (see figure 3.1). The expandability of the
computation to more than two species of different chemical shifts makes
the method quite usable in various different manners. Even restricted to
fat-water separation, the algorithm could be extended to accommodate more
than one fat peak [1]. However, this expansion would require more images,

which causes restrictions due to the prolonged acquisition time.

As shown in figure 3.4 and mentioned in chapter 2, the decomposition was
not always successful. This is due to the limitation in the determination of
the field map 9. The field map estimation is a critical step in the decomposi-
tion process. However, the true field map can only be directly determined if
it ranges between £Af./2 [15]. As exceeding this range is possible, some
techniques use phase unwrapping to address this problem. The IDEAL
method bypasses this by using an iterative field map estimation method.
This iterative approach does not solve the intrinsic ambiguity as the iterative

method has multiple exact solutions due to local minima (see figure 4.1).
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Figure 4.1.: Residue-¢ curve with a true water-fat ratio of 2:1. The overall residue of all
signals is minimal at the true field map value (here ¢y = 100Hz). The IDEAL-
algorithm determines ¢ by minimizing Ay, where Ay is minimal if the residue
over all signals is minimal. The Residue-¢ curve represents the dynamics of

the estimated ¢ and corresponding residue. Reprinted from [15].

For every pixel a single solution is assumed. In the presence of two feasible
solutions, the one to which the method converges depends on the initial-
ization. As seen in figure 4.1 an incorrect field map value due to a local
minima does not necessarily imply a pixel swapping, as alternating aliased
solutions correctly estimate the dominant component (with the exception
of P ~ 580 Hz). Even though the correct dominant species is given, the

fat-water ratio at a local minimum is not the true ratio.

Several different approaches have been introduced in literature to overcome
the local minima entrapment, such as the hierarchical IDEAL [16], a region
growing method [15] and a max-flow based approach [18]. The introduction
of a more robust approach to avoid being trapped by a local minima would

have overreached the scope of work for this thesis.

Regarding the thesis” goal of size determination, the true fat-water ratio
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is not necessary and does not impair the obtained size values as long as
the true dominant component is determined. For the calculation of the
water fraction a manual exclusion of possible imperfect decomposition was

necessary.

The image quality was objectively measured by comparing the merged water
and fat image with the original in quadrature image. Out of the three image
quality metrics calculated, the similarity index is most suitable to asses the
perceptual image quality. The highest dissimilarities around the haematoma
and in regions of fatty tissues are due to separation ambiguity at the borders
between different tissues and the fact that the IDEAL-algorithm effectively

corrects for chemical shift.[1]

Though the calculations for this thesis were accomplished in MATLAB, the
shorter execution time in Java (see table 3.2) should be considered if the

algorithm is to be applied in a time sensitive manner.

The main advantage of chemical shift based water-fat separation compared
to fat saturation or water excitation is that neither the water information nor
the fat information is lost. However this additional information involves a
more complex reconstruction and longer scan times. The separated fat and
water components can be recombined in different manners to create different
images such as the ‘in-phase’ image (water + fat), the ‘out-of-phase’ image
(water - fat), the "fat fraction” image (fat/(water+fat)), the ‘'water fraction’

image (water/(water+fat)) and the "fat:water ratio” image (fat/water).[10]
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4.2. Size Determination

After the successful decomposition of the water and fat components, the
relative size of each haematoma was obtained by ways of segmentation
and thresholding. The time-depended trend of the absolute and relative
size of all test subjects (see figures 3.10 and 3.11) indicate an exponential
decline. This indication was confirmed by the exponential regression models
calculated for each test subject’s haematoma (see chapter C.2). The high
coefficient of variation for the last week of observation is due to the differ-
ent rates of the healing process of each test subject. For several subjects no

haematoma could be observed as early as one week after the initial injection.

The different rates of the healing process also caused the high variance
between the coefficients b of the regression lines, as an increase of the base
of an exponential function increases the decay speed of an exponential
function.

The rapid decline of P13 can be observed in figure 3.11. The presumed
decline of P8 is uncertain, as no data points for 3 and 7 days after the

injection could be used (see figure C.3).

The coefficient a defines the ordinate-intercept of the regression line. As-
suming that the haematoma’s maximum size occurred directly after the
injection, the coefficient a should be 1, as the data set was normalized. The
deviation from 1 is small for most test subjects and can be explained by
small size increases after the injection. These increases can either be true

increases due to spreading of the blood in the thigh or to developing of an
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oedema because of a trauma caused by the injection or false increases due

to imperfect segmentation.

The proposed exponential regression model fits most test subjects data well,
as can be observed by the coefficient of determination in figure 3.17. Two
of the three test subjects deviate (P10 and P23) , because of missing data

points for the haematoma size past 7 days after injection.

As the haematoma’s size has to be normalized for effective comparison,
the simple separation of the water and fat components and subsequent
size determination is no valuable option to determine the age of a subcuta-
neous haematoma. The need for normalization does not exists for fraction

images.

4.3. Water Fraction

The calculation of the average water fraction of the haematoma builds
on the size determination, as it uses the final segmentation mask to split
the haematoma from the rest of the fraction image. The average water
fraction of a haematoma decreases with time, as the fluid components of

the haematoma are more easily reduced than the solid components.

The exclusion of certain images, because they were assumed to contain
incorrect water/fat ratios due to presumed local minima entrapment, intro-

duced some bias in the results of the water fractions.
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The average water content of adipose tissue according to literature is in the
range of 11.4 - 30.5 % [23]. The mean of the water fraction only lies inside
this range one and two weeks after the injection. This coincides with the

earliest time points for visual disappearance of the haematoma.

The heighten water fraction due to a haematoma does decrease over time.
The coefficient of variation increases over time, which was also observed
during the size determination. However, the CV is far smaller for the water

fraction determination, because the water fraction does not tend to zero.

The coefficient a represents the water content of the haematoma at the
starting point. Presumable the initial water content varies with the water
content of blood (79 - 80.8 % [23]) and the baseline water content of the
adipose tissue. The coefficient b represents the decline of the water content.
The coefficient of variation for coefficient b is low (see table 3.10). This
indicates that the water content drop over the time is similar between all
test subjects and over all depended on the baseline water content of fatty

tissue and the age of the haematoma.

4.4. Conclusion

This thesis has shown that the IDEAL-algorithm can be used to analyse
the properties of subcutaneous haematoma. Though size determination
is possible, the true benefit of a fat/water separation instead of a fat or
water suppression emerges with the utilization of both the water and the

fat image together. The water fraction of a subcutaneous haematoma could
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be an useful diagnostic parameter concerning the age of a haematoma.
Further studies should try to implement a more robust IDEAL-algorithm,
that addresses the local minima problem, and accounts for the baseline

water fraction of the adipose tissue.
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A. Comparision of Matlab, Java and Python

Implementation

Besides the overall execution time for all three implementations (see figure
3.8). Interim times were measured for three different subprocess of the

whole implementation.

e The first subprocess was the import and preprocessing of the DICOM

images (see figure A.1).

e The second subprocess was the IDEAL algorithm itself (see figure
A.2).

e The third subprocess was the export of the decomposed images ad

DICOM files (see figure A.3).

Figure A.4 shows these interim times as percentage of the overall execution
time. Table A.1 displays the profiling tools used to obtain the measured

times.

