
David Marogy, Bsc

Development of an Approach to
integrated Product Development of

Hard-, Firm- and Software
Master’s Thesis

to achieve the university degree of

Dipl.-Ing.
Master’s degree programme: Softwareengineering and Management

submitted to

Graz University of Technology

Adviser: Univ.-Ass. Dipl.-Ing. Harald Wipfler
Auditor: Univ.-Prof. Dipl.-Ing. Dr. techn. Stefan Vorbach

Institute of General Management and Organization

Graz, April 27, 2018

EIDESSTATTLICHE ERKLÄRUNG

AFFIDAVIT

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst,

andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten

Quellen wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht

habe. Das in TUGRAZonline hochgeladene Textdokument ist mit der vorliegenden

Masterarbeit identisch.

I declare that I have authored this thesis independently, that I have not used other

than the declared sources/resources, and that I have explicitly indicated all material

which has been quoted either literally or by content from the sources used. The text

document uploaded to TUGRAZonline is identical to the present master‘s thesis.

Datum / Date Unterschrift / Signature

Thanks

I would like to express gratitude to my advisor, Dipl.-Ing Harald Wipfler for his patience and for
helping me in situations in which it was not clear what I wanted. I also want to thank him for his
patience concerning the discussions which took longer than usual. Additionally, I want to thank
my auditor, Prof. Dipl.-Ing. Dr.techn Stefan Vorbach, who provided me with interesting papers
and other sources and I want to thank him for the various discussions which lead to several ideas.

I also want to express my gratitude to the business unit segment leader of AVL Dr. Rüdiger
Teichmann for giving me the opportunity of writing this master thesis and I want to thank him for
several interesting ideas he promoted in the discussions we held.

Furthermore, I want to thank all my colleagues from AVL who I interviewed and who participated
in interesting discussions about agile development.

I want to thank my parents for always supporting me in my decisions, my brother for his help and
for various discussions. I want to thank my friends (especially Andreas) for all their support and
for reading my master thesis.

Lastly, I want to thank my girlfriend who had to handle all my complaints and for encouraging me
to always do my best and for always staying by my side.

iii

Abstract

The purpose of this study is to investigate whether it is possible to use agile software development
methods for developing products with hardware, software and firmware for the company Anstalt
für Verbrennungskraftmaschinen List (AVL). AVL itself uses two different agile development
methods: AVL’s lean agile Software development process with kaizen (ALASKA) for software
development and AVL’s Lean and Agile Device Innovation Framework (ALADIN) for hardware
and firmware development, which currently is in development. The question arouse whether it
is possible to combine these two development methods or to create a new method for a team of
hardware, software and firmware developers. What adaptations need to be made in order to use
agile software development methods for hardware and firmware development?

Due to the new mindset and the breakthrough in the software development industry through agile
development methods, AVL’s combustion development department decided that it is time to use
agile methods for their software and they were curious whether it would be possible to also use
agile methods for their hardware and firmware development.

Therefore a literature review and a comparison of three popular agile development methods
was made: Scrum, Extreme Programming (XP), Feature Driven Development (FDD). With
these in mind, literature was consulted concerning agile development for hardware and firmware
development. Most of the studies use Scrum as a base and adapted it to their needs. Three cases
for firmware and for hardware development were found, which indicate that it is possible to use
agile development methods not only for software development.

After the literature had been examined, the agile development of AVL was reviewed and compared
with each other and with the results from the literature. Interviews were carried out with the
hardware, software and firmware employees of AVL, to investigate what they think about agile
development, how it can be adopted to their needs and what challenges may occur.

The results of this study show that it is possible to use agile software development methods for
hardware and firmware development. The Scrum framework can be used and can be adapted to
the needs of hardware and firmware development. Due to the constraints of hardware, adaptations
must be done in the planning stage to reduce delays in the product delivery which arise from
shipping and production delays. The development methods of AVL can be used and combined
together to one framework with one development team containing hardware, software and firmware
developers. Another possibility would be to use only a small variant of this development method.

Changing the mindset of the employees is a vitally necessary factor for the success of the agile
development method, which needs time and a managerial lead. Nevertheless, adaptations must be
done to ensure that this method creates value.

iv

Contents

1. Introduction 1
1.1. Purpose . 2
1.2. Problem Formulation . 3

1.2.1. Introduction of AVL . 3
1.2.2. Problem Definition . 3
1.2.3. Research Questions . 4
1.2.4. Research Approach . 4
1.2.5. Outline of this Thesis . 6

I. Theoretical Part 8

2. Agile Software Development 9
2.1. Scrum . 9

2.1.1. Scrum Team . 10
2.1.1.1. The Product Owner . 10
2.1.1.2. Development Team . 11
2.1.1.3. Scrum Master . 11

2.1.2. Scrum Events . 12
2.1.3. Scrum Artifacts . 14

2.2. Feature Driven Development (FDD) . 16
2.2.1. Key Project Roles . 17
2.2.2. FDD Best Practices . 17
2.2.3. FDD Process Model . 20

2.2.3.1. Develop on Overall Model 21
2.2.3.2. Build a Feature List . 22
2.2.3.3. Plan by Feature . 22
2.2.3.4. Design by Feature . 22
2.2.3.5. Build by Feature . 23

2.3. Extreme Programming (XP) . 23
2.3.1. Values . 23
2.3.2. XP Practices . 24
2.3.3. XP Process . 25

2.4. Comparison of agile software development methods 27

3. Agile Firmware Development 28
3.1. Definition of Firmware Development . 28

v

3.2. Adopting Agile Methods to Firmware Development 29
3.2.1. Use Case: Daimler-Chrysler . 31
3.2.2. Use Case: Mass-Produces Embedded Systems 32
3.2.3. Use Case: Intel Cooperation . 35

3.3. Summary . 38

4. Agile Hardware Development 40
4.1. Definition of hardware development . 40
4.2. Adopting Agile Methods to Hardware Development 41

4.2.1. Use Case: John Hopkins University Multi-Mission Bus Demonstrator . . 43
4.2.2. Use Case: Svenska Aeroplan Aktiebolaget (SAAB) Electronic Data Sys-

tems (EDS) . 46
4.2.3. Use Case: Marel Garðabær (GRB) . 47
4.2.4. Recommendation . 53

4.3. Summary . 53

II. Practical Part 56

5. Agile Processes from AVL 57
5.1. ALASKA . 57

5.1.1. ALASKA Process . 58
5.1.2. Team Level Process . 61

5.1.2.1. Roles . 61
5.1.2.2. Artifacts . 63
5.1.2.3. Events . 64

5.1.3. Program Level Process . 67
5.1.3.1. Roles . 68
5.1.3.2. Events . 69
5.1.3.3. Artifacts . 71

5.1.4. Portfolio Level Process . 72
5.1.4.1. Roles . 72
5.1.4.2. Artifacts . 73

5.2. ALADIN . 75
5.2.1. ALADIN Process . 75
5.2.2. Roles . 75
5.2.3. Events . 77
5.2.4. Artefacts . 79

5.3. Comparison ALASKA and ALADIN . 80
5.3.1. Process . 82
5.3.2. Events . 83
5.3.3. Roles . 84

6. Discussion 86
6.1. Differences to the literature . 86

6.1.1. Process . 86

vi

6.1.2. Roles . 87
6.1.3. Events . 88
6.1.4. Artefacts . 89
6.1.5. Comparison agile literature, ALASKA, ALADIN 90

6.2. Interviews . 92
6.3. Challenges concerning the practical use of agile development methods 100
6.4. Proposals . 102

6.4.1. General . 103
6.4.2. Combining ALASKA and ALADIN . 105
6.4.3. ALASKA and ALADIN as separated frameworks 108
6.4.4. Using a downgraded version . 111
6.4.5. Comparison of proposals for using AVL’s frameworks 113
6.4.6. Responsibilities of the roles in the proposals 114

6.5. Answers to Research Questions . 114
6.5.1. Is it possible to use agile software development methods for products with

hardware and firmware development? 115
6.5.2. Does the agile software development method need some adaptations to be

used in hardware and firmware development, and what needs to be changed?115

7. Conclusion and Outlook 117

vii

Figures

1. Waterfall model (Reynisdottir, 2013) . 1
2. Approach for answering the research questions (personal design) 5
3. Chapter Overview (personal design) . 6

4. Scrum process (Schindler, 2010) . 10
5. Feature driven development process (Schindler, 2010) 20
6. Feature driven development design and build by feature process (Schindler, 2010) 21
7. Extreme Programming process (Schindler, 2010) 25

8. Scrum Sprint Experiment Timeline (Reynisdottir, 2013) 50

9. ALASKA process (AVL, 2017) . 58
10. ALASKA framework (personal design based on: AVL, 2017) 60
11. ALASKA team level process (AVL, 2017) . 61
12. ALASKA program level process (AVL, 2017) 67
13. ALASKA portfolio level process (AVL, 2017) 72
14. ALADIN framework (AVL, 2018) . 76
15. ALASKA and ALADIN comparison (personal design based on: AVL, 2017, 2018) 81

16. ALASKA and ALADIN combined to one framework (personal design based on:
AVL, 2017, 2018) . 105

17. ALASKA and ALADIN as separated frameworks (personal design based on: AVL,
2017, 2018) . 108

18. Downgraded version of ALASKA and ALADIN (personal design based on: AVL,
2017, 2018) . 112

19. Comparison of proposed processes (personal design) 113
20. Responsibilities of the roles in the proposals (personal design) 114

viii

Tables

1. Comparison of agile software development methods 27

2. Summary of literature review for agile firmware development 38

3. Summary of literature review for agile hardware development 54

4. Comparison of Scrum in the literature with ALASKA and ALADIN 91
5. Interview characteristics . 94
6. MIS/MIE employee interview results . 95
7. Challenges using agile development from interviewer perspective 96
8. Benefits using agile development from interviewer perspective 97
9. ALASKA and ALADIN interview results . 98
10. Best practices from the AVL evaluation . 99

ix

Abbreviations

AVL Anstalt für Verbrennungskraftmaschinen List

ITS Instrumentation and Test Systems

XP Extreme Programming

FDD Feature Driven Development

OOPSLA Object-Oriented Programming, Systems, Languages and Applications

MUSCOW Must have, should have, could have and‘won’t have this time

ETVX Entry criteria, Task, Verification, Exit criteria

UML Unified Modeling Language

EPROM Erasable Programmable Read-Only Memory

ROM Read-Only Memory

VCC Volvo Car Cooperation

OEM Original Equipment Manufacturer

PAL Processor Abstraction Layer

CAD Computer-Aided Design

NASA National Aeronautics and Space Administration

SAAB Svenska Aeroplan Aktiebolaget

EDS Electronic Data Systems

GRB Garðabær

PIP Product Innovation Plan

x

ALASKA AVL’s Lean Agile Software Development Process with Kaizen

ALADIN AVL’s Lean and Agile Device Innovation Framework

WSJF Weighted Shortest Job First

MI Measurement and Instrumentation Indicating

MIS Measurement and Instrumentation Support

MIE Measurement and Instrumentation Engineering

PLC Product Life Cycle

SAFE Scaled Agile Framework

xi

1. Introduction

In cooperation with AVL agile software development methods are reviewed. It is tested whether
these development methods can also be used for not only software products but also for products
with a combination of software, firmware and hardware.

The software industry has changed over the past years. More and more companies are switching
from the classical development method to agile development methods. However, before agile
software development, it was common to develop software by using a sequential approach such as
the waterfall model. (Holtsnider et al., 2010)

Figure 1.: Waterfall model (Reynisdottir, 2013)

The waterfall model contains different phases, such as planning, implementing and testing. As the
name already implies, this is a way of developing software by finishing phase after phase and gates
after gates until the product is finished (figure 1). These phases and their gates depend on the cost
of change(Holtsnider et al., 2010).

Problems in one phase or gate may lead to a missed target date, or a product which does not meet
the needs of the costumer. Therefore a new way of developing software was needed; the agile
software developing method.

In February 2011, seventeen recognized software development “gurus” met to find a common
ground for developing good software in a ski resort in the Wasatch Mountains of Utah. In this

1

1.1. Purpose

month the manifesto for agile development was born (Highsmith, 2002). The participants agreed
on the declaration of the manifesto which states: “We are uncovering better ways of developing
software by doing it and helping others do it. Through this work we have come to value:

• Individuals and interactions over processes and tools
• Working software over comprehensive documentation
• Customer collaboration over contract negotiation
• Responding to change over following a plan.

That is, while there is a value in the items on the right, we value the items on the left more”.(Alliance,
2013) Additionally to these values, 12 principles were declared to state what it means to be agile.
These principles are listed in Alliance (2013).

However, there are other areas of development. Companies who develop products with hardware,
software and firmware are currently using classical development methods. These products have
high uncertainty.

As an employee of AVL, I heard that in my department the demands for using agile development
methods for product development with hardware, software and firmware is highly increasing. The
question aroused if it is possible to use such methods for our purpose. A study was needed. As i
was seeking for a master thesis, I considered this an opportunity to write about something practical
and I asked my business unit segment leader Dr. Rüdiger Teichmann if I could elaborate on that.

1.1. Purpose

The purpose of this thesis is to investigate whether it is possible to use agile software development
methods also for products which are a combination of software, firmware and hardware for the
segment Measurement and Instrumentation Indicating (MI) and its departments Measurement and
Instrumentation Engineering (MIE) and Measurement and Instrumentation support (MIS) of AVL.
Therefore some of the popular agile development methods are analyzed and compared. Based
on best practices it will be tested, what adaptations need be done in order to use them in a more
firmware/hardware based environment.

For each part it is investigated which agile development methods are used, what adaptations are
made for using them in an different environment and also some best practices are reviewed.

Additionally, interviews with the employees of the AVL are conducted and transcribed. These
interviews help to understand what the employees are thinking about the change from a rather
waterfall orientated method to an agile development method, what challenges exist and what
advantages result from using them.

2

1.2. Problem Formulation

Based on these results, the challenges for adaptations are analyzed and some proposals are made to
overcome these challenges.

1.2. Problem Formulation

In this section, the problem is formulated and a small introduction of AVL is done. Based on the
problem definition, research questions are formulated. These research questions will be answered
by this study.

1.2.1. Introduction of AVL

AVL is the leading company for development, simulation and testing of powertrains for cars,
trucks and large engines. The segment MI for which this thesis is made, provides combustion
analyzing platforms with hardware and software components. The segment is splitted into the MIE
department for developing hardware and software for combustion analyzing platforms and the MIS
department for service and support for customer who bought the combustion analyzing platforms.
For its latest product X-ION, software, hardware and firmware employees collaborated in order to
create it. Recently, it has been decided to create some new modules for this product.

1.2.2. Problem Definition

Before this study was conducted, the software, firmware and hardware teams collaborated based
on an own product innovation plan (PIP). This PIP is a waterfall based method, contains many
gates and constraints on how to plan and what kind of steps are necessary to get the product
on the market. Because of this and due to other reasons, managers at AVL decided to use agile
development methods instead of classical development methods. There are two different agile
development methods at AVL: ALASKA for software products and ALADIN for firmware and
hardware products. Since the product of this department contains software, hardware and firmware
a new way must be found to develop it more efficiently (by using these two agile development
methods from AVL). Challenges occur for products with a combination of hardware, software
and firmware. Hardware has some physical constraints, such as ordering parts, delivery times,
and creating physical objects. A way must be found to test firmware and software if a hardware
prototype is not available. Therefore these two development methods must be analyzed to see
whether it is possible to combine them to just use one or to not use any of the products.

3

1.2. Problem Formulation

1.2.3. Research Questions

This thesis will answer research questions which occurred during a discussion with the business
segment leader Dr. Rüdiger Teichmann:

• Is it possible to use agile software development methods for products with hardware,software
and firmware development?

• Does the agile software development method need some adaptations in order to be used in
hardware and firmware development, and what has to be changed?

The aim of the research questions is to investigate first if it is theoretically and practically possible
to use agile software development methods for products with hardware, software and firmware.
Furthermore, it is investigated whether adaptations to the agile framework are needed in order to
use them for developing products with hardware, software and firmware at the AVL.

1.2.4. Research Approach

For answering the research questions, the approach was to have a literature review at the beginning.
After that the agile development processes from the AVL were analyzed and expert interviews
were hold (figure 2).

In the literature review, agile software development methods such as Scrum, XP and FDD were
investigated and compared in order to gain an understanding of how agile development works
for different methods. Furthermore, a literature review was carried out for agile methods in a
non-software environment. For each field (hardware, firmware) practical examples were examined
for adaptation of agile software development methods.

After finishing the literature review, the processes (ALASKA and ALADIN) were analyzed and
compared with each other and also with the literature. Based on these an understanding of how the
agile development of AVL works is established. This comparison also shows the differences there
are in the literature and what kind of proposals from the literature could help to adapt the AVL
processes to our needs.

An empirical study was conducted with the employees of AVL. The employees are hardware,
software and firmware developers, project leaders, testers and process managers. The purpose was
to evaluate the opinion of the employees in general for agile development methods and for using
them for developing product with hardware, software and firmware; for challenges which could
arise from implementing them and for solutions for solving these challenges.

After that a discussion was held with all the results from the previous steps, challenges and

4

1.2. Problem Formulation

Figure 2.: Approach for answering the research questions (personal design)

5

1.2. Problem Formulation

proposals were stated and the research questions were answered with these results.

1.2.5. Outline of this Thesis

This thesis outline is split into seven chapters (figure 3):

Figure 3.: Chapter Overview (personal design)

In chapter 2 an overview of the chosen agile software development methods is provided. In order to
gain information, a literature review was performed to about agile software development methods.
A comparison at the end of the chapter provides a better overview of the differences between the
software development methods.

In chapter 3 a literature review was carried out in order to investigate what firmware development
means and how agile software development methods can be adapted to the needs of firmware
development. Three practical examples are explained in which agile software development methods
were adapted and tested to have agile firmware development. At the end of the chapter a summary
of all the information and results of chapter 3 is provided.

In chapter 4 a literature review was carried out to gain information about what hardware develop-
ment means and how agile software methods can be adapted to the needs of hardware development.
Three practical examples are explained in which agile software development methods were adopted
and tested to have agile hardware development. At the end of this chapter a summary of all the
information and results of the chapter 4 is provided.

In chapter 5 the two processes from the AVL, ALASKA and ALADIN are analyzed and compared

6

1.2. Problem Formulation

with each other.

In chapter 6 the two processes from the AVL are compared with Scrum from the literature and an
overview of the differences is provided. Furthermore in this chapter the empirical study is presented
and from this study and from the results of the previous chapters, challenges for implementing agile
software development methods for products with hardware, software and firmware development
are discussed. Additionally, proposals for the AVL are provided with three different approaches in
using the AVL frameworks; combined, separated or downgraded. Lastly, the research questions
are answered in this chapter.

In chapter 7 the conclusion is presented along with suggestions for adaptations to the AVL
frameworks.

7

Part I.

Theoretical Part

8

2. Agile Software Development

The following chapter provides a description of agile software development. It will provide an
overview of the used methods in agile software development such as:

• Scrum
• Extreme Programming
• Feature Driven Development

2.1. Scrum

Scrum is an agile framework, for managing complex projects. The method was presented by
Schwaber and Sutherland at the Object-Oriented Programming, Systems, Languages and Appli-
cations (OOPSLA) 1995, a conference for object-oriented software development (Schuh, 2005).
It is used for projects which need to be finished quickly or for projects where the requirements
are not yet entirely discovered. Instead of developing in a phase, Scrum uses an incremental
design and develops in iteration. Scrum contains different roles and events. These roles interact
with each other in meetings and events. Projects start with planning the customers’ requirements.
These requirements will be set into the product backlog. The development team will then start
with prioritizing them, which is important as they will decide which functionality should be in
the first iteration or “Scrum sprint” as it is called. One sprint may last up to thirty days at the
maximum. After each sprint there should be a working prototype of the software containing all the
functionalities (figure 4). Scrum does not provide any software development methods. Instead, the
development team-member can choose on their own how to develop the functionalities. There is a
standoff meeting every day, in which each of the developer can provide an overview of his or her
progress. Additionally, the developer may explains what he or she is planning to finish. (Sandhaus
et al., 2014)

9

2.1. Scrum

Figure 4.: Scrum process (Schindler, 2010)

2.1.1. Scrum Team

In Scrum there are three roles:

• Product Owner
• Scrum Master
• Development Team

There is no other chef or project leader, who tells the team what to do.

2.1.1.1. The Product Owner

According to Schwaber & Sutherland (2017) the product owner is responsible for maximizing the
value of the product and the work of the development team. He is responsible for managing the
product backlog. The product owner’s main duties are:

• Creating product backlog items.
• Ordering items to achieve goals and missions in the best way.
• Optimizing the value of the work the development team performs.
• Ensuring that the product backlog is visible, transparent and clear to all and it should show

what steps need to be followed next.
• Ensuring that the development team understands the product backlog items.

10

2.1. Scrum

(Schwaber & Sutherland, 2017)

The product owner has to decide which functionality is necessary but he or she does not enforce the
rules, as this is the job of the Scrum master. Only one person can be Product Owner. This person
will represent the whole project stakeholders. According to Meyer (2014) the project benefits from
separating the defining of the project objectives from the evaluation.

2.1.1.2. Development Team

According to Wirdemann (2011) the team develops the software and is responsible for finishing the
requirements of the sprints. Thus, it is crucial that the team is able to manage itself. This differs
greatly how projects, are usually manages, as the project manager usually tells the team what to
do. Here, the team organizes itself in a way that it can decide when to start developing and how to
develop. Additionally, there are no hierarchies within the team. Each member can lead the team if
this is necessary. A team does not merely consist of developers but rather constitutes a bunch of
different skills gathered together. These skills are necessary for creating the product. There are no
titles, hierarchies or leaders in a team. On the contrary, anybody can lead it if his or her expertise
is needed. Schwaber & Sutherland (2017) describe these characteristics as self-organizing and
cross functional. Wirdemann (2011) also states that a team should consist of at least one to two
senior developers. According to Schwaber & Sutherland (2017) the size of the development team
should be small enough to remain flexible but large enough complete significant work during a
sprint. Having less than three team members could lead to a loss of communication and to a loss of
productivity due to skill constraints. Having more than nine members would make the coordination
of the team more difficult. Having five to nine members without the product owner and the Scrum
master would be a good number. Wirdemann (2011) suggest that if it is necessary to have more
than nine members, the team should be split up into two teams.

2.1.1.3. Scrum Master

The Scrum master is responsible for ensuring that Scrum is understood. He or she makes the team
adhere to the Scrum theory, all the practices and the rules.

Scrum masters are often misjudged as project- or team leaders. However the Scrum master does
not command. He or she rather makes decisions if necessary.Wirdemann (2011) describes the
behavior of a Scrum master as a “Servant Leader”. Schwaber & Sutherland (2017) explains the
main task of Scrum masters further. They have different responsibilities towards the product owner,
the development team and the organization. The product owner has the responsibility towards the
Scrum master to help him or her managing the product backlog in terms of finding good techniques
and understanding how to maximize the value. The Scrum master also ensures that Scrum and

11

2.1. Scrum

agility is enforced. He or she has to help the developing team to avoid or remove any impediments
to the progress of the team. Furthermore, he or she has to help the team with self- organization and
cross-functionality. It is important that the Scrum master also ensures that the team is able to use
Scrum in an environment in which agility is not adopted or understood. (Schwaber & Sutherland,
2017)

2.1.2. Scrum Events

The meetings and the development process from the Scrum process (figure 4) are called Scrum
events. Everything important such as planning, developing and testing happens in these events.

Sprint Plan meeting: Before starting a sprint, it has to be planned which requirements should
be met during the sprint. In collaboration with the product owner, the development team and the
Scrum master will decide what needs to be done during the sprint. According to Schwaber &
Sutherland (2017) the sprint planning should not exceed more than eight hours for a one month
sprint. The meeting consists of two different parts:

• Goals of the upcoming sprint
• Designing how to do the work

In the first part of the meeting the goals for the upcoming sprint are discussed. The product owner
will present the use case stories according to the priority of the backlog. The development team
will then analyze and decide which stories should be considered for the upcoming sprint. They
have to consider how many of the stories can be implemented in the given time. It is their choice.
The selection of the items cannot be changed anymore, only the backlog may differ. (Wirdemann,
2011)

After finishing the setting of the goal for the upcoming spring, the development team will create
the software design and they will divide the stories into smaller tasks which can be accomplished
in one day or even less. It is also stated that if the development team has too much or too little
work, the items can be changed with the help of the product owner. (Wirdemann, 2011)

At the end of the planning the development team should know how to work in order to finish the
sprint and to achieve the goal. According to Schwaber & Sutherland (2017) they have to explain it
to the product owner and to the Scrum master.

Sprint: In Scrum, the implementation work is done during the sprint. The team members can
decide on their own which tasks they would like to work on. Additionally, they are self- organized.
A sprint is maximal thirty days long. These days consist of sprint planning, daily scrum, developing,
sprint review and sprint retrospective. (Schwaber & Sutherland, 2017).

12

2.1. Scrum

Schwaber & Sutherland (2017) list some points during the sprint:

• No changes are made that would endanger the sprint goal.
• The quality of the goals does not decrease.
• The scope can be negotiated again if more information is available.

Meyer (2014) also states that it is highly important that the backlog does not grow during a sprint,
even if a manager finds that a function is extremely important. This is realized by using the short
duration of 30 days. If a requirements is important it will be set for the next sprint. There is also
the possibility for urgent cases to terminate the sprint. This decision can be made only by the
product owner.

Daily Scrum: Every day the team will meet for a standup meeting, the daily Scrum. Schwaber &
Sutherland (2017) argue that this meeting should be held while standing in order to keep it short.
They suggest that the meeting should be maximal fifteen minutes long and that it should be held at
the same place and time every day. Each team member should then answer few questions:

• What have I accomplished since the last daily Scrum?
• What do I plan to do until the next daily Scrum?
• What hindrances do I see?

(Schwaber & Sutherland, 2017)

This meeting is important as it ensures that every member knows what the other team members are
doing. This helps the team members who have a problem as they can solve these problems with
the help of other team member, but this will not be done in this meeting. Additionally, this enables
the Scrum master to find hindrances and to evaluate whether team members work on other things
than on the tasks for the sprint. This again helps team members to learn to only develop things
which have been arranged before for this sprint. (Schwaber & Sutherland, 2017)

Sprint Review: The sprint review is the last point of a sprint. In a sprint review, the whole team
describes what has been done and what the result of the sprint is (Schwaber & Sutherland, 2017).
According to Wirdemann (2011) the Scrum master should reserve a room with a projector for a
review. He will have to send an email to each member and will then state the goal of the sprint and
the user stories. Every participating active member will have to invest some time for preparation.
One of the team members will then present the stories and the product owner will have some time
to think about the user stories for the next sprint. Schwaber & Sutherland (2017) describe the
review as a four hour timed meeting for a one month sprint. Shorter sprints will entail smaller
meetings. The Scrum master will be responsible for creating this meeting and also for ensuring
that everybody attends it.

Schwaber & Sutherland (2017) list elements a sprint review should contain:

13

2.1. Scrum

• “ Attendees include the Scrum team and key stakeholders invited by the product owner.
• The Product Owner explains what product backlog items has been “Done” and what has

not been “Done”.
• The development team discusses what went well during the sprint, what problems it had to

handle, and how those problems were solved.
• The development team demonstrates the work that has been “Done” and answers questions

about the increment.
• The product owner discusses the Product Backlog. He or she projects likely completion

dates based on progress to date.
• The entire group elaborates on the next step, to ensure that the sprint review provides

valuable input to subsequent Sprint Planning.
• Review of how the marketplace or potential use of the product might have changed what is

the most valuable thing to do next.
• Review of the timeline, budget, potential capabilities, and marketplace for the next antici-

pated release of the product. ”

(Schwaber & Sutherland, 2017, p.13)

According to Meyer (2014) the purpose of this review is to reflect on the results and beyond, but
not on the process.

Retrospective: The purpose of the retrospective is to review what went well and what went wrong
in this sprint, but also to find some aspects to improve for the next sprint (Meyer, 2014).

Schwaber & Sutherland (2017) describe the purpose of a review:

• “ Inspect how the last Sprint went with regard to people, relationships, process, and tools.
• Identify and order the major items that went well and potential improvements.
• Create a plan for implementing improvements to the way the Scrum team does its work. ”

(Schwaber & Sutherland, 2017, p.14)

This should take approximately three hours with a one month sprint, shorter sprints should also
have shorter reviews. The Scrum master, the development team and the product owner should
attend the retrospective meeting, as this review includes a discussion on how to improve certain
aspects. The improvements found in this meeting will then be implemented in the next sprints.

2.1.3. Scrum Artifacts

In Scrum, artifacts are described as the work or the value which provides transparency and
opportunities for inspection and adaptation. They provide a maximum of transparency for key

14

2.1. Scrum

information in order to ensure that everyone understands the artifact in the same way. (Schwaber
& Sutherland, 2017)

User Stories: User stories describe the functionality of a product, seen by the user and stated by
the product owner. Meyer (2014) claims that a standard emerged which describes how to create a
user story. The user story consists of:

• A category of user
• A goal
• A benefit

Story Points: Story Points are a measurement for estimating how much work is needed for solving
the user story. The unit may vary; it can take a day of work or several hours. Meyer (2014) suggests
using the difficulty of the easiest user story. Meyer (2014) describes three important properties :

• They do not have an absolute time value, therefore they are relative.
• Only fully implemented user stories can count as already achieved points.
• Only artifacts that will be delivered can count as progress.

Velocity: True velocity is the sum of story points of all finished sprints and implemented user
stories. Additionally, there is a relative velocity which is the sum of the story points which can be
achieved in a sprint. The relative velocity provides a good perspective of how many user stories
can be set for the next sprint and for the product owner for creating a release plan. The relative
velocity can be calculated as the true velocity from the last sprint or the median of all sprints.
(Wirdemann, 2011)

Story Card: There are many tools for creating such story cards (from analog to digital versions).
The Scrum team mostly uses the paper version due to visualization and handling reasons. A user
story describing the task is written on each story card.

Story Board: A story board is a great way to raise the team’s awareness of what has already
been done and what else needs to be done. Meyer (2014) claims that using a story board helps to
accomplish some goals in agile development:

• Picking a task and assigning it to a developer
• Keeping Track of velocity(story points implemented per iteration)
• Increasing moral of the Team
• Reducing unwanted implementation

It is common to use sticky papers on a white board. The white board is separated into different
columns. Each column represents the state of the current task. According to Meyer (2014), there
are the following states: to-do, in-progress, under-test and done. It is only effective if the team is at

15

2.2. Feature Driven Development (FDD)

the same place, members at different locations will have to find a different way of resenting their
states. There are many digital tools for this.

Product Backlog: The product backlog is a collection of prioritized user stories. The product
owner is the only person who can edit a product backlog, but he or she is also responsible for
making it available to every Scrum member or stakeholder. At the beginning the product owner
will have to create the first version of the product backlog based on some initial talks or workshops.
Wirdemann (2011) describes how a user story can be prioritized. One method is MUSCOW;
“must have”, “should have”, “could have” and “won’t have this time“. It would be much more
complicated to use the value, costs, customer satisfaction, the risk and the dependency on other
aspects.

According to Wirdemann (2011), the user stories can then be divided into: data, effort, research
interest, quality, user role, acceptance criteria and technical requirements.

The backlog is often used and split up into three parts: to implement, in progress and implemented.
Meyer (2014) also states that some teams add a fourth category: to be verified.

Burndown: Burndown is a visual representation of the team’s progress. It displays the trend of
remaining work over time. The time is measured as working days and the remaining work is
measured in story points. (Meyer, 2014)

2.2. Feature Driven Development (FDD)

FDD is a process designed to deliver frequent, tangible, working results repeatedly (Palmer &
Felsing, 2002). FDD is an agile software development methodology. It was first used at the
Singapore project and developed by Jeff De Luca while working with Peter Coad on the project.
According to Palmer & Felsing (2002) FDD is a system which uses simple, easy-to-understand and
easy-to implement methods, problem-solving techniques and reporting guidelines. According to
Highsmith (2002) the developer of this methodology describes FDD as ”client-centric, architecture-
centric and pragmatic“, while Palmer & Felsing (2002) characterize it as ”having just enough
process to ensure scalability and repeatability and encourage creativity and innovation all along
the way”.

