TU

Grazm

Marc Schober, BSc

Generic CPU Self-Tests:
Instruction Coverage and Optimizing Compilers

MASTER'S THESIS

to achieve the university degree of
Diplom-Ingenieur

Master's degree programme: Telematics
submitted to
Graz University of Technology

Supervisor

Ao.Univ.-Prof. Dipl.-Ing. Dr.techn. Eugen Brenner

Institute of Technical Informatics

Graz, September 2018

Kurzfassung

Ein Fehler in einem kritischen System kann ernsthafte Auswirkungen haben. Software
basierende Selbsttests werden oft verwendet um in ausfallsicheren Systemen die fehler-
freie Funktionalitdt der Hardware sicherzustellen. Normalerweise werden diese Selbsttests
speziell fiir eine Hardwareplattform in Assembler implementiert. Wenn ein anderer Prozes-
sor verwendet werden soll, erfordert dies eine neue Selbsttest-Implementierung mit hohem
Aufwand fiir die Spezifikation, Implementierung, Priifung und Zertifizierung. Die Nachfra-
ge nach fehlerfreien Systemen ist in den letzten Jahren unter anderem wegen sogenannten
intelligenten Heimgeriten stark gestiegen.

Diese Masterarbeit gibt einen Uberblick iiber kritische und ausfallsichere Systeme im
Allgemeinen mit Fokus auf dem Sicherheitsstandard TEC 61508. Selbsttest Technologien
werden im Detail prasentiert und bewertet.

Der Hauptteil der Arbeit beschéftigt sich mit dem Design und der Implementierung
eines Hardwareunabhéngigen Selbsttests in der Programmiersprache C. Dabei wurde ei-
ne anwendungsbasierende Herangehensweise gewéhlt: nur von der Anwendung genutzte
Ressourcen miissen getestet werden. Um die Vollsténdigkeit des Tests zu zeigen, wur-
de eine Instruktions-Abdeckungs-Analyse verwendet. Mithilfe eines Compilers wird so-
wohl der Selbsttest als auch die Anwendung in Assemblercode kompiliert. Die Assembler-
Instruktionen der Anwendung werden dann mit den Instruktionen des Selbsttests ver-
glichen. Wenn alle Instruktionen und verwendeten Statusregister der Anwendung vom
Selbsttest {iberpriift werden, wird der Test akzeptiert.

Ein weiterer Schwerpunkt dieser Masterarbeit beschéaftigt sich mit den Auswirkungen
von optimierenden Compiler auf Selbsttests und die dadurch verwendeten und getesteten
Instruktionen. Der implementierte Selbsttest wurde mit vier Applikationen getestet, eine
dieser Applikationen wurde mit optimierenden Compiler iibersetzt, bei den anderen drei
wurde auf Optimierungen verzichtet. Bei der Verwendung von optimierenden Compiler war
eine volle Instruktions-Abdeckung aufwendig zu erzielen, aber auch diese wurde erreicht.

Abstract

Failures in safety-critical systems can be serious. Software-based self-tests are often used to
ensure the correct functionality of the hardware. Usually, those self-tests are implemented
in hardware-dependent assembly code. A CPU change needs a new self-test implementa-
tion with high effort for the specification, implementation, testing, and certification. Not
only but also due to the smart home devices the demand for safety-critical systems is
increasing. Also, the requested features of safety-critical systems are rising.

This master thesis gives an overview of safety-critical systems in general and of the
TEC 61508 safety standard in particular. Software-based self-test approaches are presented
in detail. The main part of this thesis includes the design and implementation of a C-
based hardware-independent self-test for the CPU. The approach followed in this paper is
application-based, which means that only used resources are getting tested. To show the
completeness of the test an instruction coverage analysis was done: The compiler generates
the binary and the assembly list files for the application and the tests. In the next step
the instructions utilized for the application are compared with those checked by the tests.
Only if all instructions and CPU flag checks used by the application are checked by the
tests, the self-test is accepted. This thesis also shows the challenges of such an approach
when optimizing compilers are utilized. The implemented self-test was checked against
four applications, one of which was compiled with compiler optimization techniques and
the other three were compiled without any optimization. Full coverage for optimizing
compilers was hard to achieve, but the final implementation reached full coverage for all
tested applications.

AFFIDAVIT

| declare that | have authored this thesis independently, that | have not used other
than the declared sources/resources, and that | have explicitly indicated all ma-
terial which has been quoted either literally or by content from the sources used.
The text document uploaded to TUGRAZonline is identical to the present master‘s

thesis dissertation.

Date Signature

Credits

This master thesis was carried out at the Institute for Technical Informatics, Graz Uni-
versity of Technology in cooperation with Siemens Digital Factory, Graz.

At this point I want to thank my girlfriend Christina and friend and business partner
Mario for their encouragement and understanding during my study and master thesis.

Special thanks to my master thesis supervisor, Christian Kreiner, for his guidance and
support. His passing away is a huge loss.

I am grateful for the support and motivation of Eugen Brenner who took over the
supervision. His recommendations were very much appreciated for the organization and

theoretical part of my master thesis.

I also want to thank Gerhard Schonfelder and David Ferenczi from Siemens who helped
me with technical approaches and suggestions.

Graz, September 2018 Marc Schober

Contents

1 Introduction
1.1 Motivation
1.2 Goals
1.3 Outline e

2 Technical background and related work
2.1 Safety-critical systems L
2.1.1 Introduction to fail-safe systems
2.1.2 TEC 61508 e
2.1.3 Maximum tolerable risk and safety integrity level
2.1.4 Fault, error, failure
2.1.5 Separation between safety-related and non-safety-related
2.1.6 Techniques and measures
2.1.7 Fault types o
2.1.8 Safe failure fraction and diagnostic coverage
2.2 Hardware-based self-tests L Lo
2.3 Software-based self-tests L
2.3.1 Memory self-testing
2.3.2 Software-based CPU self-tests and IEC 61508
2.3.3 Software-based CPU self-tests
2.4 CPU components classification
2.4.1 Functional components
2.4.2 Control components
2.4.3 Hidden components
2.4.4 Component size and contribution to fault coverage
2.5 Related work L
2.5.1 Instruction set architecture for a Cortex-M3
2.5.2 Deterministic tests for CPU components
2.5.3 C based instruction tests
2.5.4 Indirect CPU testing

3 Concept and design
3.1 System requirements L
3.2 General self-tests L
3.3 Application driven approach L

10
10
11
12

13
13
13
14
14
16
16
17
18
19
19
20
20
21
23
26
26
27
27
28
28
28
29
30
30

3.3.1 Common operations
3.3.2 Test of the CPU status flags
3.3.3 Datatypes
3.3.4 Storage type e
3.35 Datavalues
3.4 Compiler optimizations e
3.5 Coverage measurement
3.5.1 List of ASM instructions
3.5.2 Analysis of ASM instructions
3.5.3 Comparison e
3.5.4 Coverage report e

Implementation

4.1 Design of the class diagram L oL

4.2 Design of the software-based self-test
4.2.1 Relational operators Lo oo
4.2.2 Bitwise operations
4.2.3 Basic arithmetic functions oL oL
4.2.4 Data access operations
4.2.5 Bit operations Lo oL
4.2.6 Memory functions Lo
4.2.7 More library functions L L oo
4.2.8 Hardware specific instructions L.

Results and evaluation

5.1 Target CPU, compiler, and application

5.2 Testresults
5.2.1 Test slice execution times L.
5.2.2 Test results when optimization techniques are not used
5.2.3 Test results with the usage of optimization techniques
5.2.4 Other tested applications
5.2.5 Discussion of theresults

5.3 Discussion of the system requirements

5.4 Difficulties

Conclusion
6.1 Discussion of theresults
6.2 Future worko

List of tested instructions
A.1 Tested instructions if compiler optimization techniques are not used
A.2 Tested instructions if compiler optimization techniques are used

B Abbreviations

Bibliography

41
41
42
43
43
46
50
53
95
95
95

58
o8
59
99
61
62
64
65
65
66

68
68
69

71

74

79

80

List of Figures

2.1
2.2
2.3

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

4.10

4.11
4.12
4.13
4.14
4.15

Two parallel SIL 2 elements are used to achieve SIL 3 16
A fault which may lead to an error and failure 17
CPU components e 26
Simple structure of a test compiled with compiler optimizations 38
Three steps to measure the coverage 39
Tests for relational operators 44
Tests for bitwise operations 45
Test structure of the addition test 47
Test structure of the subtraction test 47
Switch-case construct which leads to uncommon addition ASM instructions 48
Basic structure of the multiplication test 49
Basic structure of the division and modulo test 49
Tests for array operations 50
Structure to test data access to an array element while modifying the array

pointer in the same instruction 52
Structure to test the modifying of an element in the array while changing

the array pointer in the same instruction 52
Special data access tests 53
Tests for the bit operations 54
Tests for the memory library functions copy and set 56
Basic structure of the memory compare function test 57
Test of the library function long jump 57

List of Tables

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

5.1
5.2
5.3
5.4

5.5
5.6

Al
A2

Average failure probability for different STLs 15
Software design and development techniques and measures 16
Maximum allowed SIL depending on the HF T and SFF for type B components 19
Memory test requirementso Lo 21
IEC 61508 CPU test requirements 22
IEC 61508 CPU test diagnostic techniques / measures 23
Operations of the MIPS ALU 27
Conditional execution code suffixes for Cortex-M3 and Cortex-M4 29
Optional shift expressions for flexible operands on Cortex-M3 29
Test slices with execution times 60
Number of instructions generated from test code 61
CPU flag coverage o o i e 62
Number of instructions generated from test code when compiler optimiza-

tionsareused 63
CPU flag coverage if optimization techniques are used 64
Comparison of the instructions 65
Tested instructions without compiler optimization techniques 73
Tested instructions if compiler optimization techniques are used 78

Chapter 1

Introduction

Safety-critical system may cause harm if they fail. To prevent or at least to decrease the
probability of dramatic effects fail-safe systems need to be used. An important part of
the implementation of such systems is to ensure the correct functionality of the hardware,
which is why a variety of different self-tests have been developed for this purpose. The aim
of this thesis is to develop hardware independent C-based self-tests which are suitable for
optimized compiler as well. Even the effectiveness of those tests should be shown without
any detailed information about the hardware under test.

1.1 Motivation

Years ago safety-critical systems were only needed for specialized applications. But the
demand for safety-critical systems was increasing dramatically. Nowadays everyday ob-
jects are computer controlled. For instance, a car involves a traditional safety-critical
system, but it is by far not the only one. Even some lower priced systems can be seen
as safety-critical. What happens if the oven in the kitchen does not work anymore as
expected and causes a fire in the apartment? A failure of some of those systems may have
dramatic effects, including harm or even death of people.

In processor-based fail-safe systems it is essential to guarantee the correct functionality
of the hardware. With the increment of new features testing costs are rising significantly.
Hardware testing is one of the significant parts. While development costs per transistor
decreased dramatically, the testing costs per transistor were not fallen the same way. In
the early 2000s it was not unlikely that the production costs of transistors reached a point
where testing was more expensive than producing [WST10].

Even with new test methods, which were introduced to lower the costs of testing,
the 2015 edition of the international technology roadmap for semiconductors expected
a rise of testing prices with most current approaches. ”The cost of testing continues to
rise yet system integrators expect prices to stay constant or lower even with increases in
performance and function. Increasing performance and adding more functions requires
higher accuracy tests and additional tests, which should normally increase testing costs.”
[SIA15]

In the last decades new methods were introduced in order to reduce the development
costs, but most of them were still implemented for a specific hardware and not portable

10

CHAPTER 1. INTRODUCTION 11

to other hardware platforms. The change in new hardware usually requires to rewrite
the hardware-based assembly code. From a safety point of view, the work is not done
by adapting the software to the new hardware platform. It is also a time consuming
and costly job to prove that the tests are sufficient enough for a fail-safe system. Due
to this hardware dependencies, the switch to a new platform is very time consuming and
expensive. [SS16] [Com11]

1.2 Goals

In 2011 Siemens introduced a new approach to reduce the hardware dependencies. The
idea is to implement the test of the CPU in hardware independent C code. The proof
is made by comparing the assembly (ASM) instructions utilized by the application with
the ASM instructions checked by the test. Only if all used ASM instructions also occur
in the test the CPU core test is accepted. This new approach was implemented for a
part of the instruction tests, but other instructions were still tested based on hardware-
dependent ASM instructions. FEspecially the instructions which need to be tested with
optimizing compilers were not following the new approach and were implemented in ASM
or challenging to understand and maintainable C code. The outcome of this master thesis
should achieve the following goals or objectives:

e Improved portability
The majority of the tests should be written in C, the use of processor-specific as-
sembly code should be minimized

e Hardware independent coverage measurement
The coverage measurement should be done by analyzing the used instructions.

e Support for optimizing compilers
The coverage of the test should be given even if compiler optimization techniques
are utilized.

e Test slice runtimes shall be balanced
The self-tests are executed in test slices. The execution time of each test slice should
be balanced and not exceed 150us.

e No testing of not utilized instructions
To reduce the time and space requirements the instruction test should only cover
used instructions.

¢ Extensibility for new instruction set architectures
When the instruction test is compiled for another hardware platform it is possible
that the instruction test has to be extended. This extensions should be supported
with well-defined interfaces and helper functions.

Furthermore, an essential part of this master thesis is to analyze the possibilities and
drawbacks of a C based hardware independent instruction test, especially when used with
optimizing compilers.

CHAPTER 1. INTRODUCTION 12

1.3 Outline

Chapter 2 gives the technical background about safety-critical systems with a focus on the
safety standard TEC 61508. Different test techniques are presented and their advantages
and drawbacks are shown. Moreover, the chapter provides a general overview on the
approach of software-based self-tests with a particular focus on the safety standard IEC
61508. This part will present techniques of the SBST currently used.

The related work section focuses on the instruction set architecture (ISA) and also
includes projects using generic portable instruction tests.

Chapter 3 provides a detailed description of the system requirements. The operations
and operands, that need to be tested, are presented and classified. In addition to this, the
approach to test the CPU flags will be analyzed. Furthermore, the difficulties of compiler
optimizations techniques and generic software-based self-test (SBST) are demonstrated.
This chapter also shows the concept of the instruction coverage analysis.

Chapter 4 describes the design and implementation of the SBST. For each type of
operand the test design is shown. The chapter will also include additional tests, which are
only needed to increase the coverage with optimizing compilers.

Chapter 5 presents the result of this master thesis, focusing on two real-life applica-
tions. One of those projects was compiled without the usage of compiler optimizations, for
the second project those techniques were used. Here, the analysis will discuss the advan-
tages and drawbacks. The results archived are individually presented and also compared
to each other. Furthermore, the experienced difficulties are discussed here.

Chapter 6 summarizes the master thesis and shows possible suggestions for future
work.

Chapter 2

Technical background and related
work

This chapter gives a general introduction to safety-critical systems. The related work
section presents some current existing approaches for SBST.

2.1 Safety-critical systems

Systems are called safety-critical when a malfunction may influence the environment di-
rectly or indirectly. A failure or malfunction of such a system may result in one or more
of the following outcomes:

e Environmental harm
e Loss or damage of equipment

e Injury or even death to humans

2.1.1 Introduction to fail-safe systems

There is no such thing as zero-risk. No software design, especially when it comes to large
projects, can foresee every operational possibility. Also, physical items have a failure rate
higher than zero.