Table A.1.: Profiling tools
Matlab Python  Java
MATLAB Profiler cProfile YourKit

Used Profilers for Matlab, Python and Java
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Figure A.1.: Import execution time of Matlab, Java and Python implementation.
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B. Test Data

Table B.1.: Test person’s weight, age and sex

Test person ~ Weight Age Sex Test person ~ Weight Age Sex
(kg)  (years) (kg)  (years)

P6 85 24 M P23 56 24 F
Py 65 25 F P24 59 25 F
P8 70 21 F P25 95 35 M
P9 65 28 F P26 66 21 M
P1o 65 24 M P2y 75 24 M
P11 70 26 M P28 65 24 F
P12 60 32 F P2g 85 28 M
P13 60 25 F P30 75 23 M
P14 65 18 M P31 105 22 F
P15 75 25 M P32 56 22 F
P16 65 26 F P33 66 22 M
P17 70 26 F P34 105 22 F
P18 70 25 F P35 82 25 M
P19 85 25 M P36 70 23 M
P20 75 27 M P38 8o 23 M
P21 65 32 F P39 70 28 F
P22 115 31 M Pgo 76 23 M



B. Test Data

Table B.2.: Test person Data

Study Nummer  Test person Time of Initial Estimate ~ No successful
measurement o decompositions

032-11-F P6/S1 B o

033-11-F P6/S2 PL 0.2

035-11-F P6/S3 3h o

036-11-F P6/S4 1d 0.2

038-11-F P6/Ss5 3d o

040-11-F P6/S6 7d o

042-11-F P6/Sy 14 d - X
044-11-F P7/S1 B 0.3

045-11-F P7/S2 PIL 0.3

048-11-F P7/S3 3h o

050-11-F P7/S4 1d o

052-11-F P7/Ss 3d 0.3

054-11-F P7/S6 7d o

056-11-F P7/Sy 14d o

046-11-F P8/S1 B o

047-11-F P8/S2 PIL o

049-11-F P8/S3 3h o

051-11-F P8/S4 1d 0.2

053-11-F P8/Ss5 3d - X
055-11-F P8/S6 7d - X
057-11-F P8/Sy 14d 0.3

058-11-F P9/S1 B 0.2

059-11-F Pg/S2 PIL o

062-11-F P9/S3 3h o

064-11-F P9/S4 1d o

066-11-F P9/Ss5 3d o

068-11-F P9/S6 7d o

oyo-11-F P9/Sy 14 d o

060-11-F P10/S1 B 0.2

061-11-F P10/S2 PL - X
063-11-F P10/S3 3h 0.2

065-11-F P10/S4 1d 0.2

067-11-F P10/S5 3d 0.2

069-11-F P10/S6 7d o

071-11-F P10/Sy 14 d 0.2

072-11-F P11/S1 B )



B. Test Data

073-11-F P11/S2 PIL -
076-11-F P11/S3 3h 0.2
078-11-F P11/S4 1d 0.2
080-11-F P11/S5 3d o
082-11-F P11/S6 7d 0.2
084-11-F P11/Sy 14d o
074-11-F P12/S1 B o
075-11-F P12/S2 PL -
o077-11-F P12/S3 3h o
079-11-F P12/S4 1d 0.2
081-11-F P12/S5 3d 0.3
083-11-F P12/S6 7d -
085-11-F P12/Sy 14 d 0.3
086-11-F P13/S1 B 0.2
087-11-F P13/S2 PI o
090-11-F P13/S3 3h 0.2
092-11-F P13/S4 1d 0.2
094-11-F P13/Ss5 3d 0.3
096-11-F P13/S6 7d 0.2
088-11-F P14/S1 B 0.2
089-11-F P14/S2 PIL 0.2
091-11-F P14/S3 3h o
093-11-F P14/S4 1d o
095-11-F P14/Ss5 3d o
097-11-F P14/S6 7d 0.2
098-11-F P14/Sy 14d o
402-11-F P15/S1 B -
403-11-F P15/S2 PIL o
404-11-F P15/S3 3h o
405-11-F P15/S4 1d o
406-11-F P15/S5 3d 0.2
407-11-F P15/S6 7d o
408-11-F P15/Sy 14 d o
409-11-F P16/S1 B 0.2
410-11-F P16/S2 PL o
413-11-F P16/S3 3h o
415-11-F P16/S4 1d o
417-11-F P16/Ss5 3d o
419-11-F P16/S6 7d -
421-11-F P16/Sy 14d o

VI



B. Test Data

411-11-F P17/S1 B 0.2
412-11-F P17/S2 PI - X
414-11-F P17/S3 3h o
416-11-F P17/S4 1d 0.2
418-11-F P17/Ss5 3d o
420-11-F P1y7/S6 7d o
422-11-F P17/Sy 14 d o
423-12-F P18/S1 B 0.2
424-12-F P18/S2 PIL o
427-12-F P18/S3 3h - X
429-12-F P18/S4 1d 0.2
431-12-F P18/Ss5 3d 0.3
433-12-F P18/S6 7d o
435-12-F P18/Sy 14d o
425-12-F P19/S1 B 0.2
426-12-F P19/S2 PIL 0.2
428-12-F P19/S3 3h - X
430-11-F P19/S4 1d o
432-12-F P19/S5 3d o
434-12-F P19/S6 7d - X
436-12-F P19/Sy 14d o
437-12-F P20/S1 B 0.2
438-12-F P20/S2 PIL o
439-12-F P20/S3 3h o
440-12-F P20/S4 1d 0.2
441-12-F P20/S5 3d 0.3
442-12-F P20/S6 7d 0.2
443-12-F P20/Sy 14d 0.2
1600 P21/S1 PI 0.2
1602 P21/S2 3h exclusion due to artefacts
1604 P21/S3 1d exclusion due to artefacts
1606 P21/S4 3d o
1608 P21/S5 7d o
1610 P21/S6 14 d exclusion due to artefacts
P22 exclusion due to artefacts
1612 P23/S1 PI exclusion due to artefacts
1614 P23/S2 3h o
1616 P23/S3 1d 0.2
1618 P23/S4 3d 0.2

VII



Test Data

1620 P23/S5 7d o

1622 P23/S6 14d exclusion due to artefacts

1613 P24/S1 PIL exclusion due to artefacts

1615 P24/S2 3h 0.2

1617 P24/S3 1d 0.2

1619 P24/S4 3d 0.3

1621 P24/Ss5 7d exclusion due to artefacts

1623 P24/S6 14 d exclusion due to artefacts
P25 exclusion due to artefacts
P26 exclusion due to artefacts

1636 P27/S1 PI. exclusion due to artefacts

1638 P27/S2 3h exclusion due to artefacts

1640 P27/S3 1d o

1642 P27/S4 3d [

1644 P2y/Ss5 7d o

1646 P27/S6 14d - X

1637 P28/S1 PI o

1639 P28/S2 3h -0.2

1641 P28/S3 1d o

1643 P28/S4 3d o

1645 P28/S5 7d 0.2

1647 P28/S6 14 d o

1648 P29/S1 PI -0.2

1650 P29/S2 3h 0.2

1652 P29/S3 1d - X

1654 P29/S4 3d 0.2

1656 P29/Ss5 7d o

1658 P29/S6 14 d o

1649 P30/S1 PIL - X

1651 P30/S2 3h - X

1653 P30/S3 1d o

1655 P30/S4 3d X

1657 P30/55 7d o

1659 P30/S6 14d 0.2

1660 P31/S1 PIL 0.2

1662 P31/S2 3h o

1664 P31/53 1d - X

1666 P31/S4 3d 0.3

1668 P31/Ss5 7d o

1670 P31/S6 14 d - X

VIII



B. Test Data

1661 P32/S1 PI o
1663 P32/S2 3h o
1665 P32/S3 1d 0.2
1667 P32/54 3d o
1669 P32/S5 7d o
1671 P32/S6 14d o
1672 P33/S1 PIL -
1674 P33/S2 3h 0.2
1676 P33/S3 1d -
1678 P33/S4 3d -
1680 P33/55 7d -
1682 P33/S6 14d o
1673 P34/S1 PI o
1675 P34/S2 3h o
1677 P34/53 1d o
1679 P34/54 3d o
1681 P34/S5 7d 0.2
1683 P34/56 14 d o
1684 P35/S1 PI o
1686 P35/S2 3h 0.2
1688 P35/S3 1d 0
1690 P35/54 3d o
1692 P35/55 7d o
1694 P35/56 14d -
1685 P36/S1 PI o
1687 P36/52 3h -
1689 P36/S3 1d -
1691 P36/S4 3d o
1693 P36/S5 7d -
1695 P36/S6 14d o
1696 P38/S1 PIL o
1697 P38/S2 3h o
1698 P38/S3 1d 0.2
1699 P38/S4 3d o
1700 P38/S5 7d -
1701 P38/S6 14 d o
1702 P39/S1 PIL o
1704 P39/S2 3h -
1706 P39/S3 1d o



