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ABSTRACT

The main focus of this thesis is deriving system reliability from component reliabilities.
This thesis is realized in cooperation with UPTIME ENGINEERING GmbH.

A lot of papers in reliability engineering focus on reducing sample size or integrating former
knowledge for reliability calculations. There are many approaches, often using maximum
likelihood estimators or mean square estimators for parameter estimation. Those methods
can not be used if the reliability demonstration testing is conducted with zero failures.
As Uptime Engineering is focusing on assessing validation programs with zero failure as-
sumption during early steps of the planning phase, it is only possible to use methodologies
to calculate lower confidence limits of reliability for a certain confidence level for single
components and certain failure modes.

The second chapter of this thesis is going to introduce the basics of reliability engineering.
Afterwards there is a short literature review on elected subjects of reliability engineering.
The fourth chapter explains the functionality of Uptime LOCATETM. It is a software
application developed for a product validation process leading to reliability demonstration.
As the current methods of Uptime LOCATETM are insufficient for the proposed method
of calculating system reliability, a different method to calculate reliability for components
using existing structures is proposed in the fifth chapter. Using this reliability calculations,
a way to optimize given test programs with Matlab is then discussed in the sixth chapter.
The thesis concludes with a recap and possible future topics.
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KURZFASSUNG

Der Fokus dieser Arbeit ist die Berechnung von Systemzuverlässigkeit anhand von Kom-
ponentenzuverlässigkeit. Diese Masterarbeit wurde durchgeführt in Kooperation mit UP-
TIME ENGINEERING GmbH.

Viele Abhandlungen in der Zuverlässigkeitstechnik konzentrieren sich auf die Reduktion
von Stichprobengrößen oder das Integrieren von vorhandenen Wissen. Viele Ansätze ver-
wenden dabei Maximum Likelihood oder Mean Square Schätzer, um die Parameter einer
Lebensdauerverteilung zu schätzen. Diese Methoden können jedoch nicht verwendet wer-
den, wenn es sich bei den Daten um ausfallsfreie Daten handelt. UPTIME ENGINEER-
ING GmbH spezialisiert sich auf die Bewertung von Validierungsprogrammen. Diese sind
oft schon in frühen Planungsphasen vorhanden und da wir nicht in der Lage sind, Ausfall-
zeiten genau vorherzusagen, wird bei der Validierungsplanung angenommen, dass keine
Fehler während der Tests auftreten. Deshalb müssen Methoden verwendet werden, welche
untere Konfidenzschranken für die Zuverlässigkeit von Komponenten berechnen.

Zuerst werden in dieser Arbeit die Grundlagen der Zuverlässigkeitsanalyse erklärt. Nach
einer kurzen Literaturdurchsicht wird im vierten Kapitel die Funktionalität von der Soft-
ware Uptime LOCATETM erklärt und anhand eines Beispiels verdeutlicht. Da die beste-
henden Methoden von Uptime LOCATETM unzureichend sind für die vorgeschlagene
Methode zur Systemzuverlässigkeitsberechnung, wird zunächst eine andere Methode vor-
gestellt, um Zuverlässigkeit zu berechnen, welche schon vorhandene Strukturen verwendet.
Im sechsten Kapitel wird auf die verschiedenen Funktionen von Matlab eingegangen, um
ein gegebenes Validierungsprogramm zu optimieren. Zum Abschluss erfolgt eine kurze
Zusammenfassung der Arbeit und ein Ausblick auf zukünftige Themen wird vorgestellt.
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Chapter 1

Introduction

Reliability engineering is an essential component of a good Product Lifecycle Management
program. It consists of the application of engineering principles and techniques throughout
a product life cycle. The goal is the evaluation of reliability of a product and determining
areas for improvement. Although it is not possible to detect and eliminate all failures of
a product, another goal of reliability engineering is to identify the most likely failures and
trying to find solutions to reduce corrective measures.

With increasing product complexity and warranty periods, the use of reliability engineer-
ing is becoming more important. It can help to reduce the costs of corrective actions
by locating possible defects in early steps of development. As most companies only have
limited budget and testing time, extensive testing of the finished product is not viable.
One possibility to reduce those costs is to test not only the whole system, but single com-
ponents, as they are cheaper to produce and can reveal failures that would also occur in
the system tests.

In addition to diagnostics and prognostics activities, the Uptime Engineering approach
to reliability engineering addresses the creation, evaluation and optimization of product
validation programs. For this, several fields of expertise have to be combined effectively.
Product validation requires the knowledge of the expected reliability, the average cus-
tomers usage behavior to get a reference profile, the technical expertise about the product
as a system consisting of hierarchically structured assemblies and components, as well
as its failure modes and mechanisms. Especially the physics of failure (PoF) need to be
understood and modeled for the evaluation of damage models.

Uptime LOCATETM is a software designed for the optimization of validation programs.
As corrective measures are cheaper in earlier steps of production, Uptime Engineering is
starting their validation during the concept phase.

Uptime Engineering does not calculate the reliability of a product, but evaluates the
quality of a validation program with various component and system tests. Those validation
programs are planned long before production. Instead of real life data, the validation
program consists of planned tests which might be subject to changes by changing duration
or amount of tested objects. As it is almost impossible to predict failures, all tests are

1



2 CHAPTER 1. INTRODUCTION

expected to have zero failures, a so called Success Run. This assumption complicates the
process of calculating the lifetime of a product and therefore we can only evaluate the
quality of a validation program.

1.1 Problem

We are able to make a statement about the failure performance of the tested product,
only when many products of a test run fail . The usual methods for parameter estimation
of the reliability functions like maximum likelihood or mean square estimator can only be
applied if there are failures in the test data. Having no such failures, we are only able
to calculate lower confidence limits. Thus the methods for calculating reliability in early
stages of development bear insecurities.

Endurance tests are mostly used to predict the reliability of a product. With a large
sample size and real conditions we can reduce the insecurities of our calculations. Due to
financial and material restrictions, it is often not possible to get these requirements. Thus
we have to develop methods to consider additional information, like expert knowledge
or knowledge of forerunner projects. Currently the software Uptime LOCATETM uses a
method to include this additional knowledge and calculate lower confidence bounds for the
reliability of component/failure-modes by adapting the parameters of a Beta distribution.
The software is able to calculate the demonstrable reliability on a component/failure-mode
level, but at this stage there is no method to aggregate the system reliability. Especially
management holds interest for an easy way to compare validation programs on their reli-
ability performance for the whole system.

1.2 Target of the thesis

Target of this master thesis is developing a methodology to aggregate system reliability
based on component reliability. At the end, there should be one indicator measuring
the quality of a validation program. Additionally, we should be able to optimize a given
validation program by means of maximizing system reliability. The existing structures of
Uptime LOCATETM should be included in those calculations.

1.3 Structure of the thesis

The second chapter introduces the basic definitions of reliability engineering, i.e. the used
distributions and methods to describe systems. The third chapter gives a short overview
about typical methods used in reliability engineering and focuses on the method by A.
Krolo and M. Kemmner. Chapter 4 describes the functionality of the software Uptime
LOCATETM, the current structure and methods used to calculate reliability, accompanied
by an example. As the methods used are insufficient for the method proposed in chapter 5,
a different method to calculate reliability is proposed and in chapter 6 used to optimize a
validation program by means of increasing system reliability.
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Chapter 2

Definitions

Adapted from the works of Bertsche and Lechner (2004), Meeker and Escobar (1998), Mc-
Cool (2012), Hamada et al. (2008) and Rinne (2009), the basics of statistic and reliability
engineering are described in the following chapter.

2.1 Reliability

The ISO defines reliability as ”[...] the ability of an item to perform a required function,
under given environmental and operating conditions and for a stated period of time.”
(ISO, 1986)

The boundary conditions have to be defined precisely. The item is the observed system,
e.g. a car or wind turbine. As for the required performance, we have to define when our
product does not provide its intended function anymore and has a failure. The time in-
terval has to be expressed in appropriate units u0 depending on the item, e.g. calendar
time, operating cycles, distance, etc. The given conditions describe the reference profile,
i.e. usage of the customer, the environmental conditions, maintenance and stress levels.

There are several ways to characterize lifetime: failure probability, survival probability
and hazard rate.

Definition 2.1. Let T be a continuous random variable with cumulative distribution func-
tion (cdf) F (t) on the interval [0,∞). F (t) = P (T ≤ t) is the failure probability, the
probability that an object does not survive the time t. Alternatively, F (t) can be interpreted
as the ratio of units in the population that will fail before time t.

Definition 2.2. The probability density function (pdf) for a continuous random variable
T is defined as f(t) = dF (t)/dt. In reliability engineering, it is often assumed that the
lifetime density of a component can be described with a Weibull distribution.

Definition 2.3. The probability that an object survives beyond time t is called survival

5



6 CHAPTER 2. DEFINITIONS

probability or reliability R(t) and is defined as:

R(t) = P (T > t) =

∫ ∞
t

f(u)du = 1− F (t).

The reliability of a product is depending on the given conditions, e.g. environmental impact
or different load conditions.

Definition 2.4. The hazard function, also known as hazard rate, is defined by

h(t) = lim
∆t→0

P (t < T < t+ ∆t|t < T )

∆t
=
f(t)

R(t)
.

The hazard rate expresses the probability to fail in the next small time interval, given
survival to time t.

The hazard rate is not only used to describe fatigue, but can also be used to describe early
failure and random failure. It is possible to describe the failure performance of a compo-
nent or machine. The typical trend of this curve, the so called bathtub curve, can be seen
in Figure 2.1. This curve can be separated in three parts: the first section describes early
failures, the second one describes random failures and the third one wearout failures.

The first section is characterized by a decreasing hazard rate. The risk for a product to
fail decreases. Those failures are mostly caused by assembly error, material defect, faulty
craftsmanship or a severe design flaw. Those quality related defects are often described
as infant mortality.

During much of the useful life of a product, the hazard rate can be seen as constant, as
failures are caused by random external influences, like shock, handling error, etc.

In the section of wearout and fatigue failures, we have an increasing hazard rate. Those
failures are caused by wear, fatigue fracture, deterioration, etc.

Each of those section has different failure causes and we need appropriate actions to
increase the reliability of our product. Many reliability studies focus on either the first or
last section of this curve. In this thesis we focus on the third section, as we assume that
all failures in our models are caused by wearout failures and the quality errors are already
eliminated and not of our concern.

Definition 2.5. The Bx lifetime is a measurement for the point of time by which x% of
the population of our product has failed. In practice the most used are B1, B10 and B90

lifetime values to describe the degree of reliability of our product.

2.2 Censoring

If we have the exact failure time for every member of our sample, we call it a complete or
uncensored sample. Due to financial or time limits, it is common to have censored data
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Figure 2.1: Bathtub curve hazard rate. Image downloaded from
http://www.reliabilityanalytics.com/blog/2011/08/31/bathtub-curve/ in June 2018

in reliability data analysis. This censoring restricts the ability to observe failure times
exactly. We distinguish between left, right and interval censoring.

Left-censored observations occur if the unit has failed at the time of its first inspection.
It is only known, that the unit failed before the inspection and we have an upper bound
for the failure time.

Right censoring is common in reliability data analysis. This lower bound is often due
to tests being terminated prior to failure for some units. Therefore we do not get a fail-
ure time. As this thesis assumes a Success Run, all of our data is going to be right censored.

Interval censoring occurs when a life test is periodically observed, e.g. once every hour. A
failure is only known to have occurred during the last time the unit was observed, but no
exact time is known.

Censoring of data may be random or by design. Planned censoring is distinguished by
the condition to stop the tests. Type I censoring restricts the testing time. After a set
time, the tests are terminated, even if there is no failure yet. Type II censoring has a
predetermined number of failures: after a set amount of units have failed, the tests are
terminated. The latter is not of our interest, as we assume that all our tests are terminated
at a fixed time and with no failures.
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2.3 Statistical Distributions

In this chapter, the most typical lifetime distributions used in reliability engineering are
being examined. The best known distribution is the normal distribution, however it is
hardly used in reliability theory. Bertsche and Lechner (2004) state that for a Weibull dis-
tribution with shape parameter β = 3.5 we have approximately a normal distribution. The
exponential distribution is often used for electrical engineering, whereas in engineering, the
Weibull distribution is mostly used. Thus our main focus lies on the Weibull distribution.
The Beta distribution is used in Uptime LOCATETM to calculate the projected reliability,
as can be seen in Section 4.5.

2.3.1 Normal distribution

The most important distribution in applied statistics is the normal, or Gaussian distribu-
tion. It is a two-parameter distribution with the density function

f(t) =
1

σ
√

2π
e−

(t−µ)2

2σ2

where µ is the mean or expectation of the distribution and σ is the standard deviation.

For the failure probability, reliability and hazard rate we have no closed form, so for the
failure probability we have to integrate the density function

F (t) =
1

σ
√

2π

∫ t

−∞
e−

(τ−µ)2

2σ2 dτ

and calculate the reliability and hazard rate respectively.

Figure 2.2 shows the failure functions for the normal distribution. The normal distribution
starts at t = −∞. As failure times only can have positive values, we can use the normal
distribution only if failures in the negative time area can be neglected.

2.3.2 Exponential-distribution

The density function of the exponential distribution is monotone decreasing based on a
inverse exponential function, see Figure 2.3. The distribution has only one parameter λ.
For the relevant failure functions we have

f(t) = λe−λt

F (t) = 1− e−λt

R(t) = e−λt

h(t) = λ.

The exponential distribution is defined by its constant failure rate λ. Thus the exponential
distribution can be used to describe random failures, those occurring in the second section
in Figure 2.1. There are only few cases where we can use the exponential distribution to
describe the failure performance.
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Figure 2.2: Normal distribution failure functions for different σ and a fixed µ = 2.5.

2.3.3 Weibull-distribution

The Weibull distribution can be used to describe different failure performances. This can
be seen in Figure 2.4. For the Weibull distribution we have to distinguish between the
two-parameter and three-parameter Weibull distribution.

Two parameter Weibull

The Weibull distribution always consists of the shape parameter β and scale parameter
η. Varying β causes the graph of the density function to change its form, as can be seen
in Figure 2.4. The second parameter η is also called characteristic life and has the same
unit as the abscissa. It has the special property that for t = η we have F (t) ≈ 63, 2% and
R(t) ≈ 36, 8%. In Figure 2.5 we can see the Weibull density function for different values
of the scale parameter with a fixed shape parameter of β = 2. The two parameter Weibull
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Figure 2.3: Exponential distribution failure functions for different λ.

distribution can be described with:

R(t) = e
−
(
t
η

)β
(2.1)

F (t) = 1− e−
(
t
η

)β

f(t) =
dF (t)

dt
=
β

η

(
t

η

)β−1

e
−
(
t
η

)β

h(t) =
f(t)

R(t)
=
β

η

(
t

η

)β−1

.

