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Abstract

Demands regarding the NVH (Noise, Vibration, Harshness) behavior of vehicles
have recently seen a major increase. Often, expensive warranty claims result for
automotive OEMs (Original Equipment Manufacturers). Therefore, vibro-acoustic
phenomena of vehicle disk brake systems such as brake squeal, moan or creep groan
have experienced a rise in interest over the last few years. Due to rather complex
relationships leading to these non-linear, friction-induced oscillation phenomena, an
engineer’s options are often limited to corrective actions based on prototype tests
of the complete vehicle or reduced physical models.

Simulations can be the tool of choice for early development stages as they lead
to better understanding of the causes and effects, enabling effective reduction of
occurring sound and vibration. The simulation tool Complex Eigenvalue Analysis
(CEA) is broadly used in industrial brake squeal applications. One big advantage
of this linearized, quasi-static approach is its efficient computation procedure: Huge
parameter ranges can be computed rather fast, even for full axle and brake models.
As the demand for suitable simulation tools for low-frequency phenomena rises, the
application of Complex Eigenvalue Analysis for the prediction of creep groan or
moan would be appealing. Therefore, this possibility is analyzed in this work.

After an introduction about disk brake systems, elastomer bushings and non-linear
oscillations, phenomenological descriptions of creep groan, moan and squeal are
reviewed in a short manner. Different explanation models and possible causes are
presented. In the following, the theoretical and mathematical foundation of the
CEA is analyzed. Based on this, application limits are stated: Computation of moan
oscillations should be possible, whereas the prediction of creep groan oscillations
cannot be covered by this procedure in the context of stick-slip oscillations.

Subsequently, a Finite Element model of a full vehicle’s front corner with double
wishbone suspension and fixed caliper brake is evaluated. A breakdown of the sys-
tem matrices’ structure and relevance is done. In the following, a classical brake
squeal CEA procedure is applied on several different variants with changes of elas-
tomer bushings’ stiffness and damping, rotational influences and rim design.

The resulting relevant modes reveal detailed information about the displacement
and frequency content of creep groan and moan oscillations. Obtained results under-
line the importance of modeling parameters such as non-linear bushing stiffness and
damping. A validation of the simulative outcome based on corresponding experimen-
tal tests and literature findings leads to a general recommendation for upcoming
transient and quasi-static simulations.
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Kurzfassung

Die Anforderungen der Kunden an das Verhalten von Fahrzeugen in Bezug auf
Geräusch- und Vibrationskomfort sind in den vergangenen Jahren wesentlich gestie-
gen und führen immer wieder zu teuren Gewährleistungsfällen für die Autohersteller.
Aus diesem Grund rücken vibro-akustische Phänomene an Scheibenbremsen wie z.B.
Quietschen, Muhen oder Knarzen stärker in den Fokus. Aufgrund der komplexen
Zusammenhänge, die zu diesen nichtlinearen, reiberregten Schwingungen führen, ist
Abhilfe hierbei oft auf korrigierende Maßnahmen basierend auf Prototypentests des
Gesamtfahrzeuges oder reduzierter physikalischer Modelle beschränkt.

Simulationen können hier bereits in der frühen Entwicklungsphase zum Verständnis
der physikalischen Ursachen und zur besseren Behandelbarkeit führen. Derzeit exis-
tiert mit der komplexen Eigenwertanalyse (KEA) ein Simulationswerkzeug, welches
in der Prädiktion von höherfrequentem Bremsenquietschen industrielle Anwendung
findet. Ein großer Vorteil dieser linearen, quasi-statischen Methode ist die effiziente
Berechnung, selbst von umfassenden Viertelfahrzeugmodellen. Mit zunehmendem
Fokus auf niederfrequente Phänomene wächst auch hier der Bedarf an Werkzeugen:
Diese Arbeit untersucht die Anwendung der KEA für Knarzen und Muhen.

Nach einem kurzen Überblick über Scheibenbremssysteme, Fahrwerkslager und
nichtlineare Schwingungen wird dazu zunächst das Systemverhalten von Knarzen,
Muhen und Quietschen erörtert. Verschiedene Erklärungsmodelle und mögliche Ur-
sachen werden diskutiert, es folgt eine Analyse der mathematischen Grundlagen.
Daraufhin werden Grenzen der Anwendung aufgezeigt: Während die Prädiktion
von Muhen als möglich eingestuft wird, ergeben sich für die charakteristischen Haft-
Gleit-Schwingungen bei Knarzen deutliche Einschränkungen.

In weiterer Folge wird ein Finite Elemente Modell eines Viertelfahrzeuges mit Fest-
sattelbremse und Doppelquerlenkeraufhängung analysiert. Nach einer Evaluierung
von Struktur und Einfluss der Systemmatrizen wird die klassische Vorgehensweise
bzgl. Quietschen für niederfrequente Schwingungen an mehreren Modellvarianten
durchgeführt. Insbesondere die Einflüsse von Elastomerlagern, verschiedenen Fel-
gendesigns oder rotatorischen Termen können somit ermittelt werden.

Resultierende instabile und relevante Moden zeigen deutlich die wesentlichen Ver-
schiebungen und Frequenzinhalte von Knarz- und Muhschwingungen auf. Des Wei-
teren wurden die hohen Einflüsse von Modellparametern, wie z.B. (nicht-linearer)
Steifigkeit und Dämpfung der Fahrwerkslager, dargelegt. Eine Validierung, unter
anderem anhand von zugehörigen Prüfstandsversuchen, führt schließlich zu Emp-
fehlungen für weiterführende transiente oder auch quasi-statische Simulationen.
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1 Introduction

1.1 Motivation

How a passenger senses a vehicle’s comfort and overall quality can be essentially in-
fluenced by its Noise, Vibration and Harshness1 behavior. Here, brake systems play
an important role – warranty claims caused by uncomfortable noise or vibration are
a common issue Original Equipment Manufacturers2 have to deal with, [41]. Brake
squeal, a friction-induced vibration phenomenon, has already been investigated for
many years. Current efforts aiming at a higher share of hybrid and Battery Electric
Vehicles3 – which naturally produce very low noise emissions in the drivetrain – in
combination with still growing customer demands in terms of comfort have led to
an increased interest in low-frequency phenomena such as creep groan or moan. In
order to minimize design costs, it is desirable to foresee brake-related NVH prob-
lems and perform correcting actions already at an early stage of the development
process. Especially in the context of highly diversive vehicle fleets, simulative tools
play an important role for this so-called front-loading of the development process.

At the moment, two simulative methods are mainly used for the evaluation of a
vehicle disk brake system’s NVH performance:

• Time domain approaches

• Complex Eigenvalue Analysis (CEA)

Time domain approaches, whether implicit or explicit, have currently been applied
mainly on reduced order models for gaining knowledge about the underlying me-
chanical and tribological mechanisms, see e.g. [44]. Application on large-scale ve-
hicle corner models for the NVH evaluation at many different parameter points is
not common due to high computation times. However, the inclusion of non-linear
effects enables these approaches to deliver rather accurate results when compared
with test bench experiments, see e.g. [56].

By contrast, the linearized CEA is able to process a high number of variants with
varying parameters efficiently. By including important effects of the frictional con-
tact between brake disk and brake pads, the stability behavior can be analyzed with
this quasi-static approach. In industrial applications, this tool is applied on full-scale

1NVH
2OEM
3BEV
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1 Introduction

Finite Element4 models of vehicle suspension and brake systems in order to evalu-
ate their vulnerability for the tonal mid- to high-frequency brake squeal. Although
well-established, this method sometimes still leads to wrong and rather over-critical
results, as only the tendency for excitation can be computed: The reached real-life
amplitudes, strongly depending on damping characteristics, cannot be estimated.
[11], [14], [58]

In the course of a multi-year project, another publication treating the application of
CEA on low-frequency brake phenomena has been created by the author apart from
this work, see [38]. Therefore, the reader will often find similar, but also more de-
tailed contents here: In addition to already published results of CEA simulations of a
vehicle’s front corner, a more sophisticated evaluation of moan-related eigenmodes,
detailed evaluation of the system matrices and a recommendation regarding the
build-up of a reduced-order, transient model are shown. What is more, high-quality
validation with results from corresponding experimental tests on a drum-driven
suspension and brake test rig are included.

1.2 Scientific Approach and Structure

At first, basics about disk brake systems, elastomer bushings and nonlinear oscil-
lation are presented together with a review of brake-related NVH phenomena in
chapter 2. Especially the low-frequency range with creep groan and moan is treated
in detail. Furthermore, an analysis of the brake squeal CEA procedure is given
similar to the author’s work presented in [38]: It prepares the reader for the inter-
pretation of simulative results.

In chapter 3, a full vehicle’s front corner in double wishbone design with fixed
caliper brake was investigated by means of CEA. Several variants were computed
in order to explore the influence of certain parameters such as bushing stiffness and
damping. In comparison to [38], moan simulation gained increased focus.

In chapter 4, CEA results regarding displacement pattern, frequency and stabil-
ity are presented extensively. Here, a novel, multi-dimensional stability diagram
developed for [38] is explained and used.

Extensive validation with both test bench results of the same axle configuration
and results found in various literature works is given in chapter 5. After a detailed
discussion, recommendations for further improvement of the method and ideas for
the build-up of a reduced-order model suitable for transient simulation are stated.

Lastly, chapter 6 states main outcomes of the performed research as well as the
conclusions that can be drawn from this work.

4FE
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2 State of the Art

2.1 Passenger Vehicle Brake Systems

In this first chapter, basic requirements on brake systems followed by the structure
of common brake systems of passenger vehicles are presented, mainly based on [10].
Emphasis is laid on disk brake systems due to their almost unchallenged usage at
the front axle.

What is more, current trends in automotive and brake industry and their possible
consequences for brake NVH are shown, mainly based on panel discussions and
presentations performed at the 35th annual of SAE Brake Colloquium & Exhibition,
see [5], [21], [31], [36], [48].

2.1.1 Basic Requirements

Basically, a brake system has to perform the following three functions, [10]:

• retarding brake: decelerate the vehicle (until standstill at a certain position)

• holding brake: prevent acceleration of the vehicle during downward drive

• parking brake: avoid movement of a parked vehicle

These basic tasks lead to demanding requirements for the whole system as well
as single components. As the brake system is highly safety-relevant in terms of
accident avoidance, its functionality has to be maintained in a robust manner even
under harsh environment conditions. Certainly, a definite deceleration or a maximal
braking distance at a certain brake pedal force – related to the braking power of
the vehicle – needs to be maintained, which is also regulated by legal requirements.

For a full stop, a frictional brake system needs to dissipate the kinetic energy of the
vehicle reduced by minor dissipation due to rolling resistance and air drag, see eq.
2.1.

Ebrake =
mveh · v2veh

2
− Eroll − Edrag (2.1)

Stated in [10], tests of passenger vehicles from the years 2010 and 2011 revealed a
mean braking distance from 100 km/h to standstill of approximately 37m. Hence,

3



2 State of the Art

a mean deceleration of 1.06 g results – for a vehicle with a mass of 1500 kg and
neglected losses due to rolling resistance and air drag, an energy of 578.7 kJ has
to be dissipated by the brake system within 2.66 s. According to eq. 2.2, a mean
braking power of 217.6 kW results. Bearing in mind that passenger vehicles often
reach higher speeds, one can see that the linearly speed-dependent brake power can
reach multiples of the engine power.

Pbrake =
dEbrake

dt
≈ ∆Ebrake

∆t
≈ 578.7

2.66
kW = 217.6 kW (2.2)

As driving stability can be highly influenced in a negative manner by blocking
wheels, some laws demand a certain blocking sequence: E.g., the rear wheels need
to block after the front wheels for a deceleration between 0.15 g and 0.8 g in Europe.
Details can be found within [10].

In addition, parts need to perform during an adequate service life in a reliable,
wear-compensating manner.

For good handling, retarding and holding brake need to be easy to modulate. Er-
gonomic control elements also play an important role for a simple and safe usage of
the brake. The factor comfort is also included within the wide area of NVH issues
related to vehicle brakes, see chapter 2.4.

Eventually, environmental influences, e.g. in terms of particle emissions or hydraulic
fluid components, lead to (increasing) demands and regulations. See also section
2.1.3.

Over the last century, these basic functions and requirements led to reliable, pow-
erful and comfortable brake systems based on the principle of frictional dissipation.
Whereas the drum brake as a basic concept with radial brake force application
was practically unrivaled during the first half of the 20th century, its drawbacks
regarding heat flow, fading, NVH and high brake force changes with varying coeffi-
cient of friction led to a replacement by (more temperature-resistant) disk brakes
- first at front axles, by now also at rear axles, [10]. Therefore, the basic structure
of conventional, hydraulically activated disk brakes is explained in the following
chapter.

2.1.2 Structure of a Conventional Passenger Vehicle Disk Brake System

A conventional, vacuum-boosted, hydraulically activated disk brake system can be
divided by function. The resulting four main sub-groups, based on [10] and depicted
in fig. 2.1, are:

A Human Machine Interface1

1HMI
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2.1 Passenger Vehicle Brake Systems

Energy transport:
hydraulic
mechanical
pneumatic

 A B

 C  D

Figure 2.1: Functional groups of a vacuum-boosted, hydraulically activated passen-
ger vehicle brake system, adapted from [10]

B actuation with transmission elements

C brake force transmission and modulation

D brake force generation

As the functional group of brake force generation is of main relevance for brake
NVH behavior, components of the other groups shall be mentioned only sketchily
here.

A The HMI contains all parts the human driver directly interacts with. Typically,
these include a usually pendulously mounted brake pedal for the service brake and
a hand lever for the parking brake. As presented in chapter 2.1.3, the share of cars
with electric park brakes is increasing: Here, the hand lever is replaced by a button
for electronic control of the parking brake.

B The actuation force of the brake pedal is increased by a certain auxiliary force
provided via a vacuum (or sometimes hydraulically) powered brake booster. Espe-
cially for Otto engines, the necessary depression is available anyway, however, with
(nowadays widely spread) fuel injected Diesel and Otto engines an additional vac-
uum pump is necessary. For further functionality such as Electronic Brake Assist
or Adaptive Cruise Control2, active brake boosters with an integrated magnetic
actuation are used.

In the following, this increased force is applied mechanically to the tandem mas-

2ACC
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2 State of the Art

ter cylinder, which converts the mechanical force into a hydraulic pressure within
the brake fluid. Two pistons create the pressure within the two legally-required,
separate brake circuits. In a non-activated position, the main pressure chambers
are connected to a brake fluid reservoir via sniff ports, or, when electronic con-
trol functions such as Antilock Brake System3 or Electronic Stability Control4 are
implemented, via central valves or a special plunger design. The reservoir fulfills
important functions such as brake fluid volume compensation for worn pad linings
or different environmental conditions (air pressure, temperature), reduction of foam
development and the prevention of air inflow. [10]

C A modulation of the pressures produced in the tandem master cylinder is
necessary for several reasons: Firstly, dynamic axle load shifts due to braking create
a demand for variable brake proportioning between front and rear axle. For high load
shifts, less tire vertical force emerges at the rear axles, making braked rear wheels
block more easily. Therefore, a certain reduction of the brake force proportion of the
rear axle is required. This can be ensured either by a classical mechanical-hydraulic
brake pressure modulation or by electrical-hydraulic brake pressure modulation.

Usually, a so called Hydraulic-Electronic Control Unit5 is used. It contains a twin-
circle piston pump for the separate brake circuits, inlet, outlet and nonreturn valves
as well as the electronic control unit, which processes sensor signals and controls
the actuators. Electronic functions such as ABS, ESC or Traction Control System6

can be performed by this unit.

The modulated brake pressures are transmitted via the brake fluid, which has also
the task of providing lubrication to pistons, valves and seals. Transmission is taken
in double-wound hard-soldered steel pipes. For flexible connections, hose lines con-
sisting of an inner hose, a meshwork to withstand the pressure and an outer hose as
protection against environmental influences such as saltwater, oil or fuels, are used.
Typically, pressures up to 160 bar can be reached during operation. [10]

D The functional group of the brake force generation represents the last chain
link of the brake system. Components are basically:

• brake disk

• brake caliper

• brake pads

Basic principle is the axial push of the brake pads by the caliper’s piston(s) towards
the ring-shaped side surface of the rotor or brake disk, which is connected to the
wheel. The resulting tangential force due to friction is transferred to the chassis via
pads, caliper, wheel carrier and control arms. Among other things, typical properties

3ABS
4ESC
5HECU
6TCS
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2.1 Passenger Vehicle Brake Systems

of disk brake systems are (see also [10]):

• high thermal load capacity

• smooth response

• uniform wear of the pad linings

• simple and automatic wear adjustment

• favorable disengaging behavior

• low remaining moment for disengaged brake pads

2.1.2.1 Brake Disk

With approximately 90%, the brake disk needs to take most of the dissipated
heat energy produced in the frictional contact with the pad linings, [10]. Very
high temperatures up to 700 ◦C can be reached. Certainly, the thermal state can
influence the structural behavior and the Young’s modulus of the disk material,
which is considered also within NVH related simulation, see e.g. [14]. What is more,
temperature changes can lead to coning, warping or even to waved deformations of
the rotor. Problems regarding NVH behavior or non-uniform pad lining wear are
the consequence.

Brake rotors can be distinguished in massive and ventilated disks. The main advan-
tage of a ventilated disk is its optimized convective flow of heat. In this case, the
air stream is guided by inner cooling channels. Often these are not only designed
for an optimized flow but also for a certain eigenfrequency behavior of the disk in
terms of brake squeal avoidance.

Due to several reasons, lightweight brake disk designs are desirable. The size and
therefore also the weight of the disk directly control the size of brake caliper and
pads. With increasing brake power, e.g. due to an increase in engine power, larger
and often heavier brake parts are the result. This rise of mass and rotational inertia
directly influences the vehicle’s overall mass and therefore its climbing resistance.
Furthermore, the disks contribute to the unsprung mass at every single wheel, di-
mensioning of the damper is directly affected too. Therefore, material (mix) as well
as geometric design can play an important role in brake disk design. [10]

Usually, rotors are made of lamellar-graphite cast iron (e.g. EN-GJL-150 ... 250)
which also provides a certain level of material damping. Here, specific alloy addi-
tions are used for optimization of thermal conductivity, corrosion resistance or wear.
For highest demands, sophisticated carbo-ceramic (C/SiC) designs are available, de-
livering high wear resistance combined with low weight. Of minor importance are
brake disks based on aluminum, so-called Aluminum Matrix Compounds7, which
could also provide high weight reduction potential. [10]

7AMC
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F F 

(a) Fixed caliper

F F 

(b) Floating caliper - type Teves FN

Figure 2.2: Schematic sketches of basic brake caliper designs, adapted from [10]

In terms of geometric design, low inertia can be reached by a compound brake disk.
Especially in the high-performance sector, designs consisting of a ring (friction
material) connected to a pot-shaped inner part (lighter material, e.g. aluminum)
are used. The connection can be provided either via rivets/pins or without any
additional parts by a form fit. An example for a compound brake disk is contained
in the evaluated model explained within chapter 3.1, see also fig. 3.1. [10]

2.1.2.2 Brake Caliper

According to fig. 2.2 the basic design can be distinguished in fixed and floating
calipers. In [10], floating calipers are separated further in different sub-groups.

As one can see in fig. 2.2 (a), a fixed caliper brake is characterized by the caliper’s
axial attachment and pistons on both sides of the disk. Especially for front axle
brake systems of high-performance cars, this rather stiff design is used. The caliper
itself can consist of two separate parts, with additional sealing effort for the inner
hydraulic brake fluid connections, or of one singular part (monobloc design) with
reduced weight and better NVH behavior. An example of an aluminum monobloc
caliper can be found in the model presented within chapter 3.1. [10]

By contrast, a floating caliper’s piston is positioned only on one side of the brake
disk - due to design space reasons, this is typically the vehicle-facing side, fig. 2.2
(b). Additionally, the caliper itself is guided axially on pins, enabling a push of both
pads towards the rotor. The tangential forces arising at the frictional surface of the
pad linings are supported directly at the frame. Often, the principle of pull-push
support is used here for uniform lining wear and enhanced NVH behavior.

Calipers are usually made of nodular cast iron, or, for reduced weight, of aluminum.