FDD is an iterative development process which delivers working results frequently, while having a
good quality with each step at the same time. It provides status and progress information and also
gives the developer not too many interruptions. (Palmer & Felsing, 2002)

16

2.2. Feature Driven Development (FDD)

2.2.1. Key Project Roles

One aspect of FDD is that if we want to use it, we also have to consider the roles of the project
team. In reality, teams are mixed up with different weaknesses and strengths. FDD describes how
to combine each role in order to achieve highly utilized strength and support when needed. (Palmer
& Felsing, 2002)

The six key roles for a project according to Palmer & Felsing (2002) are:

• The Project Manager
• The Chief Architect
• The Development Team
• The Chief Programmer
• The Class Owner
• The Domain Expert

There are also some supporting roles, such as:

• The Domain Manager
• The Release Manager
• The (program) Language Guru
• The Build Engineer
• The Toolsmith
• The System Administrator

and some additional roles:

• Testers
• Developers
• Technical Writers

2.2.2. FDD Best Practices

FDD provides some best practices; each of the practices reinforces the other. Not all of the practices
must be used but it would not be a FDD process otherwise. FDD requires using all of them even if
it seems unnecessary. (Palmer & Felsing, 2002)

According to Palmer & Felsing (2002) the Practices are:

• Domain Object Modeling

17

2.2. Feature Driven Development (FDD)

• Developing by Feature
• Individual Class (Code) Ownership
• Feature Teams
• Inspection
• Regular Builds
• Configuration Management
• Reporting/Visibility of Results

Domain Object Modeling: Domain object modeling consists of a class diagram and sequence
diagrams. Combining these two enables to see how each object is interacting with other objects.
The advantage here is that for every developer who is working on a project it becomes clear how
the solution for a problem should look like. There are no misunderstandings in terms of what
should be implemented. Problems are firstly broken down into classes or objects, which are simpler
to solve. For adding new functions, the domain object modeling provides a framework that helps
to add functions “feature by feature”. This avoids wasting time for refactoring classes. (Palmer &
Felsing, 2002)

Developing by Feature: “The term feature in FDD is very specific. A feature is a small, client val-
ued function expressed in the form: <action> <result> <object> with the appropriate preposition
between the action, result, and object. (Palmer & Felsing, 2002, p.41)

Requirements are stated according to Palmer & Felsing (2002) in a customer friendly form and are
then broken down into so-called features. Each feature should be small enough to be implemented
within two weeks. Every feature which would take longer, will be broken down into smaller
features. Palmer & Felsing (2002) provide examples of features such as calculating the total of a
sale.

Individual Class (Code) Ownership: Class(code) Ownership means that only one person is
responsible for the content of a whole class. Object oriented programming language uses classes
to provide encapsulation. Code ownership here becomes class ownership, where each class is
assigned to a specific programmer. (Schuh, 2005)

Palmer & Felsing (2002) state that due to class ownership only one person has the duty of ensuring
that a class does not lose its purpose through modification and that this person is an expert in his
class, able to explain how it works. He or she is able to implement new features into the respective
class much faster than other people, which are not responsible for the class. Additionally, he or she
can be proud of doing something good.

Feature Teams: As with the individual class ownership, also with feature teams a better developer
is chosen to be responsible for one or more features. Each feature consists of classes with a class
owner. The feature owner or team leader has the responsibility to deliver the finished feature. To
do that, he or she will have to form a team in order to ensure that every class owner who needs to

18

2.2. Feature Driven Development (FDD)

code a feature is in his or her team. (Palmer & Felsing, 2002)

Palmer & Felsing (2002) list four different kind of options for different ways of creating such
teams.

• Going through all features, and picking all class owners involved in it, then separate it into
exclusive sets

• Ask the class owner to make changes in their code according to our needs.
• Instead of class ownership, we use collective ownership.
• Change team memberships according to the current feature to be implemented.
• Creating a team for each feature and dispending it after the feature is implemented.

Each of the options has its advantages and disadvantages, but only the last seems more realistic.
Palmer & Felsing (2002) also state that due to the small features the team should be also small
containing only three to six people. The team also has the entire ownership of the code, which
means there is no other external class owner for this feature. The class owner can be part of more
than just one team; there is no restriction to this.

Inspection: Inspections are one of many ways to improve the quality and reduce the error rate of
a code. In a feature team, different developers will have a look at the code of another developer
and check for errors. If possible, they will find simpler way of solving the problem. Depending on
how important the inspected code is, different team members are involved. For crucial parts, the
chief programmers and developers will be there to verify the code and the design. All other parts
are inspected with only the involved feature team members. (Palmer & Felsing, 2002)

Regular Builds: Regular Builds are crucial for verifying whether the system is working correctly
or not. All the components, which are completed, are built and tested together. Depending on how
often the regular builds are, errors that occur by adding new features can be detected. In most
cases, the regular builds can be automated with some software tools such as Jenkins. (Palmer &
Felsing, 2002)

Configuration Management: Version control systems are an important tool for keeping track of
the history of changes made to software and other artifacts. In FDD a CM is only used for already
finished codes of features, in order to keep track of their history of changes. Most developers only
put a code under version control. Each artifact that is maintained during the development process
should be put under version control, even contracts and requirement documentations. (Palmer &
Felsing, 2002)

Reporting/Visibility of results: Palmer & Felsing (2002) state that managers and other project
leaders need information on the current progress status. Developers often tend to implement
without reporting what has been done and what the current status is. In FDD there are tools
and frameworks which help to ensure a high visibility of status information of the project. That

19

2.2. Feature Driven Development (FDD)

progress information should be delivered in a frequent and accurate way in order to help the leader
to steer the project into the right direction.

2.2.3. FDD Process Model

The FDD consists of different processes (figure 5). Highsmith (2002) claims that one needs a
system for building systems in order to scale to larger projects. Instead of using big complicated
processes, small and simple processes with logical steps will be more efficient. Additionally, the
focus should never be on the process itself. Highsmith (2002) states that good processes move to
the background, in order to enable team members to focus on results while using short, iterative,
feature driven life cycles.

Highsmith (2002) states (based on Jeff De Lucas process article) that there are only five processes
at high level:

• Develop an overall model
• Build a features list
• Plan by feature
• Design by feature
• Build by feature

These processes are performed one after another (figure 5). Each process is performed once, except
the processes design by feature and build by feature, they are performed as iterations with different
events (figure 6).

Figure 5.: Feature driven development process (Schindler, 2010)

20

2.2. Feature Driven Development (FDD)

Figure 6.: Feature driven development design and build by feature process (Schindler, 2010)

2.2.3.1. Develop on Overall Model

In this phase, the focus lies on the high level, rather than on details. A skeleton of the projects
is developed in this phase by creating shape models for subject areas and then combining these
models into an overall model during an “integration” modell meeting. The team for larger projects
consists of modelers and domain experts, led by a chief architect. (Highsmith, 2002) FDD provides
a planning guideline for how long one process should last. It would take about two weeks for
developing an overall model for a six month-project. Each process is based on an ETVX (entry
criteria, task, verification, exit criteria) pattern. This pattern is taken from the article of Jon de
Luca’s website. It consists of entry, task, verification and exit criteria. (Highsmith, 2002)

The develop an overall model contains according to Highsmith (2002) seven Tasks:

• Form the modeling team
• Domain walkthrough
• Study documents
• Develop the model
• Refine the Overall Object Model
• Write Model Notes
• Internal and External Assessment

21

2.2. Feature Driven Development (FDD)

2.2.3.2. Build a Feature List

For identifying features, the team containing the chief programmers will divide the domain into
subject areas. These are divided again into business activities and then into steps which constitute
the features.Highsmith (2002) defines features as something that brings value to the client. Most of
the features should be implemented in one to ten days. (Highsmith, 2002)

These are according to Highsmith (2002) the following tasks for this process:

• Form the Features List Team
• Build Features List
• Internal and External Assessment

2.2.3.3. Plan by Feature

In this task, the focus lies on producing the development plan. Therefore, the project manager, the
development manager and the chief programmers are getting together and are going to prioritize
which features will be developed. Highsmith (2002) states that the planning contains a number of
factors such as complexity, risk and client-requirement milestones. The Features are assigned to the
chief programmers and then these chief programmers assign developers for the class ownership.

These are according to (Highsmith, 2002) the following tasks for this process:

• Form the planning team
• Determine the development sequence
• Assign feature sets to chief programmers
• Assign classes to developers
• Self-assessment

2.2.3.4. Design by Feature

Each chief programmer is assigned in “Plan by Feature” to some features. He or she will then
choose one (or even a set of features) which consists of the same classes. These sets are called
Programmer Work Package. The chief programmer then starts to form his feature team, by
identifying the class owners. The class owners will start developing sequence diagrams for the
features. With the help of these diagrams, the chief programmer will refine the object model. After
that, the developers will start writing classes and method prologues. The chief programmer will
create a design package consisting of all the diagrams, classes and methods. (Highsmith, 2002)

22

2.3. Extreme Programming (XP)

These are according to (Highsmith, 2002) the following tasks for this process:

• Form feature team
• Domain walkthrough
• Study the referenced documents
• Develop the sequence diagrams
• Refine the object model
• Write class and method prologues
• Design inspection

2.2.3.5. Build by Feature

Developers will start implementing classes and methods according to the design package. The
code is then tested and inspected by using “Unit testing”. (Highsmith, 2002)

These are according to (Highsmith, 2002) the following tasks for this process:

• Implement classes and methods
• Code inspection
• Unit tests
• Promote to the build

2.3. Extreme Programming (XP)

XP is a software development framework which was defined by Kent Beck. XP contains values,
principles and practices (figure 7) (Sandhaus et al., 2014). According to Schuh (2005) XP is
unlike other agile methods, programmer orientated. This means that the developer can occupy
any role in XP. According to Beck & Andres (2004), a software development style focuses on
clear communication and teamwork. Differences are that it contains short development cycles, an
incremental planning approach, automated testing written by programmers, customers and testers.
Close collaboration is one prime value of XP.

2.3.1. Values

Communication: Without good communication, most aspects in software development would not
work. XP highlights that good communication will automatically lead to good software. Problems

23

2.3. Extreme Programming (XP)

which cannot be solved alone due to a lack of knowledge can be solved by consulting a more
experienced programmer (Beck & Andres, 2004).

Simplicity: Creating a software which is simple but which solves complex problems at the same
time is hard. It is even harder to create simple solutions, which not only work for some but for all
problems. XP embraces to think about how it is possible to find a simple solution for problems,
instead of solving it somehow without thinking much about it. (Beck & Andres, 2004)

Feedback: Developing a product is not a straightforward process. Requirements or the architec-
tures of systems may change over time. Change is needed; therefore, feedback from the customer
is also needed. (Beck & Andres, 2004)

Courage: According to Beck & Andres (2004), courage means to perform effective action in the
face of fear. This means that depending on the problem, somebody from the team must have the
courage to do the right thing instead of rushing for a solution.

Respect: Without respect XP will not work. Beck & Andres (2004) state that disrespecting other
team members or the project itself will lead to major issues and failure.

2.3.2. XP Practices

Beck & Andres (2004) define practices that should be implemented and adapted according to
particular needs. Following all the statements will lead to quicker development while it also
improves the quality at the same time.

Sit Together: The whole team should sit together in an open space, while having enough space
for privacy and being close together for open communication. (Beck & Andres, 2004)

Whole Team: All qualifications that are necessary for succeeding with the project should be there
already. Depending on the qualifications needed the team may change; people can leave and people
can join. (Beck & Andres, 2004)

Informative Workspace: The environment should tell team members or interested people what
problems might occur and how the project is progressing. This can be accomplished by using
flipcharts or story cards. (Beck & Andres, 2004)

Energized Work: Do not overwork yourself. Work as much and as long as you can be productive.
Working too much without being productive is just wasted time and may affect the next day
negatively. (Beck & Andres, 2004)

Pair Programming: Instead of writing a code on your own, XP suggests writing codes in pairs;

24

2.3. Extreme Programming (XP)

sitting together at the same machine while one is programming and the other one is thinking
about good solutions or looking for potential problems. Programming together also leads to
knowledge transfer. Less experienced programmers are able to acquire new experience this way.
Pair programming does not mean that you always have to program together. It is still possible to
program alone. (Beck & Andres, 2004)

2.3.3. XP Process

The XP process is defined by the twelve core processes, these core processes are integrated into
the XP process with its meetings, events and their interactions (figure 7).

Figure 7.: Extreme Programming process (Schindler, 2010)

Planning Game: In the planning game, the planning is done for the next release. While this is a
more detailed plan, a general plan is made at the beginning of the project defining on the overall
functionalities and what should be realized in which release. (Schindler, 2010)

Small releases: Means to develop a small increment which provides a business value and to gain
quick and accurate feedback from the stakeholder. (Schindler, 2010)

Metaphor: Metaphor portrays the product work in an overall way. It provides a view on how
the functionalities work together and what their purposes are and how they correspond with the
architecture. (Schindler, 2010)

Simple design: Means that the product must be designed in a simple way. It must meet the needs
but nothing more than that. A simple design based on XP guidelines entails the following points:
pass all available tests, should not be a duplicate, must be clear and consistent and must contain
the minimum methods, classes and modules. (Schindler, 2010)

Test first: Means that test are written before coding.

Refactoring: Simplifying and improving the code without changing its functionality. This should

25

2.3. Extreme Programming (XP)

make it easier to understand.(Schindler, 2010)

Pair programming: Instead of working on a code alone, a second programmer should work on
the same station and code. This practice can be used for education and for finding bugs. (Schindler,
2010)

Collective Code Ownership: Everyone is responsible for the code and therefore everyone can
make changes for any part of the code (Schindler, 2010).

Continuous integration: Every developer must work on the newest version of the code and every
change must be integrated to the current build. All the previously and newly added tests must work
with the newly integrated code. Whenever problems occur, the code must not be released into the
versioning system until the problems are solved. (Schindler, 2010)

40-hour week: Is not a fixed amount of working hours, but it rather provides a guideline for not to
overworking oneself. Compared to working over time without making any progress, it is better to
work less but efficiently. (Schindler, 2010)

On-Site customer: This means to have a constant communication channel with the customer, in
order to gain quick feedback from the person who will use the product. (Schindler, 2010)

Coding standards: Are rules and standards for styling and formatting code. The code is easy to
read and to understand. Each developer must agree on this coding standard to ensure consistency
throughout the project.

26

2.4. Comparison of agile software development methods

2.4. Comparison of agile software development methods

The table 1 shows a comparison of the choosen agile software development methods. With this it
is easier to see the differences and similarities of each development method. Agile development
areas such as meetings, artefacts and roles, can be compared.

FDD XP Scrum
Approach Iterative Iterative, Incremental Iterative, Incremental
Focus project management

process
development process project management

framework
Communication more written more verbal more verbal
User centric involved in reporting involved during de-

velopment process
involved through de-
velopment owner

Sprint length 2-14 days up to 6 weeks 2-4 weeks
Information ex-
change

via documentation daily meetings daily meetings

project size large scale projects small and simple
projects

large and complex
projects

Main practices Object model-
ing,development
by feature, Unified
Modeling Language
(UML) diagram

pair programming,
simplicity, commu-
nication,test driven
development

Meetings

Parallel feature devel-
opment

yes yes yes

Table 1.: Comparison of agile software development methods

27

3. Agile Firmware Development

This chapter provides a comprehensive overview of how agile firmware development can be
achieved. Additionally, problems which may occur during adopting agile methods will be dis-
cussed.

A literature review on agile firmware development was carried out in order to get information,
about what firmware development means and how agile software development methods could
be adopted to firmware development. Additionally, best practices of companies who already
use agile firmware development were searched in order to have a practical view on challenges
and opportunity in using agile methods. The results of the literature review will be used to help
understand what must be considered in order to adopt agile software development methods in
firmware development and what challenges other companies faced and how they could overcome
them.

3.1. Definition of Firmware Development

There are many different definitions of what firmware development is. Firmware is software that
runs on electronic devices and it is saved on small memory, such as an erasable programmable
read-only memory (EPROM), read-only memory (ROM) and flash memory. Firmware provides
low-level control of hardware parts for electronic devices. This means that firmware developers
cannot only consider software related aspects but they also must consider hardware related aspects.
Firmware developers need to consider certain challenges which must not be considered when
software is developed as usual. Challenges, such as limited power and memory space resources,
force the developer to develop in the most saving way possible. Since not every electronic device
has the ability to update its firmware, it is crucial that the firmware is tested thoroughly in order to
run without any error in a longer period of time.

Shen et al. (2012) describe six main characteristics for firmware/embedded development.

Skills: Embedded software developers are usually high skilled on the technical level on software
and on domain level. However, these developers are not trained to be software developers, but
rather started programming because of their needs. (Shen et al., 2012)

28

3.2. Adopting Agile Methods to Firmware Development

Hardware dependencies: Firmware runs on hardware and therefore faces restrictions from
hardware such as limited power, memory space and new technology. Hardware is usually developed
concurrently with firmware, therefore it is not available until the end of the project, which makes it
hard to test the firmware. Shen et al. (2012)

Competitive pressure: As in software development, firmware also has to be developed quickly
while lowering the cost to be competitive against other companies. Shen et al. (2012)

Limited resources: Firmware has some resource constraints such as limited memory space,
processing power and execution time. Shen et al. (2012)

Changing Systems: If the hardware changes, the firmware also has needs to be adapted to the
change since firmware needs hardware. Changing requirements or new developments in hardware
also causes changes. These changes also need to be adapted by the firmware. Shen et al. (2012)

Performance: Some fields demand high performance requirements from the firmware, such as
safety issues (Shen et al., 2012).

Kaisti et al. (2014) show some similar key indicators for firmware development:

System Level Documentation: In case of agile development, documentation should be kept at a
minimum. While this is sufficient for software development, it will not work for embedded devel-
opment. Embedded development requires system level documentation, as there are many different
teams involved and different requirements with strict standards, which require documentation.
(Kaisti et al., 2014)

Hardware-Software Interdependencies: Hardware and firmware are tightly connected. Testing
together requires that each of them are on a certain state of maturity. While hardware requires
long development cycles, firmware can be developed rather quickly. Due to new manufacturing
processes, simulation tools and off the shelf components hardware development cycles can be
reduced, but will not reach the cycle length of developing software. (Kaisti et al., 2014)

3.2. Adopting Agile Methods to Firmware Development

Most companies, which aim to implement agile development methods for firmware or embedded
development, choose existing agile software development methods and adopt them to their needs.
In most cases, they use Scrum or XP and adopt them. These methods are commonly used for
software development and therefore problems occur if these are used for firmware development.
Not all aspects can be implemented easily.

29

3.2. Adopting Agile Methods to Firmware Development

Papers and studies shows how companies tried to implement agile methods to firmware develop-
ment. Mostly these studies describe their results and how they overcame problems in the adopting
phase.

In a literature review of Kaisti et al. (2013), articles are collected in which agile methods are applied
to firmware development. They contain surveys in which a positive impact on implementing agile
methods in an embedded world is shown. It is stated that in the embedded field, methods such as
XP and Scrum are mostly used. Depending on which of these methods are implemented, different
challenges may occur. In one study, a new method was created instead of using an existing one.
The basis of this method was XP. Some practices of XP were taken and modified. The practices
were: test-driven development, refactoring, simple design, pair programming and continuous
integration.

Kaisti et al. (2013) state that problems that occur from adopting agile methods to embedded
development. Due to lack of support of the software tools and the importance of domain, knowledge
hinders the practice of shared responsibility. Moreover, the main drivers are mostly changing
requirements from hardware and firmware.

A new paper of Kaisti et al. (2014) rather maps the agile principles than a method to the
firmware/embedded world. Delivering a valuable software as early as possible is one of the
main principles of the agile principles, but it is also possible to measure such “valuable software”
in an embedded world. Kaisti et al. (2014) claim that instead of just delivering a working system,
which could last too long because of hardware and firmware development, a better principle
would be the demonstration of progress. This can be a demonstration of a proof of concept; a
documentation describing the system level design. In later states of the project it can be an actual
prototype. The development cycle should be stretched in order to fit the development of both, but
usually four weeks should be sufficient.

Delivering a working prototype frequently is also a serious challenge in embedded development.
Here the firmware cycle depends strongly on the hardware development cycle. A possible way
is to deliver a whole combination of hardware and firmware. Firmware functionalities can be
demonstrated even if the hardware is not finished. (Kaisti et al., 2014)

The cost of change is quite expensive in an embedded environment. Changes that are made later
can lead to an increase of cost and to a delay of the release date. A solution to this issue can be
adding a generality into designs. Later changes are more expensive than creating a general design.
New requirements could then be handled as an incremental design changes. (Kaisti et al., 2014)

The self-organizing team is an important principle, as it requires the team to be responsible for
developing and decision-making. While this applies to software development, there is a difference
in embedded development. It consists of more than just one team and therefore requires some
top level in order to cooperate between different teams. The communication between the team

30

3.2. Adopting Agile Methods to Firmware Development

members is highly important, even if they are located in separated locations. With modern tools,
communication can be established quite easily. (Kaisti et al., 2014)

Aiming for simplicity and optimization is important in agile development, as designing an opti-
mized system in an embedded world could lead to problems if new requirements arise. A good
way would be to implement a modular and general platform design. Here Kaisti et al. (2014) try to
redefine this principle as balance between simplicity and generality. (Kaisti et al., 2014)

Refactoring and trying to reflect on how to become more effective, is not particularly easy in an
embedded system. All these aspects should be reinterpreted. Trying to reflect on how to be more
effective can lead to minimized unnecessary documentations and it could also lead to avoiding
misinterpretations. Understanding how everything works also improves the methods on how each
team works. (Kaisti et al., 2014)

3.2.1. Use Case: Daimler-Chrysler

In this case Manhart & Schneider (2004) describe how Daimler-Chrysler adopted practices from
agile methods. The software engineering department developed embedded software for buses and
coaches. However, due to customer specific add-ons and features, which were added late during
the process, the department faced difficulties. In most cases these features need to be implemented
quickly. Instead of weeks or months, they should be implemented in hours or days. The main
issues for developing embedded software were:

• Many customer specific functionalities with high time pressure
• High degree of individualization for buses
• Software runs on programmable computers
• Customer demanding top quality

Producing a customer specific bus requires good time management. A delay of parts of the buses
causes high economic problems. Therefore, the software will be uploaded even if it is not entirely
finished. Later changes of software or functionality during the production leads to delivery delays.
Instead, a special upload is processed in which the software is uploaded. However, this process
has high costs and it is risky. Manhart & Schneider (2004) discuss even more challenges, such as
unrealistic planning, unavailable experts, changing priorities and requirement misunderstandings.
(Manhart & Schneider, 2004)

In Manhart & Schneider (2004) they analyzed their software development process based on the
new goal driven improvement philosophy. Their goals were to increase customer specific software
based functions and to have a zero bug policy. Based on that, they found difficulties in their current
work situation, which should be solved by applying some basic principles of agile practices:

31

3.2. Adopting Agile Methods to Firmware Development

• More work, but less development staff
• More frequent late changes
• Top quality goal
• Failure leads to late delivery

Based on that they chose some principles and defined activities.

• Implement features with high value first
• Find differences between specification to the product as automated as possible
• Find them as soon as possible
• Fix them as soon as possible

Because of these principles and because of the goal driven process they chose the practice test first
and the unit test in which they create unit tests before developing. With these tests, they hoped to
achieve a quicker test of simulation, improve the quality of assurances, reduce differences between
module and specification, reduce the effort for quality assurance, start to describe tests before
coding and to focus on real requirements first. (Manhart & Schneider, 2004)

In their paper, they did not mention their results of the implementation, because they wanted
to share their experience with problems in implementing agile methods as quickly as possible.
According to Manhart & Schneider (2004) it is not possible to implement an agile method without
changing it to their needs. However, instead of rushing and trying to implement the whole method,
Manhart & Schneider (2004) recommend implementing it step by step in order to ensure that all
the staff agrees with it.

3.2.2. Use Case: Mass-Produces Embedded Systems

A paper of Eklund & Bosch (2012) presents several cases from the Volvo Car Cooperation (VCC)
and for them they present a method of introducing agile development in the embedded system’s
world. Factors for implementing agile methods in an embedded software environment with a stage
gate process for hardware development were considered. The method was then validated with
three more cases. Only one is finished at the time presenting the paper.

The first three use cases describe the domain of mass produced embedded systems. The purpose was
to implement a new distributed software architecture, introducing a new architecture maintenance
process and project of an infotainment system. In these cases, issues were found which had
to be solved. They also asked themselves in how far these problems were relevant for their
research on introducing agile in embedded systems. Issues found in the first case were a more
integrated functionality between different components. Software was programmed by different
teams that needed synchronizations. In the second case, the found issues were related to the
development process. Because of this process, design documentation became quite complicated to

32

3.2. Adopting Agile Methods to Firmware Development

understand. Additionally, integration efforts for verification and validation became overwhelming,
while being easy in adding new features. In the third case, a new infotainment system had to
be developed, while each software development had been outsourced. Issues were that they had
a rather complicated interface between micro controllers and therefore between suppliers. The
setup of the team changed in the middle from component based development to feature based
development with cross functional teams. There was no overview of realized features. Moreover,
the sprints were too short with less verified features after each sprint. (Eklund & Bosch, 2012)

Based on these cases they characterized the domain of mass produced embedded systems. Accord-
ing to Eklund & Bosch (2012) they found that these systems have:

• Deep integration between hardware and software for important parts of the functionality

• Strong focus on manufacturing aspects of the product in the development

• Strong supplier involvement

• Some parts realize safety critical functionality

A model was developed which shows the interaction between the mechanics, hardware and system
development and an agile/traditional software development. These interactions are also necessary
for agile teams, while having the problem that not the whole product is agile produced. They
define categories for interaction between the embedded software and the product development
such as requirements, project gates, integration and validation and delivery. For these categories,
they evaluated what has to be implemented in order to achieve agility. To do this, they chose XP
and Scrum. These measures, which had to be implemented, are divided into the pre-game phase
and the activity phase. (Eklund & Bosch, 2012)

Requirements: For the pre-game phase, they wanted a product owner which is responsible for
prioritizing requirements and who values the agile principles. In the activity phase, they wanted to
have a greater acceptance on an incremental growth instead of the typical waterfall model, while
using a broad area of different project tools at the same time. Not only should features be added to
the backlog but also quality attributes and architecture solution should be applied. Therefore, the
architect has to interact more with the development team during the project. (Eklund & Bosch,
2012)

Product Project Gates: Here the focus lies on the interface between software development team
and the full product project. For the pre-game phase, a clearer structure should be implemented in
order to improve the handling of change requests. The project manager should be present at the
sprint demos, as he or she should be able to see how the project is developing. A connection should
be established between agile roles and methods to existing roles and functions of the organization.
In the activity phase milestones, artefacts and gates should be included in the work of the agile

33

3.2. Adopting Agile Methods to Firmware Development

software team. (Eklund & Bosch, 2012)

Validation: Here the focus lies on the interface between agile software development and the
validation of the product. For the pre-game, they wanted to align the pulses of the Original
Equipment Manufacturer (OEM) and the subcontractor’s sprints. In the activity phase, all the
technical standards have to be verified and validated and the quality requirements have to be
checked. For producing new deliverables in time and to test them, a system anatomy should
be defined to check technical dependencies between implementations in each sprint. Defining
interfaces to sub-systems (synchronized backlog). (Eklund & Bosch, 2012)

Internal Activitys: For the pre-game phase, it is crucial to ensure that the entire platform used
by the development team is available. This means providing resources to all of the roles that
participate in producing the product. Moreover, this means establishing a connection between
OEMs feature definition and the testing teams and the subcontractors’ development team. In the
activity phase, it is stated that agile development should only be introduced when people are eager
to try it and are eager to implement a frequent refactoring and clean up as an activity. (Eklund &
Bosch, 2012)

Method Validation

For validation of their method, they used it again on three cases. While just one case is finished,
the others are still in progress.

In the first case, they developed an infotainment system again, based on an open platform. The
goal was to check whether it was possible to develop a feature driven way with short lead times
(four-twelve weeks). This small lead times where accomplished by using Scrum. The infotainment
system was tested in a real environment. It was installed in simulators and in test cars. The project
contained two different teams. Each team had their own backlog and design documentation but
shared them over a software that was separated from the hardware and platform development.
However, the problem at this point was that it was not based on a release of a new car. This
means that there were no demands for gate reports. The team members met every two weeks for
half a day. The focus was not on testing or quality assessment. Based on their model they chose
for the pre-game phase: a product owner who had a clear structure of the goal process and who
connected agile roles and methods to non-agile ones. He also had a mapping between OEM and
the subcontractor and aligned the OEM pulse and the subcontractors’ iterations. As for the activity
phase, they implemented a gradual grow of requirements while interacting with existing tools.
They defined interfaces between subsystems and implemented a frequent refactoring. (Eklund &
Bosch, 2012)

The second case is about developing a climate control software in-house instead of outsourced.
As an agile method, they used Scrum. The team consisted of nine persons and a Scrum master.
The product owner was a person from the interior department, with cooperation from one person

34

3.2. Adopting Agile Methods to Firmware Development

from the product-planning department. The developed software was used on hardware that had
been developed from a hardware supplier. Problems here concerned setting the requirements into
a suitable form for the backlog. In this case, most of the method principles for the pre-game
phase and the agile phase were adapted. They searched for a dedicated product owner, which
was a challenge. The product owner is a person outside the development team. Clear structures,
processes and platforms were established. For the activity phase, they wanted to have a gradual
growth of requirements, while interacting with existing tools. There were also some nonfunctional
requirements in the backlog. The development team adjusted sprint schedules in order to align the
schedule for integration of the complete systems. An coach was involved in this case. This helped
them to achieve a good level of agility. (Eklund & Bosch, 2012)

The last case was about producing a next generation infotainment system for future car models.
The same department was involved as in the third evaluation case. Here the team already had some
experience in agile methods. Requirements were defined on a feature level instead on a design
or implementation level. The development schedule of the ten teams of the department was set
with the subcontractor in a six-week iteration, in order to meet their schedule. In this case they
did not start a sprint at the point their paper was written, therefore there is not much information.
However, in their case they tried to implement all of their principles from their method. (Eklund &
Bosch, 2012)

3.2.3. Use Case: Intel Cooperation

In the paper of Greene (2004), their experience of using an agile approach for developing firmware
for an Intel Itanium processor family is explained. As in other firmware projects, their development
of firmware had to also be aligned with the development of the new processor family. Because of
the high uncertainty and the changes they had to make while developing, they decided to use an
agile approach. Their new Intel Itanium processor family should consist of a 64-bit architecture.
This architecture should be able to implement behaviors completely in hardware or in combination
with firmware (Processor Abstraction Layer (PAL)). PAL should provide an interface across all the
Itanium processor family designs in order to enable abstract implementation of specific features.

Team and development: Their firmware team consists of seven developers and one manager/technical
leader who is part of a larger processor design team of over 100 hardware developers. Two of
their developers are located at different places. Their hardware team consists of architects and
different designers who have worked many years on the first phase of the design. The PAL firmware
team is developing firmware to test the processor and to implement features. Changing hardware
mechanism leads to a demand of change in the firmware. While this is sometimes acceptable, they
have problems to develop the code until the silicon is ready. The next phase entails of testing the
processor and trying to fix changes by changing their firmware. (Greene, 2004)

35

3.2. Adopting Agile Methods to Firmware Development

Problems

As in many other firmware teams, they also had some problems with developing the hardware
simultaneously. Their main problems were to follow the detailed scheduled plan. Firmware team
members were too specialized in their domain, changes were made without developing tests, and
there was an overly optimized assembly code and inconsistencies concerning the coding style. It
seems that these problems may arise from a lack of software development methods. Therefore,
they implemented XP. Concerns regarding the evaluation from the code, using pair programming,
privacy and testing before coding brought them to reconsider whether these could be applied into
their project. In the end, they combined different practices from Scrum and XP to meet their needs.
(Greene, 2004)

Scrum Practices

From the Scrum method, they took the following practices:

Sprints: It seems to be the case that doing a thirty-day sprint provided a good granularity for
planning their requirements. However, some developers did not approve to this and wanted more
visibility beyond thirty days. (Greene, 2004)

Sprint plan meeting: Instead of implementing half-finished features, they used these practices to
implement features that had been entirely finished and tested before only. (Greene, 2004)

Daily Scrum: Team members got information on what the others did the day before, but after some
time they changed to focus on “what are you going to do today” and “what are the roadblocks”.
Time spent on these practices was reduced to a minimum.(Greene, 2004)

Sprint review(retrospective): Was quite helpful at the beginning but after solving many sprints
they had not much to talk about due to the close interaction. (Greene, 2004)

XP Practices

They found out that XP was quite effective for bringing software methods to people with hardware
backgrounds. The practice mostly used was unit testing. As more tests were created, because
automated tests were used, the quality of the code increased. (Greene, 2004)

Simple Design: Optimized assembly codes lead to complex maintenance. Moreover, group
ownership and pair programming lead to a more simple design. (Greene, 2004)

Unit Test: Creating tests for coding leads to a shift in mindset. By developing tests first and
improving the quality of the code itself, less bugs were produced. The Problem here, however, was
that there was no “Assembly Unit” testing framework. Therefore, they had to build one on their

36

3.2. Adopting Agile Methods to Firmware Development

own. It was possible because of their framework to test components in their low level. This meant
that they were able to implement them without any concerns of having bugs. Scripts for checking
the results were also developed. Overall, they carried out 1300 tests, which ran two hours per night
and some ten minutes tests for the developer. (Greene, 2004)

Refactoring: Improving their designs by simplifying it and improving the codes maintainability
and flexibility lead to a decrease in legacy code. (Greene, 2004)

Pair programming: It is useful to find bugs and to transfer knowledge to less experienced team
members. In their paper, they state that the initial coding from the assembly code was quite useful.
However, people wanted to split afterwards in order to solve problems more quickly. Instead of
forcing them to stay together the entire time, they let them decide on their own when to program
together. Programmers paired together at the beginning then split up and got back together to
check their code with the help of others. Transferring knowledge was not especially effective, as
not everybody is able to know everything. This is particularly true in complex environments, but
they had the idea that one day of a week each developer cannot touch anything in their expertise
range. By doing this, they learned much more. Team members that were located in different cities
got involved by using audio bridges or virtual computing networks for pair programming. (Greene,
2004)

Collective Ownership: It is hard to implement collective ownerships in an environment with
experts in special fields, but instead of sharing all the ownership, acceptance of the fact that
developers can improve their code was implemented. (Greene, 2004)

Continuous Integration: Due to their modular architecture and their concurrent version-system,
developers were forced to integrate changes from the repository to their workspace to change
something. (Greene, 2004)

One-Site Customer: Due to the PAL firmware architecture there is no external costumer. Priori-
tizing was done by the creator of the paper. However, the hardware design team was requesting
firmware changes. As a result of the collocation of both teams, close interaction was possible and
it was therefore easy to discuss changes. (Greene, 2004)

Sustainable pace: Hard deadlines required the team to do some extra hours sometimes (Greene,
2004).