Three parameter Weibull

Additionally to the two parameters mentioned before, the three parameter Weibull dis-
tribution has a location parameter γ. Changing γ when the other parameters are held
constant will result in a parallel movement of the density curve over the x-axis, as can be
seen in Figure 2.6. Thus γ is also called shift parameter. For the two parameter Weibull
distribution we have γ = 0.
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Figure 2.4: Weibull distribution failure functions with a fixed characteristic life η = 1,
location parameter γ = 0 and different shape parameters β.

We have the following formula for the tree parameter Weibull distribution:

R(t) = e
−
(
t−γ
η−γ

)β

F (t) = 1− e−
(
t−γ
η−γ

)β

f(t) =
dF (t)

dt
=

β

η − γ

(
t− γ
η − γ

)β−1

e
−
(
t−γ
η−γ

)β
(2.2)

h(t) =
f(t)

R(t)
=

β

η − γ

(
t− γ
η − γ

)β−1

.

Depending on the shape parameter β, we are able to describe all three sections of the
bathtub curve. For β < 1, we have a decreasing hazard rate. Having a large failure
probability at the beginning, the failure rate decreases over time. We can use this to
describe the infant mortality. If the shape parameter β = 1, the Weibull distribution is
simplified to be the exponential distribution. For β > 1, the hazard rate is increasing,
thus we are able to describe products which are subject to wear and fatigue.
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Figure 2.5: Two-parameter Weibull density functions with a fixed shape parameter β = 2
and different scale parameters η.

Weibull paper

The failure probabilities in Figure 2.4 have a sigmoid curve progression. With a special
Weibull probability paper we are able to plot the failure probability F (t) of the two-
parameter Weibull distribution as a straight line, see Figure 2.7. We are then able to
illustrate the failure performance in a graphical way. The transformation of the curve to
the straight line is due to scaling the abscissa and ordinate. The abscissa is logarithmic
scaled, while the ordinate uses a double logarithmic scale

x = ln t

y = ln(− ln(1− F (t))) = ln(− ln(R(t))).

2.3.4 Beta-distribution

The Beta distribution qualifies for describing continuous random variables in the interval
[0, 1]. We do not need it to describe a lifetime distribution, but it is used to determine the
reliability for a fixed point of time. In Section 3.3 we need the Beta distribution, as well
as for the projected reliability calculation in Chapter 4.
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Figure 2.6: Three-parameter Weibull density functions with a fixed shape parameter β = 2,
scale parameter η = 1 and different location parameter γ.

The density function of the Beta distribution is defined as:

f(x) =

{
1

β(a,b)x
a−1(1− x)b−1 0 ≤ x ≤ 1; a, b > 0

0 else
(2.3)

with the parameter a, b and the beta function β(a, b):

β(a, b) =

∫ 1

0
xa−1(1− x)b−1dx, a, b > 0,

which can be written subject to the gamma function Γ:

β(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
.

For n ∈ N we have Γ(n + 1) = n!. For identical values of a and b, we have symmetri-
cal density with respect to x = 0.5. Figure 2.8 shows the density function of the Beta
distribution for varying parameters. The expected value of the Beta distribution is

E(X) =
a

a+ b
.

Another useful characteristic of the two parameter Beta distribution is its relationship to
the binomial distribution.
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Figure 2.7: Failure probability F(t) for β = 2.5 and η ≈ 1.58: normal display and in
Weibull probability paper, (Jordan, 2011).

It might often be necessary to calculate the distribution function of the binomial distribu-
tion

F (k|p, n) =

k∑
i=0

B(i|p, n)

where B(i|p, n) is the binomial probability mass function with p the success probability
and k the exact number of successes in n trials. We then have the following relationship
between the binomial and Beta distribution:

k∑
i=0

(
n

i

)
pi(1− p)n−i =

n!

(n− k − 1)!k!

∫ 1−p

0
un−k−1(1− u)kdu (2.4)

as n and k are integer. We use this relationship to calculate confidence levels.
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Figure 2.8: Beta density function for different parameters.

2.4 Producer/Consumer Risk

In reliability demonstration testing, there are two errors that can occur: either a prod-
uct/system is denied, although it has sufficient reliability Rac,S(t0) at time t0, or a product
is approved, although it does not reach its reliability target Rtar,S(t0). As overachievement
of reliability targets is not considered a problem, we define the single-sided hypothesis as
follows:

H0 : Rac,S(t0) ≥ Rtar,S(t0)

H1 : Rac,S(t0) < Rtar,S(t0).

The following errors can occur when making a decision based on test data or statistics.

• type I error: H0 is rejected although it is true - producer’s risk

• type II error: H0 is not rejected, although it is false - consumer’s risk

In reliability engineering, a type II error is more critical, since the real value of the reliabil-
ity of the population is lower than what is stated by H0. The type II error is often called
consumer’s risk, since it corresponds to the acceptance of a product that does not fulfill
its reliability target. This can lead to high warranty costs and can damage the reputation
of a company.

On the other hand, the type I error corresponds to rejection of a product that already
reaches its reliability target. Although this often leads to higher development costs trying
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to improve the reliability of the product, it is still more favorable.

Reducing both errors leads to extensive testing and thus high costs. Therefore in practice
it is typical trying to minimize the type II error. With certain methods, which are being
described later, it is possible to compute lower (1− α) confidence limits of the reliability
RLCL,(1−α) for available test data. This means that when the result of a statistic acceptance
test leads to not rejecting H0, we can be confident with a probability of (1− α) that the
real value of reliability is RLCL,(1−α) or greater.

2.5 Confidence Level

We often have to deal with small sample sizes in practice and still have to give a statement
about the product. The test evaluation only gives us information about the researched
specimen, taking another sample results in a different outcome, even if the sample size and
testing conditions stay the same. We are not interested in the samples, but in the basic
population. Especially when dealing with small sample sizes, the results of the sample can
differ quite a lot from the real behavior. We therefore introduce a confidence level.

Analyzing samples ideally results in a behavior that can be approximated with a mathe-
matical probability distribution. The parameters of the distributions are then only esti-
mators, as we are not able to get the real parameters.

For each estimator, we can specify an upper and lower limit, such that with a certain
probability the real parameter of the basic population is within that interval. We call this
a confidence interval. The confidence interval is always specified with a certain probability.
A 90% confidence interval implies that a parameter is with a probability of 90% within
that random interval and with a probability of 10% outside. We often call the probability
in connection with the confidence interval as confidence level PCL.

Having a Weibull lifetime distribution, we could give confidence intervals for the two pa-
rameters β and η. In practice, we do not give the confidence intervals for the parameters,
but rather a confidence interval for the failure probability F (t) for each point of time t.
A detailed description can be found in Bertsche and Lechner (2004), we are only going to
discuss the main idea.

Having a life test, we get the failure times for our system or component. For the evaluation
with the probability paper, we only have the values for the abscissa, but not for the
ordinate. We have to assign each failure at time t a failure probability F (t). Let us
assume we have a sample with n = 30 sample size. As a result we have 30 different
random independent identical distributed failure times T1, T2, . . . , T30 with Ti being from
a continuous distribution with the cdf FT . The order statistics T(1), T(2), . . . , T(30) are then
also random variables, defined by sorting the values of T1, . . . , T30 in increasing order, so

T(1) ≤ T(2) ≤ · · · ≤ T(30).

This ordered values are called rank values. The index corresponds to the rank. After the
first rank value, 1/n of the sample has failed, after the second one 2/n etc. We could
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therefore estimate F with F̂ such that we assign the i-th rank value a failure probability
of F̂ (T(i)) = i/n. Then F̂ is the empirical distribution function. For a given t we may set

F̂ (t) = I/n, where I ≤ t < I + 1.

Note that we only considered the failure times of a single sample. Taking another sample
with the same volume we get different failure times. The failure time of a rank value
fluctuates within a range. A rank value can therefore be seen as a random variable, which
can be assigned a distribution. By a well known result we can obtain the probability
density function of the ith order statistic as follows:

Theorem 1. Let T1, T2, . . . , Tn independent and identical distributed random variables
from a continuous distribution with cumulative distribution function F and probability
density function f . Let

T(1) ≤ T(2) ≤ · · · ≤ T(n)

be the order statistics. Then, the probability density function of the ith order statistic T(i)

is:

fT(i)(y) =
n!

(i− 1)!(n− i)!
F (y)i−1f(y)[1− F (y)]n−i. (2.5)

Here we assume that we know the distribution of the failure times, i.e. f(y) and F (y).

Usually we do not know the distribution of the failure times, but we want to identify those
failure functions. The wanted failure probability of the failure times should have values

between 0 and 1. It is easy to see that for U1, . . . , Un
iid∼ Uniform(0, 1) we have

(F (T(1)), . . . , F (T(n)))
d
= (U(1), . . . , U(n)).

This ensures that the rank values are equally assigned the failure probability between
0 and 1. Using the transformation for (2.5) we get the density function for the failure
probabilities of the rank values

fU(i)
(u) =

n!

(i− 1)!(n− i)!
ui−1(1− u)n−i.

This equates to a Beta distribution with the variable u and the parameters a = i and
b = n− i+ 1.

Assessing failure times, we try to assign each failure time a singe failure probability and
then fitting a line through the points in the Weibull paper. We therefore have to choose
an adequate value from the spread of the failure probability. We can either choose the
following: mean, median or mode. The value of those can be calculated with fU(i)

(u) or
the Beta-distribution respectively as

mean(U(i)) =
i

n+ 1
;

median(U(i)) ≈
i− 0.3

n+ 0.4
; (2.6)

mode(U(i)) =
i− 1

n− 1
.
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For the median there is no closed form, (2.6) is therefore only an approximation. For the
estimation of the failure probability F (T(i)) at failure time T(i) the most common used are
the mean or median. Thus we assign the failure time T(i) the failure probability

F̂ (T(i)) =
i

n+ 1
using the mean,

F̂ (T(i)) ≈
i− 0.3

n+ 0.4
using median.

Figure 2.9 illustrates an example with a sample size of n = 30 and different failure times
T(i), i = 1, ..., 30. For i = 25 we get a median F̂ (T(25)) = 81.3%. Ideally we are able to

plot a Weibull line trough the values of (T(i), F̂ (T(i))) as in Figure 2.9.

Figure 2.9: Density function of the rank failure probability with median values and the
Weibull line, (Bertsche and Lechner, 2004).

At these positions T(i) we can also easily calculate the probability that F (T(i)) is in between
prespecified bounds (xl, xu). We have

PCL = P (xl ≤ F (T(i)) ≤ xu) =

∫ xu

xl

1

β(i, n− i+ 1)
ui−1(1− u)n−idu.

There is no exact formula for the quantiles. Choosing

T(I) ≤ t < T(I+1)

we define the confidence level for F (t) with respect to the bounds xl and xu as

PCL =

∫ xu

xl

1

β(I, n− I + 1)
uI−1(1− u)n−Idu.
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In most applications in reliability engineering we only have one-sided confidence intervals.
Determining the confidence level, we have to differ between reliability or failure probability.
If we require a certain reliability of our product, this value is the minimal value we are
going to accept, so we do not want to undercut this value with a certain guarantee. On the
other hand, demanding a failure probability for our product, this value is the maximum
failure probability. Having a lesser failure probability is desirable, but we do not want
to exceed this maximum value. Having set those values we are now able to calculate the
confidence level.
For the failure probability, having a maximum allowed failure rate Fu, we can calculate
the confidence level for F (t) with T(I) ≤ t < T(I+1) by

PCL = P (0 ≤ F (t) ≤ Fu) =

∫ Fu

0
fU(I)

(u)du.

For the reliability, we set the value Rl as being the reliability we want to obtain. With
R(t) = 1− F (t) we can calculate the confidence level as follows:

PCL = P (Rl ≤ R(t)) ≤ 1) =

∫ 1

Rl

1

β(n− I + 1, I)
sn−I(1− s)I−1ds

with T(I) ≤ t < T(I+1).

Here we fix the failure probability, or rather the reliability and then calculate the confi-
dence level. In practice, we often set a confidence level and we want to know the minimum
reliability or maximum failure probability, so we use numerical methods to calculate the
bounds Rl or Fu respectively when having a fixed confidence level PCL. Section 2.8 de-
scribes the method of calculating the minimum reliability when assuming zero failures and
setting a confidence level.
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2.6 System reliability

A system is a collection of components combined to perform a given task. To determine
whether a system is working or not, we have to understand the structural property of the
system and the state of its components (e.g. working or not working). In this chapter we
introduce the reliability block model diagrams and fault trees to visualize simple system
structures and calculate system reliability.

2.6.1 Reliability Block Diagrams

In reliability engineering, we often model systems graphically. One of the most commonly
used system representations in a risk and reliability analysis is the reliability block diagram.
For this we have to make some assumptions:

• the system is not repairable, i.e. the first failure of the system ends the system life.

• the components can only have one of two conditions: ”working” and ”failed”

• the components are independent, i.e. the failure performance of one component does
not influence the failure performance of another component.

Figure 2.10 shows how components are illustrated. A series system with n components is

Figure 2.10: Component i in a reliability block diagram.

a system that is working if and only if all of its components are functioning. Figure 2.11
shows the representation of a series system with n components. The system is working if
between entry (a) and exit (b) there is a connection in which all components are faultless.
The failure of just one component leads to a failure of the system.

Figure 2.11: A system with n components in series.

Let Ri(t) be the reliability of component i at time t and RS(t) the reliability of our system.
Then we get

RS(t) = R1(t) ·R2(t) · ... ·Rn(t) =
n∏
i=1

Ri(t).

From this we can deduce the following: the reliability of a system is always smaller or equal
the minimum reliability of our components, i.e. RS(t) ≤ miniRi(t). Figure 2.12 shows the
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relationship between system reliability RS(t) and individual component reliability Ri(t)
with Ri(t) = Rj(t), ∀i, j ∈ (1, ..., n), for different numbers n of components in series. We

Figure 2.12: Reliability of a series system with n independent components with same
component reliability (Meeker and Escobar, 1998).

can see that with a growing number of components, the reliability of those has to be high
to get a high system reliability.

On the contrary, a parallel system is working as long as one of its n components is func-
tioning. Figure 2.13 shows the representation of a parallel system with n components. The
system is working if between entry (a) and exit (b) there is a at least one connection, i.e.
one component is working. The failure of all components leads to a failure of the system.
Again, let Ri(t) be the reliability of component i at time t and RS(t) the reliability of our
system. Then we get

RS(t) = 1− (1−R1(t)) · (1−R2(t)) · ... · (1−Rn(t))

= 1−
n∏
i=1

(1−Ri(t)).