8



2.1 Passenger Vehicle Brake Systems

For the mostly hollow pistons, grey iron, steel, aluminum or plastics are used. [10]

Another important part of the caliper assembly are the usually square shaped piston
seals which enable ‘Roll Back’ and ‘Knock Back’: A pull action on the piston carried
out by the elastically deformed seal in disengaging or engaging direction respectively.
By the design of seal and groove, this characteristic and therefore the remaining
brake moment for a disengaged brake can be manipulated. [10]

2.1.2.3 Brake Pads

Brake pads basically consist of a back plate and a friction lining, which comes in
contact with the brake disk. Furthermore, damping shims for the reduction of brake
squeal noise are often mounted on the outer side of the back plate.

The back plate is usually made of steel stamped out of a coil. Amongst other
things, the fit to the frame/caliper and its changes due to thermal expansion are
an important development issue, as it affects the remaining torque. [16]

The friction lining itself is usually a sintered composite of different components.
Depending on factors such as brake power, desired NVH behavior or production of
brake dust, different concepts are used for different target markets:

• semimetallic linings

• low steel linings

• Non Asbestos Organics8 linings

• metal-free linings

• hybrid linings

Semimetallic linings or semimets were the first approach towards a replacement of
asbestos: Here, more than 50% of the lining is metal/iron. Biggest drawback of this
formulation is high wear for higher speeds and vehicle masses due to low thermal
stability of the contained steel wool/iron powder. However, low wheel dust and a
favorable NVH comfort due to their low coefficient of friction µ ≤ 0.4 led (again)
to increased usage in the USA. [10]

Low steel linings or low mets originally tried to replace asbestos by different organic
and mineral fiber components. In the following, their share was reduced – also for
health reasons due to possibly carcinogen fibers. Instead, different other additives
such as lubricants, abrasives or metals were used. These linings, also called corrective
liners, show high friction coefficients and are mainly applied in Europe. Main weak-
ness is their NVH comfort, especially in terms of the low-frequency phenomenon
creep groan explained within chapter 2.4.1.1. [10]

8NAO

9



2 State of the Art

NAO linings represent the Japanese lining philosophy: Here, neither steel wool or
iron powder nor any hard abrasives are used. Therefore, the resulting coefficient
of friction is rather low in the range of µ = 0.3 − 0.4. Again, this leads to low
wheel dust and good NVH behavior for vehicles below 3.5 t gross vehicle weight.
Specifically in terms of creep groan, these linings deliver an excellent performance.
In addition to the Japanese market, NAOs are common in the USA. [10]

Metalfree linings go even further and omit other non-ferrous metals such as copper
or brass. Especially copper has been in public discussion in the USA, as increased
shares of copper were measured in run-off water near San Francisco, California,
see [54]. At least local laws regarding copper shares of brake pads were the result,
restricting the copper content in a first stage in 2021, [8]. In general, metalfree
linings suffer from low thermal conductivity and reduced strength due to the missing
metals, therefore applications are still rare. [10]

Hybrid linings try to combine comfort characteristics of NAOs with the high perfor-
mance of low steel linings. Especially for the treatment of creep groan issues, these
rather new formulations try to deliver a solution. However, this relatively new mix-
ture concept still has difficulties with opposing trends: Tests have shown increased
groan tendency for former groan-free NAO linings when a low amount of steel wool
or hard abrasives were added. [10]

Connection between lining and back plate can be achieved by the lining’s underlayer
and/or mechanical fixations such as e.g. ‘combed’ plates. The underlayer with a
thickness of approx. 2− 4mm has a different chemical composition than the lining
in contact with the disk: A higher percentage of the binding agent leads to increased
strength and therefore a good mechanical connection to the steel plate. Furthermore,
an adhesive layer of a few µm thickness connects the composite’s underlayer with
the steel back plate. [10]

2.1.3 Current Trends and Future Concepts

Several major and minor trends can currently be observed within the automotive
industry. Keywords such as battery electric vehicles, autonomous driving or vehicle
emissions and related scandals are part of daily media reports. Even though a
definite prediction is impossible, certain developments and their impacts on brake
system design and structure can already be seen.

According to [21], vacuum-less brake boosters as well as Electric Parking Brakes9

will most probably gain importance and market propagation. For the EPB, an in-
crease of reliability and safety as well as additional comfort functions drive develop-
ment and implementation. Regarding alternatively powered boosters, hybrid/electric
drivetrains as well as fuel injected engines do not feature direct vacuum sources -

9EPB
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Figure 2.3: Schematic depiction of brake torque blending, adapted from [5]

therefore, electric brake boosters seem beneficial in terms of efficiency and costs,
see [10].

Moreover, hybrid and battery electric vehicles have the ability to regenerate ki-
netic energy by using the electric drivetrain in generator mode. Several aspects and
demands arise from this colloquially-called regen mode:

Firstly, the braking action needs to be performed in a smooth manner. There-
fore, brake moments of the frictional (disk) brake system and of the electric mo-
tor/generator system have to be controlled and blended according to the regenera-
tive potential and the driver’s demand, see fig. 2.3. This makes a high controllability
of the the auxiliary brake force generation necessary, which can be found as another
advantage of electric brake boosters.

Secondly, usages of the frictional brake will be limited to braking actions with
higher decelerations: According to [31], approx. only one out of eight brake actions
is performed by the disk brake system. [36] estimates the possible deceleration in
purely regenerative mode as 0.05 g for mild hybrid vehicles and 0.2 − 0.3 g for full
hybrids. Hence, the self-cleaning function of the brake rotor is reduced significantly
and corrosion problems during the disk’s increased life span are likely. Currently, no
solution to this problem is known to the author. According to [21], even a return of
the encapsulated drum brakes - although unlikely - could be possible. What is more,
this reduced usage of the frictional brake could lead to its downsizing, whereas of
course overall safety criteria need to be met, [48].

Thirdly, operational points critical for low-frequency noise and vibration will be
approached more often - both due to blending functions and because of the con-
sistently acting drive torque of vehicles with automatic gearboxes or electric drive-
trains. This can lead to higher importance of the low-frequency NVH issues creep
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groan or moan, which are treated in this work.

Further lining developments certainly represent an additional aspect of high influ-
ence towards future NVH behavior. Especially (almost) copper free formulations
and hybrid lining formulations can be of high relevance, [54]. Moreover, legislation
for the reduction of brake particle emissions could probably introduce significant
limitations in terms of lining composition.

Eventually, concepts such as Brake-by-Wire or the combination of wheel and rotor,
although seeming rather futuristic, are discussed as long-term solutions. Regarding
NVH, this could also enable approaches on behalf of active feedback control. [21],
[48]

2.2 Elastomer Bushings

As the following chapters will show, the behavior of elastomer bushings can affect
the dynamic properties of a passenger car’s axle system significantly. Usually, these
components are not the focus of the brake engineer. Therefore, this chapter tries to
give the reader an overview about basic demands and features.

Being classical parts of vehicle chassis and suspension design, requirements on elas-
tomer bushings relate to the following three main parameters:

• driving dynamics

• driving comfort

• driving safety

Historically, the introduction of elastomer bushings for suspension links was mainly
driven by the demand for comfort. Firstly applied in the thirties of the 20th century,
they were initially intended to isolate and dampen (structure-borne) noise, vibration
and harshness induced by the road surface, [32]. Development over many years
expanded and improved their functionality.

Nowadays, elastomer bushings fulfill three basic tasks, see [32] and [50]. Firstly, they
are often used instead of ball joints, i.e. they enable angular changes between the two
connected components. Secondly, they fulfill the demand for comfort by introducing
additional (longitudinal) compliance, oscillation damping and isolation within the
axle system – sometimes also in terms of an active component. Thirdly, they (partly)
define and influence the vehicle’s dynamic steering and tracking behavior under
different loads.

In the following, these three main tasks are investigated in detail.

12
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2.2.1 Joint Function of Elastomer Bushings

Using rubber bushings instead of ball joints implies several advantages. On the
one hand, costs can often be lowered. On the other hand, breakaway forces – usu-
ally a consequence of the transition from stick to slip in the ball/pan contact –
can be avoided. Furthermore, the inclusion of elasticity and damping in rotational
directions can have desirable, positive effects. [50]

Nevertheless, the inevitably introduced rotational stiffness and damping can also
be unwanted in some situations. E.g. if large rotational displacements are applied,
the function as a joint can be limited due to high intersection forces. [50]

2.2.2 Oscillation Reduction via Elastomer Bushings

In order to increase comfort, a reduction of oscillation amplitudes is necessary. For
reaching this goal, two fundamental concepts can be applied: damping and isolation.

2.2.2.1 Oscillation Damping and Dynamic Stiffness Behavior

Oscillation damping means a direct decrease of vibration amplitudes by the tran-
sition of motion energy to heat energy. Here, inner friction within the bushing
provokes this process. Due to its mathematical simplicity, engineers often assume
this process to be purely speed-dependent with the damping force relating to a
(mostly) constant viscous damping coefficient. [50]

However, real elastomer damping is typically a highly complicated mechanism de-
pending on the material’s visco-elastic behavior, pre-load, temperature or oscillation
frequency as well as the displacement amplitude itself. According to [50], similar
statements can be given for elastomer stiffness characteristics: Strong dependen-
cies on excitation frequency, amplitude or temperature can be found here. For an
explanation of dynamic stiffness and related terms, see chapter 3.1.2.2.

Generally speaking, increasing excitation frequency leads to a rise of dynamic stiff-
ness and damping within the elastomer. This is due to a dynamic hardening process
for increasing frequencies, leading to higher inner friction with the result of stronger
damping. Furthermore, higher excitation amplitudes usually result in a decrease of
dynamic stiffness, see [32] and [50].

In fig. 2.4, measured stiffness and loss angle characteristics are shown over frequency
for an elastomer bushing used in a double wishbone front axle setup. The stated
stiffness rise for increasing frequency or decreasing excitation amplitude is clearly
observable. Regarding the damping-related loss angle, higher frequencies as well as
higher amplitudes lead to a rise for the presented measurement data. This frequency-
varying behavior can be influenced strongly by elastomer filler media, especially
carbon black is of high relevance. [50]
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Figure 2.4: Measured dynamic stiffness and loss angle characteristics of a control
arm’s elastomer bushing in radial direction over frequency for different
excitation amplitudes |y|

Naturally, static elastomer bushing stiffness is often required in a non-linear manner
too: As bushing displacements need to be limited for high chassis forces, a non-linear
increase is often necessary.

2.2.2.2 Oscillation Isolation

Oscillation isolation describes a different effect: Here, vibration amplitudes at a
critical position within the system (e.g. at the connection points on the chassis) are
reduced by tuning the eigenbehavior of the adjacent system components.

For better understanding, a displacement-excited single mass oscillator according
to fig. 2.5 (a) is investigated, see [18] and [50]. Here, we also include oscillation
damping by a viscous element with a viscous damping coefficient d.

Starting from the equation of motion in eq. 2.3, a division by the spring stiffness
c combined with the introduction of the damping factor according to Lehr D and
the undamped eigenfrequency ω0 =

√
c
m leads to eq. 2.4.

mẍ(t) + d ẋ(t) + c x(t) = d ẏ(t) + c y(t) (2.3)

1

ω2
0

ẍ(t) +
2D

ω0
ẋ(t) + x(t) =

2D

ω0
ẏ(t) + y(t) (2.4)

By a rather simple transformation to the Laplace domain, the transfer function
between excitation y(s) and reaction x(s) can be found according to eq. 2.5.
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Figure 2.5: Displacement-excited single mass oscillator

G(s) =
x(s)

y(s)
=

1 + 2D
ω0

s

1 + 2D
ω0

s+ 1
ω2
0

s2
(2.5)

As the complex number frequency parameter s relates to the imaginary unit and
the rotational eigenfrequency of the resulting oscillation with s = iω, a transition
to frequency domain is trivial. After introducing the frequency ratio η according to
eq. 2.6, the frequency response function in eq. 2.7 results.

η =
ω

ω0
(2.6)

G(ω) =
1 + 2Dη · i

1− η2 + 2Dη · i (2.7)

Now, calculation of the absolute value delivers the amplification function V2 or VT

(for transmissibility), see eq. 2.8 and [18].

V2 = VT =
|x(iω)|
|y(iω)| =

√
1 + 4D2η2

(1− η2)2 + 4D2η2
(2.8)

When plotted depending on the frequency ratio η, as in fig. 2.5 (b), the isolation
zone is found for frequency ratios η >

√
2. By associating the chassis displacement

with x(t) and the bushing displacement with y(t), one can see that rather high
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Figure 2.6: Examples for passive and active elastokinematic effects, based on [35]

elasticity within the bushing is necessary to ensure vibration isolation also for lower
frequency excitation, as this means a lower eigenfrequency ω0 and therefore an
increase of the frequency ratio η. Practically, elastomer stiffness is chosen approx.
1:10 compared to the local chassis stiffness, [50].

Regarding damping, fig. 2.5 (b) also reveals an interesting negative side-effect in
the isolation area: With higher damping, higher bushing forces occur; therefore, less
isolation is provided. However, the operation near working points of η ≈ 1 cannot
be prevented. This – and the fact that in the range below η =

√
2 damping leads

to a reduction of the response amplitude – makes a certain amount of damping
necessary for a well-balanced overall performance of the elastomer bushing. [50]

2.2.3 Elastokinematic Behavior

This chapter contains basic considerations about the third main task of an elastomer
bushing, relating to a vehicle’s elastokinematic design. Again, this is done in order
to inform the reader about the area of conflict in which brake NVH related elastomer
bushings have to be designed.

Elastokinematics describe a vehicle’s kinematic behavior due to the deformation of
elastic suspension components, see [32]. Here, passive aspects of inevitable compli-
ances need to be distinguished from ‘active’ compliances produced by design: In
this case, ‘active’ does not refer to a behavior in terms of feedback control but to a
design leading to directed displacements under load, [35]. An example can be seen
in fig. 2.6.

In addition to the elastomer bushings in focus, metal parts such as wishbones or
the kinematic chassis mounting points perform significant deflections too. Therefore,
they cannot be neglected for elastokinematic design. Furthermore, aging effects of
the rubber material during the vehicle’s life cycle have to be considered: A hardening
effect can occur for elastomers. By contrast, metals basically keep their elasticity.
Details can be found within [50].
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For elastokinematic optimization, different load directions require different mea-
sures. On one hand, high compliance in the range of ±20mm is aspired in longitu-
dinal direction in order to reduce the influence of occurring low-frequency longitu-
dinal shocks. Rubber bushings of low stiffness make up for the better part of this
compliance, significantly increasing comfort characteristics. On the other hand, the
demand for exact and safe cornering leads to low compliance in lateral direction,
see [32].

By modifying or changing axle concept, position and dimension of levers or elas-
ticities within the suspension system, parameters such as camber angle, roll center,
vehicle pitch or tracking are influenced by the developers. According to the driv-
ing situation, different elastokinematic behavior should result. This often leads to
opposing demands, compromise is necessary. [32]

In the following, toe-angle changes are explained for several different driving and
load situations. Generally, a stable understeering behavior is desired for different
load changes.

2.2.3.1 Elastokinematic Behavior for Vertical Load Changes

Especially for changes of vertical loads induced by vehicle roll movement, kine-
matic understeering behavior is requested. Hence, the subsequent toe-angle changes
should result according to table 2.1.

Table 2.1: Toe-angle tendency for increasing vertical load

front axle
outer wheel toe-out

inner wheel toe-out

rear axle
outer wheel toe-in

inner wheel toe-in

These measures lead to an increase in driving stability, however, certain drawbacks
in terms of straight-ahead run are inevitable. [19]

2.2.3.2 Elastokinematic Behavior for Lateral Load Changes

For occurring lateral loads, understeering behavior is desired. Therefore, elastokine-
matics should lead to the effects stated within table 2.2.

With a setting like this, slip angles increase at the rear axle and decrease at the front
axle, leading to the desired stable understeering behavior. Due to higher forces dur-
ing cornering, outer wheels are more important. See fig. 2.7 for a detailed depiction
of the resulting elastokinematic steering angles δi,j . [19]
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Table 2.2: Toe-angle tendency for increasing lateral load

front axle
outer wheel toe-out

inner wheel toe-in

rear axle
outer wheel toe-in

inner wheel toe-out

vveh Flat,r,i

Flat,r,oFlat,f,o

Flat,f,i

δr,o

δr,i

δf,o

δf,i

Figure 2.7: Desired changes of toe angles for optimal behavior under lateral load

2.2.3.3 Elastokinematic Behavior for Longitudinal Load Changes

For the occurrence of longitudinal loads, target conflicts arise due to different de-
mands of several driving conditions – see the overview within table 2.3.

Table 2.3: Toe-angle tendency for different longitudinal loads

acceleration
or braking

µ-split
braking

braking &
cornering

front axle
outer wheel toe-in toe-in toe-out

inner wheel toe-in toe-in toe-out

rear axle
outer wheel toe-in toe-out toe-in

inner wheel toe-in toe-out toe-in

For straightforward acceleration and deceleration, higher driving stability is desired.
This could be reached by a toe-in of front as well as rear axle. [19]

In case of braking on a track with higher coefficients of friction on either left or
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Figure 2.8: Desired changes of toe angles for optimal behavior under µ-split braking,
based on [32]

right side, a so-called µ-split braking, a correcting yaw torque created by toe-in at
the front axle and toe-out at the rear axle is desired. A depiction of elastokinematic
steering angles δi,j and resulting forces/moments can be found in fig. 2.8. As one
can see, a well-designed elastokinematic behavior provokes the moment Myaw which
counteracts the undesired slip angle β. [19]

If the vehicle is decelerated during cornering, brake forces should lead to toe-out at
the front axle and toe-in at the rear axle, again in order to create a stabilizing yaw
torque. [19]

2.2.3.4 Practical Approach for Elastokinematic Design

A simple single solution fulfilling all differing demands at once seems rather impos-
sible. Therefore, vehicles are usually designed for

• small toe-out at the front axle and

• small toe-in at the rear axle

under cornering as well as under braking and cornering. Hence, the risk of over-
steering behavior caused by axle load shifts due to braking is reduced and neutral
behavior is ensured over a wide range of lateral accelerations. If possible, driven
rear axles are dimensioned for toe-in under acceleration, see details within [19] and
[32].
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Figure 2.9: Examples for conventional elastomer bushing design, adapted from [32]

2.2.4 Design Examples

Based on the demands resulting from the three main tasks – joint function, os-
cillation reduction and elastokinematic behavior – different designs of elastomer
bushings have been developed. Examples are:

• conventional bushings

• hydraulic bushings

• engaging and disengaging mounts

• active bushings

In general, elastomer bushings can be loaded with tension/compression forces or
with shear forces. As the demands explained in the previous chapters have shown,
the design of directional stiffness and damping is an important factor. For suspen-
sion systems, basically two different variants of elastomer bushings are currently
used: conventional and hydraulic elastomer bushings.

Due to their cost effective design, conventional elastomer bushings are still widely
used in many applications such as e.g. control arms. As one can see in fig. 2.9, an
elastomer rubber part is typically positioned between two rotationally symmetric
metal parts. Connection can be provided both by vulcanizing or mechanically via
friction or the geometric shape. For directional behavior, ‘kidney’ designs similar
to fig. 2.6 are common. [50]

For hydraulic elastomer bushings, displacements lead to a designed oil flow between
two closed reservoirs within the bushing. With a principal design like this, two dif-
ferent effects can be reached: On the one hand, higher damping can be applied, on
the other hand, harmonic absorption through the acceleration of the fluid’s mass is
possible. This enables fine tuning of the bushing’s dynamic stiffness and damping
characteristics, leading to an effective treatment of a system’s eigenfrequencies. Ap-
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Figure 2.10: Measured dynamic stiffness and loss angle characteristics over fre-
quency of a control arm’s hydraulic elastomer bushing in radial, hori-
zontal direction for an excitation amplitude of |y| = 0.5mm

plications are especially longitudinal wheel vibrations but also the different field of
propulsion system support, see [46] and [50].

A typical dynamic stiffness and loss angle characteristic of a hydraulic bushing
tuned for highest loss angles at an excitation frequency of approx. 12Hz is shown in
fig. 2.10. For higher frequencies, an increase in stiffness is noticeable. This usually
represents an unwanted effect due to the resulting comfort loss, see also [32] for
details.

