
Manuel Hauke, BSc

Signature Gröbner bases

A comprehensive survey and

a new algorithmic approach

MASTER’S THESIS

to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme: Mathematics

submitted to

Graz University of Technology

Supervisors

Christian Rechberger, Univ.-Prof. Dipl.-Ing. Dr.techn.

Institute of Applied Information Processing and Communications, Graz

Graz, August 2020

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other

than the declared sources/resources, and that I have explicitly indicated all material

which has been quoted either literally or by content from the sources used. The text

document uploaded to TUGRAZonline is identical to the present master’s thesis.

31.08.2020

Date, Signature

Abstract

The computation of Gröbner bases is an often-used tool in modern cryptography. With the

upcoming trend of quantum computing, systems based on Gröbner bases will most likely be-

come even more relevant in the near future since the majority of them are assumed to be

quantum secure. Doing a detailed examination of existent algorithms and finding possible

improvements helps for estimating the security of such systems. Apart from cryptographic

applications, Gröbner bases are also used in many different areas and hence, an efficient compu-

tation is crucial. For that reason, the research on the computation of Gröbner bases has become

a large area in Commutative Algebra in the last two decades.

The aim of this thesis is split into two parts: In the first part, we give a comprehensive overview

of the state of the art of current Gröbner basis algorithms. We work out similarities and

differences between already existing algorithms in a short, but mathematically rigorous manner.

In this process, we close some proof gaps of existing theorems and find new ways how to describe

those algorithms understandably.

In the second part, we develop a new algorithm which combines the ideas of two of the most used

Gröbner basis algorithms. To do so, we extend the theory about signature Gröbner bases, find

new properties and prove them. Furthermore, we implement this new approach and compare

it with an often-used algorithm. The new approach seems to work very well for some of the

tested ideals, however, we would need a more efficient implementation and further experiments

for a fair comparison.

5

Kurzfassung

Gröbner-Basen und deren Berechnung spielen bereits jetzt in der modernen Kryptographie

eine große Rolle, und werden, da die meisten darauf basierenden Kryptosysteme als quanten-

sicher gelten, zukünftig wohl noch relevanter werden. Eine detaillierte Diskussion darüber hilft

abzuschätzen, wie sicher diese Systeme tatsächlich sind. Neben der Kryptographie gibt es außer-

dem noch viele weitere Anwendungen, in denen die Berechnung einer Gröbner-Basis benötigt

wird. Gerade in den letzten zwei Jahrzehnten hat sich ein großer Forschungsbereich entwickelt,

der sich mit der effizienten Berechung von Gröbner-Basen beschäftigt.

Das Ziel dieser Arbeit besteht aus zwei Teilen: Einserseits werden bereits bekannte Ideen und

Algorithmen in einer prägnanten, aber mathematisch rigorosen Weise zusammengefasst sowie

auf Gleichheiten und Differenzen zwischen verschiedenen Ansätzen eingegangen. Dabei wer-

den Beweislücken geschlossen sowie alternative Herangehensweisen definiert, die zum besseren

Verständnis diverser Algorithmen führen sollen.

Andererseits wird die Idee eines neuen Algorithmus erklärt, der die Ansätze zweier bekan-

nter und vielfach eingesetzter Algorithmen kombiniert. Dafür wird die Theorie der Signatur-

Gröbner-Basen erweitert, wobei neue Eigenschaften gefunden und bewiesen werden. Weit-

ers wird dieser Algorithmus implementiert und einem in der Praxis verwendeten Algorithmus

gegenübergestellt. Für einige untersuchte Ideale erscheint dieser neu entwickelte Ansatz als

vielversprechend, jedoch benötigt es für einen absoluten Vergleich eine effizientere Program-

mierung sowie weitere Forschung.

7

Acknowledgements

Before I start with my thesis, I would like to thank several people who have helped me to reach

this point in my life. Without them, this would definitely not have been possible.

I would like to express my gratitude towards my supervisor Univ.-Prof. Christian Rechberger

and my co-supervisor Assoc.Prof. Christian Elsholtz for their useful comments and remarks

during the whole process of writing this master thesis. In this context, I especially would like

to thank Reinhard Lüftenegger, MSc for his dedication to improving this thesis. I enjoyed the

technical discussions we had as well as the motivational comments he gave me as a friend.

Furthermore, I would like to thank my fellow students for the numerous discussions and exercises

we did together during the whole studies. Naming all of those explicitly would be beyond the

scope of this acknowledgment, but I would like to mention Robert, Richard, Lorenz, Andreas

and Thomas since those five people did not only accompany me during my studies, but also

became close friends of mine.

Acknowledging friends that helped me with my studies, I definitely also have to mention my

best friend and longtime roommate Herwig who shares my passion for science and motivated

me during the years to study long hours. Similarly, I would like to express my gratitude to

Philipp and Matthias who are close friends of mine with whom I could talk whenever I faced

difficulties.

Of course, I would also like to thank my parents and grandparents who supported me financially

over the last 24 years and thus made my studies possible. Their suggestions and considerations

of my state of mind in stressful situations helped me to focus on my studies. Furthermore, my

gratitude goes out to my sister Evita who helped me in the first years of university to get along.

Lastly, I also want to thank my girlfriend Anna for proofreading my thesis and especially for

keeping me motivated as well as for having my back during the whole process of creating this

thesis.

Manuel Hauke

Graz, 31. 8. 2020

9

Contents

1 Multivariate Quadratic polynomial systems and Gröbner bases 15

1.1 The Multivariate Quadratic problem . 15

1.2 Introduction of Gröbner bases . 17

1.3 Solving polynomial equations via Gröbner bases 19

2 Computation of Gröbner bases 21

2.1 Gröbner basis properties . 21

2.2 Buchberger Algorithm . 24

2.3 Improvements in the Buchberger Algorithm . 26

2.3.1 Selection strategy . 26

2.3.2 Reduction criteria . 29

2.4 FGLM Algorithm . 32

2.5 F4 Algorithm . 34

2.5.1 Matrix representation . 34

2.5.2 The algorithm . 35

2.6 M4GB Algorithm . 38

2.6.1 Idea . 38

2.6.2 Correctness Proof . 40

3 Signature Gröbner bases/F5 43

3.1 Basic definitions . 43

3.1.1 The module Pm and signatures . 43

3.1.2 Reduction on Pm . 45

3.1.3 Signature Gröbner bases . 47

3.2 First algorithmic ideas . 47

3.2.1 Criterion for Signature Gröbner bases . 47

3.2.2 First Signature basis algorithm . 52

3.3 Improvements . 53

3.3.1 Syzygy criterion . 53

3.3.2 Labelled polynomial optimization . 54

3.3.3 Improved algorithm . 55

3.4 Rewrite bases . 57

3.4.1 The idea . 57

11

3.4.2 Rewrite basis algorithm . 62

3.4.3 Proof of Correctness . 63

3.4.4 Choosing the best rewrite order . 64

3.5 Regular sequences and F5 . 67

3.5.1 Regular sequences . 67

4 M5GB - a new hybrid approach 73

4.1 Idea explanation . 73

4.2 New definitions . 75

4.3 Basic Pseudocode . 78

4.4 Improvements . 79

4.4.1 Generations and signature flags . 79

4.4.2 Fast irreducibility checks . 83

4.4.3 Labelled polynomial optimization . 83

4.4.4 Check divisibility by M . 85

4.4.5 Taking the best element with current signature 86

4.5 Implementation and results . 87

4.5.1 Implementation details and possible improvements 91

4.6 Conclusion and future work . 92

Bibliography 95

12

Basic Notations

We will state some basic notations which will be used in the whole thesis in that way, if not

stated differently:

• N = {0, 1, ...}

• N∞ := N ∪ {∞}

• K denotes an arbitrary field.

