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ABSTRACT

Maintenance of production machines in manufacturing plants can be a major

operative cost driver. The prediction of machine breakdowns in manufacturing

environments enable the saving in costs, as well as increasing productivity by

shortening reaction time for maintenance actions. This thesis describes how

data can be used in an ”Industry 4.0” project and on which theoretical basis

a prototype, for prediction making of machine breakdowns, can be developed

for a production facility. The described time series analysis of process val-

ues and alarm messages covers feature extraction, rolling window transforma-

tion, feature selection and model building by machine learning (random forest

classifier). The performance of the predictive model is depending on different

parameters and is evaluated and discussed by an evaluation. The prototype,

developed for Audi Hungaria Zrt., covers all necessary actions for a time series

data analysis and provides results in a web interface.



KURZFASSUNG

Die Wartung von Produktionsmaschinen kann ein wesentlicher Kostentreiber

in Produktionsanlagen darstellen. Die Vorhersage von Maschinenausfällen in

Produktionsanlagen spart Kosten und kann die Produktivität steigern, indem

die Reaktionszeit für Wartung- bzw. Reparaturarbeiten reduziert wird. Diese

Arbeit beschreibt wie Daten für ein Industrie 4.0 Projekt verwendet und auf

welcher theoretischen Basis eine Anwendung für die Vorhersage von zukün-

ftige Maschinenausfälle entwickelt werden kann. Die hier behandelte Zeitrei-

henanalyse von Prozesswerten und Alarmmeldungen aus Produktionsmaschi-

nen umfasst Feature Extraction, Transformation in Rolling Windows, Feature

Selection und die Modellbildung durch maschinelles Lernen (Random Forest

Klassifikator). Die Leistung des vorhersagenden Models, in Abhängigkeit von

verschiedenen Parametern, wird anschließend in einem Evaluierungsschritt

beschrieben. Der für die Motorenproduktion der Audi Hungaria Zrt. entwickelte

Prototyp umfasst alle notwendigen Maßnahmen zur Datenanalyse und zeigt

die Ergebnisse in einem Webinterface an.
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1. Introduction

1.1. Motivation

The engine production line of the car manufacturing facility this thesis was writ-

ten for consists of many in series or parallel working autonomous machines.

In Figure 3.1 a screenshot from a visualization software of an example pro-

duction line with about 26 machines is shown. The unplanned breakdown of

only one machine could lead to a production jam, unpredictable consequences

to the work planning and result in higher costs [1]. Implementing a predictive

maintenance strategy could lead to a better productivity, caused by minimized

unplanned downtime and the resulting higher efficiency [2].

1.2. Goal

For this thesis a prototype, which could work in a productive environment for

testing purposes, is implemented . Even so, it has a research study character

and works as framework/sandbox for trying different aspects of an industrial

time series analysis. It can be also used as a basis for new ideas or methods.

It has a simple user interface from where a user can make predictions, on a

machine subset in the production facility. Results are visualized in prediction

plots and different information will be accessible from that user interface. An

evaluation shows how stable the predictions are and by parameterization of

different attributes of the model the influence to the performance can be figured

out. In general, data analysis can be a uncertain task. From the beginning it

is not clear, if the provided machine data has enough relevance to the target

values and even if useful predictions can be done. The goal of this thesis is

1



1. Introduction

to answer the following questions by a concrete software implementation in an

automotive production environment (Audi Hungaria Zrt.):

• Is the available data suitable for predicting machine breakdowns?

• How can the implemented prototype can be improved for future work?

1.3. Thesis Structure

The written part of this thesis has a documentary character. It consists of four

main sections. In the theoretical part, a general description of the whole data

analysis process used for developing the prototype is covered. Also, defini-

tions of terms frequently used in context of industrial data analysis are given.

The second, practical, part shows how the prototype handles theoretical back-

ground in a concrete implementation. The outcome of this part is beside a

documentation of the realization, an evaluation of the predictive model perfor-

mance. These results are interpreted and possible benefits for a productive

environment is derived in the third part (conclusion). The appendix provides a

technical documentation, describing the prototype framework and non-obvious

program parts. To collaborate with the institute the prototype source code lies

on a university’s GIT repository. Beside of this written document, it is the main

outcome of the work.
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2. Theoretical Part

The theoretical part handles the given task in general. First some mainte-

nance types and keywords often occurring, when working with predictive main-

tenance, are explained. As a basis for the practical part and the implementa-

tion, the whole time series analysis process for continuous alarm messages

and process values is described. At the end an approach on how to evaluate

the predictive model is given.

2.1. Definitions

2.1.1. Maintenance Types

In this section an overview of general maintenance approaches [3] is given.

This work handles one specific type: PdM (Predictive Maintenance). Mainte-

nance is the task to avoid or correct failures of machines. There are different

maintenance types, which can be classified as illustrated in Figure 2.1:

• Corrective - reactively resolve a failure after it occurs

– Immediate - react immediately on a failure

– Deferred - react with some time delay on a failure

• Preventive - avoid that a failure occurs, before it occurs

– Predetermined - act in predetermined schedules, i.e. do a mainte-

nance action every 12 months

– On condition - react on predefined machine condition indicators [4]

– Predictive - continuously monitor the machine condition and predict

breakdowns

3



2. Theoretical Part

This thesis focuses on preventive maintenance, or more specific on PdM with

the following workflow: First collect all data from the data sources. Second

extract the relevant data from the data pool to features by specific industry

know-how or feature engineering. Then train the predictive model with ma-

chine learning algorithms. Applied to live data the model recognizes specific

feature conditions and predicts the RUL (Remaining Useful Lifetime) of the ma-

chines, so that the maintenance provider can react if necessary. Repeat the

process with new data after some time.

Figure 2.1.: Basic maintenance type classifications (inspired by Ojanen, 2014)

A key success factor of a predictive maintenance system is the data source

quality. In subsection 2.1.4 an overview of possible data sources in manufac-

turing environments is described.

2.1.2. Industry 4.0

Industry 4.0 is a buzzword strongly influenced by the report of the German

Industry 4.0 task force ”Forschungsunion Wirtschaft und Wissenschaft” from

2012 [5]. The document describes recommendations on how to implement the

fourth industrial revolution in Germany. One difference between the first three

industrial revolutions and Industry 4.0, is the attempt to define it before and not

4



2. Theoretical Part

afterwards. An essential part is the concept of the smart factory, which key

concepts are shown in Figure 2.2. The description, from the report [5], about

the intelligent maintenance topic in smart factories, freely translated (from Ger-

man), is:

Themaintenancemanagement will be self organized. Unplanned

events (machine failure, quality fluctuations or changes of product

specifications) will be automatically identified. Condition and wear

of materials will be continuously monitored and predicted. Through

this adaptation of the whole production process, unplanned ma-

chine downtime will be avoided.

By this definition, the work of this thesis can be part of an ”Industry 4.0” smart

factory. In the report the importance of data management and the technology

trend ”Big Data” is mentioned. Certainly many data is needed for a predictive

maintenance project, but what is ”Big Data”?

Figure 2.2.: Main topics of the Industry 4.0 Smart Factory

2.1.3. Big Data

During research on this thesis the keyword ”Big Data” occurred many times in

context of PdM. According to the METAGroup (now Garnter) [6] there are three

criteria, also called the ”3V”s, to fulfill the attribute ”Big Data”:

5



2. Theoretical Part

• Volume: The volume of datasets is too high to be processed by common

computer systems.

• Velocity: The data is generated in real time.

• Variety: The data is unstructured and complex.

The detailed description and definition of the data used in this project follows

at section 3.2. From there it is clearly recognizable that neither the volume nor

the variety criteria are satisfied. The data is not well-structured, but in general,

every data record can be assigned to a specific node (machine) and a concrete

time-stamp. Also, the volume is not that big, that some special software for

clustering or distributed computing is required. Anyway the velocity is high

enough, since the data is generated continuously. So at least data used in this

work, fulfills one criterion of the ”3V”s.

2.1.4. Computer Integrated Manufacturing

CIM is a term firstly appeared in the early 1970s and describes how software

and information systems can support manufacturing. Since then 37 different

and similar models of CIM appeared [7]. In Scheer’s Y-Model [8] the connection

between technical (computer aided CA*), production planning and controlling

information systems are shown. For the prototype, that means, every informa-

tion system used to support in a manufacturing process can be a possible data

source for a predictive maintenance system (in theory). All data sources used

for the prototype of this thesis are part of the model shown and are highlighted

(green) in Figure 2.3:

• ODC, Operational Data Collection (de: BDE): Log of machine state

changes

• Maintenance (de: Instandhaltung): Data collection of maintenance ac-

tions, which have been taken

• Work Management (de: Arbeitsplanung): Working schedule of the

manufacturing plant

6



2. Theoretical Part

• CAQ, Computer Aided Quality (de: Qualitätssicherung): Continuous

machine sensor data

Figure 2.3.: Computer Integrated Manufacturing by Scheer (de, 1987)

Different data sources, database tables and entity models are shown and ex-

plained more detailed in section 3.2.