B. Test Data

1708 P39/S4 3d 0
1710 P39/S5 7d o
1712 P39/S6 14d -
1703 P40/S1 PL 0.2
1705 Pgo0/S2 3h o
1707 P40/S3 1d o
1709 P40/S4 3d o
1711 P40/S5 7d o
1713 P40/S6 14d o



C. Regression Models

C.1. Included Test subjects

Table C.1.: Included Test subjects

Test subject ~ Size vs Time = Water Fraction vs Time Test subject ~ Size vs Time  Water Fraction vs Time
P6 X X P23 X X
Py X P24 X X
P8 X X P27 X
Pg X X P28 X X

P10 X X P29 X X
P11 X X P30 X

P12 X X P31 X X
P13 X X P32 X X
P14 X X P33 X

P15 X X P34 X X
P16 X X P35 X X
P1y X X P36 X X
P18 X X P38 X X
P19 X X P39 X X
P20 X X P40 X X
P21 X X

Included test subject for size vs time and water fraction vs time analyses

Xl



C. Regression Models

C.2. Size vs Time
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Figure C.1.: Graph of regression model

Table C.2.: Model parameter

Coefficients a b
Estimate 0.92523 0.85683 Table C.3.: Model parameter
SE 0.055539 0.029668 Confidence interval ‘ Prediction interval
tStat 16.659 28.88 Mean  (0.38951) - (0.74281) | (0.24058) - (0.89173)
p-Value 0.00047089 | 9.1157%107° SD (0.2075) - (0.15135) (0.19418) - (0.16374)
Parameter estimates and statistically values 0.95% confidence and 0.95% prediction intervals

Table C.4.: Metrics of regression model

R*  RY, SSE SSR SST  RMSE pValue

0.923 0.898 0.021944 0.25691 0.28567 0.0855  0.0007

Statistically values for regression model

XII



C. Regression Models
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Figure C.2.: Graph of regression model

Table C.5.: Model parameter

Coefficients a b
Estimate 0.95353 0.81154 Table C.6.: Model parameter
SE 0.075972 0.043431 Confidence interval ‘ Prediction interval
tStat 12.551 18.686 Mean  (0.13434) - (0.48568) | (-0.048038) - (0.66806)
p-Value 0.00023188 | 4.8289%107 SD (0.23994) - (0.26084) (0.24403) - (0.25317)
Parameter estimates and statistically values 0.95% confidence and 0.95% prediction intervals

Table C.7.: Metrics of regression model

R*  RY, SSE SSR SST RMSE  pValue

0.933 0.916 0.050003 0.69314 0.7439  0.112  0.000346

Statistically values for regression model
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C. Regression Models
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Figure C.3.: Graph of regression model
Table C.8.: Model parameter
Coefficients a b
Estimate 0.94107 | 0.42224 Table C.9.: Model parameter
SE 0.10661 | 0.15038 Confidence interval ‘ Prediction interval
tStat 8.8273 2.8078 Mean  (-0.049008) - (0.2106) | (-0.46568) - (0.62727)
pValue 0.012592 | 0.10689 SD (0.13926) - (0.33212) (0.14349) - (0.2368)

Parameter estimates and statistically values

0.95% confidence and 0.95% prediction intervals

Table C.10.: Metrics of regression model

R* Ry, SSE SSR SST  RMSE pValue
0.948 0.922 0.027598 0.51052 0.53368  0.117 0.0162

Statistically values for regression model
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C. Regression Models
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Figure C.4.: Graph of regression model

Table C.11.: Model parameter

Coefficients a b
Estimate 1.0453 0.86905 Table C.12.: Model parameter
SE 0.060858 0.023358 Confidence interval ‘ Prediction interval
tStat 17.177 37.205 Mean  (0.29902) - (0.61782) | (0.14955) - (0.76729)
p-Value 6.7397%107° | 3.1164%107° SD (0.26654) - (0.24408) (0.2605) - (0.24942)
Parameter estimates and statistically values 0.95% confidence and 0.95% prediction intervals

Table C.13.: Metrics of regression model

R* R, SSE SSR SST  RMSE pValue

0.954 0.942 0.036178 0.65616 0.78585 0.0951  0.0001

Statistically values for regression model

XV



C. Regression Models
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Figure C.5.: Graph of regression model

Table C.14.: Model parameter

Coefficients a b
Estimate 0.77876 0.86515 Table C.15.: Model parameter
SE 0.19494 | 0.087307 Confidence interval ‘ Prediction interval
tStat 3.9948 9.9092 Mean  (-0.15159) - (0.82006) | (-0.57924) - (1.2477)
p-Value 0.028104 | 0.002186 SD (0.20748) - (0.18752) | (0.19801) - (0.18825)
Parameter estimates and statistically values 0.95% confidence and 0.95% prediction intervals

Table C.16.: Metrics of regression model

R*  R%, SSE SSR SST  RMSE pValue

0.666 0.554 0.17673 0.30036 0.52887  0.243 0.0375

Statistically values for regression model
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C. Regression Models
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Figure C.6.: Graph of regression model

Table C.17.: Model parameter

Coefficients a b
Estimate 1.0772 0.88155 Table C.18.: Model parameter
SE 0.11529 | 0.033369 Confidence interval ‘ Prediction interval
tStat 9.3436 26.418 Mean  (0.21621) - (0.79725) | (-0.037488) - (1.0509)
p-Value 0.002596 | 0.000119 SD (0.26985) - (0.24205) | (0.26188) - (0.24789)
Parameter estimates and statistically values 0.95% confidence and 0.95% prediction intervals

Table C.19.: Metrics of regression model

R*  RY, SSE SSR SST  RMSE pValue

0.9oy7 0.876 0.062525 051421 0.67327  0.144  0.00326

Statistically values for regression model
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Figure C.7.: Graph of regression model

Table C.20.: Model parameter

Coefficients a b
Estimate 0.99503 0.66689 Table C.21.: Model parameter
SE 0.11802 | 0.085744 Confidence interval ‘ Prediction interval
tStat 8.4313 77776 Mean  (-0.039483) - (0.39379) | (-0:35957) - (0.71387)
p-Value 0.013777 | 0.016132 SD (0.17509) - (0.35595) (0.20534) - (0.28816)
Parameter estimates and statistically values 0.95% confidence and 0.95% prediction intervals

Table C.22.: Metrics of regression Model

R* Ry, SSE SSR SST  RMSE pValue

0.953 0.929 0.024326 0.50819  0.51733 0.11 0.0167

Statistically values for regression model
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C. Regression Models
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Figure C.8.: Graph of regression model

Table C.23.: Model parameter

Coefficients a b
Estimate 0.88429 0.43901 Table C.24.: Model parameter
SE 0.13346 0.16691 Confidence interval ‘ Prediction interval
tStat 6.626 2.6303 Mean  (-0.050963) - (0.36526) | (-0.37473) - (0.68902)
p-Value 0.0070017 | 0.0078307 SD (0.16283) - (0.32973) (0.18698) - (0.26148)
Parameter estimates and statistically values 0.95% confidence and 0.95% prediction intervals