• x := [x1, ..., xn].

• P = P (n) := K[x1, ..., xn]

• T = T (n) := {xa = xa11 x
a2
2 ...x

an
n , a = (a1, ..., an) ∈ Nn}, the set of all multivariate terms.

13

1 Multivariate Quadratic polynomial systems

and Gröbner bases

1.1 The Multivariate Quadratic problem

Looking for problems which are assumed to be hard even with quantum computing power, one

possibility is to look at the following:

Problem 1.1.1 (Multivariate Quadratic(MQ)). Given a finite field Fq, polynomials

p1, ..., pm ∈ Fq[x1, x2, ..., xn] of total degree at most 2. Try to find an element x ∈ Fn
q such that

for all i ∈ {0, ...,m} :

pi(x) = 0.

We can base a signature scheme (see e.g. [14]) on this hardness assumption:

1. Take some sufficiently large integers n,m with n > m.

2. Pick quadratic polynomials f1, ..., fm ∈ Fq[x] which have well-behaving properties to solve

the system. This point will be discussed afterwards.

3. Choose some random matrices U ∈ GLm(Fq), S ∈ GLn(Fq).

4. Compute

(p1(x), ..., pm(x)) := (f1(x · S), ..., fm(x · S)) · U

5. Publish p(x) := (p1(x), ..., pm(x)) as public key, keep f(x) := (f1(x), ..., fm(x)), U, S as

private key.

6. If you want to sign a message M ∈ Fmq , compute a solution s′ ∈ Fnq such that

f(s′) = M · U−1

and publish the signature s = s′ · S−1.

7. Someone can verify the signature by testing if p(s) = M . This must hold since

p(s) = p(s′ · S−1) = f(s′ · S · S−1) · U = f(s′) · U = M · U−1 · U = M.

15

Remark 1.1.1. An attacker would have to solve Problem 1.1.1 in order to produce a fake

signature. This is assumed to be hard as long as the linear transformations U, S hide the given

structure of (f1, ..., fm).

There are many suggestions how to choose (f1, ..., fm). One of those is the so called Oil-and-

Vinegar-scheme:

For that reason, split the variables into

x1, ..., xn−m = {xi}i∈V (vinegar variables)

and

xn−m+1, ..., xn = {xi}i∈O (oil variables).

The concluding idea is as follows: Construct the fk in such a way that there are no quadratic

monomials in xixj for i, j ∈ O. This means that

fk =
∑
i,j∈V

ai,j,kxixk +
∑

i∈V,j∈O
bi,j,kxixj +

n∑
i=0

cikxi + dk

with ai,j,k, bi,j,k, cik , dk ∈ Fq chosen arbitrarily. Solving

f(s′) = M · U−1

works now in the following way:

1. Choose randomly fixed values a1, ..., an−m ∈ Fq for the vinegar variables.

2. Due to the structure of fk, the resulting polynomial fk(a1, ..., an−m, xn−m+1, ..., xn) is

linear, hence the problem is reduced to solving a m-dimensional linear system. Since

this linear system is invertible with high probability (see the result below), we can find a

solution for the polynomial system rather fast.

3. If the linear system turns out to be not invertible, try again with new random values for

the oil variables.

Remark 1.1.2. One can show that the probability of a random matrix U ∈ Fn×nq being invert-

ible is
n∏

i=1

(1− 1

qi
).

This equals for large n and q = 2 about 30%. For small n or larger q, this probability is even

higher, so one should not need many iterations to obtain an invertible system. [19]

There are many different cryptographic schemes based on the hardness of the MQ Problem.

For each scheme there are several approaches to attack such schemes. As we will concentrate

16

on Gröbner bases which are used to solve the MQ Problem directly, our approach works for all

schemes based on this problem.

1.2 Introduction of Gröbner bases

This chapter repeats widely known results about Gröbner bases which mostly go back to [4].

All theorems in this chapter are widely known and their proofs can be found in nearly every

classical literature about Gröbner bases, e.g. [6]. Note that we stayed close to this literature

during this Chapter. To define a Gröbner basis, we first need some basic algebraic definitions

and results:

Definition 1.2.1 (Term order). We call < a term order on T if it satisfies the following

properties:

(i) ∀a ∈ Nn\{0} : 1 < xa.

(ii) ∀c ∈ Nn\{0} : xa < xb ⇒ xa+c < xb+c.

(iii) < is a strict total order.

Remark 1.2.2. There is a canonical order-preserving isomorphism between (T (n), ·) and (Nn,+)

via

f : T (n)→ Nn (1.1)

xa = xa11 ·x
a2
2 ·...·x

an
n 7→ (a1, ..., an). (1.2)

Hence, we can also define the term order on Nn and take over this order to T (n) via f−1.

Definition 1.2.3 (special term orders).

Let a = (a1, ..., an), b = (b1, ..., bn) ∈ Nn. Set

|a| :=
n∑

i=1

ai.

The following term orders are often used in Gröbner basis context:

(i) The lexicographic order <lex as

a <lex b :⇔ ∃ k ∈ {1, ..., n} such that ak < bk and ∀i < k : ai = bi.

(ii) The degree lexicographic order <deg as

a <deg b :⇔ |a| < |b| or |a| = |b| and a <lex b.

17

(iii) The degree lexicographic order <grevlex as

a <grevlex b :⇔ |a| < |b| or |a| = |b| and a >lex b.

Definition 1.2.4. Let

f =
∑
t∈T

ctt ∈ P

with ct 6= 0 finitely often, < a fixed term order. Then we define ...

(i) ... the terms of f as

T (f) := {xa : ca 6= 0}.

(ii) ... the coefficient of f corresponding to the term t as

Ct(f).

If f 6= 0, we define...

(iii) ... the leading term of f as

LT (f) := max{t ∈ T (f)}

where the maximum is taken with respect to the chosen term order.

(iv) ... the leading coefficient of f as

LC(f) := CLT (f)(f).

(v) ... the leading monomial of f as

LM(f) := LC(f)·LT (f).

Remark 1.2.5. Some authors use the terms “leading term” and “leading monomial” the other

way round. Nevertheless, we will stick to that notion defined in Definition 1.2.4 since it seems

to be the more common one.

We have everything prepared to define Gröbner bases now:

Definition 1.2.6 (Gröbner basis). Let I ⊆ P an ideal, < a term order on T .