A corrective measure against this drawback especially taken for engine support
bushings is the application of engaging and disengaging bushings: By changing the
hydraulic system’s properties, e.g. for high oscillation isolation during engine idle
and high damping during driving operation for a reduction of road-induced vibra-
tions, the bushing’s frequency tuning can be modified. Hence, different stiffnesses or
other requirements can be satisfied, see [32]. Especially for the support of diesel en-
gines, engaging and disengaging mounts have high advantages and are widely used.
Active bushings provide further potential regarding a faster and more sophisticated
tuning of stiffness, damping or mass parameters by means of an active closed-loop
or open-loop control system. However, actual applications in the field of suspension
system bushings are unknown to the author. [50]

2.3 Nonlinear Oscillation Phenomena

According to [22], sources for non-linear behavior within a mechanical system can
be classified in different groups as listed in table 2.4. Especially nonlinear action
due to design and friction can be relevant for brake NVH bevahior of a passenger
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car’s front axle: This shall be explained in the following paragraphs.

Table 2.4: Sources of non-linear behavior and examples, based on [22]

type of nonlinearity example

geometrical nonlinearities kinematics of a math. pendulum

physical nonlinearities non-linear stress-strain relation

structural or designed nonlinearities designed limit stops

constraints impacts with rigid walls

nonlinearity of friction∗ stick-slip transition

(∗) A clear classification of non-linear effects is difficult: E.g., nonlinearity of friction can
certainly be seen as a physical effect too.

As shown in the previous chapter, elastomer bushings need to fulfill several different
tasks. Therefore, a defined nonlinear stiffness or damping behavior is often a nec-
essary premise, see e.g. the static stiffness behavior in fig. 3.4. Similarly, damping
characteristics of elastomer bushings have also been shown to be highly depending
on the frequency of the excitation, see e.g. fig. 2.4 or fig. 2.10. Again, this means a
dependence on state variables such as displacement or velocity.

Moreover, frictional contacts manifest highly nonlinear behavior: Even the simplest
possible explanation model, the Coulomb friction, contributes for different coeffi-
cients of sticking or sliding friction µ0 and µ. Another aspect of contact problems
are small clearances between adjacent, loaded components: Again, nonlinear char-
acteristics are introduced into the model, see [44].

These nonlinearities show clear influence regarding oscillation characteristics. Sev-
eral different nonlinear effects can be found for the brake NVH phenomena creep
groan, moan or squeal as explained in chapter 2.4.1. Some of these relevant nonlin-
ear vibration anomalies will be investigated subsequently.

2.3.1 Super- and Subharmonics

Super- and subharmonic oscillations are a common phenomenon found within non-
linear vibrations, especially for non-linear stiffness behavior. As already stated, elas-
tomer bushings typically convey such characteristics due to the demands regarding
comfort and safety.

In contrast to the typically sine-shaped displacement-over-time graph for a lin-
ear oscillation, gradually stiffening behavior leads to ‘sharper’ peaks in the dis-
placement, velocity and acceleration charts. These peaks also relate to additional
frequency content: Whole-numbered multiples are called superharmonics whereas
whole-numbered fractions are termed subharmonics.
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Figure 2.11: Schematic diagram of a force-excited single mass oscillator

Subsequently, three example simulations based on a force-excited single mass oscilla-
tor according to fig. 2.11 are shown to demonstrate this behavior. The corresponding
equation of motion with a general non-linear elastic stiffness c and viscous damping
d can be found in eq. 2.9.

mẍ+ d(x, ẋ) ẋ+ c(x, ẋ)x = p(t) (2.9)

Table 2.5 shows the parameters used for the three different explicit numeric simu-
lations performed with MATLAB. Variant I utilizes a linear stiffness behavior as
depicted by a dashed line in fig. 2.12 (a). Variants II and III use non-linear stiffness
behavior with 10 times higher stiffness for amplitudes bigger than 0.8m, drawn
with a solid line in the respective figure. Furthermore, variants I and II correspond
to a free, undamped oscillation. Within the linear stiffness range, the undamped
eigenfrequency results as in eq. 2.10.

ω0 =

√
m

c0
=

√
1

39.478

1

rad
≡ f0 = 1Hz (2.10)

In order to find super- or subharmonic frequency content, a Fast Fourier Transfor-
mation10 was performed on the respective time-dependent displacement signals of
20 s length with a sample rate of 0.001 s. The respective Power Spectral Densities11

can be found within figures 2.12 (b), (c) and (d).

As one can see, var. I shows only one peak at the undamped system’s eigenfrequency.
The introduction of a non-linear system leads already to several superharmonic
peaks for 3 · f0, 6 · f0 and so on. If viscous damping and a cosine excitation with a
frequency of 1Hz are added to the system, significantly more peaks can be found
within the spectrum.

10FFT
11PSD
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Table 2.5: Parameters and initial conditions for super- and subharmonic
oscillation simulations of a force-excited single mass oscillator

parameter var. I∗ var. II∗ var. III

mass m 1 kg 1 kg 1 kg

stiffness for zero displacement c0 39.478 N
m 39.478 N

m 39.478 N
m

viscous damping d – – 0.3 Ns
m

excitation amplitude |p| – – 100N

excitation frequency Ω – – 1Hz

stiffness characteristics linear nonlinear nonlinear

initial displacement x0 1m 1m 1m

initial velocity ẋ0 0 m
s 0 m

s 0 m
s

(∗) Undamped natural oscillation was assumed.
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Figure 2.12: Explanatory diagrams of performed simulations of a non-linear force-
excited single mass oscillator
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Figure 2.13: Phase diagram of the Van der Pol oscillator for ε = 0.6

2.3.2 Limit Cycles

The term limit cycle relates to self-excited oscillations and describes a behavior
which can be simply explained by the one-dimensional Van der Pol oscillator. Its
equation of motion can be found in eq. 2.11.

ẍ− ε (1− x2) ẋ+ x = 0 (2.11)

As one can see, this equation contains only one parameter. For ε = 0.6, a phase
diagram is shown in fig. 2.13.

Streamlines, which are tangent to the gradient for any point within the plot, are
drawn in order to display the principal behavior of the Van der Pol oscillator. Here,
the red colored limit cycle divides the plot into two sub-areas: For initial condi-
tions within this separator, amplitudes of speed and displacement increase whereas
outside of it amplitudes fall. Both changes persist until limit cycle oscillation is
reached.

Explanations for this behavior can be found in the equation of motion, eq. 2.11.
Depending on the square of the displacement x, the coefficient of the speed depen-
dent damping can change its sign. On one hand, small displacements x lead to a
negative damping term, which means excitation of the system. Naturally, this in-
cludes that additional energy is brought into the system. On the other hand, larger
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displacements lead to positive damping and a decrease of amplitudes. Therefore,
any initial condition apart from a fixed point will eventually lead to an oscillation
along the system’s limit cycle.

These concepts are especially important for self-excited systems such as friction-
induced oscillations in brake systems. Details can be found within chapter 2.4.

2.3.3 Bifurcations

Another common circumstance related to non-linear oscillations is the occurrence
of bifurcations. According to [43], a bifurcation means a qualitative change of a
system’s structural behavior. This is the case, if the quantity and/or stability of
fixed points or resulting oscillations changes for different system parameters.

This shall be explained by the example of the so-called Hopf bifurcation: For an
exemplary system described in polar coordinates {r, θ} as within eq. 2.12 and eq.
2.13, significantly different results can be found depending on parameter κ. As one
can see e.g. within [28], this basic bifurcation type has also practical relevance in
terms of friction-induced oscillations of brake systems: The behavior of brake squeal
can be explained by this bifurcation type.

ṙ = κr − r3 (2.12)

θ̇ = 1 (2.13)

For κ values smaller than zero, a stable fixed point with r = 0 can be found, see
the streamlines within the {x, y} phase plot in fig. 2.14 (a). An example solution
for the initial condition {x0 = 0, y0 = 0.5} and a simulation time tsim = 100 s was
performed in MATLAB and is depicted by the blue line.

Similarly, fig. 2.14 (b) shows the same streamlines and exemplary simulation for the
bifurcation point κ = 0. Here, the former stable fixed point morphs into an unstable
limit cycle oscillation. With higher positive parameters κ, the limits cycle’s radius
r increases according to r2 = κ. An example with κ = 0.4 can be seen in fig. 2.14
(c).

Introduction of the Hopf parameter κ as another dimension leads to the very demon-
strative three-dimensional bifurcation diagram in fig. 2.14 (d), which clearly shows
the different solutions and their dependence on the Hopf parameter κ, see also [20].

Certainly, the investigated system is of a rather simple structure: More complex
systems often show many different bifurcations or even chaotic behavior.
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Figure 2.14: Characteristic plots of a Hopf bifurcation according to eq. 2.12 and eq.
2.13, based on [20]
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2.3.4 Hartman–Grobman Theorem and Linearized Stability Analysis

According to the theorem of Hartman and Grobman, a nonlinear system’s stability
near a fixed point is identical with the according linearized system’s stability about
this fixed point. This holds only if the investigated fixed points are hyperbolic,
which means that the corresponding eigenvalue has a real part different to zero. For
non-hyperbolic fixed points, no conclusions in terms of stability can be drawn by
an investigation of the linearized structure. [20], [30], [37]

As explained within [33], stability analyses are commonly performed for linearized
systems, which is also related to limits of computational power. Based on the for-
merly presented example of the Hopf bifurcation within eq. 2.12 and eq. 2.13, which
is elaborately explained within [20], the basic procedure for linearization shall be
explained in the following.

By transforming the above mentioned system equations from polar coordinates
{r, θ} to Cartesian coordinates {x, y}, eq. 2.14 and eq. 2.15 result. The system’s
fixed point is found in {x0 = 0, y0 = 0} by setting both Cartesian velocities to zero.

ẋ = (κ− (x2 + y2)) · x− y (2.14)

ẋ = (κ− (x2 + y2)) · y + x (2.15)

Linearization of the system about its fixed point is executed by bringing the equa-
tions of motion into a form according to eq. 2.16.

~̇x = A · ~x

= J
∣∣
~x=~x0

· ~x

=
∂~̇x

∂~x

∣∣∣∣
~x=~x0

· ~x with ~x =

[
x
y

] (2.16)

The linearized system matrix A for this special example can be found within eq. 2.17.
By setting its determinant including an eigenvalue term to zero, the characteristic
equation can be found according to eq. 2.18: Its solution leads to the two eigenvalues
λ1,2.

A =

[
κ− (3x2 + y2) −1− 2xy

1− 2xy κ− (x2 + 3y2)

]

~x=~x0

=

[
κ −1
1 κ

]
(2.17)

0
!
= det(A− λI) = (κ− λ)2 + 1 → λ1,2 = κ± i (2.18)

For a linearized system, these eigenvalues relate to the solution of the differential
equations according to an exponential approach, see eq. 2.19 and 2.20. As the
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real part of both eigenvalues ℜ{λ1,2} is always the Hopf parameter κ, these are
hyperbolic for all values with κ 6= 0. Then, the Hartman-Grobman theorem can be
applied.

x(t) = C1 e
λ1t + C2 e

λ2t (2.19)

y(t) = C3 e
λ1t + C4 e

λ2t (2.20)

For κ < 0, the linearized system’s stability about ~x0 results stable/damped whereas
for κ > 0, unstable/excited behavior results. At κ = 0, Hartman-Grobman does
not apply as the eigenvalue is non-hyperbolic here, the system’s stability cannot be
evaluated based on the linearized system.

A comparison with the phase plots of the non-linear system in fig. 2.14 (a) and
(c) confirms the stability results of the linearized system in an infinitesimal neigh-
bourhood of the fixed point {x0 = 0, y0 = 0}. Nevertheless, conclusions about the
system’s stability at clearly different displacements {x, y} cannot be drawn at all,
see also [47]. This also includes the amplitude of an occurring limit cycle like in this
example. Furthermore, in a non-linear oscillation, the linearized single harmonic
solution is gradually complemented by higher harmonic contents with increasing
distances to the fixed point, see [47].

Eventually, stability evaluation based on a linearized system is rather common in
practical engineering applications: Hartman-Grobman’s theorem is also the founda-
tion of the investigated method of the Complex Eigenvalue Analysis.

2.4 Disk Brake Noise, Vibration and Harshness

2.4.1 Phenomenology

Several noise and vibration phenomena can be caused by the disk brake in com-
bination with the suspension system of a passenger car. In fig. 2.15, an overview
of possible brake-related vibration phenomena and their characteristic frequency
range is depicted based on several literature resources and the author’s personal
perception.

As only self-excited, low-frequency noise and vibration were considered for this
study, the focus is set on the phenomena creep groan and moan. Due to its probed
behavior and established simulation methods, disk brake squeal is reviewed in a
short manner too.
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Figure 2.15: Classification of different disk brake NVH phenomena, adapted from
[3], [7], [15], [56], [58]

2.4.1.1 Creep Groan

With frequencies typically below 500Hz, creep groan is considered as a self-excited
brake noise phenomenon in the low-frequency range, [15], [52]. Today, most experts
agree on the strongly non-linear stick-slip effect as causation for this NVH problem.
[4], [38], [39], [44], [60]

Accordingly, creep groan oscillations consist of several, clearly distinguishable phases,
as can be seen in [4], [9], [38], [44]:

At first, brake pads stick globally (this means: throughout their whole surface) on
the brake disk. As a certain torque is provided to the brake disk, a wind-up action
happens. This process can occur in different situations, e.g. for standstill in cars
with automatic transmission or at inclined roads. Furthermore, passengers entering
a car with engaged (rear) parking brake can also supply the necessary torque for
originating creep groan vibrations, [10].

If brake pressure and the resulting tangential friction force become too low to resist
the drive torque, e.g. when slowly releasing the brake pedal for set off, global slip
between the pads and the disk occurs. Then, the friction force decreases abruptly
according to the sliding coefficient of friction. Very similar to force excitation in form
of a jump function, this stick-slip transition excites damped, natural oscillations
especially of lower eigenfrequency, see [44]. When the pads stick on the disk again,
the process starts anew with a wind-up action.

In the frequency spectrum, many super-harmonics with rather high peaks are char-
acteristic, see e.g. [17], [51], [52]. This leads to a rather inharmonic signature of
creep groan time signals, [52]. See also the frequency spectrum of pad accelerations
measured during creep groan tests on a drum-driven suspension and brake test rig
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Figure 2.16: Characteristic frequency plot of pad acceleration in vehicle’s x-
direction during 63Hz creep groan measured on a drum-driven sus-
pension and brake test rig, adapted from [38]

according to fig. 2.16.

Regarding Operating Deflection Shape12, different statements can be found for dif-
ferent suspension configurations:

MacPherson front axles:

• [60] describes a creep groan ODS for 96Hz basic frequency. A first order
bending mode of the strut combined with a forward/backward movement
of wheel carrier and lower control arm were found by this research group.
Moreover, an upward/downward oscillation of the caliper can be seen, which
could relate to rotational displacements of the caliper about the wheel axis.
In addition, ODS of related higher harmonics with 190Hz and 288Hz are
explained too.

• [39] shows a longitudinal movement of lower control arm and knuckle. However,
the basic creep groan frequency is stated at approx. 18Hz. The careful reader
can identify first order bending of the strut in a depiction shown within this
work.

• [27] explains a rotation of the wheel carrier and the brake caliper in combina-
tion with a first order bending mode of the strut at 100Hz.

Double wishbone front axles:

• [25] shows ODS for two specific modes contained in a creep groan signal. At
25Hz, mainly longitudinal movement of upper control arm, wheel carrier and
floating caliper was found. At 41Hz, the named parts performed a rotation
about a lateral axis near the wheel axis.

12ODS
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Figure 2.17: Characteristic frequency plot of pad acceleration in vehicle’s x-
direction during 386Hz moan measured on a drum-driven suspension
and brake test rig, adapted from [38]

2.4.1.2 Moan

Similar to creep groan, brake moan is a low-frequency brake NVH phenomenon
with frequencies below 1000Hz. Actual frequency ranges found in literature were e.g.
100−500Hz in [15], 500−1000Hz in [28] or simply approx. 500Hz in [45]. Based on
the author’s experience, most significant moan frequencies range from 350−600Hz.
Results of studies within [40], [42] and [45] support this statement. According to [6],
frequency range alone is insufficient for describing a NVH phenomenon. Especially
as many sources do not clearly distinguish frequencies of audible noise and measured
component acceleration frequencies, it is more reliable and meaningful to distinguish
excitation mechanisms.

For brake moan, different opinions still exist on this issue. In many early works
like [17] or [59], but even in current studies, e.g. [40], moan is treated similar to
creep groan and the stick-slip effect is claimed responsible for the occurrence of
moan. On the other hand, [6] and [44] speak of moan as a sort of low-frequency
brake squeal, caused by mode coupling. Within [38], the author’s research group
examined relative velocities between brake disk and pads during moan action, which
additionally supports modal coupling as causation. Clearly, no near-zero relative
speeds were found as the brake disk showed significantly higher speeds than the
pads. Therefore, stick-slip in a global meaning – i.e. either only stick or only slip
contact for every point of the whole lining surface – was considered unlikely. Similar
statements were also made by [6].

Regarding their frequency spectrum, moan signals typically contain a distinct peak
at the main frequency with super-harmonic parts of lower amplitude, see e.g. [6],
[42] or a characteristic plot adapted from [38] within fig. 2.17. In the author’s
perception, the resulting sound can be described as rather tonal.

For ODS, different axle settings have to be distinguished again:
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Twist-beam rear axles:

• [6] describes moan as a combination of caliper rotations about the vertical
axis, the wheel axis and the vehicle’s roll axis. Similar movements have been
found in brake squeal measurements. In addition, oscillation coupling of left
and right brake via the twist-beam was detected. By simulation, a bending
mode, a torsion mode as well as an ‘opening’ mode of the twist-beam were
found in the respective frequency range.

Double wishbone front axles:

• [45] found a characteristic torsional rim mode by the application of laser
vibrometry. Additionally, simulation results showed strong displacement of
both control arms, especially the upper control arm exhibited a characteristic
‘opening’ bending.

2.4.1.3 Squeal

In contrast to creep groan or moan, brake squeal has been in the focus of researchers
earlier and more intensively, as indicated by the high number of associated studies.
Basically, low-frequency squeal in the range of 1− 3 kHz and high-frequency squeal
in the range of 3− 16 kHz can be distinguished, [15].

Similar to moan, stick-slip was made responsible for squeal in the early stages of
research. Today, many experts agree on mode coupling in the context of a Hopf
bifurcation as the origin of this NVH phenomenon, see e.g. [28]. According to this
theory, two eigenmodes of the system – which relate to different sub components of
the complete disk brake and suspension system – coalesce due to the friction forces
between disk and pads. Typically, these modes are a disk mode with high out-of-
plane displacements within the contact zone and a 90◦ phase-shifted pad eigenmode
with high displacements in tangential direction. For coupling, both modes need
to be of a similar eigenfrequency – therefore, separation of modes is a common
countermeasure during the design process. Naturally, damping e.g. via additional
damping shims can reduce limit cycle amplitudes and prevent the occurrence of
audible noise. [2], [44], [58]

In the frequency spectrum, squeal vibrations show a distinct peak at their domi-
nant frequency in the low kHz range, harmonics are possible but usually of lower
oscillation energy, [58].

As explained above, a disk and a pad mode are necessary for squeal-related modal
coupling. Therefore, these parts are typically the main focus of squeal-related ODS
analyses, see e.g. [58]. Moreover, components of high influence are usually parts
rather ‘near’ to the brake force generation such as e.g. the knuckle or the caliper,
which is used for optimization in [14]. In the author’s opinion, suspension compo-
nents like strut or the control arms have less influence on this phenomenon.

33



2 State of the Art

m
x(t)

vBelt

µ > µ0  

g

Figure 2.18: 1D mass-on-belt model for physical instabilities, adapted from [44]

2.4.2 Explanation Models

All three named phenomena represent a form of self-excited, friction-induced vi-
bration. Typically, these arise due to the existence of a certain type of instability.
Based on [44], the following categories can be found:

• physical instability

• dynamic instability

• geometric instability

In chapter 2.4.1, two different excitation mechanisms for self-excited brake NVH
phenomena were stated: Stick-slip effect and modal coupling.