A fail-safe system accepts the fact that it may fail. The goal is to detect a fault in
a very early stage and bring the system to a safe state. Neither a fail-safe system can
guarantee zero-risk, even with the best possible test - not every fault can be detected.
The aim of a fail-safe system is to reduce this risk to a tolerable level and to reduce its
negative impact. [SS16]

Engineering a fail-safe system involves the identification of specific hazardous failures
which may lead to severe consequences and development of techniques and measurements
to reduce this risks. Any equipment (with or without software) whose failure may lead to
severe effects are likely to be safety-related. [PHO09]

13

CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 14

2.1.2 IEC 61508

IEC 61508 is an international standard titled Functional Safety of Electrical/Electronic/Programmable
Electronic Safety-Related Systems, which sets out a generic approach and which is used as

a base to ensure that the systems are designed, implemented, operated and maintained to

provide the required safety integrity level (SIL) for all kinds of industries.

This standard consist of seven parts:

IEC 61508-1: General requirements

IEC 61508-2: Requirements for electrical /electronic/programmable electronic safety-
related systems

IEC 61508-3: Software requirements

IEC 61508-4: Definitions and abbreviations

IEC 61508-5: Examples of methods for the determination of SILs

IEC 61508-6: Guidelines on the application of IEC 61508-2 and IEC 61508-3

IEC 61508-7: Overview of techniques and measures

To archive an IEC 61508 certification it is mandatory to follow the first three parts
of the standard. Parts 4 - 7 contains additional information to understand and apply the
required parts.

2.1.3 Maximum tolerable risk and safety integrity level

To set a quantified safety integrity target the maximum tolerable risk is needed. In IEC
61508 the fail-safe systems are categorized in safety integrity levels (SILs) based on the
demand of the system and the residual risk. The IEC 61508 safety standard differentiates
between low demand mode, high demand mode and continues mode. The classification is
based on the operational frequency and test frequency. It is called low demand mode if the
operating rate is less than once per year and smaller than twice of the test frequency. [SS16]

The levels range from SIL 1 to SIL 4:

SIL 1: Implies good design practice, relatively easy to archive

SIL 2: Requires proper design techniques and operating practice, not much harder
to file than SIL 1

SIL 3: Requires sophisticated competence and high effort, costs are significantly
higher than for SIL 2

SIL 4: The highest SIL level, onerous to archive. Costs will be extraordinarily high,
and competence in all techniques is required

CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 15

SIL Continuous and high demand rate Low demand rate
(dangerous failures/hr) (probability of failure on demand)

4 > 10"%0 < 10°® > 10""to < 1074

3 > 1080 < 1077 > 10 "0 < 1073

2 > 10""to < 10°° > 1073t0 < 1072

1 > 10750 < 107° >10"%to < 107!

Table 2.1: Average failure probability for different SILs

The main difference between the SILs is the quantification of hardware failures and
the safe failure fraction rules. The requirements for SIL 1 and 2 levels are similar, as well
as those for SIL 3 and 4. Not only the design and implementation of higher SIL levels
are costly, but also the verification becomes more onerous. Table 2.1 shows the failure
probability for different SILs. Note: If the continuous and high demand rates had been
expressed in dangerous failures per year, the number would be numerically similar to the
low demand rate probabilities.

The standard lists techniques and methods for all life cycles. Table 2.2 shows an
example of techniques and methods recommended for software design and development.
Based on the SIL level the techniques and methods are rated in 5 recommendation levels:

e Mandatory
This technique or method has to be used.

e Highly recommended
If this technique or method is not applied, there has to be a good reason why.

¢ Recommended
This technique or method is recommended.

e Neutral
The standard is not in favor or against the use of this technique or method.

e Clearly not recommended
The technique or method is explicitly not recommended, there has to be a good
reason if it is applied.

In some situations, a high SIL level, especially SIL 4, is tough to acquire, which is why
additional levels of protection or redundancy could be applied instead. A configuration
involving parallel elements may be used to claim an increment of one SIL. The indepen-
dence of those parallel elements has to be shown by the use of approved techniques (e.g.,
functional diversity). Figure 2.1 shows the idea to achieve SIL 3 with two SIL 2 elements.
[SS16]

CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 16

Technique / measure SIL 1 SIL 2 SIL 3 SIL 4

. . Highly Highly Highly
No dynamic objects Recommended recommended | recommended | recommended

. . Highly Highly

No dynamic variables Neutral Recommended

recommended | recommended

Limited use of pointer Neutral Recommended Highly Highly
recommended | recommended

Limited use of recursions Neutral Recommended Highly Highly

recommended | recommended

Table 2.2: Software design and development techniques and measures

SiL2
— SIL3 { } SIL3 —
SIL2

Figure 2.1: Two parallel SIL 2 elements are used to achieve SIL 3

2.1.4 Fault, error, failure

This section describes the keywords fault, error, and failure and explains the differences.

A fault is defined as an “Abnormal condition that may cause a reduction in, or loss
of, the capability of a functional unit to perform a required function” [Comll]. A fault
may raise the risk of a system breakdown, but not all faults lead to an error. Whether
an error occurs or not depends on the failure resistance and safety management Some
systems, for example, may be equipped with redundancy and online error correction. A
fault in a hardware part, which is not used at all, will usually not lead to an error.

An error is defined as the “Discrepancy between a computed, observed or measured
value or condition and the true, specified or theoretically correct value or condition” [Com11].
If a fault causes a system malfunction, it is called an error. For example, the system reads
a value from a gate where a bit is stuck.

A failure is the “Termination of the ability of a functional unit to perform a required
function” [Coml1l]. If a system is not able to handle an error and go to a safe state, it
may become a failure. A failure may lead to accidents and loss of equipment, to the harm
of the environment or injuries and even death of people.

2.1.5 Separation between safety-related and non-safety-related

Any equipment (with or without software) whose failure may be hazardous is likely to
be safety-related. The non-safety-related system elements should be separated from the
safety-related system elements. If such a separation between the system elements cannot
be done the complete system should be treated as safety-related.

SIL 1 and 2 require a precise specification and separation between the safety-related
and non-safety-related elements of the system with well-defined electrical /data interfaces.

For SIL 3 physical separation between the safety system and the non-safety-related
components is needed. Electrical and data interfaces should be clearly defined and physical

CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 17

Fault » Error > Failure
Lower level of a system
Fault > Error » Failure
Intermediate level of a system
Fault > Error > Failure > Hazard » Accident

Full system level

Figure 2.2: A fault which may lead to an error and failure

separation of redundant parts of the systems should be considered.

For SIL 4 a total physical separation between the safety system and the non-safety-
related elements is necessary. Here, the redundant components of the safety system have
to be physically separated as well.

2.1.6 Techniques and measures

The challenge is to design a safety system which prevents dangerous failures. In case of a
fault, the system has to switch to a safe state in order to avoid harm. An essential part
of functional safety engineering is the identification of failures which may lead to severe
consequences.

Based on this outcome specific designs and mechanisms have to be established and
implemented with the purpose to reduce the risk of such failures. A collection of recom-
mended techniques and measures to archive the needed SIL is presented in part 7 of the
IEC 61508 safety standard. This part also describes why the technique or measure should
be used and how it is applied. References to more detailed information are also provided.

The techniques and measures are divided into five categories: [Com11]

e Protection against random hardware failures

Some of the methods and rules, which are shown in this section, are required by part
2 (hardware description part) of the IEC 61508 safety standard. Examples in this
section are: CPU self-tests, RAM tests, hardware redundancy.

e Protection against systematic failures

These techniques are concerned about project management as well as the overall sys-
tem design and verification. Some examples are checklists, documentation, black box
testing, and separation of safety-related systems from non-safety-related systems.

CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 18

e Techniques and measures for achieving software safety integrity

This part covers techniques and measures related to software development and test-
ing. The primary goal of these structured methods is to ensure the software de-
velopment quality by taking particular attention to the early stage of the lifecycle.
Some examples are coding standards, data flow diagrams, software diversity, and
high order logic.

e A probabilistic approach to determining software safety integrity for pre-
developed software

This part presents ideas and techniques to determine the SIL of pre-developed soft-
ware, some of which are statistical tests and complete tests.

e Techniques and measures for application specific integrated circuits (ASICs)

This part covers methods and measures for the design of ASICs as well as for testing
ASICs. Some examples are design for testability, validation of the softcore, modu-
larization and defensive programming.

2.1.7 Fault types

Safety-critical systems have to function correctly even in case of faults. It has to be ensured
that a (hardware) fault does not become a critical system failure. To reach this goal a
fault has to be detected at an early stage to bring the system into a safe state. The IEC
61508 safety standard distinguishes two types of hardware faults: permanent faults and
transient faults. The third type of fault, the intermittent faults, are listed in the relevant
literature.

e Permanent faults can be damaged microcontrollers or communication links. A
typical permanent fault is a stuck-at fault where a bit is stuck at a specific value.
An example of a stuck-at fault is a flip-flop, whose output is always 0, even if the
input is a logical 1.

e Intermittent faults are a kind of faults which appear and disappear repeatedly.
These faults are caused by several factors, some of them may look random. The
more complex a system gets, the greater the like-hood of such a fault. [HKKO08]

e Transient faults (also called soft-errors) may be caused by single event upsets or
electromagnetic interferences. For example, the logical value 0 stored in a flip-flop
may be changed by a transient fault to a logical 1. This kind of failures may be caused
by alpha particles from the package decay, neutrons, external EMC disturbances
or crosstalk [KML106]. These faults may appear for a short time only at various
locations. The typical consequences of transient faults are a single bit-flip or multiple
bit-flip errors.

The transient faults are the more common faults and are increasing in numbers due to
advanced processor logic and decreasing manufacturing size. Furthermore, the number of
affected bits by a single event is going up. Multiple affected bits caused by a single event
were not very common with previous silicon technologies, but modern technologies are
much more vulnerable to multiple bit upsets (MBU). [IS16]

CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 19

Hardware fault tolerance
SFF 0 7 5
<60% not allowed | SIL 1 | SIL 2

60% - <90% SIL 1 SIL 2 | SIL 3

90% - <99% SIL 2 SIL 3 | SIL 4
>99% SIL 3 SIL 4 | SIL 4

Table 2.3: Maximum allowed SIL depending on the HF'T and SFF for type B components

2.1.8 Safe failure fraction and diagnostic coverage

The IEC 61508 safety standard defines the safe failure fraction (SFF) as the sum of poten-
tially dangerous failures revealed by tests together with the failures which lead to a safe
state divided by the total number of failures.

SFF = noncritical failures 4+ revealed critical failures
" noncritical failures + revealed critical failures + undetected critical failures

A fail-safe example might be a slam shut valve where 90 percent of the failures will lead
to a closed lid, and 10 percent will lead to a fail-to-close situation. Even without any
additional mechanisms to detect failures, the SFF of that system will be 90 percent.

A combined example might be a system where 60 percent of the shortcomings lead to
a safe state, and 80 percent of the remaining failures are revealed. In this case, the SFF
would be 92 percent (60 percent + 40 * 0.8 percent) [GPZ04]

Based on the SIL the IEC 61508 safety standard defines the minimum SFF based on
the hardware fault tolerance and the type of the components. In IEC 61508 components
are classified into two types: Type A components have distinct failure modes and well-
defined behavior under fault conditions plus failure data has to be available. All the other
elements are called type B components. The hardware fault tolerance (HFT) is defined
as the number of tolerated failures. Table 2.3 shows the correlation between the SIL,
HFT, and SFF for type B components. If HFT of one is needed redundancy might be
used. By adding the same component and using it separately (e.g., calculating the same
safety-critical function on two independent CPUs) a single fault in one element cannot
cause an overall system failure. [Com11]

2.2 Hardware-based self-tests

Hardware-based self-tests usually require additional test hardware. If those tests are in-
tegrated in the system they are called built-in self-tests (BISTs). These tests can be very
accurate, resulting in a very high fault coverage. The disadvantage of those tests may be
overtesting. Overtesting means that a fault in a CPU is detected which does not affect
any operation under normal conditions. Most existing BISTs are not effective in test-
ing time-related faults like crosstalk faults or delays. Testing for this faults significantly
complicates the BISTs and may lead to circuit overtesting because many delay faults can
never be sensitized in the normal functional operation. On the other hand, the external
testers overall timing accuracy does not increase as fast as the clock speed, and this im-
plies yield loss. [SEN05] [WCTIO03] At speed testing of gigahertz processors with external

CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 20

testers may not be technically and economically feasible and might not be available for
some high-performance chips. [Yan05] [CDO1]

In most cases, the BISTs are simple and limited to some functionality blocks. If the
commercial CPUs are equipped with a BIST, the products lack precise information about
its effectiveness (fault coverage, used algorithms, etc.). [Sos06] As the name indicates, this
kind of tests are hardware-based, which are not portable to another system easily.

2.3 Software-based self-tests

Software-based self-tests (SBSTs) do not require additional hardware and can be imple-
mented for existing equipment. The tests are executed by the processor itself, rather
than being assigned to specially synthesized hardware modules as it is in hardware-based
self-testing. SBST allows at-speed testing; the tests are executed at the actual speed of
the processor, which means that timing misbehavior can be detected as well. There are
two main drawbacks of a SBST. First, the hidden components can only be tested indi-
rectly and, second, it requires additional processing time resources to execute the SBST.

[KPGXO05]

2.3.1 Memory self-testing

One of the classical problems of RAM modules are the radiation coming from their impu-
rities in the package or cosmic sources. Since the mid-1970s the reliability of such RAM
devices has been approved and the tolerance to radiation has been increased. At the
system level, very little information regarding the reliability has been published by the
vendors [Joull]. To fill this gap some data centers analyzed measurements of memory
errors in large fleet server farms. According to a study, which involved all Google servers,
every server saw a RAM error every 2.5 hours on average. Luckily most of this errors were
corrected by modern error correcting code (ECC) technologies. But even with the use of
ECC technologies 1.3 percent of all Google servers experienced on average at least one
uncorrectable memory error per year. [BCH13] [SPW09]

Table 2.4 shows the memory self-tests which are listed in part 2 of the IEC 61508
safety standard to gather a specific coverage:

Direct current (DC) fault model covers the failure modes stuck-at faults, stuck-
open, open or high impedance outputs, and short circuits in signal lines.

Soft-error failures are also known as single event upsets. The adverse effects of such
failures can only be controlled by the usage of runtime techniques like parity bits, ECC,
or redundancy.

Techniques that reach the requested coverage for the invariable memory include
different checksums methods and block replication.

Test techniques for variable memories are more complex but well defined. To achieve
a medium coverage the walk-path test or RAM monitoring with a modified Hamming code
may be used. For high coverage, the Galpat and Abraham tests or the RAM doubled
storage test is recommended.

CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 21

Requirements for diagnostic coverage claimed

Component

Low (60%) Medium (90%) High (99%)
Invariable memor Stuck-at for data DC fault model for All faults that affect
Y and addresses data and addresses data in the memory

DC fault model for
data and addresses

DC fault model for Dynamic cross-over

Stuck-at for data data and addresses for memory cells

Variable Memory and addresses

Change of information | Change of information
caused by soft errors caused by soft-errors

No, wrong or
multiple addressing

Table 2.4: Memory test requirements

Galpat test

A number of variants of the galloping patterns (Galpat) test exist.

In one of those the memory under test is set to 0. The content in the lowest address
is read before it gets modified to 1. The content of the remaining memory addresses are
read and checked for correctness. This process is repeated for all the remaining addresses
until it reaches the highest address. The modification of this test includes variants, where
a whole column or a whole row is modified in one iteration. [Gro06]

An alternative version is the transparent Galpat test in which the first step (the ini-
tialization with 0) is skipped. Instead, it is calculating a signature over the RAM cells
before inverting a cell.