(i) We call a set G = {g1, ..., gs} ⊆ I finite basis for I if

I = 〈g1, ..., gs〉.

18

(ii) We call a set G = {g1, ..., gs} ⊆ I Gröbner basis for I with respect to < if

〈LT (I)〉 = 〈LT (g1), ..., LT (gs)〉

where

LT (I) := {xa : ∃f ∈ I : LT (f) = xa}.

Remark 1.2.7. One can easily show that each Gröbner basis G is a basis for I and thus a

finite basis, but conversely not every finite basis is a Gröbner basis.

Theorem 1.2.8. Each ideal I 6= {0} has a Gröbner basis.

Proof. See [6, Chapter 2, §5, Corollary 6, p.75].

1.3 Solving polynomial equations via Gröbner bases

At that point, one might ask why we considered Gröbner bases to solve multivariate polynomial

systems and therefore the MQ Problem. We will see this in the following section.

Definition 1.3.1 (Variety). Let F ⊆ P , then we define the variety of F denoted as V (F)

by

V (F) = {a ∈ Kn
: ∀f ∈ F : f(a) = 0}

where K denotes the algebraic closure of K. We define

VK(F) = {a ∈ Kn : ∀f ∈ F : f(a) = 0}.

Proposition 1.3.2.

(i) V (F) = V (〈F 〉).

(ii) If K = Fq, then V (F ∪ {xqi − xi, i ∈ {1, ..., n}}) = VK(F).

Using the definition about varieties, the MQ Problem can be reformulated to finding an element

a = (a1, ..., an) ∈ VFq(f1, ..., fm). For finite fields, using the field equations

Ki := xqi − xi, i ∈ {1, ..., n}, (1.3)

this is further equivalent to finding some a ∈ V (F) where F = {f1, ..., fm,K1, ...,Kn}. The

following statement is crucial to building the connection between this task and Gröbner bases:

Definition 1.3.3 (Elimination ideal). Given an ideal I ⊆ P, l ∈ {0, ..., n− 1}, we define the

l-th elimination ideal Il as

Il := I ∩K[xl+1, ..., xn].

Remark 1.3.4. One can show straightforward that Il is an ideal of K[xl+1, ..., xn].

19

Theorem 1.3.5 (Elimination theorem). Let I ⊆ P be an ideal with Gröbner basis G with

respect to <lex and let l ∈ {0, ..., n− 1}. If Il 6= ∅, then

Gl := G ∩K[xl+1, ..., xn]

is a Gröbner basis of Il.

Proof. See [6, Chapter 3, §1, Theorem 2, p.113].

For that purpose, we compute a Gröbner basis G for I (we will see in the next chapter how) with

respect to <lex. Starting with l := max{i ∈ {1, ..., n− 1} : Ii 6= ∅}, we can find Gl = {g1, ..., gj}
easily by Theorem 1.3.5. Since we get for k > l that Gk = ∅, we can determine l easily. Observe

that Gl contains only polynomials in K[xl]. Solving these univariate polynomials is easy and

fast in comparison to computing the whole solution. Of course, there are several approaches to

solving univariate polynomials, but we will not concentrate on that in this thesis.

After solving this univariate system induced by Gl, we have a finite number of possible solutions

for al, leaving (al+1, ...an) arbitrary. To extend those partial solutions coordinatewise, consider

the following theorem:

Theorem 1.3.6 (Extension theorem).

Let I = 〈f1, ..., fs〉 ⊆ P, (a2, ..., an) ∈ V (I1). Write

fi(x1, ..., xn) = gi(x2, ..., xn)x
degx1 (fi)
1 + ri(x1, ...xn)

for uniquely determined 0 6= gi ∈ K[x2, ..., xn], ri ∈ P, degx1(ri) < degx1(fi).

If (a2, ..., an) /∈ V (g1, ..., gs), then there exists an a1 ∈ K such that (a1, ..., an) ∈ V (I).

Proof. See [6, Chapter 3, §1, Theorem 3, p.115].

Theorem 1.3.6 helps in the following sense: Assume we have such a partial solution (al+1, ..., an) ∈ V (Il)

and want to extend it to Il−1 = 〈Gl−1〉 with Gl−1 = {g1, ..., gs} ⊆ K[xl, xl+1, ..., xn]. We will

check via Theorem 1.3.6 whether (al+1, ..., an) can be extended. If this is the case, compute

g1(xl, al+1, al+2, ..., an), ..., gs(xl, al+1, al+2, ..., an) ∈ K[xl]. (1.4)

This gives us a univariate polynomial system again. Doing this step for each coordinate yields

a way to solve the multivariate polynomials and therefore the MQ Problem.

20

2 Computation of Gröbner bases

2.1 Gröbner basis properties

As in section 1.2, most results in this section are widely known. If not stated otherwise, the

theorems and their proofs can be found in [6]. To define a Gröbner basis, we first need some

basic algebraic definitions and results:

Definition 2.1.1 (Reduction of polynomials). Let G be a finite set of nonzero polynomials,

f, f ′ ∈ P , < a term order.

(i) We say f is reducible by G if there exist

t ∈ T (f), g ∈ G : LT (g)|t.

Otherwise, we call f irreducible by G.

(ii) We say f is top-reducible by G if there exists

g ∈ G : LT (g)|LT (f).

Otherwise, we call f top-irreducible by G.

(iii) We define a (top-)reduction step for f by

f −−→
G

f ′

if f ′ = f − cug, where c ∈ K\{0}, u ∈ T, g ∈ G such that

LM(cug) = Ct(f)t

for some t ∈ T (f).

(iv) We say f can be reduced to f ′ by G, denoted by f
∗−−→
G

f ′, if there exist

k ∈ N, f1, ..., fk ∈ P such that

f = f1 −−→
G

f2 −−→
G

f3 −−→
G

... −−→
G

fk−1 −−→
G

fk = f ′.

21

(v) We say f ′ is a normal form of f with respect to G if f
∗−−→
G

f ′ and f ′ is irreducible

with respect to G. We denote the set of all normal forms of f with respect to G by f
G

.

Remark 2.1.2.

1. Note that f
∗−−→
G

g contains the case of zero reduction steps. Hence, f
∗−−→
G

f holds trivially.

2. The zero polynomial is by definition irreducible since T (0) = ∅.

3. f is irreducible is equivalent to f
∗−−→
G

g ⇒ f = g. This follows by the fact that if there

exist t ∈ T (f), g ∈ G : LT (g)|t, we can always find suitable c ∈ K\{0}, u ∈ T such that

LM(cug) = Ct(f)t.

4. f
G 6= ∅ for all f ∈ P since we will see that f can only be reduced finitely often until it is

irreducible.

One characterizing property of a Gröbner basis is the uniqueness of the normal form:

Theorem 2.1.3. Let f be a polynomial, G a Gröbner basis of an ideal I. Then f has a unique

normal form, i.e. |fG| = 1 or equivalently, f
∗−−→
G

g, f
∗−−→
G

h with g, h irreducible, implies

g = h. Conversely, if all f ∈ P have a unique normal form, then G is a Gröbner basis.