The reliability RS(t) of such a system is at least as high as the highest component reliability
Ri(t), i.e. RS(t) ≥ maxiRi(t). There is also the possibility of mixed reliability block
diagrams, as seen in Figure 2.14.
Most systems in engineering are having a series system structure, as the integration of
redundancies is costly (Bertsche and Lechner, 2004).
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Figure 2.13: Parallel system with n components.

Figure 2.14: Combination of series and parallel structure.

2.6.2 FTA (Fault tree analysis)

Another commonly used method for system representation in risk and reliability engineer-
ing is the fault tree analysis (FTA). It is used to determine internal or external causation,
which are reasons for a critical event, typically a failure of our system. This logic diagram
illustrates how states of the systems components are linked with the state of the system.
We use logic gates as graphical symbols, see Figure 2.15, to represent the connections
between the components and the system. We only discuss the most basic logic gates as
can be seen in Hamada et al. (2008). A basic event is an initiating failure. It requires no
further breakup. Fault trees describe the functioning of a system to the decomposition of
its basic events. Those basic events are mostly component failures. If we consider a basic
event insignificant or we have a lack of information to further develop it, we define it as
an undeveloped event. An intermediate event is a fault that arises when one or more of
the previous faults have occurred. Logic gates are used to connect the intermediate events
with its antecedent faults. Most commonly used are the AND gate and the OR gate. The
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intermediate event is the output of the gate, the previous events are the inputs. They are
either undeveloped, basic or intermediate events. With an AND gate, the output occurs
only when all of the inputs fail. With an OR gate, one fault in the inputs leads to a fault
in the output.

When a fault tree only contains AND and OR gates, we can use the former mentioned
reliability block diagram as a equivalent description. In Figure 2.16 we can see the rela-
tionship between FTA and reliability block diagrams.
As we consider only serial systems in our analysis, we omit the logic gates for further
illustrations of our fault tree.

Figure 2.15: Some common fault tree symbols, (Hamada et al., 2008).
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Figure 2.16: Relationship between reliability block diagrams and fault trees, (Hamada
et al., 2008).

2.7 Accelerated Lifetime Testing

There are several procedures to shorten the testing time for our reliability calculations. By
increasing the load and using physics of failure models, one is able to convert this accel-
erated lifetime to lifetime under normal load. This is only possible under the assumption,
that increasing the load leads to no change in the failure mode. Typical methods are the
Step-Stress method and HALT (Highly Accelerated Life Testing) explained in Bertsche
and Lechner (2004). A practical approach is by collecting load collectives in road trials,
determining damaging events and make a projection to the wanted lifetime. Those stresses
are then reproduced in bench tests with increased load to get an accelerated test. Due
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to the increased load, there is a higher deterioration compared to the real life usage and
therefore our components or system have decreased lifetimes. The ratio between the life-
time under ”normal” conditions tnorm to the lifetime in the accelerated tests tκ is called
acceleration factor κ and is calculated by

κ =
tnorm
tκ

.

It is also possible to calculate the acceleration factors by comparing damaging events
under normal conditions with damaging events under increased load, as with a zero failure
assumption we do not know the lifetime under increased load. This method is explained
in Chapter 4.

2.8 Success Run

We assume that we have a sample of size n and we test each specimen for a time t. We have
a random number of failures X with 0 ≤ X ≤ n. The confidence level can be described
by calculating the integral of a Beta distribution with certain limits as seen in Section 2.5.
We calculate the confidence level depending on the reliability R(t) at time t as

PCL =

∫ 1

R(t)

1

β(n− I + 1, I)
sn−I(1− s)I−1ds

=

∫ 1

R(t)

1

β(n−X,X + 1)
sn−X−1(1− s)Xds.

We have n for the sample size and I for the rank. As the rank is calculated depending on
the number of failures X, we have I = X + 1. This is due to the assumption that while
testing n specimen for a duration of t and having X failures, the next failure is bound to
happen exactly after our test ending, so we get T(I+1) = t. This is a worst case assumption.
As for the value PCL, we can interpret it as follows: with a confidence level of 100 ·PCL%,
our product has a minimum reliability of R(t). We can now either fix our minimum
reliability Rl we want to reach and calculate the confidence level by setting R(t) = Rl,
or we fix the confidence level and determine the corresponding minimum reliability. The
latter is of our interest.
We are also able to specify the confidence level with a binomial distribution with

PCL = 1−
X∑
i=0

(
n

i

)
R(t)n−i(1−R(t))i. (2.7)

This is due to the relationship between the Beta and the binomial distribution.

Having no failure at all, we have X = 0 and we get

PCL = 1−R(t)n.

As we fix a confidence level PCL and we want to determine the reliability at time t, we
reorder the equation as

R(t) = (1− PCL)1/n, (2.8)
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where PCL is the wanted confidence level. This equation is often called ”Success Run”
and gives us the relationship between the confidence level PCL, the reliability R(t) at time
t and the sample size n when having zero failures. Having two of the variables given, we
are able to calculate the third value.

For a Weibull distribution we have the reliability probability

R(t) = e
−
(
t
η

)β
.

Until now we assumed that all tests have the duration t. If we are testing until a time
tp 6= t for all our tests, we have R(tp) = exp(−(tp/η)β). Calculating the ratio we get

ln (R(tp))

ln (R(t))
=

(
tp
t

)β
= LRβ.

The ratio of testing time tp and required time t

LR =
tp
t

is called life-span ratio LR. Applying the life-span ration to (2.8) we get

R(t) = (1− PR)
1

LRβ ·n .

This reliability can be seen as a guaranteed minimum reliability with confidence level PCL.

Rmin(t) = (1− PCL)
1

LRβ ·n .

An increase of testing time tp with constant reliability R(t) and confidence level PCL

results in a decrease of the sample size n and vice versa. Converting the equation we get
an equation for the required sample size or required testing time:

n =
1

LRβ

(
ln (1− PCL)

ln (R(t))

)
LR =

(
1

n

(
ln (1− PCL)

ln (R(t))

))1/β

.

If we have varying testing times of our sample size, VDA (2016) gives us a formula for
calculating the minimum guaranteed reliability as

Rmin(t) = (1− PCL)

 k∑
i=1

LRβi ni

−1

(2.9)

with k being the number of different testing times t1, t2, ..., tk and ni the number of tests
with testing time ti. One method to reduce the testing time is by using accelerated stress
conditions. The acceleration factor describes the ratio between the lifetime of the product
under normal stress tnorm and the lifetime under higher load tκ and is defined by

κ =
tnorm
tκ

.
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Using this acceleration factor in the equation (2.9) we get

Rmin(t) = (1− PCL)

 k∑
i=1

ni(κiLRi)
β

−1

(2.10)

This equation can be adapted to handle failures, but as we assume in the planning phase
that there are no failures, we will not discuss it. For further information see VDA (2016).

Taking into account previous knowledge

We are able to take previous knowledge into account using the Beyer/Lauster method
Beyer and Lauster (1990). This additional knowledge can originate from expert knowledge
or predecessor models and is expressed by the value R0 that is valid for a confidence level
of 63, 2%. The expected minimum reliability is then

Rmin(t) = (1− PCL)
1

LRβ ·n+1/ ln(1/R0) .

Expanding this equation by adding the acceleration factor and different testing times we
get

Rmin(t) = (1− PCL)

 k∑
i=1

ni(κiLRi)
β+1/ ln(1/R0)

−1

. (2.11)

We can add a weighting factor ρ to be able to weight the influence of our additional
knowledge

Rmin(t) = (1− PCL)

 k∑
i=1

ni(κiLRi)
β+ρ/ ln(1/R0)

−1

. (2.12)

The previous information factor ρ lies between 0 and 1. ρ = 0 signifies that no additional
information is being accounted for, whereas for ρ = 1, we are sure that the information is
completely transferable to our problem. In this thesis we are going to assume that we can
fully use the additional knowledge, so ρ = 1.





Chapter 3

Literature

In this chapter, a few methods being used in reliability engineering are being discussed.
Main focus will be on the WeiBayes method by Nelson (1985), as this method is being
used in Uptime LOCATETM, the results from Kemmner (2012), based on the WeiBayes
approach and the method by Krolo (2004), which gives a different approach to calculate
reliability.

3.1 WeiBayes

With a lack of failure data, it is not possible to use the typical methods to estimate the
parameters of a Weibull distribution, like maximum likelihood or mean square estimator.
Therefore Nelson (1985) introduced a way to estimate confidence limits for the scale pa-
rameter η when the shape parameter β has a known value or can be estimated and we
only have few or no failure data. In practice, such a value of β can be approximated
from experience or similar data. Thus it is possible to estimate the parameters needed for
a two-parameter Weibull distribution. Before introducing the WeiBayes method, we are
going to describe the derivation with the exponential distribution.

Exponential distribution: likelihood of censored data

Let t1, . . . , tn be the n testing times that we have set. In case of a Success Run, all those
times are reached. If there is a failure in test j, we get a random variable Tj < tj as the
exact failure time. Let X be the random variable which describes the number of failures.
We define Yj = min{tj , Tj}. So in case of a failure, Yj = Tj , else Yj = tj .

For now let us assume that we have no censored data, so we get the random failure times

T1, . . . , Tn
iid∼ Exp(λ) with rate λ > 0 unknown. Let f(t;λ) = λe−λt be the density

function, F (t;λ) = 1− e−λt be the cumulative distribution or failure probability function
and R(t;λ) = e−λt the reliability or survival probability. The likelihood function is then
given by

L(λ|T1, . . . , Tn) =

n∏
i=1

f(Ti;λ)

29
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and the log-likelihood function becomes

l(λ|T1, . . . , Tn) = n log λ− λ
n∑
i=1

Ti.

The maximum likelihood estimator of λ is then

λ̂ =
n∑n
i=1 Ti

.

We can then conclude that the maximum likelihood estimator of the mean θ is then the
sample mean

θ̂ =
1

n

n∑
i=1

Ti.

In Ross (2009) we have a detailed explanation for the confidence interval for the mean of
the exponential distribution. We have the following relationship:

2

θ

n∑
i=1

Ti ∼ χ2
2n (3.1)

Hence, a 100(1− α)% confidence interval for θ is

θ ∈

(
2
∑n

i=1 Ti
χ2

1−α/2;2n

,
2
∑n

i=1 Ti
χ2
α/2;2n

)

where χ2
(α,n) is the α-quantile of a χ2- variable with n degrees of freedom.

Let us now include censored data. We assume that X is the number of failures. Wlog those
failures occur in the first X tests. So our resulting testing times are T1, T2, . . . , TX with
random failure times and tX+1, . . . , tn as censored data. For those values we just know
that the failure time is greater than the observed value. The likelihood is the probability
of the observed data, for the censored observations that is given by P (Tj > tj) = R(tj ;λ),
so the full likelihood function is given by

L(λ|Y1, . . . , Yn) =

X∏
i=1

f(Ti;λ) ·
n∏

j=X+1

R(tj ;λ).

The log-likelihood function then becomes

l(λ|Y1, . . . , Yn) = X log λ− λ(T1 + · · ·+ TX + tX+1 + · · ·+ tn).

This has the same form as the log-likelihood for the usual case without censored data,
except for the first term which has X log λ in place of n log λ. Solving for the maximum
likelihood estimator of λ or θ we get

λ̂ =
X∑n
i=1 Yi

,

θ̂ =

∑n
i=1 Yi
X

.
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For certain special types of life tests it is possible to obtain exact confidence intervals for
these estimators, see Lawless (1982). In a Type II censored test, the life tests terminates
when the xth failure occurs, where x is prespecified. The data consists then of the x
smallest order statistics T(1) < · · · < T(x) and for the censored data we have the time T(x).
For the log-likelihood we have then

l(λ|Y1, . . . , Yn) = x log λ− λ(
x∑
i=1

T(i) + (n− x)T(x))

and θ̂ =
∑n

i=1 Y(i)/x. We can then show that under these conditions

T =
x∑
i=1

T(i) + (n− x)T(x)

has a distribution given by 2T/θ ∼ χ2
2r, see Lawless (1982). Hence an exact 100(1− α)%

confidence interval for θ can be computed from

[θ
¯
, θ̄] =

[
2
∑n

i=1 Yi
χ2

(1−α/2;2x)

,
2
∑n

i=1 Yi
χ2

(α/2;2x)

]
.

With time censoring, this method still provides an useful approximation.

If all observations are censored, we get X = 0 and the log-likelihood becomes

l(θ|Y1, . . . , Yn) = −n
θ

n∑
i=1

ti

which is linear increasing in θ. The maximum would then be θ =∞, which is not defined.
We can only conclude that the MLE does not exist. However it is still possible to obtain
a lower confidence bound for θ. If there are no failures in a life test with t1, . . . , tn being
the censored times, a conservative 100(1− α)% lower confidence bound on θ is

θ
¯

=
2
∑n

i=1 ti
χ2

(1−α;2)

=

∑n
i=1 ti

− ln(α)
.

The bound is based on the fact that under the exponential failure time distribution, with
immediate replacement of failed units, the number of failures observed in a life test with
a fixed total time on test has a Poisson distribution (Meeker and Escobar, 1998).

WeiBayes

The estimates and confidence limits for the scale parameter η are based on the following
relationship between the Weibull and exponential distributions. Suppose that a product
has a Weibull distribution with shape parameter β and scale parameter η. Let T be the
time to failure of this product. Then Y = T β has an exponential distribution with mean

θ = ηβ.
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So we have

T ∼Weibull(β, η) iff T β ∼ Exp(
1

ηβ
).

With this relationship we can derive the standard methods for analyzing censored data
from an exponential distribution to get estimates for the scale parameter η and also con-
fidence limits in the case of having zero failures.

Let Y1, . . . , Yn ∼ Weibull(β, η), Yj = min{tj , Tj}, with the X times being failure times
(random) and (n−X) censored times. The mean of the corresponding exponential distri-
bution hast MLE

θ̂ =

∑n
i=1 Y

β
i

X
.

Thus follows

η̂ =

[
n∑
i=1

Y β
i

X

] 1
β

(3.2)

With this function we are able to consider failure times and censored testing times to get
a Weibull distribution. If there are no failures, X = 0 and and η = ∞. This gives us no
real information, just that the true η is probably greater than the running time. There
are now two approaches, when having a Success Run.