Abraham test

The Abraham test aims to detect stuck-at faults and coupling faults. It walks through
the whole memory up and down and sets or reads memory cells. It is also known as a
variation of the march test under the name Mats. [NTATS]

RAM doubled storage test

This kind of test can only be used if the safety-related RAM is stored twice. It is common
to safe the copy of the RAM inverted. The test is executed by comparing the RAM with
its duplication. [Com11].

2.3.2 Software-based CPU self-tests and IEC 61508

This section describes the IEC 61508 requirements for CPU self-tests. The second part
of this section covers the recommended techniques and measures. The requirements can

CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 22

be found in the second part of the IEC 61508 safety standard, and the recommended
techniques are taken from part 7.

IEC 61508 CPU test requirements

Table 2.5 lists fault types for individual parts of the CPU core. The table also shows which
faults have to be detected to reach a specific fault coverage. Techniques and measures to
detect that faults can be found in the next section.

Component

Requirements for diagnostic coverage claimed

Low (60%)

Medium (90%)

High (99%)

Register, internal RAM

Stuck-at for data
and addresses

DC fault model for
data and addresses

Change of information
caused by soft-errors

DC fault model for data
and addresses

Dynamic cross-over
for memory cells

Change of information
caused by soft-errors

No, wrong or
multiple addressing

stack pointer

Change of addresses
caused by soft-errors

Coding and execution Wrong coding Wrong coding No definite
including flag register or no execution or no execution failure assumption
N fini
Address calculation Stuck-at DC fault model O definite .
failure assumption
DC fault model DC fault model
P
rogram counter, Stuck-at

Change of addresses
caused by soft-errors

Table 2.5: IEC 61508 CPU test requirements

IEC 61508 CPU test techniques and measures

IEC 61508 recommended techniques and measures for CPU tests are shown in table 2.6.
The technique comparator is used to detect failures in independent CPUs or the
comparator. A hardware comparator cyclically or continuously compares the output of

independent CPUs.

A majority voter has several inputs from independent CPUs and decides for the
majority (2 out of 3, 3 out of 3, m out of n) of the provided results.
For the technique self-test by software with limited number of patterns software-
based self-test data patterns are used as in input, and the calculation results are checked
for correctness. At least two complementary patterns are needed.
Self-test by software with walking bit patterns are applied to test the register
and processing unit. At the initialization all bits are set to zero and in each step, one bit

CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 23

Maximum diagnostic

Diagnostic technique / measure coverage considered
achievable

Comparator High
Majority voter High
Self-test by software: limited number of patterns (one channel) Low
Self-test by software: walking bit (one channel) Medium
Self-test supported by hardware (one channel) Medium
Coded processing (one-channel) High
Reciprocal comparison by software High

Table 2.6: TEC 61508 CPU test diagnostic techniques / measures

is set after another. After each step the register content is compared to an expected value.

Additional special hardware is needed to implement the self-tests supported by
hardware. The self-test result is made available at a hardware output and specialized
equipment could monitor whether the bit pattern occurs cyclically according to the watch-
dog timer principle.

The coded processing technique needs processing units with failure recognizing
or correction techniques. These techniques are not very widespread and have been only
applied to simple circuits.

For reciprocal comparison by software hardware redundancy is needed. Two
separate processing units are doing the same operations and exchanging data (including
results, intermediate results and test data). Each of the units is comparing the own
calculations with the results of the second processing unit.

2.3.3 Software-based CPU self-tests

This section provides an overview of software-based CPU self-test techniques in general
(not only from the IEC 61508 safety standard view) and includes the implementation of
it in more detail.

Functional testing versus structural testing

The approaches of software-based CPU core tests are classified in two categories: Func-
tional testing and structural testing. [PGSR10] [GPZ04]

Structural tests are based on detailed information about the CPU and targets a
specific structural fault model. The implementation of these tests is only possible if a
gate-level model of the processor is available. For example, if two registers are physically
close to each other on the chip, interference is more likely. The design and implementation
of structural tests can use such information to increase the test quality without adding too
much overhead. This kind of test leads to higher test coverage and better performance.
The drawbacks are the higher development costs, and due to the hardware dependency,
they are not portable to any other hardware.

Functional tests aim to test the correctness of all known functions. Functional tests
of a CPU only needs the ISA information and no other low-level model of the processor.

CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 24

Specific instructions are executed and judged based on the outcome. For example, a
calculation is done and the result gets verified. The result may be checked internally with
external hardware or against a redundant system. The advantage is the portability of
test sequences or test programs and lower development costs. The drawback of functional
testing is that the tests are not directly related to the actual structure of the processor
and, therefore, not directly linked to physical defects which leads to a lower fault coverage.
Especially when automatically generated functional tests are used the test programs are
quite extensive in space and time-consuming. [GPZ04]

Functional level fault models

Functional level fault models are developed on a high level of abstraction. They include
fault models for data processing and control sections: [WST10]

e Register decoding faults
The decoded address of the register is incorrect. Due to this fault, the wrong register
or no register at all may be accessed.

e Instruction decoding and control faults
When this fault occurs the processor may execute the wrong instruction or execute
no instruction at all.

e Data storage fault
Single stuck-at faults may occur in any cell in any register.

e Data transfer fault
This fault includes that a line in the data transfer path is stuck at 1 or 0, or two
lines are coupled.

e Data manipulation faults
An example for this fault is an ALU-control fault. No fault in the rest of the processor
can mask an ALU fault. [TA95]

e Processor functional-level faults
An inactive or additional active micro-operation is a mistake from this category.
[Pf103]

Pseudo random versus deterministic testing

A further orthogonal classification for CPU core tests is based on whether the CPU core
tests are pseudo random or deterministic.

e Pseudorandom tests for CPU core can be based on pseudo random sequences,
pseudo random operands or a combination of both. Pseudo random testing has
been studied and applied extensively because of its low engineering effort and its low
costs. Pseudo random tests may come with some learning mechanism. During the
learning phase, the test sequences and operands are adapted based on feedback from
a simulation of the CPU. The main disadvantage of this approach is that the test
might become very large to reach an acceptable fault coverage. Especially pseudo

CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 25

random instruction sequences are unlikely to achieve a high fault coverage [GPZ04].
The fault coverage of such tests has to be verified, for example, by using a fault-
injection framework.

A promising approach for the automatic generation of SBST is presented in [RCS'16],
by which a fault injection framework for the generation of the tests can be utilized.
It starts with a fault list and tries to find ASM instructions to detect these faults.
If instructions are found to detect a fault those instructions are added to the SBST,
and the fault is removed from the list. Instructions, which do not improve the fault
detection rate, are rejected. Therefore, the final SBST is much more efficient as com-
pared to traditional pseudo random test and the fault coverage might come close to
the fault coverage of manual written SBST.

e Deterministic tests are using test sequences with a known minimum coverage for
the CPU or its components. For most of the functional modules of a processor (like
ALU, multipliers, dividers) test sets guaranteeing a specific coverage exist. These
test sets are usually implemented in ASM. In comparison to the pseudo random tests,
the coverage is much higher and the tests are smaller. Since some test techniques
guarantee a minimum coverage a verification (for example with a fault-injection
framework) is not needed. The drawback is that for some of this test sets the gate
level model of the CPU has to be known. [GPZ04]

A combination of both techniques is not unusual. Components that can be adequately
tested with deterministic test methods are covered by deterministic tests and for other
components a random approach may be used. Another common practice is to use deter-
ministic patterns in pseudo random sequences. [ST10]

Application driven testing

Another self-test scheme is the application driven testing. Usually, the traditional application-
driven tests are only applied for smaller systems, in which testing includes a full test with
all possible input scenarios. If the system realizes some fixed algorithm, this test approach
may be very efficient. These scenarios only test used resources. [Sos06] The preamble
traditional is applied in this master thesis in order to distinguish the two meanings, even

it is not common in the relevant literature.

The name application driven testing is also applied if only the needed resources are
tested. In this case, the application can be more complex. If the needed resources for the
application are already known, it can be effective to create a self-test which is covering
those. There is no need to check unused resources. Statistics about affected resources are
utilized for this kind of tests. [ST10]

In practice, it is reasonable to deploy a combination of deterministic tests for some
modules of the CPU (e.g., ALU) and the application driven approach. [ST10]

Fault coverage and test efficiency

The most important decision when it comes to testing development is the fault coverage
and test quality that is required. Common fault coverage levels are 90%, 95%, and 99%.

CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 26

Another question that has to be raised is the fault model for the test development. Com-
prehensive, sequential fault models such as the delay fault model may lead to higher test
quality and more straightforward combinational fault models such as stuck-at fault models
may be easier to implement. Higher fault coverage can be achieved by: [GPZ04]

e More test engineering effort
e Larger test programs
e Longer test application time

Software-based self-testing approaches may not be able to achieve the same fault coverage
levels as test approaches based on structured DfT techniques. SBST is capable of detecting
faults that are possible in normal operations. By using this approach overtesting can be
avoided. Overtesting can happen when a chip is detected as faulty even if the fault is not
supposed to happen in a normal operation. [GPZ04]

The test efficiency is defined as the SFF divided by the SBST execution time [GPZ04].
For some applications such as battery powered low-power devices, a very high test efficiency
is mandatory. Usually, very high test efficiencies can be achieved by using structural self-
testing techniques which require a fault driven test development and detailed information
about the CPU under test. [ZZRO06]

2.4 CPU components classification

As shown in figure 2.3 the components of a processor can be classified into three different
main categories. This classification is done based on their use and contribution to the
CPU operation and instructions execution.

CPU Components

. |
Functional Control

|])

Computational

‘ Storage ‘ ‘ Interconnect ‘

Figure 2.3: CPU components [PGSR10]

2.4.1 Functional components

Functional components are the components which are directly related to the execution
of CPU instructions. These components can be seen as visible to ASM developers and
therefore the easiest to test with SBST. Functional components belong to one of these
sub-classes: [GPZ04]

CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 27

e Computational functional components perform arithmetic or logical operations
on data. Such components are arithmetical logical units (ALUs); adders, subtractors,
comparators, incrementers, shifters, multipliers, and divisors. As shown in table 2.7,
each operation excites a different part of the CPU.

e Storage functional components serve as storage elements for data and control
information. These components include registers for data and control information
as well as several pointers which can be accessed by ASM instructions.

e Interconnected functional components implement the interconnection between
functional components and control the flow of data. It is mainly the interconnection
between the two previously mentioned functional components: the computational
and the storage functional components. These components include multiplexers and
bus control elements.

Operation ALU part used
Addition Arithmetic part (adder)

Subtraction Arithmetic part (subtracter)

AND Logic part (AND)

OR Logic part (OR)

NOR Logic part (NOR)

XOR Logic part (XOR)
Set on less than unsigned | Arithmetic part (subtracter)
Set on less than signed | Arithmetic part (subtracter)

Table 2.7: Operations of the MIPS ALU [GPZ04]

2.4.2 Control components

Control components are responsible for the flow of instructions and data inside the proces-
sor. These components are also used to control the flow of data to and from the external
environment (e.g., memory subsystem). One of those components implements the decoda-
tion of instructions and production of control signals of the functional components. The
size of the control components on a CPU is usually much smaller as compared to the
functional components. In case of a malfunction of the control components, it is unlikely
that any instruction of the CPU can be executed correctly. [GPZ04]

2.4.3 Hidden components

The hidden components are usually to increase the performance and instruction through-
put. Some examples of this components are the one that implements pipelining or instruc-
tion level parallelism. Some of these hidden components, such as the branch prediction
units, are hard to test. Due to the inherent self-correcting nature of branch prediction
units, a fault is not directly observable and only leads to performance degradation. [SR14]

CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 28

2.4.4 Component size and contribution to fault coverage

“Component-level self-test routines development should give higher priority to large com-
ponents that contain a large number of faults.” [GPZ04] In general, large processor compo-
nents contain large numbers of faults and should be assigned to a higher priority in order
to improve the overall fault coverage. For example, developing a self-test with a fault
coverage of 90% for a component that occupies 30% of the processor gate count and faults
number contributes 30% * 90% = 27% to the total fault coverage. Developing a self-test
with a fault coverage of 99% for a component hat only occupies 5% of the processor gate
count and faults number contributes only 5% * 99% = 4.95% to the total fault coverage.

Functional components are in almost all cases the largest in size in comparison to
the control components and hidden components. Among the functional components, the
computational ones are usually the largest. Since the functional components, especially the
computational components, are the easiest to test and most of the faults are expected in
these components, it is recommended to give those tests the highest priority and weighting.
[GPZ04]

Even if the SBST is only focused on a high fault coverage for the more accessible to
test functional components, the other parts get tested too. If the control parts fail, it is
unlikely that the functional elements can deliver correct results. (see 2.5.4)

2.5 Related work

This section covers related work on generic CPU fault tests and indirect CPU fault tests.

2.5.1 Instruction set architecture for a Cortex-M3

Even if the goal was to design and implementation a portable SBST, the ideas, design,
and implementation was focused on specific hardware.

The ISA is required in order to implement a functional self-test. In the case of the
Cortex-M3, the number of instructions is quite large and the instruction set of a Cortex-
M4 CPU is even larger. In general, the ARM Cortex-M processors are designed as reduced
instruction set computing (RISC) processors. Due to its characteristics such as the rich
instruction set and mixed instructions sizes some might argue that these processors are
closer to the complex instruction set computing (CISC) architecture. But as processor
technologies advance, the instruction set of most RISC is getting more powerful, and the
traditional differences between RISC and CISC can no longer be applied. [Yiul3] Some
of the modern CPUs have taken the best aspects of both architectures. [AMHO7]

The ISA lists more than 180 different instructions. A full list of the instructions can
be found in [ARM10] and [Yiul3], most of it can be used with an optional code suffix and
a flexible second operand. The optional code suffix allows conditional execution based on
the CPU flags. In total, there are 14 conditional execution suffixes as shown in table 2.8.
Most of the instructions also allow the second parameter to be flexible. A flexible operand
can be a constant value or a register with an optional shift. The allowed shift expressions
for the flexible operand are shown in listing 2.9.

As a result of an instruction in most cases a result value is stored in the output register
and the CPU flags are set accordingly. The Cortex-M3 CPU has 4 CPU flags:

CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK

e N This flag is set if the result is negative.

e 7 If the result was zero, this flag is set.

e C If the operation resulted in carry, this flag is set.

e V This flag indicates that the operation caused an overflow.

29

Most of the standard instructions can be called to modify the flags based on the outcome
or to not touch the flags. Some instructions can be executed to set only the flags and not

change any values

in the registers.

Suffix Flags Meaning

EQ Z=1 Equal
NE Z=0 Not equal

CS or HS C= Higher or same, unsigned

CC or LO C=0 Lower, unsigned
MI N = Negative
PL N=0 Positive or zero
VS V=1 Overflow
VC V = No overflow
HI C=1land Z = Higher, unsigned
LS C=0or7z-= Lower or same, unsigned
GE N=V Greater than or equal, signed
LT NI=V Less than, signed
GT Z =0 and N =V | Greater than, signed
LE Z =1and N !=V | Less than or equal, signed

AL or empty any Always. Default when no suffix is specified.