Proof. See [25, Theorem 5.35, p.206].

Corollary 2.1.4. Let f be a polynomial, G a Gröbner basis of an ideal I.

The following are statements are equivalent:

(i) f ∈ I.

(ii) f
G

= {0}.

(iii) f
∗−−→
G

0.

The following lemma and its proof were found by the author itself. It is an equivalent Gröbner

basis characterization besides many others:

Lemma 2.1.5. Let G ⊆ P and let ∼G be relation on P defined as follows:

f ∼G g :⇔ f
G ∩ gG 6= ∅.

Then ∼G is an equivalence relation if and only if G is a Gröbner basis.

Proof. Obviously, ∼G is always reflexive and symmetric, so it suffices to prove the transitivity.

Assume f ∼G g, g ∼G h. If G is a Gröbner basis, we have by the uniqueness of the normal form

that f
G

= gG, gG = h
G

and hence, f ∼G h. Conversely, let ∼G be an equivalence relation on P .

Furthermore, let f ∈ P and let g, h be two arbitrary normal forms of f . Then f ∼G g, f ∼G h

implies by transitivity that g ∼G h. Since g, h are irreducible, we have gG = {g}, hG = {h}.
Thus g = h follows which implies by Theorem 2.1.3 that G is a Gröbner basis.

22

Note that we can compute a normal form of f with respect to G quite easily by the following

algorithm:

Algorithm 1: Division algorithm

Input: finite basis G for an ideal I, polynomial f ∈ K[x1, ..., xn].

Output: A polynomial f ′ ∈ fG.

1 Set f ′ := f ;

2 while ∃g ∈ G, t ∈ T (f ′) : LT (g)|t do

3 f ′ = f ′ − Ct(f
′) t

LM(g)g;

4 end

5 return f ′;

Remark 2.1.6. The correctness of Algorithm 1 is straightforward. For the termination, con-

sider the following: We extend the term order on polynomials by

f < g :⇔ max{T (f)4T (g)} ∈ T (g)

where 4 denotes the symmetric difference and the maximum is taken with respect to the chosen

term order. One can see that f
∗−−→
G

g implies f > g. In that way, it follows that we can only

take a finite number of reduction steps for an arbitrary but fixed polynomial f since no infinite

strictly descending chain of polynomials exists.

To use all those considerations for a Gröbner basis algorithm, we will study a criterion to check

whether some set G ⊆ P is indeed a Gröbner basis. For that, we need another definition:

Definition 2.1.7 (S-polynomials). Let f, g ∈ P \{0}. We define the S-polynomial of f

and g as

Spol(f, g) :=
lcm(LT (f), LT (g))

LM(f)
f − lcm(LT (f), LT (g))

LM(g)
g.

Remark 2.1.8. Note that those S-polynomials are constructed in a way that a cancellation of

the leading monomials takes place. This means for f, g ∈ I,

LT (Spol(f, g)) ∈ 〈LT (I)〉,

but in general

LT (Spol(f, g)) /∈ 〈LT (f), LT (g)〉.

This gives a hint that these S-polynomials might be crucial in a Gröbner basis test:

Theorem 2.1.9. Let G = {g1, ..., gk} be a basis for I = 〈G〉. Then

G is a Gröbner basis ⇔ ∀i, j ∈ {1, ..., k}, i 6= j : Spol(gi, gj)
∗−−→
G

0.

23

Proof. We will see this criterion in a more general way later, for a direct proof see [6, Chapter

2, §6, Theorem 6, p.82].

2.2 Buchberger Algorithm

Using the criterion from Theorem 2.1.9, the idea of constructing a first Gröbner basis algorith-

mically is straightforward:

Algorithm 2: Buchberger Algorithm

Input: Set of polynomials F = {f1, ..., fk}.
Output: Gröbner basis G of 〈F 〉 with F ⊆ G.

1 Set G = F ;

2 Set B = {(gi, gj) : gi, gj ∈ G};
3 while B 6= ∅ do

4 Select some (gi, gj) ∈ B and remove it from B;

5 Compute a normal form f ′ ∈ Spol(gi, gj)
G

(e.g. with Algorithm 1);

6 if f ′ 6= 0 then

7 Set G = G ∪ {f ′};
8 Set B = B ∪ {(gi, f ′)};
9 end

10 return G;

11 end

The correctness proof is as follows:

1. Since f ′ ∈ Spol(gi, gj)
G ∈ 〈G〉 for gi, gj ∈ G, we have that F ⊆ 〈G〉 = I and therefore

〈G〉 = I.

2. By Theorem 2.1.9, G is a Gröbner basis for 〈G〉 = I.

3. To prove termination, one can show that

〈LT (G)〉 (〈LT (G ∪ {f ′})〉

each time we add some f ′ ∈ Spol(gi, gj)
G

in the algorithm. Assuming that the algorithm

does not terminate, we get an infinitely long strictly ascending chain of ideals. But this

is not possible since the polynomial ring is known to be Noetherian.

Remark 2.2.1. There are two main drawbacks of using this standard Buchberger Algorithm

in the described form:

24

1. The obtained Gröbner basis might be larger than necessary. In general, it produces dif-

ferent outputs for different choices depending on the order in which the pairs (gi, gj) are

examined.

2. We get no information about the running time. In general, the Buchberger Algorithm

tends to be computationally expensive.

The first drawback can be treated very well by the introduction of minimal Gröbner bases:

Definition 2.2.2 (Minimal Gröbner basis). Let G be a Gröbner basis of I. Then G is said

to be minimal if all g ∈ G fulfill the following two conditions:

(i) LC(g) = 1.

(ii) LT (g) /∈ 〈LT (G\{g})〉.

To construct such a minimal Gröbner basis from a basis obtained by the Buchberger Algorithm

(or other Gröbner basis algorithms), one simply has to normalize all polynomials to fulfill

condition (i). This does not change the generated ideal at all. To fulfill (ii), consider the

following result: Assume LT (g) ∈ 〈LT (G\{g})〉 for some g ∈ G. Then

〈LT (G\{g})〉 = 〈LT (G)〉 = 〈LT (I)〉

since G is a Gröbner basis. Therefore, we just have to iteratively go through G, searching

for g ∈ G fulfilling LT (g) ∈ 〈LT (G \ {g})〉. Simply removing this g (justified by a short

consideration, see e.g. [6, Chapter 2, §7, Lemma 3, p.89]) and repeating this step leads to a

minimal Gröbner basis. It turns out that all minimal Gröbner bases have the same cardinality

and are of minimal cardinality among all Gröbner bases. Nevertheless, in general there still

exist many different minimal Gröbner bases. One can see this since the elements in a minimal

Gröbner basis do not need to be fully reduced with respect to G. Hence, we define a reduced

Gröbner basis in the following way:

Definition 2.2.3 (Reduced Gröbner basis). Let G be a Gröbner basis of I. Then G is

said to be reduced if all g ∈ G fulfill the following two conditions:

(i) LC(g) = 1.

(ii) T (g) ∩ 〈LT (G\{g})〉 = ∅.