Table C.25.: Metrics of regression Model

R R SSE SSR SST ~ RMSE pValue

0.891 0.854 0.066308 0.58075 0.60616  0.149 0.0854

Statistically values for regression model
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C. Regression Models
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Figure C.9.: Graph of regression model

Table C.26.: Model parameter

Coefficients a b
Estimate 0.90027 0.84085 Table C.27.: Model parameter
SE 0.070482 0.037477 Confidence interval ‘ Prediction interval
tStat 12.773 22.436 Mean  (0.16068) - (0.51792) | (-0.012869) - (0.69146)
p-Value 0.00021648 | 2.3368%107° SD (0.23271) - (0.22907) (0.23085) - (0.22887)
Parameter estimates and statistically values 0.95% Confidence and 0.95% prediction intervals

Table C.28.: Metrics of regression model

R*  RY, SSE SSR SST  RMSE pValue

0.926  0.908 0.047553 0.56774 0.64587  0.109  0.00034
Statistically values for regression model
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C. Regression Models
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Figure C.10.: Graph of regression model

Table C.29.: Model parameter

Coefficients a b
Estimate 0.97056 0.79818 Table C.30.: Model parameter
SE 0.040056 0.023773 Confidence interval ‘ Prediction interval
tStat 24.23 33.575 Mean  (0.20674) - (0.38515) | (0.10976) - (0.48213)
p-Value 1.7211%1075 | 4.6939%107° SD (0.2456) - (0.26249) (0.24983) - (0.25708)
Parameter estimates and statistically values 0.95% confidence and 0.95% prediction intervals

Table C.31.: Metrics of regression Model

R*  RY, SSE SSR SST  RMSE  pValue

0.982  0.978 0.013674 0.74546 0.76198  0.0585  2.59%107

Statistically values for regression model
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C. Regression Models
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Figure C.11.: Graph of regression model

Table C.32.: Model parameter

Coefficients a b
Estimate 1.0353 0.81417 Table C.33.: Model parameter
SE 0.05968 0.040134 Confidence interval ‘ Prediction interval
tStat 17.348 20.287 Mean  (0.13951) - (0.54244) | (0.0020008) - (0.67996)
p-Value 0.00041738 | 0.00026186 SD (0.27381) - (0.27159) (0.27104) - (0.26961)
Parameter estimates and statistically values 0.95% confidence and 0.95% prediction intervals

Table C.34.: Metrics of regression Model

R* Ry, SSE SSR SST  RMSE pValue

0.97 0.96 0.021634 0.64383 0.72917 0.0849  0.000585

Statistically values for regression model
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C. Regression Models
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Figure C.12.: Graph of regression model

Table C.35.: Model parameter

Coefficients a b
Estimate 0.90246 0.83489 Table C.36.: Model parameter
SE 0.11827 0.053371 Confidence interval ‘ Prediction interval
tStat 7.6305 15.643 Mean (0.056781) - (0.60279) | (-0.19362) - (0.85319)
pValue 0.004673 | 0.00056774 SD (0.22248) - (0.24623) (0.22611) - (0.23832)
Parameter estimates and statistically values 0.95% confidence and 0.95% prediction intervals

Table C.37.: Metrics of regression model

R* R SSE SSR SST  RMSE pValue

0.89 0.854 0.058747 0.45433 0.53553 0.14 0.00606
Statistically values for regression model

XX
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Figure C.13.: Graph of regression model

Table C.38.: Model parameter

Coefficients a b
Estimate 0.98959 0.76406 Table C.39.: Model parameter
SE 0.032209 0.017503 Confidence interval ‘ Prediction interval
tStat 30.724 43.652 Mean  (0.19802) - (0.31874) | (0.12819) - (0.38857)
p-Value 7.5748%107° | 2.6463%107> SD  (0.24409) - (0.27138) | (0.25128) - (0.26344)
Parameter estimates and statistically values 0.95% confidence and 0.95% prediction intervals

Table C.40.: Metrics of regression model

R* R, SSE SSR SST  RMSE  pValue

0.994 0.992 0.0038404 0.64021  0.65203 0.0358  0.000103

Statistically values for regression model

XXIV
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Figure C.14.: Graph of regression model

Table C.41.: Model parameter

Coefficients a b
Estimate 0.95706 0.85604 Table C.42.: Model parameter
SE 0.14821 0.075469 Confidence interval ‘ Prediction interval
tStat 6.4573 11.343 Mean (-0.251) - (1.0328) (-0.61993) - (1.4018)
pValue 0.023153 | 0.0076828 SD (0.30294) - (0.20368) | (0.27544) - (0.21379)
Paramter estimates and statistically values 0.95% confidence and 0.95% prediction intervals

Table C.43.: Metrics of regression model

R* Ry, SSE SSR SST  RMSE pValue

0.883 0.825 0.065247 0.41377 0.55977  0.181 0.032

Statistically values for regression model

XXV
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Figure C.15.: Graph of regression model

Table C.44.: Model parameter

Coefficients a b
Estimate 0.89364 0.81964 Table C.45.: Model parameter
SE 0.080218 0.045661 Confidence interval ‘ Prediction interval
tStat 11.14 17.95 Mean  (0.1188) - (0.48591) | (-0.073577) - (0.67829)
pValue 0.00036949 | 5.6613%107° SD (0.22839) - (0.24249) (0.22839) - (0.23593)
Parameter estimates and statistically values 0.95% Confidence and 0.95% prediction intervals

Table C.46.: Metrics of regression model

R* R,  SSE SSR SST  RMSE pValue

0912 0.89 0.05541 0.58169 0.63102 0.118  0.000545

Statistically values for regression model

XXVI
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Figure C.16.: Graph of regression model

Table C.47.: Model parameter

Coefficients a b
Estimate 1 1.4151%10°8 Table C.48.: Model parameter
SE 9.1821x107%4 o Confidence interval ‘ Prediction interval
tStat 1.0891%10%3 Inf Mean (NaN) - (NaN) (NaN) - (NaN)
p-Value 8.4311%10% o SD (NaN) - (NaN) (NaN) - (NaN)
Parameter estimates and statistically values 0.95% confidence and 0.95% prediction intervals

Table C.49.: Metrics of regression model
R*  RY; SSE SSR SST RMSE pValue
1 1 1.6862%1074  0.66667 0.66667 9.18%1072%  8.43x107%

Statistically values for regression model

XXVII
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Figure C.17.: Graph of regression model

Table C.50.: Model parameter

Coefficients a b
Estimate 0.84712 0.90838 Table C.51.: Model parameter
SE 0.14229 0.057875 Confidence interval ‘ Prediction interval
tStat 5.9534 15.696 Mean  (0.10516) - (1.1288) (-0.30991) - (1.5439)
p-Value 0.027074 | 0.0040347 SD (0.19047) - (0.09741) | (0.15808) - (0.098855)
Parameter estimates and statistically values 0.95% Confidence and 0.95% prediction intervals

Table C.52.: Metrics of regression model

R R SSE SSR SST ~ RMSE pValue

0.572 0.358 0.063929 0.095103  0.14945  0.179 0.0326
Statistically values for regression model

XXVIII
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Figure C.18.: Graph of regression model

Table C.53.: Model parameter

1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
0 02040608 1 12141618 2 22242628 3

Coefficients a b
Estimate 1.0214 0.63237 Table C.54.: Model parameter
SE 0.085779 | 0.064831 Confidence interval ‘ Prediction interval
tStat 11.908 9.7541 Mean  (-0.26074) - (1.3765) | (-0.76189) - (1.8777)
p-Value 0.053338 | 0.065039 SD (0.27) - (0.22818) (0.24873) - (0.22503)
Parameter estimates and statistically values 0.95% Confidence and 0.95% prediction intervals