Either we calculate a lower 100(1−α)% confidence limit. A lower 100(1−α)% confidence
limit for the Weibull scale parameter is

η
¯

=

{
η̂{2X/χ2

(1−α;2X+2)}
1/β for X ≥ 1,

{2
∑n

i=1 t
β
i /χ

2
(1−α;2X+2)}

1/β for X = 0,

where χ2
(α,n) is the α-quantile of a χ2- variable with n degrees of freedom. As χ2

(1−α;2) =

−2 ln(α), we can in case of a Success Run simplify the second equation to

η
¯

=

(∑n
i=1 t

β
i

− ln(α)

)1/β

. (3.3)

The confidence level is usually set to either 90%, 95% or 99%. It should be mentioned,
that the confidence level with few failures is quite conservative and often far from the real
value. Nelson Nelson (1985) therefore suggests that using the 50% confidence level might
be more reasonable.

Using this estimator of η we get the lower confidence limit for the reliability for the target
time t0 as

R
¯

(t0) = e
−
(
t0
η
¯

)β
= e

(
t
β
0 lnα∑n
i=1

t
β
i

)
= α

(
t
β
0∑n

i=1
t
β
i

)
. (3.4)

If instead of the testing times t1, ..., tn we use the equivalent test durations t̂i, i.e. the testing
times multiplied with the acceleration factors, and the connection between PCL = (1−α),
we can transform (3.4) to (2.10).
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The second approach is assuming that the first failure is soon to happen and we set x = 1.
This value can then be chosen as a lower confidence limit. We consider a ”worst case”
assumption and choosing this bound is therefore not critical. This bound is roughly a
63.2% lower confidence bound, as − log(0.632) ≈ 1 and (3.3) becomes the same as (3.2)
with X = 1.

Taking into account previous knowledge

If we have additional knowledge about the shape parameter ηR, for example due to expert
knowledge or lifetime calculations of similar products, it is possible to link these informa-
tions with the real failure data. Equation (3.5) below is from Abernethy (2006) and results
as an extension of (3.2) by including the known characteristic lifetime ηR and weighting
factor ρ. We get a conservative estimator of η with

η̃ =

[
ρ · ηβR
ρ+X

+

(
N∑
i=1

tβi
ρ+X

)]1/β

. (3.5)

This equation offers the possibility to add with ρ and ηR lifetime calculations of similar
products or expert knowledge. This additional knowledge raises the level of reliability for
a fixed time point t0. We use the parameter ρ to weight the influence of the knowledge
ηR in respect to the real data. For the choice of ρ in practice we need to have additional
expert knowledge.

3.2 Results from Kemmner

Kemmner (2012) focuses on finding lower confidence bounds for the reliability of systems
consisting of Weibull components, when having zero failures. For single items he uses the
methodology by Nelson (1985) to calculate the lower confidence limits of reliability. As
there is no comparable method for systems, Kemmner formulates a theorem for the lower
confidence limit of system reliability for a systems consisting of components which follow
a Weibull distribution. The theorem allows for different shape parameters for components
and is even usable if each component has been exposed to different test durations. In
this section we are going to introduce the necessary definitions and review the proof for
the theorem. The proof is firstly conducted for systems with two components and then
extended towards the general case of n components. In the last subsection we discuss the
proposed optimization of reliability demonstration testing plans and the drawbacks of the
proposed method.

3.2.1 Framework

The methodology is only applicable when reliability testing is conducted with zero failures.

Let i denote the component (i = 1, . . . , n) and j a test (j = 1, . . . ,m). The respective
test time of test j is tj . We denote with κi,j the acceleration factor related to the nom-
inal load under normal operating conditions for component i in test j. An acceleration
factor of κp,l = 0 indicates that the test l has no influence on component p. We define



34 CHAPTER 3. LITERATURE

with Xi the number of failures in component i and XS the number of failures in the system.

If a sample of m items is tested with duration tj , j = 1, . . . ,m, the probability of zero
failures in all m tests for component i is the product of the reliability at the individual
test durations:

P (Xi = 0) =
m∏
j=1

e
−
(
κi,j ·tj
ηi

)βi
= e
−
∑m
j=1(κi,j ·tj)

βi

η
βi
i .

The equivalent single test duration TWi for component i is defined as

TWi = βi

√√√√ m∑
j=1

(κi,j · tj)βi

as a shortcut. It represents the accumulation of all test durations for a given item i.

Wanting a 100(1 − α)% confidence limit, we can calculate the lower confidence limit of
the scale parameter ηi of component i by adding the acceleration factor to (3.3) and
simplifying with the single test duration TWi:

ηi
¯

=

(
TW βi

i

− ln(α)

)1/βi

.

For our reliability bound of component i we have then:

RCi,LCL,(1−α)(t0) = e

(
t
βi
0 ln(α)

TW
βi
i

)
= α

(
t
βi
0

TW
βi
i

)
. (3.6)

Before introducing the theorem, we need to have certain assumptions, see Kemmner
(2012):

• Zero failures during testing.

• All components follow a Weibull distribution with known shape parameter βi, known
from historical data or estimated by experts. The failure behavior of all components
is assumed to be mutually independent.

• Countermeasures for issues do not affect other components.

• The acceleration factors κi,j are known.

• If a sub-system of the system is a copy from another already tested system, then the
respective test durations (TWi) for this respective sub-system can be converted to
the considered system.

• Failures with a prototype specific root cause will be ignored.

• If the design of a component has changed, then the former testing times before that
change will be ignored.
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• The design level of the system that will be finally released had no failures, since all
were fixed.

There are some conservative assumptions, but for simplicity they can be used. Note that
in our problem we can use the same assumptions, as most of them are already made within
the current calculations in Uptime LOCATETM.

Having all the necessary definitions we can finally introduce the theorem:

Theorem 2 (Kemmner (2012)). A system consisting of n Weibull components with shape
parameter βi that is exposed to the Weibull equivalent single test duration TWi with zero
failures occurring has the following (1 − α) lower confidence limit of system reliability
RS;LCL;(1−α) at duration t0:

RS;LCL;(1−α)(t0) = min
i
RCi;LCL;(1−α)(t0) = min

i

α
(

t
βi
0

TW
βi
i

)
The equation above means that the lower confidence limit of system reliability is identical
to the lowest lower confidence level of component reliability calculated according to (3.6).

Depending on the different shape parameters βi, the limiting component for the calcula-
tion of the lower system reliability bound can change at different points in time t. We
can be sure with probability (1 − α) that the real reliability is higher than RS;LCL;(1−α).
The advantages of the proposed method are being able to making statements for the lower
confidence limit reliability for a system with different shape parameters βi of its compo-
nents i, as well as having a much higher system reliability than multiplying the limits of
each component when having a serial system.

3.2.2 Proof of the theorem

Proof for n=2

Let Rac,i be the actual reliability of component i and ηac,i the respective Weibull scale
parameter. So the actual reliability of component i at duration t0 is given as

Rac,i(t0) = e
−
(

t0
ηac,i

)βi
.

For the serial system with two components we then get the system reliability at duration
t0 with

Rac,S(t0) =

2∏
i=1

e
−
(

t0
ηac,i

)
= e
−
[(

t0
ηac,1

)β1
+

(
t0

ηac,2

)β2]
.

The probability of zero failures occurring in component i with having j = 1, ...,m tests is

P (Xi = 0) =

m∏
j=1

e
−
(
κi,j ·ti,j
ηac,i

)βi
= e
−
(
TWi
ηac,i

)βi
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and again we get for the system:

P (XS = 0) = e
−
[(

TW1
ηac,1

)β1
+

(
TW2
ηac,2

)β2]
.

We now have to verify the following statement: The probability of zero failures during our
tests is less or equal α for the case that the actual system reliability Rac,S(t0) is less or
equal to RS,LCL,(1−α)(t0). This is exactly the type II error, as having zero failures during
our tests results in accepting H0, even tough the real reliability might be lower than the
lower confidence limit. This type II error should be at most α.

It is sufficient to reduce it to the case of equality, as having an increased system reliability
also increases the probability of having zero failures.

We now have:

P (XS = 0) = e
−
[(

TW1
ηac,1

)β1
+

(
TW2
ηac,2

)β2]
≤ α. (3.7)

This defines that the probability of a Success Run is less or equal than α. The second part
of the statement gives us the relationship for the actual system reliability and the lower
confidence limit:

Rac,S(t0) = e
−
[(

t0
ηac,1

)β1
+

(
t0

ηac,2

)β2]
= RS,LCL,(1−α)(t0). (3.8)

According to the theorem we have:

RS,LCL,(1−α)(t0) = min
i

α
(

t
βi
0

TW
βi
i

) .
Let us assume wlog that i = 1 is the limiting component that determines the value of the
lower confidence limit of the system reliability. Considering 0 < α < 1 this leads to:

tβ10

TW β1
1

≥ tβ20

TW β2
2

. (3.9)

The lower confidence limit of the system with i = 1 as limiting component is then

RS,LCL,(1−α)(t0) = α

(
t
β1
0

TW
β1
1

)
.

Substituting into (3.8):

e
−
[(

t0
ηac,1

)β1
+

(
t0

ηac,2

)β2]
= α

(
t
β1
0

TW
β1
1

)
.

Solving for α we get:

α = e
−
[(

t0
ηac,1

)β1
+

(
t0

ηac,2

)β2]TWβ1
1

t
β1
0 = e

−
TW

β1
1

η
β1
ac,1

−
TW

β1
1 ·tβ20

t
β1
0 ·ηβ2ac,2 .
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Now substituting α in (3.7):

e
−
[(

TW1
ηac,1

)β1
+

(
TW2
ηac,2

)β2]
≤ α = e

−
TW

β1
1

η
β1
ac,1

−
TW

β1
1 ·tβ20

t
β1
0 ·ηβ2ac,2 .

Taking the log on both sides:

−
(
TW1

ηac,1

)β1
−
(
TW2

ηac,2

)β2
≤ −TW

β1
1

ηβ1ac,1

− TW β1
1 · t

β2
0

tβ10 · η
β2
ac,2

−TW
β2
2

ηβ2ac,2

≤ −TW
β1
1 · t

β2
0

tβ10 · η
β2
ac,2

−
(
TW2

t0

)β2
≤ −

(
TW1

t0

)β1
.

The last inequality is equivalent to inequality (3.9) and therefore fulfilled when component
i = 1 is the limiting component. The proof for component i = 2 being the limiting factor
is analog. We now have the proof for a system consisting of two components.

General proof for n

We recall the actual reliability for component i and respective scale parameter ηac,i at
time t0 is defined as:

Rac,i(t0) = e
−
(

t0
ηac,i

)βi
.

The reliability of the serial system of Weibull components is then given as:

Rac,S(t0) =
n∏
i=1

e
−
(

t0
ηac,i

)βi
= e
−
∑n
i=1

(
t0
ηac,i

)
.

The probability of zero failures occurring in component i with having j = 1, . . . ,m tests
is

P (Xi = 0) =
m∏
j=1

e
−
(
κi,j ·ti,j
ηac,i

)βi
= e
−
(
TWi
ηac,i

)βi

and again we get for the probability of the system having zero failures:

P (XS = 0) =
n∏
i=1

m∏
j=1

e
−
(
κi,j ·ti,j
ηac,i

)βi
=

n∏
i=1

e
−
(
TWi
ηac,i

)βi
.

To prove the theorem for general n we have to verify the following statement:
The probability of zero failures occurring during testing is less or equal than α for the case
that the actual value of the system reliability Rac,S(t0) is less or equal to RS,LCL,(1−α)(t0).
Again, it is sufficient to verify this for the case of equality. The first part is described with
the following equation:

P (XS = 0) =
n∏
i=1

e
−
(
TWi
ηac,i

)βi
= e
−
∑n
i=1

(
TWi
ηac,i

)βi
≤ α (3.10)
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and for the second statement:

Rac,S(t0) = e
−
∑n
i=1

(
t0
ηac,i

)
= RS,LCL,(1−α)(t0).

In accordance with the theorem, we have

RS,LCL,(1−α)(t0) = min
i

α
(

t
βi
0

TW
βi
i

) .
We then have

e
−
∑n
i=1

(
t0
ηac,i

)
= min

i

α
(

t
βi
0

TW
βi
i

) .
Let us define Yi as: Yi =

(
TWi
t0

)βi
with Yi > 0.

High values of Yi show us that the equivalent single test duration TWi is large in compar-
ison to the time t0. Substituting Yi we get

e
−
∑n
i=1

(
t0
ηac,i

)
= min

i

[
α(1/Yi)

]
.

Having α defined 0 < α < 1 we can conclude that α(1/Yi) is smaller if the values of Yi gets
smaller. We denote as Ymin = mini Yi and we get:

e
−
∑n
i=1

(
t0
ηac,i

)
= α(1/Ymin).

Solving for α:

α = e
−
∑n
i=1

[
Ymin

(
t0
ηac,i

)βi]
.

Substituting this equation into (3.10) gives

e
−
∑n
i=1

(
TWi
ηac,i

)βi
≤ e
−
∑n
i=1

[
Ymin

(
t0
ηac,i

)βi]
.

Now substituting TW βi
i = tβi0 · Yi yields:

e
−
∑n
i=1

[
Yi

(
t0
ηac,i

)βi]
≤ e
−
∑n
i=1

[
Ymin

(
t0
ηac,i

)βi]
.

Taking the log we get

n∑
i=1

[
Yi

(
t0
ηac,i

)βi]
≥

n∑
i=1

[
Ymin

(
t0
ηac,i

)βi]
with t0, ηac,i, βi > 0.
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This statement is fulfilled, if for each component i we have:

Yi

(
t0
ηac,i

)βi
≥ Ymin

(
t0
ηac,i

)βi
.

As
(

t0
ηac,i

)βi
≥ 0 for t0, ηac,i, βi > 0 we can simplify this equation to

Yi ≥ Ymin ∀i.

This inequality is fulfilled for all components i per definition. This concludes the proof of
the theorem.

3.2.3 Optimizing system reliability

Kemmner also proposes a highly nonlinear optimization program to maximize the system
reliability. Objective function is maximizing RS,LCL,(1−α) with certain constraints, one
being that the system lower confidence bound is the minimal component lower confidence
bound. The additional constraints are budget constraints, time limitation and limiting
integer sample size. Although we do not have information about the costs, the approach
would still be viable for our problem. In Chapter 5 we discuss reasons for not choosing
this method.

3.3 Method by Krolo

The method was developed by A. Krolo in the context of her PhD thesis. It is based on
Bayes’ theorem which states the following:

Theorem 3 (Bayes’ Theorem). Let A and B two events with a-priori probability P (A)
und P (B) > 0. We can then calculate the conditional probability for event A, given that
event B already happened, as follows:

P (A|B) =
P (B|A)P (A)

P (B)

This theorem is used to include previous knowledge for the planning of reliability tests. It
combines known information with the data of the current test.