Table 2.8: Conditional execution code suffixes for Cortex-M3 and Cortex-M4 [ARM10]

Shift Expression Meaning
ASR #n Arithmetic shift right n bits
LSL #n Logical shift left n bits
LSR #n Logical shift right n bits
ROR #n Rotate right n bits
RRX Rotate right one bit and extend
if omitted no shift occurs

Table 2.9: Optional shift expressions for flexible operands on Cortex-M3 [Yiul3|

2.5.2 Deterministic tests for CPU components

A complete deterministic test without any limitations would need to cover all possible
instructions described in 2.5.1. With all the shift operations and conditional flags, this
implies thousands of individual instructions, each of which needs to be tested with with

CHAPTER 2. TECHNICAL BACKGROUND AND RELATED WORK 30

several different values and compared to expected values. Luckily, most of the compilers

and compiler settings use only a small extract of the theoretically available instructions.
[ST10]

2.5.3 C based instruction tests

Most of the CPU core software-based self-tests presented in the literature are written in
ASM. Due to the hardware dependency of ASM code, these tests cannot be easily ported
to another CPU architecture. In some of the more modern literature deterministic tests
for some parts of CPU were already written in a higher language and examined. With
the usage of most of the compilers the expected ASM instructions were generated and the
expected parts were tested. [PKH'13] [WXT11]. Additional hardware-based tests are
often recommended in order to reach a higher coverage.

Generic CPU safety test

In [Prel4] and [Schl15] a full generic CPU self-test written in C++ was implemented and
examined. The SBSTs were solely focused on the larger elements of a CPU to reach an
acceptable coverage. The generation of the self-tests was focused on general ideas of how
to test the ALU and some various operations like Quick Sort to test hidden parts. To proof
the effectiveness of the implemented tests a fault injection framework was used. Although
a full coverage of all instructions was not the goal, the reached fault-coverage was very
promising.

The main difference between this approach and the methods applied in this master
thesis were that the effectiveness was not shown based on the compiled instructions and
the implementations of the SBST were not meant to be used with compiler optimizations.
The usage of compiler optimization algorithms would have replaced the tests and checks
with constants and this would have let to a low fault coverage (see 3.4).

2.5.4 Indirect CPU testing

SBST are based on ASM instructions (or higher level implementations which are compiled
to ASM instructions). Components, which are invisible to the assembly language pro-
grammer, cannot be tested directly (see 2.4). However, a test for a functional component,
like the ALU, is also testing other parts. This approach testing non-visible components is
called indirect CPU testing and can be quite capable. [GPZ04]

In [CDO1] SBST were used to test the ALU and shifter only. No tests were generated
for other components because they were not readily accessible trough instructions. An
indirect test of not-directly tested components was expected. The tests reached around
99% fault coverage for the directly tested components and more than 91% coverage for
the whole CPU.

Chapter 3

Concept and design

This chapter describes the system requirements in detail. The operations and operands,
which need to be tested, are presented and classified. The approach to test the CPU flags
is shown as well. Furthermore, the difficulties of compiler optimizations techniques and
generic C SBST are demonstrated. The concept of showing the instruction coverage is
presented as well.

3.1

System requirements

Application driven approach

The approach is to test all instructions which are used or likely to be used. Instruc-
tions, which are not used, do not need not be tested. Instructions which are unlikely
to be used should not be tested.

C-based self-tests

The instruction tests should be implemented in C.

Additional assembly based self-tests

Only particular instructions, which cannot be tested with C code, should be imple-
mented in ASM.

Portability

The tests should be as hardware-independent as possible. Due to some specific
tests, which cannot be covered in C, a complete hardware independent instruction
test which includes all used ASM instructions is not reachable. Nevertheless, the
instructions, which need to be adapted in case of a hardware change, must be clearly
marked and easily adaptable.

Test in slices and verification of the SBST results

The tests have to be executed in test slices. The outcome of each test slice is a 32 bit
CRC. If all tests were successfully executed, this CRC has to have a specific value
which is known at compile time.

31

CHAPTER 3. CONCEPT AND DESIGN 32

e Balanced test slices

The self-tests are executed in test slices. The execution time of each of those test
slices should be around 100us and not exceed 150us.

¢ RAM and register tests

The Abraham test, the RAM comparison test and the RAM doubled storage test are
used for testing the RAM functionality. The general purpose registers are tested with
the usage of the Galpat test. These tests were already in use, the implementation
of this tests is not part of this master thesis.

e Coverage measurement

This is done by comparing the outcome of the compiler. The instructions used in the
application are compared with the instructions tested in the self-tests. Furthermore,
the usage of CPU flags after each instruction is analyzed. If the status of a specific
CPU flag is used in the application code, the test has to check the CPU flag for that
particular instruction too. This test coverage analysis tool was already implemented
but reviewed.

e Coverage with enabled compiler optimizations
The provided self-test needs to have a full coverage, even if specific compiler opti-
mizations are used.

e Integration of additional self-tests

If additional self-tests are required later on (for instance, if it does not include sup-
ported compiler optimizations), the implementation of these tests and the integration
into the test system needs to be supported.

3.2 General self-tests

General tests are used to check the memory and registers:

¢ Register testing: Galpat test

This test is used to check the addressing of the general purpose registers. Since the
test includes checks against expected values, the instructions for this test can be
seen as proven and added to the diagnostic coverage.

e Data access: Abraham test

This test accesses the whole RAM of the controller and checks its content for expected
values. Therefore, the applied instructions will be added to the diagnostic coverage
as well.

e Memory addressing: RAM doubled storage test

This test compares the safety-related RAM which is stored twice (normal and in-
verted). Since the test includes a comparison with values also the executed instruc-
tions for this test can be seen as tested.

CHAPTER 3. CONCEPT AND DESIGN 33

3.3 Application driven approach

Application code and the test code is compiled together to ASM instructions. Therefore,
it should be possible to create an instruction test in the same programming language as
the application code that covers most the instructions used by the application.

The visible functional parts are the one which can be tested. Therefore, the common
operations are listed first. Followed by a section where the idea to test the CPU flags is
presented. Common data values, which are often applied in the tests, are shown as well.

3.3.1 Common operations

Relational operators

Relational operators are extensively used in all applications and need to be tested.

e Equal to
e Not equal to

Greater than

Less than

Greater than or equal to

Less than or equal to

Bitwise operations

Tests for bitwise operations need to include:

e NOT operator

e AND operator

e OR operator

e Exclusive or (XOR) operator

Logical and arithmetical bit shift
Also, a combination of those operators have to be tested (e.g., NOT AND) since there

might be special instructions available which do both operations in one step.
Basic arithmetic functions

Common operations, which need to be tested, are the essential mathematical functions:
e Addition

e Subtraction

Multiplication

Division

Modulo

CHAPTER 3. CONCEPT AND DESIGN 34

Data access operations

Data access operations include:
e Data access to different memory sections (see 3.3.4)
e Read a single element from an array

e Write a single element into an array

Memory functions

The memory set, copy and compare functions are common and need to be tested. All three
tested memory functions need to be executed on all different storage types (see 3.3.4):

e Memory set with local memory destination

e Memory set with global memory destination

Memory copy with local source and global memory destination

Memory copy with global source and local destination memory
e Memory copy with constant source and global destination memory

e Memory copy with constant source and local destination memory

More library functions

Not only the memory functions are widely used, but also other library functions need to
be tested. Standard library functions, which need to be tested, include but are not limited
to long jump and string functions.

3.3.2 Test of the CPU status flags

Most of the instructions can also affect the flags. The status of those flags may have an
influence on the correct processing and have to be tested as well. To support the testing
of the CPU status flags (intermediate) results should be checked against expected values
with all of these relational operators. Due to different compilers and compile settings,
these C instructions may lead to flag checks or to compare instructions.

e Equal to checks the zero flag status

e Not equal to checks the zero flag status

Greater than checks the carry flag

e Less than checks the carry flag

Greater than or equal to checks the carry and zero flag

Less than or equal to checks the carry and zero flag

CHAPTER 3. CONCEPT AND DESIGN

Is equal to zero checks the zero flag

Is unequal to zero checks the zero flag

Greater than zero checks the sign and zero flag

Greater or equal than zero checks the sign and zero flag
Less than zero checks the sign and zero flag

Less or equal than zero checks the sign and zero flag

3.3.3 Data types

The operations have to be tested with the standard C data types:

Unsigned 8 bit integer
Signed 8 bit integer
Unsigned 16 bit integer
Signed 16 bit integer
Unsigned 32 bit integer
Signed 32 bit integer
Unsigned 64 bit integer

Signed 64 bit integer

3.3.4 Storage type

The data types can be stored in different memory sections:

RAM (global memory)
Stack (local memory)

Program memory (constant data)

3.3.5 Data values

35

The values, which are used to execute the tests, have a tremendous influence on the fault
detection. Universal test values are defined in this section.

Walking bit patterns

For most of the tests walking bit values are used which is why lists with all possible values
for the supported data types are required.

CHAPTER 3. CONCEPT AND DESIGN 36

Lower bits are set

Another set of common bit patterns for testing are those, in which all bits are set to a
specific index, but the higher bits are not set. As an example the 8 bit values are shown
here:

e (00000001
e 00000011
e (00000111
e 00001111
e 00011111
e 00111111
e 01111111

e 11111111

Prime values

Mainly but not limited to the division and modulo tests lists with low and high primes
for each supported data type are needed.

Values with alternating bits

Widely used are also the values with alternating bits (such as 0xAA = 1010 1010 and 0x55
= 0101 0101).

Alternating bits alternating in each byte

To continue the idea of alternating bits the first bit of each byte can be swapped too. For
example: 0xA5A5 = 1010 0101 1010 0101

Minimum and maximum values

It is common and practical to use the maximum values of each data type. For signed data
types the minimum value is also helpful.

Values with patchy bit patterns

Values with patchy bit patterns are also useful for testing. An example for such a pattern
is 0xDEADBEEF = 1101 1110 1010 1101 1011 1110 1110 1111.

CHAPTER 3. CONCEPT AND DESIGN 37

3.4 Compiler optimizations

Compiler optimizations have a massive impact on the development of SBST. A SBST
implemented in C, which is not supposed to be used with optimizing compilers, will lose
most of their abilities to detect glitches. Even if the same SBST compiled without any
optimizations may have a good coverage, shallow coverage is expected when used with
optimizing compilers. Among of the large list of optimization techniques two of those
make the implementation of self-tests challenging:

e Optimization by reduction of already known results

SBST are calculations, in which the outcome is already known in advance and is
checked against the expected value. When optimizations are turned on (no matter
if the optimization goal is to save memory or runtime), the compiler is looking for
pre-known outcomes. The calculations and the checks are replaced by constants,
in some cases, a method call with many tests is replaced by just one line of code.
[Man03]

e Optimization by choosing the fastest instructions

Most of the compilers are using a limited number of different instructions, only if
the compiler is trying to optimize the code instructions which are doing more than
one calculation in one step are chosen. Even if it may look straight forward in some
situations which instructions are used, the topic of instruction selection is quite
complex and in some situations the selected instruction may look incomprehensible.
[Bli16].

The first issue (replacing the tests with constants) may be solved by:

e Turning off the optimization techniques for the self-tests

The first issue may be solved by turning off the optimization techniques just for the
SBST and by using the optimization algorithm only for the application code. This
fix will make the SBST not useless, but also not as useful as it should be. The
application will use instructions which are generated with turned on optimizations
only, and these instructions will never be generated for the test code and therefore
not tested. Due to these limitations, this method was not further explored in this
master thesis.

e Adding values to the tests, which are not known by the compiler

The second possibility is to hide the fact from the compiler that the result will
always be the same. The constant behavior can be hidden by adding the content of
a variable to one of the constant values of a calculation. In normal operation this
value will always be the same (preferably 0) and does not change the result of a
calculation. Due to performance improvements, it is preferred to XOR the constant
value with the seed variable instead of adding it together.

Figure 3.1a shows the basic structure of a test which could be used for testing the
addition instructions. However, as soon as compiler optimizations are utilized, the whole
test get replaced with no tests and checks at all (see figure 3.1b). Figure 3.1c shows the

CHAPTER 3. CONCEPT AND DESIGN 38

result = result + OXAAQQ

CRC = 0x0000
CRC = 0x0000
I UpdateCRC (result) I

result = resuli + OxAAQD
I UpdateCRC (result) I

hex0 = 0x0000
Peesxuﬁt.:-%);%%zg hex0 := 0x0000 + seed
= hexF := 0x00FF + seed
hexAF := OXAAFF result := 0x0000 + seed
hexAF ‘= OXAAFF + seed

result = hex0 + hexF

UpdateCRC (result)

result

result = hex0 + hexA
no

UpdateCRC (result)

CRC ==
Expected CRC

Test OK

(b) Figure
3.1a with (Testrailea)

Test failed '

(a) Basic structure of a test which compiler
would have worked without compiler optimiza- (c) Figure 3.1a with a seed variable
optimizations tions and compiler optimizations

Figure 3.1: Simple structure of a test compiled with compiler optimizations

same additional test 3.1a with the addition of the variable seed which will always be 0, but
this constant behavior of the seed is not known by the compiler. As shown in figure 3.1,
even with the usage of a seed variable to hide the constant outcome the fault coverage is
lower than it would have been if compiler optimizations are not used at all. Some checks,
which are implemented to test the CPU flags, are not executed. A simple reordering of
the checks (for example to check the intermediate result against the constant value at the
end of the first group of flag checks) does not change the applied instructions. Compilers
are usually allowed to change the order of the instructions as long as the functionality of
methods is not affected. [Man03]

In many tests the values are taken from predefined and constant arrays. To hide this
constant behavior from the compiler without adding the seed variable to each value it is
done in a less performance reducing way by adding the seed variable to the array pointer.

Additional tests focusing on optimizations are needed to improve the number of covered
instructions.

CHAPTER 3. CONCEPT AND DESIGN 39

C / C++ Source Code
(Application + Tesis)

1. Compile

ASM Instructions
(Application + Tests)

2. Analyse

Statistics about the
Test Code

Statistics about the
Application Code

3. Compare

Coverage Report

Figure 3.2: Three steps to measure the coverage

3.5 Coverage measurement

An essential part of a test is to show its effectiveness and completeness. In this section,
the coverage measurement is described. As shown in figure 3.2 the coverage is done in
three steps: the source code is compiled, analyzed, and compared.

3.5.1 List of ASM instructions

The application source code and the self-test source code are compiled together and as-
sembler listings are generated. This step needs to be done with the compiler and compiler
settings which will be used for the release of the application.

3.5.2 Analysis of ASM instructions

In the first step non-relevant information like comments are removed. With the usage of
a language recognition tool, the instructions are reduced to its prototype and the usage
of CPU flags gets analyzed. The coverage measurement tool knows which listings belong
to the self-tests. All ASM listings, which do not belong to the test code, are part of the
application and need to be tested. The outcome of this step are two lists with instructions,
one of which is the list of instructions used in the application, the second one is the test
instructions list.

Furthermore, there may be cases where the compiler generates calls to functions in
system libraries (e.g., C standard library). Such calls are located and also expected to be
tested if such calls are made from the application.

CHAPTER 3. CONCEPT AND DESIGN 40

3.5.3 Comparison

In the last step of the coverage analysis, the two statistical files are compared with each
other. All instructions used in the application need to be covered by the test code as well.
If flags have been set and checked in the application code, the flags for that instructions
need to be checked in the test code as well.

The outcome of this step are statistical information about the used instructions of the
application and test environment. Based on this outcome a coverage report is generated.

3.5.4 Coverage report

The report is not only showing whether the coverage is given or not, it also gives useful
statistical information. By each ASM instruction, it is showing how often it is applied in
the application code and how often this instruction is tested. It also shows by instruction
if and which flags were evaluated in the application and test code. Instructions, which are
neither used in the application nor in the test code, are not shown here.

Only if all instructions, system calls and flag checks, which are utilized in the applica-
tion, are found in the test code, the coverage is given. If any instruction or flag check is
missing, the report is showing and highlighting the deviations.

Chapter 4

Implementation

This chapter describes the design and implementation of the SBST. For each type of
operand the test design is shown and additional tests, which were needed to increase the
coverage in case of compiler optimizations being used, are shown here as well.