Note that a reduced Gröbner basis can be shown to be unique. To obtain the reduced Gröbner

basis from a minimal one, we compute some

g′ ∈ gG\{g}

for g ∈ G and set

25

G = (G\{g}) ∪ {g′}.

Repeating this for all g ∈ G, we get a reduced Gröbner basis. These steps can all be computed

relatively quickly in comparison to the original Gröbner basis algorithm, hence, the first point

is no problem any longer. The second one concerning the efficiency of Gröbner basis algorithms

is a huge research area and will be treated in the main part of this thesis.

2.3 Improvements in the Buchberger Algorithm

Considering the efficiency and possible improvements for the Buchberger Algorithm is a whole

research area. There are many suggestions and ideas which decrease the running time of the

Buchberger Algorithm. We can mainly optimize the following things in the standard Buchberger

Algorithm:

1. Choose the best order in which new S-polynomials are examined (Selection strategy).

2. Check, with several criteria, whether Spol(gi, gj)
∗−−→
G

0 without computing it explicitly.

3. Represent the algorithm in matrix formulation to speed up reduction steps (Matrix for-

mulation).

2.3.1 Selection strategy

The selection strategy describes a rule after which the next pair (gi, gj) to compute f ′ ∈
Spol(gi, gj)

G
is chosen. We will present now one of the most used strategies, namely the normal

strategy. To understand the idea, we will start with a digression into homogeneous ideals. We

will stay close to the definitions and results in [25].

Definition 2.3.1.

(i) Let f ∈ P . We say f is homogeneous of degree d if

f =
k∑

i=1

citi, ci ∈ K\{0}, ti ∈ T, deg(ti) = d ∈ N.

(ii) f is homogeneous if there exists a d ∈ N such that f is homogeneous of degree d.

(iii) Let I be an ideal. Then I is called homogeneous if there exists a generating set F such

that all f ∈ F are homogeneous.

Remark 2.3.2. It can be shown that for each homogeneous ideal I, there exists a finite ho-

mogeneous basis.

26

The current strategy only works for homogeneous input sets F , but in general, we do not have

such an input. The following definitions and results show us that we can assume each input set

to be homogenous:

Definition 2.3.3 (Homogenization). Let f ∈ P with deg(f) = d. Define the homogeniza-

tion of f as the polynomial

f∗ := Xd
0f(

x1
x0
, ...,

xn
x0

) ∈ K[x0, x1, ..., xn].

For F = {f1, ..., fm}, we define F ∗ := {f∗1 , ..., f∗m}.

Remark 2.3.4. The definition of the homogenized polynomial above can be described as “filling

up” all terms of f by the appropriate power of the new variable x0 to obtain a polynomial which

is homogeneous of degree d.

Definition 2.3.5 (Dehomogenization). Let f ∈ K[x0, x1, ..., xn] homogeneous of degree d.

We define the dehomogenization of f (with respect to x0) by

f∗ := f(1, x1, ..., xn).

For F = {f1, ..., fm}, we define F∗ := {f1∗, ..., fm∗}.

Remark 2.3.6. Note that these two operations are somehow inverse to each other: For

f ∈ K[x1, ..., xn], we have

(f∗)∗ = f

and for f ∈ K[x0, x1, ..., xn], we have

(f∗)
∗ = xd0f

for some d ∈ N.

Let us extend our term order≤ ofK[x1, ..., xn] to≤′ operating onK[x0, x1, ..., xn] in the following

way: Let t1 = s1x
k
0, t2 = s2x

l
0 ∈ T (x0, ..., xn) with s1, s2 ∈ T (x1, ..., xn). Then

t1 ≤′ t2 :⇔

s1 < s2 or

s1 = s2 and l ≤ k.

Extending the term order in that way, we can state the following theorem:

Theorem 2.3.7. Let G be a homogeneous Gröbner basis of 〈F ∗〉 with respect to ≤′. Then G∗

is a Gröbner basis of 〈F 〉 with respect to ≤.

Proof. See [25, Chapter 10.3, Lemma 10.57, p.483].

27

Definition 2.3.8 (d-Gröbner basis). Let G = {g1, ..., gs} ⊆ K[x0, ..., xn] be a homogeneous

for some ideal I. We call G a d-Gröbner basis for some d ∈ N∞ if for all f ∈ I with deg(f) ≤ d:

f
∗−−→
G

0.

Definition 2.3.9. Let d1, d2 ∈ N∞ such that d1 ≤ d2. Define [d1, d2]-Buchberger(F) as the

output obtained by the (classical) Buchberger Algorithm when considering only critical pairs

(g1, g2) ∈ G with the property that

d1 ≤ deg(lcm(LT (g1), LT (g2))) ≤ d2.

Lemma 2.3.10. Let F be a set of homogeneous polynomials, d1 ≤ d2 < d3 ∈ N∞.

(i) [d2 + 1, d3]-Buchberger([d1, d2]-Buchberger(F)) = [d1, d3]-Buchberger(F).

(ii) [0, d1]-Buchberger(F) is a d1-Gröbner basis.

Proof. See [25, Chapter 10.2, Lemma 10.35, p.470].

This enables us to adapt the classical Buchberger Algorithm in the following way: Starting

with d = 1, iteratively run a [d, d]-Buchberger on the previous output, increasing d by one each

time. Note that after d1 steps, we obtain a d1-Gröbner basis by Lemma 2.3.10. The following

theorem shows us why this strategy is advantageous:

Theorem 2.3.11. Let d ∈ N, G a d-Gröbner basis of 〈F ∗〉. Let p ∈ K[x1, ..., xn] with

deg(p) = d′ ≤ d. Then the following statements are equivalent:

(i) There exist polynomials pf ∈ K[x1, ..., xn] such that

p =
∑
f∈F

pff, max{deg(pff) : f ∈ F} ≤ d.

(ii) xd−d
′

0 p∗
∗−−→
G

0.

Proof. See [25, Chapter 10.3, Theorem 10.55, p.480].

We can exploit Theorem 2.3.11 in the following way: When computing

[d+ 1, d+ 1]-Buchberger, assume we have to examine Spol(gi, gj) with

deg(lcm(LT (gi), LT (gj))) = d+ 1, deg(lcm(LT (gi∗), LT (gj∗))) = d′ ≤ d.

Setting

p := Spol(gi∗, gj∗) = Spol(gi, gj)∗,

28

we have fulfilled (i) of Theorem 2.3.11. Since Spol(gi, gj) = x0 · xd−d
′

0 p∗, we know that

Spol(gi, gj)
∗−−→
G

0.

Hence, we do not explicitly need to compute a normal form of this S-polynomial and can save

some computational power. This strategy is called normal strategy. It is known that the

normal strategy works specifically well on term-orders which are ordered by degree. Thus, we

can compute a Gröbner basis with respect to <lex for nonhomogeneous F in the following way:

1. Homogenize F .

2. Compute a Gröbner basis G of F ∗ with respect to some degree-order, e.g. <grevlex.

3. Transform the Gröbner basis via the FGLM Algorithm (see section 2.4) into a Gröbner

basis with respect to <lex where x0 is rated the least significant.