Coding Standards: A standard was created for Itanium assembly, but sometimes workarounds
were done which were not refactored (Greene, 2004).

37

3.3. Summary

3.3. Summary

According to the use cases, implementing agile software methods in a firmware/embedded environ-
ment is possible. However, there are restriction that do not occur in a pure software development.
Most of the agile methods are developed for pure software. Therefore, the practices from the used
methods needs to be adapted or not all of them should be used. The cases show how companies
just implemented agile practices and not a method, such as in Manhart & Schneider (2004), and
some cases in which they took two agile methods and combined them to one agile method Eklund
& Bosch (2012); Greene (2004).

Daimler-Crysler Mass-Produced Em-
bedded Systems

Intel Cooperation

Author Manhart & Schneider
(2004)

Eklund & Bosch
(2012)

Greene (2004)

Sector Buses and coaches de-
velopment

Infotainment Systems Chip development

Agile method Only some agile prac-
tices

XP, Scrum and Stage-
Gate

Some practices from
XP and Scrum

Challenges customer specific
functionalities, high
time pressure, cus-
tomer demanding
top quality, delivery
delays, unrealistic
planning, changing
priorities

complicated inte-
gration between
hardware and soft-
ware, complicated
documentation, agile
and traditional devel-
opment, outsourced
development

developing
firmware/hardware
simultaneously, fol-
lowing detailed plan,
specialized firmware
developer, overly
optimized code, no
tests written

Benefits quicker tests of simula-
tion, improve quality,
reduce effort, better fo-
cus

short lead times, coach
lead to better agility

shared information,
planning only features
which could be fin-
ished in time, group
ownership, better code
quality

Takeaways test first find a good Scrum
master, own backlog
for each team, align-
ment of different itera-
tions, search for a ded-
icated product owner
outside of the team,
plan on feature level

adopt practices to your
needs, daily Scrum
helps to have a com-
mon ground, group
owner ship and pair
programming can lead
to a more simple de-
sign, refactoring im-
proves code maintain-
ability

Table 2.: Summary of literature review for agile firmware development

38

3.3. Summary

Because Scrum is rather seen as a management framework which helps to plan a project but does
not help with how to develop and what kind of development tool should be used, it is used in
combination with XP. XP is more developer centric and therefore provides some practices and
methods on how to develop; such as testing before coding or using one standard. A combination of
both of this cases lead to an improvement of quality and to an improvement of the development
cycle.

All of these cases present positive results in implementing them and only show a few disadvantages.
Some agile practices, such as planning a game or a metaphor, were not implemented. Only
practices that caused great advantages in the development phase of their product were used.

As in the case of Greene (2004), collocating their hardware design team with the firmware
team lead to a more open communication and effective discussions for design changes and code
improvements. Prioritizing features and implementing code only then when they are entirely
finished and tested lead to an improvement of quality in the code and prevented the developer from
being distracted by other requirements that were not in the sprint. Daily sprint meetings caused all
the team-members to share their current results and problems they were facing. Everybody knew
what the others were doing and could help them if they faced some difficulties.

For creating an iteration based cycle Eklund & Bosch (2012) state that it is crucial to design the
firmware and the hardware in a more general way. For testing the firmware, Eklund & Bosch
(2012) show that at first tests were done in a simulation rather than on the hardware. However,
after the silicon was ready they tested it on the hardware. Here Kaisti et al. (2014) recommend to
use a rapid prototyping or to test on an evaluation board in order to identify problems as soon as
possible.

In Eklund & Bosch (2012) sprint cycles were mostly adapted from the software methods, but at
the same time they also tried to align it with the hardware team. Therefore, a good communication
is vitally necessary. There is no standard on how to align these sprint cycles but due to up-front
development or rapid development it is possible to lower the sprint cycles of hardware and therefore
it is also possible to align both of them. It is also possible to not present a prototype after every
week but rather the result on a simulation or a documentation on the design itself (Kaisti et al.,
2014).

To conclude, it is possible to adopt such methods in an embedded environment. However, the
people need to be very eager to try it and it should not be implemented as quickly as possible but
rather in a slow pace and perhaps one method at a time, to ensure that all the team members get
familiar with it (Greene, 2004; Eklund & Bosch, 2012). A summary in form of the table 2 was put
together in order to have a better overview of the use cases and the takeaways.

39

4. Agile Hardware Development

This chapter provides an overview of how agile hardware development can be achieved. Further-
more, problems with adopting agile methods will be discussed.

A literature review on agile hardware development was carried out in order to gain information
about the meaning of hardware development. This literature review also provides information on
how agile software development methods can be adopted to hardware development. Furthermore,
best practices of companies which already use agile hardware development were searched in order
to have an authentic perspective on challenges and opportunities in using agile methods. The
results of the literature review will be used to help understanding if it is possible to use agile
software development methods in hardware development, what must be considered in order to
adopt agile software development methods in hardware development and what challenges other
companies faced and how they handled them.

4.1. Definition of hardware development

Thompson (2015) define hardware as electrical or electro-mechanical devices, which often contain
firmware or embedded software. Developing hardware is the same as developing software, in the
end it is a process for developing a design that is intended to be produced.

Agile hardware development tries to adopt methods from agile software methods to hardware
development. The reason why agility is adopted into the hardware development is to reduce
uncertainty, reduce development costs and to increase customer satisfaction and at the same time
shorten lead-time. Instead of a stage gate model or waterfall model, methods such as Scrum and
XP are adopted. While this is quite easy to achieve in software development, there are difficulties
to solve beforehand with hardware. (Schuh et al., 2016)

There are similarities and differences to software development and therefore processes for software
development cannot be adopted without some changes.

According to Thompson (2015) similarities are:

40

4.2. Adopting Agile Methods to Hardware Development

• There are interactions between users, products and outputs.
• They consist of functional and nonfunctional requirements.
• They are complex.

Differences are according to Schuh et al. (2016):

• Changes are more difficult than for software.
• Changing costs are high for hardware.
• Hardware consists of physical components that cannot be refactored after being produced

and cannot accrete new capabilities that requires hardware changes.
• Hardware designs are constrained by standard parts.
• The design of hardware is driven by architectural decisions, more architectural is done up

front.
• Fewer tests but with specialized and expensive equipment.
• Hardware tests are done by the creator.
• Hardware must work for a range of time and under different conditions.
• Longer lead times for acquisition for specialized hardware components.
• Costs of hardware development increase towards the end of the product cycle.
• Changes done in hardware can lead to higher costs due to postponed shipping schedules,

sink costs.

4.2. Adopting Agile Methods to Hardware Development

In the paper of Thompson (2015) a research was conducted on how Scrum processes can be
adopted. Because of the differences between software development and hardware development,
Thompson (2015) describe changes made in the Scrum process to achieve agility in hardware
development.

User Stories: Stories are tasks that should be achieved in one sprint. However, instead of using
just “hard stories”, Thompson (2015) recommend to also use “soft stories”. Only if the story
cannot be developed and tested in one sprint, there is the possibility to set it as a “soft story” which
could be developed in two sprints or more.

Sprint length: Due to several interviews and from personal experience, Thompson (2015) recom-
mends a sprint length from two to eight weeks, depending on the difficulty and the possibility to
split tasks into deliveries which could fit into a two weeks sprint. Variety in length should not be
an option, instead it is recommended to use a fix length which should work for all the tasks. Using
an appropriate length can reduce the risk of not delivering after the sprint and it guarantees having
a better flexibility and a better sprint tracking.

41

4.2. Adopting Agile Methods to Hardware Development

Release planning: Planning to deliver a product after a release cycle is hard for hardware de-
velopment. Not only does the hardware need to be considered but also the software needs to be
considered. However, according to Thompson (2015) planning a release date is crucial so that a
reliable plan can be made. Additionally, it leads to having a reasonable concept of the product.

Sprint deliverables: Hardware cannot always produce a deliverables with new features after each
sprint. However, deliverables can be produced and tested at each release cycle. Thompson (2015)
claims that it is possible to create a prototype in the first sprints and then try to iterate the prototype
until the requirements for the product are met. The focus of each sprint may vary according to
Thompson (2015), but it also needs to be considered that more variation also leads to complex
planning. Therefore variation should be kept at a minimum.

What is also crucial for adopting agile methods is having highly motivated team members and
a high density of communication. Team members should be located in the same area and all
qualifications and all skills which are necessary for designing, developing and testing the product
should be available. Another crucial aspect is to ensure good communication with the suppliers. It
is vitally necessary to involve them into the planning, in order to ensure that developing hardware
and delivering the parts can be accomplished in a short period with less costs. (Schuh et al., 2016)

In their paper, Schuh et al. (2016) describe what is necessary to adopt agility into a product
development. They split it up into three categories:

Process: Because of shorter development times and iterative cycles, the product has to be split
into small development tasks that can be realized in a short time. Iterative testing is then done
on parts or on the prototype. For developing iterative prototypes components, the material needs
to be delivered in a short period, otherwise the procurement would be time consuming and this
would increase the costs. As a result, having a strong communication and a better integration of the
supplier is necessary. The disruptive network approach could constitute a solution. This approach
requires a high integration of all partners. (Schuh et al., 2016)

Project Team: Instead of having an indirect communication, a more direct communication is
necessary to achieve more agility in product development. Therefore, team members should be
located in the same place or in the same room. For hardware development, it is also crucial to
involve the purchaser into the development of the product. This needs to be realized in a way that
he or she is dedicated to one project. This leads to higher technical insights. For having agility and
flexibility in procurement, higher prices are paid. This should be discussed with the purchaser in
order to prevent delays. (Schuh et al., 2016)

Product/Technology: Due to iterative development cycles, frequent testing and more changes to
the product are possible. While this is good, problems occur with buying parts that are needed
beforehand. New suppliers are needed which can deliver in a more flexible way. A way to reduce
costs would be buying components that are already on the market. This means that an own

42

4.2. Adopting Agile Methods to Hardware Development

development of components is not needed. (Schuh et al., 2016)

An article of Backblaze Inc. (2015) addresses the same challenges as stated above but proposes
different solutions. For the frequent release principle, it is easier to not create a product after each
sprint but rather to deliver virtual simulations. This would solve many problems in agile hardware
development such as the cost problem of changing the design. Here it would be easy because
there are no physical components and it would lead to more modularity. Another solution for the
same problem would be to focus on a particular component for each sprint. Instead of designing
the whole project, only one component is designed and later in the release cycle, a sprint will be
defined for the integration of all components. (Backblaze Inc., 2015)

The master thesis of Reynisdottir (2013) analyzes the differences between hardware and software
and this thesis examines what aspects need to be changed in order to adapt agility. He claims that
the main difference is that hardware deals with physical objects and therefore has some constraints.
With hardware there is a waiting time for ordering parts and testing cannot be done as frequent as
with software. Moreover, the construction of the product with all the components takes some time.
Therefore, he states that it is rather unlikely to have a shippable product at the end of each sprint.
However, he states that it is possible to use mock ups, computer-aided design (CAD) models,
simulations or rapid prototyping to create prototypes that can be delivered. Rather than trying
to produce a working prototype at each sprint, it seems more reasonable to produce one at each
release cycle, while the goal of each sprint could be to reach a specific goal.

Additionally, if we think of having an overall team, it seems not practical on products that contain
hardware, software and firmware. On the contrary, it seems much more practical to use different
teams with Scrum and to have a Scrum of Scrums. The sprint length could also vary in order to fit
their needs only if it is justified. (Reynisdottir, 2013)

4.2.1. Use Case: John Hopkins University Multi-Mission Bus Demonstrator

In the case from Huang et al. (2012), agile hardware and software development was used to
design two small satellites. The satellites did not use any existing key technology. Instead, a rapid
design and development was necessary to allow changes and assessments in the hardware. In this
case, requirements are hard to determine because of changes and extensive interactions with the
customers. While designing high tech systems takes at least two design cycles to finish and mostly
take a third quarter until the end to be frozen, high uncertainty and a lot of changes lead to a high
flexibility of the engineers.

Challenges: The challenges for the Multi Mission Bus demonstration was to create a satellite
within the CubeSats standardized volume, in order to enable the satellite to launch with other
things, to split costs and to use extra available space. Because of the CubeSat program, a new

43

4.2. Adopting Agile Methods to Hardware Development

market for commercial of the shelf hardware was created to ensure that anybody who wants to
build a satellite could do this. The project uses this hardware to save design costs, but CubeSat has
its own engineering standards which does not require the passing of typical tests for launching.
(Huang et al., 2012)

Practices: Their focus was to increase functionality in a CubeSat format while balancing costs,
schedule and reliability. Because of creating a high tech product, the project had to be highly
flexible in order to overcome long periods of uncertainty and changes. The key points to their
success were: individual and interactions, emphasis on approaches toward a working system, a
collaborative interface with a sponsor, responding to changes in scheduling and tasking in a flexible
way. (Huang et al., 2012)

Individual and Interactions: The project team consisted of highly experienced staff that worked
in high-pressure situations. Each of them lead a sub-team and each of them had the permission
to make decisions on their own and to talk directly to the sponsor. Instead of using a normal
space program development organization, they flattened it and created a new one. External experts
could be called if needed and dismissed when finished. The program manager reported directly
to the head of the space department and therefore was able to implement changes when needed
and he could make personal decisions. Decisions that needed some higher ups could be resolved
with the program manager. This enables the staff to be quicker with the requirements, while also
maintaining cost and schedule. Team members were co-located to enable communications and
discussions. Instead of using a traditional linear project flow of National Aeronautics and Space
Administration (NASA), they used a modified version creating a non-linear one to be more flexible.
They used the concept of build a little, test a little, and learn a lot, which means that instead of
having a number of design iterations and many prototypes, small incremental steps were taken and
issues were fixed as soon as they occurred. (Huang et al., 2012)

Emphasis on approaches towards a working system: Only one review was funded in order to
maximize the benefits of designs and reviewers. This concept was called “only design review”.
Discussions for the requirements were held verbally, for discussions on the concept and for the
features a CAD model or simulations were projected and manipulated in real time. Due to that
the presenter was able to answer questions in detail and this also allowed the review team to have
more detailed view on the design. Reviewers were selected intentionally. To add value, other
non-scheduled peer reviews were held during the program. (Huang et al., 2012)

Documentations were minimized, while all the components drawing were kept and stored under a
configuration managed system. The signature list for the component drawings only consists of the
originator and the leader. (Huang et al., 2012)

To ensure more flexibility, sources for parts were selected depending on whether they were critical
or non-critical parts. Non-critical parts were procured depending on the turn-around and the
lowest cost. Parts that required high precision and a high tolerance were made on NASA certified

44

4.2. Adopting Agile Methods to Hardware Development

manufacturing facilities. Those facilities gave the engineering staff the possibility to monitor the
fabrication process. Costs and cycles could be reduced by using directly the design files to program
the machines. (Huang et al., 2012)

Collaborative interface with sponsor: The sponsor of the project was an active collaborator with
the development. He participated in all major reviews and provided feedback and inputs in order
to assure that what is produced is what is needed. Due to face-to-face meetings with the sponsor,
questions were immediately answered and unnecessary costs thereby avoided. (Huang et al., 2012)

Responding to changes using fluidic scheduling and tasking approaches: Co-located interdis-
ciplinary teams were created only for this project. These teams had special interest in schedule,
cost and the scope of the project. Daily team reviews were conducted using Scrum boards which
contained all the tasks and issues. Adjustments to the highest priority task could be made much
easier due to the Scrum board. Responsible team members for tasks could be seen, and tracking of
progress for each tasks, tasks dependencies and identifying possible bottlenecks could be done
more easily. The highest priories were mostly given to bottleneck issues. (Huang et al., 2012)

Scrum meetings where held quickly and afterwards ad-hoc side discussions could be held in
breakout session. The board also helped the part time team members to see the results of tasks
and to find the responsible person to gain information. The board helped the team visualizing the
current speed of each element progress through the project. (Huang et al., 2012)

Recommendations

Huang et al. (2012) provides some recommendations based on their experience and research
throughout the project:

• Use small teams with a direct link to sponsors/customers to keep them well informed by
including the sponsor into the team.

• Each lead will have the authority and responsibility for their subsystem, for the interface and
interactions with all the other subsystems. The project manager must have the authority to
also report to the highest-level organization.

• Use experts from outside the company on a part time basis when needed.
• Co-locate the technical leads, systems engineer, quality/mission assurance manager, and

program manager, review all the tasks, issues, cost and schedule every day.
• Present concepts and designs in an interactive design review to uncover issues concerning

them.
• Adapt existing processes to the needs of the project. Minimize documentation, but important

work must be configuration managed.
• Analyze and test as early as possible to uncover issues.

45

4.2. Adopting Agile Methods to Hardware Development

4.2.2. Use Case: Svenska Aeroplan Aktiebolaget (SAAB) Electronic Data
Systems (EDS)

In this case, a Scrum like method is used in a multidisciplinary hardware team. SAAB EDS is a
technical company in the defense industry. In this project, three functional lines were involved:
power and cabling, mechanical and microwaves. In the entire method, no software competence was
involved and this team did not cooperate with any other team. It consisted of three to the project
dedicated persons only, with twelve persons involved that also were working on other projects.
The three dedicated team members were product owners. One of them served as the Scrum master.
At the time this study had been carried out, the project was already in its ninth month (out of 22
months). A prototype had already been built. It consisted of eight parts and each part went through
the design, build of prototype and verification phase. (Reynisdottir, 2013)

Method

The project used a Scrum like method. Before that, they had a visual representation of the plan for
the project with tasks for each person. They implanted some methods from Scrum such as a sprint
of three weeks, no particular training was done for the team and only a one-hour introduction of
the method was held. (Reynisdottir, 2013)

Scrum Board: As in Scrum they also used a Scrum board. Their Scrum board was split into
four columns. The first three columns were marked red and reserved for the sprint backlog and
the last column was reserved for the burn down chart and the next for work items. For the sprint
backlog columns, they split it up into a backlog column, a checked-out column and a done column.
While the done column was split into two parts, the second part was - when the tasks was done and
when the tasks had already been accounted – reserved for the burn down chart. Magnets with the
team members’ face on it were used to determine which person was responsible for which tasks.
(Reynisdottir, 2013)

Daily Stand Up: As in Scrum, they did a daily stand up. One for the product owner in which
the Scrum master asked each person about the status of the checked-out tasks. Discussions were
interrupted if they were too long or too technical. (Reynisdottir, 2013)

Planning: Instead of planning 100% of the time, they only planned 80% and 20% for extra work.
A rough plan was made with the project manager and the product owner. Afterwards it can be
corrected for each sprint. (Reynisdottir, 2013)

Work Breakdown: After the first sprints, the work breakdown improved. Instead of having
trouble breaking down tasks with ten days estimation, they were able to break down tasks to two
or three days. (Reynisdottir, 2013)

Prioritization Meetings: The project manager, the product owner and one or two team members

46

4.2. Adopting Agile Methods to Hardware Development

met to decide based on which work items they should plan the next sprint. These items were sent
to the team in a list. After that, the team met together to estimate the capacity of the sprint and if
the time needed exceeds the limit of the first meeting. Some remaining work items were put into
the next box. The team was often not able to finish everything that was planned; 10% were left. As
units for estimation, they used days and hours. The capacity was calculated for each sprint and
therefore the sprint time varied for each one. (Reynisdottir, 2013)

Changing Priorities: In Scrum, priorities, which were set for stories, should be kept through the
whole project, but this did not happen in that particular case. They changed the priorities for the
stories between each sprint, depending on how important they were. If some unexpected extra
work was done, they used pink notes to explain why they were not able to finish other tasks in
time. If some stories became irrelevant, they lowered their priority and put them in the next sprint
with a higher priority. Due to the idle times and the waiting times for externals to finish work or to
deliver parts, the developer may accomplish other work from the next sprint. If there were none,
the project manager tried to find some other work for the person. (Reynisdottir, 2013)

Dependencies and Updates: For estimating the delivery time of the parts, a Gantt chart was used.
The new planning feedback about activities that could not be completed was received sooner than
before. This lead to an earlier update for the in-house customer and the boss. People felt happier
due to the new method. They were more a part of a team now than before. (Reynisdottir, 2013)

Differences to Scrum

Roles: Instead of having stricter roles, they decided to use a product owner as a Scrum master,
which is usually not the case. (Reynisdottir, 2013)

Review/Retrospective Meetings: In the previous sprint they did not review or attend retrospective
meetings. Instead, they wanted to try it in their current one, at the end of the design phase. The
product was verified afterwards. (Reynisdottir, 2013)

Recommendations

Reynisdottir (2013) recommends writing detailed goals for the backlog, in order to find a good and
experienced Scrum master. It is recommended to try to improve the communication between the
Scrum master and the Scrum team.

4.2.3. Use Case: Marel Garðabær (GRB)

In this study a global provider for advanced equipment and systems for food processing is trying
to achieve agility in mechanical hardware development. The embedded software team had already
been using Scrum. Both teams had to cooperate in order to develop a single product and must

47

4.2. Adopting Agile Methods to Hardware Development

therefore be somehow synchronized. Due to the many successes in using Scrum and because of a
new incoming project, an internal decision was made to implement Scrum in the mechanical team.
To do this, an external Scrum master was consulted in order to help the team and the project owner
was not a part of the team anymore. The author of this thesis has carried out some interviews.
Based on the results and based on his observations, he found out which artefacts were not used for
Scrum and he made some recommendations in adopting agile development methods. (Reynisdottir,
2013)

Roles

Scrum suggests that the teams should be cross-functional, which means that all the competences
needed for finishing the product should be gathered in the team. In their study, the teams were not
cross-functional, but the communication and cooperation between the different teams improved
since Scrum had been implemented. It needs to be considered that the team in this case was
self-organized but still needed help for planning from the product owner, which frustrated the team.
(Reynisdottir, 2013)

Product Owner: Here the product owner was responsible for the product value and for the team.
However, the product owner did not manage the product backlog, instead the release plan served as
a backlog. He also did not manage it. The team wrote almost all the stories. The stories were more
technical and solution oriented. The product owner stated that the team should only focus on the
project, as at the beginning they were helping other projects with older designs they made before.
Representing the stakeholder was also a difficult task, especially when there were requirements
that contradicted each other. Moreover the product owner was not completely sure what his role
was and what his responsibilities were. (Reynisdottir, 2013)

Scrum Master: Is responsible for Scrum and for the process itself. In this case, the Scrum master
was not a certified one and therefore lacked knowledge. At sprint 7, they changed the Scrum
master. Serving the team and helping them understanding the rules was achieved by the new Scrum
master, but he did not tell externals whether their interactions which the team was helpful or not
to maximize the Scrum team’s value. He helped the team understand that everybody should be
allowed to take any task from the board. (Reynisdottir, 2013)

He did not invest much time in guiding the product owner. However, he should have done that and
he should have helped managing the backlog. Additionally, there was only one Scrum master for
the embedded software team and for the mechanical team. (Reynisdottir, 2013)

Development Team: At the beginning of the project, the team did not actually know what their
goal was and how they should work on reaching it. On the contrary, they solely worked on their
tasks. During later sprints, the team became more and more confident in reaching their goals, since
they were working on a physical deliverable. (Reynisdottir, 2013)

48

4.2. Adopting Agile Methods to Hardware Development

Here the team was not cross-functional; not all competences were realized in the team. Sometimes
guidance from outside was needed. Most of the time the team-members decided who should do
what on their own. They only needed some assistance from the product owner or the Scrum master
for planning. Because of the nature of hardware, the team could not always deliver a working
product increment. They rather tried to reach a goal for each sprint and delivered some designs
and a bill of material lists. Mock ups could be another way to deliver something, but therefore the
sprint takes more time. (Reynisdottir, 2013)

The team did not have any titles or a shared ownership for the whole product. Instead of having
only one team, they divided the team into hardware and embedded software. This is a contradiction
to Scrum, but still lead to a better outcome for planning the sprints. Good communication and
cooperation is needed for having sub teams. Tasks were done by the team- members themselves,
nobody told them how they should do certain tasks. Only one time the product owner had to
change some tasks because of some new stakeholder information. The product owner already
provided a technical solution, which he should not do. Asking the team for solutions would have
been better. Consisting of only four members for the mechanical team, they were small enough to
have a good communication and large enough to discuss and to perform significant work in each
sprint. (Reynisdottir, 2013)

Scrum Artefacts

Backlog and Items: Reynisdottir (2013) states that they did not have any backlog. Instead, they
created a release plan that served as a backlog. The release plan did not evolve and was not
managed by the product owner. Release stories were described as a subsystem and as components.
The items were not written from a user perspective, they were more technical. Ownership for the
sprint stories was kept in the team. They also created the stories for every sprint on their own.
Backlog items should be expressed in acceptance and quality criteria and as an analysis design.
The team did not agree to this. However, this could have help them to improve. (Reynisdottir,
2013)

Definition of Done: They did not have a real definition of what “Done” is. It was often unclear
how to define a general definition for different tasks. (Reynisdottir, 2013)

Burn-down Chart: Instead of having a Burn-down Chart for each sprint, they decided to use only
one for each release plan they had made. (Reynisdottir, 2013)

Scrum Board: They used a wall sized Scrum board, to help them visualize what has been done
and what they should do next. They also used it to stay up-to date with the progress of the current
Sprint. (Reynisdottir, 2013)

Scrum Events

49

4.2. Adopting Agile Methods to Hardware Development

The team felt that the Scrum meetings took too long and were unnecessary. Even if they did not
want to, they attended it and started discussions and conversations. This is valuable for finding
solutions for technical problems. This might not have happened without them. After moving from a
concept design to a detailed design, the planning and daily meetings became shorter. (Reynisdottir,
2013)

Sprint: These sprints were two to four weeks long. Instead of always having fixed sprint lengths,
they varied the size of a sprint for special circumstances if it was more practical for the team. The
sprint length changed three times (figure 8):

• In Field tests(Sprint no. 7)
• During the synchronizing process with software team sprints (Sprints no. 2 and 9)
• During Vacations (Sprint no. 1 and 8)

(Reynisdottir, 2013)

Figure 8.: Scrum Sprint Experiment Timeline (Reynisdottir, 2013)

Reynisdottir (2013) shows a timeline that displays changes in the sprint length, and various events
that happened during the sprints (figure 8).

The sprints were held one after another without any breaks and without extending the current one.
Only one time in sprint no.5, new information had been gained and the sprint plan was redundant.
(Reynisdottir, 2013)

Sprint Planning: Their planning differs from the one explained in the theory. The team often
decides on its own what it is going to do in the next sprint. Moreover, no one else than the team
and the project owner attends the planning meeting. The project owner only attends the beginning
of the meeting and agrees to the plan at the end. Here in this meeting they do not plan “what” they
are going to work on and “how” they should do it. This happens in the next meeting, when they
split these storied defined in the planning into tasks and calculate the amount of work needed to

50

4.2. Adopting Agile Methods to Hardware Development

complete one. After that, they decide on how much they could take into this sprint. Then they
define their goal. (Reynisdottir, 2013)

Sprint Goals should be defined as milestones of a higher-level product roadmap. At the beginning,
they did not consider milestones at all but at later sprints, they had milestones, which corresponded
with the product release plan. The length of this meeting was rather high at the beginning, but it
was reduced to a two hour meeting with a break. Projects with high uncertainty can take longer, as
more discussions are held. (Reynisdottir, 2013)

Work Breakdown: Breaking down work in a hardware project is rather hard. In this case, they
also had their problems with breaking down. In the first release plan, they broke down their product
into sub-tasks, in the latest ones the product was broken down into sub systems and components.
At the beginning, they did not see the advantages of breaking down the product into smaller junks.
Their first planning was a prototype of equipment which should have been placed in front of the
main prototype machine, which would have been planned in the later release. They created one
large twenty-point story at first, and were asked to split it down further. Then, they split it up into
three parts: Designing a CAD model (13 points), making the design ready for construction (5
points), observe, and assisting during construction (3 points). They stated that the prototype had
less functionality and was smaller than the main machine. They were asked whether they had been
able to split it up as the main machine prototype. It was possible for them to divide it into four
sub-system parts instead of sub-tasks. (Reynisdottir, 2013)

Sprint Review: According to Reynisdottir (2013) the mechanical team did the Sprint Review but
was quite frustrated with that task. I could not demonstrate an entire product functionality, it was
more like a meeting, were they talked about what the teams did, what their findings and hindrances
were. They were not especially happy about showing unfinished CAD models or about talking
of minor technical changes, since they did not think about getting some valuable feedback from
the participants. The participants entailed two teams, the product owner, the in-house stakeholder
and other interested people. Most attendees did not give any feedback and many people were
from other embedded teams. Additionally, the teams felt quite uncomfortable with inviting the
management into their meeting. The meeting plan was created by their Scrum aster in cooperation
with the team, not the product owner who is envisaged for this, as stated in the chapter of Scrum
2.1. This meeting was more about presenting their status and receiving questions and feedback. In
the theory, it is stated that this meeting’s purpose is to inspect the products increment and adapt the
product backlog, which did not happen in this case. The sprint review lengths should be two hours
long for a two-week sprint, the review meetings lasted about one hour and thirty minutes per team.
This was changed after creating the release plan. Now they lasted thirty minutes with fifty minutes
for each team. This was done because of the frustration of the team with having so many meetings
which are time consuming and with no valuable feedback. (Reynisdottir, 2013)

Sprint Retrospective: Retrospective was held regularly right from the beginning of the project.
They had discussions on “what went well” and “what could have been better”. Some results were

51

4.2. Adopting Agile Methods to Hardware Development

executed and some of them were not. In the first sprints this meeting helped them understand the
Scrum framework better, but after some sprints, the team felt that the value of this meeting had
been weakened. The length of this meeting was two hours long at the beginning and after some
sprints it was reduced to thirty minutes, due to the same reason as in the Sprint Review meeting.
(Reynisdottir, 2013)

Daily Stand Up: Daily Stand Up Meetings were held at the beginning of every day in front
of their Scrum board. Sometimes they forgot that there was a meeting. They attended it only
because of the Scrum master. Reynisdottir (2013) states that the team found this meeting useful
for synchronizing their work, sometimes the Scrum master did not help the team with hindrances
which were discovered in this meeting. (Reynisdottir, 2013)

The team did not explicitly answer the three questions defined in Scrum, but the reports answered
these in some way. This meeting’s purpose mainly is to report to the team not to the management.
However, they did report to the Scrum master and to the product owner. This meeting’s length was,
as stated in Scrum 2.1, about 15 minutes long. (Reynisdottir, 2013)

Results of the Experiment

The project team could decide to continue using Scrum or not. They made the decision to continue
using it. This was not obvious as, according to Reynisdottir (2013), the frustration concerning the
framework usage increased. In most aspects, it was a success. They tried to use as much from the
framework as possible. As a result, they stated that it is not possible to clarify whether Scrum is
better than other methods for mechanical teams. However, it was useful for using it. Even if not
the entire framework is implemented, the project still benefits from the following points:

• Increased cooperation and coordination
• Increased communication
• Better overview of the progress of the project
• Priority concerning work, less redundant work
• Knowledge and information is better distributed through the team and everyone else who

attends the meetings
• More frequent feedback

(Reynisdottir, 2013)

Reynisdottir (2013) also states that it needs to be considered that adaptation have to be made
because of the different nature of hardware or mechanical development. In this case, they made the
following adaptations:

• The Team was not cross-functional.
• It is not always possible to produce a working product increment at each sprint, but the

52

4.3. Summary

focus should rather be on reaching a sprint goal (designing a part, or having a part ready for
production).