Table C.55.: Metrics of regression model

R*  RY, SSE SSR SST  RMSE pValue

0.972 0.944 0.0066007 0.23554 0.24499 0.0812  0.0667

Statistically values for regression model

XXIX
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Figure C.19.: Graph of regression model

Table C.56.: Model parameter

Coefficients a b
Estimate 1.1118 0.84411 Table C.57.: Model parameter
SE 0.18602 | 0.053461 Confidence interval ‘ Prediction interval
tStat 5.9768 15.789 Mean  (-0.69414) - (1.9983) (-1.5048) - (2.809)
p-Value 0.10554 | 0.040266 SD (0.28425) - (0.43751) | (0.22265) - (0.36155)
Parameter estimates and statistically values 0.95% confidence and 0.95% prediction intervals

Table C.58.: Metrics of regression model

R R SSE SSR SST ~ RMSE pValue

adj

0.9oy 0.814 0.01731 0.1864 0.18572  0.132 0.107

Statistically values for regression model

XXX
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Figure C.20.: Graph of regression model

Table C.59.: Model parameter

Coefficients a b
Estimate 1.0472 0.77296 Table C.60.: Model parameter
SE 0.082307 0.0516 Confidence interval ‘ Prediction interval
tStat 12.723 14.98 Mean  (0.1071) - (0.46168) | (-0.10206) - (0.67084)
p-Value 0.00021983 | 0.00011569 SD (0.24965) - (0.30477) (0.2622) - (0.28529)
Parameter estimates and statistically values 0.95% confidence and 0.95% prediction intervals

Table C.61.: Metrics of regression model

R*  R%, SSE SSR SST  RMSE  pValue

0.946 0.933 0.059878 0.94137 1.1159  0.122  0.000361

Statistically values for regression model

XXXI
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Figure C.21.: Graph of regression model

Table C.62.: Model parameter

Coefficients a b
Estimate 0.82232 0.76323 Table C.63.: Model parameter
SE 0.14319 0.11271 Confidence interval ‘ Prediction interval
tStat 5.743 6.7715 Mean  (-0.12519) - (0.55306) | (-0.50634) - (0.93421)
p-Value 0.010485 | 0.0065816 SD (0.17156) - (0.30131) (0.18755) - (0.24884)
Parameter estimates and statistically values 0.95% confidence and 0.95% prediction intervals

Table C.64.: Metrics of regression model

R*  R%, SSE SSR SST  RMSE pValue

0.838 0.784 0.11621 054883 0.71845  o0.197 0.0199

Statistically values for regression model
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Figure C.22.: Graph of regression model

Table C.65.: Model parameter

Coefficients a b
Estimate 1.0959 0.88397 Table C.66.: Model parameter
SE 0.066072 | 0.013763 Confidence interval ‘ Prediction interval
tStat 16.587 64.23 Mean  (-0.0020752) - (1.0475) (-0.3425) - (1.3879)
p-Value 0.038335 | 0.0099108 SD (0.22312) - (0.30373) (0.23245) - (0.28721)
Parameter estimates and statistically values 0.95% confidence and 0.95% prediction intervals

Table C.67.: Metrics of regression model

R* Ry, SSE SSR SST  RMSE pValue

0.991 0.981 0.002914 0.31318 0.32435  0.054 0.0484

Statistically values for regression model
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Figure C.23.: Graph of regression model

Table C.68.: Model parameter

Coefficients a b
Estimate 0.92585 0.7406 Table C.69.: Model parameter
SE 0.11002 | 0.085502 Confidence interval ‘ Prediction interval
tStat 8.4154 8.6618 Mean  (-0.07603) - (0.85308) | (-0.40841) - (1.1855)
p-Value 0.013828 | 0.013068 SD (0.24994) - (0.22511) (0.24137) - (0.2269)
Parameter estimates and statistically values 0.95% confidence and 0.95% prediction intervals

Table C.70.: Metrics of regression model

R R SSE SSR SST  RMSE pValue

0.922 0.883 0.045115 0.47024  0.57802 0.15 0.0244

Statistically values for regression model
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Figure C.24.: Graph of regression model

Table C.71.: Model parameter

Coefficients a b
Estimate 0.79831 0.85518 Table C.72.: Model parameter
SE 0.11418 0.063838 Confidence interval ‘ Prediction interval
tStat 6.9915 13.396 Mean  (0.022367) - (0.62675) | (-0.2646) - (0.91372)
p-Value 0.0022021 | 0.00017959 SD (0.21559) - (0.19015) (0.20687) - (0.1942)
Parameter estimates and statistically values 0.95% confidence and 0.95% prediction intervals

Table C.73.: Metrics of regression model

R*  R%, SSE SSR SST RMSE pValue

0.702  0.627 0.13218 04261 0.4432 0.182  0.00359

Statistically values for regression model
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Figure C.25.: Graph of regression model

Table C.74.: Model parameter

Coefficients a b
Estimate 0.92762 0.84759 Table C.75.: Model parameter
SE 0.063146 0.031773 Confidence interval ‘ Prediction interval
tStat 14.69 26.677 Mean  (0.19724) - (0.52714) | (0.039043) - (0.68534)
p-Value 0.00012496 | 1.1737%107 SD (0.23989) - (0.23128) | (0.23702) - (0.23269)
Parameter estimates and statistically values 0.95% confidence and 0.95% prediction intervals

Table C.76.: Metrics of regression model

R*  R%, SSE SSR SST  RMSE  pValue

0.943 0.929 0.039883 0.59391 0.70218 0.0999  0.000203

Statistically values for regression model

XXXVI



C. Regression Models

P35

1.6
o Data
14r — Exponential regression line
95 % Confidence interval
1.2y 95 % Prediction interval

Relative size (a.u.)

_0.4 1 1 1 1 1 1 |
0 1 2 3 4 5 6 7

Time in days

Figure C.26.: Graph of regression model

Table C.77.: Model parameter

Coefficients a b
Estimate 1.0466 0.72678 Table C.78.: Model parameter
SE 0.07118 0.052733 Confidence interval ‘ Prediction interval
tStat 14.704 13.782 Mean  (0.20461) - (0.63668) | (0.027039) - (0.81425)
p-Value 0.00068227 | 0.00082666 SD (0.27507) - (0.26015) | (0.27065) - (0.26269)
Parameter estimates and statistically values 0.95% confidence and 0.95% prediction intervals

Table C.79.: Metrics of regression model

R*  R%, SSE SSR SST  RMSE pValue

0.958 0.944 0.031908 0.64158 0.76384  0.103  0.00112

Statistically values for regression model
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Figure C.27.: Graph of regression model
Table C.80.: Model parameter
Coefficients a b
Estimate 1.0001 0.68029 Table C.81.: Model parameter
SE 0.0047726 | 0.0035915 Confidence interval ‘ Prediction interval
tStat 209.55 189.41 Mean (0.15472) - (0.219) (0.11593) - (0.25779)
p-Value 0.0030381 0.003361 SD (0.233) - (0.26243) (0.24047) - (0.25434)
Parameter estimates and statistically values 0.95% confidence and 0.95% prediction intervals

Table C.82.: Metrics of regression Model

R* Ry, SSE SSR SST RMSE  pValue

1 1 2.278%10° 05141 0.51815 0.00477  0.00453

Statistically values for regression model

XXXVIII
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Figure C.28.: Graph of regression model

Table C.83.: Model parameter

Coefficients a b
Estimate 0.87938 0.84604 Table C.84.: Model parameter
SE 0.07019 0.050683 Confidence interval ‘ Prediction interval
tStat 12.529 16.693 Mean  (0.063208) - (0.6179) | (-0.10472) - (0.78583)
p-Value 0.0010962 | 0.00175 SD (0.25072) - (0.20402) | (0.23796) - (0.21112)
Parameter estimates and statistically values 0.95% confidence and 0.95% prediction intervals