4. Dehomogenize the obtained Gröbner basis to obtain a Gröbner basis with respect to <lex

for F .

Of course, we can use the normal selection strategy (choosing an S-polynomial of lowest degree)

as well for nonhomogeneous ideals. The problem is that we lose the nice properties of discarding

S-polynomials as above. To overcome this, we can implicitly compute the homogeneous version

by carrying a phantom degree for x0, called sugar variable, for each polynomial. We do not

explicitly homogenize our polynomials, but treat the polynomials in that way. This leads to the

sugar strategy. We define the sugar Sf for a polynomial f in the following way:

(i) For the starting polynomials fi ∈ F , we set Sfi := deg(fi).

(ii) For t ∈ T we define St·f := Sf + deg(t).

(iii) For g ∈ P , we define Sf+g := max{Sf , Sg}.

Our selection always chooses a critical pair with the lowest sugar degree of the corresponding

S-polynomial. In most cases, this is known to behave much better than the normal strategy,

especially when using pure lexicographic orders (see [16]).

2.3.2 Reduction criteria

There are several criteria on how to see in advance whether an S-polynomial can be reduced

to 0 without even computing it. We will come back to that in the discussion of signature

Gröbner bases later where we will define rather complex, but very powerful criteria. For now,

we only propose some criteria which can be implemented rather easy in the classical Buchberger

Algorithm:

29

Lemma 2.3.12 (First Buchberger criterion). Let G ⊆ P , f, g ∈ G and let

lcm(LT (f), LT (g)) = LT (f)LT (g). (2.1)

Then Spol(f, g)
∗−−→
G

0.

Proof. See [6, Chapter 2, §9, Proposition 4, p.101].

Remark 2.3.13. The condition of (2.1) is equivalent to LT (f), LT (g) containing only disjoint

variables xi.

Note that it is rather easy to implement this criterion into a classical Buchberger Algorithm.

For a second criterion, we need a deeper understanding of the role of the S-polynomials:

Definition 2.3.14 (Syzygy). Let F = (f1, ..., fm) be an m-tuple of polynomials, h = (h1, ..., hm) ∈ Pm.

(i) We define the evaluation homomorphism with respect to F by

vF : Pm → P

h 7→
m∑
i=1

hifi.

(ii) h is called a syzygy (on F) if vF (h) = 0.

(iii) We call a syzygy h homogeneous if for all i, j ∈ {1, ...,m} with hi, hj 6= 0,

deg(fihi) = deg(fjhj)

holds.

(iv) We denote the set of all syzygies on F by Syz(F).

Remark 2.3.15.

1. Since Syz(F) = ker(vF), it is straightforward to show that Syz(F) is closed under addition

and component-wise multiplication of polynomials, hence, Syz(F) is a P -submodule of Pm.

We will go more into detail about the module Pm and syzygies in Section 3.

2. The word “S-polynomials” in [4] was invented to abbreviate “Syzygy polynomials”. This is

explained by the following observation: The S-polynomials Spol(fi, fj) induce homogeneous

syzygies on LT (F) by si,j = (h1, ..., hm) via

hk :=

0 if k /∈ {i, j}
lcm(LT (fi),LT (fj))

LM(fi)
if k = i

− lcm(LT (fi),LT (fj))
LM(fj)

if k = j

Note that vF (si,j) = Spol(fi, fj).

30

Lemma 2.3.16. Syz(LT (F)) is finitely generated (as a P -module) by

{si,j : 1 ≤ i < j ≤ m}.

Proof. See [6, Chapter 2, §9, Proposition 8, p.104].

Theorem 2.3.17. Let G = {g1, ..., gs} be a basis for an ideal I and {s1, ..., sk} a homogeneous

basis for Syz(LT (G)). Then

G is a Gröbner basis of I⇔ ∀i ∈ {1, ..., k} : vG(si)
∗−−→
G

0.

Proof. See [6, Chapter 2, §9, Theorem 9, p.104].

Remark 2.3.18. Since {si,j : 1 ≤ i < j ≤ m} is by Lemma 2.3.16 a homogeneous basis for

Syz(LT (G)), Theorem 2.1.9 follows directly from Theorem 2.3.17.

Note that {si,j : 1 ≤ i < j ≤ m} is not necessarily linearly independent. Therefore, it often

suffices to take a proper subset as a basis of Syz(LT (G)): If S ⊆ Pm generates Syz(LT (G))

and S \{si,j} generates Syz(LT (G)) as well, we do not need to explicitly compute the reduction

of Spol(fi, fj) by Theorem 2.3.17. An easy application of this principle is stated in the following

criterion:

Lemma 2.3.19 (Buchberger’s second criterion). Let S ⊆ {si,j : 1 ≤ i < j ≤ m} generate

Syz(LT (G)). Suppose there exist i, j, k ∈ {1, ...,m} such that:

(i) LT (gk)| lcm(LT (gi), LT (gj)).

(ii) si,k, sj,k ∈ S.

Then S \ {si,j} generates Syz(LT (G)) (and hence, f ′ ∈ Spol(gi, gj)
G

does not need to be

computed).

Proof. See [6, Chapter 2, §9, Proposition 10, p.106].

To implement this in the Buchberger Algorithm, one simply checks when a critical pair (gi, gj)

is examined whether there is a k /∈ {i, j} with (gi, gk) and (gj , gk) not in current B (notations

from Algorithm 2) with

LT (gk)| lcm(LT (gi), LT (gj)).

If this is the case, one can remove (gi, gj) from B without computing the remainder. The

correctness of this procedure follows from the discussion above.

31

2.4 FGLM Algorithm

The following algorithm is due to Faugère, Gianni, Lazard and Mora (see [13]). It transforms

a Gröbner basis from an arbitrary term order into a Gröbner basis with respect to <lex. This

turns out to be useful because computing a Gröbner basis directly in lexicographic order is often

very time-consuming. We will follow the explanations of [5]. First, we need a small excursion

into algebra: Let G be a Gröbner basis for ideal I, then we know that for f ∈ P , f
G

contains

exactly one element. Thus, we will write in this section f
G

as the element contained in f
G

.

Remember that

f ∈ I ⇔ f
G

= 0,

f
G

= gG ⇔ f − g ∈ I.

One can show that

f
G

+ gG = f + g
G

(2.2)

f
G · gG

G

= fg
G
. (2.3)

With that in mind, we can find a correspondence to the algebra K[x1, ..., xn]/I: We know that

for [f], [g] ∈ K[x1, ..., xn]/I, we have

[f] = [g]⇔ f − g ∈ I, f
G ∈ [f].

Thus, we can see f
G

as a standard representative of [f] with operations defined as in (2.2) and

(2.3). These elements are K-linear combinations of terms xa with xa /∈ 〈LT (I)〉. Furthermore,

one can show that the cosets [xa] are all linearly independent. Hence,

B := {[xa] : xa /∈ 〈LT (I)〉}

is a basis for K[x1, ..., xn]/I as a K-vector space. This leads to the following theorem:

Theorem 2.4.1. The following statements are equivalent:

(i) B is a finite set (⇔ K[x1, ..., xn]/I is a finite-dimensional K-vector space).