2.2. Data Analysis

In Figure 2.4 the whole data analysis process for this problem is illustrated.

First the data processing step extracts features from a data collection or a data

7



2. Theoretical Part

stream to observation and rolling window features. After that, a feature sub-

set of the best extracted features is chosen. Then an appropriate predictive

machine learning model is trained and evaluated. If the model performance

is not sufficient, the feature selection and modeling step can be refined in an

evaluation step. The analysis results in a model with suitable performance and

can be used in a productive environment.

Data Collection / Data Stream

Observation Features

Rolling Windows Features

Full Samples

Feature Subset

Model Trained

Evaluation

Result

Refine Feature Selection

Improve ML Params

Modify Training Set

Modify Rolling Windows

Statistical Pattern Feature Extraction

Data Transformation, Data Aggregation

Set Target Classes

Feature Selection

Machine Learning - Training samples

Make Predictions - Test samples

Choose Model

Figure 2.4.: Data analysis scheme for this work
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2. Theoretical Part

2.3. Data Processing

The goal of data processing is to transform data into a format supervised learn-

ing algorithms can handle, like defined in Equation 2.1.

X =


x
(1)
1 x

(2)
1 . . . x

(n)
1

x
(1)
2 x

(2)
2 . . . x

(n)
2

...
... . . .

...

x
(1)
m x

(2)
m . . . x

(n)
m

 , y =


y1

y2
...

ym

 (2.1)

wherem is the number of samples and n the count of features. y ∈ C, whereas

C is the set of c target classes:

C = {c1, c2, . . . , cc} (2.2)

For example the jth input vector is defined as {xj , yj}:

{xj , yj} = {x(1)j , x
(2)
j , . . . , x

(n)
j , yj} (2.3)

The performance of trained models depends on the quality of input data X

and the target data y. Instead of using classes C, also continuous values for

regression can be used.

In the next sections training data is extracted to features by statistical patterns

and rolling time windows.

Observation Feature Extraction

To split all available data of a time window t, into processable parts, observa-

tions are introduced. An observation O collects related data (i.e. data of one

specific machine) of a predefined time window and transforms it by feature ex-

traction into features. The length of an observation timewindow depends on the

goal to achieve and the nature of the task domain itself. The time window size

should not be too small, so that any useful information will lose significance,

but also not too big, so that the observable features become fuzzy.

9



2. Theoretical Part

By statistical feature extraction, related data signals occurring in observations

are transformed to features [9]. In this thesis one of the following statistical

measures, for a series of signals s1, s2, ..., sn are used to extract features of an

observation data channel:

Arithmetic mean The mean, in an observation time window, is calculated by:

µ =
1

n

n∑
i=1

si (2.4)

Count occurrences Number of occurrences of a signal:

c = n (2.5)

Value sum Sum of signal values:

s =

n∑
i=1

si (2.6)

Minimum signal value The lowest numerical value of a signal:

min = min(s1, s2, s3, ..., sn) (2.7)

Maximum signal value The highest numerical value of a signal:

max = max(s1, s2, s3, ..., sn) (2.8)

Difference count The count of difference between two ascending successive

signal values (i.e. used for counting the number of produced items in a time

frame, if the signal is a counter).

d =

n∑
i=2

si − si−1 (2.9)

10



2. Theoretical Part

The result of observation feature extraction is a series of observationsO1, O2, ..., Oo.

An observation O, collects data of a predefined time frame and has n statistical

features:

O = feature1, feature2, ..., featuren (2.10)

The explained method is illustrated in Figure 2.5.

Data Collection / Data Stream

O1 O2 · · · · · · · · · · · · · · · · · · On

feature1

feature2
· · ·

featuren

feature1

feature2
· · ·

featuren

feature1

feature2
· · ·

featuren

Split into observations

Figure 2.5.: Extract observation features from a data collection or data stream

2.4. Rolling windows

After splitting the related data channels into observations, rolling windows are

created. An observation contains information of a relatively small time frame.

To create meaningful input samples, information of previous episodes are nec-

essary. So complete sample will consist ofw0, w1, ..., wW not overlapping rolling

windows, whereas onewindow aggregates features of all observations included,

as illustrated in Figure 2.6. The aggregation calculates either the mean or max

value, of observations, like explained in section 2.3.

11



2. Theoretical Part

O1 · · · On−3w−1 On−3w · · · On−2w−1 On−2w · · · On−w−1 On−w · · · On

feature1

feature2
· · ·

featurek

w0w1w2...

Observations to rolling window transformation

sample(On) = w0 + w1 + w2 + ...+ wW

Figure 2.6.: Create sample from observations and rolling windows for On

2.5. Setting target values

For predictive maintenance, target values of a sample may contain the RUL

in hours, which in general describes the duration till the next incident or ma-

chine failure occurs. Because regression models may be too specific to create

meaningful predictions, it is converted into a classification problem. Accord-

ing to Equation 2.2 classes are needed to be defined. Each class describes a

RUL specified time frame. For example, the RUL of 14 days can be split into

seven classes, where each class covers a time frame of two days, as shown

in Table 2.1.

Table 2.1.: RUL to class conversion example
RUL class RUL time frame
0 not defined / fallback
1 0 - 24 hours
2 24 - 48 hours
3 48 - 84 hours
4 84 - 132 hours
5 132 - 216 hours
6 216 - 300 hours
7 > 300 hours

12



2. Theoretical Part

2.6. Full samples

After feature extraction and target value setting, samples for each observation

window are complete and can be put into input vectors as shown in Equa-

tion 2.1. The result of the process to this point arem samples (depends on the

size of the time window the data is extracted from), where to each sample a

target class c is assigned. Each sample is a rolling window feature vector and

has the form of:

x =
[
w01 · · · w0k w11 · · · w1k · · · wW1 · · · wWk

]
(2.11)

The data collection has been prepared for the next steps and is ready for the

machine learning algorithm to train a predictive model.

2.7. Feature selection

Not all extracted features are appropriate or necessary for building predictive

models. Choosing a subset of features can have multiple advantages. For

example, by removing redundant features (i.e. by reason of no variance), the

time needed to compute models and to predict can be improved. Also, for a

better accuracy, feature selection may be needed to reduce noise.

There are several methods and algorithms for this purpose. In this thesis, fea-

tures are selected by calculating the Gini index, described in subsection 2.8.2.

The information gain of features depends on the target value each sample. In

this predictive maintenance task the strength of single features, strongly differs

by varying the incident target values.

For example a feature could be high on information for one incident, but com-

pletely irrelevant for another one. A general approach, of simply using every

incident may not work, because of incomplete maintenance/incident documen-

tation. Also, most of the observation may not show a significant change before

each documented machine failure, because failures are not properly classified.

Overall feature selection, is done by choosing different incidents, when setting

13



2. Theoretical Part

target values as described in section 2.5 and the entropy calculated by the Gini

index.

2.8. Machine Learning Algorithm: Random Forest

To understand the random forest algorithm, classification and regression trees

(CART) [10] and the Gini index needs to be explained first.

2.8.1. Classification and Regression Trees - CART

CARTs are decision trees to model classification or regression prediction prob-

lems. Every tree node models a feature of an input vector and leafs represent

target values. In this thesis an input vector uses classified RUL as target values

and models a classification problem, as described in section 2.5.

Figure 2.7.: Example fruit classification tree model

Source: http://www.narendranaidu.com/2014/02/ruminating-on-decision-trees.html, 3/10/2017

In Figure 2.7 an example for a fruit classifier tree is illustrated. It has four fea-

tures (color, size, shape and taste), seven classes (watermelon, apple, grape,

grapefruit, lemon, banana and cherry) and eight decision points, also called

splits or nodes. When feeding the model with an input vector, containing four
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feature values, the prediction tree outputs one specific class. In contrast to

many other machine learning algorithms, CART models are understandable

and one can easily trace back the decision-making and identify important or

strong features. Also, the computation time is limited to the number of fea-

tures and the resulting tree height, which means even with lots of features the

algorithm should runs fast.

For completeness: Using CART for a regression, is almost identical to the

discrete value classifier. The difference is, that when training the model,

multiple target values can be part of one specific permutation of decisions

in the tree. To get the real (continuous) number of such a ”class” the mean

squared error of the corresponding target values is calculated.

2.8.2. Feature Split - The Gini index

Figure 2.8.: Example Gini index calculation, from [11] p. 162

Every node in a CART tree models a feature which can be either a class or

a continuous number. Somehow a value needs to be found which splits all

different values for a feature of a training set into two groups (binary tree).