• The release plan served as the product backlog and was not managed by the product owner.
• The Development Team created the backlog items and it was done in the sprint plan meeting.

(Reynisdottir, 2013)

4.2.4. Recommendation

• Top-Management support is crucial for success.
• Training the team and their manager to ensure that they know the theory behind the frame-

work.
• An experienced Scrum master is needed for implementing the framework.
• Try to make adaptations to the framework if needed, to increase the team buy in of the

members.
• Prepare for a reluctance to change.
• Work break down is hard at the beginning, and therefore needs some practice. The work

should be only broken down into reasonable tasks, which help the team.
• Sprint Review and Retrospective helps with providing value for feedback and it ensures

continuous improvement even if the team does not want it.

(Reynisdottir, 2013)

4.3. Summary

It was possible to implement an agile methodology into a hardware/mechanical environment in
these Use Cases. However, due to the different nature of hardware and mechanical development
adaptation had to be done in order to implement an agile methodology. The case of Huang et al.
(2012) proves that it is possible to implement agility into a hardware and software environment
without implementing a framework. Instead, taking only a few methods from it and using it is
also an option. Additionally, from the study of Reynisdottir (2013) in the case of SAAB EDS,
they did not implement Scrum but rather a Scrumish like method in a multidisciplinary hardware
environment and in the last case of Marel GRB from Reynisdottir (2013), they implemented Scrum
for developing a mechanical product with a mechanical hardware team and an embedded software
team.

These cases should serve positive results for using an agile methodology or for just implementing
some practices into it. The case of Huang et al. (2012) shows, that using a self-organized team,
which had direct contact with the stakeholder, can lead to a quicker implementation of a changed

53

4.3. Summary

John Hopkins SAAB EDS Marel GRB
Author Huang et al. (2012) Reynisdottir (2013) Reynisdottir (2013)
Sector Satellite development Defense industry Food processing
Agile method only some practices Scrumish method Scrum
Challenges new technology, lim-

ited budget, technical
standards, flexible to
changes

mindset change, work
breakdown, hardware
dependencies, chang-
ing priorities

involvement of devel-
opment owner, hard-
ware dependencies

Benefits better communication,
quicker response to
changes, quicker de-
cision making, more
flexibility

better structured,
quicker feedbacks
through better plan-
ning

increased cooperation
and coordination,
improved communi-
cation, less redundant
work, more frequent
feedback

Takeaways small teams, direct
link to sponsors, co-
located, test as early as
possible, concepts as
increments

find a good Scrum
master, improve com-
munication between
Scrum master and the
team, use Gantt charts
for estimating delivery
times

management sup-
port is crucial, train
employees in the
framework, experi-
enced Scrum master,
adapt framework to
your needs

Table 3.: Summary of literature review for agile hardware development

request. Collocating the team here lead to more communication and provided more discussion,
which reduced the number of meetings needed to present the results or to discuss changes. For
discussions on the concept, a CAD model or simulation was projected and manipulated in real
time. This helped them to have a more detailed view on the review team. Using a Scrum board and
daily meetings helps to view the progress of the project and to adjust tasks with new priorities.

They were only in the ninth months in the SAAB EDS project, which entails 22 months. Here they
tried to implement a Scrum like method and used almost every practice from Scrum. They used
a “Next” column in their Scrum board to overcome idle time or waiting times. Breaking down
the stories into tasks is rather hard at the beginning, but this improves after some time when the
team gets some experience in it. They accomplished breaking down tasks from 10 days to tasks
lasting 2-3 days. Priorities could be changed if there was a good reason for it. Mostly they stated
that having a good Scrum master would lead the project to a success.

The case of Marel GRB provides a possible a way of implementing Scrum in a mechanical
environment. The advantages of using it were that they had a better communication and cooperation
of the team, redundant work decreased and there was generally more feedback. Adoptions were
made to the framework in order to implement it. The team was not cross functional, because it
was not possible for them to have all the knowledge needed in their team. It was also not always

54

4.3. Summary

possible to have a working product increment at each sprint, but it was possible to set a reachable
sprint goal. The release plan served as a product backlog, which also differs from the framework.
The team itself created the item for the backlog. These adaptations were made with the help of the
product owner, the Scrum master and the team itself.

Having two different teams with different fields for one product is quite problematic, as sprints
need to be aligned and tested together. Alignment with the software team was done to accomplish
testing. They also did not have a fixed sprint length but rather they tried to adapt the length
depending on the circumstances.

Using agile methods in hardware development is possible according to these cases, but adoptions
must be done to be able to implement the framework. Furthermore, it is not necessary to implement
everything in this framework. Trying to implement one practice after another may improve the
team’s mindset change. It was not explicitly stated in all the cases how the testing was done. Only
in the first case of Huang et al. (2012), incremental steps were done and tested to keep the focus on
meaningful work. One possibility would be to create an early prototype using rapid prototyping, or
testing just parts of a product instead of testing a whole prototype. The sprint lengths also depend
on hardware development, as physical objects are involved in hardware, which usually take some
time to be purchased, delivered and produced. Therefore, the sprint length should be adapted to
one’s needs. However, hardware development would benefit from using an agile method, as it also
is a field of high uncertainty with rapid changes. Using an agile methodology would help solving
these problems.

A summary in form of the table 3 was put together in order to have a better overview of the use
cases and the takeaways.

Recommendations for adopting agile software development methods to hardware-, firmware
development would be:

• Instead of implementing a framework, use some practices from agile development methods.
• Establish self-organizing teams with direct contact to stakeholder.
• Collocate the employees.
• A sprint increment can also be a CAD model or a simulation, rather than only a working

prototype.
• Use a Scrum board with a next column.
• Use a release plan as the product backlog.
• Sprint length should not have a fix length.
• Having a good Scrum master is essential for changing the mindset of the employees.
• Define goals for each sprint.

55

Part II.

Practical Part

56

5. Agile Processes from AVL

The following chapter provides a description of the agile methods used at AVL. It will describe
the agile software development method ALASKA, the agile hardware and firmware development
method ALADIN and it will provide a comparison between the used methods and the literature.

The information for AVL’s agile processes was taken from internal company documents. Therefore,
the references will only be displayed as internal documents for ALASKA and internal documents
for ALADIN.

5.1. ALASKA

ALASKA is a lean and agile software development process including a software portfolio man-
agement. It is designed to be scalable and holistic for more than 200 software developers. The
ALASKA framework is build up in levels, and for each level, roles are defined which interact with
each other (figure 9).

ALASKA is currently only used in a part of AVL namely the Instrumentation and Test Systems
(ITS) department. The method is used for:

• Software products
• Specific extensions from customer to standard products
• Customer applications
• Software components

57

5.1. ALASKA

Figure 9.: ALASKA process (AVL, 2017)

5.1.1. ALASKA Process

The ALASKA development process is just a part of the AVL process structure for the “Research
and development” process. ALASKA is a continuous software development process with a strict
cadence of program iterations and team sprints.

The ALASKA process consists of three levels with different tasks: portfolio level, program level
and team level (figure 10).

The portfolio level process is a continuous process that manages many software product portfolios.
Its aim is to coordinate requirements concerning the portfolio and coordinating and supporting
refinements of various programs (figure 10).

There are many different programs that are managed by the portfolio level process. These programs
consist of product families. The program level process describes the roles and the activities within
a program iteration. It consists of a team level process for many different teams and the program
level process therefore synchronizes the activities (figure 10).

The team level process describes the roles and activities within a sprint. This process is based on
Scrum and here the real development is realized.

58

5.1. ALASKA

The ALASKA process structure contains of

• 5 program iterations with a length of 10 weeks, each week encompasses:
– 4 development sprints with a length of 2 weeks
– 1 innovation and planning sprint with a length of 2 weeks

The software is tested and developed in teams. In order to coordinate these teams, all the activities
are described in the team level process, which is performed repeatedly with a two-week sprint
length. The produced software is then integrated into products and software systems.

Activities of finding product requirements, specifying requirements for the teams, and integrating
and testing the software increments are described and coordinated in the program level process,
which is performed during a ten weeks iterations length.

Requirements regarding the software product portfolio, which arise from various strategies from
roadma, the coordination of requirements between programs and the communication regarding the
development process are coordinated and described in the software portfolio management process.
This process is performed continuously. It is regularly synchronized with the program level process
if a new program iteration is to be prepared.

Software increments are delivered regularly in form of product releases and service releases.
Different AVL processes plan these releases:

• PLC (Product Life Cycle)
• PIP (Product Innovation Process)
• Software Maintenance

59

5.1. ALASKA

Figure 10.: ALASKA framework (personal design based on: AVL, 2017)

60

5.1. ALASKA

5.1.2. Team Level Process

The team level process describes the roles and the activities within a sprint. This process is based
on the Scrum frameworks meetings, roles and events and it can be implemented independent from
other processes of ALASKA (figure 11).

Activities in this process are:

• Software requirements refinement
• Software design, architectural and behavioral design
• Software build, implementation, unit test and software integration
• Software test

Figure 11.: ALASKA team level process (AVL, 2017)

5.1.2.1. Roles

Development Owner: Here the development owner represents the customer, and he or she is
working with the product manager and other stakeholders (other development owner, the team)
to define and to prioritize the team backlog. The development owner is the only team member
who can add new stories to the system baseline. In ALASKA, the development owner has another
task. He or she must participate in the product management team meetings and in planning and
backlog/vision refinement session. The development owner shares the content authority with the
product management; the responsibilities therefore have to be defined explicitly. The development
owner is often more at the solution/technology/team facing side. His primary roles are:

• Backlog refinement: Taking input from the product manager and stakeholder. His responsi-

61

5.1. ALASKA

bility is to build and maintain the team backlog.
• Sprint planning: He reviews and re-prioritizes the backlog for the sprint planning. This also

includes the coordination of content dependencies with other development owners. He must
accept the final sprint plan.

• Just in time elaboration: The process flowing must continue.
• Accepting stories into Baseline: Accepting user stories into the baseline and validating that

the stories meet the acceptance criteria.
• Program Increment: The development owner has the responsibility of coordinating the

content dependencies for each shippable increment by attending weekly development owner
team meetings.

• Potential increment: As a member of the product management team, the product owner is
involved in the preparation of the release planning and of the planning event.

Agile Team: The agile team consists of seven +/- two members including developers, testers,
an agile master and the development owner. It should be a cross functional group that has the
ability to elaborate, prioritize requirements and create a solution for them. They also write codes
and tests for and against the solutions in a time boxed iteration. As in Scrum the team here is
self-organized and self-managed. They are responsible for delivering the results that meet the
stakeholder requirements. This includes estimating the amount of work, determining a technical
solution, delivering a high quality product and continuously finding certain aspects that need to be
improved.

The agile team is assigned to programs. Therefore, their team backlog is influenced by the large
program backlog. To coordinate solution buildings, sprints of every team are aligned with the other
teams in the program.

The agile teams in ALASKA are not solely based on Scrum but also on XP. Therefore, ALASKA
provides some guidance on how to develop code, implement the practice agile architecture,
continuous integration and test-first development.

Teams in ALASKA are collocated to communicate at all times and with all participates on several
meetings. This includes the daily stand up, the sprint planning, the sprint demo and the retrospective.
In some cases members, also participate in the system demo meeting.

Trusting others is a fundamental principle of ALASKA. This trust is established by common sprint
goals, potential team increments objectives, regular feedback through loops and the inspect and
adapt program.

There are two different types of teams in ALASKA: “Feature Teams” and “Component Teams”.
Feature Teams develop features product and release orientated, while the Component Team
develops components which can be used for several products. Therefore the developed components
should be reusable and should represent the platform idea. They also support the feature teams by

62

5.1. ALASKA

providing the desired components. Both teams work in programs. Component teams can change
program affiliation only between sprints and can accept backlog items from other programs.

Agile Master: The agile master is a servant leader whose role it is to help the self-organized and
self-managed team to accomplish their goals. He or she is responsible for reinforcing the rules of
Scrum and ALASKA so that the team can understand and agree to them. Another responsibility
of the servant leader is to facilitate the team progress and to keep the team focused on the goals
of the iterations. It is also his or her duty to accomplish continuous improvements that includes
helping the team taking responsibility for their actions and helping them to improve. The servant
leader also has to eliminate hindrances that are beyond the team’s authority and help to foster code
quality practices.

In ALASKA, the agile master also has some additional responsibilities:

• Coordination with other agile masters, the system team and other stakeholders that participate
in the release planning meetings.

• Helping with preparation and willingness for the release planning and the inspect and adapt
ceremonies.

• Using standardized estimation tools to help estimate epics or features.
• Coordination of teams under architectural and portfolio control, system level integration and

the regular system demos.
• Coordination with other agile masters in the Scrum of Scrum.

5.1.2.2. Artifacts

Team Backlog: is the collection of all the things a team has to work on for accomplishing their
goal. It contains user stories, technical stories, defects, infrastructure work, spikes and refactors.
The content of the backlog comes from different sources, including the program backlog, the
team’s local context and the needs of other stakeholders.

The program backlog consists of the features that should be delivered during a single program
and of features for the upcoming programs. All the features which are planned to be implemented
in a program iteration are then broken down into stories during the release planning and are then
allocated to individual sprints in the team backlog. Estimation is usually done in story points.

For the team context additional to the stories that are needed for the program features, the team
also has a backlog for refactors, defects, rehears spikes and other technical things. In addition,
these things must be identified, estimated and prioritized.

Some of the backlog stories are in support of other teams and stakeholders objectives. These stories
can reflect team dependencies, estimate spikes, research and other external commitments.

63

5.1. ALASKA

Story points measure the estimation of the backlog items (user stories, refactors and spikes). These
story points are added together for higher requirement levels (features and epics). With these,
the velocity of the team can be measured. While defects are estimated in working time units
(ideal person hours and days), this part is not considered in the team’s velocity. If a feature can be
implemented by one team, then all the user stories are added together to estimate the feature. This
estimation is then used by the product management for the Weighted Shortest Job First(WSJF)
prioritization model. If the team can only implement a part of it, then the total estimation of the
features is done including the roll-up from each involved team. Additionally, all features which
consist of more of than one team are updated to estimate only the work which needs to be done.
This helps to estimate how much work is remaining for the feature.

Because defects might also occur in the backlog, we need to consider how much time we can
allocate for refactoring, bug fixing and maintenance. These things bring no immediate value
compared to new user stories. For this, they are using Capacity Allocation. With this the team
can estimate how much of their total effort can be applied for different types of activities. The
allocation can be changed after each program increment.

Defects, local stories and refactors need to be estimated by using value/size or WSJF.

Sprint Backlog: contains a list of tasks that the agile team has to complete in order to create a
deliverable increment of functionality. Sprint backlog items are estimated in hours and should not
exceed the limit of one day, unlike the team backlog items. The agile team has the responsibility of
keeping the sprint backlog up to date. This means that during a sprint, new tasks are added and
adjustments are done. For better visualization of the sprint backlog, an agile task board is used.
This helps to see how the progress of the current sprint is proceeding.

5.1.2.3. Events

Backlog Grooming: to prepare the team’s backlog for the upcoming sprint plan meeting, backlog
grooming is performed. In this meeting, the whole team including the development owner, the
development team and the agile master has to be present. New stories and epics can be added,
existing epics can be broken down into stories and the effort for existing stories can be estimated.
This helps the sprint plan meeting to plan quicker without wasting time and most importantly, if
the developers see the stories for the first time in the sprint plan meeting, errors in the estimation
may arise.

Two different kind of estimations are used in ALASKA; the relative estimating and the estimating
poker. The relative estimating uses the size (effort) of the smallest story relative to each story.
Finished stories are then considered in the velocity of the team. With the velocity, it is possible to
estimate how much work can be added to it in the upcoming sprints. It is also used to estimate how

64

5.1. ALASKA

it will take to deliver larger features or epics.

A difference to normal Scrum is that for each team the story point estimated and thereof the velocity
may vary. ALASKA tries to have a normalized story point velocity estimation, in order to estimate
epics or features that require more than one team working on it correctly. Therefore, ALASKA
demands that each story point means the same for different teams. This can be accomplished by
converting story points to cost.

ALASKA uses the following algorithm to normalize the story points and velocity to a common
baseline:

• Use of the pseudo Fibonacci sequence: 1,2,3,5,8,13,20,40,100(too big), ? (Unknown) for
story points.

• No stories larger than 13 points are allowed in a sprint.
• At least 3 to 5 stories should be completed at each sprint.

Sprint Planning: is used to plan the work for the current sprint that can be accepted by the team.
This helps the team to agree on the goals for the sprint and to have a commitment based on the
team’s capacity; consider complexity and size of each story and on depend stories and other teams.

The Sprint plan meeting refines the previous sprint plans from the release planning session. The
team backlog for the sprint plan meeting is already pre-elaborated and aided by a separate backlog
grooming session. Therefore the teams already have a backlog that consists of stories from the
release plan meeting and of defects, spikes,refactors and stories that have been derived from the
planning session. Feedback from different sources, from prior sprints (stories which did not meet
the definition of Done) and feedback from system demos, the teams local demo and the program
iteration objectives from the program iteration release planning are taken as an input for the sprint
plan meeting. This meeting’s duration is about four hours or less long.

For the meeting the development owner will have prepared some sprint goals based on the
progress in the program iteration. Sprint goals and higher priority stories are reviewed. The teams
discuss technical options on how to implement technical issues, nonfunctional requirements and
dependencies and the team plans the iterations. The team makes estimations of how much effort it
takes to complete a story and elaborations for the acceptance criteria. Based on the velocity of the
previous sprint the team selects stories and breaks them down into tasks and estimates the tasks in
hours to confirm that they have the skills and the capacity to complete these tasks.

The team determines in the beginning how much capacity each member has to perform in the
upcoming sprint (availability, time off, potential duties). The capacity allocation is also considered.
The average velocity of the last sprints constitutes a help to plan how much work can be done in
the upcoming sprint.

65

5.1. ALASKA

After that, the team focuses on understanding and accepting one or more sprint goals, which are
based on the team and program objectives from the release planning. Depending on different
factors, sprint goals can be adjusted.

Based on the goals, the pre-refined backlog is reviewed. The team based on the difficulty discusses
each story, size, complexity, technical challenges and acceptance criteria and the team agrees on
the size estimation of a story. Stories (tasks) are written into a list until the whole capacity of the
team is reached. After agreeing on the list, the list is transferred into the sprint backlog.

Usually the breakdown of the stories is done in a separate planning meeting. The best person to
accomplish this task is than chosen, the task is estimated in hours, and other dependencies are
considered to accomplish this task. Not all tasks have to be allocated to a person. However, it
should be allocated to at least one person, as each member should work for some time. After that,
each member can chose tasks on their own.

Daily Scrum Meeting: Each day the team members gather to answer three questions: “What have
you done since yesterday?”, “What are you planning to do today?”, “Any impediments/stumbling
blocks?” To do this each team member has to be prepared in order to answer these questions. The
location should always be at the same place and the meeting should have a duration of 15 minutes
length.

Sprint Demo: Is held when the team is able to demonstrate a functionality of the increment
produced in the sprint. The sprint demo can be held at any time when there is something to show.
Presenting it to the stakeholder helps to develop an understanding of how their requirements are
implemented. Therefore, this may cause a good feedback. The feedback is an input for the sprint
review meeting. While the sprint demo can be an independent meeting, it could also be a part of
the sprint review itself.

Sprint Review: Is a meeting for inspecting the increment and adapting the team backlog. The
meeting is held at the end of a sprint. The team reviews what has been done or what has not been
done in the sprint and tries to improve the next thing to optimize value. In a four-hour time box,
the team discusses what went well and what problems occurred during the sprint. Not only the
increment is reviewed but also the timeline, budget, potential capabilities and the marketplace for
the next release of the product are reviewed. The result of this meeting is a product backlog that
defines the new items for the next sprint.

Sprint Retrospective: The purpose of this meeting is to reflect on the sprint, and find new ways
of improving the process in a long term way. Each person who has any role in the iteration can
participate. The meeting is held biweekly at a 60 minutes time box and is split into two parts,
the quantitative and the qualitative. In the quantitative part, they assess whether they meet all the
sprint goals. Metrics such as the velocity and other ones, which can be chosen independently, are
analyzed. This should help to develop an understanding for their current process. In the quality

66

5.1. ALASKA

part, they review the items that were identified in the last retrospective, and they analyze their
current process to find some things they may improve in the next sprint. They ask themselves:
“What went well’, “what didn’t go so well” and “what can we do better next time?” When these
improvements are identified, larger improvements should be split up into smaller improvement
items, in order to finish them quickly.

5.1.3. Program Level Process

The program level process describes the roles and the activities within a program iteration (figure
12). The program level process consists of the team level process and therefore synchronizes
activities between the development teams. All the activities on this level are performed to create
a program increment: Product requirements elicitation and refinement, product and system level
integration, product and system tests, coordination of development activities regarding product
release.

Figure 12.: ALASKA program level process (AVL, 2017)

67

5.1. ALASKA

5.1.3.1. Roles

Product Management: is responsible for defining and prioritizing the program backlog and
for working with the development in order to optimize the feature delivery to the customers in
balance with the AVL’s technical and economic objectives. For projects that are more complex,
this role is split up into two different Roles: Product Manager and Content Managers. The product
manager is more responsible for the customer side. Product managers discover new markets for
customers and they do market researches, create product strategies, plan and make decisions. The
content manager’s responsibilities are requirement-refining, communication with the agile teams,
program backlog grooming, release planning readiness of program backlog and acceptance of
feature delivery.

To summarize, the product management’s responsibilities are:

• Working with the portfolio management to prioritize and determine business objectives.
Therefore, the product manager must be a participant of the portfolio management team.

• Working with system architects in order to understand what the architectural epics are. While
the product manager cannot decide which technology is used, he or she can assist on the
decision-making.

• The product manager has to create a program vision, which contains the “what” question for
each program solution. In order to do this, customer/market analysis has to be performed
to know the customer’s need. The complete vision is communicated to the team. Creat-
ing requirement documentation including use cases, scenarios, standards, helps the team
understand what to do and how to break features into stories for the implementation.

• Managing the program backlog and program iteration release content.

• Participating in the release planning, release management and solution validation.

• Maintaining the product roadmap, at the end of each planning event.

• Building an effective product management/development owner team, to ensure that the
development is effective and efficient.

Agile Program Manager: is the “chief Scrum master” whose responsibilities are facilitating
program level processes and program execution, escalating impediments, managing risks and help
driving continuous improvements on the program level. Additionally, agile program managers
have the responsibility of facilitating the release-planning event, release management meetings,
inspect and adapt workshop and the Scrum of Scrums.

68

5.1. ALASKA

System Architect: This role is not defined in Scrum. The system architect works with the
agile team and focuses on design decisions to support future features. ALASKA defines two
different kinds of system architects. Firstly, the Enterprise Architect, whose responsibilities lie
on the portfolio level. He or she must assure that the It/Software strategies and technologies are
aligned with the business needs of the enterprise. Secondly, the Software/System architect. His
or her responsibilities are located on the program level. The system architect must have a high
level of understanding the user vision and the system needs. System architects need to have an
understanding of how to implement frameworks which are vitally necessary to support the user
and business needs.

System Team: is a specialized team for the initial building of development infrastructures and
program level activities, such as system level continuous integration and end to end testing.

Feature Team: is a long-lived, cross-functional and co-located team of seven +/- two members
which complete end-to-end customer features one by one. All the knowledge needed for completing
the features is in the team.

Component Team: is a team which focus lies more on the creation of one or more components of
a larger product. The team creates assets or components which are then reused by other teams to
create customer-valuable solutions.

Program Steering Team: is responsible for scheduling, managing and governing synchronized re-
leases (program iterations) across one or more program or product lines. They coordinate and make
it easier to deliver produced software solutions developed by the ALASKA program. The team
typically consists of the Agile Program manager, senior representatives from product management,
marketing, quality, development, program management and operations/deployment/distribution.

5.1.3.2. Events

Program Backlog Grooming: is almost the same as the backlog grooming for the team level
process. Here the product management and the system architects meet up before the release
planning to refine the backlog. This includes reviewing and updating features, establishing
acceptance criteria, breaking down features into smaller task and determining the architectural
features. For prioritizing the backlog, the WSJF method is used. Just before the release planning is
held, the product manager makes the final backlog preparations, updates the vision, works with the
development owner to socialize the backlog to the events and the system architect updates all his
models and features and creates some use cases for illustration. In case of not having only new
features or architectural features in the backlog, the “capacity allocation” method is used in the
same way as in the team level process backlog grooming.

Release Planning Preparation: For the release, planning a preparation is held to ensure organi-

69

5.1. ALASKA

zational readiness, content readiness and facility readiness. For the organizational readiness one
has to consider that if the scope of planning is understood, which teams need to plan together,
agreement on priorities among the business owner is established and if there are actual agile teams
which have a development and test resource and know who the agile master and development
owner are. For the content readiness one has to define the business context; a short briefing from the
product manager including top ten features and architectures briefing to present some new features.
For the facility readiness one has to ensure that there is enough space for all attendances and all
the needed infrastructure has to be available. It is also necessary to have some communication
channels ready.

Release Planning Meeting: is the seminal, cadence based synchronization point of the program.
This meeting is an event in which all the participants have to be at one location and the event
consists of all members of the program. The time box of this event is one and a half day at each
program iteration. In case of different locations, this event may be held simultaneously with
constant communication. It consists of a standardized agenda including the presentation of the
vision, team-planning breakouts, commitment to the program iteration and release objectives for
the next program iteration time box. The result of this event consists of the team program iteration
objectives for each individual team, a summarized set of program iteration objectives (including
release commitments), a program iteration plan for identifying the milestones during this period,
and a vote of commitment for the objectives from the program. After the planning, the roadmap is
updated so that it reflects the results and the forecast for the future program iterations.

Program Iteration progress monitoring: For monitoring the progress, this is the best option. It
consists of bi weekly reports of the program steering team. The purpose is to measure the progress
of the used software. Other tools for measuring the progress are the release burn down chart and
the feature status report. Additionally, for programs consisting of more than one team, a Scrum of
Scrums is held bi-weekly to monitor the progress of each team.

Inspect and Adapt Meeting: is held after each program iteration. It is the same as the sprint
review and the retrospective in the team level process. Here it is possible to reflect upon problems
and to solve them, to make improvement actions and to increase velocity, quality and reliability
for the next program iteration. This is done by showing the current state to the stakeholder. With
the feedback from the stakeholder and the collected information, a retrospective and a problem
solving workshop is done.

Program Increment done: it is used to check whether the current program increment fulfills
the definition of “done” for the program iteration and the potentially shippable increment. The
requirements are evaluated in the inspect and adapt meeting. Based on that, the decision is made to
release the program increment on the market.

Program level integration and Testing: creating the solution is mostly done by the agile design,
build and test teams. However, for integrating and evaluating of a full system solution, an extra

70

5.1. ALASKA

team is built on the program level, namely; the system team. The system team then integrates
the software increment into a product or a software solution in order to ensure that the software
runs stable. After that, they prepare the system for a system demo to demonstrate the functional
capabilities. After a successful system demo, the system is tested with focus on nonfunctional
requirements. This activity can be done during each sprint at the sprint demos. Another approach
would be to do this for individual “done” stories/features.

Program iteration: consists of a certain structure and sequences for the work of the agile devel-
opment teams. One program iteration produces a program increment release, within ten weeks.
It consists of four development sprints and one innovation and planning sprint. This is the same
for all the different agile teams within a program. The starting point and the finishing point are
aligned in a way that the dates are as close as possible.

Market Release preparation: shows how and when to release a product increment. Therefore,
a cooperation between the ALASKA process and the product innovation process (PIP) and the
product launch process is done. It consists of releasing program increment boundaries after
everything is finished. Another way would be to release more frequently or less frequently
depending on the given needs. A more realistic way is to have a combination of all three methods:
Release whatever you want whenever it makes sense.

5.1.3.3. Artifacts

Program Level Backlog: Consists of all the upcoming work necessary to achieve the program
solution. The difference between the program backlog and the team backlog is that in the program
backlog architectural features are also inserted. The responsible person for maintaining the backlog
is the product manager. For having a good balance between feature development and architectural
features, the system architect and the program management decide it with the help of capacity
allocation. Prioritizing and re-prioritizing is done using the WSJF method and the planning
boundaries.

Architectural Features: are technical systems that allow the developer to implement business
features that deliver solution values. Identifying, splitting these features into tasks and prioritizing
is the responsibility of the system architect; implementing is done by the agile teams.

Architectural Runway: is the ability to implement high priority features in a near term program
increment without having an excessive delay inducing or even redesigning. Architectural epics are
split into smaller features. Each feature should be implemented within a program iteration. Due to
this, the implementation and testing are behind the scenes until the capabilities exist to support the
implementation of new business epics and the program level features.

System Demo: to measure the progress of working software, ALASKA implements two different

71

5.1. ALASKA

kind of demos at the end of each sprint: the sprint demo (for individual teams) and the system
demo (for program level). The system demo provides an integrated perspective on all the new
software that is created by the teams in the program in the recent sprint. With this demo it is
possible to gain system level and customer feedback.

5.1.4. Portfolio Level Process

In ALASKA, the portfolio management process describes the roles and activities for managing
the software product portfolios (figure 13). The difference between the team and the program
level is that this process is a continuous one. The aim of this process is to coordinate requirements
concerning the product portfolio, coordinating and supporting the refinement of cross program re-
quirements and managing synchronized hand overs of cross program requirements to the ALASKA
development program. Moreover, this process seeks to monitor and communicate the progress of
the implementation of cross program requirements and to coordinate creation, maintenance and
communication of the portfolio release roadmap, which is based on the roadmaps provided by the
product management, development and the customer projects.

Figure 13.: ALASKA portfolio level process (AVL, 2017)

5.1.4.1. Roles

Portfolio Management: is the highest role in ALASKA. It represents the investment, return and
content authority. The portfolio management consists of business managers, and executives who

72

5.1. ALASKA

have the responsibility of strategy and investment funding, program management and governance.
In order to define and implement the portfolio product/solution strategy, a profound understanding
of the enterprise business strategy, technology and financial constraints is needed. This task needs
assistance from the project or program management office that shares the responsibilities of guiding
the program execution and governance.

Epic Owner: this role is presented in ALASKA because sometimes epics have cross cutting,
crossing programs, and business units. This role has to accompany the epic through the Kanban
system and developing business cases. After approving it working directly with the key stakeholder
at the affected programs.

Enterprise Architect: works with business stakeholders and system architects in order to imple-
ment technology across many programs. This role has the responsibility of choosing a technology
that supports the current investment themes, assuring that individual program and product strategies
align with the enterprise objectives, developing and deploying infrastructure, implementing them
incremental and having feedback from the teams.

5.1.4.2. Artifacts

Portfolio Strategy: has to consider many different strategies from the strategy of the business unit
to the strategy of the customer. Each of these strategies have an impact on the portfolio and from
them two relevant for strategies are derived for ALASKA: Strategic themes that are the input for
the portfolio strategy and which contain business requirements. They cover larger cross program
initiatives and the product line strategy that is created by the segments who develop products based
on the related business segments. This is an input for the product management and their product
strategy and in ALASKA, this is also the basis for the program strategy.

Portfolio Vision: represents the elaboration and commitment of action to the enterprise business
strategy. It holds the programs, budgets and portfolio backlog epics that represent the vision of
a portfolio of programs. The budget for the programs are allocated per program. This provides
each program with the authority of making their own decision. Other elements for the portfolio are
managed through the portfolio backlog. For this a special budget is reserved, namely the portfolio
backlog budget. It contains the budget that is reserved for cross cutting business and architectural
epics.

Portfolio Roadmap: consists of a mid-term timeline of proposed product releases and their
content. The timeline is based on the vision that is based on the portfolio strategy. It helps to order
the strategy themes based on the expected market availability. It is used as an input for ordering
the portfolio and program backlog before having a release-planning meeting of the programs.

Portfolio Epics Kanban: consist of a Kanban system for business and architectural portfolio

73

5.1. ALASKA

epics. It is used to have more visibility on strategic business initiatives, establishing a structure
and making the process more visible. It also provides work in progress limits, helps to drive
collaboration among the stakeholder, architecture and the development team.

Business Epics: are large cross cutting customers facing initiatives that need new development in
order to realize a certain business benefit. Approved business epics are managed in the portfolio
backlog. They are processed through many states of maturity until they are finally moved to
implementation. This process assumes economic analysis of the business driver behind the epic, its
technical impact and strategies for incremental implementation. A business epic implementation
can take many program iteration and product releases and may affect multiple release trains,
applications, solutions and business platforms. Additionally, it also affects multiple departments,
business units and other end-to-end business value.

Architectural Epic: are large cross cutting technology initiatives that are necessary to evolve
portfolio solutions that support current and features business needs. Architectural epics are
approved and then managed in the portfolio backlog. As for business epic, also the architectural
epic will pass through many states of maturity until it is moved further to implementation. The
process provided also assumes an economic analysis of the business and technology driver, its
technical impact and the strategy for implementing it incremental.