4.1 Design of the class diagram

In this chapter, the C4++ test classes for all SBST are introduced.

The SBST will be divided into several test classes, each of which is focused on a kind
of operation:

e Relational operators

Bitwise operations

Basic arithmetic functions

Data access operations

Bit operations

Memory functions

More library functions
e Hardware specific instructions

Each of these classes will hold the belonging tests. According to the requirements, the
tests have to be executed in slices and should not exceed a specific maximum execution
time. To fulfill this requirement each test class can execute the tests in one test slice or
may use several test slices to respect the maximum test execution time per test slice.

41

CHAPTER 4. IMPLEMENTATION 42

Software-based self-test base class

The base class defines the interfaces to execute the test slices and provides useful helper
functions and often used test values. The base class supports the tests with the following
attributes:

e The interface to call the tests
e The seed variable

e Several often used test values, as shown in 3.3.5, are available for the tests as con-
stants

e CRC calculation method

Seed variable

The seed variable is an unsigned integer variable which is used to hide the constant be-
havior of some values. Its value will always be 0, but this behavior has to be hidden from
the compiler. It is extensively applied, so that compiler optimizations do not eliminate
specific calculations.

Interface to call the tests

The base class defines the method “doExecuteSlice”. This method is defined as abstract
and has to be implemented in each test class. When first called this method executes
the first test slice. The outcomes of this call are the calculated CRC value as well as the
expected CRC value. If used in a single system implementation, those two values have
to be compared with each other. If more than one systems are in use, the value may
be exchanged with another parallel system and the calculated CRC value from the other
system can be compared for accuracy as well. At the end of each test slice the slice counter
is increased, and the next call of this method is executing the next test slice until all test
slices are called. Each test class also provides the number of test slices. To start again
with the first test slice, a reset method has to be implemented.

4.2 Design of the software-based self-test

This chapter describes the structure of the SBST used in this master thesis. Simply
speaking, all C language constructs, which might be affected by the application, need to
be used and tested within the C based instruction test. To check the flag status the code
sequence will also have checks which implicitly checks the flags. To support optimizing
compilers the seed variable is utilized repeatedly and additional tests are added. The seed
variable will always be 0 and will be just added in order to avoid that the compiler already
knows the result at compile time.

The general idea behind each SBST is to add (intermediate) results to a 32 bit CRC.
During each test cycle in most of the tests, the intermediate results are also compared
with constant or dynamic values. Depending on the success of the comparison, additional
values are added to the CRC. At the end of each test slice the calculated CRC will be

CHAPTER 4. IMPLEMENTATION 43

compared with the expected CRC.

4.2.1 Relational operators

Relational operators are extensively used in all applications and are also essential for the
SBST to check calculated values and CPU flags.

All the relational operations shown in 3.3.1 with all combinations of different data
types listed in 3.3.3 need to be tested here. The basic structure, which is utilized to test
the relational operators, is shown in figure 4.1a: With the usage of shift operations, each
result is slightly changing the 32 bit result variable. To make sure that the compiler is
executing each test without any modifications due to optimization techniques the result
of each comparison is additionally added to the CRC value.

Another beneficial test, which is implemented in this section, is the calculation of the
maximum and minimum of two values.

Relational operator tests for optimizing compiler

As already described in the previous section 4.2.1, the intermediate result was added to
the CRC in order to test the instructions which are supposed to be tested. However, it
also makes sense to include some tests, in which the intermediate result is not added to
the CRC. In this case, the compiler may use different instructions which are only changing
the CPU flags but not changing any registers (see figure 4.1b)

Another set of instructions, which are only applied in case of optimizations are turned
on, are the IT (if-then) instructions with more than one conditional instruction. This
instruction makes up to four following instructions conditional. The conditions can be all
the same (then), or some of then can be the logical inverse (else) [Mahl3]. If compiler
optimizations are not turned on, the IT (if-then) instruction is used to find the maximum
of two values. The implementation of a test in C, which leads to an if-then-then-then-
then instruction, can be seen in figure 4.1c. Such a long if-then combination is scarce. A
change in one of the values or the use of different compiler settings may result in different
instructions and the ITTTT instruction is not tested anymore.

4.2.2 Bitwise operations

Bitwise operations are tested in their SBST but also indirectly tested in a lot of other
tests.

The tests for the bitwise operations NOT, AND, OR and XOR is shown in figure 4.2a:
A bitwise operation, in this example the NOT, is executed (the XOR is only used to bring
in the seed variable). The result of that operation is added to the CRC value. The result
is checked against values, some of those checks are supposed to be true, some are not.
Depending on the result a specific value is added to the CRC.

Bitshift instructions are also tested here. For these tests, patchy bit patterns, such as
the hex value 0OxDEADBEEF or 0x4EADBEEF are applied. To cover all shift operations
an unsigned and signed value have to be shifted right and left. The test of the bitshift
instructions is shown in figure 4.2c. To cover the instructions, which change the CPU

CHAPTER 4. IMPLEMENTATION

hex5 = 0x55 " seed
hedA = OxAA * seed
result =0
tmpResult =0
bitindex ;= 0

v

tmpResult = hex5 »= hex3
result = result | (result << bitindex)
bitindex++

!

‘ | UpdateCRC (tmpResult) | ‘

!

tmpResult = hex5 > hex3
result = result | (tmpResult << bitindex)
bitindex++

!

‘ | UpdateCRC (tmpResult) |

!

maxValue16bit = OxFFFF XOR seed
hex5 = 0x5555 XOR seed

!

UpdateCRC (maxValue16bit)
UpdateCRC (hex3)

no (NOT

maxVvalue16bit)

UpdateCRC (0x5) |

(maxValue16bit
AND

0xFF)
=0

UpdateCRC (0x4)

hexd AND NOT

no

tmpResult = hex5 < hex3
result = result | (tmpResult << bitindex)
bitindex++

!

‘ | UpdateCRC (tmpResult) |

UpdateCRC (result)

I
L]

CRC ==
Expected CRC

Test FAILED

max\Value16bit)
=0

UpdateCRC (OXAA)

CRC ==
Expected CRC

‘ Test FAILED ’

(b) Relational operator tests if

44

result == OXAAAAAAAA XOR seed

nexA = OXAAAAAAAA XOR seed
hexé = 0x85685888 XOR seed
hex2 = 0x22222222 XOR seed

I result = hex8 | hex2

result

hexA

no

I result = (0 XOR seed) | 0x22222222

yes

I result = hexs | 0x800000 I

UpdateCRC (result)

CRC ==
Expected CRC

Test FAILED Test OK

(a) Basic structure of the rela- the result is not required and (c) Test for the ITTTT instruc-

tional operators test

only the flags are used

tion

Figure 4.1: Tests for relational operators

CHAPTER 4. IMPLEMENTATION

| result =0
| result = NOT (0xAA XOR seed)

UpdateCRC (result)

yes

| | UpdateCRC (0x5)

——

| result = NOT (0x55 XOR seed) |

maxValue16bit = 0xFFFF XOR seed
hex5 = 0x5555 XOR seed

v

UpdateCRC (maxValue16bit)
UpdateCRC (hex5)

no (NOT

maxvalue16bit)

| UpdateCRC (0x5)

(maxValue16bit

v

UpdateCRC (result)

UpdateCRC (0x3)

CRC ==
Expected CRC

Test FAILED

AND
OXFF)
=0

(hexd AND NOT
maxValue1&bit)
=0

| UpcateCRC (OXAA)

Test FAILED

CRC ==
Expected CRC

Test OK

(b) Test structure of bitwise
tests if the detailed result is

signedvalue ‘= 0x4EADBEEF + seed
shiftOffset = 5 XOR seed
nofshifts =8
i=0

i<
nofShifts

| signedvalue = signedValue >> shiftOffset |

| | UpdateCRC (signedvalue) ‘ ‘

| | UpdateCRC (0x03 * (i+1)) ‘ ‘

—
1

signedValue := 0x4EADBEEF + seed |

i=0

45

=
nofshifts

| signedValue = signedvalue >> shiftOffset |

| | UpdateCRC (signedVvalue) ‘ ‘

|

CRC ==
Expected CRC

Test OK

Test FAILED

(a) Basic structure of the bit- not important and only the (c) Test structure of the bitshift

wise operations test

flags are used

test

Figure 4.2: Tests for bitwise operations

CHAPTER 4. IMPLEMENTATION 46

flags and also those which do not affect the CPU flags, the shift tests are executed with a
comparison of the intermediate results and also without that check.

Bitwise operation tests for optimizing compiler

To support instructions, which are generally used only if compiler optimizations are de-
ployed, the combination of AND and NOT in one operation has to be tested as well.
Additionally, it is also essential to test the operation when only the status of the flags is
relevant, and the value itself is not important. An example of such a test can be seen in
figure 4.2b. The step to add the initial values (max value and hex5) to the CRC is only
done to avoid further compiler reductions.

4.2.3 Basic arithmetic functions

The arithmetic functions are tested with the following parameters:
e Constant value
e Value from an array
e Walking bit

Intermediate results are checked against constants, values from a constant array and
against values, of which the compiler does not know that the value is constant.

Addition and subtraction tests

Whereas the idea behind the testing of addition tests is shown in figure 4.3, the method of
subtraction testing is illustrated in figure 4.4. The order of the operations with constant
values, values from an array and walking bit varies. The shown steps are repeated until
an overflow for the additions or underflow for the subtraction tests is reached. Even when
the overflow or underflow is reached two more test steps are executed.

Addition tests for optimizing compiler

If compiler optimization techniques are utilized, specific switch-case statements may be
compiled in order to add instructions with specific parameters which are not applied in
normal situations. The add instruction which is generated in this situation is only working
with the first 8 bit of both 32 bit parameters for the operation and is using the status of
the flags to exclude some branches. An example of a switch-case statement that leads to
such special instructions is shown in figure 4.5. It seems that it has something to do with
the bit structure of the case expressions. Further tests have shown that these instructions
are only applied with specific compiler optimization flags. Even if the same compiler is
used with different optimization flags, this optimization is often not utilized anymore.

CHAPTER 4. IMPLEMENTATION

const array[] .= patterns + seed
walkingBit = 0x01 XOR seed
shiftOffset = 0x01 XOR seed
result = 0 XOR seed

'

result = result + 0x01
result = result + walkingBit
result = result + array[0]

v

| | UpdateCRC (result) | |

result

0x03

no

| | UpdateCRC (0x03) | |
T
¥
walkingBit = walkingBit << shiftOffset
result = result + walkingBit
result = result + array[1]
result = result + 0x02

.

| | UpdateCRC (result) | |

result
=
array[2]

| | UpdateCRC (0x05) | |
[

CRC ==
Expected CRC

Test FAILED

Figure 4.3: Test structure of the
addition test

47

const aray[] = patterns + seed
walkingBit = 0x01 XOR seed
shiftOffset = 0x01 XOR seed
result = 0xFF XOR seed

'

result = result - Ox01
result = result - walkingBit
result = result - array[0]

!

| | UpdateCRC (result) | |

yes

| | UpdateCRC (0x03) | |
T
v
walkingBit = walkingBit << shiftOffset
result = result - walkingBit
result = result - array[1]
result = result - 0x02

|

| | UpdateCRC (result) | |

result
=
array[s]

| | UpdateCRC (0x05) | |
[

CRC ==
Expected CRC

Test FAILED

Figure 4.4: Test structure of the
subtraction test

CHAPTER 4. IMPLEMENTATION 48

START
(parameter)

I result =0 I
v
switch (parameter AND 0xFF)

case case case case case case case
0)<4A Dx67 Dx7’9 0x86 0xFS 0): BA Dx98

result = 4 || resut = 5 result=6 result=7 resut=7

| | | |
+

UpdateCRC (result) | |

CRC ==
Expected CRC

no

¥
Gst FAI L@ (Test OK>

Figure 4.5: Switch-case construct which leads to uncommon addition ASM instructions

Multiplication

The multiplication test is done again according to the arithmetic function tests presented
in 4.2.3, which can be seen in figure 4.6. Borderline tests (e.g., multiplication with 0 or
high values which result in an overflow) are necessary as well.

Division and modulo tests

Division and modulo tests are shown in figure 4.7 and are mostly done based on low
and high primes. Most of those values are taken from the arrays which were prepared in
advance and available for all tests, but some of those values were directly entered into the
source code to make the compiler aware of the constant behavior.

Some essential tests are also executed with non-primes and borderline values.

Multiplication and division tests for optimizing compiler

Compiler optimizations did not lead to any unexpected instructions. In some cases, bit
shiftings are used instead of the multiplication, but these instructions were already covered
in 4.2.2.

CHAPTER 4. IMPLEMENTATION

const array[] = patterns + seed
walkingBit = 0x01 XOR seed
shiftOffset = 0x01 XOR seed
result = 1 XOR seed

'

result = result = 0x01
result = result * walkingBit
result = result * array[0]

v

| | UpdateCRC (result) | |

result

0x01

no

| | UpdateCRC (0x03) | |
|
v
walkingBit = walkingBit << shiftOffset
result = result * walkingBit
result = result * array[1]
result = result * 0x02

!

| | UpdateCRC (result) | |

result
-3
array[2]

| | UpdateCRC (0x05) | |
T

CRC ==
Expected CRC

Test FAILED

Figure 4.6: Basic structure of the
multiplication test

49

highPrimes]] := HighPrimes + seed
lowPrimes[] := LowPrimes + seed
result = 0 XOR seed

Y

| result = highPrimes[0] / lowPrimes[0] |

v

| | UpdateCRC (result) | |

| | UpdateCRC (0x03) | |
I

 J
| result = highPrimes[1]/ 5 |

v

| | UpdateCRC (result) | |

no result

| | UpdateCRC (0x05) | |
]

¥
| result= (0 XOR seed) / lowPrimes[3] |

| | UpdateCRC (result) | |

yes

| | UpdateCRC (0x10) | |
T

Test FAILED

CRC ==
Expected CRC

Figure 4.7: Basic structure of the
division and modulo test

CHAPTER 4. IMPLEMENTATION 50

4.2.4 Data access operations

The first data access test is writing a value to a global variable, modifying the data and
checking at the end if the value is correct. In the next step, the data access to arrays is
tested. The test structure for reading values from an array is shown in figure 4.8a. An
array with all bit shift values for the tested data type is used and compared with a freshly
calculated bit shift value.

Figure 4.8b shows the test, which is utilized to test the instructions, used to store data
into an array. The values from an existing global array are copied to an uninitialized local
array. To evaluate the storing functionality all elements of the local array are added to
the CRC.

@ const array[] := patterns + seed

const localArray[] = new Array[]
1:=0

const array[] ;= patterns + seed
walkingBit = 0x01 XOR seed
1=0

| ‘ UpdateCRC (array(i]) | |

array[i]

walkingBit

| ‘ UpdateCRC (0x03) | |

i ‘ ‘ UpdateCRE (localArray[i) | |
| walkingBit = walkingBit << 1 | ——— |

CRC ==
Expected CRC

:——‘L—: GSt FAL@ (TestoK)
Test FAILED
(b) Basic structure to test the opera-

(a) Basic structure to test the load tions used to store information in an
array operations array

Test OK

Figure 4.8: Tests for array operations

CHAPTER 4. IMPLEMENTATION 51

Data access tests for optimizing compiler

If compiler optimizations are used, the instructions for data access operations are variable.
In addition to the instructions, which are generated based on the load and store array tests,
more instructions are generated in more complex application code.