The measure to find the best split are often based on the degree of impurity,

which is an indicator for unequal distribution. For example a node with class

distribution (0,1) has maximum impurity, whereas a node with uniform class

distribution (0.5, 0.5) has the zero impurity [11]. The measure of impurity used
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in this work is the Gini index:

Gini(t) = 1−
c−1∑
i=0

[p(i|t)]2 (2.12)

, where p(i|t) is the fraction of records belonging to feature i and class t , and c

is the number of classes. In Figure 2.8 an example is given on how to calculate

the Gini-index on continuous data and two classes. The best split position is

the value with the lowest Gini coefficient. In the example, a hypothetical feature

node which models annual income, will be split into ”<=97” and ”>97”, caused

by the lowest Gini index ”0.300” (underlined).

2.8.3. Random Forest

Random forest is a supervised machine learning algorithm. A forest consists

of many CART trees and according to Breiman [12] the algorithm processes

the following steps [13]:

1. Choose n, the amount of trees in the forest, and m < M features every

tree should have, where M is the number of features in the input vector.

2. For every tree choose m features randomly.

3. Calculate the best split positions for every node (Gini coefficient).

4. Fully grow the tree and continue at 2 till the forest has n trees.

5. To classify an input vector, every tree votes for a class. Output of the

forest is the class with the most votes.

6. Random forest can also return the probability of a class, by diving the

number of trees, voted for a class with the amount of trees in the for-

est. This can be useful, when a class probability exceeds a significant

threshold, but usually would not be the resulting class of the random for-

est model.
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2.9. Training Strategy

To measure the performance of samples, a strategy is needed. The outcome

of experiments, during this work, have shown that simply splitting the whole

sample set, for a standard validation approach (like k-fold [14]), is not effective

for the targeted predictive maintenance task. Not all the extracted features oc-

cur before an machine failure. Also, due incomplete maintenance recordings,

there is a high chance, that the RUL classes, of the samples are wrong. To

ensure that at least the targets of a training set are correct, a small subset of

samples needs to be chosen. The following incident based training set strategy

has been implemented for the prototype:

1. Define a time frame, previous of an incident to pick samples from. It

is necessary, that all target classes are at least in on sample included.

Otherwise, the resulting model can’t predict the missing classes.

2. Choose documented incidents, where the engineered features show a

significant change.

3. Add samples located in the specified time window of all chosen incidents

to the training set. To ensure uniform a priori probability of the target

classes, it is needed that they are equally distributed in the training set.

When the training set is complete, the chosen machine learning algorithm can

train a predictive model.

2.10. Ensemble Prediction

After modeling the classifier, it can predict a target class for any sample, hav-

ing the same dimensions as the training samples. During work on this thesis

different approaches for predicting have been tried:

• Simple prediction: For every test sample in a time series, return a target

class. The RUL for a specific moment can be mapped from the output

class and the RUL definitions (Table 2.1).
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• Probability prediction: The simple approach appeared to be too gen-

eral and not meaningful for productive usage. Classifiers, used in this

work, are able to return the probability of every target class. To utilize

this feature, an approach has been tried to visualize the probabilities of

predicting a specific class in a time series, by plotting the predictions to

a resulting prediction curve. The left plot in Figure 2.9 illustrates this ap-

proach. It can be seen that the curve is not steady and is likely to jump

between neighbored observations.

• Ensemble prediction: This approach is illustrated on the right plot of

Figure 2.9. It can be seen as an improvement of probability prediction.

The RUL curve is more stable and also multiple previous predictions are

included in the probability calculation. It is easier to interpret and will be

used in the practical part. In the following section an algorithm for this

approach is explained.

Figure 2.9.: Comparison between probability prediction (left) and ensemble
prediction (right) for a machine failure in 48 hours.

18



2. Theoretical Part

2.10.1. Ensemble prediction algorithm

Inspired by weather ensemble forecasting techniques [15] and moving aver-

age [16], prediction in this work are calculated by an ensemble of predictions.

When making predictions for the probability of machine failures, it can be use-

ful that the resulting curve is steady. Primary to perceive a trend and derive

maintenance actions from it. The ensemble prediction approach predicts the

probability of a specific RUL class on a single observation. To make the pre-

diction more stable also the predictions of previous observations are included.

The algorithms for ensemble prediction covers the following steps:

1. Define a number e of observations, which should be included in an en-

semble.

2. Choose a class c, the probability should be predicted for.

3. Every sample in the testing window makes a prediction and stores the

resulting class in a data structure.

4. Starting with the eth sample, make an ensemble prediction for every ob-

servation :

a) Get previous e samples for the current observation and add them to

an ensemble.

b) For the first sample, set class c as the target class and the according

RUL in hours.

c) For every other sample, set RUL hours based on the RUL of the first

sample and the time difference between the actual and first sample.

d) Set the target class for every sample based on the calculated RUL.

e) For each sample in the ensemble, compare the target class and the

predicted class and if they are equal increment a counter.

f) Divide the count by e to get the probability for a target class of a

single observation.
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In Table 2.2 an exemplary execution of the algorithm is shown. It predicts the

probability of RUL class 2 for the 55th sample with 65.00%. When predicting the

probability for class 2 of the 56th sample, the algorithm would replace the 16th

sample with the 57th in the ensemble. The similarity of neighbored observations

will produce similar probabilities, and a steady RUL curve.

2.11. Evaluation

To measure the performance of a model evaluation is needed. Typically, this

is done on a test sample set, which covers unseen data. Meaning, no sam-

ple used for training is used for testing. A common method for evaluation are

confusion matrices. For every sample in the test set a prediction is made. De-

pending on the target and predicted class, either one of the following evaluation

classes is chosen:

• True Positive: Both the prediction and real class reveal an error.

• False Positive: The prediction indicated an error, but the real class is

not.

• True Negative: Either the prediction and real class, reveal no error.

• False Negative: The predicted class indicates no error, but the real class

does.

Figure 2.10.: Confusion Matrix.

Source: Prof. Denis Helic “Knowledge Discovery and Data Mining“ lecture slides, Winter term 2017/18

The resulting evaluation classes of the test set is summarized in the confusion

matrix, shown in Figure 2.10. For the specific predictive maintenance task of
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Table 2.2.: Exemplary ensemble prediction for sample 55: e = 40, c = 2

Sample RUL Target Prediction Count Probability c

55 48 2 2

Equal Classes = 26

26 / 40 = 0.65

54 50 2 3
53 52 2 1
52 54 2 4
51 56 2 4
50 58 2 4
49 60 2 4
48 62 2 2
47 64 2 2
46 66 2 2
45 68 2 2
44 70 2 2
43 72 2 2
42 74 2 2
41 76 2 1
40 78 2 2
39 80 2 3
38 82 2 2
37 84 2 2
36 86 2 2
35 88 3 2
34 90 3 2
33 92 3 2
32 94 3 2
31 96 3 3
30 98 3 3
29 100 3 3
28 102 3 3
27 104 3 3
26 106 3 3
25 108 3 4
24 110 3 3
23 112 3 6
22 114 3 3
21 116 3 5
20 118 3 3
19 120 3 3
18 122 3 2
17 124 3 2
16 126 3 1
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this thesis, only one target class is evaluated and a partial confusion matrix

is build. The mapping of ensemble prediction class probabilities to evaluation

classes is done as:

• Define a probability threshold t first. For example t = 0.50 can be appro-

priate.

• If the predicted probability exceeds t, is higher than the probability of the

previous sample and the curve rises for a specific amount of ticks, indicate

the prediction as positive.

• All other predictions are negatives.

Figure 2.11.: Example positives. Red crosses on the blue prediction curve
indicate false positives, green ones true positives.

The following algorithm checks if a sample positive is true or false:

1. Find all errors in a time frame beginning at the sample time plus two times

hours of the RUL class. From now this time frame is called tolerance

band.
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2. If no error is included in the time frame, the positive is false, true other-

wise.

In Figure 2.11 the assignment of negatives and positives is illustrated. The

blue line shows the ensemble predictions of a failure class over a time series.

If the curve rises and exceeds the threshold of 50 % a red cross indicates a

predicted positive. During this work it turned out, a complete confusion matrix

is not the best way to evaluate the model’s performance. It is possible but

not the most expedient solution. Visualizing the prediction curve as shown in

Figure 2.11 can be more meaningful than a simple numerical evaluation. From

experience during development, a rising prediction curve indicates a dropping

machine health, in many cases leading to a machine error. Due incomplete or

missing failure documentation the uncertainty of the meaning of the data, can

lead to incorrect true and false negatives. To avoid this limitation on certainty

in data, for evaluation only true and false positives will be included.

2.11.1. Evaluation Indicators

Additionally to the partial confusion matrix (true and false positives) the follow-

ing indicators for evaluation are introduced.

• True positives (tp): Number of correct hits

• False positives (fp): Number of wrong hits

• Precision: tp
tp+fp

• Mean Positive Accuracy: value between 0 and 1, average positive ac-

curacy of all errors (see next section)

• Mean Negative Accuracy: value between -1 and 0, average negative

accuracy of all errors (see next section)

• Max Positive Accuracy: value between 0 and 1, maximum positive ac-

curacy value of all found errors (see next section)
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• Max Negative Accuracy: value between -1 and 0, maximum negative

accuracy value of all found errors (see next section)

Prediction accuracy

Figure 2.12.: Prediction accuracy tolerance band. The left zero is at the
sample time position, and the right zero at sample time plus two

RUL. Best accuracy is given in the center where the red
diamond indicates an error.