(ii) |V (I)| <∞.

Proof. See [6, Chapter 5, §3, Theorem 6, p.230].

Definition 2.4.2. An ideal I ⊆ P is called zero-dimensional if |V (I)| <∞.

Having that considerations in mind, the FGLM Algorithm works as follows: As input we have

a Gröbner basis G with respect to an arbitrary term order. We construct two lists Glex, Blex

32

which are empty at the beginning. The list Glex = (g1, ..., gk) will be a Gröbner basis with

respect to <lex at the end of the algorithm with

LT (g1) <lex LT (g2) <lex ... <lex LT (gk).

The algorithm has a main while-loop where elements xa, a = (a1, ..., an), starting with xa = x1,

are examined as long as xa 6= xkn with xn >lex xn−1 >lex ... >lex x1, k ∈ N. The next iter-

ation starts with the next term (with respect to <lex) which is not divisible by any LT (gi),

gi ∈ Glex. The algorithm computes the reduction xa
G

and checks if xa
G

is linearly dependent

of Blex
G

:= {xb
G

: xb ∈ Blex}. If it is, the algorithm computes cb ∈ K such that

xa
G −

∑
b:xb

G
∈Blex

G

cbxb
G

= 0.

Note that

g := xa −
∑

b:xb∈Blex

cbx
b ∈ I,

and, therefore, we add this g to Glex. Since the xa are chosen increasingly with respect to <lex,

we can guarantee that LT (g) = xa. If xa
G

is linearly independent of Blex
G

, we add xa to Blex.

Theorem 2.4.3. Let I be a zero-dimensional ideal. Then the FGLM Algorithm terminates

and returns a Gröbner basis with respect to <lex.

Proof. (compare [5, Chapter 2, Theorem 3.4, p.49]) We start with the termination: Assuming

that the algorithm does not terminate, we go infinitely often through the main loop, hence Glex

or Blex must be infinite. Assume first that Blex is infinite: This implies that K[x1, ..., xn]/I is

an infinite-dimensional vector space, contradicting that I is zero-dimensional by Theorem 2.4.1.

Hence Glex must be infinite. Assume that during the algorithm Glex = {g1, ..., gk} and gk+1 is

added to Glex. Since all terms xa are chosen in a way that they are not divisible by any LT (gi)

with 1 ≤ i ≤ k and LT (gk+1) = xa, we know that LT (gk+1) is not divisible by any LT (gi).

Conversely, LT (gk+1) does not divide any LT (gi). This implies that we have an infinite set

of terms, namely {LT (g1), LT (g2), ...} where no term divides any other term. This contradicts

Dickson’s Lemma, a famous order-theoretic result found in most classical literature.

To prove that Glex = {g1, ...gl} is a Gröbner basis with respect to <lex, assume to the contrary

that 〈LT (I)〉 6= 〈LT (Glex)〉. Since Glex ∈ I, this implies 〈LT (Glex)〉 (〈LT (I)〉. This means

that there exists a g ∈ I such that LT (g) is not divisible by any LT (gi), 1 ≤ i ≤ l. We can

assume without loss of generality that g is already reduced with respect to Glex, otherwise

we take g′ := gGlex . If LT (g) > LT (gl) = xkn, then clearly LT (gl) divides LT (g), which is

a contradiction. Hence, there exists an i0 ∈ {0, ..., l} such that LT (g) < LT (gi0). Since g is

reduced, all non-leading terms of g are not divisible by any LT (gi) with i < i0. This implies

that all non-leading terms of g are contained in Blex. Since LT (g) is not divisible by any

LT (gi), it would have been examined in the algorithm. But since all non-leading terms of g

33

are already in Blex, there exists a linear combination and g would have been added to Glex, a

contradiction.

Remark 2.4.4. For the correctness of the FGLM Algorithm, we need a zero-dimensional ideal

I. This is no real restriction in our setting because most ideals used in cryptography are of

this property. Note that there exist rather fast Gröbner basis conversion algorithms even for

non-zero-dimensional ideals as well, but we will not discuss them further in this thesis.

2.5 F4 Algorithm

2.5.1 Matrix representation

We will change the perspective of multivariate polynomials and the corresponding algorithms

to compute Gröbner bases. In this section we will follow the description of [24].

Definition 2.5.1 (Macaulay matrix). Let F = {f1, ..., fk} ∈ P , < a term order. Let

T (F) :=

n⋃
i=1

T (fi) = {t1, ..., tl}

with t1 < t2 < ... < tl.

Then we define the matrix Mac(F) ∈ Kk×l via Mac(F)i,j being the coefficient of tj in the

polynomial fi which is possibly zero.

Remark 2.5.2. Considering F as an ordered set, this matrix is unique.

Example 2.5.3: Set F = (f1, f2, f3) with

f1 = 2x1x2 + x23 − x1 + x3 + 1

f2 = x21 + x2x3 + 3x23 + 1

f3 = x22 + 5x2x3 + x23 + x3.

Choosing term order <deglex, we get Mac(F) =

x21 x1x2 x22 x2x3 x23 x1 x3 1

f1 0 2 0 0 1 −1 1 1

f2 1 0 0 1 3 0 0 1

f3 0 0 1 5 1 0 1 0

.
We can construct new polynomials g ∈ I by multiplying current rows by polynomials. This

increases the number of rows by 1, but also the number of columns in case we generate new

terms not yet in T (F). Furthermore, we can construct new rows by linear combinations of such

products of monomials and current rows. We can change the entries in row i by a somehow

extended Gaussian row elimination: Since gi − pgj ∈ I for gi, gj ∈ I, p ∈ P,LT (gi) ≥ LT (pgj),

34

we can subtract row j p times from row i. Note that p can be a polynomial and not only a

scalar as in normal Gaussian elimination! This extended Gaussian elimination is the matrix

equivalent to the reduction of polynomials defined in Definition 2.1.1. Hence we have a Gröbner

basis as soon as arbitrary rows corresponding to polynomials in I can be reduced to a zero

row by extended Gaussian elimination. To see this, we describe the Buchberger Algorithm as

matrix formulation:

The S-polynomials

Spol(gi, gj) :=
lcm(LT (gi), LT (gj))

LM(gi)
gi −

lcm(LT (gi), LT (gj))

LM(gj)
gj

are polynomials created by the operations described above. Computing f ′ ∈ Spol(gi, gj)
G

is

equivalent to using extended Gaussian elimination steps on the row corresponding to Spol(gi, gj).

Remark 2.5.4. From an arbitrary Gröbner basis in matrix form, we obtain a reduced one by

doing more extended Gaussian elimination steps. The Gröbner basis is reduced as soon as the

matrix is in reduced row-echelon form.