On the one hand, the stick-slip effect arises due to a difference between static coef-
ficient of friction and sliding coefficient of friction: µ0 > µ. Result can be an abrupt
change of friction forces which leads to the excitation of oscillations. Certainly, these
contain characteristic stick as well as slip phases. This effect represents a physical
instability and is highly dependent on parameters like brake pressure or relative
speed, [6]. Moreover, instabilities caused by speed-dependent friction coefficients
are also classified as physical instabilities. [44]

The classical 1D mass-on-belt model is one of the simplest and most common mod-
els able to perform stick-slip oscillations, see fig. 2.18. Here, a mass pressed on a
belt moving with constant speed exhibits self-excited oscillations about its static
displacement caused by a (necessary) difference in static and sliding coefficient of
friction. [44]

On the other hand, modal coupling acts as as a dynamic instability. Here, two modes
of similar eigenfrequency coalesce, see also chapter 2.4.1.3. A stability analysis ac-
cording to the example within chapter 2.3.4 explains the basic stability tendencies
of the two eigenmodes: With increasing coupling, one of the eigenvalues becomes
more stable (decreasing real part) whereas the other one becomes more and more
unstable (increasing real part). As the coefficient of friction determines tangential
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Figure 2.19: 2D mass-on-belt model for dynamic instabilities, adapted from [44]

coupling between disk and pad linings in a disk brake system, modal coupling is
typically favored by higher coefficients of friction. [12], [44]

For a dynamic instability like this, the most simple model must already possess
two Degrees Of Freedom13 in order to oscillate in two different modes, see fig. 2.19.
Nevertheless, static and sliding coefficient of friction can be identical here as they
are not necessary for the occurrence of an instability. If µ0 > µ anyway and damping
is very low, the stick-slip effect limits growth of oscillation amplitudes when the belt
speed is reached. Hence, oscillations containing discrete stick and slip phases can
be reached even with an excitation different from the stick-slip effect. [44]

The third explanation model, geometric instability or the so-called sprag-slip effect,
is related to a variation of normal force with other corresponding brake-NVH phe-
nomena like e.g. dynamic groan. As this is not of relevance for this work, it is not
considered further.

2.5 Complex Eigenvalue Analysis for Disk Brake Squeal

Based on [28], [49] and very similar to the author’s work in [38], the mathematical
background and important equations of the CEA in terms of its application for
disk brake squeal are presented here. All statements are based on the procedure of
the FE-solver PERMAS, as it was used for performed simulations presented in the
following chapters.

The main idea of CEA is based on the Hartman-Grobman theorem stated in section
2.3.4: A stability analysis of the linearized brake system with its non-linear friction

13DOF
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Linearization

 simplifications due to modeling detail
 rotationally symmetrical brake disk
 Coulomb friction, µ constant

Step 1:
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Analysis

 internal stress state: creation of 
rotational system matrices

 computation of a finite amount of 
real modes

 system reduction: modal condensation
 base: real modes, no damping influence

 equivalent viscous damping matrix 
instead of structural damping matrix

Figure 2.20: CEA for disk brake squeal: procedure and essential simplifications,
adapted from [38]

behavior is performed in a fixed point of the system. As long as the investigated
fixed points are hyperbolic (non-zero real part), stability near these fixed points is
identical for both linearized and non-linear system.

Basically, this leads to the solution of an equation with the main structure accord-
ing to eq. 2.21. In order to build up this equation, several intermediate steps and
simplifications are necessary – see an overview within fig. 2.20. This process basi-
cally shifts the difficulty of the task from numerical solution to the build-up of the
modal model. [57]

~0 = M̃ · ~̈q +
[
D̃V + D̃Ct(Ω) + D̃G(Ω) + D̃eqv

]
· ~̇q +

[
K̃el + K̃Ct + K̃G(Ω) + K̃C(Ω)

]
· ~q

(2.21)

First of all, the fixed point itself needs to be found: This is done by a static analysis
of the non-linear system. Naturally, high error can be created already at this early
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stage by insufficient modeling e.g. of elastomer bushings’ stiffness and damping
characteristics. Assumptions regarding the contact state further falsify the result.

In a next step, the system needs to be linearized. Here, probably the biggest and
most crucial simplifications of this approach are taken: Highly non-linear friction
behavior, typically based on the simple Coulomb friction model, is treated linearly
based on a Taylor series approximation. This strongly distorts the contact’s char-
acteristics: Normal separation is not possible anymore, tangential forces are repre-
sented by additional stiffness and damping terms.

For a decrease of computational costs, a model reduction based on undamped real
modes is typically performed subsequently. Eventually, the Ordinary Differential
Equation14 within eq. 2.21 results: Here, a complex approach is taken. In contrast
to the simpler Real Eigenvalue Analysis15, modes – the eigenvectors of a system
– and the eigenvalues themselves can both contain complex numbers here. This
enables the inclusion of damping effects, which typically play an important role for
stability.

Another crucial factor for stability is the existence of asymmetric stiffness terms
caused by the frictional contact – see e.g. [55]. These terms can lead to the nega-
tively damped eigenvalues sought, meaning an instability with possibly high limit
cycle amplitudes due to modal coupling. Therefore, the so-called equivalent viscous
damping ratio is evaluated: Negative values indicate a negatively damped – and
therefore excited – eigenmode.

Within industrial application of the CEA, such as a standard brake squeal investi-
gation, this crucial factor is also used as optimization parameter, see [14]. However,
this practice has the big disadvantage of over- and under-prediction due to the
CEA’s validity only near the fixed point. As already stated in section 2.3.4, no con-
clusions can be drawn about the actual amplitudes and the resulting noise. Still, this
method allows for efficient computation and simple treatment of different variants
and parameter changes due to its linearized principle.

In the following, all necessary steps for a CEA according to fig. 2.20 are described
thoroughly based on [28], [49], which can be found in similar manner in the author’s
work in [38].

2.5.1 Step 1: Static, Non-Linear Contact Analysis

Firstly, the contact state is evaluated in a static, non-linear simulation. Simplifica-
tions due to modeling detail are already introduced in this step. Especially parts of
lower squeal-influence such as the spring with damper assembly or elastomer bush-
ing stiffnesses are usually represented in a strongly simplified manner. Nevertheless,

14ODE
15REA
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the influence of such parts can be significant as can be seen in chapter 4 or in [38].
Subsequent to this first step, the linearization of bushing stiffnesses is executed.

The respective brake pressure within the caliper’s fluid channels as well as inertia
forces caused by the rotating brake disk, which is simplified to be rotationally
symmetrical, are applied on the system. In addition, a reference relative speed
between brake disk and pad linings needs to be defined in order to determine the
contact state – stick, slip or separation – in every node of contact. Result is the
static rest position, or, using the terminology of chapter 2.3.4, the fixed point, ~x0.
In the following, all computations are only calculated for small deviations ∆~x(t)
about this static rest position, see eq. 2.22.

∆~x(t) = ~x(t)− ~x0 (2.22)

Subsequently, essential matrices based on the contact state are created:

• For normal contact forces, which depend on ∆~x(t), Multi Point Constraints16

couple the contact partners in each participating node by directly ‘locking’
the respective DOFs.

• For tangential contact forces, a friction force based on the rather simple
Coulomb friction is calculated. Due to the reference speed given, all contact
nodes are assumed to slip – a tangential friction force according to eq. 2.23 re-
sults. As one can see, this vector quantity depends on displacement deviations
∆~x(t) in ~fN as well as on speed deviations ∆~̇x.

~fR = −µ ‖~fN(∆~x)‖ ~vrel
‖~vrel‖

(2.23)

Therefore, a linear, first-order Taylor series approximation can be applied on both
normal contact force and tangential friction force as within eq. 2.24 and eq. 2.25.
Details are stated in [28], [34].

~fN(∆~x) ∼= ∂ ~fN(∆~x)

∂∆~x

∣∣∣∣
∆~x=~0

·∆~x (2.24)

~fR(∆~x,∆~̇x) ∼= ∂ ~fR(∆~x,∆~̇x)

∂∆~x

∣∣∣∣
∆~x=∆~̇x=~0

·∆~x +
∂ ~fR(∆~x,∆~̇x)

∂∆~̇x

∣∣∣∣
∆~x=∆~̇x=~0

·∆~̇x (2.25)

Both approximations contain partial differentials, which contribute to special contact-
based matrices built for CEA. The partial differential with respect to speed devia-
tions ∆~̇x in eq. 2.25 affects the speed-dependent rotational damping matrix DCt(Ω)

16MPCs
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Figure 2.21: Influence of relative speed on the quality of friction force linearization,
adapted from [38]

– describing viscous damping due to friction in radial disk direction. By contrast,
partial differentials with respect to displacement deviations ∆~x of eq. 2.24 and
eq. 2.25 both affect the asymmetric, circulatory contact stiffness matrix KCt. As
already stated before, these terms are highly connected with the occurrence of un-
stable modes: For a positive semi-definite damping matrix, instabilities can only
result when asymmetric stiffness terms exist.

Currently, influences due to a possible speed-dependency of the coefficient of friction
can not be implemented by the used FE-solver, [49]. Nevertheless, improvement is
possible by considering one or more additional Taylor terms, as already implemented
by other software packages.

A rather simple depiction of the performed friction force linearization is given in fig.
2.21. For this schematic representation, uni-directional relative speed is assumed in
combination with a classical Stribeck friction curve. On the one hand, linearization
at vlin,1 should lead to appropriate results, as friction forces can be approximated
well by a linear speed-dependency. For the special case of Coulomb friction, which
does not contain a speed dependency at all, linearization delivers an optimal result.
On the other hand, linearization at vlin,2 cannot describe the frictional behavior
properly: Near zero relative speed, high changes of the coefficient of friction can be
expected. Therefore, stick-slip oscillations are not possible in the case of a linearized
mechanical system.

2.5.2 Step 2: Linear Static Analysis

Subsequent to the first step, the geometric and gyroscopic matrices are generated
in the linear static analysis of the 2nd step. A simplified contact status is already
used here. Moreover, effects caused by a non-rotationally symmetric brake disk are
typically neglected – these would lead to periodically changing stiffness, mass and

39



2 State of the Art

damping matrices.

By applying inertia forces, a stationary stress state and the resulting geometric
stiffness matrix KG can be computed. What is more, speed vectors change within
one element for a rotating structure such as the brake disk. This influence is taken
into account by calculating and implementing the convective stiffness matrix KC.
Both additional stiffness matrices depend on the rotational speed Ω in a quadratic
manner, thus their importance increases significantly with higher rotational speeds.

Gyroscopic influences, depending linearly on rotational speed Ω, are included by the
calculation of the anti-metric gyroscopic matrix DG. Its build-up is performed by
varying the rotational inertia forces with respect to both speed deviation ∆~̇x and
displacement deviation ∆~x. Gyroscopic effects can essentially affect the stability
behavior, as brake squeal investigations within [34] have shown.

2.5.3 Step 3: Real Eigenvalue Analysis

As computation time is critical for industrial applications, a reduction of the prob-
lem size is desirable. Typically, this goal is reached by a modal condensation based
on real modes.

In the 3rd step these real modes are calculated. Starting from the complete dynamic
equilibrium equation in eq. 2.26, all system matrices except for the mass matrix M

and the elastic stiffness matrix Kel are neglected therefore.

~0 =M ·∆~̈x(t) +

[DV +DCt(Ω) +DG(Ω)] ·∆~̇x(t) +

[Kel +KCt +KG(Ω) +KC(Ω) + iH] ·∆~x(t)

(2.26)

For the solution of this second-order ODE, a classical exponential approach – see
eq. 2.27 and the corresponding deviations in eq. 2.28 and eq. 2.29 – is taken.

∆~x(t) = ~φ · eiωt (2.27)

∆~̇x(t) = iω ~φ · eiωt (2.28)

∆~̈x(t) = −ω2 ~φ · eiωt (2.29)

Substitution of these terms in the simplified, time-dependent ODE results in eq.
2.30. In order to find the non-trivial solution (~φ 6= ~0), the bracketed terms need to
become ~0. Therefore, eq. 2.31 has to be solved.

[Kel − ω2
M ] · ~φ = ~0 (2.30)
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Kel − ω2
M = ~0 (2.31)

Due to the orthogonality of the computed eigenvectors ~φ, a new basis can be built
by concatenating them to the modal matrix, see eq. 2.32.

Φ =
[
~φ1, ~φ2, · · · , ~φn

]
(2.32)

In the following, these real eigenmodes can be utilized for the reduction of the
complete dynamic equation in eq. 2.26, which includes all damping and stiffness
effects. The introduction of modal coordinates ~q(t) according to eq. 2.33 and a left
multiplication with the transposed modal matrix Φ

T leads to this desired modal
condensation of the full system, see eq. 2.34.

~x(t) = Φ · ~q(t) (2.33)

[
Φ

T
MΦ

]
︸ ︷︷ ︸

M̃

·~̈q +
[
Φ

TΣDiΦ
]

︸ ︷︷ ︸
D̃

·~̇q +
[
Φ

TΣKiΦ
]

︸ ︷︷ ︸
K̃

·~q = ~0 (2.34)

This procedure reduces the large-scale system into a smaller-scale subspace, defined
by the modal matrix Φ. On the one hand, this brings the desired advantage of a
smaller system, which can be computed in less time. On the other hand, the system’s
displacement possibilities are reduced by this measure due to two reasons:

1. In contrast to the complex eigenvectors explained in the next chapter, real
eigenvectors are purely real. Thus, every single part of the system reaches
its peak amplitude at the same time: Everything is in phase within one real
eigenvector. See also fig. 2.22 (a).

2. Only a finite amount of real modes is calculated. By consideration of the
Nyquist-Shannon sampling theorem, real modes have to be computed up to a
frequency at least twice the frequency of interest. The influence of eigenmodes
with higher frequency is neglected.

In addition to these findings, condensation based on real modes can alter a sys-
tem’s stability behavior significantly, even if an upper frequency limit presumably
large enough was used. In order to improve the accuracy of CEA stability analyses,
enhanced Proper Orthogonal Decomposition17 approaches can be seen in [29] and
[53].

Nevertheless, modal condensation is widely established in FE packages for CEA,
also because of another benefit: The modal matrix Φ does not change for differing
rotational velocities, as real modes do not depend on this parameter. This enables
fast sampling for different operational parameters, see e.g. [14].
17POD
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2.5.4 Step 4: Complex Eigenvalue Analysis

The actual CEA itself is carried out in the last step of this procedure. Before, the
structural damping matrix is replaced by an equivalent viscous damping matrix – see
eq. 2.35. This PERMAS-specific action is necessary in order to supply completely
real system matrices. Small errors result in case of frequencies differing from the
reference frequency fH,ref .

D̃eqv =
1

2πfH,ref
H̃ (2.35)

Similar to the real eigenvalue analysis, an exponential approach is taken for the
modal displacement ~q. However, complex numbers within eigenvalues and -vectors
are possible here, see eq. 2.36.

~q = ~φc · e(δ+iω) t

= ~φc · eδt · (cos(ωt) + i sin(ωt))
(2.36)

In detail, this approach provokes the separation of displacement and time informa-
tion in complex eigenvector and complex eigenmodes. As complex eigenvectors can
contain an imaginary part, different phases within one eigenvector are possible. If
only purely modal damping is implemented, all modes reach their peaks at the same
time but differently phased to a real mode – compare fig. 2.22 (a) and (b). For local,
nodal damping e.g. by discrete viscous elements or by additional damping terms
due to contact linearization, different nodes can reach their peaks at different times
within one complex mode, see eq. 2.37 and fig. 2.22 (c).

Furthermore, real modes are used as a new basis in this case. Therefore, each
complex eigenvector can be thought as a superposition of differently-phased parts
of real eigenmodes.

~φc,i = ℜ{~φc,i}+ iℑ{~φc,i} (2.37)

Substitution of the modal coordinate ~q from eq. 2.36 with its time-deviations within
the condensed equation of motion leads to eq. 2.38. Eventually, a transformation of
this ODE into state space is the last step before the numerical solution for complex
eigenvalues can be performed.

~0 = M̃ · ~̈q +
[
D̃V + D̃Ct(Ω) + D̃G(Ω) + D̃eqv

]
· ~̇q +

[
K̃el + K̃Ct + K̃G(Ω) + K̃C(Ω)

]
· ~q

(2.38)
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(a) Real eigenmode (b) Complex eigenmode with
modal damping

(c) Complex eigenmode with
local, nodal damping

Figure 2.22: Influence of different damping models on real and imaginary part of
nodal displacement amplitudes within one mode, adapted from [23]

In terms of stability behavior, resulting complex eigenvalues need to be investigated.
Therefore, the equivalent viscous damping ratio is examined. According to eq. 2.39,
this parameter informs about the complex eigenvalue’s real part: For a negative
equivalent viscous damping ratio ξi, the real part is positive. This relates to negative
damping behavior enabling exponential growth of oscillation amplitudes, see also
eq. 2.36. The respective complex eigenmode is considered unstable.

ξi =
−δi

δ2i + ω2
i

(2.39)

Typically, CEA results are found over-critical when compared to real life squeal
occurrence in industrial applications. This is a result of the tools’ incapability of
a calculation of limit cycle amplitudes, which would relate to sound and vibration
intensity - see also chapter 2.3.4. Nevertheless, enhanced criteria are currently under
research, see e.g. [11].

2.5.5 Application Limits of CEA

In the author’s work [38], limits of CEA application for the low-frequency disk brake
NVH phenomena creep groan and moan were treated. The following simplifications
were considered critical:

• linearization of Coulomb friction forces

• linearization of bushing stiffnesses

Whereas the linearization of bushing stiffnesses was considered important but nev-
ertheless manageable, linearization of friction forces was considered to be a hard
limit due to their high non-linearities near zero relative speed, [38]. Especially for
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creep groan, this is crucial, as stick-slip oscillations are stated to be the cause of
this phenomenon – see chapter 2.4.1.1. Therefore, the following applicability limit
can be found:

A Complex Eigenvalue Analysis regarding brake noise phenomena can
only lead to meaningful results, if the friction forces between brake pads
and disk can be approximately linearized. For Coulomb friction, this is
exclusively the case, if the direction of tangential relative velocity does
not change within one oscillation or repetition cycle and global stick
phases never occur. [38, p. 5]

In this context, CEA can only simulate the behavior during creep groans’ slip
phases. Here, a linearization according to section 2.5.1 is meaningful for the oc-
curring damped natural oscillations. Certainly, investigation of the basic stick-slip
frequency is not possible by this linearized approach. By contrast, CEA simula-
tions for moan were claimed to be overall meaningful. Together with the shown
importance of elastomer bushing stiffnesses, this knowledge was included for the
simulative work presented in chapter 3.
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3 Methodology

This chapter describes the approach towards the examination of CEA application
regarding low-frequency brake NVH on a full vehicle front corner. At first, per-
formed model variations based on a standard brake squeal FE-model are explained
in chapter 3.1. In the following, further details about models and the used system
matrices within PERMAS are investigated in section 3.2.

3.1 CEA Application on a Full-Scale Corner Model

For the simulative part of this work, an existing FE-model used for brake squeal
analysis in an industrial application was basis for low-frequency CEA application
on several different variants. Again, this work’s close relation to [38] should be
mentioned.

3.1.1 Model Variants and Parameters

A passenger vehicle’s front corner was under investigation. The original brake-squeal
FE-model contained a fixed caliper brake system, the double wishbone axle includ-
ing all steering arms, wheel carrier, stabilizer, the spring with damper assembly
and the steering arm as well as spring and damper elements representing the rub-
ber bushing’s behavior.

In order to introduce the wheel’s influence on creep groan and moan phenomena,
a 3D-modeled rim and a simple tire representation were added. This tire model
consisted of a 3D elastic spring element, connected on one node to the rim with a
rigid MPC and connected to ground in the wheel contact point. Tire inertia was
represented by nodal mass elements, separately connected to the rim via MPCs.
High care was taken to model the tire’s mass moment of inertia about the wheel axis
correctly. A swing experiment and weighing of the inflated tire and rim delivered
an accurate value, which was implemented by adapting the mass elements’ radial
distance.

For CEA, the stabilizer was removed from the model, as corresponding experimen-
tal tests for validation regarding creep groan and moan were performed without
this component too. In fig. 3.1, components of the FE-model are depicted with a
transparent rim for better visibility. ISO standard is used for this and all following
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Figure 3.1: Adapted model for creep groan and moan CEA simulation with rim A

coordinate systems. For subsequently explained variants based on this model and
rim design the overall number of nodes was about 690 000.