As explained before the tolerance band catches every error occurring in an

double RUL time frame. To give an indicator on how well the errors are found

an average of the position of the errors in the tolerance band is calculated.

The positive accuracy value indicated the position of errors, which have been

found too early and the negative accuracy indicates errors found later than

the actual predictions RUL. When many failures occur in the tolerance band,

these values can’t become themaximum of 1 (100%). So additionally either the

maximum values for the negative and positive area is added as an evaluation

indicator. This metrics should give the information if threshold t needs to be

changed, whereas a low positive accuracy indicates t being too small and a

high negative accuracy indicated t being to high. The best case would be a

single error lying in the middle tolerance band, indicating an positive accuracy

of 1 and a negative accuracy of -1. Figure 2.12 illustrates the tolerance band
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and the according accuracy values (from -1 to 1) for every error included.

The listed indicators are used to measure the performance of models, and to

make them comparable. It should not be seen as an absolute value, but suf-

ficient for comparing different models. In the next sections parameters are

described on how to change models.

2.12. Model Improvement

Like illustrated in Figure 2.4, after the evaluation step there are four ways out-

lined (orange boxes) to improve the model with further iterations. The following

are used for this work:

2.12.1. Improve machine learning algorithms parameters

Every machine learning algorithm has parameters to influence the performance

of resulting model. They are also suitable to prevent over- and under-fitting.

The algorithm used in this thesis is random forest and several parameters are

available to control model training.

2.12.2. Select different features

The feature selection is done by calculating the Gini index and choosing the

best ranked ones. Setting different target values for samples (i.e. other inci-

dent classes) results in diverse rankings for feature selection. So for evaluation

purposes, improvement can be achieved by varying target values and the train-

ing set.

2.12.3. Evaluation

The main parameter in the evaluation method is the threshold t. It influences,

when the prediction curve evaluates a positive.
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2.12.4. Choose different ensemble window predictors

Varying size of the ensemble prediction windows, may influence the resulting

prediction curve. Also modifying the design (i. e. choose every xth predictor)

is evaluated.

All parameters used in the practical part for evaluation are listed in Table 2.3:

Table 2.3.: Evaluation parameters
Step Parameter Description

Random Forest num_estimators number of trees in a forest
min_samples_leaf min samples for a leaf

Evaluation threshold t modify threshold percentage
Ensemble Window vary predictors modify size and distribution of predictors
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The practical part shows an implementation of the concepts and methods de-

scribed in the theoretical part. Technical details of the implementation (libraries,

databases, frameworks, source code) are specified in greater detail in the tech-

nical documentation. Even tough explanations to the configuration file of the

software, are given in this chapter and the relevant sections. They appear in

the form:

In the ’ ’ smada ’ ’ d i r e c t o r y o f the Django framework a con f i gu r a t i o n

f i l e con f i g . py i s loca ted . Var iab les and t h e i r meanings are

expla ined i n the re l evan t sec t ions .

3.1. Audi Hungaria Zrt.

Audi Hungaria Zrt. is a car engine manufacturing plant in Györ, Hungary, about

100 km to the east from Vienna. With about two million produced engines in

2016 the location is one of the biggest engine manufacturer worldwide. There

are about 2500 machines in operation, producing up to 8,800 engines per day,

and every of them need maintenance actions [17]. Audi is already collecting

data by their PLC—based ODC solutions and also by their ERP system. Using

this data sources, this work implements a prototype predictive maintenance

system for a production line with about 26 machines.

The data analysis process planned at an early phase of this work, illustrated in

Figure 3.2, covers all single steps needed and will be described in this chapter.

Data analysis is an uncertain task, what makes exact planning at the beginning
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difficult. So, the process slightly differs from the final implementation.

Figure 3.2.: Predictive maintenance scheme created for Audi Hungaria Zrt.

3.2. Data Collection

As mentioned subsection 2.1.4 there are many possible data sources in a CIM

environment. But not all of them are suitable or accessible for a PdM task. The

prototype will use the following information systems:

ODC Machines are able to log two different types of operation data informa-

tion. First there are about 30 machine states (see Figure 3.4) and sec-

ondly almost about 1 000 000 different alarm messages. Both are pre-

defined by the machine manufacturer and find its way to the database

through the PLC system.

CAQ This information system stores continuous data received by sensors, and

counters. For example the total quantity of produced items, the total

quantity by item type, the active energy and effective power usage of

the PLC will be tracked by CAQ.

29



3. Practical Part

Fi
gu
re
3.
3.
:R

aw
D
at
a
En

tit
y
R
el
at
io
ns
hi
p
D
ia
gr
am

30



3. Practical Part

ERP In theory, there are at least two types of information, which can be ex-

tracted from the ERP system. First, the shift calendar, which represents

the working schedule of each machine to identify the machines planned

uptime, can be identified. And second, maintenance actions, which hap-

pened, are recorded here. These are the target values our prototype will

be trained to. As explained below, in practice this data is generated by a

workaround (shift calendar).

All the data described above is part of the pilot database and will be directly

offered by Audi. Since the project this thesis was written for is called ”SMADA

- Smart Data Analyser”, this data collection used for developing the prototype

is named ”Raw Data”.

In this section a detailed description of the raw data database is given. Fig-

ure 3.3 shows the related ER-model. Some tables are too extensive, so a few

field definitions are collapsed in the figure. All database tables, but only its

important fields are explained here:

ODC Database Tables

Machines: l_nodes The nodes database table models production machines

and its relations to each other. Nodes have a three structure with eight levels.

End nodes (machines) which have the same parent are part of the same

working procedure, production line or are somehow related.

Table 3.1.: l_nodes relevant fields
field name description
id unique identifier of the node
node_level depth level of the node in the node tree
parent parent node one level upwards
name_0 name of the unit
description_0 optional description of the machine
sort_id order of nodes which have the same parent

Machine state changes: mda_state_changes Every end node has a spe-

cific state at any time. All state changes, occurring over time, are recorded in
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Figure 3.4.: Tree structure of machine states

Table 3.2.

Table 3.2.: mda_state_changes relevant fields
field name description
id unique identifier of the entry
node id of the associated end node (l_nodes)
process_state id of the associated state (mda_state)
time_stamp time when the state ends
prev_time_stamp time when the state begins

Table 3.3.: mda_states relevant fields
field name description
id unique identifier of the state
lvl level in the state tree
parent superior state
symbol shortcut of the state
name_0 German state name
color color hex code of the state
sort_id order of states with the same parent
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Machine State Definitions: mda_states This database table is static and

contains all possible states a machine can have. They imply a tree structure

which means, that a state can have one or more higher leveled states. The

structure is illustrated in Figure 3.4.

CAQ Database Tables

Figure 3.5.: Example mapping of alarm messages from the PLC manual

Source: Siemens

Message Definitions: al_messages The control software of production ma-

chines can return about 1 000 000 different exit codes. In Figure 3.5 the

definition of some exit alarms classes and their identifiers is shown. In the

al_messages database table alarms and exit codes are stored.

Table 3.4.: al_messages relevant fields
field name description
id unique identifier of the entry
node id of the associated end node (l_nodes)
connection id of the associated connection (p_connections)
message_archived id of the associated archived message (al_archive)
ext_code PLCs exit code

Message Archive: al_archive This database table is used to assign an alarm

message to a specific start and end time.

Process Connections: p_connections The CAQ system does not use the

l_nodes table to identify machines. Instead, it uses the process connections
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Table 3.5.: al_archive relevant fields
field name description
id unique identifier of the entry
node id of the associated end node (l_nodes)
message_def id of the associated state (al_messages)
time_start time when the alarm starts
time_end time when the alarm ends

IDs. To map p_connections to l_nodes this database table is necessary.

Table 3.6.: p_connections relevant fields
field name description
id unique identifier of the connection
default_node mapping to the associated node (l_nodes)

Process Value Definitions: p_values In this database table possible process

values to every machine are stored. Actually not the numerical value or time

stamps, but the according connection, unit and a worded description.

Table 3.7.: p_values relevant fields
field name description
id unique identifier of the entry
connection id of the associated connection (p_connection)
description_0 description of the process value

Process Values: p_values_archive This database table logs the process val-

ues with a specific time stamp and a numerical or optional an alphanumerical

value.

ERP Database Tables

During the developing phase the ERP data source was not available. So

the supervisors of this thesis demanded Audi workers to record the main-

tenance data manually in an Excel table. For the working schedule a
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Table 3.8.: p_value_archive relevant fields
field name description
id unique identifier of the entry
value id of the associated value (p_values)
value_num numerical value
value_str alphanumerical value
name_0 description of the entry
time_stamp time stamp when the value was logged

workaround has been implemented. The excel file will be imported to a

SMADA table named ”maintenance_actions” and the shift calendar will be

generated to a SMADA table named ”shift_calendar”.