Table C.85.: Metrics of regression model

R*  RY, SSE SSR SST  RMSE pValue

0.922 0.895 0.035461 043599 0.45186  0.109  0.00175

Statistically values for regression model

XXXIX
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Figure C.29.: Graph of regression model

Table C.86.: Model parameter

Coefficients a b
Estimate 0.96694 0.68849 Table C.87.: Model parameter
SE 0.095233 0.067097 Confidence interval ‘ Prediction interval
tStat 10.153 10.261 Mean  (0.047037) - (0.64389) | (-0.19583) - (0.88676)
p-Value 0.0095612 | 0.0093644 SD (0.23332) - (0.27827) (0.2413) - (0.26548)
Parameter estimates and statistically values 0.95% Confidence and 0.95% prediction intervals

Table C.88.: Metrics of regression Model

R RY  SSE SSR SST  RMSE pValue

0.958 0.937 0.021864 0.46612 051719  0.105 0.0142

Statistically values for regression model

XL
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Figure C.30.: Graph of regression model

Table C.89.: Model parameter

Coefficients a b
Estimate 1.0076 0.68208
SE 0.046179 0.039659
tStat 21.819 17.199
p-Value 2.6107%107° | 6.7058%107>

Parameter estimates and statistically values

Table C.go0.: Model parameter

Confidence interval ‘ Prediction interval

(-0.010474) - (0.38948)
(0.23891) - (0.26085)

Mean  (0.11479) - (0.26422)
SD (0.22275) - (0.28108)

0.95% confidence and 0.95% prediction intervals

Table C.91.: Metrics of regression model

R* R, SSE SSR SST RMSE pValue
0.983 0979 0.016953 0.97008 1.0254 0.0651  4.3%107°

Statistically values for regression model

XLI
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Figure C.31.: Graph of regression model

Table C.92.: Model parameter

Coefficients a b
Estimate 0.78287 0.89572 Table C.93.: Model parameter
SE 0.028693 0.01565 Confidence interval ‘ Prediction interval
tStat 27.285 57.234 Mean  (0.45435) - (0.6379) (0.37411) - (0.71814)
p-Value 0.00010805 | 1.175%10 5 SD (0.14042) - (0.10732) | (0.13262) - (0.11461)
Parameter estimates and statistically values 0.95% confidence and 0.95% prediction intervals

Table C.94.: Metrics of regression model

R* R SSE SSR SST  RMSE  pValue

0.95 0.933 0.0061945 0.12075 0.12404 0.0454  0.000153
Statistically values for regression model

XL



C. Regression Models

P8

14
o Data
12p — Exponential regression line
g 95 % Confidence interval
1 95 % Prediction interval
—~ 08 °
3
3 0 6 [
- .
8
§ 0.4+
g 02
(] o
= o
—02F
—0.4+
—0.6 | | | | | ! ]
0 2 4 6 8 10 12 14

Time in days

Figure C.32.: Graph of regression model

Table C.95.: Model parameter

Coefficients a b
Estimate 0.80599 0.87272 Table C.96.: Model parameter
SE 0.061885 0.049609 Confidence interval ‘ Prediction interval
tStat 13.024 17.592 Mean  (-0.066453) - (0.78792) | (-0.23993) - (0.9614)
p-Value 0.0058437 | 0.0032157 SD (0.26687) - (0.13895) (0.24121) - (0.15565)
Parameter estimates and statistically values 0.95% confidence and 0.95% prediction intervals

Table C.97.: Metrics of regression model

R*  R%, SSE SSR SST  RMSE pValue

0.948 0.922 0.018829 0.3182 0.36088  0.097 0.0104

Statistically values for regression model

XL
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Figure C.33.: Graph of regression model

Table C.98.: Model parameter

Coefficients a b
Estimate 0.5554 0.88306 Table C.99.: Model parameter
SE 0.028154 0.018604 Confidence interval ‘ Prediction interval
tStat 19.727 47.465 Mean  (0.18818) - (0.33886) | (0.11793) - (0.40912)
p-Value 3.8949%107° | 1.178%107° SD (0.13815) - (0.1234) (0.13433) - (0.127)
Parameter estimates and statistically values 0.95% confidence and 0.95% prediction intervals

Table C.100.: Metrics of regression model

R*  RZ, SSE SSR SST  RMSE  pValue

0.953 0.041 0.0080182 0.16849 0.17077 0.0448  5.77%107°

Statistically values for regression model
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Figure C.34.: Graph of regression model

Table C.101.: Model parameter

Coefficients a b
Estimate 0.59157 0.92587 Table C.102.: Model parameter
SE 0.080418 | 0.030257 Confidence interval ‘ Prediction interval
tStat 7.3562 30.6 Mean  (0.062416) - (0.66205) | (-0.17949) - (0.90395)
p-Value 0.017983 | 0.0010662 SD (0.14258) - (0.09007) (0.12871) - (0.099034)
Parameter estimates and statistically values 0.95% confidence and 0.95% prediction intervals

Table C.103.: Metrics of regression model

R*  R%, SSE SSR SST RMSE pValue

0881 0.716 0.021881 0.96885 0.1156  0.105 0.0264

Statistically values for regression model

XLV



C. Regression Models

P11

14
o Data
121 — Exponential regression line
95 % Confidence interval
1 95 % Prediction interval

Water fraction (a.u.)

0 2 4 6 8 10 12 14
Time in days

-0.2 .

Figure C.35.: Graph of regression model

Table C.104.: Model parameter

Coefficients a b
Estimate 0.90189 0.88845 Table C.105.: Model parameter
SE 0.044243 0.018656 Confidence interval ‘ Prediction interval
tStat 20.385 47.623 Mean  (0.24905) - (0.63368) | (0.13456) - (0.74817)
p-Value 0.0023978 | 0.00044063 SD (0.23548) - (0.18293) (0.22466) - (0.1929)
Parameter estimates and statistically values 0.95% Confidence and 0.95% prediction intervals

Table C.106.: Metrics of regression model

R* Ry, SSE SSR SST  RMSE pValue

0.98 0.97 0.0061075 0.30138 0.30286 0.0553  0.0033

Statistically values for regression model

XLVI
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Figure C.36.: Graph of regression model

Table C.107.: Model parameter

Coefficients a b
Estimate 0.55279 0.7774 Table C.108.: Model parameter
SE 0.080597 | 0.091847 Confidence interval ‘ Prediction interval
tStat 6.8587 8.4642 Mean  (-0.9727) - (0.40356) | (-0.28638) - (0.59266)
p-Value 0.020603 | 0.013673 SD (0.13278) - (0.18624) | (0.13421) - (0.16371)
Parameter estimates and statistically values 0.95% confidence and 0.95% prediction intervals

Table C.109.: Metrics of regression model

R*  RY SSE SSR SST  RMSE pValue

0.907 0.86 0.013693 0.14678 0.15414 0.0827  0.0246

Statistically values for regression model
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Figure C.37.: Graph of regression model

Table C.110.: Model parameter

Coefficients a b
Estimate 0.63426 0.77971 Table C.111.: Model parameter
SE 0.075672 0.075678 Confidence interval ‘ Prediction interval
tStat 8.3817 10.303 Mean  (0.074473) - (0.52826) | (-0.11049) - (0.71323)
p-Value 0.0035617 | 0.0019501 SD (0.17256) - (0.13189) (0.16218) - (0.14049)
Parameter estimates and statistically values 0.95% confidence and 0.95% prediction intervals

Table C.112.: Metrics of regression model

R*  RY, SSE SSR SST  RMSE pValue

0859 0.812 0.034831 0.19023 0.24722  0.108  0.00533

Statistically values for regression model
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Figure C.38.: Graph of regression model