As for this current axle configuration a second rim was known to be prone for moan,
one variant was simulated with this rim – rim B – instead of the standard rim A. In
fig. 3.2 one can recognize the rather slim spoke design of rim B, which is identical
to the moan-prone rim in the related work [38]. Due to a finer rim mesh, an overall
number of approx. 1 000 000 DOFs were simulated with this model.

In both cases, model support was introduced in all DOFs at the rubber bushings of
both lower and upper control arm as well as at the spring with damper assembly’s
upper connection point to the vehicle body. Additionally, the steering link was
fixed translational and in one torsional/rotational DOF. The wheel contact point,
connected to the tire’s spring element, was constrained translational as well. See
fig. 3.3 for a depiction.

For the evaluation of various parameter and component influences, eight different
variants were simulated. The first six refer directly to the six variants in the author’s
work [38] whereas the last two were computed and evaluated exclusively for this
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Figure 3.2: Adapted model for creep groan and moan CEA simulation with rim B

work. In table 3.1, a model variant overview is given.

Variant 1 - Squeal-Model represents the original industrial squeal model, comple-
mented by the wheel model mentioned above.

At first, some components’ geometry and material specifications had to be updated
in accordance to the used test setup in [38]. This led to variant 2 – Corrected
Geometry. Modified components were the brake disk, the lower control arm and the
brake caliper with pistons. Additionally, elastomer bushing stiffnesses were updated
assuming operation in the linear stiffness zone, which corresponds to rather low
bushing forces.

Starting with variant 3 - Non-linear Stiffness, this linear assumption was dropped
and (some) elastomer bushing stiffnesses were implemented parameter-dependent
thereafter.

Subsequently, damping parameters were adapted according to chapter 3.1.2.2 for
variant 4 - Best-Model and then reduced by a factor 100 for variant 5 - Best-Model
Low Damping.

47



3 Methodology

 x  y

 z

 DOFs 123456*

 DOFs 123

 DOFs 1235

(*): Boundaries are applied at the elastomer bushings‘ nodes on the vehicle‘s chassis side.

Figure 3.3: Applied boundary constraints for CEA simulation

Influences of the rotational terms within gyroscopic damping matrix, convective
stiffness matrix and geometric stiffness matrix were examined in variant 6 - Best-
Model no Rotational Matrices, where all three matrices were simply omitted.

Improved for moan experiments, variant 7 - Best-Model Moan rim A and the variant
with different rim design variant 8 - Best-Model Moan rim B both feature reduced
damping in the wheel contact point, smaller MPCs for the connection to the rim
and a higher frequency limit for the computed basis of real modes.

Identical to the related work [38], operational parameters such as brake pressure,
vehicle speed or coefficient of friction were chosen in a range relevant for creep
groan, see table 3.2. Nevertheless, experimental tests of the investigated axle have
revealed moan oscillations for similar parameter sets, therefore variant 7 - Best-M.
Moan-A and variant 8 - Best-M. Moan-B were simulated for the same range of
parameters. However, the higher brake pressure limit of pB = 16bar was considered
less relevant for real world creep groan, even though the corresponding experimental
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Table 3.1: Low-frequency CEA model and parameter variant overview

variant name spring elements∗ damping∗∗ rim

variant 1 –
Squeal values Squeal values x 0.01 A

Squeal-M.

variant 2 – Test data,
Squeal values x 0.01 A

Corr. Geom. constant

variant 3 – Test data,
Squeal values x 0.01 A

Non-lin. Stiff. partly variable

variant 4 – Test data,
Test data A

Best-M. partly variable

variant 5 – Test data,
Test data x 0.01 A

Best-M. LD partly variable

variant 6 – Test data,
Test data x 0.01 A

Best-M. no ROT partly variable

variant 7 – Test data,
Test data x 0.01 A

Best-M. Moan-A∗ ∗ ∗ partly variable

variant 8 – Test data,
Test data x 0.01 B

Best-M. Moan-B∗ ∗ ∗ partly variable

(∗) all translational and rotational stiffnesses of elastomer bushings as well as the axial
stiffness of the vehicle’s coil spring according to table 3.4.
(∗∗) discrete viscous damping coefficients of elastomer bushings (see table 3.5) as well as

structural damping coefficients
(∗ ∗ ∗) no damping in the wheel contact point, less slave nodes of MPC between wheel

contact point and rim, increased limit frequency for real modes of 2500Hz

tests described in [52] were performed up to even higher brake pressures of 40 bar.
Summed up, 7 different coefficients of friction, 7 brake pressures and 91 different
rotational speeds – calculated from realistic vehicle velocities and the dynamic tire
radius – make up an overall amount of 4459 parameter combinations for each of
the 8 variants.

3.1.2 Elastomer Bushing Behavior

The author and his co-authors already stated the importance of elastomer bushing
behavior in [38]. Strong influences on CEA results were found in this work. There-
fore, the used methods and calculations for stiffness and damping adaptions based
on component test data are explained in this chapter.
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Table 3.2: Parameters for CEA simulations

brake pressure pB 4− 16 bar ; ∆ = 2bar

vehicle speed vveh 0.04− 0.4 km/h ; ∆ = 0.004 km/h

coefficient of sliding friction µ 0.25− 0.55 ; ∆ = 0.05

reference vehicle speed vref 0.2 km/h

frequency limit for real modes fr,lim 1 kHz / 2.5 kHz∗

(∗) for variant 7 - Best-M. Moan-A and variant 8 - Best-M. Moan-B

3.1.2.1 Elastomer Bushing Stiffness Modeling

At the beginning of the modeling process, elastomer bushing component test data
provided by the OEM was analyzed. The examined measurement data included
results from both static and dynamic experiments: For the static tests, the bushing
specimen was loaded with a certain displacement in a defined direction, e.g. axial
or radial to the bushing’s main axis. The load was induced with a certain speed
in the range of 3 − 30mm/s, therefore quasi-static behavior can be assumed. By
measuring the applied displacement and the corresponding force, the static stiffness
parameter in the respective direction was evaluated.

Resulting example stiffness characteristics can be found in fig. 3.4 (a) and (b).
As one can see, the investigated bushing clearly shows two different zones of static
stiffness: For rather low displacements, an almost constant, rather low static stiffness
is provided for good comfort – see chapter 2.2 for details on the requirements for
elastomer bushings. For higher displacements, a strong static stiffness increase can
be recognized. Here, the bushing is operated in a range where its limit is gradually
reached. Furthermore, the non-linear zone is reached at different displacements for
positive or negative loading respectively.

Due to typically low brake forces during creep groan or moan, the bushings were
assumed to be operated within their linear zone at first. Constant stiffness values,
invariant of brake pressure and coefficient of friction, were implemented in the
model variant 2 - Corr. Geom. according to the absolute stiffness data in table 3.3.
Here, c1 corresponds to the static translational stiffness value of the spring element
in the 1-direction of the local element coordinate system, which is aligned in the
axial direction of the respective bushing. Logically, c2 and c3 relate to the radial
translational stiffnesses whereas c4, c5 and c6 represent the rotational stiffnesses
about the three local element coordinate axes.

In order to compare these values to the previously used data of squeal investigation,
table 3.4 gives the relative stiffness of the bushings within variant 2 - Corr. Geom.
when compared to variant 1 - Squeal-M. A glance at the table’s values reveals the
stiffnesses of variant 2 - Corr. Geom. to be significantly smaller than those of the
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(a) Lower control arm: radial, horizontal direction
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(b) Upper control arm: axial direction

Figure 3.4: Measured static stiffness characteristics of a control arm’s hydraulic
elastomer bushing

variant 1 - Squeal-M. Bushing stiffnesses were reduced up to a maximum of 85%
for the radial, horizontal direction of lower control arm’s front bushing. Due to
their reduced impact on the more ‘local’ – i.e. concentrated on disk, caliper and
wheel carrier – squeal problem, the higher stiffnesses of variant 1 - Squeal-M. were
probably appropriate for brake squeal analysis, nevertheless.

In order to verify the assumption about the elastomer bushings’ linear static stiff-
ness behavior, a linear static calculation of the support reactions based on axle
geometry and kinematics for rigid components was used to verify the occurring
bushing forces at first. However, the evaluation of subsequently measured forces for
the corresponding vehicle’s front corner on the test bench – explained within [52]
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Table 3.3: Absolute stiffness values of elastomer bushings and the coil spring within
variant 2 - Corr. Geom. in local element coordinates

bushing location
c1 c2 c3 c4 c5 c6

[N/mm] [Nm/rad]

upper control arm - f./r. 150 2 500 2 500 26.4 100.0 100.0

lower control arm - front∗ 210 400 2 300 83.0 500.0 500.0

lower control arm - rear 1 500 8 500 8 500 100.0 680.0 680.0

lower control arm - strut 480 28 000 28 000 123.0 1 490.0 1 490.0

strut - suspension turret∗ 1 200 1 400 3 500 100.0 50.2 50.2

coil spring 55 - - - - -

Note: Local 1-direction corresponds to each bushing’s axial direction
(∗) 2-direction approx. in vehicle y-direction

Table 3.4: Relative stiffness of variant 2 - Corr. Geom. compared to variant 1 -
Squeal-M. in local element coordinates

bushing location c1 c2 c3 c4 c5 c6

upper control arm - f./r. 38 % 35 % 35 % 46 % 46 % 46 %

lower control arm - front∗ 35 % 15 % 88 % 48 % 44 % 44 %

lower control arm - rear 63 % 33 % 33 % 38 % 38 % 38 %

lower control arm - strut 60 % 42 % 42 % 60 % 35 % 35 %

strut - suspension turret∗ 63 % 57 % 57 % 100 % 100 % 100 %

coil spring 73 % - - - - -

Note: Local 1-direction corresponds to each bushing’s axial direction
(∗) 2-direction approx. in vehicle y-direction

– showed significant deviations of up to a factor 10 to the linear static calculation.
This could be due to elasto-kinematics and the non-linear behavior of bushings – a
check regarding the assumption of linear operation of the bushings seemed neces-
sary.

Therefore, a comparison of the test bench forces with the mentioned static dis-
placement/force/stiffness data provided by the OEM was performed. Meaningful
averaging methods were applied in order to retrieve useful results, as many differ-
ent measuring points combined with hysteresis effects were present in the data sets
given.

As a result, it was observed that depending on brake pressure pB and coefficient
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of friction µ, certain elastomer bushings operated clearly within their non-linear
stiffness range. In the author’s opinion, this could be a reason for the occurrence
of non-linear effects such as the super-harmonic peaks especially in creep groan
frequency plots, see fig. 2.16 and chapter 2.3.1.

Based on the parameters in table 3.2, the following elastomer bushing stiffnesses
showed non-linear behavior of high influence:

1 lower control arm – front bushing – axial direction

2 lower control arm – front bushing – radial, horizontal direction

3 lower control arm – rear bushing – axial direction

4 upper control arm – front bushing – axial direction

5 upper control arm – rear bushing – axial direction

In fig. 3.5, the position of the non-linear elastomer bushings in the 3D FE model is
shown. Numbers correspond to the list above.

Naturally, the inclusion of this nonlinear effect was aspired for all of the five rele-
vant stiffnesses. However, in some cases it was unclear which direction of the com-
ponent test data was positive or negative in the global vehicle coordinate system.
E.g. within fig. 3.4 (a), positive and negative displacements clearly lead to differ-
ent stiffness behavior. Therefore, only bushing stiffnesses of 2 , 4 and 5 were
implemented parameter dependent for variant 3 - Non-lin. Stiff. and all following
variants. Further improvement of the model would be possible with the inclusion
of parameter-dependent longitudinal stiffnesses in 1 and 3 .

Another problem evolved for bushing stiffnesses 4 and 5 . Here, the same bushing
type was mounted two times in opposite direction. The component measurements
were taken up to the limit stop for positive displacements only. Hence, no informa-
tion about the limit stop was available for the negative direction, see fig. 3.4 (b). For
a symmetrical bushing mount, axial displacement of the upper control arm would
finally lead to a limit stop of one bushing whereas the other bushing was assumed to
still operate in its linear range. As no mounting direction was provided by the OEM,
axial stiffnesses of front and rear bushing 4 and 5 were set equal and computed
by an averaging of the non-linear branch and the linear branch according to eq. 3.1.

c
4 , 5

(pB, µ) = c
lin, 4 , 5

+ c
nonlin, 4 , 5

(pB, µ) (3.1)

As the stiffnesses were assumed to correspond directly to the brake force, the pa-
rameters brake pressure pB and coefficient of friction µ were used for the definition.
Naturally, the coefficient of friction could not be altered during the experimental
tests, therefore a linear extrapolation was performed for µ-values differing from the
estimated real value.
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Figure 3.5: Elastomer bushing stiffnesses with significant non-linear behavior in the
relevant simulative parameter range

For an assumed real-life coefficient of friction µ = 0.4, parameter-dependent stiff-
nesses can be found in fig. 3.6. One can clearly see a limit-stop with increasing
stiffness for higher brake pressures and therefore higher brake forces, beginning at
9.5/10.5 bar. With the stated µ = 0.4, these brake pressures would be necessary to
hold the corresponding vehicle in standstill on a 16− 17% slope.

Dynamic effects describing relations between stiffness, excitation amplitude and
frequency were neglected in this first approach. Consideration of these remarks
could further improve the quality of model and results. However, sophisticated and
well-documented component measurements are necessary for such measures.

3.1.2.2 Elastomer Bushing Damping Modeling

The component test data provided by the OEM contained no direct information
about equivalent viscous damping factors. It was assumed that the tests were re-
alized by exciting the specimen with a harmonic oscillation of certain amplitude

54



3.1 CEA Application on a Full-Scale Corner Model

0

brake pressure [bar]

st
iff

ne
ss

 [N
/m

m
]

4 6 8 10 12 14 16

 2
 4  5

Figure 3.6: Bushing stiffness over brake pressure for parameter-dependent imple-
mented bushings and a coefficient of friction µ = 0.4, based on [38].
Marked data points were used within simulation.

and frequency. Measured quantities were loss angle γ and a dynamic or complex
stiffness cdyn.

Based on this, necessary viscous damping values were calculated according to [1],
[24] and [26]. Starting point is the differential equation of a force-excited, damped,
single mass harmonic oscillator, which is given in eq. 3.2.

mẍ(t) + d ẋ(t) + c x(t) = p(t) (3.2)

In the following, a cosine/sine excitation p(t) like in eq. 3.3 and, therefore, an
approach for x(t) according to eq. 3.4 are assumed. Together with the relation
given in eq. 3.5, showing the effect of the loss angle as an additional phase shift
between excitation and resulting displacement, the differential equation forms to
eq. 3.6. [26]

p(t) = |p| cos(Ωt− β) (3.3)

x(t) = |x| cos(Ωt−Ψ) (3.4)

Ψ = β + γ (3.5)

|x| ·
[
cos(Ωt−Ψ) · (c− Ω2m) + sin(Ωt−Ψ) · (−dΩ)

]
= |p| cos(Ωt− β) (3.6)

Via substitution of sinus and cosinus functions within eq. 3.6 by means of the
Euler’s formula (eq. 3.7) and its rearranged versions stated in eq. 3.8, the according
complex terms in eq. 3.9 appear. [26]
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eiΩt = cosΩt+ i sinΩt (3.7)

cosΩt =
1

2
(eiΩt + e−iΩt) , sinΩt =

1

2i
(eiΩt − e−iΩt) (3.8)

Eq. 3.9 describes oppositely rotating vectors within the complex area: Whereas
x+ · 1

F+ and p+ rotate with Ω, x− · 1
F−

and p− rotate with the inverse rotational
speed −Ω. Together, both imaginary parts of these conjugate-complex vectors result
to zero – only the real parts are of interest. [26]

|x|
2

e−iΨ

︸ ︷︷ ︸
x+

·
(
−Ω2m+ idΩ+ c

)
︸ ︷︷ ︸

1/F+

·eiΩt +
|x|
2

eiΨ

︸ ︷︷ ︸
x−

·
(
−Ω2m− idΩ+ c

)
︸ ︷︷ ︸

1/F−

·e−iΩt =

=
|p|
2

e−iβ

︸ ︷︷ ︸
p+

·eiΩt +
|p|
2

eiβ

︸ ︷︷ ︸
p−

·e−iΩt
(3.9)

Therefore, simply the positive amplitude equation in eq. 3.10 is considered in most
cases. The other resulting amplitude equation, eq. 3.11, is irrelevant subsequently.

x+ = F+ · p+ (3.10)

x− = F− · p− (3.11)

With this in mind, the force-excited displacement oscillation x can be written based
on the complex domain according to eq. 3.12. [26]

x = 2 · ℜ{x+ · eiΩt} = 2 · ℜ{F+ p+ · eiΩt} (3.12)

Similarly, the occurring forces can be computed as in eq. 3.13. Additional phase
angles of π or π

2 in mass and damping force terms compensate for negative amplitude
and 90◦ phase shifts respectively. In fig. 3.7, these relations between the different
forces and their phase behavior are depicted in the complex area. As one can see,
the rotating vector of the excitation force can be summed up by the three parts of
the component’s forces: mass force, viscous damping force and elastic spring force.
Details can be found within [26].
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Figure 3.7: Phase relationships of forces on a force-excited single mass oscillator
depicted as vectors in the complex plane, adapted from [26]

|x| ·mΩ2 · ℜ
{
ei (Ωt+π−Ψ)

}

︸ ︷︷ ︸
mass force

+ |x| · dΩ · ℜ
{
ei (Ωt+π/2−Ψ)

}

︸ ︷︷ ︸
damping force

+

+ |x| · c · ℜ
{
ei (Ωt−Ψ)

}

︸ ︷︷ ︸
spring force

= |p| · ℜ
{
ei (Ωt−β)

}

︸ ︷︷ ︸
excitation force

(3.13)

At this point, the term of the dynamic stiffness or also complex stiffness needs to
be introduced: According to eq. 3.14, the dynamic stiffness is computed by the quo-
tient of maximum transient force change ∆F and maximum transient displacement
change ∆x. As stated in eq. 3.14, dynamic or complex stiffness can also be com-
puted as the magnitude of the vector sum of viscous damping and elastic stiffness.
[1], [13], [24]

cdyn =
∆F

∆x
=

√
c2 + (Ω d)2 (3.14)

This value is especially important for the testing of elastomer materials, as one can
see in fig. 3.8: The dynamic excitation of a typical elastomer bushing material leads
to an increase of stiffness compared to the static stiffness behavior. Causation is
the dynamic hardening effect and the introduction of damping. With increasing
loss angle, the dynamic stiffness increases too. Furthermore, because mass forces
are typically rather small during dynamic measurements of elastomer bushings,
excitation forces are approximately equal to the dynamic stiffness force, see fig. 3.7.
[1], [13], [24]

Hence, the loss angle γ of the resulting oscillation, see again fig. 3.7, is shown by the
terms in eq. 3.15. This relation demonstrates that the loss angle is defined by the
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Figure 3.8: Dynamic force-displacement behavior in the presence of hysteresis ef-
fects, based on [32]

fraction between the imaginary part Ωd and the real part c− Ω2m of the complex
amplitude characteristic F+, if the oscillation is considered as a complex function.
Neglecting mass forces finally leads to the practical relation for calculation of the
necessary viscous damping values as in 3.16. [1], [26]

γ = arctan

(
−ℑ{F+}
ℜ{F+}

)
= arctan

Ωd

c− Ω2m
≈ arcsin

Ωd

cdyn
(3.15)

⇒ d ≈ sin γ

Ω
· cdyn (3.16)

Within some of the OEM’s component tests, the dissipated energy per oscillation
cycle or also the damping work Wdamp was measured. As depicted in fig. 3.8, this
parameter corresponds to the area encircled by the force-displacement curve. In eq.
3.17 the computation of this quantity via integration of the incremental damping
work is shown. Here, x(t) is a cosine oscillation without phase delay and with an
amplitude of ∆x

2 , similar to fig. 3.8. [32]

Wdamp =

∫ xcycle

0
Fdamp(t) dx

=

∫ T

0

[
−d · ∆x

2
Ω sin(Ωt)

]

︸ ︷︷ ︸
Fdamp(t)

·
[
−∆x

2
Ω sin(Ωt)

]
dt

︸ ︷︷ ︸
dx

= d

(
∆x

2

)2

Ω2 ·
∫ 2π

Ω

0
sin2(Ωt) dt

= d

(
∆x

2

)2

Ωπ

(3.17)
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The relation to the loss angle γ is found via equating the two different approaches
towards computation of the viscous damping value d, see eq. 3.18. Eq. 3.19 clearly
shows the damping work’s relation to the encircled area of the force-displacement
characteristic: It is computed by reducing an ellipsoidal area – with the semi-major
axis ∆F

2 and the semi-minor axis ∆x
2 – by a factor sin γ, which explains the ratio of

viscous loss stiffness compared to the elastic stiffness. [24]

d =
Wdamp

π
(
∆x
2

)2 =
sin γ

Ω
· cdyn (3.18)

⇒ Wdamp =
π

4
∆F ∆x

︸ ︷︷ ︸
ellipsoidal area

sin γ (3.19)

For the practical determination of viscous damping values, the frequency-dependency
of the bushing’s damping behavior was neglected. Instead, the measurements were
simply evaluated at a reference frequency fd,ref = 50Hz. This was assumed a good
approximation, as the reference was positioned in the middle of the usual bandwidth
of creep groan up to 100Hz and measurements of the corresponding axle system
have shown dominant frequencies between approx. 20 − 95Hz, see chapter 2.4.1.1
and [38], [52].