We want to know the reliability R(t) at time t. We now fix the time t and consider
R = R(t). Knowing the reliability function of our system or component, we would be
able to calculate the value of R. As we mostly do not know the reliability functions,
R is unknown between 0 and 1. But we can often estimate a rough value for R or
restrict the interval to an area with a higher probability, so that R is likely within that
interval. Knowledge about R can then be expressed by the probability for a reliability
value, i.e. a density function fR(s). By assuming a prior density function fRprior(s) from
experience and updating this function with information from new test data, we get a
updated a-posteriori density function fRpost(s). This additional information due to tests
is given by the probability for the number of failures occurring during the tests. With
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Ex we characterize the event of x units failing. We are able to describe this event by the
probability of a single unit failing using the binomial-distribution. Combining the a-priori
density with the results of the current test run gives us an a-posteriori density, which is
an improved estimation of the real value of the random variable. The a-posteriori density
can be described using Bayes’ theorem as follows:

fRpost(s|Ex) =
P (Ex|R = s)fRprior(s)∫ 1

0 P (Ex|R = s)fRprior(s)ds
. (3.11)

As mentioned, fRprior(s) describes the a-priori density. The probability P (Ex|R = s)
equates to the conditional probability and specifies the current test data, given by the
binomial-distribution:

P (Ex|R = s) =

(
n

x

)
sn−x(1− s)x. (3.12)

The variable x represents the number of failures in the test, n is the sample size. If there
are no failures during testing, we get a Success Run and (3.12) simplifies to

P (E0|R = s) = sn.

This equation can then be adapted to consider a life-span ratio and acceleration factors, for
the exact description see Krolo (2004). To get the confidence level PCL of the a-posteriori
density we have to integrate (3.11) from the reliability target Rtar(t) to 1:

PCL =

∫ 1

Rtar(t)
fRpost(s|Ex)ds =

∫ 1
Rtar(t0) P (Ex|R = s)fRprior(s)ds∫ 1

0 P (Ex|R = s)fRprior(s)ds
.

If there is no additional prior information before the reliability testing, we can still assume,
that the reliability of the tested specimen is a uniform distributed random variable, see
Stange (1977). The density function of the uniform distribution is f(R) = 1. For the
a-priori confidence level we get

PCL0 = 1−Rtar(t0)

For a B10 target we already get a a-priori confidence level of PCL0 = 10%. So just assum-
ing a uniform distribution for the density function, we can, with a confidence level of 10%
say, that 90% of our specimen still are functioning at time t.

Using the uniform distribution as a-priori density and (3.12) for the conditional probability,
we get the a-posteriori density of a Beta distribution with

fRpost(s|Ex) =
sn−x(1− s)x∫ 1

0 s
n−x(1− s)xds

=
sn−x(1− s)x

β(n− x+ 1, x+ 1)
.

Integrating this function from Rtar(t) to 1 returns the level of confidence PCL. It can
be shown that assuming a uniform distribution, the sample size needed reduces by one
(Bertsche and Lechner, 2004), (Krolo, 2004).
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Having more information about the product, we can often assume to have a Beta distri-
bution as a-priori density. The spread of the failure probability can be described by a
two-parameter Beta distribution in accordance with Bertsche and Lechner (2004). The
a-priori density is then given by (2.3). We give the parameters a and b the indices 0 to
mark the prior information

fRprior(s) =
1

β(a0, b0)
sa0−1(1− s)b0−1.

Omitting a life-span ratio, we assume that the testing duration is the same as the target
time t. Using Bayes’ formula for the a-posteriori density we get a Beta distribution:

fRpost(s|Ex) =
sa0−1+n−x(1− s)b0−1+x∫ 1

0 s
a0−1+n−x(1− s)b0−1+xds

=
sa0−1+n−x(1− s)b0−1+x

β(a0 + n− x, b0 + x)
. (3.13)

We can see that the parameters of the a-posteriori density is a sum of the parameters of
the a-priori density and the sample size, as well as the number of failures. Thus without
using Bayes theorem, the a-posteriori density can be easily determined. Having a Beta
distribution as an a-priori density, we get a Beta distribution as an a-posteriori density
with the parameters

a = a0 + n− x
b = b0 + x.

Assuming that b0 is integer, we get for the confidence level due to the connection between
Beta and binomial distribution:

PCL = 1−
b0+x−1∑
i=0

(
a0 + n+ b0 − 1

i

)
Rtar(t0)a0+n+b0−1−i(1−Rtar(t0))i.

If b0 is not integer, we have to calculate the confidence level by integrating (3.13).

3.3.1 Transformation factor

As the Bayesian approach assumes identical conditions, we always have to critically con-
sider the portability of the information. Krolo (2004) thus introduces a transformation
factor. If there are slightly different conditions, i.e. testing conditions, or modernization
of a component, we are not able to use the prior information unrestricted. We thus have
to determine a transformation factor, such that we are able to partially use the prior
knowledge. The transformation factor Φ ∈ [0, 1]. The factor is then used by multiplying
it with the prior information when calculating the parameter of the Beta distribution

Φ · a0

Φ · (b0 − 1) + 1.

A transformation factor of Φ = 1 implies, that the prior information can be fully trans-
ferred to the new situation, as the parameters of the Beta distribution are fully incorpo-
rated in the calculations. For Φ = 0, we omit all prior information.
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Usually, it will hold that 0 < Φ < 1. Due to the different conditions in the prior knowledge,
i.e. gained trough test runs of former products, and the new product, we cannot fully
integrate the full former knowledge and we have to weight that knowledge. Hitziger (2007)
discusses methods to determine the transformation factor. Next we are going to discuss
the choice of the parameters a0 and b0 depending on the number of failures.

3.3.2 Defining the a-priory density

As described before, we know that the confidence interval of a sample can be described
with the Beta distribution. The parameters of the distribution are dependent on the
sample size n and the rank i. Thus we define the Beta density function on the random
variable reliability as

fRprior(s) =
1

β(a, b)
sa−1(1− s)b−1 with a = n− i+ 1 and b = i. (3.14)

The density function of the reliability is independent from the failure distribution of the
sample, i.e. we are only interested in the sample size and number of failures. Having
enough failures, we are able to fit the failure data with a Weibull distribution.

Many failures

We consider a test without acceleration factors. The failure probability for a target time
t0 is then given as

F (t0) = 1− e−
(
t0
η

)β
This value equates to the median of the Beta distribution, approximated with (2.6). Equal-
ize those equations, we get a dependency from i on the Weibull parameters, the reliability
target time t0 and the sample size:

1− e−
(
t0
η

)β
=
i− 0.3

n+ 0.4
→ i = (n+ 0.4)

[
1− e−

(
t0
η

)β]
+ 0.3.

With this we get for the parameter of the Beta distribution in accordance with (3.14)

a0 = n− (n+ 0.4)

[
1− e−

(
t0
η

)β]
+ 0.7

b0 = (n+ 0.4)

[
1− e−

(
t0
η

)β]
+ 0.3.

Again, we are able to include acceleration factors κ in our calculations, for further infor-
mation see Krolo (2004).

Few failures

If there are only a few failures in the tests, it can be critical to describe the results with
help of a Weibull distribution. Krolo (2004) therefore analyses the exact failure times of
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the specimen. The parameter of the Beta distribution regarding the a-priori density are
given as

a0 = n−

(∑
k

ik − 1

)

b0 =

(∑
k

ik − 1

)
+ 1.

Here n is the sample size and ik the rank of the kth failure time tk. The rank is calculated
with

ik = 1.4

1− 0.5

1(
tk
t0

)β+ 0.3.

This holds under the assumption that there are no two failures at the exact same time.
In practice this assumption can be made without problems.

Having a Success Run, Krolo assumes that the first failure is bound to happen shortly
after the end of the test, so we get the rank i = 1. Thus for the choice of our a-priory
density parameters we get

a0 = n and b0 = 1

3.3.3 Calculating the a-posteriori density

If we have the parameters of the a-priory density, we can calculate the a-posteriori param-
eters as:

a =

p∑
i=1

Φia0i + n

b =

p∑
i=1

Φi(b0i − 1) + 1

where p is the number of a-priory distributions with respective parameters ai and bi and
n as the needed sample size for the reliability demonstration. The transformation factor
Φi weights the portability of the a-priory information.
With the method of Krolo we get a confidence level of PCL by integrating the a-posteriori
density

PCL =

∫ 1

Rtar(t0)

1

β(a, b)
sa−1(1− s)b−1ds.

With a reliability target Rtar(t0) and a given confidence level PCL we are able to calculate
the necessary sample size depending on the transformation factor and the prior knowledge.





Chapter 4

Uptime LOCATE

In this chapter, the current functionality of the software Uptime LOCATETM is being
explained and illustrated with the help of an example.

4.1 Scope

At the beginning of a project, we have to define our reliability targets and operating
conditions. Given a system S, we first have to define its required function and possible
failure modes. For that, knowledge about the environmental and operating conditions is
needed. The failure modes with their respective defect components can be best described
with a fault tree. Having the system S, we want to identify all components that are prone
to failure. For these components we further develop our fault tree. At the end we get a
tree structure with all necessary components and their respective failure mode. Note that
we assume that a failure in any component leads to a failure of the system, thus we omit
the use of the logic gate in our representation. Figure 4.1 gives us the fault tree of our
example ”hydraulic system”. The basic events are failure modes, a complete list can be
found in Table 4.1.

Having the structure and failure analysis of our system, we need to define the reliability
targets for our system. One system can have multiple targets, e.g. warranty target and
lifetime target. The reliability target is a quintuple (τ, uR, Rtar,S(t0), t0, u0). Here τ is the
target type and has to be either survival probability or failure rate. It is possible to convert
from one type to another. The unit used for our reliability type uR is either unit-less for
failure rate and %, h or ppm (parts per million) for survival probability. In this thesis
we are only considering survival probability when talking about the reliability target.
Rtar,S(t0) is our target value, e.g. 90% for our reference value t0. The reference unit u0 can
be either a duration in [h] and [a], operating cycles, but also distance [km] or [mi]. For our
example we have two reliability targets: warranty target (failure rate, [−], 0.20, 3600, [h])
and lifetime target (survival probability, [%], 90, 10000, [h]). So the latter means: After
10000 hours running time, at least 90% of our hydraulic systems still works. As exact
statements about the lifetime of a product are not possible, we have to define an statistical
error probability α. Per default, we set α = 10%.

After defining the reliability target and fault tree, we have to specify the operating con-
ditions: how is the operator using our system and under which conditions. In practice
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cavitation Pitting of material surface due to repeated impact of collapsing
cavitation bubbles

wear, lubricated Loss of material in contact zone due to failure of hydrodynamic
lubricant to fully seperate surfaces

HCF Crack initiation due to load cycling and hence accumulation of
material defects

wear, dry Loss of material in contact zone due to relative movement of sur-
faces under applied pressure

therm. aging Hardening, embrittlement, softening, plastic strain due to ther-
mally activated diffusion in solid state materials

seizure Loss of freedom of movement, due to thermal/mechanical defor-
mation, loss of lubricant

corrosion Material loss, deposition, surface modification due to aggressive
agents

leakage Loss of fluid

fretting wear Wear due to micro-slip at stick-slip boundaries in contact zone

fretting fatigue Crack initiation due to multi-axial stress variation at stick-slip
boundaries

LCF Crack initiation and propagation due to cyclic plastic strain

TMF Crack initiation due to cyclic thermal loading

abrasive wear Local abrasion of material

adhesive wear Local material transfer, microwelding

chem. aging Changes of surface properties due to exposure in chemically active
atmosphere

creep Irreversible strain due to temperature or stress

deposition Deposition of substances on (functional) surfaces

distortion Irreversible deformation of components

drift Temporal drift of sensitivity or zero point of sensors

el. chem. corrosion corrosion driven by difference in chemical potential

erosion Abrasion by impact of particles in fluids

freezing Crackformation or blocking

hot gas corrosion corrosion due to liquid oxides at high temperatures

therm. overload Change of surface properties due to incipent melting or phase
transformation etc.

Table 4.1: Examples of failure modes.

there can be multiple reference profiles, i.e. a hydraulic system in a truck has a different
load compared to the hydraulic system in a car. As a start we are going to assume that
our system is used by only one operator, so we know the exact load and environmental
conditions our system is exposed to.
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4.2 Risk Filter

The system risk filter is a feature of Uptime LOCATETM. It consists of 12 standardized
risk categories. For every component of our system, the risk is evaluated by engineers.
For a component with zero risks, we can assume that the component has no risk and is
therefore not in the focus of the evaluation. With adding risks, it is being indicated that
the component is more prone to failure and therefore we need more extensive testing.
Figure 4.2 shows an excerpt of the risk filter of the axial piston unit in our hydraulic
system. The risks are inherited bottom up, i.e. a risk in a component leads to the risk in
every parent component and the system.

Given the reliability target of our system Rtar,S(t0), the fault tree and the risk filter,
Uptime LOCATETM derives reliability targets Rtar,Ci(t0) for the components Ci. The
allocation is such that components with more risks have a ”lower” survival probability
target compared to components with less risks. In Figure 4.3 we can see the allocation
of our lifetime reliability target 90% to component reliability targets. As components can
have multiple failure modes, the component reliability target Rtar,Ci(t0) is then further
derived to a component/failure-mode reliability target Rtar,Ci;Fj (t0) for component Ci with
failure mode Fj by using a concentration factor. The exact calculations are not discussed
in this thesis. Table 4.2 shows the reliability target for our component/failure-modes in
the example.

Component/Failure Mode Reliability Target survival prob. in %

Cylinder: abr. wear 99.50367

Cylinder: TMF 99.50367

Piston: HCF 99.50367

Piston: abr. wear 99.50367

Retraction Unit: abr. wear 98.71467

Retraction Plate: abr. wear 98.87117

Retraction Plate: HCF 98.87117

Actuator: abr. wear 99.41328

Actuator: Leakage 99.41328

Connect. Plate: Leakage 99.52374

Connect. Plate: HCF 99.52374

Cont. Piston abr. wear 99.39455

Table 4.2: Reliability targets of component/failure-modes in surv. probability.

In Figure 4.4 we can see the risk filter for our example ”hydraulic system”.

4.3 Damage calculation and equivalent test duration

Using PoF models, Uptime LOCATETM is able to calculate damage values from a given
test Ti with time ti. A test consists of multiple time series with measurements on various
parts of the system. We can either have system tests, mostly with real life environmental
and load conditions, or bench tests, which are often carried out with increased load on
parts of the systems, i.e. subsystems. Examples of measured parameters are temperatures,
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rotational speed, torque, etc. For each component/failure-mode that is influenced by this
test (e.g. testing the engine gives us no information about failure modes in the drive
train), Uptime LOCATETM calculates the damage values. Let Cjk be failure mode k on
component j, which is stressed by the test Ti. Then we get a damage value di,j,k. This
value is the accumulated load the component is exposed to in the test; dividing it by
the testing time ti we get a standardized damage value that can be compared with other
damage values with different running time, so

d̂i,j,k =
di,j,k
ti

.