Strategic Themes: are topics of strategies that are relevant for the development programs in
ALASKA. They describe larger cross program initiatives. The themes have to be defined into
business requirement stories in order to be put into the portfolio Kanban.

Business Requirement Stories: is the collection of information about requirements that internal
stakeholders have concerning the product portfolio. They are the input for the portfolio epic
Kanban system in the workflow of the Kanban system. Additional information is collected to
support the decision-making, such as market driver, customer needs and benefits, competitive
advantages, technical feasibility, financial reward estimation, etc.

Program strategy: is the strategy for development of customer values. In a technology and
development focused way, it defines how the market requirements are fulfilled so that it is resource
efficient, while it also considers the whole product life cycle and the total cost of ownership.
The program strategy consists of a product strategy for products, synergies between product and
resulting software solutions, in development and common component and platform strategies.
The strategy is developed by the product management with a focus on the content manager,
system architect, business owner and line managers with the help of the portfolio management and
enterprise architect.

Product strategy: is rather market focused and contains all the information about market access,
business development, information about competitors and their strategies and vision, a roadmap
for the marketing and development of the AVL’s products.

74

5.2. ALADIN

Program/Product vision: describes the solution that should be developed. It contains the features
that meet the stakeholder’s needs, a market description and customer segments. It main content is
a set of features (functional and nonfunctional), which is the input for the program and represents
the boundaries in which decision for new user stories are made.

Program and product roadmap: represent a three to six month timeline of program iterations
and release milestones. It contains three different visibilities: high-confidence for the next program
iteration, medium for the one after and low confidence for longer term (due to a change of business
objectives). The roadmap is developed and maintained by the product management.

Program epics: are epics for a single program train. They can have the size of many program
iterations. They can be identified by the portfolio backlog or may occur locally. They always
require an analysis and impact assessment.

5.2. ALADIN

ALADIN (AVL’s Lean and Agile Device Innovation Framework) is an agile development method
based on Scrum for the entire hardware development within the ITS department. The ALADIN
process is not finished and is currently still in the test phase. In this phase, the process is being
changed and updated to fulfill the vision of agile in a hardware environment.

5.2.1. ALADIN Process

As ALASKA’s team level, the ALADIN process is based on the Scrum framework. ALADIN
consists of the same meetings and roles with some additional roles and events (figure14).

5.2.2. Roles

In the ALADIN framework, there are four major roles: Development team, Scrum master, product
owner and the product manager. The Scrum team is called “core team” in ALADIN it consists of
the Scrum master, the development team and the product owner. The team itself is self-organized
and cross functional. It has all the knowledge needed to fulfill the requirements without depending
on external ones. The team choose itself how to work and who should do what.

Moreover, ALADIN has an extended team that consists of the product manager and other stake-
holders such as manufacturing, procurement and service.

75

5.2. ALADIN

Figure 14.: ALADIN framework (AVL, 2018)

Product owner: has the responsibility of maximizing the value of the product and of maximizing
the efficiency of the development team. The product owner is also responsible for managing the
product backlog, which includes expressing product backlog items, ordering the items, ensuring
that the product backlog is visible and transparent to all and ensuring that the development team
understands the product backlog items. Only the product owner can change or add new items to
the product backlog. This ensures that nothing will disturb the development teams’ work.

Additionally, the product owner has to align his work with the product manager who is responsible
for the ITS product innovation process, the costs and scheduled plans.

Scrum Master: has the responsibility of ensuring that Scrum is understood, which means that
all the rules are followed, and everyone knows the theory and practice. The Scrum master is
a servant-leader of the Scrum team, he or she tries to minimize the unwanted interaction with
the Scrum team and helps people outside from the Scrum team understand which interactions
are useful for the Scrum team. Therefore, the Scrum master has different purposes concerning
the product owner, development team and the organization itself. Concerning the product owner
the Scrum master helps finding techniques for managing the product backlog, ensuring that the
product owner knows how to arrange the backlog to maximize the value, understanding agility
and facilitation scrum events when needed. The Scrum master helps the development team by
coaching the team to be self-organized and cross-functional, creating high value products and
removing impediments. In terms of the organization, he or she helps by leading and coaching
the organization concerning the adoption of Scrum, planning Scrum implementations, causing
changes which increase the productivity of the scrum team and helping by working with other
Scrum masters to increase the effectivity of Scrum in the organization.

76

5.2. ALADIN

Development team: works to create a potential releasable increment of a product at the end of each
sprint. However, in ALADIN the main goal is to have feedback about internal deliverables rather
than realizing a product increment for the customer. The development team is a self-organizing
and cross functional team. Nobody tells them how they should do their work and they have the
needed knowledge to solve the backlog items. The accountability should belong to the whole
development team and not to individual members. The development teams’ size should be big
enough to complete significant work within a sprint but small enough to remain nimble.

Product manager: has a more market/customer based view. Her or his role is the same as in the
product innovation process of AVL. Product managers needs to work closely with the product
owner. They attend Scrum meetings such as sprint planning and review. The product manager
represents the customer and he or she is responsible for contributing to the backlog definition and
refinement. Due to the market or customer based view the product manager is responsible for the
product strategy, the product vision, the product release roadmap and the creation of market based
requirements. Regarding the product innovation, it is the product manager’s responsibility to create
business cases, definitions of target goal production costs and to review the Return of invest.

5.2.3. Events

ALADIN entails the same events that the Scrum framework does. All of these events are time
boxed and everyone can attend them, except the retrospective.

Daily Standup: is held daily with only fifteen minutes with the development team, the Scrum
master and the product owner if necessary. In this meeting, the development team will explain
what they did yesterday, what they will do today and whether they see any impediments. These
meetings help the development team to understand what everyone is doing, what they are going
to do in the next 24 hours and how they can work together to reach their goal. The development
team will use this meeting to inspect the progress towards the sprint goal and the progress towards
completing the work in the sprint backlog. The Scrum master is responsible for ensuring that
all the development team members will participate in the daily Scrum. Additionally, it must be
ensured that the meeting will not exceed the limit of fifteen minutes. Daily Scrum improves
the communication, removes unnecessary meetings, helps to identify impediments and improves
decision making and the knowledge of the team.

Sprint planning 1: is held once at the beginning of the sprint with a two-hour time limit for a
two-week iteration and four hours for a one-month sprint. The development team, the Scrum
master, the product owner, the product manager and other stakeholders get together to discuss what
could be derived from the resulting increment of the upcoming sprint and what work is needed to
achieve the delivery of the increment. To carry out these tasks, the development team will forecast
what functionalities will be developed in the sprint, while the product owner discusses the objective

77

5.2. ALADIN

of the sprint and what product backlog items have to be finished in order to achieve the sprint goal.
As an input for this meeting, the product backlog, the latest product increment, the capacity of the
development team and the past performance is needed.

Sprint planning 2: is held once at the beginning of the sprint, with a two-hour time limit for a
two-week iteration and four hours for a one-month sprint. In this meeting the development team,
the Scrum master and product are the participants for this meeting. Here the development team will
decide how they will implement functionality into a “Done” product increment during the sprint.
The selected product backlog items for this sprint are inserted into the sprint backlog. The items
the development team selects vary in size and estimated effort. These items will be decomposed
to tasks within one day or even less. The product owner helps the development team to clarify
the selected product backlog items and to make some trade-offs. If the development team has too
much or not enough work, they can renegotiate the selected product backlog items with the product
owner.

Backlog Refinement: is held once or twice a week with a one-and-a-half-hour time limit for a
two-week iteration. In this meeting the development team, the Scrum master and the product owner
get together to add some detail and they estimate and order the product backlog items. The Scrum
team decides when and how the backlog refinement is held, but even then, the product owner has
the power to update the product backlog items at any time. The product backlog items that can be
implemented in one sprint are deemed as “Ready” for the selection into the sprint backlog.

Sprint review: is held once at the end of the sprint with a two hours’ time limit for a two-week
iteration and four hours for a one-month sprint iteration. In this meeting the development team,
the Scrum master, the product owner, the product manager and other stakeholders get together
to discuss what has been done. They seek to receive feedback by demonstrating what has been
done, discussing what went well and what problems occurred during the sprint. They discuss the
product backlog and adapt it if needed. They also discuss what they want to do in the next sprint,
analyze the marketplace or the potential of the product change and review the timeline, budget and
marketplace for the next release of the product.

Sprint retrospective: is held once at the end of the sprint with a one-and-a-half-hour time limit
for a two-week iteration and three hours for a one-month sprint iteration. In this meeting the
development team, the Scrum master and the product owner gets together to inspect the last sprint
regarding the participants, tools, and processes. They identify and order major items that went
well and potential improvements and create a plan for implementing the improvements. This
helps to improve the team within Scrum and makes it more effective and more enjoyable. While
improvements are identified in this meeting, they can be implemented at any time.

78

5.2. ALADIN

5.2.4. Artefacts

ALADIN consists of some Scrum and some additional artefacts.

Product backlog: is an ordered list of everything the product needs and what should be changed.
It contains a list of all features, functions, requirements, enhancements and fixes for the product in
feature releases. Each of the product items has a description, an order, an estimation and a value.
One product backlog can also be used for multiple Scrum teams in order to have a clearer view
on the product’s implementation progress. The adding of details, estimations and an order to the
product backlog items is done in the backlog refinement meeting with the help of the product
owner and the development team. However, only the development team has the final choice of
how much an item is estimated. The product backlog can be used to determine how much work
is remaining for reaching a certain goal. At every time the product owner has the possibility of
tracking this progress, but he or she must do it at least at every sprint review. Various other tools
help to monitor the progress such as a burn-down, burn-up or cumulative flowcharts.

Product vision: is developed by the product manager. It shows the goal of the product and
provides an understanding of the requirements and the content. The product vision is part of the
product strategy and must therefore be easy to communicate to other people. Product manager and
product owner must ensure that the product vision is always transparent and visible for the whole
Scrum team.

Scrum board: is the visualization of the sprint backlog. The sprint backlog is a set of selected
product backlog items for a sprint; a plan for delivering the product increment and realizing the
sprint goal. The development team forecasts which functionality will be in the next increment and
what work is needed to solve it, and in the sprint backlog, this is made visible. The sprint backlog
is modified throughout the sprint; new work is also added to the sprint backlog by the development
team. Only the development team can change the sprint backlog. Due to the sprint backlog, it is
possible to track the remaining work for achieving the sprint goal. This is done at least at every
daily Scrum.

Product increment: is the sum of all the completed product backlog items in the current and all
the previous sprints. At the end of each sprint a functional increment must be completed, which
means it must fulfill the definition of “Done” and must be usable.

Roadmap: is the responsibility of the product manager. It shows what kind of products should
be available, and what the main product is and what kind of options exist for it. The roadmap is
unified with the roadmap of each business segment, and has to be made visible by the product
owner to ensure transparency. For the planning stage, the rules of Scrum need to be considered.

Artifact Transparency: in order to make precious decisions, Scrum must be transparent. This
means that all the decisions to optimize value and to control risks are based on the previous artifacts

79

5.3. Comparison ALASKA and ALADIN

and if these artifacts are not transparent decisions may be flawed. To establish transparency, the
Scrum master must work with the product owner, the development team and other stakeholders in
order to understand that the artifacts are transparent. If the artifacts are not transparent the Scrum
master has to steer and try to increase the transparency with the help of the Scrum team and the
organization using tools, learning, convincing and changing things.

Definition of “Done”: varies greatly among different Scrum teams. To ensure transparency,
everyone has to understand what “Done” means. A simple definition could be that every increment
is additive to all the previous increments and is thoroughly tested, ensuring that all the increments
work together without any problems. The definition of “Done” can be extended with more criteria
to ensure higher quality.

5.3. Comparison ALASKA and ALADIN

This section compares the software development framework ALASKA with the hard-/firmware
development framework ALADIN (figure 15). It will show the differences and similarities between
these two processes. The lightning icons shows were aligning and synchronizing problems might
occur, for example the frameworks sprint length must be synchronized in order to produce an
increment at the same time.

ALASKA is the agile software development framework of AVL’s ITS department. The ALASKA
process is already released and used in software development projects in the company. It describes
a scalable agile way to develop software development for more than 200 software developers.
ALADIN is the agile hardware/firmware development framework in the ITS department. It is
currently under development and therefore not finished.

80

5.3. Comparison ALASKA and ALADIN

Figure 15.: ALASKA and ALADIN comparison (personal design based on: AVL, 2017, 2018)

81

5.3. Comparison ALASKA and ALADIN

5.3.1. Process

The ALASKA process is much bigger than the ALADIN process, as ALASKA consists of three
different levels: Portfolio level, program level and team level. In each level different work is
performed. In the portfolio level the strategies of the ITS department, business unit strategy,
business segment strategy, product strategy and product strategy are taken into account to create a
portfolio strategy and a program/product strategy, which is then the input for the vision and the
roadmap of the business and for the many programs and their program/portfolio backlog. While
ALADIN has not a real alignment with the strategies of the departments/ segments, the input for
the program backlog derives from the vision of the product manager for his product and from the
demand of the market.

ALASKA consists of many different programs. Each of them has an own program backlog but the
same portfolio backlog, which consists of business/architectural epics that are important for every
program. In the program level the planning for the next product release and steering/monitoring
the development is done. An iteration of a program consists of ten weeks. In these weeks, a release
plan meeting is done at the beginning to plan what actions need to be taken in order to create a
program increment. These requirements are then distributed among the teams in order to create
an increment. The program level consists of different teams that all have four sprints and one
innovation sprint. During these sprints the deliverables are developed. To steer and control the
development of these teams, a Scrum of Scrum meeting is held every week and a program iteration
meeting is held biweekly. This helps to monitor the current development progress of each team. At
each sprint a sprint demo and a system demo are done. The system demo checks if all the different
components of the team’s deliverables are working together without any problems. At the end
of the ten weeks an “Inspect and Adapt” meeting is held, which can be compared with the sprint
review/ sprint retrospective. This meeting’s purpose is to gain feedback from the stakeholder and
to solve problems that occurred during developing the program increment. After this meeting, a
program increment is done which could have been already released into the market as a first version.
While ALADIN has no unique program process, the only similarity to this is that it contains a
product backlog, which is the same as a program backlog. It includes all the requirements of a
product. Moreover, ALADIN does not take considerations regarding how different teams should
work together; a Scrum of Scrum meeting is missing. This is a hindrance for the development of
bigger products with more teams.

There are minor differences in the team level process between ALASKA and ALADIN. Here
ALASKA chooses a fixed two weeks sprint, which starts with a backlog grooming that takes
five to ten percent of the time of a sprint. After these two, the two sprint planning meetings are
held one after another, and the developing is monitored through a daily Scrum. At the end of a
sprint, a sprint review/demo and a sprint retrospective are held to check whether the deliverable is
correct. While ALADIN has a two to four-week sprint, which also starts with two sprint planning
and a daily Scrum afterwards, a backlog refinement is done twice (if necessary, else just once)

82

5.3. Comparison ALASKA and ALADIN

within a one hour per week time box. Additionally, at the end of a sprint review/demo and a sprint
retrospective is held to check whether the deliverable is working and to receive some feedback.

5.3.2. Events

On the team level, ALASKA and ALADIN have almost the same events; the only difference is
that ALASKA starts with the backlog grooming.

Backlog grooming/ Backlog refinement: To prepare the backlog for the upcoming sprint plan-
ning, it takes about five to ten percent of the sprint time, whereas in ALADIN the backlog
refinement meeting is held once or twice a week with a duration of one hour for a one-week sprint.
In ALADIN, the backlog refinement adds some detail and estimates and orders the product backlog,
whereas in ALASKA the backlog grooming entails adding new epics and stories, extracting stories
from epics and estimating the effort for existing stories. They prefer to have the meeting at the
beginning in order to have a preliminary planning before the sprint planning to ensure that the
sprint plan meeting will not take too much time.

Sprint planning: In both ALASKA and ALADIN the sprint planning meeting is split up into two
different meetings. For the first planning meeting both are discussed. It is discussed what can
be done in this sprint and they make a forecast on a selection of the items for this sprint. After
that, they create a sprint goal and every team member must be committed to it. This meeting lasts
about two hours for a sprint of two weeks in ALADIN. In the second sprint planning meeting in
ALASKA and in ALADIN the stories are broken down into tasks with a maximum size of one day
and individual team members can take over tasks. The second meeting also lasts two hours for a
two-week sprint in ALADIN. For ALASKA, the timebox is limited to four hours for a two-week
sprint. For both sprint-planning meetings, it can be split up depending on the necessity.

Daily Scrum/Daily Standup: ALADIN and ALASKA are similar in this aspect. In both of them,
framework meetings discuss on what the team members did yesterday, what they plan to do today
and what kind of impediments they experienced. However, with ALADIN these questions are
more sprint goal focused than in ALASKA, such as “what did you do today to help achieving the
sprint goals”.

Sprint Review/Demo: ALADIN and ALASKA both have a sprint review/demo. In this meeting,
they gain feedback by presenting the stakeholder what they have “Done” and what has not been
“Done”. They discuss what went well in the sprint and were problems occurred and how they
were solved. Additionally, discussions regarding the backlog and the market are held to determine
whether the potential might have changed and what they have to do for the next sprint. However,
only in ALASKA there is also a sprint demo, where a functionality of a software increment is
presented to give the stakeholder a chance to learn how their requirements are implemented into a

83

5.3. Comparison ALASKA and ALADIN

working software. This can be done at any time when there is something to demonstrate.

Sprint retrospective: ALADIN and ALASKA both have a sprint retrospective at the end of each
sprint. In this sprint they both try to inspect the following things: how did the last sprint went,
what went well, did they meet their goals, were there potential improvements and how can these
improvements be implemented in the next sprint. In ALASKA, they split up the meeting into
two parts; the quality and the quantitative review. In the quantitative review, they gather all the
metrics they decided to analyze. These metrics are made visible for the whole team to have a
profound understanding of their process. While they try to find one or two things that they can do
better in the next sprint on the qualitative review, some improvements which would take longer to
implement can be divided into smaller improvements. The retrospective meeting will last one and
a half hour for a two weeks sprint in ALADIN and one hour for a two-week sprint in ALASKA.

5.3.3. Roles

ALASKA defines three different roles on the team level: the development owner, the development
team and the agile master. In ALADIN, there are five roles: product owner, Scrum master,
development team, product manager and further roles/stakeholder.

Development owner/product management/product owner: in ALASKA and in ALADIN these
roles have the content authority for the solution. Both of these frameworks try to divide the labor
into a more market-orientated view for the product management. His responsibilities are having a
market/customer view and creating and maintaining the product strategy (vision, roadmap).

The difference between ALASKA and ALADIN is that there is no product management in the
team level of ALASKA but rather on the program level. Depending on how complex a product
is, ALASKA divides the product management into a product manager which is more customer
oriented into and a content manager which is more content/development oriented. The development
owner or the product owner have both a more development-oriented view. They both own the
backlog, communicate directly with the development team, order the backlog items, establish story
acceptance criteria and work closely with the product management. Moreover, the development
owner in ALASKA participates in an extended product manager/development owner team, where
they contribute to the vision and to the roadmap, actively work in the program level in refining the
program backlog and on the preparation for the release plan.

Differences to ALADIN concern not only the product owner but also the responsibilities for
compliance with the ITS product innovation process. The product owner also provides and
maintains the cost and schedule plans.

Scrum master/ Agile master: in both ALASKA and in ALADIN the Scrum master/agile master
is a servant leader whose responsibilities are helping the team to follow the Scrum rules, help-

84

5.3. Comparison ALASKA and ALADIN

ing them meet their daily iteration objectives, removing impediments and facilitate continuous
improvements.

Difference are that in ALASKA the agile master must coordinate with other agile masters in a
Scrum of Scrum in the same program, with the system team and other stakeholders in the release
plan meeting. Additionally he or she must coordinate the team’s effort, the system level integration
and regular system demos under the architectural and portfolio governance.

Development team: in ALASKA and in ALADIN the development team entails about five -/+
two members, not including the agile master/Scrum master and the product owner/development
owner. In both the team is responsible for self-management, estimating the size and the work of
product backlog items, finding technical solutions for the tasks, delivering the product, establishing
an adequate product quality and finding new ways to improve. This means that the team has to be
cross-functional.

A difference here is that in ALASKA the development teams are assigned to programs. They
are cooperating with other teams to develop more valuable increments of working system-level
software and their backlog is mainly driven from the program backlog. Additionally different
development teams exist in ALASKA: component teams, which develop components that can
be used in several products and feature teams which develop features specific to a product and
releases.

85

6. Discussion

6.1. Differences to the literature

In this section, the AVL’s agile software development framework ALASKA and AVL’s agile
hardware-/firmware development framework ALADIN will be compared to Scrum from the
literature. For comparing ALASKA with the other frameworks, only the team level is considered,
due to the similarities. The process, roles, events and artifacts of each framework are examined
and compared to the other frameworks to find similarities and difference between them.

The results of this comparison will show the differences/similarities of AVL’s frameworks with each
other and with the Scrum framework. It will show what kind of roles each framework contains and
what responsibilities they share, what events each one has and what their differences/similarities
are and it will show the differences/similarities of the artefacts of the frameworks.

6.1.1. Process

Both ALASKA on the team level and ALADIN implement the Scrum framework. Their processes
on these levels are similar, but at the beginning, ALASKA and ALADIN start with a vision and a
roadmap from which they get their product/team backlog. After that, they will follow the Scrum
framework; they start prioritizing the product/team backlog items, select a few of them for the
sprint backlog and start implementing them. Every day they will have a daily stand up/Scrum
where they meet to discuss what they did and what they want to do. At the end, they will hold a
sprint review and a sprint retrospective to gain feedback by presenting a demo. Additionally, they
will analyze their processes and try to improve them in the next sprint.

ALASKA is different in this aspect, as its framework is for more than 200 developers. It consists
of three different levels. In the first level, the portfolio level, they derive a portfolio strategy
containing a vision, a roadmap and a portfolio backlog from the strategies of the ITS department,
the segments and the product lines. They also derive a program/product backlog containing also
a program/product vision, roadmap and a program backlog. Each program consists of a release
plan meeting, which derives the objectives of the program iteration from the program backlog. In
order to achieve these objectives, team objectives are created for each team. This helps to establish

86

6.1. Differences to the literature

alignment between the business owners and the program teams. A program itself contains many
teams. Each team will start developing after the release plan meeting, and after each sprint a sprint
demo and a system demo meeting is held to test the functionality of the whole system. Moreover,
Scrum of Scrum meetings are held every week to develop a better understanding of what every
team is doing, and every two weeks a program iteration meeting is held to inspect how the progress
of the program iteration is going. After these sprints, an inspect and adapt meeting is held which is
the same as a sprint review/retrospective. A fully functional program increment can be released
after one program iteration.

ALASKA and ALADIN must both be aligned with the product innovation process of AVL.

6.1.2. Roles

Product owner: In Scrum this is just one person who represents the stakeholder and the customer.
He or she is responsible for the product backlog and for ensuring that the team delivers value. A
difference here is that in ALASKA and in ALADIN the product owner is not only one person. Both
frameworks divide the responsibilities into a more market/customer based view (product manager)
and into a more development based view (product/development owner). The product/development
owner then aligns his or her work with the work of the product manager.

Product manager: is not known (relevant) in Scrum but is essential for AVL. In both frameworks,
a new role was established to have a better focus on the market/customer, while also having a good
focus on the solution/technologies/team facing view. It is one of the responsibilities of the product
manager to be the interface to the market and to the customer, in order to create/maintain the
product strategy, vision and the roadmap and to create market-based requirements. In ALASKA,
the product manager is also responsible for the program backlog. In both frameworks, the product
manager must work together with the product/development owner.

Agile Master: has the same responsibilities as in the Scrum framework, but in ALASKA he or
she also has some additional responsibilities. In ALASKA, the agile master is responsible for
attending the release-planning meeting to coordinate other agile masters; the system team and
other stakeholders. Additionally, he or she must attend a Scrum of Scrum meeting with the other
agile master of the program. He or she needs to help estimating larger features and epics in the
program, facilitates preparation of the release planning and inspect and adapt meeting and the agile
master also has to coordinate the teams under architectural and portfolio governance, system level
integration and regular system demos, system level integration and regular system demos.

Development team: In ALASKA and ALADIN they have the same tasks as in Scrum, but in
ALASKA the development team is assigned to programs. They collaborate for building increments
on the system level instead of smaller shippable increments. In ALASKA, the development teams

87

6.1. Differences to the literature

can also be responsible for features (feature team). They develop specific features for products and
releases or for components (component team), where they develop components which can be used
for different products.

6.1.3. Events

Backlog grooming: is not a component of the Scrum framework, but is used in ALASKA. Every
team member must attend it. In this meeting, they will help preparing the team backlog for the
upcoming sprint meeting. This includes adding new stories, adding new epics, breaking down epics
into stories and estimating the effort for existing stories. This meeting takes five to ten percent of
the time of one sprint but helps the development owner to forecast the content for the next two to
four sprints.

Sprint planning: in the Scrum framework, only one sprint-planning meeting exists for one sprint
with a time box of four hours for a two-week sprint. This is different to ALASKA and ALADIN,
in which the sprint planning is split up into two events, which can be held one after another or
at another time. In the sprint plan meeting one, they get together to discuss and forecast what
the team could deliver and what work is needed to achieve their goal. All together, they make a
pre-selection of the items that shall be implemented. In the sprint plan meeting two, the previous
chosen stories are divided into tasks with a maximum length of one day. However, both the AVL
frameworks and the Scrum framework do the same things in this meeting.

Daily stand up/Scrum: in both the Scrum framework and in the frameworks of the AVL there is
no difference to this meeting. It is a fifteen minutes meeting where all the team members gather
together on a daily basis to discuss what they did yesterday, what they are planning to do today
and what problems they had/face.

Sprint review: in the Scrum framework and in the AVL frameworks the purpose of this meeting
is to reflect on the results, to check what has been “Done” and what has not been “Done” in the
current sprint. It takes about four hours for a one-month sprint in which all team members should
participate. The difference here is that the product manager also participates even if he or she
does not exist in the Scrum framework. A working demo can be demonstrated in this meeting
to receive feedback quicker from the stakeholder, to check whether solutions are on track and to
make some adaptation on the team/product backlog if necessary. This demo presentation in the
Scrum framework is part of the sprint review meeting but in ALASKA the demonstration may
constitute an own independent meeting.

Sprint retrospective: The purpose of this meeting is to review what went well and what went
wrong in this sprint and to find some aspects to improve for the next sprint. Differences to the
literature are that the meeting takes three hours in the Scrum framework, sixty minutes in the

88

6.1. Differences to the literature

ALASKA framework and ninety minutes in the ALADIN framework. In this meeting, all the team
members, which had a role in the sprint, should participate. While the Scrum framework and the
ALADIN framework do the same thing in this meeting, ALASKA splits the meeting into two
different aspects; the quantitative part in which questions are answered whether they did meet the
sprint goal and to review some sprint metrics. The other part is the qualitative part in which they try
to analyze the sprint itself on what went well, what did not went well and what they can improve.

6.1.4. Artefacts

Product/Team backlog: Both the Scrum framework and the AVL frameworks use a product/team
backlog. There is almost no difference between them, but in ALASKA, the main source of the
items in the team backlog comes from the program backlog and from the team’s context and
from the stakeholder outside the team. It consists of user stories, refactors, maintenance and of
architectural stories. To have a good balance between what should be implemented, ALASKA
uses capacity allocation to set what should be implement in the current sprint. ALADIN gets its
features (according to the Scrum framework) from the market, the stakeholder and other sources.
Multiple teams can work on just one product backlog. In ALASKA, the team backlog is available
for only for one team.

Sprint backlog/ Scrum board: As in the Scrum framework, ALASKA and ALADIN use a sprint
backlog/Scrum board for the selected items from the product/team backlog. These selected items
are then modified to deliver a shippable increment.

Shippable increment: Usually, in Scrum a shippable increment would be the sum of all finished
sprint backlog items. This increment must be a working piece of the product. While this works
well for software, this is not easy to achieve for hardware development. Therefore, ALADIN
demands that the increment must not be a piece of the product but rather something you can gain
value and feedback from.

Vision/Roadmap: While the Scrum framework does not say anything about having a vision or a
roadmap, in reality every company needs some kind of vision and roadmap. It is vitally necessary
to have a vision in order to set a goal which the product or the product development must somehow
be able to achieve; reflecting stakeholder needs and features which addresses them. The product
roadmap is also important for establishing a program to business alignment, while also providing a
visibility of what should be delivered at what time. In ALASKA, the roadmap is planned for the
six months of program iteration within release milestones.

89

6.1. Differences to the literature

6.1.5. Comparison agile literature, ALASKA, ALADIN

The table 4 shows the differences and similarities between the frameworks presented in the literature
and between the agile development methods of AVL ALASKA and ALADIN. With this it is easier
to see the differences and similarities between the practical used agile frameworks from the AVL
and the frameworks presented in the literature. Between the literature and the agile development
methods of AVL the differences are not so big. Some roles such as the scrum master got more
responsibilities, the product manager which is not defined in the literature is used, because of the
need to have a role which is responsible for having a constant overview over the market. Artefacts
and meetings where are quite similar just adaptations were made in order to meet the needs of the
AVL.

90

6.1. Differences to the literature

Literature ALASKA ALADIN
Setup only one team contains portfolio level

with many programs
with many teams

one team

Approach product owner defines
requirements

first vision and roadmap
then requirements (on all
the levels)

first vision and roadmap,
then requirements

Focus software development
methods

software development
method

hardware, firmware de-
velopment method

Meetings Scrum meetings Scrum meetings + pro-
gram meetings

Scrum meetings

Product Owner one person representing
customer

one person representing
the customer

divided into product
owner and product
manager

Product Manager not defined included can be split
into product manage-
ment and content man-
agement

included

Scrum Master included included with more re-
sponsibilities

same as in Scrum

Sprint/Iteration
length

2-4 weeks 2 weeks (team level)/10
weeks (program level)

2-4 weeks

Backlog Grooming not defined preparing backlog for
sprint planning

not defined but is used

Sprint planning one meeting four
hours/two weeks

split into two meetings
six hours/two weeks;
same content as in
Scrum

split into two meetings
four hours/two weeks;
same content as in
Scrum

Backlogs product backlog and
sprint backlog

program backlog, team
backlog and sprint back-
log

product backlog and
sprint backlog

Shippable incre-
ment

functional and shippable
part containing finished
sprint items

program increment
(parts of many sprint
increments), sprint
increment (functional
and shippable part con-
taining all the finished
sprint items)

can be anything as long
as it brings value and
feedback

Table 4.: Comparison of Scrum in the literature with ALASKA and ALADIN

91

6.2. Interviews

6.2. Interviews

This section will provide an overview of the used method for performing the interviews. For this
thesis, expert interviews with the employees of AVL were performed about the topic of agile
development in different kind of fields. Therefore, hardware-, software- and firmware developer
from the department MIE/MIS were chosen as experts and expert interviews were carried out.

The aim of the interviews was to gather information about their current way of developing products
with hardware, software and firmware. With this information, it is possible to see were difficulties
arise from using traditional development methods such as the waterfall model or AVL’s PIP.
Furthermore, the interview’s aim was to gain information about the opinion of each employee
concerning the usage of agile development methods. They were asked what adaptations need to be
done in order to use it for developing products with hardware, software and firmware. With the
results from the interviews and with the literature review (chapter2, chapter3 and chapter4), this
thesis’s research questions (chapter1.2.3) will be answered. Based on the interviews results and on
the results of the comparison of AVL’s development method with the results from the literature
review proposals on how adaptations could be made in order to use agile development for products
with hardware, software and firmware.

Methodological approach

Interviews were carried out by using the method expert interviews. Experts are defined by Gläser
& Laudel (2010) as people who have special knowledge about social issues. Experts have special
privileged access to knowledge about company internal processes, the organization, the own
working processes and of their kind of working field. Expert interviews are therefore a special
method for collecting knowledge. Gläser & Laudel (2010) define an expert interview as a semi
structured interview, which means that there are no standardized answers or questions but rather
there are requirements, for performing an interview such as having an interview guide.

In this thesis an interview guide was created (appendix A 3) by applying the theory which was
found during literature research. Univ.-Ass. Dipl.-Ing. Harald Wipfler (TU Graz) and Dr. Rüdiger
Teichmann (AVL) also contributed to creating the interview guide.

The goal of the interview guide is to structure the interview. This structure should prevent the
interviewer from omitting critical aspects, and it should specify the focus of the interview. It should
also make a comparison between the other interviews as easy as possible. According to Gläser &
Laudel (2010) the questions from the interview guide should be a clear, not to provocative, open
and unambiguous. (Gläser & Laudel, 2010)

Table 5 provides an overview of the characteristics of the interviews. Interviews took about 40 to
70 minutes and were performed face to face in German and they were digital recorded in order to

92

6.2. Interviews

evaluate the expert interview in the most precise way. For evaluating the expert interviews, they
were structured and the gained information was divided into different categories in order to answer
the research questions. This method is described by Gläser & Laudel (2010) as qualitative content
analysis. However, instead of transcribing the whole interview only keywords were transcribed
and used for answering the research questions.