Incidents (Target Values): incidents_all Every maintenance action com-

pleted to any machine of the production line is logged to this database table.

The entries of this table are also the target values of the supervised learning

algorithm.

Table 3.9.: maintenance_actions relevant fields
field name description
id unique identifier of the entry
node id of the associated end node (l_nodes)
time_stamp_start timestamp when the maintenance starts
time_stamp_end timestamp when the maintenance is ends
short_comment shortcut describes a failed part
error_code classifier for the maintenance action

Working Schedule: shift_calendar See subsection 3.3.1.

Table 3.10.: shift_calendar relevant fields
field name description
id unique identifier of the entry
node id of the associated end node (l_nodes)
state if of the machine state (mda_states)
time_stamp_start timestamp when the state starts
time_stamp_end timestamp when the state is completed
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The database tables al_classes and al_message_archived, which are included

in the data collection, are not relevant.

3.3. Feature Extraction

The whole data collection can be split up into machine related data. That

means, every data record can be assigned to a specific node. The feature

extraction process handles every node individually. In the prototype a list of

nodes and their according IDs, which should be considered, needs to be cho-

sen:

NODE_IDS = [2189 , 2190 , 2191 , 2192 , 2193 , 2194 , 2195]

During development of the prototype, data of two timewindowswas provided as

a development data collection. It covers round about data from 01.04.2016 - 16.09.2016

and 13.09.2017 - 03.12.2017. Overall about 6 months of data. Every time win-

dow needs to be declared in the configuration file:

FEATURE_EXTRACTION_TIME_WINDOW_START = [

datet ime (2016 , 4 , 1 , 0 , 0 , 0 , 0 , t z i n f o =pytz . t imezone ( ’UTC’ ) ) ,

datet ime (2017 , 9 , 13 , 0 , 0 , 0 , 0 , t z i n f o =pytz . t imezone ( ’UTC’ ) ) ]

FEATURE_EXTRACTION_TIME_WINDOW_END = [

datet ime (2016 , 9 , 16 , 0 , 0 , 0 , 0 , t z i n f o =pytz . t imezone ( ’UTC’ ) ) ,

datet ime (2017 , 12 , 3 , 0 , 0 , 0 , 0 , t z i n f o =pytz . t imezone ( ’UTC’ ) ) ]

3.3.1. Shift Calendar

The ODC database collects data of machine state changes, like described in

section 3.2. A single machine has about 30 000 state changes in a 6 months

time frame. Many of the recorded states are low on information, because of a

very small duration. To shrink this big amount of state changes an algorithm
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Figure 3.6.: Shift calendar of node id 2195 and a 1.5 months time frame.

has been implemented. It reduces the possible states to one of these three:

error, running and a not-running state. The resulting shift calendar is needed

for visual evaluation purposes and mostly because it covers not documented

errors. In the configuration file a minimum and maximum state duration (in

seconds) has to be defined:

STATE_MIN_DURATION_SECONDS = 300 # 5 minutes

STATE_MAX_DURATION_SECONDS = 10886400 # 18 weeks

To extract a shift calendar from the mda_state_changes table, the implemented

algorithm executes the following steps:

1. Create an empty list L

2. Iterate through all mda_state_changes and add the first element to L

3. Map the current state to one of the three shift calendar states as:

• (0) NOT_RUNNING: mda state 24, 26 and 27

• (1) RUNNING: all other states
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• (2) ERROR: mda state 20 or 23

4. If the current state equals the last added element in L continue with the

next state at step 3

5. Calculate the state duration and if it’s shorter thanminimum state duration

and continue with the next state at step 3

6. Update the ending time stamp of the last element in L to the current state

starting time stamp

7. Add the current state to L

The resulting shift calendar can be viewed from within the prototype. An ex-

ample (screenshot) is added to Figure 3.6.

3.3.2. Observations

Observation creation means to extract features in a predefined 2 hour time

window for every machine in the data collection. The resulting records are

stored in the SMADA training_data database table:

Observations: training_data This database table covers two hour observa-

tion and extracted features as illustrated in Figure 2.5. There are a 4000 bytes

placeholder field for comma-separated numerical observation features.

Table 3.11.: training_data fields
field name description
id unique identifier of the entry
node id of the associated end node (l_nodes)
time starting time of the two hours observation
attributes placeholder for 4000 bytes comma-separated features
iterator sequential number for each node
rul time in hours till the next error will occur
target compliant RUL class to the rul field
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Figure 3.7.: Example process values of overall 73.

Figure 3.8.: Example alarm codes of overall 573.

Observation features

Features for observations are extracted from the database tables al_archive

(Table 3.5)and p_value_archive (Table 3.8). The prototype collects all pro-

cess values and alarms occurring in an observation and calculates a feature

by count, mean, difference or maximum value (section 2.3). In general there

are two groups of features: alarm codes and process values. Because of the

big amount of possibles different alarms and process values only the most fre-

quently occurring ones are selected as features. These are 73 process values

and 573 alarm codes. Overall a manual selected combination of count, mean,

difference, minimum or maximum values are calculated, so that finally there

are 1270 features per observation. An example of used process and alarm

code values is given in Figure 3.7 and Figure 3.8. The screenshots are taken
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from the database GUI Oracle SQL Developer1.

Setting target values

RUL to classes The numerical value in hours, which describes the time to

failure, has to be converted in to a class. The prototype predefines the number

of 7 classes, but RUL time frames in ticks can be set in the configuration file.

A tick is an observation iterator, which means one tick covers 2 hours:

TARGET_CLASS_RUL = [12 , 24 , 42 , 66 , 108 , 150 , 300]

RUL classes are set initially like stated in the example Table 2.1.

Incidents to RUL classes The following algorithm assigns target values to

observation:

1. First a subset of incidents can be defined. Choosing only a specific sub-

set of incidents for target setting may have great influence in the proto-

type performance. In the configuration file incident filter are handled by

defining a starting string for the ”short_comment” field, of the incidents_all

database table. Initially the filter is set to ”sp-”, which indicated a ”Spin-

delfehler” (en: spindle failure).

TARGET_SHORT_COMMENT_STARTS_WITH = ” sp−”

2. For each sample calculate the time difference, between the observation

end time and the incident start time.

3. Assign RUL hours to the data record.

4. Calculate and assign the RUL class to the data record.

1http://www.oracle.com/technetwork/developer-tools/sql-developer/overview/
index.html
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At this point, observation features, shift calendar and target values can be vi-

sualized from within the prototype. An example is given in Figure 3.9. The

plot covers a selection of features in a scaled range. The red diamonds at

y=40 show incidents from the database table. The diamonds at top represent

machine errors from the shift calendar, also called undocumented failures. Be-

tween y=50 and y=60 the shift calendar is visible. A green line indicates run-

ning, red lines error and black lines that the machine is not running. The data

shown in the plot is the visualization of some features.

3.3.3. Rolling Windows

As explained in section 2.4, somehow previous episodes of data should be

added to an observation. To handle this requirement, a set of 6 rolling win-

dows (w0, w1, w2, w3, w4, w5) is defined. One window aggregates features of all

observations included. The window sizes, can be defined in the configuration

file:

ROLLING_WINDOW_SIZES = [12 , 24 , 42 , 66 , 108 , 150 , 300]

Taken all together, rollings windows of an observation will represent input vec-

tors as defined in Equation 2.11 and are stored in the training_data_extended

database table (Table 3.12). For each observation feature, rolling window fea-

tures are transformed by:

1. Calculating the mean value of all observation features included

2. Take the maximum value of all observation features included.

Overall, full samples will consist of 15240 features: 6 rolling windows * 1270

observation features * 2 (mean/max). The other database fields, RUL, time, tar-

get and iterator are adopted from the according observation of the training_data

table.
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Table 3.12.: training_data_extended fields
field name description
id unique identifier of the entry
node id of the associated end node (l_nodes)
time starting time of the two hours observation
x0_attributes placeholder for the mean value of aggregated features
x0_attribute_max placeholder for the maximum value of aggregated features
x1_attributes placeholder for the mean value of aggregated features
x1_attributes_max placeholder for the maximum value of aggregated features
x2_attributes placeholder for the mean value of aggregated features
x2_attributes_max placeholder for the maximum value of aggregated features
x3_attributes placeholder for the mean value of aggregated features
x3_attributes_max placeholder for the maximum value of aggregated features
x4_attributes placeholder for the mean value of aggregated features
x4_attributes_max placeholder for the maximum value of aggregated features
x5_attributes placeholder for the mean value of aggregated features
x5_attributes_max placeholder for the maximum value of aggregated features
iterator sequential number for each node
rul time in hours till the next error will occur
target compliant RUL class to the rul field

3.4. Feature Selection

Limiting the amount of features, used either for training and testing, can be

useful. Too many feature may add noise and have a negative influence to the

prediction performance.