Calculating the ratio with the standardized damage value d̂ref,j,k of our reference profile
Ref with time tref , we are able to calculate the acceleration factor κi,j,k by

κi,j,k =
d̂i,j,k

d̂ref,j,k

.

Figure 4.5 is an example for calculating the acceleration factor. The reference profile Ref
with testing time tref is driving with a speed of 60kmh and having 8 damaging events within

4 hours on the component/failure-mode Cjk. So dref,j,k = 8 dmg and d̂ref,j,k = 2 dmg/h.

On the other hand, our test Ti with a duration ti = 500 has d̂i,j,k = 6 dmg/h. The test i
puts three times higher stress on the component for the respective failure mode compared
to the reference cycle. We get an acceleration factor κi,j,k = 3. So the test duration of
500h in test i is equivalent to the reference operating time of 1500h, or 90.000 km. Note
that the damage values can be based on classified data and integrals instead of event
sums, although the calculation principle is always the same. We define the equivalent test
duration of test Ti with running time ti on component/failure-mode Cjk as

t̃i,j,k = κi,j,k · ti.

Those equivalent test duration are then needed to calculate the demonstrable reliability
using WeiBayes. In our example, there are 4 tests that can be conducted on our system or
its components. Table 4.3 shows the acceleration factors κ for different component/failure-
modes and the 4 different tests. Note that the fourth test is only conducted on a single
component, whereas the other three are conducted on the whole system. Having a testing
time of t1 = 1500h, t2 = 300h, t3 = 2000h and t4 = 20h we can calculate the equivalent
test durations seen in Table 4.4.

4.4 Demonstrable Reliability

Just using the information gain from the tests, Uptime LOCATETM uses the WeiBayes
method to calculate the demonstrable reliability. To simplify the following calculations
we choose a fixed component/failure-mode Cjk and omit the indices j, k. Given β ( per
default set to β = 2 if no other information is known), the confidence level (1− α) = 0.9
and equivalent testing times for n tests t̃1, t̃2, ..., t̃n, Uptime LOCATETM uses (3.3) to
calculate a lower confidence level for η and then calculates the component/failure-mode
reliability R

¯
(t0). In our example, the reliability target time is t0 = 10000h. With this we
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T1: Dynamic T2: Overload T3: Pr. Fluc. T4: Puls. rig.

Cylinder: abr. wear 1.004520056 2.219037778 1.359476994

Cylinder: TMF 1.181817967 1.181817967 0.909090744

Piston: HCF 421.7813773 1091.039001 2.994374595

Piston: abr. wear 1.640949944 4.951122305 0.971803427

Retr. Unit: abr. wear 1.800696137 2.258832947 1.194733201

Retr. Plate: abr. wear 1.800696137 2.258832947 1.194733201

Retr. Plate: HCF 421.7813773 1091.039001 2.994374595

Actuator: abr. wear 1.017672814 0.100857565 6.721835582

Actuator: Leckage 1.011158549 0.049423544 6.073217267

Con. Plate: Leckage 1.625715708 0 7.439104832 0

Con. Plate: HCF 1.48378705 65.38011692 7.89814318 15.0847124

Cont. Piston: abr. wear 1.534081909 1.936646995 1.318645139

Table 4.3: Acceleration factors for component/failure-modes and different tests.

T1 T2 T3 T4

Cylinder: abr. wear 1506.78 665.71 2718.95 0

Cylinder: TMF 1772.73 354.55 1818.18 0

Piston: HCF 632672.07 327311.70 5988.75 0

Piston: abr. wear 2461.42 1485.34 1943.61 0

Retraction Unit: abr. wear 2701.04 677.65 2389.47 0

Retraction Plate: abr. wear 2701.04 677.65 2389.47 0

Retraction Plate: HCF 632672.07 327311.70 5988.75 0

Actuator: abr. wear 1526.51 30.26 13443.67 0

Actuator: Leckage 1516.74 14.83 12146.43 0

Connection Plate: Leckage 2438.57 0 14878.21 0

Connection Plate: HCF 2225.68 19614.04 15796.29 301.69

Cont. Piston: abr. wear 2301.12 580.99 2637.29 0

Table 4.4: Equivalent test duration for hydraulic system tests in hours.

can calculate the demonstrable reliability for our example, as can be seen in Table 4.5.
Note that for only two component/failure-modes we reach the component/failure-mode
reliability target, for a lot of component/failure-modes our demonstrable reliability is
≤ 1%. These calculations use only the prior information about knowing or estimating
the shape parameter β of the Weibull distribution. As mentioned before, we only get a
conservative lower confidence bound for the reliability. In practice, the actual reliability is
much higher than the demonstrable reliability. Previous knowledge like from forerunner
projects or risk filter are not included. To account for this additional input, Uptime
LOCATETM is using a Beta probability distribution which is parameterized according to
previous knowledge.
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R
¯ j,k

(10000) in %

Cylinder: abr. wear 1.273E-8

Cylinder: TMF 6.147E-14

Piston: HCF 99.9546

Piston: abr. wear 4.966E-7

Retraction Unit: abr. wear 3.741E-6

Retraction Plate: abr. wear 3.741E-6

Retraction Plate: HCF 99.9546

Actuator: abr. wear 28.4277

Actuator: Leckage 21.5083

Connection Plate: Leckage 36.3135

Connection Plate: HCF 69.7547

Cont. Piston: abr. wear 1.137E-6

Table 4.5: Demonstrable reliability of example hydraulic system.

4.5 Projected Reliability

As seen in Figure 2.8, the Beta distribution is versatile. Depending on the choice of
parameters, the density function can have different shapes. As it is typically the case that
the mode of our density is greater 0.5, we restrict our choice of parameters. For a > 1 the
probability density on the left side is starting at 0, which should be the case, as otherwise
the purpose of the projection would be void. For the parameter b we have 0 < b ≤ 1. For
the exact definition of the parameters, Uptime LOCATETM uses the following rules:

• parameter a: changes via risk filter in Uptime LOCATETM

1. 12 risk categorizes. The more risks are selected, the higher the possible risk to
fail.

2. a = exp
(
MaxRiskV alue=12−(RiskV alueComponent−1)

2

)
as a start value.

• parameter b: failure rates of forerunner product and component testing

1. b = min( observedFR
mean(observedFR) , bc).

2. bc = 0.5 if component tests fully cover the failure mode and 1 otherwise, to be
discussed with engineers.

3. observedFR: failure rate for components derived from forerunner projects.

4. mean(observedFR): mean failure rate calculated over comparable sibling com-
ponents.

The starting parameter a is then getting adapted. For this, first the demonstrable relia-
bility R

¯
(t0) is calculated and then the cumulative distribution function F (R

¯
(t0)|a, b) for

the Beta distribution. If F (R
¯

(t0)|a, b) > α, increase parameter a until F (R
¯

(t0)|a, b) ≤ α.
The expected value of the Beta distribution is the so called projected reliability and is

R̂(t0) =
a

a+ b
.
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Although the reliability values for this projection were shown to be closer to the real
reliability, one downside of this projection is the belated adaption of the parameter a.
If the demonstrable reliability is too low, the projected reliability is only depending on
the input of the risk filter. Increasing the testing time might have no influence on the
reliability calculations. Table 4.6 shows the 10% percentile of the Beta distribution for
b = 0.5 and b = 1. The a is chosen depending on the number of risks, as explained. As
the parameter a is only increased if the demonstrable reliability R

¯
(t0) is greater than the

α-quantile, and α = 0.1, our demonstrable reliability has to be greater than the values in
the table. Having less than 8 risks already requires a demonstrable reliability over 90%
to increase the starting parameter a, less then that, and the demonstrable reliability has
no influence on the projected reliability. Note that the minimum value of the projected
reliability is 62.25% when having 12 risks and b = 1.

# Risks parameter a 10% percentile of Beta(a,0.5) 10% percentile of Beta(a,1)

0 665.141633 0.997967497 0.99654419

1 403.4287935 0.996650353 0.994308725

2 244.6919323 0.994481176 0.990633994

3 148.4131591 0.990911305 0.984605044

4 90.0171313 0.985043287 0.974744976

5 54.59815003 0.975416899 0.958703637

6 33.11545196 0.959676862 0.932830215

7 20.08553692 0.934083819 0.891688108

8 12.18249396 0.892863512 0.827780247

9 7.389056099 0.827563763 0.732258797

10 4.48168907 0.727145195 0.598232269

11 2.718281828 0.581054688 0.428667068

12 1.648721271 0.390361786 0.247439384

Table 4.6: 10% percentile of the Beta distribution with different b.

Table 4.7 shows the projected reliability R̂j,k(t0) for component j with failure mode k
and the corresponding reliability target. Half of the component/failure-modes reach the
reliability target, but for ten of the twelve component/failure-modes, the demonstrable
reliability has no influence on the projected reliability. Only for ”Retraction Plate: HCF”
and ”Piston: HCF” do we get a high enough demonstrable reliability to change the starting
parameter a of the Beta distribution.



Reliability target Rtar,j,k(t0)[%] proj. Reliability R̂j,k(t0)[%]

Cylinder: abr. wear 99.504 99.664

Cylinder: TMF 99.504 99.664

Piston: HCF 99.504 99.983

Piston: abr. wear 99.504 99.664

Retraction Unit: abr. wear 98.715 89.963

Retraction Plate: abr. wear 98.871 81.757

Retraction Plate: HCF 98.871 99.983

Actuator: abr. wear 99.413 99.093

Actuator: Leckage 99.413 98.201

Connection Plate: Leckage 99.524 99.448

Connection Plate: HCF 99.524 99.448

Cont. Piston: abr. wear 99.395 99.395

Table 4.7: Projected reliability of example hydraulic system.
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Figure 4.3: Risk allocation in survival probability in %.



56 CHAPTER 4. UPTIME LOCATE

F
igu

re
4.4:

R
isk

fi
lter

H
y
d

rau
lic

S
y
stem

.



4.5. PROJECTED RELIABILITY 57

Figure 4.5: Example for calculation of equivalent test duration.
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Chapter 5

Aggregation to system reliability

Currently, Uptime LOCATETM assess a validation program V consisting of several dif-
ferent tests T1, T2, ..., Tn on component/failure-mode level by comparing the demonstrable
and projected reliability with the reliability target for every component/failure-mode.
Those targets are, as described in Chapter 4, derived top-down from an overall system
reliability target along the hierarchy gained by the fault tree. Right now, the assessment
terminates with the reliability demonstration on the level of component/failure-mode.
The objective is to find a reliability value for the system by aggregating the results from
component/failure-mode level bottom-up. The reliability should be available on each level
of the system hierarchy, i.e. every component should be assigned a reliability value, and
there should be one final indicator measuring the quality of the validation program. Espe-
cially management holds interest for an easy way to compare validation programs on their
ability to demonstrate a high reliability for the whole system. Additionally an optimiza-
tion problem should be constructed, so that we are able to optimize a given validation
program by distributing the test volume, i.e. number of objects tested or duration of the
tests. As the optimization problem is a non-linear optimization problem, we are satisfied
with a local optimum for large problems.

5.1 Only having base events in the fault tree

As described in Section 2.6.2, our fault tree can consist of intermediate, undeveloped and
base events. For our reliability calculation the leaves of the tree, i.e. base and undeveloped
events, are relevant. Let us first assume we only have intermediate and base events, but
no undeveloped events. We discuss how to include the undeveloped events later.

As mentioned in Section 2.6.2, our fault tree with only logical gate ”OR” can be seen as
a series system. The blocks correspond to the base events in the fault tree. Also every
base event BEi in the fault tree is equivalent to a component/failure-mode Cjk. Thus it
follows, when having n component/failure-modes for the system reliability

RS(t) =

n∏
i=1

RBEi(t),

with RBEi(t) being the reliability for base event i at time t. Using the demonstrable and
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projected reliability already calculated in Uptime LOCATETM, we try to implement this
calculation.

Demonstrable Reliability

Calculating the system reliability with our conservative values from the demonstrable
reliability, we get an even more conservative value. For our example, we have a system
reliability of

R
¯ S(10000) ≈ 9.581e−57%.

when multiplying the demonstrable reliability of the base events having risks and omit-
ting undeveloped events or base events with no risks. This value implies that with the
current validation program we are only able to demonstrate a system reliability close to
0. The main problem is multiplying lower confidence bounds, as we know that the system
reliability R

¯ S(t0) is always less or equal the minimum component/failure-mode reliability.
The resulting value for the lower confidence bound of the system reliability is unrealistic
low. In Kemmner (2012) a methodology for calculating the lower confidence limit of the
reliability of a system in a serial configuration when zero failures have occurred is being
presented. The methodology is discussed in Chapter 3.

Note that Kemmner assumes that the calculation of reliability is on the component level.
It is still applicable when expanding it to the component/failure-mode level. With this
approach our reliability lower confidence limit of the system is

RS,LCL,(1−α)(10000) = min
i
RCi,LCL,(1−α)(10000) ≈ 6.147e−14%.

While the lower confidence limit of the system reliability will be much higher than multi-
plying the lower confidence limit of each component, there also arise problems with this
approach. The optimization model suggested is a highly non-linear mixed-integer pro-
gram. We have to maximize the minimal lower confidence bound of our components. In
practice that can be critical: let us assume we have a component g with failure mode f .
Also assume we do not know the PoF model of the component/failure-mode Cg,f . Thus
we cannot have a bench test to get high acceleration factors, and also for system tests with
higher load compared to the reference profile we do not know if the component is exposed
to more or less stress. Therefore we can only assume, that for system tests with real life
usage we get an acceleration factor κg,f = 1 and only those testing times can be accounted
for calculating the demonstrable reliability. As system tests are often expensive and have
restricted test volume, there is a upper bound for the reliability demonstration of Cg,f . If
this reliability RCg,f ,LCL,(1−α)(t0) is the minimum component reliability limit of all of our
components, we do have a target value of the optimization problem proposed by Kemm-
ner. Still there might be potential to optimize the reliability of the other components.
Therefore we are going to calculate the system reliability by multiplying the reliability of
the component/failure-modes.

The method by Kemmner also neglects additional knowledge beyond the estimation of the
shape parameter β. If we adapt the approach to function with the projected reliability,
additional troubles arise.
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Projected Reliability

As seen in our example in the former chapter, the projected reliability is highly influenced
by the risk filter and sometimes not at all influenced by the demonstrable reliability. In
our example we have for the system reliability by multiplying the component/failure mode
reliability

R̂S(10000) ≈ 69.626%.