Employees with different kind of expertise and from different departments of AVL were chosen as
interviewees. Six Employees from the department MIE/MIS were chosen because this thesis is
created for their departments and because they will use the agile development methods ALASKA
and ALADIN in the development of their projects (appendix A 25). These employees are experts
in either hardware-, software-, firmware or hardware- and firmware development. Two experts,
one for ALASKA and one for ALADIN were chosen to deepen the knowledge gained through
the internal documents of ALASKA and ALADIN (appendix A 27). Furthermore, two employees
of other departments in the AVL were chosen as best practice since they already use the agile
development methods ALASKA/ALADIN in their projects (appendix A 30). With their interviews,
it is possible to have a view on the practical results and on their adaption of ALASKA/ALADIN to
their needs. They will also show what kind of challenges/opportunity they faced during using agile
development methods.

For adjusting and for checking the correctness of the questions from the interview guide one
sample interview with a student employee was performed and transcribed (appendix A 9). The
student is a software developer from the MIE/MIS department. Based on the gained information,
the interview guide and the corresponding questions were adjusted.

93

6.2. Interviews

Topics Characteristics
Interview method Expert Interviews with interview guide
Interview evaluation method Qualitative content analysis
Language of the interviews German
Interview Length 40-70 minutes
Transcription of the interviews Keywords
Number of Employees interviewed Twelve
Experience in their field One to thirty years
Experience in agile development No experience in agile development, but all the em-

ployees got an enrollment course.
Roles of interviewed employees • Hardware developer

• Software developer
• Firmware developer
• Project leader
• Project coordinator
• Department Manager

Distribution of interviewed employees • Three hardware developer
• Three software developer
• One firmware developer
• One hardware-/firmware developer
• One ALASKA expert
• One ALADIN expert
• Two employees of AVL which already use agile

development method

Table 5.: Interview characteristics

Results The results from the interviews are presented in this section. The results are divided into
three different parts:

• Interview results from the employees of the MIE/MIS department who will use the agile
development methods ALASKA and ALADIN (table 6, table 7 and table 8).

• Interview results of the two expert for ALASKA and ALADIN (table 9).
• Interview results of the employee from the different department which already use the agile

development methods ALASKA/ALADIN (table 10).

The results of the interview for the developer of the MIS/MIE department were put together in
table 6. The questions for the employees of the MIE/MIS department were more about agile
development in general, to get an overview of the expected attitude of the employees. While the
questions concerning the others interviewed employees were more about ALASKA and ALADIN
than about agile development in general. Most of the employees of the MIE/MIS department are

94

6.2. Interviews

rather positive about using agile development methods in their project, but they were unsure if it
would work. They fear that they will fall back into their old behavior and will develop as they did
before. The old development method was based on a classical waterfall development method with
small adaptations to meet the needs of the AVL. This method was too structured and not flexible;
therefore a lot of planning was needed to be ready for changes. For smaller projects this quite an
overhead and therefore it was not fully used. This method was structured into different phases.
In order to go from one phase to another, everything what was planned for this phase needs to be
finished or they would not go to next phase. Problems here arose from stakeholder of the next
phases. They did not want to take the responsibility if not everything was to their satisfaction and
therefore they did not let them go to the next phase. However, due to this structure, every employee
knew what has to be done next.

Topics Results
Opinion Positive, excited, unsure whether it will work
Weakness of the old development
method

Too structured, too much planning, big overhead, no re-
sources, long delays, development hindrances through
stakeholder, change of technology, unsure require-
ments, no decision making, communication was not so
good, responsibility was no acknowledged, no focus,
unrealistic appointments, not flexible

Strength of old development method Structured, good planning for bigger projects, clear
planning, communication, developing feature by fea-
ture

Challenges for adopting agile develop-
ment

Hardware dependencies, two week sprints for hard-
ware is not realistic, resources, AVL culture, fear of
going back to the roots, working shippable increment,
testing together

Opportunity through agile development
methods

Better structured, more flexible, better focus, better
communication, transparent responsibility, clear de-
cision structure, less delays, fix goal, definition of
“Done”, knowledge transfer

Overcome challenges through Usage of prototype/evaluation boards, try and test,
more training in agile development, re prioritizing, 4
week sprints

Table 6.: MIS/MIE employee interview results

95

6.2. Interviews

The employees of the MIE/MIS department stated that if they wanted to use agile development
methods, some challenges must be faced in order to fully use agility (table 7). The employees stated
that agile development methods are more software development oriented and therefore will not
meet all the requirements of hardware development. Hardware development faces dependencies
which software development does not face. Hardware development faces dependencies such as
procurement for components, development of hardware boards and equipping the components
to the boards. The delivery of the fully equipped boards will take several months and therefore
it is hard to plan everything. To be agile one has to react to requirement changes but this is
not particular easy for hardware development due to its long delivery times. Changes must go
through the whole process of development, procurement, equipping and testing again. Additionally,
creating a working shippable increment with hardware in a two weeks sprint is not an easy task and
mostly impossible. On the contrary, it is rather hard to only develop a small part of the hardware
because parts depend on the other hardware parts sometimes. In the end of a sprint, the entire
shippable increment must be tested together, but if the hardware is not finished, other ways must
be found for testing the software and the firmware together with the hardware.

A challenge which must be also faced is that hardware developers are sometimes firmware
developers in the MIE/MIS department, and because they will not only work on one project but
rather for many, the development time for each project must be set in a way to be agile and
productive. Stress may arise due to the development of a product. The employees of the MIE/MIS
department stated that they fear that they will go back to their old development method and their
old attitude. They fear that not every developer is happy with having more responsibility and that
not every project leader embraces the idea of giving the power to make decision to the developer.
Changing the culture will be a great challenge if not every employee accepts the changes in having
more or less responsibility. Therefore, a good Scrum master and top-level management support
is crucial. Workshops may help the employees to take more responsibility. In addition, it must
be clear to every employee who is responsible for what and who makes the critical decision if
problems arise through developing the project.

Challenges Interviewer
Hardware dependencies I1, I2, I4, I5, I7
Sprint length I1, I4, I5, I7
Resources I2, I7
Culture change I2, I3, I6, I7
Shippable Increment I1, I2, I3, I4, I6, I7
Clear responsibility I6, I7

Table 7.: Challenges using agile development from interviewer perspective

The employees of the MIE/MIS departments also discussed certain benefits from using agile
development methods in their projects (table 8). One major advantages was that it is better
structured than the method before, it will not be so strictly structured and no phases will exist
but rather they will have a sprint iteration in which a sprint planning is held for planning the

96

6.2. Interviews

requirements. Daily standups ensure that everyone knows how the project is progressing and
a sprint reviews/retrospectives to test and to improve their agility. This kind of planning will
help them to be more flexible with requirement changes and with unforeseeable problems. The
employees stated that having only requirements for a sprint and having a daily standup everyday
would help them to have a better focus on developing only things which are needed now. Having
fixed definition of “Done” is also a great advantage for the developer of MIE/MIS. Everyone will
know if they are finished and what has to be done in order to have a shippable increment in the end.

Benefits Interviewer
Better structured I1, I2, I3, I4, I5, I6, I7
More flexible I1, I6
Better focus I1, I2, I6, I7
Definition of “Done” I2, I4
Shippable Increment I1, I2, I3, I4, I6, I7

Table 8.: Benefits using agile development from interviewer perspective

97

6.2. Interviews

The interviews with the expert were rather a presentation of their framework, than an actual
interview. Only questions regarding unsure topics of ALASKA and ALADIN were asked. The
information gained from these interviews can be seen in table 9.

The information gained from the interviews with the expert of ALASKA/ALADIN were used for
completing chapter 5. Information gained from the interview with the expert of ALASKA was
used to completely understand why ALASKA was created, what the difference between content
owner and product owner is, what a program is and how they handle requirement changes in their
backlogs. Information gained from the expert of ALADIN was used to completely understand why
ALADIN is created, how they handle hardware dependencies and why they choose this kind of
definition for the sprint increment.

Both interviews also helped to understand what each meeting does and how the planning is done.

Topics ALASKA ALADIN
Idea ALASKA is not an PIP, needed

a framework for managing many
teams with different products,
Scaled Agile Framework (SAFE)

ALADIN is a little based on
ALASKA, idea was to adapt agile
development to Hardware develop-
ment, 4 Pilot projects

Structure Portfolio level, Program level and
Team level based on Scrum

Scrum with some adaptations

Backlog program backlogs, team backlogs,
sprint backlogs

product backlog, sprint backlog

Features product management and portfo-
lio management defines features,
epics are broken down to program
features, program features are bro-
ken down for each team, than each
team breaks down their stories into
tasks

product management defines fea-
tures which will be broken down
into tasks

Sprint length fixed two week sprint two to four week sprint
Increment split up into program and sprint

increment, sprint increment should
be a working piece of the product,
program increment is a release of
the product

a sprint increment is not a work-
ing piece of the product, rather it
should create value/feedback

Table 9.: ALASKA and ALADIN interview results

98

6.2. Interviews

Two employees of AVL from other departments, which have already used agile development
methods ALASKA/ALADIN in their projects, were interviewed as best practices for this thesis.
The interviews helped to understand how they implemented agile development in their projects,
and what challenges they faced and how they were solved. These interviews are used as references
for developing an approach for using agile development methods in the MIE/MIS department.
The interviews were held with the Scrum master of the current pilot agile team of the MIE/MIS
department. The interview was held because of the Scrum master’s engagement. The main
question was how they implemented agile development and what adaptations were done in order
to solve the challenges in adapting agile development methods in hardware, software and firmware
development.

Table 10 shows how they adopted the AVL agile frameworks to their needs.

Best Practice 1 Best Practice 2
Method ALADIN ALASKA/ALADIN
Requirements Product management defines them product management defines and

prioritized them with the product
owner

Planning 1 year planning with release plan,
with milestones and dependen-
cies, two month detailed planning,
defining sprint goal, using Scrum
of Scrum and backlog refinement

roadmap with goals, sprint plan
meeting 1: only with feature
owner defining what to do, sprint
plan meeting 2: selecting team
member and creating tasks; back-
log refinement as pre-selection for
sprint planning 1; an own product
management meeting for defining
and prioritizing features

Team three teams with three to seven de-
velopers

one team with twenty-five employ-
ees, is split up into feature teams

Backlog one backlog for three to four week
sprints

one backlog with smaller backlogs
for each four teams, four Scrum
boards with detailed(current and
next sprint) and rough plan-
ning(two quarter)

Sprint length two weeks three weeks

Table 10.: Best practices from the AVL evaluation

99

6.3. Challenges concerning the practical use of agile development methods

6.3. Challenges concerning the practical use of agile
development methods

ALASKA (software development) and ALADIN (hardware-/firmware development) are special
frameworks for either hardware/firmware or software, but for a product which needs hardware,
software and firmware there must be some way to align these frameworks. Usually problems arise
when different frameworks have to work together. In this section, I will discuss some of the main
problems that can be seen by comparing the frameworks among themselves and by comparing
them with the literature. Furthermore, interviews were held with the employees of the AVL to
include their opinion on what problems may arise and how they can be solved. The challenges
from the comparison and from the interviews are discussed in this section.

The challenges identified through the interviews and the literature review were:

• Hardware dependencies
• Working shippable increment
• Demo
• Testing
• Resources
• Culture change
• Responsible employee
• technology change

The other challenges identified through comparing ALASKA with ALADIN and with the literature
were:

• Process
• Vision/roadmap
• Product/team backlog
• Communication
• Roles

Process: ALASKA and ALADIN are two different processes. Even if they are quite similar on
the team level, the other levels differ from ALADIN. ALASKA is also a framework for more
than 200 developers. Having a product which needs both frameworks is problematic due to the
dependencies of the team backlog on the program backlog in ALASKA. Epics which are split up
into two different frameworks are hard to handle. They must be discussed in the program release
meeting of ALASKA and they need to be prioritized. Depending on how many program epics
exist and what features are more important for this program iteration, it could lead to a major loss
of time.

100

6.3. Challenges concerning the practical use of agile development methods

Alignment of the sprints is also a problem between ALASKA and ALADIN. In ALASKA, the
sprint takes about two to four weeks, while in ALADIN it only takes two weeks and there are also
other iterations in the program level which take ten weeks.

Hardware dependencies: The main problem with having a product which needs hardware, soft-
ware and firmware is that there are hardware dependencies. Hardware is bound to the procurement,
suppliers and current hardware technology and it takes some time to develop products. Changing
parts or fixing some problems takes time and money and this might lead to loops in planning,
designing, buying the parts and creating the layout. Without any hardware, it is also a problem
for the firmware itself. How should a firmware developer develop something without having a
prototype?

Vision/Roadmap: ALASKA and ALADIN both have a vision and a roadmap, but in ALASKA,
these vision or roadmap derives from the product line and from the product strategy and there
are other visions and roadmaps for the whole portfolio which contains all the programs itself.
ALADINs vision/roadmap is solely derived from the product manager and his product strategy.
An alignment of these visions and roadmaps must be done in order to avoid problems concerning
prioritizing the values.

Working shippable increment: The Scrum frameworks demands that after each sprint a working
shippable increment must be created. This increment must be a fully functional piece of the
product. This works well for software but will not work for hardware. Creating just a piece of
the product is rather hard for hardware and it would also take much longer, due to planning and
designing the layout, ordering the parts, creating the prototype and testing it before. The hardware
development employees all raised the same question, namely how to develop hardware in a just
two weeks of iteration with a working increment at the end. Most of the employees fear that this
might not work, since it takes about two to three month to have a prototype or a piece of hardware
ready.

Demo: An important aspect of Scrum is to have a demo after every sprint which can be presented
to the stakeholder to gain feedback, but this is rather difficult for a product which has hardware
dependencies. Hardware cannot always be developed in just two weeks. Therefore, there must be
another way to receive feedback from the stakeholder.

Testing: Testing software, hardware or firmware by itself is not difficult to do, but how should
firmware be tested if there is no hardware. It takes some time to get a prototype delivered in order
to test hardware and firmware together. This might last a few months, which could cause a delay in
delivering the product. Other ways must be found to test hardware and firmware without solely
depending on a prototype.

Product/Team backlog: A problem might be that when both, ALASKA and ALADIN, would
have an own product/team backlog, progress cannot be measured as with just one backlog, and

101

6.4. Proposals

the transparency might suffer. Furthermore, should there be only one product backlog for each
product or should there be one product backlog for all product?

Communication: For having a good communication and information exchange the teams in
ALASKA and ALADIN need to either attend the same meetings, which would need alignment of
the meetings or have an own Scrum of Scrum. Without these, misunderstandings and delays may
occur.

Resources: Another crucial aspect for developing a product is to have enough workers. ALASKA
and ALADIN could not help developing a product faster if the needed workers would not be there.
The employees feel that they will not have any time for other products anymore. Therefore, there
must be a way to plan how much time each employee has for which product. A good balance must
be found.

Roles: Having two frameworks means also having a Scrum master for each framework and perhaps
two product owners or development owner. They also have to communicate together a lot in order
to establish a profound understanding of what the other team needs how they are proceeding.

Culture change: All the employees were positive towards implementing an agile development
method, but most of them feared that changing the culture could be difficult. They claimed that it
would take some time and effort to change the mindset of the employees and of the management
and that the developer would be responsible for planning what to do next and how they should do
it.

Responsible employees: Having a product manager, project leader and some other managers, the
responsible person for making a decision is not always visible, therefore some employees said
that at some point when a clear decision was needed, it was not clear who the responsible person
was and discussions between the management, the project leader and the product management
occurred and this caused to an enormous delay.

Technology change: Changing technology while being in the middle of a project could lead to
delays resulting from adapting the new technology and learning how to work with it.

6.4. Proposals

In this section the results from the literature review, from comparing ALASKA and ALADIN and
from the interviews (mostly from the opinions of the employees and from the best practices from
AVL), are put together to create few proposals on how to solve the challenges from the previous
section 6.3. It will also be described how specific roles such as the Scrum master, the development
owner and the teams should be handled and how meetings should be held with which member.

102

6.4. Proposals

The proposals are split up into different parts:

• General: Proposals are presented for challenges which will, regardless of whether a combi-
nation of ALASKA and ALADIN or ALASKA and ALADIN as separated frameworks or
downgraded version is used, will occur.

• Combining ALASKA and ALADIN: Proposals are presented for the usage of this method
and for the challenges which occur when combining ALASKA and ALADIN to one frame-
work.

• ALASKA and ALADIN as separated framework: Proposals are presented for the usage
of this method and for challenges which occur when using ALASKA and ALADIN as
separate frameworks.

• Using a downgraded Version: Proposals are presented for the usage of this method and
for challenges which occur when using a downgraded version of ALASKA with some
adaptations from ALADIN.

6.4.1. General

Hardware dependencies: Employees stated in the previous section 6.3 that there are many
hardware dependencies which need to be solved in order to implement agile development such
as: shipping time, part procurement, testing, etc. Developing a product based on hardware,
software and firmware always leads to dependencies. A way of reducing dependencies of the
hardware would be to have some evaluation boards, prototype boards and simulation for testing
the hardware and firmware until a prototype arrives. Having an agile development method for
hardware could also help to reduce the error rate in the prototypes by gaining feedback faster from
customer/stakeholder and by showing some concepts and designs. Additionally, delivery time
could be reduced by having employees from the sales/procurement attending meetings such as the
release plan meeting. Important key parts could be ordered earlier. This way only some parts are
left.

Culture change: Changing the culture is a rather difficult task. Employees feared that if they use
agile development, the management would not accept the shift of responsibilities. Therefore, the
mindset from the management must be changed. Due to Scrum, the responsibility and the decision-
making is shifting and then the mindset of the employees must be changed. The employees must
be aware that they are responsible for making decisions on how to develop. This will take some
time and it will need the help from the top management and from a good Scrum master.

Scrum/Agile team: The Scrum team must not only consist of the developer, the Scrum master
and the product owner/product manager but of mechanics, procurement employees, suppliers
and testers. This reduces unnecessary meetings and communication and leads to a reduction of
development/delivering time.

103

6.4. Proposals

Responsible employees: Employees were not always sure which person should be asked to make
a decision and to take responsibilities at some point. Therefore a clear decision structure is needed
in which it is easy to see who is responsible for making a decision for different questions regarding
requirements, changing requests and technology changes.

104

6.4. Proposals

6.4.2. Combining ALASKA and ALADIN

Figure 16.: ALASKA and ALADIN combined to one framework (personal design based on: AVL,
2017, 2018)

105

6.4. Proposals

Because ALASKA and ALADIN are not especially different from each other, they could be
combined to one framework (figure16). In most cases it would be recommendable to adapt
ALASKA as the main framework because ALASKA is already implemented in many other
departments. To do this, some things need to be changed or taken from ALADIN.

Development team: There are two possibilities for the development team: firstly, there should
be only one team consisting of software, firmware and hardware developer. All the knowledge
needed for developing the products should be in the team. Other possibilities would be to use more
than just one team. The teams could be separated into a hardware, firmware and software team or
depending on the needs.

Scrum master: For the combination of both frameworks, only one Scrum master is needed. Even
if there was more than just one team.

Product owner/product manager: For each product, a product owner/product manager is needed.
Even if there is only one team or more teams, the teams could be responsible for different products
and therefore it is recommended to have different product owners/product managers, which discuss
together what to prioritize in the next sprint and which task a higher priority has.

Development Owner: Depending on whether there is only one team or more, more development
owners are needed to take the responsibilities for managing the backlog.

Backlog: For the backlog, there could be one program backlog for all the teams. These program
backlogs should be filled and prioritized from the product manager. The backlog from each team
is then derived from the prioritized items of the program backlog.

Shippable increment: Due to the literature review and the interviews it is clear that it is not always
possible for hardware development to have a functional shippable increment. This definition must
be adapted from ALADIN, where a shippable increment could be anything which would gain some
feedback from customers and other stakeholders. At the beginning the shippable increment could
be split up in a software, firmware and hardware part until some hardware is available.

Release planning: In the release-planning meeting, the time for ordering and receiving the
prototype needs to be considered, as a demo without hardware would not be useful. Therefore, he
time developing hardware, software, firmware, ordering the parts, creating layout, equipping the
layout, simulating hardware and delivering time need to be considered.

Meetings: Meetings would consist of all the hardware, software and firmware employees or just
the teams for the daily standups. This must be tested in order to see which possibility would be
better.

Testing: This is one of the most difficult parts, as for testing the whole product hardware, firmware

106

6.4. Proposals

and software must be already finished. However, it takes some time to obtain a hardware prototype,
since firmware and software cannot be tested before the prototype is ready.

For testing firmware on a lower level, buying some evaluation boards or prototype boards, which
can be obtained faster, might be a solution. In the end, it would only test the functionality but not
the dependencies with the real hardware. Therefore, having a prototype is essentially necessary
at a later point. For firmware without any hardware dependencies, some test functions could be
developed to test them.

Testing hardware without having a prototype is also not particularly trivial. A solution might be
a form of simulation. Hardware could be simulated and tested, also some parts could be tested
by buying hardware parts can be bought which are similar to the ones ordered but which can be
obtained faster. However, having a finished prototype at a later point of the development is also
essential.

For testing software, there are not that many hindrances, as software can be tested independently
from hardware or firmware at the beginning with the help of some test functions.

After the prototype is available, the whole functionality of the product and the hardware dependen-
cies can be tested together.

107

6.4. Proposals

6.4.3. ALASKA and ALADIN as separated frameworks

Figure 17.: ALASKA and ALADIN as separated frameworks (personal design based on: AVL,
2017, 2018)

108

6.4. Proposals

Choosing to have two different frameworks for one product could lead to some problems. Align-
ment must be done for the sprints, sprint demos, vision, roadmap, backlog, etc. In figure 17 both
ALASKA and ALADIN are displayed, the interaction between these two frameworks are here
marked with orange arrows. As the interaction between the team backlog from ALASKA and the
product backlog from ALADIN, the difference between these backlogs is that ALADIN does not
define an own backlog for each teams, rather they have just one backlog for multiple scrum teams.
In ALASKA there is an own backlog for each team, which gets its items from different sources
such as from the program backlog.

Scrum master: A decision must be made whether there is one Scrum master for each framework or
not. Having one Scrum master might be problematic, as he must attend the meetings of ALASKA
and of ALADIN. This might be a lot of work. Additionally, the Scrum master must split his or her
time to have equal time for ALASKA and for ALADIN. Having two Scrum master would lead to
alignment problems. Hindrances which need to be solved could involve both of them. Moreover,
they have to communicate together a lot in a Scrum of Scrum.

Product owner/Product manager: Here the same applies for the product owner/manager as with
combining ALASKA and ALADIN. There is more than just one product owner/manager and they
must discuss what should be prioritized higher and what should be taken into the backlog.

Backlog: For the backlog there would be one program backlog and team backlogs for ALASKA
and one team backlog for ALADIN. The team backlog of ALADIN could be derived from the
program backlog of ALASKA.

Vision/Roadmap: The vision and the roadmap for the product must be the same for each frame-
work. Therefore the product manager of ALASKA and ALADIN must communicate what they
want to do with this product. Having two different vision/roadmap might lead to different priorities
for the development of the product.

Sprint: Depending on how long the sprint takes in ALADIN, an alignment must be done in a
way that after each sprint, increments can be developed and some testing can be done together. A
good way to do this would be to choose two or four weeks for ALADIN. This way they would be
aligned, every fourth week they could develop an increment and test together and every second
week the software team could test their increment on their own.

Strategy Alignment: In ALASKA there are two different strategies: the portfolio strategy is the
same for every program and the product/program backlog. In ALADIN there is only a product
strategy. In order to agree on what is important, all the strategies must be somehow aligned or
priority issues might occur.

Meetings: Other decisions must be made concerning the interviews, such as sprint planning 1
and 2, daily Scrum and backlog refinement. Having two different frameworks also means having

109

6.4. Proposals

twice as much meetings. The question arises whether the meetings should be combined together
or whether they should be held separately for each framework. Having a combined meeting
would help both teams to have a better understanding of what the other team is doing and what
is still needs to be done. By having separated meetings, the communication and the knowledge
transfer between the teams may suffer. Other meetings (Scrum of Scrum) must be implemented to
share information between the frameworks. In most cases, these would be held either weekly or
biweekly.

Shippable increment/program increment: Having separated frameworks would also mean to
have two separated shippable increments; the hardware increment would be not a finished prototype
at the beginning but rather a concepts or designs. This would be the same as in the combined
proposal. In the program increment where all shippable increments of the programs are combined,
the hardware could also be integrated if the hardware is available.

110

6.4. Proposals

6.4.4. Using a downgraded version

Another possibility would be to use a downgraded version of ALASKA 18. ALASKA is a good
framework for about more than 200 developers, but it creates a lot of overhead for smaller numbers.
Therefore, it is recommended to only use the team level with some practices from the program
level (figure18).

Scrum Master: Only one Scrum master would be needed for the whole framework.

Product owner/product manager: It is essential to have a product owner/product manager. They
also need to discuss (as in the other two proposals) the backlog and they need to prioritize the
items.

Development team: There are again two possibilities. Firstly, there may only be one team
containing hardware, software and firmware developers, or they can again be split up in hardware,
software and firmware needs. However, teams can also be divided in teams depending on the
current needs.

Backlog: One backlog might contain all the prioritized items from the product manager. From
this backlog, the backlogs for the different teams can be derived.

Development Owner: Depending on how many teams there are, there must be a product owner
for every team who is responsible for managing the team backlog and the team itself.

Sprint: Depending on how the team is split, the sprint length can vary from two weeks for software
developer to four weeks for hardware developer. However, in the end every two weeks an alignment
can be done in which the increments are presented.

Meetings: Meetings can be held with all the teams together for all the meetings or all teams for
the bigger meetings, such as sprint planning 1 and 2. Additionally, it is possible to split up into
teams for smaller meetings such as the daily standup. This must be tested to see which one would
work better.

Shippable increment: The definition of a shippable increment could be adapted from ALADIN.
It is not always possible to present an increment that works, but concepts and other things could be
indeed presented in order to gain feedback.

111

6.4. Proposals

Figure 18.: Downgraded version of ALASKA and ALADIN (personal design based on: AVL,
2017, 2018)

112

6.4. Proposals

6.4.5. Comparison of proposals for using AVL’s frameworks

The figure 19 shows the comparison between the proposals. With this it is easier to see the
differences and similarities from the proposals. Agile development areas such as meetings,
artefacts and roles, can be compared and the best suitable proposal can be chosen. Furthermore,
this figure also enables one to see the advantages and disadvantage in using the proposal.

Figure 19.: Comparison of proposed processes (personal design)

113

6.5. Answers to Research Questions

6.4.6. Responsibilities of the roles in the proposals

The figure 20 shows the responsibilities of all the roles within the proposals. No differences were
made between the proposals for the roles. Because in all the proposal the roles were quite similar,
except for roles from the program and portfolio level. The responsibilities presented are taken from
ALASKA and ALADIN. For better understanding, some definitions such feature and component
team were put together as development team.

Each roles has a small portion of responsibilities but the accountability must realized in such a way
that every role feels responsible for the success of the project. There is no specific role which is
responsible for success of the whole project.

Figure 20.: Responsibilities of the roles in the proposals (personal design)

6.5. Answers to Research Questions

The research questions defined at the beginning of this thesis will be answered in this section based
on the literature review, the investigation of the AVL’s agile development frameworks and based on
the interviews.

• Is it possible to use agile software development methods for products with hardware and

114

6.5. Answers to Research Questions

firmware development?
• Does the agile software development method need some adaptations in order to be used in

hardware and firmware development, and what needs to be changed?

6.5.1. Is it possible to use agile software development methods for products
with hardware and firmware development?

Based on the literature’s investigation in section 4, (presenting practical examples of companies
which already use agile hardware development) the answer would be yes. Companies from different
sectors are already using agile hardware development methods successfully. However, to use
agile software development methods for products with hardware and firmware development, some
adaptations to the framework must be done. Additionally, it depends on which framework is used.
In the literature, Scrum was mostly used as a base framework and adaptations were made to it to
meet their needs such as changing the definition for the increment or using bigger sprint length.

Currently the MIE/MIS department from the AVL uses the agile development method ALASKA
for software development and for firmware development. Many employees stated that after using
this framework many uncertainties, communication and resource issues were solved (table 6).
Including the hardware development to this framework or using the agile hardware development
methods ALADIN would be the next step. Currently this is not the case and therefore it is not
possible to draw conclusions from that. Lastly, it must be said that products using hardware must
be planned before in such way that it meets delivery appointments and that it reduces uncertainty
regarding the procurement and the production time.

6.5.2. Does the agile software development method need some adaptations
to be used in hardware and firmware development, and what needs to
be changed?

Because of the nature of hardware development, it is necessary to adapt the framework to the
needs. This can be seen in the literature review for hardware section 4.2 and for the firmware in
section 3.2 in which a study was conducted in order to investigate what adaptations needs to be
done and where different company has stated why and how they changed the chosen framework to
their needs to achieve agility.

Hardware development is bound to some physical constraints. These constraints must be considered
and therefore the framework must be adapted. However, the basic structure of the framework, such
as meetings and roles, may be the same. Firmware does not really need any adaptation from the
framework section, but adaptations must be made because of the dependencies from the hardware.

115

6.5. Answers to Research Questions

Based on the literature review sections 4, section 3 and the investigation of the hardware/firmware
development framework ALASKA section 5 of the AVL it can be concluded that some adaptations
(section 6.4) must be done in order to achieve agility.

The main take aways for the AVL would be:

• Depending on their needs the team can consist of hardware, software and firmware developers
or there can be separated teams for each one of them.

• Sprint lengths may vary from each team; therefore alignment must be done to ensure that
teams can review the increments together.

• The Backlog may consist not only of one team and one product item, but also rather of many
teams and many products. These items would be applied into the team backlog afterwards.

• There must be a product manager for each product who knows what the market needs.
Because there is not only one product manager but rather several product managers, they
need to discuss in a meeting what requirements are needed and what priority they have.
These requirements are then put into the big backlog for all teams.

• Increment must not be some working piece of the product itself, but it can consist of concepts,
ideas or designs. These can be presented to gain feedback from the stakeholder.

• A release plan must be created to ensure that the product is finished with the requirements
needed until the deadline.

116

7. Conclusion and Outlook

The purpose of the thesis was to investigate whether it is possible to use agile software development
for products with hardware, firmware and software development for the department MIE/MIS
of the AVL. To investigate what adaptations have to be made in order to use agile software
development methods and how the current agile development frameworks of AVL can be used for
the development of products with hardware, firmware and software.

A literature review was performed for the fields of agile hardware development, agile firmware
development and agile software development. In the field of agile software development methods,
popular agile development methods such as Scrum, XP and FDD were investigated, analyzed and
compared with each other (section 2). For the fields of agile hardware (section 4) and firmware
development (section 3), a literature review was performed to investigate what agile software devel-
opment methods could be used for hardware and firmware development and how the frameworks
needs to be adapted. Practical examples of companies which already use agile development meth-
ods for hardware and firmware development were investigated. For both hardware and firmware
development, three best practices, were investigated. With these best practices it is possible to find
a solution to the challenges that occur by adopting agile software development methods.

Each of the best practices states that at the beginning there were problems with adopting agile
software development methods for to their needs. The most popular agile software development
methods in these cases were Scrum. Adaptations had been done to the framework in order to
meet their needs. These adaptations entail having a bigger sprint length, changing the shippable
increment definitions, using models and concepts to gain feedback from customer and including
procurement at the beginning of the project. The best practices did not explicitly show how their
framework looked after the adaptations, but they rather stated that some events or definitions were
not used because of the overhead and the frustration of the employees. However, in the end the
implementation and the adaptation of the framework were a success; they were able to develop
hardware and firmware with agile development methods.

AVL’s agile development frameworks, ALASKA for software development and ALADIN for
firmware and hardware development, were also analyzed (section 5 and compared with each other
and with the Scrum framework from the literature. ALASKA is a software development process
for about 200 software developers. It is a scaled version of Scrum and the AVL currently uses it
for their software projects. ALADIN is a hardware and firmware developed framework, which is

117

7. Conclusion and Outlook

currently in development and tested through some pilot projects. ALADIN looks similar to Scrum
at the first sight, but adaptations were made in order to meet their needs, such as changing the
definition of working shippable increment to something that brings value and feedback from the
customer (e.q. concepts and designs).

The comparison between ALASKA and ALADIN with the literature (section 5.3 and section 6.1)
analyzed the different frameworks and their meetings, artifacts, roles and differences or similarities.
The results of the comparison the differences and similarities between the frameworks. It shows that
there were only minor differences between each framework (section 6.1. Most of the differences
occurred due to the different development fields and their practical use of the frameworks, such as
having a product manager which is not stated in the Scrum framework itself, having a release plan
with different milestones and market releases, changing the responsibilities of the roles such that
the framework works with more than one team and with larger teams.