In some code snippets in which the compiler detects that a part of the array up to
a specific index is not relevant anymore and in which no register for storing the index is
easily available, the array pointer may be modified. This modification of the array pointer
is sometimes done in one instruction together with reading or writing of a value. This
optimization technique is applied only if most of the registers are used for other more
variable operations, and there is no register available for the index variable. During the
implementation of the SBST it was found out that this behavior was only shown when a
lot of other operations and calculations were added to the test. In order to avoid a test of
becoming to large, another test was found and implemented, in which the compiler was
pushed in the direction to use the instructions which are reading or storing information
in the array at the same time as modifying the array pointer. Whereas the idea of testing
the load operation can be seen in figure 4.9, the test of the store instruction is illustrated
in figure 4.10. The check if the index i is lower than a specific constant is only added
to satisfy the static code analysis tool. Without those checks many warnings would have
shown up.

Another instruction which is only applied when compiler optimizations are used is the
load word instruction. This instruction loads the first 8 bit of a 32 bit element from an
array. This is only done if the array is constant and holds 32 bit data types, but all the
elements in there would have fit into an 8 bit data type. The compiler recognizes this
behavior and reads only the first 8 bit of an element of the array. This procedure has to
be done in a loop and the loaded element has to be compared with a 32 bit value within
the loop. This test is illustrated in figure 4.11a.

More efficient instructions are also used if only one bit of the value to be read is
essential. In this case, the compiler is doing a left shift operation together with the load
operation in one instruction. After this load instruction, there is a right shift operation
which sets the status of the CPU flags followed by a compare instruction which is a fast
and straightforward check of the zero flag. The regular data access test would not cover
this instructions, therefore a specific test was implemented which is presented in figure
4.11b.

CHAPTER 4. IMPLEMENTATION

array[] = pattemns + seed
i=2+seed
result =0

I

result = array[0]
array = &(array[2])

!

‘ ‘ UpdateCRC (result) ‘ ‘

yes

result = array[i]
array = &(arrayli])
T

v

‘ ‘ UpdateCRC (result) ‘ ‘
!
[= i+1 |

yes

result = array[i]
array = &(array[i << 2)
T

v

‘ ‘ UpdateCRC (result) ‘ ‘

v

‘ ‘ UpdateCRC (array[0]) ‘ ‘

CRC ==
Expected CRC

G&‘SI FAILEa (Test OK)

Figure 4.9: Structure to test
data access to an array ele-
ment while modifying the ar-
ray pointer in the same in-

struction

()

array[] -= new Array()
i=1+seed

v

array[0] =i
array = &(array[1])

yes

array[i] =i=<2
array = &(array[i])

yes

arrayfi << 1] =i=<=<3
array = &(array[i == 1])

|

52

false

true

‘ | UpdateCRC (array[i)

CRC ==
Expected CRC

es

y
Gst FAI L@ CTeSl OK)

Figure 4.10: Structure to test the
modifying of an element in the array
while changing the array pointer in

the same instruction

CHAPTER 4. IMPLEMENTATION 53

const array[] = { 0x00, 0x0F, 0x33 ...} | @

v

id = Ox0F XC?R seed array ;= patterns + seed
i= i=0

(array[i] &
(0x01 =<<1))
=0

| | UpdateCRC (0x03 * (i+1)) | |

CRC ==
Expected CRC

CRC ==
Expected CRC

Gst FALED (Test 0K> (Testraien) (Testox
(a) Data access test if 8 bit values are (b) Test structure to test only one bit
stored in a 32 bit array of each value

Figure 4.11: Special data access tests

4.2.5 Bit operations

In this section the bit operations are tested. In order to gain access to the individual bits
a struct with 32 bit fields is used. Each bit field has a size of only one bit. As shown
in figure 4.12a, the bits are first initialized with 0, followed by setting the bit to a value
which is not known by the compiler but which is always 0. After checking this bit it is
changed to 1 and checked again. This procedure is repeated for each transit bit (for every
first and last bit of each byte).

In the second step, which is shown in figure 4.12b, the procedure is almost the same,
but in this test the compiler knows when the bit is set or cleared.

CHAPTER 4. IMPLEMENTATION

bits = new BitStructure(0)
result =0

¥
bits.bitd = 0 * seed

NOT
bits.bit0

| result = result + 1 |
|

v

‘ ‘ UpdateCRC (result) ‘ ‘

| bits.bitd = 1 * seed |

| result = result + 1 |

|
v

‘ ‘ UpdateCRC (result) ‘ ‘

CRC ==
Expected CRC

Gest FAILE9 (Test OK)

a) Bit test where the value which
is saved in a bit is unknown to the
compiler

54

bits = new BitStructure(1)

result =0
y
bits.bit0 = 0

NOT
bits.bit0

| result = result + 1 |
|

v

‘ ‘ UpdateCRC (result) | ‘

| bits.bit0 = 1 |
| result = result + 1 |
|
v

‘ ‘ UpdateCRC (result) | ‘

CRC ==
Expected CRC

Gest FAILE9 (Test OK)

b) Bit test where the value which
is Saved in a bit is known by the
compiler

Figure 4.12: Tests for the bit operations

CHAPTER 4. IMPLEMENTATION 55

4.2.6 Memory functions

The library functions to set, copy and compare memory are widely used and need to
be tested. As already specified in 3.3.1, these operations have to be tested with global
constant, global and local memory. Therefore, a global constant and a global array of
unsigned 32 bit integer were created.

The memory set test is executed in three steps (figure 4.13a):

e Copy the content of an array with different values to the destination array.

e Use the memory set function to override a part of the destination array with a
constant value.

e The values of the destination array are added to the checksum and checked against
the expected values.

The execution of the memory copy test is similar (figure 4.13b):
e Copy the content of an array with different values to the destination array.

e Use the memory copy function to override a part of the destination array with the
content of the source array.

e The values of the destination array are added to the checksum and checked against
the expected values.

The memory compare function test is shown in figure 4.14. The first step is to exe-
cute the memory compare function with two arrays which have the same patterns. The
detection of equality is expected. The second step is to execute the memory compare
function with two different arrays of the same size but different content. The result of
both compares is added to the CRC.

4.2.7 More library functions

Another library function, which needs to be tested, is the long jump. The test is shown
in figure 4.15. Set jump returns 0, if it is not called from long jump. Therefore, the result
is 0, and the long jump with value 1 is initiated. The long jump returns to the position
where set jump is called and returns with the given parameter 1. If the CRC value at the
end is correct, both paths (the true and false path) are executed once.

4.2.8 Hardware specific instructions

As already discussed before, full hardware independent SBST with a 100% instruction
coverage is not feasible. In this category instructions, which cannot be tested in C at
all or only with much overhead and effort, are tested here. Especially with compiler
optimizations some of the C operations are only compiled to specific instructions if all the
side-conditions such as the number of already used instructions are fulfilled. In some cases,
it does not make sense to have hundreds of lines of code and operations to simulate the
side conditions to test one instruction. The instructions to enable and disable interrupts
are tested here together with some unusual instruction combinations and carry flags.

CHAPTER 4. IMPLEMENTATION

destination[] := new Array()
const variableStart
const variableSize = 20
const memSetvalue = OXASAS

i=0

I destination[i] = pattern(i] I

memSet (destination +
variableStart, memSetValue,
variableSize *
sizeOf(memSetvalue)

I
s |

| | UpdateCRC (destination]i]) | |

i < variableStart

i = variableStarn +
variableSize

destination [i]

destination [i]

memSeivalue

pattern [i]

‘ | UpdateCRC (0X05 * (i+1)) | |

CRC ==
Expected CRC

Test OK

(a) Basic structure of the memory
set function test

Test FAILED

56

destination = new Array()
const variableStart

const variableSize = 20
i=0

I destinationi] = pattern(i] |

memCopy (destination +
variableStart, source,
variableSize *
sizeOf(memSetvalue)

| | UpdateCRC (destinationi]) | |

i < variableStart

i > variableStart +
variableSize

destination [i

destination [1

source [i] pattern [i]

‘ ‘ UpdateCRC (0X05 * (i+1)) ‘ |

CRC ==
Expected CRC

Test OK

(b) Basic structure of the memory
copy function test

Test FAILED

Figure 4.13: Tests for the memory library functions copy and set

CHAPTER 4. IMPLEMENTATION

result == 0

v

result = memCompare(array,
copyOfArray)

‘ ‘ UpdateCRC (result) ‘ ‘

v

result = memCompare(array,
differentArray)

‘ ‘ UpdateCRC (result) ‘ ‘

CRC ==
Expected CRC

Test FAILED Test OK

Figure 4.14: Basic structure of
the memory compare function
test

o7

JumpBuffer .= {}
result =0

:

| | result = setJump (jumpBuffer) | |<—

false Jump
with
parameter 1

true

| | UpdateCRC (0xFFFF) | |

!

| | longJump (jumpBufier, 1) | |

[

¥
| | UpdateCRC (0XAAAA) | |

CRC ==
Expected CRC

Eesl FAl LED (Test OK)

Figure 4.15: Test of the library function
long jump

Chapter 5

Results and evaluation

This chapter presents the evaluation results of the SBST implementation. The used com-
pilers and target CPU, which were used for the tests, are shown here as well. Furthermore,
the results of the requirements shown in chapter 3.1 are evaluated.

5.1 Target CPU, compiler, and application

Target CPU

The SBST used target CPU for all these tests was the ARM Cortex-M3. The ARM
Cortex-M is intended for microcontroller use and has been used in tens of billions of de-
vices [ARM18]. Within the Cortex-M series, the Cortex-M3 is the most widely used. Not
only because it was the first released and has the longest time on the market, but also
because it meets the requirement for a general-purpose microcontroller. This means a
right balance between high performance, low power consumption, and low cost. [Yiul3]

Some features of this CPU are [Yiul3] [OTUoLK17]:

e 13 general purpose registers and three special purpose registers
e Three-stage pipeline design

e Supports a mixture of 16 bit and 32 bit instructions

e 32 bit addressing, supporting 4 GB of memory space

e Support for bit-data accesses in two specific memory regions using a feature called
bit band

As shown in 2.5.1 the ISA of this CPU provides a wide range of instructions [Yiul3]:

e General data processing, including hardware divide instructions

e Memory access instructions supporting 8 bit, 16 bit, 32 bit, and 64 bit data, as well
as instructions for transferring multiple 32 bit data

e Instructions for bit field processing

e Multiply accumulate (MAC) and saturate instructions

o8

CHAPTER 5. RESULTS AND EVALUATION 59

Used compiler

The compiler used to evaluate the SBST was the Green Hills Arm 2013.5.4. According to
their own statements, Green Hills Software is the leader in embedded optimizing compilers.

“.. Green Hills Compilers can improve speed and reduce size by at least a 20% compared
to the both GNU and LLVM compilers.” [Grel8]

Application code

Since the coverage is checked based on a comparison of an application with the SBST the
tested applications are important as well. The SBST was compiled together and compared
with four full applications which are actually in use. The application together with the
SBST were compiled with the same compiler settings which were used for the application
delivery. One system was compiled with optimizations turned on; the other three were
compiled without the use of compiler optimizations.

5.2 Test results

This section shows the results of the SBST instruction coverage tests based on real appli-
cations. As already mentioned, the SBST was checked against four applications. In this
chapter, the tests with the two larger application projects are shown in detail. One of this
applications was compiled with compiler optimizations; the other one was not meant to
be optimized.

5.2.1 Test slice execution times

As shown in table 5.1 the test slices are within the given range. The average execution
time is 118 us. All test slices executed one after another would take in total 0.004 seconds.

CHAPTER 5. RESULTS AND EVALUATION

Test slice us
Relational operators 99
Bitwise operators NOT, AND NOT 118
Bitwise operators AND 131
Bitwise operators OR 146
Bitwise operators XOR 140
Bitwise operators bitshifts 103
Bit operations 100
Data access global variables 55
Data access volatile instructions 128
Data access load from array 142
Data access store in array 127
Addition unsigned 32 bit 125
Addition unsigned 64 bit 111
Addition signed 117
Subtraction unsigned 149
Subtraction signed 121
Multiplication unsigned 64 bit 132
Multiplication unsigned 16 + unsigned 32 bit | 134
Multiplication 8 bit, signed 16 bit 102
Multiplication signed 32 bit 115
Division 131
Modulo 129
Memory functions set local 128
Memory functions set global 128
Memory functions compare 64
Memory functions copy local to local 142
Memory functions copy global to local 142
Memory functions copy global to global 141
Memory functions copy global to local 141
Memory functions copy const to local 143
Memory functions copy const to global 142
Library functions 51
Tests in ASM 46

Table 5.1: Test slices with execution times

CHAPTER 5. RESULTS AND EVALUATION 61

5.2.2 Test results when optimization techniques are not used

Table 5.2 shows the number of instructions generated by the test codes. Most of those
instructions are implemented in this SBST, but also instructions from other tests such as
the flash or RAM test as well as tests for other components are included. The list does
not show the number of different instructions; it shows the total number.

Test source # of instructions
Instruction test environment 128
Addition tests 963
Subtraction tests 846
Multiplication tests 1713
Division tests 1184
Bit operation tests 499
Bitwise operands tests 2250
Data access tests 989
Relational operators tests 519
Memory library functions tests 375
Other library functions tests 105
Tests in assembly 85
Register tests 395
Flash tests 209
Ram tests 753
Other tests 898
Total number of instructions 11911

Table 5.2: Number of instructions generated from test code
The total number of instructions used in the application is more than 40000.

Number of different instructions

In total, 109 different instructions (utilizing the parameter) are tested. The most signif-
icant number of different instructions were used for data access. While 16 instructions
were applied to load the data, seven instructions were needed to store the information.

From those 109 different instructions 101 are used in the application. There are no
instructions utilized in the application which are not tested by the SBST. A detailed list
of the instructions tested is shown in A.1.

System calls

In addition to the memory library system calls and the long jumps, which are explicitly
implemented in the self-test, there were several additional system calls used by the applica-
tion. Only four of those system calls utilized by the application were not tested. Analysis
has shown that those system calls are only executed on startup and when the system is
shutting down (destruction). These system calls cannot be tested and were covered by the
system designer: such a malfunction would not lead to critical situations.

CHAPTER 5. RESULTS AND EVALUATION 62

CPU flags

The tested CPU flags are shown in 5.3. “Yes” means that a flag check is covered in the
tests. An empty field means that the CPU flag status was affected by an instruction but
not checked by the tests and also not used by the application. A “No” would mean that
the flag status is used by the application but not checked by the tests. Only instructions,
which are being utilized at least once, are shown in this list.

Instruction Tested flags

Zero | Carry | Negative | Overflow
adds yes yes
cmp yes yes yes yes
movs
msr yes yes yes yes
sbcs yes
subs yes yes
tst yes

Table 5.3: CPU flag coverage

Coverage

As shown above, all instructions used in the application are covered by the test, as well
as the needed system calls are tested, and the functionality of the flags is verified in the
tests as well. Therefore, the instruction coverage is given, and the test is successful.

5.2.3 Test results with the usage of optimization techniques

Table 5.4 shows the number of instructions generated by the test code. As already de-
scribed in 5.2.2, for the test with optimizing compilers the instructions applied for other
tests are also added to the list of approved ASM instructions.

The number of total instructions used by the application is around 27 thousand.

Number of different instructions

In total, 184 different instructions (utilizing the parameter) are tested. Also, in case
of optimizations the largest number of different instructions were used for data access.
While 31 instructions were applied to load the data, 22 instructions were needed to store
the information.

From those 184 different instructions 156 are used in the application. There are no
instructions utilized in the application which are not tested by the SBST. A detailed list
of the instructions tested is shown in A.2.