A comparison of elastomer bushing damping values between the existing squeal
model and the component test data for the stated reference frequency of fd,ref =
50Hz can be seen within table 3.5. Here, the necessary multiplication factors from
squeal model to actually measured values are given. As one can see, all values
are ≥ 1, meaning that the squeal model featured generally lower damping than
measured in component tests. The highest relative increases were found at the
lower control arm’s rear bushing in local 1-direction (axially) with a factor of 64.2
and at both upper control arm’s bushings in axial direction with a factor of 26.3.

As already stated, all viscous and structural damping influences were reduced within
most of the variants by a factor of 100 in order to obtain unstable eigenvalues as
shown within the variant overview in table 3.1. Only exception was variant 4 -
Best-M., which featured parameters set to the best of the author’s knowledge. This
absolute damping data can be found in table 3.6. Especially the relatively high
values found in the radial direction of the lower control arm’s rear bushing and in the
bushing between lower control arm and strut attract attention. Certainly, damping
relations between the different damping elements themselves stayed identical for all
following variants.
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Table 3.5: Relative changing factor of elastomer bushing vis-
cous damping values from variant 1 - Squeal-M. to
variant 4 - Best-M. in local element coordinates

bushing location
d1 d2 d3

[-]

upper control arm - front / rear 26.3 14.1 14.1
lower control arm - front∗ 7.7 13.2 15.7
lower control arm - rear 64.2 18.1 18.1
lower control arm - strut 19.0 6.9 6.9
strut - suspension turret∗ 15.6 1.0 1.0

Note: Local 1-direction corresponds to each bushing’s axial direction
(∗) 2-direction approx. in vehicle y-direction

Table 3.6: Absolute viscous damping values of elastomer bush-
ings and the suspension damper within variant 4 -
Best-M. in local element coordinates

bushing location
d1 d2 d3

[Ns/mm]

upper control arm - front / rear 0.105 0.945 0.945
lower control arm - front∗ 0.046 0.316 0.376
lower control arm - rear 1.413 4.375 4.375
lower control arm - strut 0.133 4.221 4.221
strut - suspension turret∗ 0.057 0.023 0.280

suspension damper 5.720 - -

Note: Local 1-direction corresponds to each bushing’s axial direction
(∗) 2-direction approx. in vehicle y-direction

3.1.3 Simulation Procedure

The classical brake squeal procedure consisting of

• Step 1: Static, Non-linear Contact Analysis

• Step 2: Linear Static Analysis

• Step 3: Real Eigenvalue Analysis

• Step 4: Complex Eigenvalue Analysis

according to chapter 2.5 was performed with the FE-solver PERMAS for all eight
different variants in table 3.1. With the respective parameters, see table 3.2, the
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following process was done:

At first, the contact state was evaluated in step 1 for one brake pressure pB and the
first coefficient of friction µ between brake disk and pads. In addition to the load
introduced by the brake pressure, inertia forces due to the rotation of the wheel
were implemented according to the reference vehicle speed vref .

In step 2, the rotational stiffness matrices and the gyroscopic matrix were computed
based on the locked contact state of step 1. Again, inertia forces due to the rotating
wheel were applied.

After the computation of real modes in step 3 and a modal reduction, complex
eigenvalues were calculated in step 4 based on the full system in eq. 2.38. In the
end, sampling was performed: The resulting complex eigenvalues were computed
for all different rotational speeds.

These four steps were repeated for the other coefficients of friction. In the end, this
procedure was performed for every brake pressure pB.

A computation time of approx. 23 h 30min resulted for the complete simulation
of the whole parameter range of one of the full-size variants according to table
3.1. Here, eight processor cores and 97.66GiB of main memory were used on a
workstation with an Intel Xeon E5-2620 processor.

3.2 Investigation of the CEA System Matrices

For better understanding and evaluation of certain parameter’s importance, this
chapter shows an evaluation of system matrices. Matrices of full-scale FE-model
variant 5 - Best-M. LD according to table 3.1 were output from PERMAS. With
the software tool MATLAB, simple depictions of the system matrices were created.

In this case, parameters were set to a hydraulic brake pressure of pB = 10bar and a
coefficient of friction of µ = 0.4. The vehicle reference speed was set to vref = 0.2 km

h .
Results of this analysis are shown in the figures 3.9 and 3.10. Both figures show
depictions of the system’s condensed matrices. As 70 real modes were calculated
as a new basis, each matrix consists of 70 rows and columns. Every single matrix
entry is represented by a filled square with red color for positive entries and blue for
negative entries. The square’s area corresponds to the magnitude of the value, all
squares are normalized with respect to the biggest occurring absolute value within
each single matrix.

In the following, each PERMAS data object and the corresponding modal matrix
in eq. 2.38 is explained in detail:

Fig. 3.9 (a): Data object BMMLL.
The modal mass matrix M̃ is a diagonal matrix with real modes 1

ω2
real

in the diagonal.

This is a result of the default stiffness-normalization in PERMAS.
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Fig. 3.9 (b): Data object BKMLL.
The modal elastic stiffness matrix K̃el is a diagonal matrix with only ones in the
diagonal due to the stiffness normalization performed in PERMAS.

Fig. 3.9 (c): Data object BKQMLL.
The modal asymmetric stiffness matrix due to contact friction terms K̃Ct contains
non-symmetric parts of stiffness based on the frictional contact. As stated in chapter
2, this asymmetry can lead to unstable complex eigenvalues. When compared to the
modal elastic stiffness matrix K̃el, one can see that this matrix contains maximum
values approx. one decimal power smaller. Furthermore, this matrix has no influence
on structural damping, which is referred to the elastic, symmetric stiffness matrix.

Fig. 3.9 (d): Data object BWMLL.
The symmetric rotational stiffness matrix contains elements of modal geometric
stiffness matrix K̃G as well as of modal convective stiffness matrix K̃C for deviations

to the reference rotational speed. A factor
(

Ωi

Ωref

)2
− 1 is applied to these matrices,

for reference rotational speed Ωref the influence of the rotational stiffness matrix
becomes zero. If the current sampling speed Ωi is higher, this matrix is multiplied
with a positive factor and added to the sum of stiffness matrices. On the contrary,
a negative factor is applied for rotational speeds lower than the reference. As this
matrix refers to the rotating structures, high values are reached only for eigenmodes
with high movement of disk and other rotating parts. With maximum values in the
range of 10−8, they only play a minor role when compared to the modal elastic
stiffness matrix K̃el. Especially the chosen groan-relevant reference speed in table
3.2 has big influence on this matrix.

Fig. 3.10 (a): Data object BDMRLL.
This matrix contains the modal viscous damping matrix D̃V as well as the modal
damping matrix due to Coulomb friction D̃Ct for the reference rotational speed Ωref .
With these terms, this matrix is a general symmetric matrix. Here, only positive
terms were found in the diagonal.

Fig. 3.10 (b): Data object BHMRLL.
Modal structural damping matrix H̃ is a symmetric matrix corresponding to the
modal elastic stiffness matrix K̃el. If the model consists only of volume elements and
each material has an assigned structural damping, modal structural damping matrix
would be a diagonal matrix with the structural damping coefficient times the elastic
stiffness values gdamp · K̃el on the diagonal. However, generally this is not the case
and the modal structural damping matrix can be a symmetric matrix, containing
positive as well as negative values with all its diagonal terms being positive. A
conversion according to eq. 2.35 leads to an equivalent viscous damping matrix,
D̃eqv. Even for the lowest used reference frequency of fH,ref = 100Hz, maximum
values of this matrix are more than one decimal power smaller than the biggest
viscous and frictional damping terms.
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Positive values only, max. value: 1.75 x 10E-4

(a) Modal mass matrix M̃

Positive values only, max. value: 1.00 x 10E0

(b) Modal elastic stiffness matrix K̃el

Max. value: 1.07 x 10E-1 Min. value: -1.18 x 10E-1

(c) Modal asymmetric stiffness matrix K̃Ct

Max. value: 1.13 x 10E-8 Min. value: -2.18 x 10E-8

(d) Modal rotational stiffness matrix, parts of
K̃G, K̃C for speeds different to reference
speed

Figure 3.9: Modal mass and stiffness matrices for the full-scale model of variant 5 -
Best-M. LD according to table 3.1
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Max. value: 4.09 x 10E-4 Min. value: -4.06 x 10E-4

(a) Modal viscous damping matrix D̃V and
parts of D̃Ct for reference rotational speed
Ωref

Max. value: 5.92 x 10E-3 Min. value: -1.50 x 10E-3

(b) Modal structural damping matrix H̃

Max. value: 4.09 x 10E-4 Min. value: -4.06 x 10E-4

(c) Modal rotational damping, parts of D̃Ct for
speeds different to reference speed

Max. value: 1.34 x 10E-6 Min. value: -1.34 x 10E-6

(d) Modal gyroscopic matrix D̃G

Figure 3.10: Modal speed-dependent and damping matrices for the full-scale model
of variant 5 - Best-M. LD according to table 3.1

64



3.2 Investigation of the CEA System Matrices

Fig. 3.10 (c): Data object BDIWMLL.
Modal rotational damping matrix is a symmetric matrix containing speed-dependent
damping deviations of the modal damping matrix due to Coulomb friction D̃Ct.
Here, a factor Ωref

Ωi
− 1 is applied. Again, Ωi refers to the current sampling rota-

tional speed. This means, damping is reduced for higher speeds than the reference
speed and vice versa. When compared to fig. 3.10 (a), it can be seen that this matrix
is the major part of the modal viscous damping matrix D̃V for reference speed. All
its diagonal terms are positive.

Fig. 3.10 (d): Data object BYMLL.
Modal gyroscopic matrix D̃G is a skew-symmetric (or anti-metric D̃T

G = −D̃G)
matrix containing terms due to gyroscopic effects. This matrix is only generated
if explicitly requested and is multiplied with the factor Ωi

Ωref
in regard of its speed-

dependence. Similar to the rotational stiffness terms, tight relation to the rotor
modes can be found. Furthermore, it can be recognized that all diagonal elements
are zero and only factors for the first nine modes show significant values, see the
upper left corner of fig. 3.10 (d). Gyroscopic effects with maximum terms of approx.
10−6 were found about two decimal powers smaller than the viscous damping terms
in this example with very low rotational speeds. Hence, they play only a minor
role. Nevertheless, gyroscopic terms are known to influence stability behavior in
significant manner even if magnitudes are low, see e.g. [34].
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4 Results

In this chapter, results gained by CEA model and parameter variations are pre-
sented. Due to their high informative value, displacements of relevant unstable and
stable modes are presented at first. In the following, frequency and stability results
for the eight different variants are shown.

4.1 Displacement Results

An overview about all unstable mode forms found in the relevant parameter range,
as stated in table 3.2, can be found in table 4.1. Due to different variants with
changing values for spring and damper elements as well as different operational
parameters, certain ranges can be found for the calculated eigenfrequencies. Unsta-
ble modes #1 - #5 relate to the unstable modes already presented in the related
work [38] whereas unstable mode #6 was found for a moan-optimized simulation.
Moreover, one fully stable mode, relevant mode #7 is included in this table because
a relation to brake moan seemed likely.

4.1.1 Unstable Mode #1

The displacement range of unstable mode #1 is shown in fig. 4.1 (a). Based on
variant 3 - Non-lin. Stiff. and the parameters coefficient of friction µ = 0.4 and
brake pressure pB = 4bar, a forward/backward rolling movement of the wheel
about the contact point to the road surface can be seen clearly. Moreover, upper as
well as lower control arm displace in longitudinal direction within their elastomer
bushings. Additionally, high movement can be seen in the lower control arm’s front
bushing in radial, horizontal direction.

A comparison with fig. 4.1 (b) already gives a first impression of effects caused by
non-linearly parameter-dependent bushing stiffnesses: Here, the same model variant
is shown for identical µ but a higher brake pressure pB = 16bar. Less longitudinal
movement in the upper control arm’s elastomer bushings can be seen. At the lower
control arm’s front bushing, less radial movement and higher axial movements in
both front and rear bushing occur. These effects relate to the increase of static
bushing stiffness with brake force/brake pressure. Effects already start at lower
brake pressures of approx. 9.5/10.5 bar, see fig. 3.6.
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(a) Brake pressure pB = 4bar
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(b) Brake pressure pB = 16bar

Figure 4.1: Normalized displacements of unstable mode #1 for variant 3 – Non-lin.
Stiff. (table 3.1) with coefficient of friction µ = 0.4 at vehicle reference
speed vref
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4.1 Displacement Results

Table 4.1: Unstable modes and other relevant modes found by CEA variant
analysis and resulting eigenfrequency minima & maxima over all
eight variants according to table 3.1

no. displacement of unstable mode eigenfrequency

#1

rotation of wheel back and forth,

10.9 – 18.4 Hzupper control arm moves axially,
lower control arm moves axially/transversally

#2 wheel rotates about steering axis 26.5 – 31.0 Hz

#3
upper control arm oscillates axially,

48.4 – 93.5 Hz
caliper/pads rotate in phase about wheel axis

#4
spring/damper assembly bends and oscillates

66.0 – 82.4 Hz
in longitudinal direction

#5 spring/damper assembly oscillates transversally 78.9 Hz

#6
1st torsional mode rim A; bending modes of

562.5 – 563.4 Hz
control arms and spring/damper assembly

#7∗ 1st torsional mode rim B 358.7 Hz

(∗) This complex mode did not occur unstable. However, due to its high importance it is
stated here and evaluated as well in the following.

4.1.2 Unstable Mode #2

Peak displacements of unstable mode #2 for variant 3 - Non-lin. Stiff. with a co-
efficient of friction µ = 0.4 and a brake pressure pB = 16bar are shown in fig.
4.2. Basically, rotational movement of the wheel about the nearly vertical steering
axis can be found. Because neither rotational stiffness nor rotational damping were
implemented in the model’s wheel contact point, this unstable mode is considered
irrelevant: Both parameters are estimated rather high in real world application due
to the tire material’s behavior in the contact patch. Hence, this mode will not be
treated further.

4.1.3 Unstable Mode #3

Fig. 4.3 (a) shows the displacement range of unstable mode #3 for variant 3 -
Non-lin. Stiff. with parameters µ = 0.4 and pB = 4bar. To have a better view on
relevant parts, rim and tire are hidden in this depiction. Here, a forward/backward
displacement of the upper control arm within its elastomer bushings is essential.
Related to this, a rotation of brake caliper and wheel carrier about the wheel
axis occurs. Moreover, the lower control arm displaces in its front bushing’s radial
horizontal direction. Its connection to the spring with damper assembly initiates
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Figure 4.2: Normalized displacements of unstable mode #2 for variant 3 – Non-lin.
Stiff. (table 3.1) with parameters µ = 0.4 and pB = 16bar at vehicle
reference speed vref

oscillations similar to unstable mode #4, see therefore fig. 4.4 (a). For unstable
mode #3 at this rather low brake pressure, displacements of lower control arm
and spring with damper assembly are actually in phase. However, due to the axle’s
kinematics, the spring with damper assembly’s oscillation seems to be in opposite
phase to the upper control arm.

With the brake pressure increased to pB = 16bar in fig. 4.3 (b), different displace-
ments can be found due to stiffening of non-linear static bushing stiffnesses. In this
case, the upper control arm does not move axially in its elastomer bushings but
exhibits rotational oscillations about a vertical axis. Moreover, the lower control
arm displaces mainly forward/backward due to the stiffening of the front bushing
in its radial horizontal direction. In addition, a change of phase between spring with
damper assembly and lower control arm can be seen. This can be related to the
changing eigenfrequencies. Like for unstable mode #1, these effects already occur
for lower brake pressures at 9.5/10.5 bar.

4.1.4 Unstable Mode #4

Displacement peaks of unstable mode #4 can be seen in fig. 4.4 (a). Again, results
for a low brake pressure of 4 bar and a coefficient of friction µ = 0.4 of variant 3 -
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(a) Brake pressure pB = 4bar
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(b) Brake pressure pB = 16bar

Figure 4.3: Normalized displacements of unstable mode #3 for variant 3 – Non-lin.
Stiff. (table 3.1) with coefficient of friction µ = 0.4 at vehicle reference
speed vref
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Non-lin. Stiff. are examined. In this case, a forward/backward bending oscillation
of the spring with damper assembly is dominant. Moreover, the already mentioned
forward/backward movement of the upper control arm and a radial, horizontal dis-
placement in the lower control arm’s front elastomer bushing similar to unstable
mode #3 can be noted, which indicates modal coupling. Strut with damper assem-
bly’s 1st bending mode is opposite phased to the lower control arm’s displacement,
therefore it seems to be in phase with the wheel carrier and the upper control arm.

For a higher brake pressure of 16 bar, displacements of unstable mode #4 can be
seen in fig. 4.4 (b). Similarly, the mentioned reduced displacement in the stiffening
bushings can be observed. Additionally, a phase shift between spring with damper
assembly and the upper control arm can be seen when compared with fig. 4.4 (a).

4.1.5 Unstable Mode #5

Unstable mode #5, depicted in fig. 4.5 for variant 3 - Non-lin. Stiff., became un-
stable only for the shown parameter combination of µ = 0.45 and pB = 10bar.
Main movement is the 1st transverse bending mode of the spring with damper
assembly. Additionally, the brake caliper rotates about the wheel axis, leading to
forward/backward displacements of the wheel carrier’s upper end and a horizontal
rotation of the upper control arm. In comparison to other displacements at other
parameter sets, qualitative changes were found. Because of this and its very rare
unstable occurrence, this complex mode is not examined further.

4.1.6 Unstable Mode #6

Regarding moan relevant modes, unstable mode #6 is shown for variant 7 - Best-
M. Moan-A and the parameters µ = 0.55, pB = 10bar in fig. 4.6. A characteristic
torsional mode of the rim can be seen. Furthermore, bending modes of the control
arms with high rotation in upper control arm’s bushings and strong displacement
in the lower control arm front bushing’s radial, horizontal direction occur. A 3rd

order bending mode of the strut with damper assembly can be noted.

4.1.7 Relevant Mode #7

For rim B, the relevant mode #7 is depicted in fig. 4.7. Shown for variant 8 - Best-
M. Moan-B, coefficient of friction µ = 0.4 and brake pressure pB = 16bar, a 1st

order torsional rim oscillation is characteristic. In contrast to the other complex
modes shown before, relevant mode #7 contains almost no displacements of other
sub-components of this suspension and brake system.
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(a) Brake pressure pB = 4bar
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(b) Brake pressure pB = 16bar

Figure 4.4: Normalized displacements of unstable mode #4 for variant 3 – Non-lin.
Stiff. (table 3.1) with coefficient of friction µ = 0.4 at vehicle reference
speed vref
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Figure 4.5: Normalized displacements of unstable mode #5 for variant 3 – Non-lin.
Stiff. (table 3.1) with parameters µ = 0.45 and pB = 10bar at vehicle
reference speed vref
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Figure 4.6: Normalized displacements of unstable mode #6 for variant 7 - Best-M.
Moan-A (table 3.1) with parameters µ = 0.55 and pB = 10bar at vehicle
reference speed vref
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Figure 4.7: Normalized displacements of relevant mode #7 for variant 8 - Best-M.
Moan-B (table 3.1) with parameters µ = 0.4 and pB = 16bar at vehicle
reference speed vref
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4.2 Stability and Eigenfrequency Results

All relevant and unstable modes and their respective eigenfrequency ranges for the
different variants are listed in table 4.2. If a complex mode occurs stable in the whole
parameter range, eigenfrequency is written in green, italic letters. Beginning with
variant 3 - Non-lin. Stiff, significantly bigger eigenfrequency ranges occur. This be-
havior is again related to the implemented non-linear parameter dependent bushing
stiffnesses.