Expert interviews with the employees of the department MIE/MIS, with employees from other
department which already use agile development methods in their project and with experts from
ALASKA and ALADIN from AVL were performed. The expert interviews with the employees
of the MIE/MIS department show their opinion concerning using agile development methods
for projects. Most of the employees are looking forward to using an agile development method
(section 6.2) in their projects are and what kind of benefits/challenges they see in comparison with
the old development style. Advantages are having more structure, better communication, a fixed
definition of “Done”, a transparent perspective on responsibilities and more frequent feedback
from customer and stakeholder. The greatest fear was that the agile frameworks would only be a
temporary solution and that after some weeks it would not be practiced anymore.

The results from the interviews of the employees from other departments from AVL, which already
use agile development methods, show what kind of adaptations had to be done in order to fit the
agile development methods ALASKA/ALADIN to their needs. These interviews were performed
with the Scrum master of the department MIE/MIS in order to gain information about how other
departments handle the situation of developing hardware, firmware and software agilely. In these
interviews, their adapted frameworks were discussed and solutions to challenges were presented.
It was not like the interviews with the employees from the MIE/MIS department, it rather was a
presentation of their methods for developing their products. The gained knowledge is used for
creating the proposals and for discovering challenges in this thesis.

The interviews with the expert from ALASKA and ALADIN were used for answering questions
regarding ALASKA and ALADIN. The results were used for completing section 5.1 and section
5.2. Most of the questions were asked to understand why the framework was created, how they
handle requirements changes in the middle of the iteration and what kind of responsibilities do the
roles in their frameworks have and why.

The aim of this thesis was to find challenges that occur by using agile development methods for

118

7. Conclusion and Outlook

projects with hardware, firmware and software development and to make proposals for how the
agile development methods of AVL can be combined; can interact with each other. Therefore,
three proposals for using their frameworks were made. These was done by using the results of
comparing AVL’s agile development methods, the results from the literature and the results from
the expert interviews.

• Combining ALASKA and ALADIN to one framework (section 6.4.2)
• Using ALASKA and ALADIN as separated framework (section 6.4.3)
• Using a downgraded version of ALASKA with adaptations to meet the needs of hardware,

firmware development (section 6.4.4)

Using a combination of ALASKA and ALADIN would reduce communication interfaces between
these two frameworks. Overhead concerning having too much meetings, synchronizing the different
sprint length and having two Scrum master would fall out at team level, while having the program
and portfolio level meetings stay. Adaptations in form of changing the definition of working
shippable increments to having something which brings value to the customer and helps gaining
feedback quicker.

By using ALASKA and ALADIN as separated framework, communication interfaces must be
defined. A close communication from the Scrum masters and from the product owner and
development owner is crucial for successfully using separated frameworks. There have to be
meetings to check the progress of the development, such as having a Scrum of Scrum after each
week. Sprint lengths of the frameworks must be fixed. For ALASKA a two week sprint is
recommended and for ALADIN either two weeks or four weeks sprint length. This ensures that
the frameworks can be synchronized. After four weeks, a sprint review and a retrospective should
be done with each member of the framework, in order to test the entire product.

Using a downgraded version of ALASKA with adaptations, would combine the benefits of having
one framework, such as the combination of ALASKA and ALADIN. This would also reduce the
overhead with having program and portfolio meetings, roles and artefact. Adaptations must be
done in order to fit the frameworks to the needs of hardware development, such as having a fixed
sprint length of four weeks and changing the definition of a working sprint incremental into having
an increment which provides value to the customer and frequent feedback quickly.

The main conclusion of this thesis and the answers to the research questions are that it is possible
for products with hardware, firmware and software development to use agile development methods.
The thesis shows that the literature already mentions companies who use agile development
methods with developing hardware, firmware and software. Most of these companies state that
they benefit from it. There are the following benefits:

• Increased cooperation and communication
• More structured work

119

7. Conclusion and Outlook

• Better definition of requirements and better prioritization
• More frequent feedback from different stakeholders
• Fixed definition of “Done”
• Transparent process flow and responsibilities

However, it needs to be considered that due to the nature of hardware development, there are
certain constraints which cannot be ignored. The literature mentions that adaptations must be
performed in order to use agile software development frameworks such as:

• Depending on their needs the team may consist of hardware, software and firmware develop-
ers or there can be separated teams for each one of them.

• Sprint lengths may vary for each team, therefore alignment must be done to ensure that
teams can review the increments together.

• The Backlog may consist of not only one team and one product item, but it rather consists of
many teams and many products. These items can be derived into the team backlog.

• There must be a product manager for each product who knows what the market needs.
Since there is not only one product manager but many, they must discuss in a meeting what
requirements are needed and what priority they have. These requirements are then put into
the big backlog for all teams.

• An increment must not be some working piece of the product itself, but it should rather be a
concept, an idea or a design which can be presented to gain feedback from the stakeholder.

• A release plan must be created to ensure that the product is finished with the requirements
needed till the deadline.

Further investigations: It would be interesting to investigate and research further into this topic.
However, due to the lack of time and in order to reduce the scope of this thesis, these investigations
need to be conveyed in another thesis.

Firstly, it would be interesting to consult more literature for existing frameworks and processes
for the development of hardware, firmware and software products. It would also be interesting to
have expert interviews with other companies in Austria and with other departments of the AVL
which already use agile development methods for products with hardware, software and firmware
development. This would show how they handle hardware development constraints and how they
solved these challenges.

It would also be interesting to see how the proposals for the AVL were be implemented and what
adaptations had to be done in order to solve certain challenges. After some time it would be
interesting to have expert interviews again, to see how the opinions of the employees from the
department MIE/MIS changed ; how the development changed concerning the initial development
methods and the proposed agile development method, and what improvements could be done in
order to make the framework more efficient. In addition, it would be interesting to know how big
the knowledge transfer in a collocated team is and it would also be of interest to see if it is big

120

7. Conclusion and Outlook

enough to let a software developer handle minor hardware development requirements and vice
versa.

121

References

Alliance A., 2013: The Agile Manifesto. Accessed: 15.08.2017. https://www.
agilealliance.org/agile101/the-agile-manifesto

AVL, 2017: Internal document for ALASKA. Accessed: 18.12.2017. https://desktop.avl.
com/corp/02/0058/ALASKA/Pages/Default.aspx

AVL, 2018: Internal document for ALADIN. Accessed: 18.12.2017. https://desktop.avl.
com/corp/02/0087/Pages/Home.aspx

Backblaze Inc., 2015: Application of Scrum Methods to Hardware Development. Accessed:
20.05.2017. https://www.backblaze.com/blog/wp-content/uploads/
2015/08/Scrum-for-Hardware-Development-V3.pdf

Beck K., Andres C., 2004: Extreme Programming Explained: Embrace Change, Addison-Wesley,
Boston, 2 Edition.

Eklund U., Bosch J., 2012: Applying Agile Development in Mass-Produced Embedded Systems.,
in: XP, Volume 111 of Lecture Notes in Business Information Processing, Springer, p. 31–46.

Gläser J., Laudel G., 2010: Experteninterviews und qualitative Inhaltsanalyse als Instrumente
rekonstruierender Untersuchungen, VS, Verl. für Sozialwiss., 4 Edition.

Greene B., 2004: Agile Methods Applied to Embedded Firmware Development, in: Agile Develop-
ment Conference, IEEE, p. 71–77.

Highsmith J., 2002: Agile Software Development Ecosystems, Addison-Wesley Longman Publish-
ing Co., Inc., Boston, 1 Edition.

Holtsnider B., Wheeler T., Stragand G., Gee J., 2010: Agile Development and Business Goals,
Elsevier, 1 Edition.

Huang P.M., Knuth A.A., Krueger R.O., Garrison-Darrin M.A., 2012: Agile Hardware and
Software Systems Engineering For Critical Military Space Applications, in: Sensors and Systems
for Space Applications V, Volume 8385 of Proceedings SPIE 8385, SPIE Digital Library, p. 1–9.

Kaisti M., Mujunen T., Mäkilä T., Rantala V., Lehtonen T., 2014: Agile Principles in the Embedded

122

https://www.agilealliance.org/agile101/the-agile-manifesto
https://www.agilealliance.org/agile101/the-agile-manifesto
https://desktop.avl.com/corp/02/0058/ALASKA/Pages/Default.aspx
https://desktop.avl.com/corp/02/0058/ALASKA/Pages/Default.aspx
https://desktop.avl.com/corp/02/0087/Pages/Home.aspx
https://desktop.avl.com/corp/02/0087/Pages/Home.aspx
https://www.backblaze.com/blog/wp-content/uploads/2015/08/Scrum-for-Hardware-Development-V3.pdf
https://www.backblaze.com/blog/wp-content/uploads/2015/08/Scrum-for-Hardware-Development-V3.pdf

References

System Development., in: XP, Volume 179 of Lecture Notes in Business Information Processing,
Springer, p. 16–31.

Kaisti M., Rantala V., Mujunen T., Hyrynsalmi S., Könnölä K., Mäkilä T., Lehtonen T., 2013:
Agile methods for embedded systems development - a literature review and a mapping study., in:
EURASIP Journal on Embedded Systems, 2013, p. 1–16.

Manhart P., Schneider K., 2004: Breaking the Ice for Agile Development of Embedded Software: An
Industry Experience Report., in: Proceedings of the 26th International Conference on software
engineering, ICSE ’04, IEEE, p. 378–386.

Meyer B., 2014: Agile: the Good, the Hype and the Ugly, Springer, 1 Edition.

Palmer S.R., Felsing J.M., 2002: A Practical Guide to Feature-Driven Development, Prentice Hall
PTR, 1 Edition.

Reynisdottir T., 2013: Scrum in Mechanical Product Development Case Study of a Me-
chanical Product Development Team using Scrum, Thesis. Accessed: 20.11.2017.
http://publications.lib.chalmers.se/records/fulltext/191951/
191951.pdf

Sandhaus G., Berg B., Knott P., 2014: Hybride Softwareentwicklung: Das Beste aus klassischen
und agilen Methoden in einem Modell vereint, Springer, 1 Edition.

Schindler C., 2010: Review of Agile Software Development Methods in Practice, Dis-
sertation. Accessed: 12.12.2017. http://diglib.tugraz.at/download.php?id=
576a7a82525c9&location=browse

Schuh G., Schroder S., Lau F., Wetterney T., 2016: Next generation hardware development:
Requirements and configuration options for the organization of procurement activities in the
context of Agile new Product Development, in: 2016 Portland International Conference on
Management of Engineering and Technology (PICMET), Portland International Conference on
Management of Engineering and Technology, Inc., p. 2583–2591.

Schuh P., 2005: Integrating agile development in the real world, Charles River Media, 1 Edition.

Schwaber K., Sutherland J., 2017: The Scrum Guide - The Definitive Guide to Scrum: The
Rules of the Game. Accessed: 28.07.2017. https://www.scrumguides.org/docs/
scrumguide/v2017/2017-Scrum-Guide-US.pdf

Shen M., Yang W., Rong G., Shao D., 2012: Applying agile methods to embedded software
development: A systematic review, in: Proceedings of the Second International Workshop on
Software Engineering for Embedded Systems, SEES ’12, IEEE, p. 30–36.

Thompson K., 2015: Agile Processes for Hardware Development. Accessed: 8.09.2017.

123

http://publications.lib.chalmers.se/records/fulltext/191951/191951.pdf
http://publications.lib.chalmers.se/records/fulltext/191951/191951.pdf
http://diglib.tugraz.at/download.php?id=576a7a82525c9&location=browse
http://diglib.tugraz.at/download.php?id=576a7a82525c9&location=browse
https://www.scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf
https://www.scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf

References

https://www.cprime.com/wp-content/uploads/woocommerce_uploads/
2015/10/cPrime-Agile-Processes-for-Hardware-Development.pdf

Wirdemann R., 2011: Scrum mit User Stories, Hanser, 2 Edition.

124

https://www.cprime.com/wp-content/uploads/woocommerce_uploads/2015/10/cPrime-Agile-Processes-for-Hardware-Development.pdf
https://www.cprime.com/wp-content/uploads/woocommerce_uploads/2015/10/cPrime-Agile-Processes-for-Hardware-Development.pdf

Appendix

A 1

Interviewleitfaden Masterarbeit

Fragen zur Personen

1) Was ist Ihre Rolle bei der AVL?
2) Wie viel Erfahrung besitzen Sie in Ihrer Rolle?
3) Arbeiten Sie an mehreren Projekten gleichzeitig?

Fragen zu Xion

4) Wie lange arbeiten Sie schon an dem Xion Projekt?
5) Was für eine Entwicklungsmethode wird derzeit in Ihrem Arbeitsbereich verwendet?
6) Welche Stärken hat diese Vorgehensweise?
7) Sehen sie auch Grenzen/Schwächen in der Vorgehensweise?
8) Was funktioniert gut bei der Entwicklung von Xion?
9) Was hätte man besser machen können?
10) Wie wird derzeit getestet(Simulationen, Hardware Tests, Unit Tests)?
11) Wie arbeiten die Abteilungen miteinander(Meetings, Jira,...)?

Fragen zur Agilen Entwicklung

12) Haben sie Erfahrung mit Agilen Entwicklungsmethoden?(In wie vielen Projekten haben sie
schon agile Entwicklung eingesetzt?

13) Was würde sich verändern wenn agile Entwicklungsmethoden eingesetzt werden?
14) Wo sehen sie Stärken in der Agilen Vorgehensweise?
15) Wo sehen Sie Herausforderungen?
16) Könnten Agile Entwicklungsmethoden dem Projekt helfen? Wenn ja wie, falls nicht wieso?
17) Wie lange würde eine ihrer Meinung nach eine Iteration dauern und wie könnte man

Firmware/Hardware/Software parallelisieren?
18) Herunter brechen von Anforderungen in Tasks ist ein Hauptbestandteil in den meisten

Agilen Entwicklungsmethoden, könnte dies auch bei Xion funktionieren(Probleme,
Vorteile)?

19) Wie könnte man die Probleme die durch die Abhängigkeiten von Hardware und Firmware
entstehen lösen?

Appendix

A 2

Sample Interview

D: Gut beginnen wir. Ich sitze hier mit Herrn „interviewte Person“, einem Softwareentwickler. Bitte,
„interviewte Person“, skizziere dein Aufgabengebiet bei der Firma AVL.

Interviewte Person : Ich bin als Softwareentwickler angestellt und bin Teil des Softwareteams von
Indicom/MIE. Meine Hauptaufgaben ist die Softwareentwicklung. In der Software gibt es mehrere
Bereiche, genauer gesagt Themenbereiche. Mein Hauptaugenmerk liegt auf der Umstellung von
Indicom 2.8 auf indicom 3.0. Dies ist notwendig, da sich unsere Basisplattform des Concerto v4.8 auf
v5.0 sehr verändert hat. Nun gilt es für uns die neue Plattform zu implementieren und dies gilt auch
für die Indicom Unterstützung. Einige Features des Indicom 2.8 wie z.B. Booma Kopplung oder
verschiedene Recorder Geräte mit Xion, unterliegen nicht meiner Zuständigkeit Dennoch musste ich
mich mit mit Xion-Hardware auseinandersetzen – aktuell jedoch nicht mehr.

D: Welche Berufserfahrung als Softwareentwickler hast du bereits gesammelt?

Interviewte Person: In Bezug auf Firmenprojekte bin ich noch unerfahren. Die aktuelle Anstellung ist
meine erste größere Firma, mit der ich einen längerfristigen Vertrag habe. Ansonsten hatte ich
mehrere Ferialpraktika und Nebenjobs in dem Bereich.

D: Resümierend lässt sich festhalten, dass du Junior mit unter 3 Jahren Erfahrung bist. Welche
Software Entwicklungsmethoden hast du bereits verwendet? Zwischenfrage:Wird im derzeitigen
Projekt eine Entwicklungsmethode verwendet?

Interviewte Person: Es gibt innerhalb des Teams eine Methodik, zu der ich keinen Begriff in
Erinnerung habe. Jedoch ist diese nicht sehr strukturiert. Weiters ist festzuhalten, dass ich bei sehr
vielen Meetings nicht dabei bin. Dies ist damit begründet, dass ich mit XION nicht allzu viel zu tun
habe.

D: Welche Schritte wurden von deinem Vorgesetzten vorgegeben?

Interviewte Person: Der Ablauf ist folgendermaßen: Entweder es erfolgt eine Themenzuteilung oder
der Vorgesetzte weist die Themen zu. Im Großraumbüro erfolgen Diskussionen und es gibt den Defekt
Prozess. Wird ein Tester oder ein Software Entwickler auf einen Fehler aufmerksam, so wird dieser
eingetragen und gefixed. Dieses System basiert auf der Software Jira.

D: Welche Stärken hat diese Vorgehensweise?

Interviewte Person: Meiner Meinung nach: Nicht viele. Ich persönlich empfinde es als unstrukturiert
und es ist nicht wie bei den Indicom Softwareentwickler. Diese haben mehr Meetings, koordinieren
sich mit den Xion Firmwareentwickler, Hardware Entwicklern und anderen. Meine Schnittstelle zu den
Indicom Entwickler ist zwar vorhanden, jedoch fallen diese ebenfalls unstrukturiert.

D: Kurz zusammengefasst: Der gesamte Projektablauf ist deiner Meinung nach unstrukturiert?

Interviewte Person: Ja.

D: Ist ein Großraumbüro eine Stärke in Bezug auf die Kommunikation?

Interviewte Person: Ja, ist es.

D: Die Kommunikationswege sind kürzer?

Interviewte Person: Ja! Wenn eine Frage aufkommt, wird diese sofort beantwortet. Das ist
praktikabel.

D: Welche Testvorgaben gibt es?

Appendix

A 3

Sample Interview

Interviewte Person: Was wird unter Testvorgaben verstanden?

D: Wie wird getestet?

Interviewte Person: Es gibt ein eigenes Testingteam, mit dem definiert wird, was getestet werden soll
und welche Funktionalität gegeben sein muss. Jedoch kommt es oftmals zu problematischen
Konstellationen, dass ein Hotfix freigegeben werden sollte, jedoch ein großer Fehler unerwartet
auftrat , welcher nicht getestet wurde. Das bedeutet in weiterer Folge Stress.

D: Okay.

Interviewte Person: Es wird meiner Meinung nach zu lange zugewartet. Testen sollte viel früher
passieren.

D: okay.

Interviewte Person: Es gibt auch andere Schwächen. Dadurch, dass ich nicht bei allen Meetings
eingeladen bin, kann ich beim Thema Xion wenig beitragen. Mit Scrum wird sich etwas ändern.

D: Gut, das heißt in der Methode. Was würdest du verändern, weil du gesagt hast, dass es keinen
fixen Prozess gibt. Es werde eher versucht, anstatt einem Prozess zu folgen.

Interviewte Person: Grundsätzlich gibt es den Prozess mit den User-Requirements. Dieser wird jedoch
auf einer zu abstrakten Ebene praktiziert. Es gibt wenig Detailplanung und vor allem keine, die alle
involviert.

D: Das heißt: Es gibt wenige, die das Wissen dazu haben?

Interviewte Person: Es ist Inselwissen vorhanden, jedoch ist das große Ganze nicht für jeden klar
definiert. Das soll heißen, dass die Planung zu Detailarm ist, wenn es um Featuretesting geht, was
getestet werden soll und ähnlichem.

D: Es gibt keine Exitdefiniton oder eine „Definition of done“, wie es im Scrum genannt wird?

Interviewte Person: Diese ist zwar vorhanden, jedoch meiner Meinung nach nicht funktionierend.
Ansonsten würde das Zeitmanagement besser funktionieren.

D: Was müsste sich somit ändern?

Interviewte Person: Zu aller erst müsste es bereits während der Entwicklung Tests geben und nicht
erst beim Abschluss. Somit könnten Abnahmen früher abgehalten und Features als „abgeschlossen“
markiert werden.

D: Wie wird getestet? Mit Unit Test oder händisch?

Interviewte Person: Das entzieht sich meiner Kenntnis.

D: Wenn du einen Code implementierst, schreibst du auch Tests dafür oder probierst, du ob der Code
funktioniert?

Interviewte Person: Ich teste so gut ich kann, jedoch für detaillierte Tests wird der Code und das
Testteam weiter gegeben. Bevor ich den Test in Jira freigebe, probiere ich grundsätzlich, ob alles
funktioniert.

D: Ist dem Testteam bekannt, was die Software machen soll?

Appendix

A 4

Sample Interview

Interviewte Person: Das Testteam kennt die Aufgabenstellung und wissen, wie es beim Kunden
eingesetzt wird und was wichtig ist. Sie wissen zum Beispiel, ob ein Kunde das Feature verwendet
oder nicht. Ich habe dahingehend keine Ahnung; wäre jedoch wünschenswert.

D: Arbeitest du mit anderen Abteilungen zusammen?

Interviewte Person: Ja, mit der Plattform Concerto, Team classic und Team noise. Wir stellen wie
erwähnt auf die neue Plattform um. Indicom und Concerto waren eine Software bis v2.8. Das wird
nun aufgebrochen, nachdem zwei Executables veröffentlicht wurden. Concerto in der Version 5
beinhaltet noch viele Teile von Indicom und es besteht eine enge Zusammenarbeit, um die Teile zu
separieren. Der Löwenanteil fällt dabei auf mich ab, weil ich mehr Zeit dafür aufbringen kann. Die
anderen beschäftigen sich hauptsächlich mit Features der Verson 2.8 und dem Bugfixen.

D: Findet die Kommunikation persönlich statt oder wird diese über das Jira abgehalten?

Interviewte Person: Tritt jemand des Concerto-Teams an uns heran oder diese implementieren ein
neues Feature das mit dem Indicom negativ interferiert, dann versuchen sie es mit einem Fix des
Indicoms und erstellen ein Git pull request. Diesen Request begutachten wir und akzeptieren, was
übernommen werden soll. Wurden Probleme festgestellt oder notwendige Features entfernt, so wird
ein Meeting anberaumt. Der Alaska Prozess ist jedoch noch nicht umgesetzt. Dadurch soll alles
strukturierter ablaufen.

D: Weil du den Alaksa Prozess angesprochen hast: Hast du bereits Erfahrung mit agilen
Entwicklungsmethoden? Hast du es schon verwendet?

Interviewte Person: Wie bereits erwähnt ist das die erste Firma, bei der ich längerfristig angestellt bin.
Deswegen habe ich dementsprechend keine Erfahrung.

D: Das heißt, du musst auf theoretisches Wissen zurückgreifen?

Interviewte Person: Theoretisches Wissen ist vorhanden. In kleinen Teams an der Universität oder
HTL wurde es ebenfalls eingesetzt. Grundsätzliches Verständnis dafür ist vorhanden.

D: Was würde geschehen, wenn in deiner Abteilung eine agile Entwicklungsmethode eingeführt wird?
Wird sich etwas verändern?

Interviewte Person: Ich hoffe, dass es eine Struktur in den Prozess bringen wird. Alaska fordert
beispielsweise Meetings mit einer Dauer von 4 Stunden alle 2 Wochen; Sprint planning im
Fachjargon. In diesem wird geplant, was zu tun ist, wer für was zuständig ist und gemäß der Definition
of done vorgegangen. Durch die Einbindung mehrer Leute und das Vorbringen Ihrer Bedenken sollten
sich positive Aspekte ableiten lassen.

D: Du stehst der agilen Entwicklung positiv gegenüber?

Interviewte Person: Ja.

D: Gibt es in den derzeitigen Meetings einen externen Scrum-Master, der die Einschulungen
übernimmt?

Interviewte Person: Das Kick-off Meeting findet am Montag statt und wird durch einen externen
Scrum-Master begeleitet. Die Einschulung wird während zwei oder vier Sprints stattfinden.

D: Wie stehen deine Kollegen dem Thema Alaska gegenüber? Wird von oben diktiert oder ist es der
Wunsch aus eurem Team?

Appendix

A 5

Sample Interview

Interviewte Person: Ich bin in den Entscheidungen der oberen Ebenen nicht involviert, jedoch wird
alles dort beschlossen, jedoch stehen dem alle überwiegend positiv gegenüber. Es gab
selbstverständlich gegebenüber detaillierten Themen Bedenken, weil das Scrum Team Software,
Hardware und Firmware beinhaltet, jedoch wird es sich weisen, ob diese berechtigt sind.

D: Betreffend der Hard-, Firm- und Software: Wie wird die Zusammenarbeit mit den Teams ablaufen?
Werden die Abstimmungen räumlich getrennt oder gemeinsam am Tisch erfolgen?

Interviewte Person: Nein, darüber wurde noch nicht gesprochen. Das Meeting bezüglich Agilität
findet kommenden Montag statt. Aber es sitzen bestimmt nicht alle im selben Raum.

D: Meinst du, dass dein Team näher mit dem Hardware- und Firmware-Team zusammenarbeiten wird
müssen, um neue Software entwickeln zu können oder wird sich nichts ändern?

Interviewte Person: Darüber kann ich keine Auskunft geben, denn ich setze mich derzeit kaum mit
Hardware und Firmware auseinander.

D: Dann wechseln wir das Thema und fokussieren uns auf Sprints Hat jeder im Team Sprints? Wie
werden diese aligned oder synchronisiert? Wie sehen die Abstimmungen mit den Firm-, Hard- und
Software aus? Die Software wird bereits mit der Hardware abgestimmt, und dergleichen. Wie kommt
es zu inkrementellen Releases?

Interviewte Person: Das war eines jener Themen, die beim Scrum Meeting angesprochen wurden,
aber es kann selbst definiert werden, was ein inkrementelles Realease ist. Was sollte ein laufendes
Produkt haben? Das ist beim Thema Hardware etwas schwierig. Während des Scrum Trainings
werden verschiedene Ansätze angesprochen. Es obliegt jedem selbst, zu definieren, was inkrementell
ist, beispielsweise Simulationen. Ich kann dir bei „alignen“ nicht folgen. Meinst du Sprints
synchronisieren? Soweit ich weiß wären wir nur ein Scrum Team sein. Das heißt, wir haben alle die
gleiche Sprint-Dauer?

D: Es existieren im Team nicht verschiedene Prozesse? Es wird doch Alaska und Aladin verwendet: das
sind zwei verschiedene Prozesse: einer für die Hardware und einer für die Software.

Interviewte Person: Ich vermute, wir sind nicht nur im Aladin. Wir sollten die selbe Sprint-Dauer
haben, jedoch habe ich keine offiziellen Informationen darüber. Dies wird von den Verantwortlichen
besprochen. Diese Frage wurde jedoch beim Scrum-Training aufgeworfen: Ist die Dauer eines
Software-Sprints genauso lange wie ein Hardware-Sprint mit zwei Wochen definiert? Der Fortschritt
bei der Hardware wird in 2 Wochen wohl weniger eklatant ausfallen. Wir sind bereits gespannt auf
die Umsetzung.

D: Tasks runter brechen wird ebenfalls eingesetzt, richtig? Es existieren mehrere Stories oder
Requierements und wie läuft das bei euch ab? Gibt es eine bestimmte Vorgehensweise, wie „runter
gebrochen“ wird? Oder ist das von der Erfahrung des Entwicklers abhängig?

Interviewte Person: Das weiß ich eigentlich nicht, ich bekomme grundsätzlich meine Tasks vom
Vorgesetzten zugewiesen. Story wird prinzipiell nicht in Jira in Tasks unterteilt. Wir haben keine Tasks
sondern Stories, die wir abarbeiten.

D: Wird sich das durch die Einführung von Scrum ändern? In Scrum wird in Requierements unterteilt.

Interviewte Person: Ich denke, dass sich die Abläufe ändern werden. Jedoch mit Sprint planning
werden die Stories feiner in Arbeitsaufträge unterteilt.

Appendix

A 6

Sample Interview

D: Wird es Probleme geben, wenn keine erfahrene Entwickler im Team sind, die die Aufteilung
übernehmen?

Interviewte Person: So ein Fall wäre natürlich nachteilig, jedoch gibt es genügend erfahrene
Entwickler, somit wird dieser eher nicht eintreten. Zumindest hoffe ich das.

D: Denkst du das es sich Agilität positiv auf die Software Entwicklung und dadurch auch auf Indicom
auswirkt?

Interviewte Person: Also ich denke das es sich auf jedenfall positiv auswirken wird, jedoch wird es
eine Zeit lang dauern.

D: Kannst du mehr über Agilität berichten? Welche Hoffnungen hast du? Wo kann es zu Problemen
kommen? Wie praktikabel ist Agilität?

Interviewte Person: Ich persönlich ist es sinnfrei, dass im Scrum die sich die gesamte Kompetenzen in
einem Team vereinen sollt. Somit sind alle für alle Bereiche zuständig. Umgesetzt auf meine Situation
hieße es, dass ich gemäß der Definition von Scrum auch Hardware entwickeln müsste, obwohl mir
das Wissen dazu fehlt.

D: Ist es nicht eher so, dass es verschiedene Teams gibt, wie in diesem Beispiel jeweils eines für
Hardware und für Software und jedes für sich einen Scrum-Master hat?

Interviewte Person: Das ist eben einer der offenen Punkte. Im Scrum-Training wurde uns mitgeteilt,
dass ein Team alle Kompetenzen vereinen soll. In unserem Fall wäre das bei Indicom eben Hardware
und Software, weil das als ein Produkt gesehen wird, das entwickelt werden soll. Dieses Scrum-
Training war jedoch nicht spezifisch auf Aladin oder Alaska bezogen sondern behandelte Scrum im
Generellen. Wie das in Aladin oder Alaska gehandhabt wird, weiß ich leider nicht. Wir sind auf alle
Fälle ein gemeinsames Team mit einem Scrum-Master, content owner, produkt owner und so weiter.
Das ist mein derzeitiger Informationsstand.

D: Erfahrungsgemäß würde ein Sprint in der Softwareentwicklung wie lange dauern?

Interviewte Person: Meines Wissens sind zwei Woche angedacht.

D: Ist eine Iteration ausreichend um als ein funktionierendes Inkrement zu gelten?

Interviewte Person: Mit meinem heutigen Wissensstand kann ich diese Frage nicht ausreichend
beantworten. Von Seiten der Software sehe ich es im Vergleich zur Hardware oder Firmware weniger
problematisch. Jedoch fehlt mir in den beiden zuletzt genannten Teilen die Erfahrung.

D: Im Scrum ist ein kontinuierlicher Testablauf vorgesehen. Wird dieser in Zukunft durchgeführt
werden oder wird sich nichts ändern?

Interviewte Person: Es wird bereits kontinuierlich getestet.

D: Du hattest erwähnt, dass Fehler erst am Ende entdeckt werden.

Interviewte Person: Ja, das stellt ein Problem dar. Größere Bugs werden erst am Ende entdeckt. In wie
weit sich das in Zukunft ändern wird, weiß ich nicht. Es fehlt mir auch die Kenntnis darüber, wie die
Fehler passiert sind: Kümmerte sich niemand darum? Sind sie im Laufe der Entwicklung entstanden?
Scrum wird diese Problematik meiner Meinung nach nicht lösen.

D: Wurde im Scrum-Meeting darauf eingegangen, wie die Entwicklung der Hard-. Soft- und Firmware
parallelisiert werden kann?

Appendix

A 7

Sample Interview

Interviewte Person: Nein, eben nicht. Es zielte nicht speziell auf Alaska und Aladin ab, sondern es war
ein Überblick über Scrum. Synchronisation kam dabei nicht zur Sprache. Das lag auch daran, dass der
Trainer keinerlei Erfahrung mit Alaska und Aladin vorweisen konnte, sondern nur mit Scrum vertraut
war. Es wurden 3 Teams (Hardware, Firmware und Software) vorgeschlagen, die sich über einen
Scrum of Scrum synchronisieren sollen. Wie das jedoch im Endeffekt ausschauen wird, ist für mich
unklar, da wir, wie bereits erwähnt, ein Team sein sollen.

D: Wenn ich das richtig verstanden habe, wird nicht Komponente für Komponente entwickelt? Es gibt
also kein Komponenten-slicing?

Interviewte Person: Ich denke, die Komponente in meinem Fall ist Indicom. Es existiert aber auch diie
SIU. Dieses Gerät benötigt selbst eine Software. Der Entwickler von SIU implementiert es für Indicom.
Näheres würdest du bei unserem SIU-Entwickler erfahren.

Appendix

A 8

Angestellten Interviews

Allgemein

Rolle der bei der
AVL

Elektronik Entwickler
für Tests;
Projektleiter/Program
manager über mehrere
Projekte; Hardware
Entwicklung Indizier
Messtechnik;
Firmware/Hardware
Entwickler;
Softwareentwickler;
Projektleiter;
Abteilungsleiter

Erfahrung 5 - 30 Jahre

Aufgaben Prüfvorschriften
schreiben;
Hardware/Firmware/So
ftware/FPGA
entwickeln; Hardware
design; Oberflächen
Entwicklung

Fragen Interview 1 Interview 2 Interview 3 Interview 4 Interview 5 Interview 6 Interview 7

Arbeiten Sie an
mehreren
Projekten
gleichzeitig?