Like mentioned in section 2.7, this work achieves feature selection by ranking

the random forest feature importance (Gini index). The measured feature rank,

strongly depends on the training set and also on the target values (incidents).

Here is an example on how features are ranked, by the Gini coefficient. In

brackets the rating (in percent) is given:

1. f ea tu re 13079 (0.006916)

2 . f ea tu re 5058 (0.006701)

3 . f ea tu re 6336 (0.006647)

4 . f ea tu re 13953 (0.005925)

5 . f ea tu re 1246 (0.005887)

6 . f ea tu re 10136 (0.004985)
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7. f ea tu re 10143 (0.004544)

8 . f ea tu re 8867 (0.004466)

9 . f ea tu re 8866 (0.004453)

10. f ea tu re 6335 (0.004106)

11. f ea tu re 6287 (0.003975)

12. f ea tu re 2520 (0.003927)

13. f ea tu re 2537 (0.003871)

14. f ea tu re 3788 (0.003795)

15. f ea tu re 6326 (0.003769)

. . .

The number of rolling feature windows features, which will used for training an

prediction can be defined as 15240. In practice this number differs, since fea-

tures with no variance are removed before the actual feature selection (about

4000 remaining). Also the prototype selects only features which Gini coefficient

is above the mean value of the preselected features. After the selection about

400 features are remaining.

3.5. Random Forest Modeling

When modeling a predictor, training sets are generated by choosing a subset

of incidents in the configuration file:

INCIDENT_IDS_FOR_TRAINING = [8 , 9 , 11 , 12 , 13 , 14 , 15 , 17 , 18]

For each incident, training samples are by this algorithm:

1. Create an empty list L for training samples

2. Iterate through every incident

3. For each incident take the sample s closest to the incident by comparing

the time stamps

4. Add each sample t which has a smaller iterator value than s to L if:
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• To ensure that t is a complete sample (covering all rolling windows),

the iterator should exceed a specific value, depending on the rolling

window sizes.

• Only every third sample is considered for training. A sample is only

added if t.iterator % 3 == 0.

The used classifier, random forest, provides several parameters to control the

machine learning algorithm. Due experimenting the most important ones has

been filtered and added as variables to the configuration file:

RANDOM_FOREST_NUM_TREES = 100

RANDOM_FOREST_MIN_SAMPLES_LEAF = 1

The first variable defines the number of estimators (trees) in the forest, which

will vote for a class when predicting. The second parameter assigns a number

on how many samples are required to split an internal node.

3.6. Ensemble Prediction

In the prototype, a prediction of a sample is made by calculating the true mean

votes for a class of previous samples. The number of ticks to put into one

ensemble can be defined in the configuration file:

PREV_TICK_DIFF_ENSEMBLE_PREDICTION = 120

To visualize the result of every single vote in a time series, an histogram is plot-

ted. Unexpected behavior of the model can be figured out by this visualization.

Especially when, making prediction for the smallest class, every position of the

ensemble should be equally distributed over the histogram. Divergent distribu-

tions may indicated an defective model. The histogram x-axis represents the

positions in the ensemble, and the y-axis the number of true votes. An example
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Figure 3.10.: Example: ensemble prediction histogram - 144 voters

is given in Figure 3.10.

The prototype provides a histogram for visualizing performance of the predictor

for decision-making. The classes histogram Figure 3.11 shows the distribution

of true classes in the ensemble.

Figure 3.11.: Example: histogram RUL classes for a RUL class 1 predictor.
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3.7. Evaluation

Table 3.13.: Evaluation machines
Name ID Connection ID
AF_220_1 2189 2013
AF_220_2 2190 2014
AF_220_3 2191 2015
AF_220_4 2192 2016
AF_220_5 2193 2017
AF_220_6 2194 2018
AF_220_7 2195 2019

In this section experiments and their evaluations are described. The prototype

has data from 7 machines available to work with. As shown in Table 3.13, ma-

chines are part one work sequences AF220 (de: AF = Arbeitsfolge). Whereas

two machines are picked for being training data machines (bold in the table)

and the others will be test data machines for evaluation. The basis of choosing

the two training machines is the quality and the significance of training sam-

ples (data before an error). As shown in the theoretical, part the basis of model

evaluation is to alter parameters and their combinations. A finding is the perfor-

mance variation of the predictive model, when changing parameters. The re-

sulting predictive curve, of the testing machines and the best performed model,

will be added in subsection 3.7.2. The threshold t and time in ticks the predic-

tion has to increase before a positive is evaluated can be set in the configuration

file:

PREDICTION_THRESHOLD = 0.45

PREDICTION_WAITING_THRESHOLD_SINCE_LAST_EVALUATION = 12

3.7.1. Experiments

Because the amount of data available is limited, no validation will be done (i.e.

k-fold). The results should offer an idea on how well errors can be found by

47



3. Practical Part

the model and which parameters could improve predictions for future work.

Training data will consist of machine 2190 and 2191 incidents. Testing ma-

chines are 2189, 2192, 2193, 2194, 2195. The class for all evaluations is class

3 with a RUL of 84 hours. By combination of the parameters ET, RM, RT3,

EW and FS experiments will be evaluated. The duration of a single experi-

ment calculation (one parameter set, 5 machines, each 3000 samples) takes

about 10 minutes of processing time in the development environment. Using

some advanced technologies, like distributed computing, would greatly speed

up the whole evaluation process. Also, it would be easier to process more,

than the chosen parameters. This work though is limited by ordinary worksta-

tion’s infrastructure (Figure A.1). In the features selection step, from originally

15240, 11220 features show no variance in the data and are dropped. From

the remaining features, random forest selects about 300 features, which have

the most relevance to the training set targets. To visualize experiment results,

evaluation graphics are introduced. They are scatter plot showing the relation

between true positives (x-axis) and the precision (y-axis, between 0 and 1). The

visualization of different parameters (shape, border and color) are defined in

the next section. By counting the errors (red diamonds in the SMADA graphics,

see Figure 3.9) of testing machines, a maximum of 92 errors is assumed.

Parameter Set

The evaluation starts with the following parameter variation:

1. Feature Selection (FS):

a) Feature Subset 1: Rank features by Gini

b) Feature Subset 2: All features

2. Ensemble Window (EW):

a) Ensemble Window 1: Size: 120, all predictors

b) Ensemble Window 2: Size: 120, every 5th

c) Ensemble Window 3: Size: 120, last 30, all predictors
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d) Ensemble Window 4: Size: 120, first 30, all predictors

e) Ensemble Window 5: Size: 120, second 30, all predictors

f) Ensemble Window 6: Size: 120, third 30, all predictors

g) Ensemble Window 7: Size: 1, no ensemble window, but probability

prediction, see section 2.10

3. RF Num Trees (RT), in brackets the shapes of evaluation plot points:

a) RF Trees 1: 100 (square)

b) RF Trees 2: 200 (circle)

c) RF Trees 3: 300 (diamond)

4. RF Min Samples (RM), in brackets the border color of evaluation plot

points:

a) RF Min Samples 1: 1 (black)

b) RF Min Samples 2: 2 (blue)

c) RF Min Samples 3: 4 (green)

d) RF Min Samples 4: 8 (red)

5. Evaluation Threshold (ET), in brackets the color of evaluation plot points:

a) Threshold 1: 30 % (red)

b) Threshold 2: 40 % (orange)

c) Threshold 3: 50 % (yellow)

d) Threshold 4: 60 % (green)

Experiment 1: FS1 + EW1 + RT* + RM* + ET* (48 single evaluations)

The first experiment shows a result below expectation, by knowledge of results

during prototype development. The attempt of limiting the features to better

the prediction performance gone wrong. As visible from the evaluation plot in

Figure 3.12 the precision in average is about 60%, but is expected to be about

65%. So from now on, all of about 4000 features showing variance in the data

will be chosen.
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Figure 3.12.: Experiment 1: FS1 + EW1 + RT* + RM* + ET* (48 single
evaluations)

Experiment 2: FS2 + EW1 + RT* + RM* + ET* (48 single evaluations)

This experiment equals the first one, but no features are eliminated for training.