Table 4.2: Eigenfrequency ranges of relevant and unstable modes,
values given in [Hz]

variant \ mode #1 #3 #4 #6 #7

variant 1 –
18.2

70.7 – 82.1 -
n/a n/aSqueal-M. 71.2 82.4

variant 2 –
11.7

48.8 – 69.4 -
n/a n/aCorr. Geom. 49.1 69.6

variant 3 – 10.9 - 48.4 – 66.0 -
n/a n/aNon-lin. Stiff. 18.3 93.0 72.3

variant 4 – 10.9 – 48.5 – 66.1 –
n/a n/aBest-M. 18.4 93.5 72.3

variant 5 – 10.9 – 48.4 – 66.0 –
n/a n/aBest-M. LD 18.3 93.0 72.3

variant 6 – 10.9 – 48.4 – 66.0 –
n/a n/aBest-M. no ROT 18.3 93.0 72.3

variant 7 – 10.9 - 48.4 – 66.0 - 562.5 -
n/aBest-M. Moan-A 18.3 93.1 72.2 563.4

variant 8 – 10.9 - 48.4 - 65.8 -
n/a 358.7Best-M. Moan-B 18.3 93.1 72.1

In the following, multi-dimensional stability diagrams - introduced in [38] - are used
to convey further information about frequency and stability of these relevant modes.
In this diagram type, the eigenfrequency is printed as a vertical coordinate over the
parameter plane of brake pressures and vehicle speeds: A 3D surface is created for
each coefficient of friction. Similar to a classical stability map, surfaces are colored
according to a stability parameter, here the resulting equivalent viscous damping
ratio according to eq. 2.39. Blue areas correspond to an unstable, white areas to
a stable working point. Results for zones between the computed parameter points
were linearly interpolated.
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Figure 4.8: Multi-dimensional stability diagram of unstable mode #1 for variant 1 –
Squeal-M. (table 3.1)

4.2.1 Unstable Mode #1

Fig. 4.8 shows the eigenfrequency and stability behavior of unstable mode #1 for
variant 1 - Squeal-M. In this case, one can observe only minor changes in eigenfre-
quency. Regarding stability, large parameter areas with unstable (blue) behavior
exist. The higher the brake pressure, the more vehicle speed is necessary for the
occurrence of an instability.

In fig. 4.9, the multi-dimensional stability diagram for unstable mode #1 of variant
2 - Corr. Geom. is shown. Again, eigenfrequencies show only minor changes. How-
ever, when compared to the situation for variant 1 - Squeal-M. in fig. 4.8, one can see
that eigenfrequencies of unstable mode #1 decrease essentially. This effect relates to
the reduction of bushing stiffnesses, which have high impact on the displacements.
In addition, unstable areas shrank significantly from variant 1 to variant 2. This
is even more interesting because damping parameters were kept constant: Appar-
ently, bushing stiffness influences both – the resulting eigenfrequency as well as the
solution’s stability.

The implementation of non-linear parameter-dependent bushing stiffnesses, begin-
ning with variant 3 - Non-lin. Stiff., brings additional effects. In fig. 4.10, a jump
between two different eigenfrequency niveaus of approx. 11.5Hz to approx. 18.2Hz
can be seen clearly. Actually relating to the brake force, this step starts at lower
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Figure 4.9: Multi-dimensional stability diagram of unstable mode #1 for variant 2 –
Corr. Geom. (table 3.1)

brake pressures for higher coefficients of friction and vice versa. A comparison of
the stiffness kink within the surface for µ = 0.4 with the relative stiffness charac-
teristics in fig. 3.6 reveals good correspondence. However, even with continuously
increasing bushing stiffnesses the resulting eigenfrequency changes only little for
high brake forces: With higher stiffness, the corresponding bushing displacements
of the complex mode decrease. Therefore, their influence on eigenfrequency is re-
duced too. Regarding stability, one can again note strong differences to fig. 4.9
without changes of damping parameters.

For variants 4, 5 and 6, the resulting frequency signature was almost identical to
variant 3 - Non-lin. Stiff. in fig. 4.10. Nevertheless, this mode #1 occurred stable
for all parameter combinations of these variants. In the related work [38], increased
damping was made responsible for this effect.

Variant 7 and, what is even more interesting, variant 8 both contained rather small
unstable zones with similar eigenfrequencies. Fig. 4.11 shows the multi-dimensional
stability diagram for unstable mode #1 and variant 8 - Best-M. Moan-B. Because of
its very similar appearance compared to fig. 4.10, the influences of the different rim
and tire model seemed to be very low on the eigenfrequency of this mode. However,
as mass moment of inertia did not change for rim B and the wheel’s participation
in this mode is mainly influenced by this parameter, see the rolling movement in
fig. 4.1 (a), this reaction seems plausible.
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Figure 4.10: Multi-dimensional stability diagram of unstable mode #1 for
variant 3 – Non-lin. Stiff. (table 3.1)
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Figure 4.11: Multi-dimensional stability diagram of unstable mode #1 for
variant 8 - Best-M. Moan-B (table 3.1)
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Figure 4.12: Multi-dimensional stability diagram of unstable mode #3 for
variant 1 – Squeal-M. (table 3.1)

4.2.2 Unstable Mode #3

The multi-dimensional stability diagram for unstable mode #3 and variant 1 -
Squeal-M. can be found in fig. 4.12. Similar to unstable mode #1, eigenfrequency
is more or less constant. Moreover, areas with negative equivalent viscous damping
ratios ξ can be seen. With higher µ, more negative values occur, however, the other
parameters provoke only minor changes.

With the lower bushing stiffnesses of variant 2 - Corr. Geom., lower eigenfrequencies
result in the multi-dimensional stability diagram of fig. 4.13. Again, unstable areas
changed without a change of damping parameters: For high brake pressures, high
coefficient of friction µ as well as low speeds, unstable behavior is more likely.

The inclusion of non-linear parameter dependent bushing stiffnesses leads to the
depiction for variant 3 - Non-lin. Stiff. within fig. 4.14. Analogously to fig. 4.10,
a step in eigenfrequencies can be observed. For higher brake pressures, reduced
increase of eigenfrequency occurs. What is more, unstable areas arise in zones of
high eigenfrequency change.

In the following, unstable mode #3 was stable for all parameter combinations of
variant 4, 7 and 8. Similar to unstable mode #1, rim B did not show significant
influence on the eigenfrequency behavior.
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Figure 4.13: Multi-dimensional stability diagram of unstable mode #3 for
variant 2 – Corr. Geom. (table 3.1)
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Figure 4.14: Multi-dimensional stability diagram of unstable mode #3 for
variant 3 - Non-lin. Stiff. (table 3.1)
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Figure 4.15: Multi-dimensional stability diagram of unstable mode #3 for
variant 5 – Best-M. LD (table 3.1)

Finally, the multi-dimensional stability diagram for unstable mode #3 and variant
5 - Best-M. LD is given in fig. 4.15. Compared to variant 3 - Non-lin. Stiff. in
fig. 4.14, only minor stability changes can be seen, caused by small changes in
elastomer bushing damping. Furthermore, variant 6 - Best-M. no ROT delivered
almost identical results for unstable mode #3 in terms of eigenfrequency as well as
stability.

4.2.3 Unstable Mode #4

Starting again with variant 1 - Squeal-M., the stability diagram in fig. 4.16 shows
frequencies of approx. 82Hz. For low vehicle speeds, the eigenfrequency is slightly
increased. Unstable areas do not occur in this case.

For variant 2 - Corr. Geom., the eigenfrequency and stability behavior of unstable
mode #4 is given in fig. 4.17. Similar to unstable mode #1 or unstable mode #3, the
natural frequencies of this mode are reduced significantly from variant 1 to variant
2 to approx. 69.5Hz. For very low speeds and high brake forces, small changes of
frequency can be seen. Like for variant 1 - Squeal-M., no unstable areas occur here.

Effects of the implementation of non-linear parameter dependent bushing stiffnesses
with variant 3 - Non-lin. Stiff. can be seen in fig. 4.18. When the stiffness kink
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Figure 4.16: Multi-dimensional stability diagram of unstable mode #4 for
variant 1 – Squeal-M. (table 3.1)
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Figure 4.17: Multi-dimensional stability diagram of unstable mode #4 for
variant 2 - Corr. Geom. (table 3.1)
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Figure 4.18: Multi-dimensional stability diagram of unstable mode #4 for
variant 3 - Non-lin. Stiff. (table 3.1)

appears (see stiffness characteristics in fig. 3.6), eigenfrequency increases at first.
With slightly higher brake pressures, a strong decline of frequency in combination
with evolving unstable areas can be observed. For even higher brake pressures, the
eigenfrequency rises again. Especially the first increase of natural frequency is not
found for all coefficients of friction µ. However, this possibly occurred due to the
rather big brake pressure steps of ∆pB = 2bar.

Because again no unstable areas were found for variant 4 - Best-M., probably due
to higher damping, fig. 4.19 shows a resulting multi-dimensional diagram of variant
5 - Best-M. LD. Basically, frequency development is identical to the situation with
variant 3 - Non-lin. Stiff. Only minor changes regarding the equivalent viscous
damping ratio can be found, caused by changes of damping parameters.

For variants 6, 7 and 8, calculated eigenfrequencies were again almost identical.
However, both variant 7 - Best-M. Moan-A and variant 8 - Best-M. Moan-B with
their higher number of computed real modes, did not find unstable parameter sets.

Further aspects can be observed by a comparison of unstable mode #3 and unstable
mode #4: Whereas unstable mode #3 in fig. 4.15 shows a significant increase and
reaches a certain eigenfrequency plateau before and after the stiffness kink, unstable
mode #4’s eigenfrequency in fig. 4.19 features smaller, more varying changes. This
can be explained by the smaller influence of both non-linear parameter dependent
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Figure 4.19: Multi-dimensional stability diagram of unstable mode #4 for
variant 5 – Best-M. LD (table 3.1)

bushing stiffnesses: E.g. the upper control arm’s bushings displace significantly less
within unstable mode #4 in fig. 4.4 (a) than within unstable mode #3 in fig. 4.3
(a).

What is more, unstable areas were identified mainly in zones of changing eigen-
frequency. Here, both modes relate to similar eigenfrequencies, indicating towards
modal coupling behavior.

4.2.4 Unstable Mode #6

The moan-related unstable mode #6 and its frequency and stability behavior can
be found in fig. 4.20. It can be observed that frequency changes are of minor scale:
Values vary about a mean of approx. 563.2Hz. Only exception are two sets of µ and
pB with a slightly lower eigenfrequency between 562.5 and 562.9Hz. One of these
sets, µ = 0.55 and pB = 10bar, is also the only parameter combination for which a
negative equivalent viscous damping occurred.
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Figure 4.20: Multi-dimensional stability diagram of unstable mode #6 for
variant 7 – Best-M. Moan-A (table 3.1)

4.2.5 Relevant Mode #7

In fig. 4.21 the relevant mode #7 is shown for variant 8 - Best-M. Moan-B. Here, no
unstable areas can be noted. Moreover, frequency changes occur only in the third
decimal, the eigenfrequency is approx. 358.7Hz.

Finally, it has to be put into question, whether only complex modes featuring at
least one parameter set with a negative equivalent viscous damping ratio should
be considered and evaluated. As stated in chapter 2.4.1.1, the stick-slip effect and
its abrupt change of friction force in the transition from stick to slip excites nat-
ural frequencies mainly of lower frequency, see details within [44]. This means, an
‘unstable’ oscillation, in this case characterized by its amplitude, can occur also
without the presence of unstable complex modes. For brake moan considered as
a dynamic instability, the established evaluation method based on the equivalent
viscous damping ratio should be sufficient.
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Figure 4.21: Multi-dimensional stability diagram of relevant mode #7 for
variant 8 – Best-M. Moan-B (table 3.1)
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5 Validation and Discussion

5.1 Phenomenological Validation

In this section, unstable and other relevant mode forms presented and described in
chapter 4 are compared to simulative and experimental results found in literature.
Main criteria are measured and computed frequency content as well as ODS and
displacement results.

The presented results within this work were developed as a part of a multi-year
research project. In the course of this, findings from simulative and experimental
parts are highly cross-linked. Therefore, validation based on in-house test results
with the same axle setting such as in the related publications [38], [51] and [52] are
of exceptionally high value.

These experiments were performed on a drum-driven suspension and brake test rig,
see its basic structure and an exemplary setup within fig. 5.1 (a). A depiction of
the investigated double wishbone axle system and the fixed caliper brake is given
in fig. 5.1 (b). For better visibility, the wheel was dismounted here.

Within the performed experiments, torque was applied via the speed-controlled
drum. Vertical forces due to the vehicle’s mass were applied by a hydraulic cylin-
der. With the corresponding brake pressure, correct pretension of elastomer bush-
ings was ensured in this setting. In the following, the longitudinal acceleration
(x-direction), measured at the upper end of the inner brake pad’s backing plate
and sampled with 10 kHz, is used for validation. A depiction of the sensor position
can be found within fig. 5.2.

In addition to the in-house tests, [45] represents the work of a project partner.
Again, almost identical components were tested here. Hence, validation based on
this publication is of high relevance too.

5.1.1 Creep Groan Related Unstable Modes

As stated within chapter 2, many experts agree on the stick-slip effect as the cause
of creep groan phenomena. Due to difficulties regarding the linearization of fric-
tional forces based on Coulomb’s law, CEA is not able to give a definite prediction
about the occurrence of ‘unstable’ creep groan oscillations for certain parameter sets.
However, the behavior of occurring natural oscillations during slip phases, which
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 x  y

 z

(a) Exemplary test setup, adapted from [38]

 x
 y

 z

(b) Investigated suspension and brake
system without wheel

Figure 5.1: Drum-driven suspension and brake test rig of the Institute of Automo-
tive Engineering - Graz University of Technology.

 x  y

 z

acc. sensor

Figure 5.2: Position of the utilized acceleration sensor on the upper end of the inner
brake pad’s backing plate
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are most likely of large influence on this low-frequency phenomenon, was computed
and can now be compared to experimental and simulative results, as proposed in
[38], a publication of the author’s research group.

According to the classification of brake NVH phenomena in fig. 2.15, all relevant
unstable modes in a creep groan-related frequency range are validated in the fol-
lowing.

5.1.1.1 Unstable Mode #1

Regarding frequency, unstable mode #1 was the lowest relevant mode found during
the simulative investigations with a range of 10.9−18.4Hz. Characteristically, a for-
ward/backward rolling of the wheel with movement in the control arm’s elastomer
bushings was found here.

With a fundamental frequency of 18Hz, creep groan was found at the upper end of
this frequency range for this axle setting within the related work [38], see also fig.
5.3. Additionally, 20Hz creep groan could also be detected with this axle setting,
see [52]. In both cases, no ODS measurements are published yet, however, objective
and subjective investigations confirm a certain amount of longitudinal movement
of the whole axle system.

Furthermore, [39] presents similar results: Here, fundamental frequencies of 18Hz
and 22Hz were measured for stick-slip transition in vehicle dynamometer tests.
Longitudinal suspension and axle system vibrations were found in an ODS mea-
surement. Interestingly, changes of the chassis setup and rigidity led to a change
in stick-slip frequency, which is similar to the simulated behavior of unstable mode
#1: Here, changes of bushing stiffnesses have shown direct impact on the eigen-
frequency of its longitudinal displacements. However, in contrast to the simulated
double wishbone suspension system, [39] presents results of a MacPherson front
axle.

Within [25], a double wishbone axle combined with a floating caliper brake was inves-
tigated. Here, a 25Hz mode was found by a spectral ODS of a corner model without
tire and rim. Higher frequencies compared to unstable mode #1 could be explained
by the missing mass of the wheel. Similar to unstable mode #1, longitudinal move-
ment of the axle components was stated for the performed experimental test as well
as for a modal analysis of a Multi-Body model. With 31Hz, the computed frequency
within [25] is significantly higher than unstable mode #1’s eigenfrequency.

5.1.1.2 Unstable Mode #3

As unstable mode #2 was considered irrelevant, the unstable mode #3 with fre-
quencies from 48.4− 93.5Hz is validated next.
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Figure 5.3: Time signal and frequency plot of measured pad accelerations in vehi-
cle’s x-direction during 18Hz creep groan at pB = 10bar and vveh =
0.06 km/h, adapted from [38]

Regarding experiments with according axle settings, creep groan events with fre-
quencies of 63Hz and 95Hz were found within [38] and [52], see also fig. 5.4. These
different frequencies are of very high interest as different upper control arms were
used in both experimental tests. Because unstable mode #3 shows high displace-
ments especially in the bushings of the upper control arm, the sensitivity of the test
results regarding these parts clearly confirms simulation results.

Again, no ODS can be compared to the displacements found by simulation. However,
high displacements of the upper control arm bushings in their longitudinal direction
and of the lower control arm front bushing in its radial, horizontal direction were
subjectively detected as explained within [38]. This further supports the computed
displacement behavior of unstable mode #3, see fig. 4.3 (a) and (b).

[27] speaks of a characteristic rotation of the wheel carrier caused by the tangential
stick-slip excitation. As this work investigated a MacPherson front axle, a bending
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Figure 5.4: Time signal and frequency plot of measured pad accelerations in vehi-
cle’s x-direction during 63Hz creep groan at pB = 8bar and vveh =
0.08 km/h, adapted from [38]

mode of the strut was excited too. Nevertheless, this is comparable to the double
wishbone suspension of the setting considered in this work: Within unstable mode
#3, the rotation of brake caliper and wheel carrier caused by stick-slip transitions
simply provokes the characteristic longitudinal displacement of the upper control
arm instead of a bending of a MacPherson strut.

Another ODS analysis carried out with a MacPherson front axle on a dynamometer
test rig can be found in [60]. With 96Hz, again a first bending mode of the strut
was found during creep groan. With respect to the stated graphical depiction of
displacements, rotation of the caliper and wheel carrier similar to unstable mode
#3 seems likely, as the lower control arm exhibits forward/backward oscillations in
opposite phase to the strut’s connection to the wheel carrier.

[39] did not explicitly state similarities to unstable mode #3. However, a strong peak
at about 50Hz can be seen within one frequency plot of the full vehicle dynamometer
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creep groan tests. Again, a MacPherson axle was investigated in this case.

With a measured frequency of 41Hz, [25] found a very similar mode with its corner
tests of a double wishbone front axle without rim and tire. Rotation of caliper and
wheel carrier and a resulting movement of the upper control arm can be seen clearly.
Within its simulations, the same mode was found with an eigenfrequency of 49Hz.
Even though the frequencies are clearly different, simulated displacements fit well
with unstable mode #3.

5.1.1.3 Unstable Mode #4

With frequencies from 66.0 − 82.4Hz, unstable mode #4 featured a characteristic
axial bending mode of the spring with damper assembly. Within the related studies
[38] and [52], both creep groan frequencies already mentioned for unstable mode #3
were found. Similarities seem possible not only due to the similar frequency range,
but also because computed mode displacements of both eigenmodes contained parts
of the respective other complex mode. Again, axial movement of the spring with
damper assembly was claimed to be subjectively of high amplitude in [38].

As the function of the strut within a MacPherson front axle is clearly different from
the function of the spring with damper assembly in a double wishbone suspension,
a comparison of unstable mode #4 with results of [27] or [60] is not meaningful. In
addition, no deflections of the spring with damper assembly within the tests of a
double wishbone axle in [25] were observed during ODS measurements. Therefore,
a qualitative validation of unstable mode #4 was not possible, no references to an
oscillation pattern similar to fig. 4.4 were found in literature.