 Xion und andere Xion;
Betreuung von
Altprojekten

 Xion und andere
Baustellen;

Projekte von
Mitarbeiter
der in
Pension
gegangen ist

Schnittstelle zu
den
Verstärkern;
zentrale
Anlaufstelle für

 Entwickler
für Indicom

mehrere
Projekte für
schnelle
Messtechnik;
teilweiße

Appendix

A
9

Angestellten Interviews

hat er ein
paar
bekommen,
eher Serien
Betreuung,
hauptsächlic
h aber Xion

Fehler in
Indicom

noch in der
Entwicklung;
Indicom
Setup

Herausforderung
en in der HW
Entwicklung?

Zeitproblem, muss
schnell gehen; was ist
das richtige Bauteil
(kommt durch
Erfahrung)

Lange
Wartezeiten
beim bestellen

Lieferzeiten;
Durchlaufzeiten;
Reale Objekte

 Lieferzeiten;
testen

Herausforderung
en in der FW
Entwicklung

Focus bei mehreren
Projekten; selbst
beigebracht; testen
wenn kein Prototyp da
ist

Entwickeln
ohne Hardware

 selbst
Firmware
entwickeln
gelernt

 Entwickeln
ohne
Hardware

Wie lange
arbeiten Sie
schon am
Xion/Projekt?

Seit Anfang Von Anfang an
dabei

von Anfang an
dabei

>5 Jahre schon seit
Begin

erst seit 3
Jahren ist
Indicom bei
Xion dabei;
entwickelt
wird
Parametrisie
rung,
Ansteuerun
g für die
Hardware
über einen
Softwaretrei
ber zur
Datenerfass
ung n

konkret nicht
in der
Entwicklung;
nur mitreden
um Ideen und
Erfahrungen
einzubringen;
erstellen
technischer
Requirements

Appendix

A
10

Angestellten Interviews

Was für
Entwicklungsmet
hoden wird
derzeit
verwendet?

Wasserfallmodel; mit
Rückschritten zu vorige
Gates; Pflichtenheft,
Lastenheft, grober
plan, Layout,
Konstruktion,
Evaluierungsarbeiten,
testen; Konzepte
erarbeiten;
Kommunikation mit
Kollegen

PIP, dann
neuer PIP, wird
kaum richtig
gelebt

Datenanalysen;
kein komplett
neues System;
schon bekannt
was zu machen
war;
Machbarkeitsstu
die, Demo
Projekte
gemacht, Layout
Simulationen(Sie
mens) trotz Preis;
Standard Geräte
Entwicklung aber
keine echten
Kunden Projekte

Evaluationbo
ard in Betrieb
nehmen;
sequentieller
Ablauf
entwickeln;
Projektleiter,
(Keine
Vorschläge)
definiert was
zu tun ist

Wasserfall
massige
Entwicklung;
mim 1-2
entwickeln,
sehr großer
Aufwand aber
es ist gut
gelaufen;
iterativer
strukturierter;
durch Xion
Problem, weil
neu
entwickeln;
war langsam
am Anfang,
sehr chaotisch;
unkoordiniert;
alles so wie
damals machen
und deswegen
waren die
Mitarbeiter
nicht zufrieden

PIP; seit 25
Jahren, sehr
Hardware
lästig; CMMI
Prozess für
Software
eingeführt
worden;
wird aber
nicht mehr
so gelebt;
Wasserfall
Model,
wenig
Komplikatio
nen
zwischen
Hardware,
Software;
seit 4 Jahren
neuen PIP;
basiert auf
Stationen
jetzt ist er
sehr
restriktiv
geht nicht
das man in
eine nächste
Station
gehen,
wenn kein
go von

PIP wird
derzeit für
neue Geräte
eingesetzt;
Overhead für
kleine
Produkte ist
zu groß (XION
in anderes
Gehäuse
setzen); PIP
beschreibt
mehrere
Stufen

Appendix

A
11

Angestellten Interviews

Stakeholder
da ist

Welche Stärken
hat diese
Methode?

man weiß was zu tun
ist; kaum Problem bei
der Entwicklung

kaum stärken;
vieles macht
Sinn aber es ist
alles zu viel

Kommunikation
war super
Externe
Mitarbeiter sind
experten, gute
Allrounder aber
keine
Spezialisten

sehr
detailliert
geplant,
leichtes
wechseln
zwischen
Projekten

Feature nach
Feature
entwickeln

Dokumentat
ion zum Teil
gut; wenig
Leute haben
damit zu tun
gehabt;
strukturierte
r gearbeitet

es ist sehr
strukturiert;
für komplexe
Geräte ist es
teilweise gut,
solang direkt
mit den
Personen
geredet wird

Sehen sie
Schwächen/Gren
zen in der
Methodik?

Warten auf andere
Abteilungen; kaum
Entscheidungen
gefallen;

Ressourcen
Probleme;
Stolpersteine;
wenig Führung;
Konsens
zwischen
Management
fehlt; alles
muss schon
erarbeitet sein
(Konzepte,
Tests,
Prüfkonzepte);
sehr starr

viele
Verzögerungen
aber keine
Fehlentscheidun
gen,
Management hat
nicht auf dich
gehört,
Ressourcen
Probleme durch
beschränkte
Kapazitäten,
Sparmaßnahmen
,
Durchlaufzeiten;
Entscheidungsfre

Fokus
verloren,
Ressourcen
haben
gefehlt;
lange
Bestellzetteln
; Änderungen
schwer bei
Prototypen
zu machen;
externes
simulieren(Si
emens)

nicht
koordiniert,
Caos, sehr
unrealistische
Termine,falsch
geplant;
Termine waren
immer fix trotz
andere höher
priorisierter
aufgaben

starr; alle
Dokumente
müssen da
sein die man
braucht; viel
planen;
neuer PIP
erschwert
Entwicklung
ohne go von
Stakeholder
geht nichts
weiter;
großes
ganze hat
gefehlt;

sehr großen
Overhead; zu
viel planen:
man muss
warten bis
alle
Stakeholder
ein "Go"
geben um in
die nächste
Phase zu
gehen, wird
oft blockiert
um keine
Verantwortun
g zu

Appendix

A
12

Angestellten Interviews

iheit begrenzt,
Verantwortung
wurde
weiterverschobe
n

jeder
entwickelt
wir er glaubt

übernehmen;
nicht
parallelisier
bar, sehr
demotivieren
d, trotz vieler
Reviews
kommt es
beim Produkt
zu
Problemen;
kein
gemeinsamer
Fokus;
Projektleiter
muss alles
selber
machen

Was hätte man
besser machen
können?

 nicht auf alles
warten; nicht
ganz an dem
Prozess halten

mehr
Unterstützung/V
erständnis
seitens des
Managements;
früher auf
Probleme
reagieren

 aber es nicht
koordiniert und
dass wollen wir
ändern, jeder
weiß was der
andere macht,
und es besser
kommuniziert
wird was
gemacht wird,
Test wird
besser
informiert,
wenn man
schrumm
einführt, wir

 PIP
auflockern
(für kleinere
Projekte);
Personen nur
miteinbezieh
en, wenn
man sie auch
braucht;
Vorausschau
was für
Bauteile
benötigt
werden

Appendix

A
13

Angestellten Interviews

haben zu wenig
Ressourcen
gehabt für dass
was zu tun war,
Abschätzung
war dafür so
und so viel
Leute aber die
Leute haben
gefehlt, und
auch keine Zeit
dafür gehabt

Wie testet man
derzeit?

Serientests;
Funktionstests;
Leiterplatten beim
Hersteller;
Fertigungsendtest;
immer an der
Hardware;
Evaluirungsboards

Testen durch
Simulationen;
an Prototypen,
während
Entwicklung

Layout
Simulation;
Thermische
Simulation;
FPGAs
Schaltungen
simuliert

an
Evaluationbo
ard;
Feinheiten
testen nur
am
Prototypen;
Layout
Simulationen
; Test
Funktionen
für Firmware;
VHDL Code
testen;
später in
Indicom
einbinden

getestet wird in
der Test
Abteilung; Unit
Checks;
automatischer
Test Sever; high
Level Tests

 jeder für sich;
später dann
zusammen;
automatische
Tests; Unit
Tests

Appendix

A
14

Angestellten Interviews

Wie arbeiten die
Abteilungen
miteinander
(Hardware,
Software,
Firmware)?

ungefähr wissen was
jeder macht und an
wenn man sich wenden
kann/ Face to Face
reden

wöchentliche
Meetings; Face
to Face

 nicht ganz
Sequenziell;
bisschen
parallelisiert;
anhand (Keine
Vorschläge)
Firmware
entwickeln; eher
Interrupts von
der
Softwareseite

direkter
Kontakt bei
Problemen
oder wenn
was
besprochen
wird, oder
gemeinsam
durchschaue
n, Meetings
(Statusmeeti
ngs HW,
Indicom)

von drüber
reden was zu
tun ist bis,
Hardware hat
schon
eingebaut und
Software muss
es jetzt auf
ihrer Seite
einbauen, hier
gibt es großes
Verbesserungs
potenzial, weil
das Verständnis
fehlt wie
einzubauen ist,
es wurde
parallel
entwickelt,
aber bis Xion
da war haben
wir schon viel
gebaut gehabt,
Person hat
gefehlt die sich
für Software
und Hardware
kümmert die
schaut das bei
beidem was
gebaut wird, es
hat nur gut
funktioniert
weil jeder die

Software
erst mit den
Xion
prototype
dabei:
Software
hat sich auf
Firmware
ausgeweitet
,
Kommunikat
ion nicht
passt, Focus
war anders,
gleiche
Abteilung 2
Teams
irgendwie
zusammeng
erauft,
Software
wurde zu
spät
eingebunde
n

müssen sich
zusammenra
ufen;
Personen
werden
miteinbezoge
n wenn
gebraucht

Appendix

A
15

Angestellten Interviews

Leute kennt
und ein gutes
Verhältnis gibt,
Kommunikatio
n war nicht
immer gut,
zusammenführ
en immer dann
wenn sich die
Kollegen
gemeldet
haben

Kann man
modular
arbeiten?

Modularität geht nicht;
in Prinzip wird’s
gemacht, aber nicht
von Anfang an

ja kann man,
tun wir schon
zum teil

Xion ist modular;
dafür aber teuer;

 Ja könnte
man, ist aber
nicht so leicht
umzusetzen

Wie lang dauert
es bis ein
Prototyp da ist?

mindestens. 2 Monate;
Bauteile werden vorab
bestellt ca. 8 Wochen
Lieferzeiten; wenn
Fehler am Prototyp
dauert es;

ca. 3 Monate Halbes Jahr bis es
beim Kunden
ankommt

2-3 Monate Dauert sehr
lange,
Fehler
würden zu
langen
Wartezeiten
führen,
Simulatione
n würden da
helfen

hängt von
den
Lieferzeiten
von
Bauteilen,
vom
Mechanik
Produzenten,
von den
externen
Lieferanten
ab; kann
mehrere

Appendix

A
16

Angestellten Interviews

Monate
dauern

Was macht ihr an
den
Übergangszeiten
(bis Prototypen
da sind)?

an anderen Projekten
arbeiten

an anderen
Baustellen
arbeiten

an anderen
Projekten
weiterarbeiten

an anderer
Firmware
arbeiten

 es werden an
anderen
Baustellen
weiter
gearbeitet

Haben sie
Erfahrung mit
Agilen
Entwicklungsmet
hoden?

Keine Erfahrung; keine
Schulung; durch
Kollegen erfahren wie
es funktioniert

Schulung; im
Prinzip sind wir
schon agile

Keine praktische
Erfahrung; weiß
aber grob worum
es geht

 Schulung
gehabt;
erster
Kontakt zur
agilen
Entwicklung

Einschulung
gehabt

ja bisschen
durch
ALASKA,
Einschulung

Keine
praktische
Erfahrung,
war bei der
Schulung
dabei

Was für
Veränderungen
würden
eintreten, wenn
agile Methoden
eingesetzt
werden?

mehr Reportet;Team
weiß mehr was genau
passiert

kann er nicht
genau sagen

kennt die
Methodik nicht
in der Hardware;
richtiges
abschließen von
Projekten;
bessere
Koordination

Agilität in der
Firmware
geht, nach
Features
entwickeln;
in Sprints
entwickeln;
daily standup
ist super da
man dann
von jedem
weiß was er
macht

Scrum nur für
dinge die
Indicom
betreffen z.B.
Firmware und
teilweise
Hardware für
Indicom
Funktion aber
nicht Gehäuse
oder
Spannungsvers
orgung; viele
Meetings mit
viel Aufwand
am Anfang

wenig druck
und bessere
Zusammena
rbeit; Focus
mehr auf
Funktionalit
ät Mindset;
sehr viel
Eigeninitiati
ve,
Firmenstruk
tur würde
sich ändern
(Teamleiter,
Linienleiter),
Managemen
t muss sich

starke
Verantwortun
g für die
Gesamtheit
des
Produktes;
Hardware
Team wird
miteinbezoge
n; Feature
orientierte
Entwicklung

Appendix

A
17

Angestellten Interviews

daran auch
gewönnen

Wo sehen Sie
stärken in der
Agilen
vorgehensweiße?

Focus an Features; mit
Team abstimmen; sehr
flexibel;
Informationsaustausch

Kommunikatio
n; besseren
Focus; kein
Einmischen;
fixes Team;
fixes Ziel

abarbeiten der
Problemstellunge
n in 2 Wochen;
Priorisierungen;
Kommunikation
wird sicher
besser; co
Location ist
schon vorhanden

richtiges
abschließen
von Features
mit testen;
weniger
Projekte
gleichzeitig

bessere
Koordination,
besseres
Planung,
bessere
Sichtbarkeit,
neu
Priorisierungen

bessere
Kommunikat
ion, besser
verstehen,
strukturierte
r,
transparent
was jeder
tut,
Knowledge
sharing,
bessere
Aufteilung
weniger
Spezialisten,
bessere
Architektur,
bessere
Entscheidun
gen
zusammentr
effen,
Prüfungen
die im PIP
sind könne
durch agile
Vorgangswe
ißen

koordinierter
es arbeiten;
bessere
Kommunikati
on;
Verantwortun
g geht über
ans Team;
besserer
Fokus

Appendix

A
18

Angestellten Interviews

ausgelassen
werden

Wo sehen Sie
Schwächen/Gren
zen?

2 Wochen Sprints sind
kurz für Hardware,
eher Softwarebezogen;
2 Monate bis
Prototypen, bis
Schaltplan, Layout (ca.
2 Monat) je nachdem
wie komplex;
Simulationen;
Inbetriebnahme; viele
Meetings

Hardware
Team muss
alles können;
Ressourcen
fehlen;
mehrere
Backlog für
verschiedene
Projekte; ein
großes Standup
Meeting;
Planung der
Teams;
Lieferzeiten
ändern sich
nicht;
Weisungsgebu
ndenheit;
Kultur Change

Lieferzeiten;
Beschaffungszeit
en;
Verzögerungen
durch Testzyklen
auch bei
Simulation;
Hardware schwer
in Sprints
planbar, Planung
der Mitarbeiter
für nur ein
Projekt

große
Abhängigkeit
en durch die
Hardware,
bestellen
geht nicht
agile;
review/retro
spektive
braucht viel
Zeit

schwer
vorzustellen
wie das mit der
Koordination
mit der
Hardware ist,
gespannt wie
es beim
Release wird,
rückfallen auf
alte (Keine
Vorschläge)

zurückfallen
auf alte
Gewohnheit
en bei
Krisen
Zeiten;
Priorisierung
von
Projektleiter
aufgaben

komplett
agile
Hardware
entwickeln ist
schwer; muss
unterschiede
n werden
zwischen
programmier
barerer
Hardware
und reiner
Hardware;
Hardware
sollte
eigentlich
fertig
entwickelt
werden,
zusätzliche
Funktionen
werden über
Indicom
bereitgestellt

Appendix

A
19

Angestellten Interviews

Wie könnten die
Hardware,
Software,
Firmware
zusammenarbeit
en?

Durch mehr reden;
Meetings

Firmware
vorher an
Demoboards
entwickeln
während
Prototyp
entwickelt
wird;
Kommunikatio
n; ein Backlog

 Bereiche
arbeiten teils
parallel; während
Layout in der
Bestellung ist,
wird geschaut ob
FPGA Pins
passen, während
dessen Firmware
entwickeln;
Firmware an
Demoboards
testen;

 Firmware
während der
Entwicklung
der
Hardware
programmier
en auf low
Level ebene;
mit
Evaluation
boards;
testboards;
Evaluirungsb
oards
verwenden
um
Abhängigkeit
en zu lösen,
Hardware
derzeit nicht
agile

treffen bei
Meetings;
diskutieren was
zu machen ist,
was geplant
wird; ein Team:
Firmware-,
FPGA-,
Hardware
Entwickler,
vielleicht
eigenes ein
Team,
Hardware gibt
Puls an

Ein Team
aus
Software
und
Firmware;
Hardware
kommt
irgendwann
dazu; wird
sich von
selbst
einstellen;
vielleicht
zweites
Team aus
Hardware
und
Firmware;
Produktman
ager gibt an
was zu tun
ist;
Hardware
über
programmie
rbare
Bauteile;
Hardware-/
Firmware
requirement
s schon früh
einbinden;
Treiber
ohne

Entweder als
einziges Team
oder mit
mehreren
Teams; ein
gesamtes
Backlog

Appendix

A
20

Angestellten Interviews

Hardware
entwickeln,
Simulatione
n,
emulieren,
auch
umgekehrt
möglich;
Hardware
modularer
entwickeln

Wo gebe es
Schnittstellen?

 ein Backlog;
Abnahmekriteri
en; enge
Mitarbeit

durchs Backlog
besser ersichtlich
für jeden was zu
tun

 Anforderung
en
austauschen
, gegenüber
offen zeigen

Backlog,
Meetings

Was für
Herausforderung
en gäbe es da?

 Firmware derzeit nach
Hardware; deswegen
schwer zu
parallelisieren

Verzögerungen
sind teils
schwer
vorherzusehen;
Lieferanten;
Physikalische
Einflüsse auf
Hardware

Kundenwünsche
die auf einmal
auftauchen

 quick and
dirty
entwickeln
geht nicht für
komplexe
Sachen

neue Hardware
braucht mehr
als einen
Sprint,
entwickeln nur
auf
bestehender
Hardware;
keine
komplette
Hardware
Entwicklung

Unwissenhei
t;
Missverstän
dnisse
warum
jemand was
(nicht) tut,
falscher
Fokus

Sprint länge;
Definition
vom
Inkrement;
Modular
Hardware
entwickeln
für alle Arten
von Feature;
Grund Gerüst
zur Verfügung
stellen;
Hardware
produzieren
und liefern
auch ohne
Software,

Appendix

A
21

Angestellten Interviews

Hardware
Team nicht
nur auf ein
Produkt
beziehen

Wie könnte man
sie lösen?

 Protoboards Hybrid durch
teil Agilität,
Wasserfall für
Hardware

kann man nicht
ablehnen;
Kundenwünsche
sind wichtig; neu
Priorisierung

 besser
informieren(
Firma);
ALADIN in
Programm
einbinden;
vielleicht
keine
Unterscheid
ung
zwischen
ALASKA &
ALADIN,
Managemen
t Mindset
anpassen

4 Wochen
Sprints
würden
gehen (auch
für
Hardware);
Task
Definition
könnte was
anderes sein

Kann ein
funktionsfähiges
Inkrement
rauskommen?

Schwer bei Hardware,
Konzept geht

Layout;
Bestellliste;
Designs;
Prototyp
braucht länger

Planen, CAD,
Leiterplattenplän
e

bei der
fertigen
Hardware
Firmware
Features
schnell
entwickeln
um ein
Inkrement zu
bekommen;
Simulationen

 Inkrement
könnte auch
Konzept;
(Keine
Vorschläge),
Simulationen,
FPGA
Definitionen
sein

Appendix

A
22

Angestellten Interviews

oder Pläne
zeigen

Herunterbrechen
von
Requirements?

Hängt von der
Komplexität ab; meist
nur als großes ganzes

Jain; quick and
dirty
entwickeln
geht nicht;
gekaufte Demo
boards würden
helfen;
Firmware
würde es
funktionieren;
Layout
herunterbrech
en möglich

Verlegung einer
Leitung oder
neue Buchse im
System geht
nicht als kleiner
Task; ganzen
bestell/Test
Zyklus von neues
durchlaufen; im
Vorfeld URS und
Listen
Requirements
fixieren;

Gemeinsame
s
herunterbrec
hen; sehr
zeitintensiv;
eher
ungenauer
herunterbrec
hen

Ist möglich; wir
haben Features
in kleine Tasks
heruntergebroc
hen;
Langzeittask
von Xion über
nächsten
Quartale
müssen
vorgeplant
werden

 wird schon
gemacht,
wird
zusätzlich in
Sprints
aufgeteilt

Wie sind die
Hoffnungen?

sieht es neutral;
unvoreingenommen;
mehr Transparenz

wird skeptisch
gesehen, weil
eher nur halb
gemacht wird

man muss es
einfach
probieren um zu
sehen, besser
planbar, sehr
positive Haltung
solange man es
real betrachtet

Overhead
soll weniger
werden;
richtiger
Abschluss
von Features

Alle sind positiv
eingestellt, ich
bin in einer
positiven
Erwartungshalt
ung, kann mir,
dass bisschen
schwer
vorstellen aber
ich lasse mich
überraschen,
bessere
koordinierte
Feature
Entwicklung,
gemeinsam am
gleichen

 Produktmana
gement muss
zusammen
entscheiden
was mit
welcher
Priorität zu
tun ist;
Entscheidung
en müssen
getroffen
werden Appendix

A
23

Angestellten Interviews

arbeitet,
gemeinsames
besseres
Verständnis
wie viel geht
bis zu einem
gewissen
Zeitpunkt in
das Produkt,
jeder sieht es
und kann sich
ein Bild
machen, alle
wissen was es
ist und alle
wissen was in 2
Wochen
weitergangen
ist und was
noch fehlt

Welcher Prozess
wird
verwendet(Aladi
n/Alaska)?

 Keine Ahnung,
Hardware ist
derzeit nicht
involviert
worden

Ist noch nicht
fixiert

Nur auf
Scrum
eingegangen

nur Alaska, bei
Aladin
gestartet aber
dann zu Alaska,
weil wir zu
Hälfte aus
Concerto
bestehen
welches Alaska
verwendet

ALASKA,
ALADIN
später

ALASKA,
ALADIN

Appendix

A
24

ALASKA/ALADIN Interviews

 ALASKA ALADIN

Idee ALASKA ist kein PIP; einzelne Teams
auf Scrum; Scrum allein reichte nicht,
fehlte Framework zum Koordinieren
von Teams, Safe

Klassische Hardware in die Agile
Entwicklung; ein bisschen angelehnt
an ALASKA; 4 Pilotprojekte zum
Ausprobieren; Rahmenbedingungen
in der Hardware anders als in
Software, Adaptieren und
Abänderungen des Frameworks
anhand von Ideen

Aufbau Portfolio Level als kontinuierlicher
Prozess; neue Epic zur neuen
Programm Iteration hinzugefügt;
Programm Iterationen mit 4 Sprints,
ein Innovationssprint, Retrospektive,
Review auch auf Programm Level
ebene; Programme sind nach
ausgewählten Punkten ausgesucht

Indicom->Firmware-> Hardware;
Agile + Wasserfall(PIP); nicht so
streng sequenzielle Phasen; PIP als
big Picture und Scrum als Motor
welches Value erzeugt

Systemdemos/Demos Programme bestehen aus mehrere
Produkten; alle Produkte werden
getestet

Demos müssen nicht unbedingt etwas
physikalisch sein aber müssen ein
Value haben; Testen wann es immer
geht

Teambacklog bestehen aus Tasks von mehreren
Programmen

ein Backlog für das gesamte Team

Ablauf PIP definiert Requirements und
Abhängigkeiten; ALASKA entwickelt
und der Markt Release geht über PIP;
ALASKA als führender Prozess; Scrum
of Scrum für Teams innerhalb eines
Programmes (nur Scrum Master)

Scrum Basis Schulung; 2 Sprints mit
Coach als Scrum Master danach
eigener Scrum Master;
Releaseplanmeeting, nach 2 Wochen
einen Teilwert erschaffen der einen
Wert kreiert mit Firmware, Software,
Hardware; Feedback kommt schnell,
Fehler werden schneller gefunden;
Einkauf, Fertigung ist schon bei
Prototypenbau dabei, gegen Ende
immer mehr im Team beteiligt; erste
Pilotteams

Features Programm Features fein auf die
jeweiligen Teams geteilt, dann auf
Stories; Features können während
des Sprints jederzeit in den Backlog
aufgenommen werden

Kommen vom Produktmanagement;
werden aufgebrochen in Tasks

Sprints sind fix auf 2 Wochen gesetzt 2-4 Wochen

Appendix

A 25

ALASKA/ALADIN Interviews

Unterschied in der
Hardware

 potential auslieferbares ist etwas das
intern wert kreiert wo Feedback
entsteht; Einkauf und Fertigung nicht
Agile; Frühen Phase (Testaufbauten,
Prototypen) mehr Agilität
Rapidprototyping; vielleicht anderen
Lieferanten wählen; alles wissen ist
schwer, weil es zu große
Unterschiede gibt aber es geht bis zu
einem gewissen Grad

Appendix

A 26

Best Practices Interviews

Best Practices/Allgemein Practice Interview 1 Practice Interview 1

Bereich Hardware Entwicklung E-Storage System zum Testen von Batterien/E-
Motoren; Software-Hardware Regelungen; 1 Basis
Produkt wo Derivate gemacht werden

Unterschied zur Software Viel größere Breite; Abhängigkeiten zu Lieferanten
und anderen physikalischen Dingen

Abhängigkeiten zu Lieferanten, Reales Produkt

Anzahl der Lieferanten 2

Abhängigkeit Lieferanten Bestellungen dauern Ansicht nicht lange, nur
Änderung dauern lange, meistens warten die
Lieferanten auf Änderungsvorschläge

Lange Bestellzeiten

Prototypenablauf Release Plan erstellt welches Abhängigkeiten
berücksichtigt; funktioniert für komplexe Geräte;
Funktionsmuster dauert ca. 3 1/2 Monate; es wird
viel mit FPGA, Lochrasterplatinen gearbeitet

Requirements: Kommen von Produktmanagement; ebenfalls
Änderungsvorschläge

Kommen von dem Produktmanagement und werden
mit Produkt Owner besprochen

Framework ALADIN als Framework; mehr Kundenzentriert;
strebt Denk Änderungen an; Stories werden in Jira
eingetragen und auf der Pinnwand aufgehängt; es
wird Systemengineering für Requirements

 Aladin Pilotprojekt; Produkt Owner stimmen sich
unter einander ab, haben ein eigenes Meeting und
eins mit dem Productmanagement; vor Selektion

Produkt Owner Produkt owner als Projektleiter macht den Release
plan und sagt was zu tun ist aber nicht wer es tun
soll

3 Produkt Owner: 1 für das Produkt, 1 für
Innovationsthemen, 1 für Kunden spezifische
Varianten

Scrum Master 1 Scrum Master; Hütet das Framework; versucht
eine starke Orientierung für das Ziel einzuführen

1 Scrum Master; kontrolliert ob das Scrum
Framework eingehalten wird

Appendix

A
27

Best Practices Interviews

Planen Es wird auf bis zu 1 Jahr grob mit Milestones und
Abhängigkeiten geplant und bis zu 2 Monaten
detailliert; jeder Sprint hat ein Ziel; Scrum of Scrum
wird verwendet; Backlog refinement wird über den
gesamten Release plan aufgeteilt

Roadmap mit den Zielen; Sprint Planning 1: mit
Feature Vertreter(wechseln je nach Aufgaben),
Fertigung , ca. 1 Stunde , verstehen um was es geht;
Sprint Planning 2: Mitarbeiter werden dazu geholt
welches benötigt werden, kleinere Team stimmen
sich untereinander ab; Daily Standup: alle Entwickler,
ca. 20 Minuten; Sprint Review/Retrospektive: alle
Entwickler, 1 1/2 Stunden Präsentation; Backlog
Raffinement: Verantwortliche nehmen teil machen
vor Selektionen vor jedem Sprint, 2 Stunden;
Produktmanager Meeting: vor dem Backlog
Refinement, Stories werden betrachtet

Backlog Es wird ein Backlog verwendet; über 3-4 Sprints
geplant (mit Einkäufer);

Jira für grobe Features (mehr als 1 Sprint); Stories
sind abgeleitet von Features für 1 Team; 4 Scrum
boards für die jeweiligen Produkt Owner; wird 3
Quartale vorrausgeschaut, feinere Planning für
diesen Sprint; es wird in Done, Current, Next,3
Quartale aufgeteilt; spezielle Zettel mit Terminen für
Kunden

Team 3 Team bestehen aus 3-7 Personen (Software,
Firmware, Chemiker, Hardware); mehrere Produkt
Owner und ein Scrum Master;

1 Team mit ca. 25 Personen (Firmware Entwickler,
System Tester, QDAR, Design, Elektronik, Type
Approval)

PIP PIP mit Release plan/Scrum mit PIP sind
komplementär; PIP wird als Regelwerk und als
Paralleler Prozess verwendet

parallel Entwickeln Funktioniert; man kann Hardware abstractions layer
parallel zur Schaltung entwickeln; Applikationen
können während dessen entwickelt werden, wenn
ein Evaluationsboard existiert

Herunterbrechen von Stories Funktioniert ganz gut, Konzept, Review von
Bauteilen als Task

Hängt vom Team ab, dürfen selber entscheiden; es
gibt Features die mehr als 1 Sprint in Anspruch
nehmen und Stories welches 1 Sprint brauchen

Appendix

A
28

Best Practices Interviews

Inkrement ALADIN's Bezeichnung für ein Inkrement wird
verwendet

wird nicht so dringlich gesehen; eher Ablauf besser
zu gestalten; Vernünftige Ergebnisse sollen
präsentiert werden nicht unbedingt fertige
Versionen oder ein gesamtes neues Produkt

Bestellzeiten möglich früh draufkommen welche Bauteile
gebraucht werden (Schlüsselbauteile ca. 14-20
Wochen)

testen Hardware on the loop zum Testen von Firmware und
Regelsystemen (Typhoon Hil); verhalten des
Gesamtsystems oder einzelne Teile darstellen;
Simulationen bis zu einem gewissen Grad möglich

Appendix

A
29

Appendix

A 30

	Introduction
	Purpose
	Problem Formulation
	Introduction of AVL
	Problem Definition
	Research Questions
	Research Approach
	Outline of this Thesis

	Theoretical Part
	Agile Software Development
	Scrum
	Scrum Team
	The Product Owner
	Development Team
	Scrum Master

	Scrum Events
	Scrum Artifacts

	Feature Driven Development (FDD)
	Key Project Roles
	FDD Best Practices
	FDD Process Model
	Develop on Overall Model
	Build a Feature List
	Plan by Feature
	Design by Feature
	Build by Feature

	Extreme Programming (XP)
	Values
	XP Practices
	XP Process

	Comparison of agile software development methods

	Agile Firmware Development
	Definition of Firmware Development
	Adopting Agile Methods to Firmware Development
	Use Case: Daimler-Chrysler
	Use Case: Mass-Produces Embedded Systems
	Use Case: Intel Cooperation

	Summary

	Agile Hardware Development
	Definition of hardware development
	Adopting Agile Methods to Hardware Development
	Use Case: John Hopkins University Multi-Mission Bus Demonstrator
	Use Case: Svenska Aeroplan Aktiebolaget (SAAB) Electronic Data Systems (EDS)
	Use Case: Marel Garðabær (GRB)
	Recommendation

	Summary

	Practical Part
	Agile Processes from AVL
	ALASKA
	ALASKA Process
	Team Level Process
	Roles
	Artifacts
	Events

	Program Level Process
	Roles
	Events
	Artifacts

	Portfolio Level Process
	Roles
	Artifacts

	ALADIN
	ALADIN Process
	Roles
	Events
	Artefacts

	Comparison ALASKA and ALADIN
	Process
	Events
	Roles

	Discussion
	Differences to the literature
	Process
	Roles
	Events
	Artefacts
	Comparison agile literature, ALASKA, ALADIN

	Interviews
	Challenges concerning the practical use of agile development methods
	Proposals
	General
	Combining ALASKA and ALADIN
	ALASKA and ALADIN as separated frameworks
	Using a downgraded version
	Comparison of proposals for using AVL's frameworks
	Responsibilities of the roles in the proposals

	Answers to Research Questions
	Is it possible to use agile software development methods for products with hardware and firmware development?
	Does the agile software development method need some adaptations to be used in hardware and firmware development, and what needs to be changed?

	Conclusion and Outlook