Increasing or decreasing testing time can have no influence on the reliability of any com-
ponent. This makes it even harder to calculate a system reliability with either method,
multiplication or by Kemmner. Therefore at first we want to introduce another method
to calculate the reliability of a component/failure-mode by using the knowledge of the risk
filter to get an a-priory probability R0 and using the method of Beyer/Lauster as basis
for our calculations. We call the calculated reliability combined reliability, see Section 5.3.

5.2 Handling undeveloped events

There is no equivalent presentation of undeveloped events from fault tress to reliability
block diagrams. We have to distinguish between two cases that can lead to undeveloped
problems.

First is a lack of importance, i.e. we have no entry in the risk filter for that component.
In this case we can assume that the component reaches its reliability target and we set
the reliability of the component to the same level for the demonstrable reliability. This
does not cause any problems for calculating the system reliability by multiplication. Us-
ing the method by Kemmner also does not lead to problems, as the reliability target of
components is always derived from the system reliability target and even if the compo-
nent corresponding to an undeveloped event is the limiting component, we know that the
system surely reaches its target as well.

Using this assumption for the projected reliability can be critical: let us assume we have
a component with zero risks and a reliability target of 95%. Now adding up to 7 risks
would result in a component reliability at least greater than 95%. So in this case, adding
risks would result in an increased reliability, which does not make sense. Thus we cannot
use this assumption for the projected reliability.

Having a lack of information is the second case to get an undeveloped event in the fault
tree analysis. This is often due to not exactly knowing the PoF model and therefore being
unable to calculate the damage in comparison to real life situations. Let us assume that we
have a undeveloped event for component Ci. Thus we can only set the acceleration factors
to κi = 1 for component i if we have tests in real life conditions, otherwise we can only set
κi = 0. This can lead to different issues: If there are no tests under real life conditions,
then no test is contributing to the reliability calculations of component i. This would
result in a demonstrable reliability R

¯Ci
(t) = 0 and therefore both methods would result

in a system reliability of R
¯ S(t) = 0 and RS,LCL,1−α(t) = 0. But even if there are real life

tests, those are often expensive and due to a lack of time and financial means restricted.
This, in addition to a acceleration factor of κj = 1 for every component (due to real life



62 CHAPTER 5. AGGREGATION TO SYSTEM RELIABILITY

conditions) results in component i likely being the limiting component, without any means
of increasing the reliability. This is especially problematic for the method of Kemmner,
as we might be able to increase the reliability of other components with bench-tests.

In case of the projected reliability, some of the problems are not present anymore. If there
are no real life tests, we still have a projected reliability of at least R̂Ci(t) ≥ 62.25%.
Tough the problem still remains, that increasing testing time of some tests, e.g. bench-
tests, can lead to no increase in the projected reliability of any component and thus
the system reliability. For the combined reliability we want to be able to deal with those
problems: any change in testing time should result in a change in reliability for at least one
component, and even if there are components with no further information, i.e. undeveloped
events, we should have at least a reliability value higher than a fixed value, derived from
experience, i.e. we know that the component at least has a minimum reliability.

5.3 Combined Reliability

In this section we are going to introduce a new method to calculate the reliability of
components, based on the information in the risk filter and test contributions. First we
are going to introduce some basic framework and the ideas for the reliability.

5.3.1 Basic idea

Based on the former chapters, we already figured out some properties which the combined
reliability should have

• Including knowledge from the risk filter to get an a-priory reliability with a confidence
level of 90%.

• Every change in a test duration should result in a change of reliability.

• Components with no risk have a lower reliability confidence bound of at least the
reliability target, i.e. they reach their target.

• Adding an additional risk decreases the lower reliability bound.

• Components with a full risk filter should reach at least a minimum value of reliability,
derived from experience.

5.3.2 Calculating a-priory probability

So starting with an empty risk filter and a lower confidence bound with confidence level
of 90% at the level of the reliability target, we decrease this bound with every additional
risk. Having all risks our component reaches its minimum reliability that we are confident
to assign before having additional information. A conservative value would be setting
the minimum to 0%, so having a full risk filter gives us no a-priory information about
that component. As this approach is too conservative, instead we use an already ex-
isting lower bound, derived from the projected reliability. Having a full risk filter, the
starting parameter of the Beta distribution is set to a = e1/2. Parameter b is depending
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on observed failure rates or the ability to create a bench-test to fully cover the failure
mode or not. For a detailed description see Chapter 4. As the projected reliability is
also a lower confidence bound on the reliability of a component with confidence level of
90%, we can assume that this minimum value is reached regardless of any tests conducted.

For assigning a-priory values for components having less than 12 failures there are multiple
ways to distribute them. The first approach would be having a linear decline from the
maximum value to the minimum value. Adding a risk always decreases the confidence
bound with the same value. The second one is the one that we are going to focus on.
Again derived from the projected reliability we assume that with increasing risks, the
decline of the confidence bound increases as well. With this we get the following formula
for the a-priory lower confidence bound for component/failure mode i with ri risks:

R0,i = minboundi + (maxboundi −minboundi) ·
1

ln(13)
· ln(13− ri)

Having zero risks results in the maximum value, which is set to be the reliability target,
having all 12 risks results in the confidence bound being the minimum value, which in our
case is defined as

minboundi =
a

a+ b

with a = exp(0.5) and b = min
(

observedFR
mean(observedFR) , bc

)
with bc = 0.5 if component test

fully covers the failure mode and bc = 1 if not or if there is no PoF model (so we assume
the worst case). Figure 5.1 shows the logarithmic decline of the probability between the
maximum and minimum value with increasing number of risks.
Using this method, we can calculate the a-priory probability of our example hydraulic
system. Table 5.1 gives us the parameter bc to calculate the minimum lower bound, the
maximum value as the reliability target and the number of risks. Note that although the
component ”Drive Shaft” has two base events, those can be neglected in this example, as
there is no risk, so both component/failure modes reach their reliability target and the
component ”Drive Shaft” reaches its reliability target as well. We could therefore simplify
the fault tree by making ”Drive Shaft” into an undeveloped event.

5.3.3 Adding test contributions

Having the a-priory reliability with a confidence level of 90%, next we want to include the
information from the time series. As we want to use the Beyer/Lauster method, we have
to adapt the formula, as the additional knowledge is valid for a higher confidence level.
Thus we have to adapt equation (2.11) to

Rmin(t) = (1− PCL)

 k∑
i=1

ni(κiLRi)
β+1/ log(1/R0)

−1

. (5.1)

by changing the natural logarithm to the common logarithm. R0 is now our a-priory
information. Using the validation program V with testing times v = (1500, 300, 2000, 20),
Table 5.2 gives us the combined reliability for our example.
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Component/failure i ri bc minboundi maxboundi R0,i

Cylinder: abr. wear 3 0.5 0.767303462 0.99504 0.971745221

Cylinder: TMF 3 0.5 0.767303462 0.99504 0.971745221

Piston: HCF 3 0.5 0.767303462 0.99504 0.971745221

Piston: abr. wear 3 0.5 0.767303462 0.99504 0.971745221

Retraction Unit: abr. wear 10 0.5 0.767303462 0.98715 0.861467547

Retraction Plate: abr. wear 10 1 0.622459331 0.98871 0.779330844

Retraction Plate: HCF 10 0.5 0.767303462 0.98871 0.862135722

Actuator: abr. wear 5 0.5 0.767303462 0.99413 0.951195017

Actuator: Leckage 5 1 0.622459331 0.99413 0.923778118

Connection Plate: Leckage 4 0.5 0.767303462 0.99524 0.962561806

Connection Plate: HCF 4 0.5 0.767303462 0.99524 0.962561806

Cont. Piston: abr. wear 4 0.5 0.767303462 0.99395 0.961456747

Drive Shaft 0 0.5 0.767303462 0.99769 0.99769

Control Disc 0 1 0.622459331 0.99872 0.99872

Bearings SP 0 1 0.622459331 0.99872 0.99872

Plate 0 1 0.622459331 0.99872 0.99872

Bearings 8 1 0.622459331 0.97940 0.846430164

Table 5.1: A-priory reliability of the component/failure modes and components.

Component/failure i Rtar,i(t0) R0,i R̃Ci(t0|v)

Cylinder: abr. wear 0.99504 0.971745221 0.97178021

Cylinder: TMF 0.99504 0.971745221 0.97176799

Piston: HCF 0.99504 0.971745221 0.99955341

Piston: abr. wear 0.99504 0.971745221 0.97178691

Retraction Unit: abr. wear 0.98715 0.861467547 0.86257871

Retraction Plate: abr. wear 0.98871 0.779330844 0.78212788

Retraction Plate: HCF 0.98871 0.862135722 0.99954772

Actuator: abr. wear 0.99413 0.951195017 0.95301764

Actuator: Leckage 0.99413 0.923778118 0.92737836

Connection Plate: Leckage 0.99524 0.962561806 0.963896

Connection Plate: HCF 0.99524 0.962561806 0.96608644

Cont. Piston: abr. wear 0.99395 0.961456747 0.96153778

Drive Shaft 0.99769 0.99769 0.99769

Control Disc 0.99872 0.99872 0.99872

Bearings SP 0.99872 0.99872 0.99872

Plate 0.99872 0.99872 0.99872

Bearings 0.97940 0.846430164 0.84643016

Table 5.2: Combined reliability of the component/failure modes and components
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Figure 5.1: Decline between max = 1 and min = 0 with increasing risks

Calculating the system reliability with this new method, we get the following values for
considering only the base events with risks

R̃S(t0|v, only base events) ≈ 48.9506%

and with including the undeveloped events as well

R̃S(t0|v, all events) ≈ 41.1790%.

5.4 Comparison of the three methods

Although it has already been mentioned before, we are going to discuss the pros and cons
of the three different methods to calculate system reliability.

The advantage of the demonstrable reliability is hardly needing to know anything about
the product. The only additional knowledge is included by selecting a shape parameter
for the Weibull distribution, although if there is no knowledge, this parameter can also be
estimated. The calculated values are often conservative, so although we are calculating
(1 − α) lower confidence limits, the probability of the real reliability being lower than
that bound is in most cases way less than α. Multiplying those conservative lower bounds
results in an even more conservative system reliability bound. If there is even one compo-
nent having hardly any test contribution, i.e. no bench-tests or low acceleration factors,
we get an unrealistic system reliability. Additionally there might be problems dealing
with undeveloped events. Having an undeveloped event because of no importance, i.e. no
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risk, is no problem, as we can safely assume that the component reaches its reliability
target. But undeveloped events from having no information about the failure mode are
harder to handle: We can only assume that tests under real life conditions contribute to
an acceleration factor of κ = 1, if there are no such tests we can only assume to have a
component reliability of 0% and thus having problems for the calculations of the system
reliability.

The projected reliability is able to handle this problem: including knowledge about the
failure modes by means of the risk filter, results in being able to estimate lower confidence
bounds even for undeveloped events with risks. Tough as mentioned before, different prob-
lems arise: we cannot assume that undeveloped events with no risks reach their reliability
target, as it can lead to lower reliability bounds compared to having a few risks. On the
other hand, not assuming this can result in a component not reaching its reliability target,
although it has no risk. Additionally, as the 10% percentiles of the Beta distribution are
quite high, see Table 4.6, it can often happen that increasing or decreasing testing times
has no changes in the reliability of any component. Only trough extensive testing or bench-
tests with high acceleration factors do we get high enough demonstrable reliability values
to adapt the parameters of the Beta distribution of the projected reliability. Another flaw
is the minimum value of the projected reliability. Having a full risk filter, we still assume
that the component reaches a reliability of at least 62.2%. This assumption may hold
for quite a lot of products, as often those products are refined for many years and the
knowledge about functionality, failure modes and weak points are extensive. Still, for the
evaluation of completely new products, e.g. electric motors, assuming a lower confidence
bound of at least 62.2% with confidence level of 90% can be critical.

While we choose the minimum reliability of the combined reliability to be of the same level,
we can simply adapt the minimum value of single components if needed. For example,
analyzing a electric car, a lot of components are staying the same compared to a car with a
combustion engine. The fault trees are similar for a lot of components/failure modes. For
these we can use the default calculations. Only for new components or component/failure
modes which are influenced by the electric engine can we adapt the minimum value, i.e.
in the worst case set it to be close to 0%.

There are also additional benefits of the combined reliability compared to the projected
reliability: calculating the projected reliability for the four components with no risks in
our example results in a projected reliability of R̂ = 99.8499%. Although having no risk
at all, three of the components (Control Disc, Bearings SP and Plate) do not reach their
reliability target. For the projected reliability we cannot assume that components with
no risks reach their target, as mentioned before. Thus it is more reasonable to omit this
assumption for the projected reliability.

The combined reliability on the other hand is flexible: Although we fixed the calculation
of the minimum value, other approaches might be possible. Also with using the advanced
formula from Beyer/Lauster (2.12) with the weighing factor ρ, we are able to regulate the
influence of the a-priory knowledge. In this thesis we assume that ρ = 1, research on the
choice of ρ can be analyzed in the future.
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Component/failure i Rtar,i(t0) R
¯ i

(t0|v) R̂i(t0|v) R̃i(t0|v)

Cylinder: abr. wear 0.99504 1.27395E-10 0.99664 0.97178021

Cylinder: TMF 0.99504 6.1471E-16 0.99664 0.97176799

Piston: HCF 0.99504 0.99954634 0.99983 0.99955341

Piston: abr. wear 0.99504 4.96637E-09 0.99664 0.97178691

Retraction Unit: abr. wear 0.98715 3.74116E-08 0.89963 0.86257871

Retraction Plate: abr. wear 0.98871 3.74116E-08 0.81757 0.78212788

Retraction Plate: HCF 0.98871 0.99954634 0.99983 0.99954772

Actuator: abr. wear 0.99413 0.284276712 0.99093 0.95301764

Actuator: Leckage 0.99413 0.215083083 0.98201 0.92737836

Connection Plate: Leckage 0.99524 0.363134758 0.99448 0.963896

Connection Plate: HCF 0.99524 0.697546975 0.99448 0.96608644

Cont. Piston: abr. wear 0.99395 1.13747E-08 0.99395 0.96153778

System Rel.: only BE 0.90 9.581E-59 0.69626 0.48951

Drive Shaft 0.99769 0.99769 0.99925 0.99769

Control Disc 0.99872 0.99872 0.99850 0.99872

Bearings SP 0.99872 0.99872 0.99850 0.99872

Plate 0.99872 0.99872 0.99850 0.99872

Bearings 0.97940 0 0.92414 0.84643016

complete System Rel. 0.90 0 0.64007 0.41180

Table 5.3: Comparing the component and system reliability of the three methods.