System calls

In addition to the memory library system calls and the long jumps, which are explicitly
implemented in the self-test, there were several additional system calls used by the appli-

CHAPTER 5. RESULTS AND EVALUATION 63

Test source # of instructions
Instruction test enviroment 125
Addition tests 752
Subtraction tests 697
Multiplication tests 1241
Division tests 938
Bit operation tests 307
Bitwise operands test 1634
Data Access tests 731
Relational operators tests 310
Memory library functions tests 360
Other library functions tests 90
Tests in assembly 85
Register tests 343
Flash tests 153
Ram tests 569
Other tests 693
Total number of instructions 9028

Table 5.4: Number of instructions generated from test code when compiler optimizations
are used

cation, some more in comparison to the non-optimized intermediate code. Only four of
those system calls used by the application were not tested. The analysis has shown that
these system calls are only executed on startup and when the system is shutting down
(destruction). As described before, those system calls cannot be tested and were covered
by the system designer: such a malfunction would not lead to critical situations.

CPU flags

The tested CPU flags are shown in 5.5. “Yes” means that a flag check is covered in the
tests. An empty field means that the CPU flag status was affected by an instruction but
not checked by the tests and also not used by the application. A “No” would mean that
the flag status is utilized by the application but not checked by the tests. Only instructions
which are being used at least once are shown in this list.

Coverage

As presented above all instructions used in the application as well as the needed systems
calls are covered by the test. Moreover, the functionality of the flags is verified in the
tests. Therefore, the instruction coverage is given, and the test is successful.

CHAPTER 5. RESULTS AND EVALUATION

Instruction Tested flags
Zero | Carry | Negative | Overflow
adcs
adds yes yes
adds.w yes
ands yes
asrs yes
bics yes
cmp yes yes yes yes
eors yes
Isls yes yes
Isrs yes
movs yes
movs.w yes
msr yes yes yes yes
muls
mvns
negs
orrs yes
sbcs yes
subs yes yes yes
teq yes
tst yes

Table 5.5: CPU flag coverage if optimization techniques are used

5.2.4 Other tested applications

64

The test was also executed with two more applications which were compiled without
optimizations. Since those two projects were smaller projects with less functionality, it
was no surprise that the coverage was given.

CHAPTER 5. RESULTS AND EVALUATION 65

5.2.5 Discussion of the results

This section discusses the differences between the two test results. Even if the two projects
do not have the same size a comparison is done here. The second project, which was
compiled with an optimizing compiler, is a little bit larger in terms of application code
size than the other one.

As shown in table 5.6, the total number of instructions is lower when compiler op-
timizations are utilized and the number of different instructions increased. This is the
expected behaviour - the total number of instructions used by the application was reduced
by 35% while the reduction for the test code reached only 24%. One reason for these
differences might be that most of the tests were implemented in a way to avoid too many
optimizations: the list of tested instructions includes many operations which are only
used to bring in the seed variable. Those instructions do not improve the coverage but
are needed to avoid the compiler optimizations as shown in 3.4.

’ Tests \ Application ‘

Without compiler optimizations

Instructions 11911 40775

Different instructions 109 101

Instructions flag checks 7 3
Compiler optimizations

Instructions 9028 26613

Different instructions 184 157

Instructions flag checks 21 13
Difference +# percent # percent

Instructions -2883 -24% | -14162 -35%

Different instructions +75 | +69% +56 | +55%

Instructions flag checks | +16 | +300% +10 | +333%

Table 5.6: Comparison of the instructions

5.3 Discussion of the system requirements

The following section includes a list of the system requirements and a discussion of how
well the requirements are satisfied
e Application driven approach

As verified in the result section, the application instructions are covered and tested.
The number of additional tested instructions, which are not needed for the applica-
tion, is less than 20%. This value can be easily reduced if separate SBST are used
for optimizing and non-optimizing compilers.

e C based self-tests

All SBST, which can be reasonably implemented in C, are done so.

CHAPTER 5. RESULTS AND EVALUATION 66

e Additional assembly based self-tests

The number of instructions, which are implemented in ASM, is low. Only seven
instructions, which could not be tested in C, needed to be tested in ASM. Due to
the preparation of the registers and the check of the result, in total 85 lines of ASM
code were used for the implementation of those tests.

e Portability

All C instructions tests are portable to another hardware platform and compiler.
Only the specific ASM instructions, which are grouped in one class, need to be
adapted when another hardware should be used.

e Test in slices and verification of the SBST results

All tests are executed in slices, none of which is exceeding the maximum execution
time. The outcome of each test slice are the calculated CRC value as well as the
correct expected CRC value.

¢ RAM and register tests

Those tests were already implemented before. The implementation was verified and
the used ASM instructions were added to the coverage analysis.

e Coverage measurement

Coverage was given for all four projects which were available for this test.

e Coverage with enabled compiler optimizations

Even if compiler optimizations were turned on the coverage was given.

e Integration of additional self-tests

Additional self-tests can be easily implemented by deriving from the base class which
contains helpful features and test patterns.

5.4 Difficulties

The difficulties during the design and implementation of this master thesis were mostly
concerned about the support of compiler optimizations.

The first implementation of the SBST did not consider optimizing compilers and al-
ready had a good coverage. After further investigation on the first prototype and the
comparison with the instructions generated from an application was done, the SBST tests
were improved and additional tests were added. Uncovered instructions were located and
reasonable tests were found for most of them. Only a few instructions needed to be tested
in ASM (like turning the interrupts on and off).

This behavior changed dramatically when the support for compiler optimization tech-
niques was added. The need for the seed variable to almost any initialization and other
operations added a lot of overhead, which did not improve the test coverage. An addition
or exclusive or operation, in which one parameter has the value 0, does not improve the
test quality, especially if this test is done dozens of times in each test slice. Another disad-
vantage with compiler optimizations is that only one SBST delivery was requested at the

CHAPTER 5. RESULTS AND EVALUATION 67

end. The SBST was supposed to work no matter if compiler optimizations were used or
not. This led to a lower test efficiency especially if optimizing compilers are not applied.

On the other hand, it was quite a challenge to find a test code in C that covers all the
instructions which were not covered but needed for compiler optimizations. When seeking
for a C test code in order to test a specific ASM instruction is often uncomplicated, it is
not the same with optimizing compilers. Some instructions are only used in certain cir-
cumstances, e.g., if a specific amount of registers are already in use and other instructions
are executed after a specific operation. Nevertheless, since it was mandatory to use as less
ASM code as possible and cover as much as possible in C a lot of effort and time (weeks)
was invested to find related tests in C. For most of those instructions (in total there were
15 instructions for which it was hard to find corresponding C tests) a test was found, but
some of those tests are not very stable. A few of these tests do not test the requested
ASM instructions anymore when the compiler settings are changed, or the source code
is changed a little bit. Sometimes the coverage was already broken when the code was
changed in so far that it was compatible with the coding guidelines. In case of a compiler
or hardware change, a change in the generated instructions is expected.

Chapter 6

Conclusion

This master thesis gave an overview of fail-safe systems with a particular focus on the IEC
61508 safety standard. Different methods to test hardware components were given. An
overview of current approaches to test CPUs with the focus on the software-based self-tests
was presented. Furthermore, the analysis discussed the advantages and disadvantages of
the different testing methods. This thesis also gave insight into the development of a
generic software-based self-test of which the coverage analysis was based on the used ASM
instructions. Furthermore, the profound impact of using optimizing compilers was shown.

6.1 Discussion of the results

An appropriate generic SBST was developed within the scope of this thesis. Since the pri-
mary goal of this master thesis was the portability to other hardware platforms the tests
were implemented in C. Not only the easy to test components get tested with hardware in-
dependent C code, the goal was full coverage of the used ASM instructions. An instruction
coverage analysis tool was applied to determine the completeness of the SBST. Therefore,
the currently existing generic approaches, in which only established tests with known fault
coverage are used to test specific hardware elements, did not go far enough. In theory,
simplified all C language constructs, which might be applied in the application, need to
be tested within the C based instruction test. The application as well as the self-test are
compiled to assembly listings. Only if all application ASM instructions together with its
flags are analyzed in the self-test, the coverage is given. If one instruction or flag check is
missing the self-test is rejected. A full coverage is important because some instructions,
which might rarely be utilized in the application, may only be executed in exceptional
situations. The emergency stop switch can be one of those specific situations. If a rare
instruction is only used in case of an emergency shutdown, a failure in that functionality
can be hazardous. Only a limited number instructions, which cannot be tested in C code,
are approved with ASM instructions.

Using optimizing compilers has serious consequences when using generic self-tests. As
shown in this thesis, SBST, which are not supposed to be used with such compilers will
lose most of their abilities to detect glitches. The outcome of a SBST is already known
at compile time. If this behavior is discovered by the compiler, the test code is seen
as unnecessary and will be removed. Even after the tests are modified in order to hide

68

CHAPTER 6. CONCLUSION 69

the constant behavior the coverage of such tests is not satisfying. Optimizing compilers
are not only transforming the C code into ASM instructions, amongst other things the
environment is analyzed and computations are reordered. The instruction selection is also
an extensive topic and not always comprehensible. Despite or even because of this fact, a
full instruction coverage was still requested which made the implementation for optimizing
compilers challenging.

Software certification, which is mandatory in safety-critical systems, is often related
to source code. A compiler usually only transforms the source into machine code. But
an optimizing compiler also modifies or even rewrites the program in order to be more
efficient. [Sch12] High levels of compiler optimizations may not be suitable for safety-
critical systems, even the IEC 61508 safety standard in part 3 include warnings about
optimizing compilers. [Hobl17] [Com11] [Sch12] Nevertheless, the implementation of the
SBST provides full coverage with the given compiler and application shown in chapter 5.1.
Due to the vast possibilities and freedoms, which are grant to an optimizing compiler, the
ASM outcome for all optimization techniques and source codes is very hard to predict.
Nevertheless, the coverage is judged based on that outcome and therefore full coverage
cannot be guaranteed if the hardware platform changed or another compiler is used.

In sum, the approach with C based SBST and coverage analysis based on the compiled
ASM instructions works great as long as optimizing compilers are not used. For the usage
with optimizing compilers a full coverage is complex and adjustments might be necessary
for each hardware change and compiler change. Even a change in the application may
lead to additional instructions which are not tested. Therefore, another SBST approach
might suit better for optimizing compilers.

6.2 Future work
There are many ideas which could improve this work:

e Fault injection framework
A fault injection framework should be used to realize the SFF. Only faults in utilized
resources should be tested. Resources, which are not needed by the application do
not need to be covered and such undetected faults should not reduce the SFF.

e Test separation between optimizing and non-optimizing compilers
The requirements for this master thesis were clear that only one SBST has to be
implemented and this one has to have a full coverage for optimizing as well as non-
optimizing compilers. As expected and confirmed during the development, the SBST
could be much smaller, more efficient and more portable if the support for optimizing
compilers is only given in a separate implementation.

e More coverage tests on different hardware and compilers
As shown in chapter 5 the implementation was tested on four applications. Especially
when optimizing compilers are used the evaluation with more applications would be
of interest.

e More test of hidden parts
Tests for some hidden parts such as pipelining or branch prediction units would be of

CHAPTER 6. CONCLUSION 70

interest. Since a malfunction of some of those techniques only leads to performance
degradation they are not detected by the currently used tests.

Appendix A

List of tested instructions

In this appendix the tested instructions are shown with the compiler specified in 5.1.

A.1 Tested instructions if compiler optimization techniques
are not used

Instruction # of usages
adc register,register,register 35
adc register,register,numeric 4
add register,register,numeric 1289
add register,numeric 51
add register,register,register 260
add register,register 11
add register,register,register shift 8
adds register,register 4
adds register,register,register 35
adds register,numeric)
adds register,register,numeric 3
adr.w register,label 2
and register,register,numeric 94
and register,register,register 41
asr register,register,register 8
b label 102
beq label 90
bfc register, numeric,numeric 56
bge label 10
bgt label 7
bhi label 33
bhs label 27
bic register,register,register 6
bic register,register,numeric 1
bl label 1083

71

APPENDIX A.

LIST OF TESTED INSTRUCTIONS

ble label 10
blo label 71
bls label 24
blt label 8
blx register 12
bne label 210
bx register 1
cbnz register,label 116
cbz register,label 91
cmp register,register 252
cmp register,numeric 194
cpsid iflags 1
cpsie iflags 1
cpy register register 1549
eor register,register numeric 162
eor register,register,register 70
it condition 1
ite condition 59
ldmfd [register]! ,registerlist 36
ldmfd [register|,registerlist 1
ldr register,[register,numeric] 612
ldr register,[register] 228
ldr register,label 1
ldr.w register,[register] 78
ldr.w register,[register,numeric] 225
ldr.w register,[register|,numeric 6
ldr.w register,label 7
ldrb register, [register] 106
ldrb register,[register,numeric] 56
ldrh register, [register] 60
ldrh register, [register,numeric] 4
ldrsb register, [register] 4
ldrsh register,[register] 16
ldrsh register, [register,numeric] 1
Isl register,register,register 50
Isr register,register,register 9
mov register, numeric 1117
mov register,register shift 219
mov register,register 90
movs register,register shift 1
movt register,condition(label) 367
movt register,numeric 154
movw register,condition(label) 367

72

APPENDIX A.

Table A.1: Tested instructions without compiler optimization techniques

LIST OF TESTED INSTRUCTIONS

movw register,numeric 154
mrs register,register 4
msr register,register 4
mul register,register,register 114
mvn register, numeric 42
mvn register,register 28
orr register,register,register 118
orr register,register,numeric 36
orr register,register,register shift 3
pop registerlist 99
push registerlist 99
ret 15
rsb register,register,numeric 3
rsb register,register,register shift 8
sbc register,register,register 16
sbc register,register,numeric)
sbcs register,register,register 26
sdiv register,register,register 31
stmea [register],registerlist 1
stmfd [register]!,registerlist 23
stmia [register|! registerlist 13
str register,[register,numeric] 362
str register,[register] 125
str register,[register,numeric]! 6
strb register,[register,numeric] 30
strb register, [register] 19
strh register, [register,numeric]| 3
strh register, [register] 8
sub register,numeric 35
sub register,register,register 82
sub register,register,numeric 61
subs register,register,register 39
subs register,numeric 29
subs register,register,numeric 4
sxtb register,register 15
sxth register,register 26
tst register,numeric 24
ubfx register,register,numeric,numeric 1
udiv register,register,register 41
uxtb register,register 143
uxth register,register 104

73

APPENDIX A. LIST OF TESTED INSTRUCTIONS 74

A.2 Tested instructions if compiler optimization techniques

are used
Instruction # of usages
adc register,register,numeric 8
adc register,register,register 1
adcs register,register 30
add register,numeric 59
add register,register,numeric 896
add register,register,register shift 71
add register,register,register 7
add register,register 4
adds register,register,numeric 16
adds register,numeric 103
adds register,register,register shift 1
adds register,register 4
adds register,register,register 92
adds.w register,register,numeric 2
adr.w register,label 2
and register,register,numeric 47
and register,register,register 15
ands register,register 18

ands register,register,numeric

asr register,register,register

asrs register,register

asrs register,register,numeric 12
b label 122
beq label 120
bfc register,numeric,numeric 8
bfi register,register,numeric,numeric 16
bge label 7
bgt label 6
bhi label 16
bhs label 29
bic register,register,register 2
bic register,register,numeric 5
bics register,register 6
bl label 1048
ble label 9
blo label 73
bls label 14
blt label 8
blx register 11

bmi label 3

APPENDIX A.