Even with about 10 times more features the machine learning algorithm shows

no significant change in calculation time. So the assumption, of using many

features has a strong influence to the computational performance is wrong for

random forest, but should hold for other machine learning algorithms. Looking

at the evaluation plot (Figure 3.13) in comparison to the previous experiment,

data points are shifted upwards by about 5%, which signals a higher precision,

and a similar data range in the x-axis as in first experiment. Looking at the

top left corner of the scatter plot it is noticeable, that there are almost green

data points, which visualizes a prediction threshold of 60% (ET4). From left to

right other thresholds become more frequent in order from 50% (ET3 yellow),

40% (ET2 orange) to 30% (ET1 red). As expected, a smaller threshold results

in a lower precision, but a higher true positive hit rate. Surprisingly, shapes

(diamond, circle and square), which indicates the number of trees in a forest,

are equally distributed over the whole scatter plot. The numbers were chosen

(100-300 trees) to recognize a slight improvement when using more trees, but

from a visual point of view, when looking at the evaluation plots, one can’t

perceive a trend, regarding the shapes.
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Figure 3.13.: Experiment 2: FS2 + EW1 + RT* + RM* + ET* (48 single
evaluations)

Experiment 3: FS2 + EW2 + RT* + RM* + ET* (48 single evalua-

tions) This experiment is the same as the previous one, except the ensemble

prediction skips four of five voters, which reduces the amount of original 120

predictors to 120 / 5 = 25. The goal of this test is to find out on how the en-

semble prediction window design influences the prediction. With fewer voters

the ensemble prediction is more likely to jump, caused by reduced resolution

in possible prediction percentage (multiple of 5/120). The results are visible

in Figure 3.14. It is conspicuous that the results are similar to the previous

experiment, but the scatter points are stretched to right, by about the double

x-axis width. The better evaluation results are still green at a 73% precision,

but the true positive rate increased and sticks around 30. This shows, that the

ensemble prediction design has influence on the prediction performance. This

idea will be further evaluated in the next experiments.

Experiment 4: FS2 + EW3 + RT* + RM* + ET* (48 single evaluations)

In this experiment the influence of the last quarter of the whole 120 predictor

ensemble window is demonstrated. In comparison to the previous two experi-

ments the average hit rate of true positives is at about 35, which can be seen

as an improvement, by reason of equal precision (Figure 3.15). In comparison
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Figure 3.14.: Experiment 3: FS2 + EW2 + RT* + RM* + ET* (48 single
evaluations)

to the second experiment, that means, there is maybe a group of successive

predictors in the ensemble window, responsible for a worse result.

Figure 3.15.: Experiment 4: FS2 + EW3 + RT* + RM* + ET* (48 single
evaluations)

Experiment 5: FS2 + EW4 + RT* + RM* + ET* (48 single evaluations)

Based on the insight of the fourth experiment, the opposite approach will be

tested. Instead of taking the last quarter of the ensemble windows, only the

first quarter will be chosen. As visible in Figure 3.16 the results are much worse
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than in the previous experiments. One can derive that, the predictors closer to

the sample is influencing the prediction badly.

Figure 3.16.: Experiment 5: FS2 + EW4 + RT* + RM* + ET* (48 single
evaluations)

Experiment 6 + 7: FS2 + EW5/EW6 + RT* + RM* + ET* (48 single

evaluations) The sixth and seventh experiment have almost the same results.

They chose either the second or the third quarter of the 120 predictor ensemble.

As shown in Figure 3.17, the results are slightly below the fourth experiment,

but better than the fifth one.

Experiment 8: FS2 + EW6 + RT* + RM* + ET* (48 single evalua-

tions) This experiment shows the advantage of the ensemble prediction ap-

proach over a probability prediction. Only the first, which is the actual sample,

is responsible for the prediction probability. Random forest is calculating the

probability of the given class, and the value is directly taken for the prediction

curve. The whole evaluation process, is based on the ensemble prediction ap-

proach, whichmeans that the chosenmetrics is not working for this experiment.

The sample prediction is independent of the previous predictions, and there-

fore more likely to jump. As shown in Figure 3.18, due the unsteady prediction

curve, one failure can be marked multiple times as a true positive. But overall

53



3. Practical Part

Figure 3.17.: Experiment 6: FS2 + EW4 + RT* + RM* + ET* (48 single
evaluations)

the resulting curve is not as intuitive to interpret as the ensemble prediction

curves shown in subsection 3.7.2.

Figure 3.18.: Probability prediction - Evaluation not working
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All experiments To visualize the whole experiment set, and to make them

comparable, an according plot is shown in Figure 3.19. The yellow point in the

black square is the experiment showing the result handled in the next section,

because of its good relation between true positives and precision.

Figure 3.19.: All experiments

3.7.2. Results

Finding a suitable relation between true positives and precision is the chal-

lenging part in such data analysis task. Finding as many failures as possible

in advance, can reduce costs in production, but many false positives can lead

to premature maintenance actions, followed by higher costs. Especially in this

task, one can assume that when the prediction curve exceeds the threshold,

the machine is in a bad condition, but a detailed description of the error is miss-

ing. The result of this work, is the knowledge of, that failures can be recognized,

by a condition monitoring prediction curve. Anyway, to derive concrete mainte-
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nance action from it is, in this case, not possible. As the best model, one from

the fourth experiment is chosen (Threshold: 0.6, Leafs: 4, Trees: 200), and

the resulting prediction curves, for each testing machine, are added to the next

section.

Interpretation The prediction curves covers predictions from two time frames

(April – September 2016 and September – December 2017). The blue predic-

tion curves on the y-axis describes the probability of a machine failure in 84

hours and the x-axis are continuous timestamps, whereas one grid on the x-axis

covers one week. Red diamonds on the horizontal y = 40 line are documented

failures. Red diamonds above the x = 60 line are undocumented failures, with

a duration of minimum two hours, extracted from the mda_state_changes (Ta-

ble 3.2) database table. The horizontal lines at y = 54, y = 56 and y = 58 are

visualized machines states. Green means the machine is running, black the

machine is not running and red means, that the machines is in an error state.

In the well working prediction example shown in Figure 3.24, the prediction

curve catches all three documented errors. Also, most of the times. when the

prediction curve exceeds the threshold of 60% there is a significant occurrence

of red diamonds. In the other hand Figure 3.20 illustrated the difficulty of han-

dling undocumented errors in evaluation. Looking at the leftest false positives

(red x), the prediction curves reaches the maximum of 100 percent about four

days before an error occurs. The error though, has a duration of less than two

hours, so it is not used for evaluation, since it is rated as a minor failure. The

model shows a significant change in the data at that point, but the real hard-

ness of the error is unknown. In the section the prediction curves of all testing

machines are added. They should give a visual overview of the prediction per-

formance.
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3.7.3. Resulting prediction curves

Figure 3.20.: Prediction Curve 2189

Figure 3.21.: Prediction Curve 2192
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Figure 3.22.: Prediction Curve 2193

Figure 3.23.: Prediction Curve 2194
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Figure 3.24.: Prediction Curve 2195
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Lessons Learned Time series data analysis for an industrial environment is an

uncertain task. Since there are no uniform solutions, different methods, ideas

and strategies need to be tried. This can be very time-consuming when working

with big data sets. Also, one may not know if a solution is the best possible

one, and if there is room for improvement by applying different algorithms and

methods. It is necessary to be creative and flexible to react on changing initial

assumptions of the data and results occurring during work.

Is the available data suitable for predicting machine breakdowns? Yes. The

data analysis process shown in this thesis covers all steps necessary, but par-

tially in a trivial way. There may be room for improvement, but for now the

results are promising. The hardest part of the analysis was to handle the lack

of complete maintenance and failure documentation. A workaround has been

implemented, but obviously it is not the best way to do it. Good target val-

ues are the basis of well-trained models and necessary for reliable supervised

machine learning. It shows that predictive data analysis has to be strongly inte-

grated into the organization and that Audi Hungaria may not be ready to include

a predictive maintenance system in their environment yet. It is advantageous

to start collecting and storing available data and complete maintenance docu-

mentation now, to benefit from actual data as future training data.

How can the implemented prototype can be improved for future work? The

time series analysis approach shown in this thesis is just one way to do it. Not

every aspect of the analysis process has been implemented in such detail. A

refined feature engineering process, which finds the best possible features,
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is missing. In this thesis from all features only the simple statistical values

like mean, max, min and the count has been calculated. Strong features are

essential for a powerful model and by unsupervised or supervised feature en-

gineering the model performance can be improved. Another important aspect

of data analysis is the visualization. In this work the results are simply plotted

as percentage on how likely a machine is to fail at a specific time. In produc-

tion more information could be given and visualized to the machine or mainte-

nance worker by visual analytics systems [18]. The learning algorithm used in

this work (Random Forest) is suitable for the given task, but trying out different

methods may train better models. As already mentioned, complete machine

failure documentation is essential and lead to more certainty about the data

and in the end also a more stable predictive models.
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A. Technical Documentation

A.1. Introduction

This documentation gives a rough overview of the software source code and

the development environment. It includes a major part of the thesis work. The

prototype is based on the decision that one of the best tools to implement a

data analysis solution is the Python programming language. There are many

libraries to apply machine learning algorithms and also for result plotting. One

requirement is that the prototype should work on any device, which almost lim-

ited the choice to a web framework, whose front-end will be accessible from

within a web browser. Another requirement is, that the software should handle

Oracle databases, which narrows down the choice to Django1, a Python open

source web server project. To simulate a productive environment (manufactur-

ing plant), a prototype infrastructure at the institutes local network is set up. As

shown in Figure A.1 it has the following components:

• VM Host: The prototype and database server, which will be provided by

Audi, will be running on its ownmachine. In the development environment

a VM client for each server is installed on a VM host machine.