To sum it up, the combined reliability uses the same knowledge base as the other two
methods, combines them and removes potential faults in those methods. The calculations
can easily be adapted to deal with special cases. Compared to the other two methods
it is more simple to optimize the system reliability, as the former methods lead to some
problems, i.e. no change in reliability in case of the projected reliability, and no way
to deal with undeveloped events and potential low reliabilities with the method of the
demonstrable reliability. Table 5.3 gives a comparison of the three methods: first when
omitting undeveloped events, then when factoring in the undeveloped methods.





Chapter 6

Optimization of a validation
program

6.1 Nonlinear Optimization Problem

In this section, we discuss a method to find a local optimum for a given validation pro-
gram and its restrictions. We also introduce an additional generic example, which we
try to solve, as the example ”hydraulic system” has hardly any component tests, and the
component test ”Pulsation rig Test” has lower acceleration factors compared to the over-
load test. For the generic example we want to create an acceleration matrix K which is
more balanced, has tests under real life conditions and bench tests with high acceleration
factors. We still use the same fault tree and risk filter tough.

For the optimization program we have given the following information:

• A validation program V with k different tests T1, T2, . . . , Tk.

• The tests of the validation program have test durations v = (t1, t2, . . . , tk) and
corresponding sample sizes n = (n1, n2, . . . , nk).

• The tests of Ti are restricted with a maximum test duration tmax
i for a single test

and a maximum test duration for all tests from Ti together t̄max
i and a maximum

sample size nmax
i

• A maximum testing time for all tests tmax

• Having cost as a restriction factor is possible as well, although this information is
hardly available. We omit this restriction.

• A fault tree for our system.

• A risk filter for the components with the number of risks ri.

• A PoF model for every component/failure-mode corresponding to a base event to
calculate the acceleration matrix K subject to a reference profile (usage of the cus-
tomer).

69
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• A Weibull shape parameter βi for every component/failure-mode and every compo-
nent corresponding to an undeveloped event.

• Knowledge about testability of component/failure modes, i.e. parameter bc.

• Possible former failure knowledge. Together with the testability we have our pa-
rameter b for every component/failure-mode and if there is no information we set
b = 1.

• Reliability target (τ, uR, Rtar,S(t0), t0, u0) for the system.

• The number of undeveloped and base events l. As the calculations for both are
similar in the combined reliability, we us the common index L for them, as they are
the leaves of the fault tree.

With this we are able to formulate the optimization problem:

max
v,n

R̃S(t0|v, n) = max
v,n

l∏
i=1

R̃Li(t0|v, n)

subject to

R̃Li(t0|v, n) = α

 k∑
j=1

nj(κi,j ·
tj
t0

)βi+1/ log(1/R0,i)

−1

tj · nj ≤ t̄max
j

0 ≤ tj ≤ tmax
j

nj ≤ nmax
j , nj ∈ N

N∑
j=1

tjnj ≤ tmax

In practice it does not make sense to restrict all tests of Ti to be of equal time. Kemmner
(2012) also showed, that this restriction may show worse results compared to allowing
different testing times. It is easy to see, that instead of dividing a maximum testing
time between multiple tests, we get a higher result for our reliability calculations when
trying to maximize the testing time from as many tests as possible and have a test with
the remaining testing time, as β > 1 in all of our calculations. Thus we introduce some
changes for our problem: we omit the parameter ni, instead we view each test as being an
individual test. We let then N =

∑k
j=1 n

max
j be the maximum number of possible tests.

For the acceleration matrix we have to duplicate the column of test Ti, nmax
i times. As

for the new testing times, we set for ni tests of Ti the starting time to ti, for the rest we
set it to 0. With this we get the new times t̃1, . . . , t̃N . We now have to add additional
restrictions, pairing equal tests and restricting them with a maximum single test duration
and a maximum test duration for all of them together. With this we also lose the integer
restriction in our problem. As a result we get the following optimization problem:
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max
v
R̃S(t0|v) = max

v

l∏
i=1

R̃Li(t0|v)

subject to

R̃Li(t0|v) = α

 N∑
j=1

(κi,j ·
t̃j
t0

)βi+1/ log(1/R0,i)

−1

0 ≤ t̃j ≤ tmax
j for j = 1, . . . , N

N∑
k=1

t̃k ≤ tmax

∑
k∈Tl

t̃k ≤ t̄max
p for p = 1, . . . , k

With this we only have linear inequality constraints for our optimization problem. We can
write the linear inequality constraints in the form Av ≤ iq with v = (t̃1, t̃2, ..., t̃Ñ )T and A
being a (N + 1 + k)×N matrix and iq being a (N + 1 + k)× 1 vector with the form

A =



IN×N

1 1 . . . 1
1 · · · 1︸ ︷︷ ︸
n1

0

1 · · · 1︸ ︷︷ ︸
n2

...
...

. . .

0 1 · · · 1︸ ︷︷ ︸
nk


iq =



tmax
1
...

tmax
N

tmax

t̄max
1
...

t̄max
k


We can use the Matlab optimization tool with fmincon to solve this problem.

6.2 Hydraulic System: Standard Example

We want to solve the following problem:

max
v
R̃S(t0|v) =

17∏
i=1

R̃Li(t0|v)

subject to

0 ≤ t1 ≤ 5000

0 ≤ t2 ≤ 5000

0 ≤ t3 ≤ 3000

0 ≤ t4 ≤ 1000

4∑
k=1

tk ≤ 10000
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with starting value of t1 = 2000, t2 = 300, t3 = 2000, t4 = 300. Using the Matlab optimiza-
tion tool, the resulting solution is v1 = (2000, 5000, 3000, 0). This result is not surprising:
T4 is a component test with lower acceleration factors compared to test T2. Using this
solution, we get a combined system reliability of R̃S(t0|v1) ≈ 45.01%. Still, this solution
is only a local optimum. The validation program V2 with solution v2 = (5000, 5000, 0, 0)
results in a combined system reliability of R̃S(t0|v2) ≈ 45.07%. So V2 returns a better
system reliability.

6.3 Hydraulic System: generic example

For this generic example, we introduce five tests T1, T2, T3, T4 and T5. The first one is
a real test, the other are component tests. For the maximum sample size per test we
set nmax

1 = nmax
5 = 2, nmax

2 = nmax
4 = 3, tmax

3 = 4. With this we generate the following
acceleration factors, see Table 6.1. For the constraints we get the following matrix A and
iq:

A =



1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1



iq =



5000
5000
2000
2000
2000
3500
3500
3500
3500
4500
4500
4500
700
700

20000
8000
5000
10000
8000
1000





6.3. HYDRAULIC SYSTEM: GENERIC EXAMPLE 73

C
om

p
on

en
t/

fa
il

u
re

T 1
T 2

T 3
T 4

T 5
te

st
t̃ 1

t̃ 2
t̃ 3

t̃ 4
t̃ 5

t̃ 6
t̃ 7

t̃ 8
t̃ 9

˜ t 1
0

˜ t 1
1

˜ t 1
2

˜ t 1
3

˜ t 1
4

C
y
li

n
d

er
:

ab
r.

w
ea

r
1

1
0

0
0

2
2

2
2

0
0

0
0

0

C
y
li

n
d

er
:

T
M

F
1

1
0

0
0

1.
7

1.
7

1.
7

1.
7

0
0

0
0

0

P
is

to
n

:
H

C
F

1
1

0
0

0
3.

3
3.

3
3.

3
3.

3
0

0
0

0
0

P
is

to
n

:
ab

r.
w

ea
r

1
1

0
0

0
3.

3
3.

3
3.

3
3.

3
0

0
0

0
0

R
et

ra
ct

io
n

U
n

it
:

ab
r.

w
ea

r
1

1
0

0
0

6
6

6
6

0
0

0
0

0

R
et

ra
ct

io
n

P
la

te
:

ab
r.

w
ea

r
1

1
0

0
0

5
5

5
5

0
0

0
1
0
0
0

1
0
0
0

R
et

ra
ct

io
n

P
la

te
:

H
C

F
1

1
0

0
0

1.
2

1.
2

1.
2

1.
2

0
0

0
8
0
0

8
0
0

A
ct

u
at

or
:

ab
r.

w
ea

r
1

1
0

0
0

0
0

0
0

10
10

10
0

0

A
ct

u
at

or
:

L
ec

ka
ge

1
1

0
0

0
0

0
0

0
6

6
6

0
0

C
on

n
ec

ti
on

P
la

te
:

L
ec

ka
ge

1
1

3.
5

3.
5

3.
5

0
0

0
0

1.
8

1.
8

1.
8

0
0

C
on

n
ec

ti
on

P
la

te
:

H
C

F
1

1
6

6
6

0
0

0
0

1.
5

1.
5

0.
15

0
0

C
on

t.
P

is
to

n
:

ab
r.

w
ea

r
1

1
0

0
0

0
0

0
0

4
4

4
0

0

D
ri

ve
S

h
af

t
1

1
0

0
0

0
0

0
0

0
0

0
0

0

C
on

tr
ol

D
is

c
1

1
0

0
0

0
0

0
0

0
0

0
0

0

B
ea

ri
n

gs
S

P
1

1
0

0
0

0
0

0
0

0
0

0
0

0

P
la

te
1

1
0

0
0

0
0

0
0

0
0

0
0

0

B
ea

ri
n

gs
1

1
0

0
0

0
0

0
0

0
0

0
0

0

T
ab

le
6.

1:
A

cc
el

er
at

io
n

fa
ct

or
s

of
ge

n
er

ic
ex

am
p

le
.



74 CHAPTER 6. OPTIMIZATION OF A VALIDATION PROGRAM

As before we use the optimizer tool in Matlab with the function fmincon. We use the
standard interior point algorithm. As for the subproblem algorithm, there are two possible
choices: ldl factorization and CG. We use the same start point

vstart = (1000, 0, 1000, 0, 0, 1000, 0, 0, 0, 1000, 0, 0, 500, 0) (6.1)

and compare the results of both methods. Our β = 2 for every component and compo-
nent/failure mode. The other parameters stay the same, i.e. a-priori probability.

6.3.1 Ldl factorization

For R̃S(t0|vstart) ≈ 50.78%. Using the optimizer tool we get the solution

v1 = (1000, 0, 0, 0, 0, 0, 3333, 3333, 3333, 0, 4500, 3500, 300, 700)

R̃S(t0|v1) ≈ 56.76%.

As mentioned before, we are able to find a better solution, by changing the time distribu-
tion of T3 by trying to maximize as many tests as possible. We then get the solution

v2 = (1000, 0, 0, 0, 0, 0, 3500, 3500, 3000, 0, 4500, 3500, 300, 700)

R̃S(t0|v2) ≈ 56.77%

This is possible as all of our exponents β > 1.

6.3.2 CG

The CG (conjugent gradient) method behaves differently compared to the ldl factorization.
Using the same starting point we get the solution

v3 = (0, 0, 1300, 0, 0, 0, 3500, 3000, 3500, 0, 4500, 3500, 700, 0)

R̃S(t0|v2) ≈ 56.78%

In this case, the CG method gives the best solution. Note that using different starting
points, the optimization tool converges to different local optima.

Table 6.2 shows the component/failure reliability when using the different validations pro-
grams v1, v2 and v3. In all three scenarios we have the restricting component ”bearings”.
Although v3 has the highest system reliability, using the method by Kemmner would re-
sult in v1 or v2 being the better solution, as it has a higher minimal component reliability.
Using the approach by Kemmner the optimal solution would be

v4 = (5000, 3000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 25, 0)

R̃S(t0|v4) ≈ 51.02%.

With this validation program, ”bearings” is the restricting component with a reliability
of 84.98%. As we cannot increase the testing time of the tests under real conditions, this
validation program v4 is an optimal solution as per Kemmner. But as we have shown, we
are still able to increase the reliability of the other components with the remaining testing
time.



Component/failure i R̃i(t0|v1) R̃i(t0|v2) R̃i(t0|v3)

Cylinder: abr. wear 0.9722 0.9722 0.9722

Cylinder: TMF 0.9721 0.9721 0.9721

Piston: HCF 0.973 0.973 0.973

Piston: abr. wear 0.973 0.973 0.973

Retraction Unit: abr. wear 0.9195 0.9197 0.9197

Retraction Plate: abr. wear 0.9996 0.9996 0.9995

Retraction Plate: HCF 0.9994 0.9994 0.9993

Actuator: abr. wear 0.9711 0.9711 0.9711

Actuator: Leckage 0.9451 0.9451 0.9451

Connection Plate: Leckage 0.9632 0.9632 0.9633

Connection Plate: HCF 0.9628 0.9628 0.9632

Cont. Piston: abr. wear 0.9645 0.9645 0.9645

Drive Shaft 0.9977 0.9977 0.9977

Control Disc 0.9987 0.9987 0.9987

Bearings SP 0.9987 0.9987 0.9987

Plate 0.9987 0.9987 0.9987

Bearings 0.8465 0.8465 0.8464

System S 0.5776 0.5777 0.5778

Table 6.2: Component and component/failure reliability with the three validation pro-
grams v1, v2, v3
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Chapter 7

Conclusion

The focus of this master thesis is calculating system reliability based on component reli-
ability by using the structures given by Uptime LOCATETM. Although the calculation
by multiplication by itself is simple, there arise problems when using this approach with
the existing methods to calculate component reliability, i.e. demonstrable and projected
reliability. Thus a new method to calculate a component lower confidence bound for
reliability, namely combined reliability, is being introduced and compared with the old
methods. While this method is simply implemented, there remain open questions about
choosing the weighting factor ρ and the minimum bound of the combined reliability. It
might be advisable to check the method with existing data of large reliability systems and
compare the values with the real life data. Still, with this method we are able to compare
different validation programs and optimize given validation programs. The optimization
of a validation program with the former methods is more difficult, especially with the
projected reliability. As the optimum is only a local optimum, it might be a good idea to
not only choose a given validation program as a starting point, but also random generated
starting values.

The constructed optimization problem can also be extended. We can include testing cost
as a restriction. Right now we assumed that all test are conducted one after another.
In practice we can execute multiple tests at the same time. This parallel testing is more
difficult to describe with linear equalities and inequalities. One approach might be con-
structing an assignment problem.

Future research in this area might also include the possibility to extend the method to deal
with failures. Instead of the Success Run assumption, we might have tests with failure
times.
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nung. PhD thesis, University of Stuttgart.

Jordan, C. (2011). Auswertung und Planung von Lebensdauertests unter Berücksichtigung
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