LIST OF TESTED INSTRUCTIONS

bne label 180
bpl label 3
bx register 2
cbnz register,label o6
cbz register,label 35
cmp register,register 263
cmp register,numeric 172
cmp register,register shift 1
cpsid iflags 1
cpsie iflags

cpy register,register 807
eor register,register numeric 147
eor register,register,register 34
eor register,register,register shift 6
eors register,register,numeric)
eors register,register 19
eors register,register,register shift 1
it condition 98
ite condition 36
itee condition 3
iteee condition 1
itt condition 7
itte condition 2
ittee condition 1
ittt condition 15
ittte condition 1
itttt condition 1
ldmfd [register|! registerlist 75
ldmfd [register|,registerlist 10
ldmia [register]!,registerlist 5
ldr register,[register,numeric] 466
ldr register,[register] 19
Idr register,label 1
ldr register,[register_offset] 2
ldr.w register, [register,numeric] 216
ldr.w register, [register_offset_shift] 32
Idr.w register,label 7
ldr.w register,[register],numeric 5
ldr.w register, [register,numeric|! 2
ldr.w register, [register] 4
ldr.w register, [register_offset] 2
ldrb register, [register_offset] 36
ldrb register, [register] 10

75

APPENDIX A.

LIST OF TESTED INSTRUCTIONS

ldrb register,[register,numeric] 48
ldrb register,[register],numeric 4
ldrb register,[register_offset_shift] 1
ldrb register, [register,numeric|! 1
ldrh register,[register,numeric] 33
ldrh register,[register|,numeric 2
ldrh register, [register_offset] 20
ldrh register, [register,numeric|! 3
ldrh register,[register] 3
ldrsb register, [register] 1
ldrsb register, [register,numeric| 3
ldrsh register, [register]|,numeric 2
ldrsh register, [register_offset] 3
ldrsh register, [register,numeric] 10
ldrsh register, [register] 1
Is] register,register,register 5
Isls register,register,numeric 65
Isls register,register 15
Isr register,register,register 1
Isrs register,register,numeric 26
Isrs register,register 8
mla register,register,register,register 16
mls register,register,register,register 21
mov register,numeric 279
mov register,register 76
mov register,register shift 1
movs register,register 47
movs register,numeric 512
movs.w register,register shift 2
movt register,condition(label) 180
movt register numeric 162
movw register,condition(label) 180
movw register,numeric 162
mrs register,register 4
msr register,register 4
mul register,register,register 19
muls register,register 71
mvn register,numeric 39
mvn register,register 1
mvns register,register 23
negs register,register 1
orr register,register,numeric 44
orr register,register,register 21

76

APPENDIX A.

LIST OF TESTED INSTRUCTIONS

orr register,register,register shift 27
orrs register,register,register 16
orrs register,register,numeric 3
orrs register,register 21
pop registerlist 99
push registerlist 98
ret 26
rsb register,register,numeric 3
rsb register,register,register shift 15
sbc register,register,numeric 4
sbcs register,register,register 18
sbcs register,register,numeric 8
sbcs register,register 17
sdiv register,register,register 19
smull register,register,register,register 12
stmea [register],registerlist 44
stmea [register|! registerlist 5
stmfd [register|! registerlist 18
stmia [register]!,registerlist 8
str register,[register,numeric] 215
str register,[register_offset_shift] 5
str register,[register] 11
str register,[register,numeric]! 4
str register,[register],numeric 2
str register,[register_offset] 1
strb register, [register,numeric] 27
strb register, [register_offset] 3
strb register, [register_offset_shift] 1
strb register, [register],numeric 6
strb register, [register,numeric|! 2
strb register, [register] 1
strh register,[register,numeric] 5
strh register, [register_offset] 3
strh register, [register] 3
strh register, [register],numeric 1
strh register, [register,numeric]! 1
sub register,numeric 39
sub register,register,numeric 35
sub register,register,register 9
sub register,register,register shift 8
subs register,register,register 90
subs register,numeric 37
subs register,register,numeric 11

77

APPENDIX A.

Table A.2: Tested instructions if compiler optimization techniques are used

LIST OF TESTED INSTRUCTIONS

subs register,register,register shift 2
subs.w register,register,numeric 1
sxtb register,register 5
sxth register,register 5
teq register,numeric 3
teq register,register 2
teq register,register shift 1
tst register,numeric 42
tst register,register 3
tst register,register shift 2
ubfx register,register, numeric,numeric 4
udiv register,register,register 20
umull register,register,register,register 34
uxtb register,register 60
uxth register,register 53

78

Appendix B

Abbreviations

ALU arithmetic logic unit

ASIC application-specific integrated circuit
ASM assembly

BIST build-in self-test

CISC complex instruction set computing
CRC cyclic redundancy check

ECC error correcting code

EMC electromagnetic compatibility

Galpat galloping patterns

GNU complex instruction set computing

HFT hardware fault tolerance

IEC International Electrotechnical Commission
ISA instruction set architecture

MBU multiple bit upsets

MIPS microprocessor without interlocked pipeline stages
RISC reduced instruction set computing
SBST software-based self-test

SFF safe failure fraction

SIL safety integrity level

XOR exclusive or

79

Bibliography

[AMHO07]

[ARM10]

[ARM18]

[BCH13]

[Bli16]

[CDO1]

[Com11]

[GPZ04]

[Grel8§]

[Gro06]
[HKKOS]

[Hob17]

[1S16]

Reza Adhami, III Peter M. Meenen, and Denis Hite. Fundamental Concepts
in BElectrical and Computer Engineering with Practical Design Problems,
volume 2. Universal Publishers, 2007.

ARM Limited. Cortex-M3 Devices Generic User Guide. 1 edition, 2010.

ARM Limited. Cortex-M - ARM, 2018.
http://www.arm.com/products/processors/cortex-m.

Luiz A. Barroso, Jimmy Clidaras, and Urs Holzle. The datacenter as a
computer: an introduction to the design of warehouse-scale machines. 2013.

G.H. Blindell. Instruction selection: Principles, methods, and applications.
01 2016.

Li Chen and S. Dey. Software-based self-testing methodology for processor
cores. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 20(3):369-380, 2001.

International Electrotechnical Commission. Funktionale Sicherheit sicher-
heitsbezogener elektrischer/elektronischer/programmierbarer elektronischer
Systeme. 2011.

Dimitris Gizopoulos, Antonis Paschalis, and Yervant Zorian. FEmbedded
processor-based self-test, volume 28. Kluwer, Dordrecht [u.a.], 2004.

Green Hills Software Ltd. The most advanced optimizing compiler technol-
ogy, 2018. https://www.ghs.com/Benchmarks.html.

TIan A. Grout. Integrated circuit test engineering: Modern techniques. 2006.

David Hutchison, Takeo Kanade, and Josef Kittler. Computer Safety, Re-
liability, and Security : 27th International Conference, SAFECOMP 2008
Newcastle upon Tyne, UK, September 22-25, 2008 : Proceedings, volume
5219. Springer Berlin Heidelberg, Berlin/Heidelberg, 2008.

C. Hobbs. FEmbedded Software Development for Safety-Critical Systems.
CRC Press, 2017.

Thomas Kaegi-Trachsel Igor Schagaev. Software Design for Resilient Com-
puter Systems. Springer International Publishing, first;1; edition, 2016.

80

BIBLIOGRAPHY 81

[Joull]

[KML*06]

[KPGXO05]

[Mah13]

[Man03]

[NTA7S]

[OTUOLK17)

[PAO3]

[PGSR10]

[PHOY]

[PKH™13]

[Prel4]

[RCS*16]

Norman P. Jouppi. Technical perspective: Dram errors in the wild. Asso-
ciation for Computing Machinery. Communications of the ACM, 54(2):99,
2011.

N. Kranitis, A. Merentitis, N. Laoutaris, G. Theodorou, A. Paschalis, D. Gi-
zopoulos, and C. Halatsis. Optimal periodic testing of intermittent faults
in embedded pipelined processor applications. In Proceedings of the Design
Automation Test in Europe Conference, volume 1, pages 1-6, March 2006.

N. Kranitis, A. Paschalis, D. Gizopoulos, and G. Xenoulis. Software-based
self-testing of embedded processors. IEEE Transactions on Computers,
54(4):461-475, 2005.

Vincent Mahout. Assembly Language Programming: ARM Cortex-MS3. Iste,
US, 2012;2013;.

C. J. H. Mann. The compiler design handbook - optimisation and machine
code generation. Kybernetes, 32(9/10):1562, 2003.

Nair, Thatte, and Abraham. Efficient algorithms for testing semiconductor
random-access memories. IEEE Transactions on Computers, C-27(6):572—
976, 1978.

Oluwole O. Oyetoke, Department of Electronic The University of Leeds, and
Electrical Engineering; LS2 9JT; Leeds; United Kingdom. A practical ap-
plication of arm cortex-m3 processor core in embedded system engineering.
International Journal of Intelligent Systems and Applications, 9(7):70-88,
2017.

Matthias Pflanz. On-line error detection and fast recover techniques for
dependable embedded processors, volume 2270. Springer, 2003.

Mihalis Psarakis, Dimitris Gizopoulos, Ernesto Sanchez, and Matteo S. Re-
orda. Microprocessor software-based self-testing. IEEFE Design & Test of
Computers, 27(3):4-19, 2010.

Seong Poong-Hyun. Reliability and Risk Issues in Large Scale Safety-critical
Digital Control Systems. Springer-Verlag London, 2009.

Christopher Preschern, Nermin Kajtazovic, Andrea Holler, Christian Steger,
and Christian Kreiner. Verifying generic iec 61508 cpu self-tests with fault
injection. pages 1-2. IEEE, 2013.

Christopher Preschern. Design and implementation of a fault injection sys-
tem for verifying generic cpu safety-tests. Master’s thesis, 2014.

Andreas Riefert, Riccardo Cantoro, Matthias Sauer, Matteo S. Reorda, and
Bernd Becker. A flexible framework for the automatic generation of sbst
programs. IEEE Transactions on Very Large Scale Integration (VLSI) Sys-
tems, 24(10):3055-3066, 2016.

BIBLIOGRAPHY 82

[Sch12]

[Sch15]

[SENO5]

[SIA15]

[Sos06]

[SPWO09]

[SR14]

[SS16]

[ST10]

[TA95]

[WCTI03]

[WST10]

[WXT11]

Dietmar Schreiner. Optimizing compilers for safety-critical robotic systems.
Proceedings of the ’Austrian Robotics Workshop 2012 (ARWS2012)’, page 6,
2012.

Gerhard Schonfelder. Fies: a fault injection framework for the evaluation
of self-tests. Master’s thesis, 2015.

Saeed Shamshiri, Hadi Esmaeilzadeh, and Zainalabdein Navabi. Instruction-
level test methodology for cpu core self-testing. ACM Trans. Des. Autom.
Electron. Syst., 10(4):673-689, October 2005.

SIA Semiconductor Industry Association. The International Technology
Roadmap for Semiconductors 2.0. Technical report, Semiconductor Industry
Association, 2015.

Janusz Sosnowski. Software-based self-testing of microprocessors. Journal
of Systems Architecture, 52(5):257-271, 2006.

Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich Weber. Dram errors
in the wild: a large-scale field study. volume 37, pages 193—204. ACM, 2009.

Ernesto Sanchez and Matteo S. Reorda. On the functional test of branch
prediction units. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 23(9):1675-1688, 2015;2014;.

David J. Smith and Kenneth G. L. Simpson. The Safety Critical Systems
Handbook: A Straightforward Guide to Functional Safety: IEC 61508 (2010
Edition), IEC 61511 (2015 Edition) and Related Guidance. Butterworth
Heinemann, Oxford, fourth;4; edition, 2016.

J. Sosnowski and L. Tupaj. Cpu testability in embedded systems. pages
108-112. IEEE, 2010.

S. M. Thatte and J. A. Abraham. A methodology for functional level testing
of microprocessors. In Fault-Tolerant Computing, 1995, Highlights from

Twenty-Five Years., Twenty-Fifth International Symposium on, pages 326—
, Jun 1995.

Baosheng Wang, Cho, Tabatabaei, and Ivanov. Yield, overall test environ-
ment timing accuracy, and defect level trade-offs for high-speed interconnect
device testing. volume 2003-, pages 348-353. IEEE, 2003.

Laung-Terng Wang, Charles E. Stroud, and Nur A. Touba. System-on-Chip
Test Architectures. Morgan Kaufmann, 1 edition, 2010.

Chang Wei, Bao Xiaohong, and Zhao Tingdi. A study on compiler selec-
tion in safety-critical redundant system based on airworthiness requirement.
Procedia Engineering, 17:497-504, 2011.

BIBLIOGRAPHY 83

[Yan05] Laurence Tianruo Yang. Embedded Software and Systems: Second Interna-
tional Conference, ICESS 2005, Xian, China, December 16-18, 2005. Pro-
ceedings, volume 3820. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.

[Yiul3] Joseph Yiu. The definitive guide to ARM Cortex-M3 and Cortex-MJj pro-
cessors. Newnes/Elsevier, Amsterdam [u.a.], 3.;third;3; edition, 2014;2013;.

[ZZR06] R. Zhang, Z. Zilic, and K. Radecka. Energy efficient software-based self-test
for wireless sensor network nodes. volume 2006, pages 6 pp.—191. IEEE,
2006.

	1 Introduction
	1.1 Motivation
	1.2 Goals
	1.3 Outline

	2 Technical background and related work
	2.1 Safety-critical systems
	2.1.1 Introduction to fail-safe systems
	2.1.2 IEC 61508
	2.1.3 Maximum tolerable risk and safety integrity level
	2.1.4 Fault, error, failure
	2.1.5 Separation between safety-related and non-safety-related
	2.1.6 Techniques and measures
	2.1.7 Fault types
	2.1.8 Safe failure fraction and diagnostic coverage

	2.2 Hardware-based self-tests
	2.3 Software-based self-tests
	2.3.1 Memory self-testing
	2.3.2 Software-based CPU self-tests and IEC 61508
	2.3.3 Software-based CPU self-tests

	2.4 CPU components classification
	2.4.1 Functional components
	2.4.2 Control components
	2.4.3 Hidden components
	2.4.4 Component size and contribution to fault coverage

	2.5 Related work
	2.5.1 Instruction set architecture for a Cortex-M3
	2.5.2 Deterministic tests for CPU components
	2.5.3 C based instruction tests
	2.5.4 Indirect CPU testing

	3 Concept and design
	3.1 System requirements
	3.2 General self-tests
	3.3 Application driven approach
	3.3.1 Common operations
	3.3.2 Test of the CPU status flags
	3.3.3 Data types
	3.3.4 Storage type
	3.3.5 Data values

	3.4 Compiler optimizations
	3.5 Coverage measurement
	3.5.1 List of ASM instructions
	3.5.2 Analysis of ASM instructions
	3.5.3 Comparison
	3.5.4 Coverage report

	4 Implementation
	4.1 Design of the class diagram
	4.2 Design of the software-based self-test
	4.2.1 Relational operators
	4.2.2 Bitwise operations
	4.2.3 Basic arithmetic functions
	4.2.4 Data access operations
	4.2.5 Bit operations
	4.2.6 Memory functions
	4.2.7 More library functions
	4.2.8 Hardware specific instructions

	5 Results and evaluation
	5.1 Target CPU, compiler, and application
	5.2 Test results
	5.2.1 Test slice execution times
	5.2.2 Test results when optimization techniques are not used
	5.2.3 Test results with the usage of optimization techniques
	5.2.4 Other tested applications
	5.2.5 Discussion of the results

	5.3 Discussion of the system requirements
	5.4 Difficulties

	6 Conclusion
	6.1 Discussion of the results
	6.2 Future work

	A List of tested instructions
	A.1 Tested instructions if compiler optimization techniques are not used
	A.2 Tested instructions if compiler optimization techniques are used

	B Abbreviations
	Bibliography