5.1.2 Moan Related Unstable and Relevant Modes

According to chapter 2, moan has recently been stated as a brake NVH phenomenon
related to dynamic instabilities and mode coupling. Therefore, computed results of
variant 7 - Best-M. Moan-A and variant 8 - Best-M. Moan-B, both optimized for
the corresponding frequency range, should deliver sufficient results. Again, only a
few literature sources with relevant ODS measurements for this kind of suspension
system were found. Nevertheless, the already mentioned investigations on almost
exactly the same system within [38], [45] and [51] represent high value for validation.

5.1.2.1 Unstable Mode #6

As already shown in chapter 4, the unstable mode #6 with a frequency of approx.
563.2Hz contains a torsional mode of the rim as well as bending modes of control
arms and spring with damper assembly, see fig. 4.6. As stated in the related work
[38], no moan phenomena were detected with this rim design – rim A – on the
vehicle’s corner test bench.
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Figure 5.5: Laser-vibrometry measurements of rim deflections during brake moan,
from [45]

However, personal correspondence with the main author of [45], who also performed
experimental moan tests on the identical axle, confirmed the computed eigenfre-
quency to be almost identical with a moan frequency ‘enforced’ on test bench.
Moreover, the torsional rim mode displacements were also claimed correct for this
mode, which was found non-critical in the vehicle environment as well by the author
of [45].

Differently than described in [6], the found unstable parameter range was very small
– parameters had a very high influence on the occurrence of the instability. This
stands in contrast with the theory of a dynamic instability.

5.1.2.2 Relevant Mode #7

Similar to unstable mode #6, a torsional rim mode with an eigenfrequency of
approx. 358.7Hz was found with the differently designed rim B. Within [45], laser
vibrometry measurements of an almost identical axle system revealed a torsional
rim mode as the critical displacement during brake moan action, see the depiction
in fig. 5.5. A comparison with fig. 4.7 reveals high similarity. However, the dominant
frequency was found with 512Hz as a different rim was used.

With the actual rim B, brake moan was found with 386Hz during corner tests
within [38]. See also the time and frequency plot in fig. 5.6.

Unfortunately, CEA did not find unstable parameter combinations of relevant mode
#7: Even for an increased parameter range of coefficients of friction up to µ = 0.8,
all computed equivalent damping ratios were positive.
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Figure 5.6: Time signal and frequency plot of measured pad accelerations in ve-
hicle’s x-direction during 386Hz moan at pB = 13.15 bar and vveh =
0.08 km/h, adapted from [38]

5.2 Discussion of the Results

In this section, final results and the validation of simulative findings shall be dis-
cussed separately for creep groan and moan related eigenmodes

5.2.1 Creep Groan Related Unstable Modes

Because of the strong simplifications made during friction linearization, CEA was
already stated to be incapable of completely predicting creep groan behavior within
section 2.5.5 and the related work [38]. Nevertheless, the simulation of frequency con-
tent during slip phases should be possible, this is therefore discussed subsequently.

In general, computed displacements and frequencies of the relevant unstable modes
#1 and #3 are in good correspondence with experiments and simulations found in
literature and in related in-house tests accompanying this work. Behavior similar
to unstable mode #4 was not explicitly stated in literature.

Based on the validation within the previous section, creep groan oscillations could be
distinguished further into two different phenomena: A lower frequency phenomenon
at approx. 10− 30Hz and a higher frequency phenomenon at approx. 40− 100Hz.
Bearing in mind the procedure of pretension (stick phases) and damped natural os-
cillation (slip phases) stated in chapter 2.4.1.1, the found and evaluated eigenmodes
could play an important role here.
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For the lower frequency creep groan phenomenon at approx. 10 − 30Hz, forward-
backward movement and frequency of unstable mode #1 could directly relate to
the stick-slip transition. High consistence with test bench results and literature
statements is given here. Additionally, a close look into [52] reveals the occurrence
of this phenomenon especially for higher brake pressures. In terms of real-world
creep groan during disengagement of the brake in standstill on an inclined road,
this would relate to situations with rather steep tracks.

For the higher frequency creep groan phenomenon at approx. 40−100Hz, a different
effect is revealed by literature and complex mode simulation: Whereas MacPherson
axles show high 1st order bending of the strut, double wishbone axles perform longi-
tudinal oscillations of upper control arm and spring with damper assembly excited
by the stick-transitions and the therefore rotating caliper and wheel carrier. Unsta-
ble mode #3 and unstable mode #4 could make up for high shares of the resulting
oscillation. Comparison with the according test bench results in [52] connects this
higher frequency creep groan with lower brake pressures and very small speeds.

All three creep groan-relevant unstable modes #1, #3 and #4 contained mainly
rigid body displacements of the single components, with the exception of the spring
with damper assembly. These components deformed mainly within their elastomer
bushings, which also explains the bushings’ significant influence.

Eigenfrequency as well as computed stability behavior were affected largely by the
elastomer bushings’ stiffness. Especially the implementation of non-linear parameter-
dependent stiffnesses for the lower control arm’s front bushing in horizontal direc-
tion and for both upper control arm bushings in axial direction – spring elements
2 , 4 and 5 in fig. 3.5 and fig. 3.6 – has shown strong impact. Frequency steps

in unstable mode #1 and #3 and changes of the equivalent viscous damping ratio
resulted.

The elastomer bushing’s damping parameters affected mainly the occurrence of
unstable parameter combinations, as a comparison of the results for variant 4 -
Best-M. and variant 5 - Best-M. LD has shown. Resulting eigenfrequencies, however,
were less influenced by damping. Implementation of damping according to the best
of the author’s knowledge made relevant modes appear stable, see also table 4.2.
Hence, further efforts should be taken to correctly depict the damping behavior
of elastomer bushings. As the analysis of component test data in chapter 3.1.2.2
has shown, parameters such as vibration amplitude or frequency can have essential
influence on the amount of dissipated energy in the rubber material. Therefore, a
strong coupling between component tests, vehicle tests and simulative investigations
could be crucial.

What is more, a review of the resulting eigenfrequency ranges within table 4.2
reveals a strong influence of the computed modal basis on the occurrence of un-
stable modes. With the higher frequency limit for real modes fr,lim = 2.5 kHz,
moan-relevant simulations of variant 7 - Best-M. Moan-A and variant 8 - Best-M.
Moan-B computed unstable parameter combinations for unstable mode #1 but not
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for #3 and #4. This stands in contrast with the results for variant 5 - Best-M. LD,
where unstable mode #1 occurs always stable and unstable modes #3 and #4 both
become unstable for some parameter combinations. Here, a frequency limit for real
modes fr,lim = 1kHz was applied. However, frequency content showed almost no
changes. These results contradict CEA’s ability of creep groan prediction.

Additionally, influences of the rim design on creep groan relevant mode forms were
rather low. A frequency comparison of unstable modes #1, #3 and #4 in table
4.2 reveals only minor eigenfrequency changes between variant 7 - Best-M. Moan-A
and variant 8 - Best M. Moan-B. Nevertheless, conclusions about the whole wheel’s
influence cannot be drawn as the tires were modeled with respect to identical overall
mass moment of inertia about the wheel axis for both rim designs.

Displacement, eigenfrequency and stability results changed only very little from
variant 5 - Best-M. LD to variant 6 - Best-M. no ROT, see also table 4.2. This sup-
ports the conclusion of the system matrices’ analysis in chapter 3.2: The influences
of modal geometric stiffness matrix K̃G, modal convective stiffness matrix K̃C and
modal gyroscopic matrix D̃G are very small for the creep groan- and moan-relevant
low vehicle speeds vveh due to their linear or quadratic dependence on the respec-
tive rotational speeds. In contrast to [34], the anti-metric gyroscopic terms did not
alter the stability behavior essentially. Moreover, computation time was reduced by
about 16% by this measure.

Finally, it can be noted that all three relevant unstable creep groan-related complex
modes featured high relative tangential displacement between brake disk and pads.
Therefore, a tangential stick-slip transition disk and pads would be able to excite
these modes directly. Vice-versa, modes without this characteristic displacement
probably cannot be excited to high amplitudes by a change from stick to slip.

5.2.2 Moan Related Unstable and Relevant Modes

Within chapter 2.5.5 and the related work [38], moan as a dynamic instability was
considered to be predictable by means of CEA.

In terms of the computed torsional rim modes of moan oscillations for both rim A
and rim B, this assumption has been partly true: The phenomenological validation
of moan in chapter 5.1.2 has confirmed high influences of these rim modes in real
life, frequencies were found different but comparable too.

However, the method was not able to predict stability correctly with the used model.
Variant 7 - Best-M. Moan-A with the rim robust in real-life was computed unstable
for one parameter set, whereas variant 8 - Best-M. Moan-B with the actually critical
rim did not become unstable for any set of parameters.

It can be assumed that the simulated models do not depict the reality accurately
enough. Especially the mass, stiffness and damping characteristics of the tire, prob-
ably also of high importance for the torsional rim mode, are modeled in a rather
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simple manner. Therefore, improvement of the tire model – based on measured
parameters, if possible – could be essential for moan prediction.

Nevertheless, both torsional modes of rim A and rim B featured eigenfrequencies
very similar to the measured ones, which insinuates to be on the right path with
this method.

5.3 Shortcomings and Further Potential of the Method

As discussed in the previous chapters, prediction of unstable behavior was not
sufficient for both moan and creep groan.

However, important conclusions were still drawn from the CEA results and the phe-
nomenological validation with literature results. Certainly, quality of the outcome
of this linearized computation method is directly influenced by the model which is
input. Therefore, further improvement for the prediction of moan-related instabil-
ities and the simulation of modal components of creep groan oscillation could be
reached by realizing the following issues:

• Implementation of additional non-linear parameter dependent stiffnesses, based
on accurate and complete component test data.

• More sophisticated damping parameters: Due to their high influence on the
occurrence of instabilities, adjustments and fine-tuning have to be made for
a correct moan evaluation. This includes static as well as dynamic effects of
elastomer bushings and other components. Again, strong cross linking with
component test data is recommended. Therefore, detailed information about
mass distribution, stiffness and damping behavior needs to be acquired.

• Improved tire model: Especially regarding moan phenomena, a more detailed
and accurate tire model seems necessary as interaction with torsional rim
modes could be possible.

• Influence of vehicle speed: A higher range regarding vehicle speeds vveh could
be necessary especially for moan evaluation, as this phenomenon could also
occur at higher speeds.

Furthermore, CEA could still be used for creep groan issues in terms of an investi-
gation of probably critical modal content. Because of the possible excitation by a
stick-slip transition, complex modes could be considered critical based on the rela-
tive displacement between pad linings and disk. E.g., an averaged tangential relative
displacement of all contact nodes could be compared to a critical, reasonably chosen
threshold. In the following, only modes with higher relative displacement than this
threshold would be relevant for further analysis, such as a transient analysis based
on modal coordinates.
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5.4 Recommendations for Transient Creep Groan

Simulation

Even though results where not able to predict unstable behavior, prediction of moan
is considered possible by means of CEA. Therefore, recommendations in terms of
modeling quality are treated in chapter 5.3, Shortcomings and Further Potential of
the Method, for this phenomenon.

By contrast, creep groan cannot be predicted sufficiently by CEA. Hence, develop-
ment of according transient approaches could lead to the solution of this problem.
Thus, recommendations are stated only for the transient simulation of creep groan
here.

In this context, model size is essential for a transient simulation approach: Usually,
a very high number of parameter sets needs to be computed in order to cover many
different driving conditions (here: 4459). Therefore, it is important to reduce the
number of DOFs to a very low number.

This implies that components of more influence should be modeled with higher
detail than components of less influence on creep groan occurrence and severity.
Many parts, such as e.g. wheel carrier, caliper or the rim, could sufficiently be
modeled by rigid mass and rotatory inertia points. Other parts, such as e.g. the
spring with damper assembly, showed lower order bending in the relevant unstable
modes presented in chapter 4 and should therefore be modeled in a way which
enables this kind of displacement. Simple beam models could already be able to
depict the behavior of such components sufficiently. [56] uses a similar approach:
With a Component Mode Synthesis1 method based on the procedure introduced
by Craig and Bampton, substructuring of the model is performed and suspension
components can only fulfill displacements of the rigid body and its first eigenmodes
defined by a chosen frequency limit.

Furthermore, the necessary number of contact nodes could be rather low, as typi-
cally a ‘global’ stick or slip occurs during creep groan: This means, almost the whole
contact surface of the pad sticks or almost the whole contact surface slips at one
moment. However, the author recommends to start with a rather fine resolution of
contact nodes – further reductions for a more time efficient, economic computation
should only follow if their influence is clearly found to be low.

Elastomer bushing stiffnesses and dampings have shown great influence on CEA
results. Especially the non-linear stiffness behavior could lead to typical super-
harmonic content within the transient oscillations. Thus, bushing parameters are
of high importance for a transient model.

As it was found for the axle system investigated in this work, not all bushings
operate in their non-linear stiffness zone during creep groan action. Therefore, the

1CMS
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relevant bushings need to be identified at first. This can be done by evaluation of the
occurring bushing forces and displacements during creep groan and a comparison
with corresponding component test data. Certainly, a simple linear static calculation
of the axle system’s forces based on rigid parts would be less effort. However, in
the author’s opinion this could probably be not accurate enough and measured and
verified forces generally deliver better results.

Unfortunately, these measurement values might not be available at early stages of
the design process. Then, selection of non-linearly implemented bushing stiffnesses
could be done based on experience.

As damping elements influence the oscillation amplitudes, these parameters should
be implemented with high care too. Cross-reference to component test data could
also turn out to be crucial here.

The inclusion of dynamic effects for damping and stiffness of elastomer bushings
would be another step towards a sufficient model. Again, strong interaction between
experimental tests and simulation is desirable.

For computation itself, implicit as well as explicit schemes are available. As the
conditionally stable explicit schemes generally have advantages in terms of non-
linearities such as contact solution and regarding convergence, the author would
recommend to utilize one of these schemes. Furthermore, the implementation of
predictor mechanisms for static deflections during the system’s pretension could
reduce the necessary computation duration of each loop.

Analysis and evaluation of the huge amount of time-domain results could further
be enhanced similar to the frequency-based approach in [52], where the frequency
plot is searched for creep groan characteristics automatically.
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6 Conclusions

Within this work, usage of the Complex Eigenvalue Analysis was investigated for
the low-frequency brake noise, vibration and harshness phenomena creep groan and
moan. The main assumption, which was stated in a publication that originated from
the work on this issue, was that a prediction of moan oscillations should be possible
whereas real-life creep groan oscillations could not be foreseen by Complex Eigen-
value Analysis: Only for the basic oscillation content of damped natural oscillations
during global slip-phases between linings and disk, meaningful results should be
found.

The computation and careful evaluation of eight different variants of a vehicle’s
front corner with double wishbone suspension and fixed caliper brake in a Finite El-
ement environment has revealed this main assumption as partly true. A validation
based on related experimental tests and literature statements regarding Operating
Deflection Shapes and frequency content acknowledged the method’s fundamental
incapability of creep groan prediction and presumptions concerning oscillations dur-
ing slip phases. However, moan was not predicted correctly either: A variant known
to be robust in real-life was computed to be critical and vice versa.

Concerning creep groan, three relevant unstable modes were found, with eigen-
frequencies in the range of 10.9− 18.4Hz, 48.4− 93.5Hz and 65.8− 82.4Hz. Based
on the experimental and simulative investigation, it is suggested that creep groan is
further distinguished in low-frequency and high-frequency creep groan as different
basic displacement patterns relating to the eigenmodes were found.

Low-frequency creep groan, approx. in the range of 10 − 30Hz, mainly contains
longitudinal displacements of the whole axle system within the elastomer bushings
relating to a forward/backward rolling of the wheel. The stick-slip transition fre-
quency is here related to the above mentioned very similar first unstable mode with
10.9− 18.4Hz.

High-frequency creep groan, approx. in the range of 40− 100Hz, shows oscillations
excited by a rotation of wheel carrier, caliper and pads about the wheel axis, which
are caused by the stick-slip transition. Depending on the axle setting, these further
stimulate bending within the strut for a MacPherson axle system, or, as within the
simulations of a double wishbone front axle of this work, they drive longitudinal
oscillations of upper control arm within its bushings together with bending of the
spring with damper assembly. Corresponding eigenmodes were simulated: A rota-
tion of the wheel carrier combined with axial displacement of the upper control arm
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was found in the second unstable mode with 48.4− 93.5Hz. For the third unstable
mode within 65.8− 82.4Hz, 1st order bending of the spring with damper assembly
was dominant.

In addition, an important conclusion concerns the influence of elastomer bushing
stiffness and damping behavior: With many computed parameter sets consisting
of brake pressure, coefficient of friction and vehicle speed, it was possible to show
strong impact of non-linear parameter-dependent stiffness. Significant changes in
eigenfrequency and stability behavior were found with changing brake force in the
respective variants. Moreover, the elastomer bushing’s damping parameters were
found to directly affect the stability of the computed modes: For values according
to available component test data, all modes remained stable. Hence, most variants
were computed for damping reduced by a factor 100.

Therefore, two statements can be deduced: Firstly, depending on bushing location,
operational parameters and component characteristics, it can be necessary to imple-
ment the elastomer bushings’ stiffness behavior in a non-linear manner for correct
eigenfrequency and displacement results. Secondly, if stability is still considered
in future analyses of creep groan oscillation content, elastomer bushing damping
characteristics show a high influence and need to be modelled with care too. In
general, it is recommended to refer on sophisticated static and dynamic component
test data concerning these aspects.

Due to the small vehicle speeds during creep groan, the effects of convective and
geometric stiffness terms as well as of gyroscopic terms were estimated very small in
the system matrix analysis. Stability and eigenfrequency results have confirmed this
assumption, almost no changes were found when omitting these terms. Moreover,
computation time was reduced for approx. 16% by this measure. By contrast, the
size of the modal basis, defined by the frequency limit for calculation of real modes,
was found to be of significant influence on the stability of the resulting modes.
Therefore, it can be concluded that simulation time should rather be saved at the
additional rotational terms instead of the modal basis.

In addition, Complex Eigenvalue Analysis could further be meaningful for creep
groan in terms of a different evaluation mechanism. Due to creep groan’s stick-slip
excitation mechanism, relative tangential displacements within the contact could
be investigated in order to deliver a statement about the possible excitation of a
mode by stick-slip transitions.

Furthermore, it is noted that all three relevant eigenmodes showed mainly rigid
body movements. Especially for transient analysis, which seems beneficial for a fur-
ther approach concerning the simulative prediction of creep groan, this fact can be
important: Very strong simplifications of some parts of the model can be acceptable
and decrease the computational effort of e.g. an explicit dynamic time integration
simulation.

According to these creep groan-relevant results, a reduction of occurrence and ampli-
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tudes of this phenomenon based on changes of the suspension system seems difficult.
Stiffness characteristics of the elastomer bushings have shown strong influence on
creep-groan relevant modes and could therefore offer potential for optimization and
tuning. However, conflicting interests with demands on driving dynamics such as
safety, comfort or sportive driveability allow only minor changes of the bushing’s
stiffness characteristics.

Hence, a possible course of action is and will be a reduction of the excitation by the
stick-slip effect combined with increased damping in points of high displacements
during creep groan oscillation. This includes modifications and optimization of the
frictional contact between brake disk and pad by changing material parameters and
reducing the difference of static and dynamic coefficient of friction. Additionally,
further energy dissipation should be introduced in the system at neuralgic points
such as the elastomer bushings between lower and upper control arm or at the
connection between chassis and spring with damper assembly. Again, stiffnesses
can be modified only in a minor manner due to the already mentioned demands on
vehicle dynamics.

Regarding moan, two relevant modes were found for two different rim designs, one
at 562.5− 563.4Hz, one at 358.7Hz. Both featured a characteristic torsional mode
of the rim, which was also found in related experimental tests and publications.
However, unstable parameter combinations were not found in a correct manner -
one variant was over-estimated, one was under-estimated.

Mainly due to brake moan’s tonal characteristic, Complex Eigenvalue Analysis
should still be applicable in terms of stability prediction. Hence, further improve-
ments of the model seem necessary: Especially more accurate damping parameters
and a more sophisticated tire model are part of the recommendation.
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