• VM Oracle database server: This is the place where Audi would store

the RAWDA database and were the prototype stores the smart data.

• VM Django web server: This server will be called by the web clients to

access the prototypes’ user interface.

1https://www.djangoproject.com
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Figure A.1.: Prototype Development Environment

• Workstations and Home Office: The servers are accessible from within

the institutes LAN and the universities network. That’s why working on

the prototype from home also over a VPN connection is possible. All

workstations are using the free student licensed version of ”Jetbrains Py-

Charm IDE”2, which was an enormous help during the whole software

development process.

A.2. Django Framework

A.2.1. Packages

The prototype is based on Django, but there are several other packages the

software depends on:

• Django (v2.0.3): Python web framework

• cx_Oracle(v6.2.1): Database package for Oracle databases

• matplotlib(v2.2.2): Packages for drawing plots

• numpy(v1.14.2): Package for scientific computing (matrices)

• scikit-learn(v0.19.1): Library for machine learning algorithms
2https://www.jetbrains.com/pycharm/

64

https://www.jetbrains.com/pycharm/


A. Technical Documentation

• and others

A.2.2. Multiple Database Setup

In this project multiple databases are used. The two external databases SMADA

and RAWDA, where the models and the data for the program logic are stored

and also an internal database is needed (SQLlite) to store the Django-specific

data. To setup this special situation the following steps are needed to be done:

1. Add the database configurations to settings.py:

DATABASES = {

’ de fau l t ’ : {

’ENGINE ’ : ’ django . db . backends . i t e3 ’ ,

’NAME’ : os . path . j o i n (PROJECT_DIR, ’ p r o j e c t . db ’ ) ,

} , ’ smada ’ : {

’ENGINE ’ : ’ django . db . backends . orac le ’ ,

’NAME’ : ’ o rc l ’ ,

’USER’ : ’ * ’ ,
’PASSWORD’ : ’ * ’ ,
’HOST’ : ’ * ’ ,
’PORT’ : *

} , ’ rawda ’ : {

’ENGINE ’ : ’ django . db . backends . orac le ’ ,

’NAME’ : ’ o rc l ’ ,

’USER’ : ’ * ’ ,
’PASSWORD’ : ’ * ’ ,
’HOST’ : ’ * ’ ,
’PORT’ : *

}

}

After that three databases with the labels ”default”, ”smada” and ”rawda”

are added to the project.

2. Assign database to Django apps. Add database router to setting.py:

65



A. Technical Documentation

DATABASE_ROUTERS = [ ’ p r o j e c t . r ou te r . Router ’ ]

3. Add the routing file to the project tree ”./project/router.py”:

c lass Router ( ob jec t ) :

def db_for_read ( se l f , model , ** h i n t s ) :
i f model . _meta . app_label == ’smada ’ :

r e t u rn ’smada ’

e l i f model . _meta . app_label == ’ rawda ’ :

r e t u rn ’ rawda ’

r e t u rn None

def db_ fo r_wr i t e ( se l f , model , ** h i n t s ) :
i f model . _meta . app_label == ’smada ’ :

r e t u rn ’smada ’

e l i f model . _meta . app_label == ’ rawda ’ :

r e t u rn ’ rawda ’

r e t u rn None

def a l l ow_ r e l a t i o n ( se l f , obj1 , obj2 , ** h i n t s ) :
i f obj1 . _meta . app_label == ’smada ’ or \

obj2 . _meta . app_label == ’smada ’ :

r e t u rn True

e l i f obj1 . _meta . app_label == ’ rawda ’ or \

obj2 . _meta . app_label == ’ rawda ’ :

r e t u rn True

re tu rn None

def a l low_migra te ( se l f , db , app_label , model_name=None , ** h i n t s )
:

i f app_label i s ’ smada ’ or db i s ’ smada ’ :

r e t u rn True

else :

r e t u rn False
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By the Django app name, the calling object is related to, the routing file

decides, which database should be used for read, write, allow_relation

and allow_migrate actions. If the database is not found, ”None” will be

returned and the default database will be chosen.

A.3. Model and Database

A.3.1. Migrate Database

Model class definitions in ”models.py” files of Django apps will automatically be

connected to the app related database by the Django ORM component. Initially

or if changes to these files are made (i.e. data fields added) the underlying

database needs to be updated. In Django this process is called ”migration”.

Here is an example how to migrate the ”smada” database from the console:

cd p ro j e c t _ r oo t

Python manage . py makemigrations smada

Python manage . py migrate smada −−database smada

A.3.2. SQL Query Performance Boost

Dealing with many datasets can lead to performance issues, so queries need

to be executed carefully and may be optimized by:

Temp Tabless The process values database of the development data has about

80 000 000 datasets. Each assigned to exact one end node. When pro-

cessing this data it may sufficient to make queries only on the data of that

end node, instead of using all rows. So first copy the relevant values to a

temp table, and then make the queries from there. To copy the process

values of a specific node to the temp table the following SQL query is

used in the source code:
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INSERT INTO AL_ARCHIVE_TEMP ( ID , EXT_CODE, TIME_START, TIME_END)

SELECT AL_ARCHIVE . ID , AL_MESSAGES.EXT_CODE, AL_ARCHIVE .

TIME_START, AL_ARCHIVE .TIME_END FROM AL_ARCHIVE INNER JOIN

AL_MESSAGES ON AL_ARCHIVE .MESSAGE = AL_MESSAGES.

MESSAGE_ARCHIVED WHERE AL_ARCHIVE .NODE = 2189

The temp table needs to be created first. It also has to be truncated,

immediately before copying new data into it.

Defer and Only When using the Django ORM implementation, every data field

of the record is populated to the Python object when accessing them. This

could slow the performance down especially when using ”varchar”. It can

be avoided by ”defer()” and ”only()” methods in a QuerySet. The ”defer”

command avoids the given fields to be queried, as the ”only” command

will limit the populated fields to the specified one.

For example the following alarm object only has the ”ext_code” field im-

mediately accessible:

alarm = AlArch ive . ob jec ts . get ( i d =5) . on ly ( ” ext_code ” )

,whereas this alarm object has all data fields, except ”ext_code”, as-

signed:

alarm = AlArch ive . ob jec ts . get ( i d =5) . de fer ( ” ext_code ” )

When trying to access not assigned fields, they will be lazy loaded, so it

is working, but may take some additional time to execute the according

SQL query.
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A.4. Project Folder Structure and Files

In this section the project’s root folder structure, included files and sub folders

are described.

A.4.1. DJANGO Backend - Root Folder

Folder: project

The projects folder contains Django configuration files:

1. router.py: Handles routes to assign apps to different databases.

2. settings.py: Main Django configuration file. For example, database con-

nections are defined here.

3. urls.py: Routes web client requests to the according function

Folder: rawda

The rawda folder is an Django app which covers functionality to handle the

rawda database

1. models.py: In this file the rawda ORM definitions are added.

2. logic.py: Helper functions for working with the rawda database.

Folder: smada

The smada folder is an Django app which covers functionality to handle the

smada database. In general it transforms and stores raw data to the smada

database.

1. config.py: Main data analysis configuration file as outlined in the practi-

cal part.

2. logic.py: Helper functions for smada record generation.

3. models.py: SMADA ORM definitions.
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4. data_selection.py: Shift calendar generation.

5. data_extraction.py: Feature extraction process.

6. data_training.py: Predictive model creation.

7. data_prediction.py: Prediction process.

8. data_evaluation.py: Evaluation workflow.

Folder: web

The web folder is an Django app which covers functionality to handle web client

request. Basically all the communications between server and client is done by

AJAX-request. The returned JSON-files are handled by the frontend AngularJS

app.

1. api.py: All possible web client request are implemented in this file.

A.4.2. Angular Frontend - web/static/*

The frontend is a static single pagewebsite, based on the AngularJS JavaScript

framework 3.

1. js_app.js: AngularJS controller and routing.

2. pages/*.html: Template files for dynamically generated AngularJS pages.

3. images/*.svg + images/*.png: Plots generated from the backend.

A.5. User Interface

The prototype has two screens available from where the user can take actions.

First the main screen, where a user can execute different actions for every

node at once and secondly a node screen, where a user can take node specific

actions.

3https://angularjs.org
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A.5.1. Main Screen

Figure A.2.: Prototype screenshot: main screen

From the main screen the following actions can be started:

1. Generating shift calendar for all nodes.

2. Creating smada for all nodes.

3. Setting target values as defined in the configuration file. When changing

target RUL values it is not necessary to go through the whole feature

extraction process (smada creation) again. It can be done separately.

4. Training Models: After changing random forest model parameters, the

model needs to be retrained by this action.

A.5.2. Node Screen

This screen offers an interface to take actions on a single node:

1. Generating shift calendar.

2. Creating smart data.

3. Making prediction for all RUL classes.
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4. Displaying the shift calendar.

5. Plotting the smart data.

6. Showing the prediction curve for all RUL classes.

Figure A.3.: Prototype screenshot: node screen
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