Table C.113.: Model parameter

Coefficients a b
Estimate 0.63882 0.93115 Table C.114.: Model parameter
SE 0.0078923 0.0032346 Confidence interval ‘ Prediction interval
tStat 80.943 287.87 Mean  (0.3819) - (0.42666) (0.3604) - (0.44817)
p-Value 1.3964%1077 | 8.7358x10710 SD  (0.12076) - (0.11291) | (0.11883) - (0.11482)
Parameter estimates and statistically values 0.95% confidence and 0.95% prediction intervals

Table C.115.: Metrics of regression model

R* Ry, SSE SSR SST RMSE  pValue

0.994 0.993 0.0007322 0.12759 0.12963  1.99%1077
Statistically values for regression model
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Figure C.39.: Graph of regression model

Table C.116.: Model parameter

Coefficients a b
Estimate 0.701 0.93546 Table C.117.: Model parameter
SE 0.027541 0.014182 Confidence interval ‘ Prediction interval
tStat 25.453 65.96 Mean  (0.47368) - (0.64676) (0.39393) - (0.72651)
p-Value 0.000133 | 7.678%107° SD (0.093715) - (0.06181) | (0.085926) - (0.0685)
Parameter estimates and statistically values 0.95% Confidence and 0.95% prediction intervals

Table C.118.: Metrics of regression Model

R? R SSE SSR SST ~ RMSE  pValue

adj

0.888 0.851 0.005895 0.04713 0.052663 0.0443  0.000169

Statistically values for regression model
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Figure C.40.: Graph of regression model

Table C.119.: Model parameter

Coefficients a b
Estimate 0.67574 0.91517 Table C.120.: Model parameter
SE 0.030774 0.014516 Confidence interval ‘ Prediction interval
tStat 21.958 63.044 Mean  (0.2387) - (0.53619) | (0.14145) - (0.63344)
p-Value 0.0020675 | 0.00025151 SD (0.16381) - (0.1138) (0.15343) - (0.12379)
Parameter estimates and statistically values 0.95% confidence and 0.95% prediction intervals

Table C.121.: Metrics of regression model

R*  R%, SSE SSR  SST RMSE pValue

0.975 0.962  0.0040977 0.149 0.1607 0.0453  0.0034
Statistically values for regression model
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Figure C.41.: Graph of regression model

Table C.122.: Model parameter

Coefficients a b
Estimate 0.59636 0.84199 Table C.123.: Model parameter
SE 0.062266 0.04108 Confidence interval ‘ Prediction interval
tStat 9.5776 20.496 Mean  (0.079613) - (0.37257) | (-0.053058) - (0.50524)
p-Value 0.002415 | 0.00025394 SD (0.14886) - (0.15704) (0.15) - (0.1543)
Parameter estimates and statistically values 0.95% Confidence and 0.95% prediction intervals

Table C.124.: Metrics of regression model

R*  RY, SSE SSR SST  RMSE pValue

0.916 0.888 0.016651 0.19385 0.19897 0.0745 0.00313

Statistically values for regression model
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Figure C.42.: Graph of regression model

Table C.125.: Model parameter

Coefficients a b
Estimate 0.66634 0.9195 Table C.126.: Model parameter
SE 0.050215 0.018492 Confidence interval ‘ Prediction interval
tStat 13.27 49.724 Mean  (0.25538) - (0.52919) | (0.13286) - (0.65171)
p-Value 0.00092487 | 1.7912%107° SD (0.14831) - (0.11907) | (0.14085) - (0.12545)
Parameter estimates and statistically values 0.95% confidence and 0.95% prediction intervals

Table C.127.: Metrics of regression model

R*  R%, SSE SSR SST  RMSE pValue

0.907 0.876 0.014295 0.13969 0.15343  0.069  0.00118

Statistically values for regression model
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Figure C.43.: Graph of regression model

Table C.128.: Model parameter

Coefficients a b
Estimate 0.62258 0.85977 Table C.129.: Model parameter
SE 0.01151 0.0088122 Confidence interval ‘ Prediction interval
tStat 54.089 97.567 Mean  (0.20925) - (0.30972) | (0.18038) - (0.33858)
p-Value 0.00034163 | 0.00010503 SD (0.15918) - (0.1502) | (0.15731) - (0.15192)
Parameter estimates and statistically values 0.95% confidence and 0.95% prediction intervals

Table C.130.: Metrics of regression model

R*  RY, SSE SSR SST  RMSE pValue

0.998 0.996  0.00039945 0.17219 0.16Q01  0.0141  0.000475

Statistically values for regression model
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Figure C.44.: Graph of regression model

Table C.131.: Model parameter

Coefficients a b
Estimate 0.59748 0.88127 Table C.132.: Model parameter
SE 0.043046 0.026416 Confidence interval ‘ Prediction interval
tStat 13.88 33.361 Mean  (0.16747) - (0.39374) | (0.061016) - (0.50019)
p-Value 0.00015621 | 4.8153%107° SD (0.15198) - (0.13119) (0.14649) - (0.1362)
Parameter estimates and statistically values 0.95% confidence and 0.95% prediction intervals

Table C.133.: Metrics of regression model

R* Ry SSE SSR SST  RMSE  pValue

0912 0.89 0.018301 0.19369 0.20725 0.0676  0.000226

Statistically values for regression model
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Figure C.45.: Graph of regression model

Table C.134.: Model parameter

Coefficients a b
Estimate 0.55516 0.78259 Table C.135.: Model parameter
SE 0.045845 | 0.038306 Confidence interval ‘ Prediction interval
tStat 12.11 20.43 Mean  (-0.18064) - (0.71313) | (-0.47658) - (1.0091)
pValue 0.052453 | 0.031136 SD (0.12556) - (0.14478) | (0.12654) - (0.13928)
Paramter estimates and statistically values 0.95% confidence and 0.95% prediction intervals

Table C.136.: Metrics of regression model

R*  RY, SSE SSR SST  RMSE pValue

0.978 0.956 0.0021767 0.10579 0.10001  0.0467  0.0743

Statistically values for regression model
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Figure C.46.: Graph of regression model

Table C.137.: Model parameter

Coefficients a b
Estimate 0.55108 0.94318 Table C.138.: Model parameter
SE 0.024191 0.013536 Confidence interval ‘ Prediction interval
tStat 22.78 69.681 Mean (0.36358) - (0.541) (0.28945) - (0.61512)
p-Value 0.0019215 | 0.00020589 SD (0.066137) - (0.046157) | (0.060852) - (0.049191)
Parameter estimates and statistically values 0.95% confidence and 0.95% prediction intervals

Table C.139.: Metrics of regression model

R?  R? SSE SSR SST ~ RMSE pValue

adj

0.909 0.863 0.001994 0.19163 0.021793  0.0316  0.00216

Statistically values for regression model
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Figure C.47.: Graph of regression model

Table C.140.: Model parameter

Coefficients a b
Estimate 0.75726 0.90444 Table C.141.: Model parameter
SE 0.0058053 | 0.0046298 Confidence interval ‘ Prediction interval
tStat 130.44 195.35 Mean  (0.59389) - (0.71408) (0.55211) - (0.75586)
p-Value 0.0048804 | 0.0032588 SD (0.064758) - (0.056111) | (0.062641) - (0.057254)
Parameter estimates and statistically values 0.95% Confidence and 0.95% prediction intervals

Table C.142.: Metrics of regression model

R*  RY, SSE SSR SST RMSE  pValue

0.998 0995 4.15%10™° 0.017347 0.017333 0.00644  0.00552
Statistically values for regression model
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Figure C.48.: Graph of regression model

Table C.143.: Model parameter

Coefficients a b
Estimate 0.53708 0.84232 Table C.144.: Model parameter
SE 0.052842 0.047077 Confidence interval ‘ Prediction interval
tStat 10.164 17.892 Mean  (0.067994) - (0.33995) | (-0.06405) - (0.47199)
p-Value 0.00052769 | 5.7346%107° SD (0.13979) - (0.13621) (0.13798) - (0.13608)
Parameter estimates and statistically values 0.95% confidence and 0.95% prediction intervals

Table C.145.: Metrics of regression model

R*  R%, SSE SSR SST  RMSE pValue

0.848 0.811 0.0027542 0.18177 0.20393 0.083  0.00858

Statistically values for regression model

LIX



C. Regression Models

P29

1.2
o Data
10 — Exponential regression line
95 % Confidence interval
08l 95 % Prediction interval
El
&
o
8
S
£
g
(]
=
0 [
—02F
704 1 1 1 1 1 1 |
0 2 4 6 8 10 12 14

Time in days

Figure C.49.: Graph of regression model

Table C.146.: Model parameter

Coefficients a b
Estimate 0.68286 0.9092 Table C.147.: Model parameter
SE 0.07598 0.030761 Confidence interval ‘ Prediction interval
tStat 8.9873 29.557 Mean  (0.15415) - (0.6011) | (-0.046081) - (0.80133)
p-Value 0.0029077 | 8.5056%107° SD (0.16892) - (0.12242) (0.15709) - (0.13281)
Parameter estimates and statistically values 0.95% confidence and 0.95% prediction intervals

Table C.148.: Metrics of regression model

R*  RY, SSE SSR SST  RMSE pValue

0.827 0.769 0.038206 0.18514 0.22063  0.113  0.00457

Statistically values for regression model
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Figure C.50.: Graph of regression model

Table C.149.: Model parameter

Coefficients a b
Estimate 0.58635 0.81069 Table C.150.: Model parameter
SE 0.028591 | 0.026415 Confidence interval ‘ Prediction interval
tStat 20.508 30.69 Mean  (0.18862) - (0.42745) | (0.099318) - (0.51676)
p-Value 0.0023692 | 0.00106 SD (0.14199) - (0.12056) (0.13714) - (0.12512)
Parameter estimates and statistically values 0.95% confidence and 0.95% prediction intervals

Table C.151.: Metrics of regression model

R R, SSE SSR SST ~ RMSE pValue

0.979 0.968 0.0031533 0.14003 0.14926  0.0397  0.00399
Statistically values for regression model
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Figure C.51.: Graph of regression model

Table C.152.: Model parameter

Coefficients a b
Estimate 0.59546 0.94131 Table C.153.: Model parameter
SE 0.033228 0.013545 Confidence interval ‘ Prediction interval
tStat 17.921 69.495 Mean  (0.30652) - (0.49716) (0.21366) - (0.59002)
p-Value 5.698810% > | 2.5689%1077 SD (0.11696) - (0.081208) | (0.10797) - (0.089606)
Parameter estimates and statistically values 0.95% confidence and 0.95% prediction intervals

Table C.154.: Metrics of regression model

R*  RY, SSE SSR SST RMSE  pValue

0.865 0.831 0.013509 0.090895 0.099758 0.0581  8.05%107°

Statistically values for regression model
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Figure C.52.: Graph of regression model

Table C.155.: Model parameter

Coefficients a b
Estimate 0.83873 0.91351 Table C.156.: Model parameter
SE 0.040324 0.017868 Confidence interval ‘ Prediction interval
tStat 20.8 51.125 Mean  (0.31387) - (0.63824) | (0.20366) - (0.74846)
p-Value 0.00024305 | 1.648%107° SD (0.2071) - (0.14066) (0.19279) - (0.15457)
Parameter estimates and statistically values 0.95% confidence and 0.95% prediction intervals

Table C.157.: Metrics of regression model

R*  RY, SSE SSR SST  RMSE  pValue

0.951 0.935 0.01395 0.25166 0.28542 0.0682  0.000422

Statistically values for regression model
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Figure C.53.: Graph of regression model

Table C.158.: Model parameter

Coefficients a b
Estimate 0.80084 0.83318 Table C.159.: Model parameter
SE 0.042063 0.028614 Confidence interval ‘ Prediction interval
tStat 19.039 29.118 Mean (0.31747) - (0.58851) | (0.20528) - (0.70071)
p-Value 0.00031639 | 8.8951%107° SD (0.18815) - (0.1491) | (0.17892) - (0.15789)
Parameter estimates and statistically values 0.95% confidence and 0.95% prediction intervals

Table C.160.: Metrics of regression model

R*  RY, SSE SSR SST  RMSE  pValue

0.952 0.936 0.012636 0.23575 0.26224 0.0649  0.000498

Statistically values for regression model
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Figure C.54.: Graph of regression model

Table C.161.: Model parameter

Coefficients a b
Estimate 0.72774 0.91066 Table C.162.: Model parameter
SE 0.11248 | 0.041539 Confidence interval ‘ Prediction interval
tStat 6.4698 21.923 Mean (-0.90418) - (1.7162) (-1.6787) - (2.4907)
p-Value 0.097626 | 0.029019 SD (0.29968) - (0.098989) | (0.24149) - (0.092806)
Parameter estimates and statistically values 0.95% confidence and 0.95% prediction intervals

Table C.163.: Metrics of regression model

R* Ry, SSE SSR SST  RMSE pValue

091 0.82 0016185 0.14612 0.17991  0.127 0.134

Statistically values for regression model
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Figure C.55.: Graph of regression model

Table C.164.: Model parameter

Coefficients a b
Estimate 0.76302 0.94843 Table C.165.: Model parameter
SE 0.022952 0.0078694 Confidence interval ‘ Prediction interval
tStat 33.245 120.52 Mean (0.4505) - (0.62757) (0.38149) - (0.69658)
p-Value 5.9827%107% | 1.2594%107° SD  (0.13714) - (0.095313) | (0.12791) - (0.1043)
Parameter estimates and statistically values 0.95% confidence and 0.95% prediction intervals

Table C.166.: Metrics of regression model

R* R, SSE SSR SST  RMSE  pValue

0.957 0.942 0.0049341 0.11136 0.11395 0.0406  0.000102

Statistically values for regression model
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Figure C.56.: Graph of regression model

Table C.167.: Model parameter

Coefficients a b
Estimate 0.73558 0.86321 Table C.168.: Model parameter
SE 0.075703 | 0.041712 Confidence interval ‘ Prediction interval
tStat 9.7167 20.695 Mean  (0.18551) - (0.73415) | (-0.030923) - (0.95059)
p-Value 0.010426 | 0.0023268 SD (0.16707) - (0.11642) (0.15379) - (0.12497)
Parameter estimates and statistically values 0.95% confidence and 0.95% prediction intervals

Table C.169.: Metrics of regression model

R* Ry, SSE SSR SST  RMSE pValue

0.889 0.834 o0.017772 0.12827 0.16077  0.0943 0.014

Statistically values for regression model
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Figure C.57.: Graph of regression model

Table C.170.: Model parameter

Coefficients a b
Estimate 0.76081 0.84074 Table C.171.: Model parameter
SE 0.067545 0.042974 Confidence interval ‘ Prediction interval
tStat 11.264 19.564 Mean  (0.11282) - (0.46032) | (-0.055875) - (0.62902)
p-Value 000035394 | 4.0253%107° SD  (0.19733) - (0.19376) | (0.19535) - (0.1934)
Parameter estimates and statistically values 0.95% confidence and 0.95% prediction intervals

Table C.172.: Metrics of regression model

R*  RY, SSE SSR SST  RMSE pValue

0847 0796 0.05042 0.2949  0.34532 0.13 0.0076
Statistically values for regression model
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