2.5.2 The algorithm

The main idea of the F4 Algorithm is to speed up the time needed to compute the reduction

steps via efficient matrix algorithms, reducing several S-polynomials at once. The algorithm

does not specify the selection strategy, so one can choose a suitable one, e.g. normal strategy or

sugar strategy. In contrast to the Buchberger Algorithm, a set of critical pairs is selected at the

same time. To grasp the main ideas, we need some subroutines and definitions. We will take

the statements and notations used in [15] and [22]. We start the discussion by writing down

the pseudocode of the F4 Algorithm:

Algorithm 3: F4 main routine

Input: F = {f1, ..., fm} ⊆ P , term order <.

Output: A Gröbner basis G for 〈F 〉 with respect to<.

1 Set G = F ;

2 Set B = {(gi, gj) : gi, gj ∈ G, i 6= j};
3 while B 6= ∅
4 Sel = Select(B); //some set selection strategy

5 B = B\Sel;
6 L = { lcm(LT (gi),LT (gj))

LM(gi)
gi : (gi, gj) ∈ Sel} ∪ { lcm(LT (gi),LT (gj))

LM(gj)
gj : (gi, gj) ∈ Sel};

7 H̃+ = ReductionF4(L,G);

8 for f ∈ H̃+

9 B = B ∪ {(f, g) : g ∈ G};
10 G = G ∪ {f};

35

11 end

12 end
13 return G;

This routine looks very similar to Buchberger’s Algorithm. The main difference is the function

ReductionF4:

Algorithm 4: ReductionF4

Input: sets of polynomials L,G

Output: set of polynomials H̃+, corresponding to reduced S-polynomials in

Buchberger’s Algorithm

1 H = SymbolicPreprocessing(L,G);

2 H̃ = Set of polynomials obtained by the reduced row echelon form of Mac(H);

3 H̃+ = {f ∈ H̃ : LT (f) /∈ LT (H)};
4 return H̃+;

The idea is to obtain H̃+ = {f ∈ H̃ : f is top-irreducible by G}. A matrix Buchberger Algo-

rithm would apply extended Gaussian reduction on Mac(G∪L) to reduce all elements in L via

elements of G. Instead of this, one first multiplies the rows of G by all needed terms to reduce

the elements in L afterwards via standard Gaussian elimination. These rows are found by a

so-called SymbolicPreprocessing:

Algorithm 5: Symbolic Preprocessing

Input: set of polynomials L, current basis G

Output: set of polynomials H containing L

1 H = L;

2 Done := LT (H);

3 while T (H) 6= Done do

4 Select m ∈ T (H)\Done;
5 Done = Done ∪ {m};
6 if LT (g)|m for some g ∈ G then

7 H := H ∪ {g m
LT (g)};

8 end

9 end

10 return H;

Remark 2.5.5. It would make sense to start with an empty list Done, but it will turn out that

the resulting list is the same when starting with Done = LT (L). Therefore, this initialization

saves some iterations. [15]

Theorem 2.5.6. The F4 Algorithm described above is correct.

36

To obtain the proof, we need the following lemmas:

Lemma 2.5.7.

(i) Let H be a set of polynomials and H− ⊆ H with the property that

|H−| = |LT (H)|, LT (H−) = LT (H). (2.4)

Then G′ := H̃+ ∪H−, interpreted as a set of vectors, is a triangular basis of the vector

space generated by the rows of Mac(H). In particular, all polynomials f , whose vector

interpretation is in this vector space, can be reduced to 0 via G′.

(ii) Let H̃+ = ReductionF4(L,G). Then for all f in the vector space generated by L,

f
∗−−−−−→

G∪H̃+
0.

Proof. (compare [22, Theorem 4.14])

(i): Since all leading terms in G′ are different, the corresponding vectors are linearly indepen-

dent. Furthermore,

LT (G′) = LT (H̃+) ∪ LT (H−) = LT (H̃+) ∪ LT (H) ⊇ LT (H̃)

holds where H̃ denotes the reduced row echelon form of Mac(H). Since H̃ generates the

vector space which is spanned by Mac(H) and

|G′| = |LT (G′)| ≥ |LT (H̃)| = |H̃|,

the result follows.

(ii): Let H be the output of SymbolicPreprocessing(L,G). By construction, L ⊆ H and

therefore, f is in the vector space generated by Mac(H). Taking a subset H− ⊆ H with

properties as in (2.4), we know by (i) that f can be written as a linear combination

f =

k∑
i=1

cih
+
i +

l∑
j=1

c′jh
−
j , h+i ∈ H̃

+, hj ∈ H−, ci, c′j ∈ K.

Since h−j was constructed during Symbolic Preprocessing, h−j = tjgj′ for some t ∈ T, gj′ ∈ G.

Thus, we can write

f =
k∑

i=1

cih
+
i +

l∑
j=1

c′jtjgj′ , gj′ ∈ G.

Since all leading terms of H̃+ ∪H− differ, we can iteratively reduce f either via cih
+
i or

via (cjtj)gj′ and hence, f
∗−−−−−→

G∪H̃+
0 follows.

37

Lemma 2.5.8. Let H̃+ be the output of ReductionF4(L,G) in some iteration. Then for all

h ∈ H̃+, LT (h) /∈ 〈LT (G)〉.

Proof. (compare [22, Lemma 4.18]) Assume to the contrary that there exists an h ∈ H̃+ such

that t = LT (h) ∈ 〈LT (G)〉. Then there is a g ∈ G such that HT (g)|HT (h). Since

t ∈ T (H̃+) ⊆ T (H̃) ⊆ T (F),

t has been selected in SymbolicPreprocessing and g t
LT (g) (or some other polynomial with

leading term t) has been added to H. This implies LT (h) = t ∈ LT (H), a contradiction.

Proof of Theorem 2.5.6. The termination follows directly from Lemma 2.5.8 and the Noethe-

rian property of P . Note that we start with G = F and all elements in H̃+ obtained during the

algorithm are linear combinations of elements in L or monomial multiples of polynomials in G.

Since these are both contained in 〈G〉, we have 〈G〉 = 〈F 〉 during the whole algorithm, hence G

is a basis for 〈F 〉.
To prove the Gröbner property, we show that for all (f, g) /∈ B

Spol(f, g)
∗−−→
G

0

holds after the iteration when (f, g) was removed from B. To see this, observe that if (f, g) /∈ B,

it has been selected by some Sel already. Hence Spol(f, g) is in the vector space generated by

L and therefore, Spol(f, g)
∗−−→
G

0 follows from Lemma 2.5.7.

The big advantage of F4 in comparison to the Buchberger Algorithm is that many S-polynomials

are reduced at the same time. The reduction is computed by (normal) Gaussian elimination

which is a well-studied algorithm where highly optimized matrix algorithms can be applied.

This tends to be computationally much faster than working with polynomials.

2.6 M4GB Algorithm

2.6.1 Idea

In this section, we describe a rather new algorithm which seems to compute Gröbner basis

empirically very fast. The idea is similar to F4, but reduces the S-polynomials sequentially and

not as a set. We will take the ideas from [20], but describe an easier variant which contains the

main ideas. This would lead to a less efficient algorithm when implemented in precisely that

manner, but should be easier to understand. The overall structure of the algorithm is basically

the same as in the Buchberger Algorithm, but we reduce polynomials only by so-called tail-

irreducible elements:

38

Definition 2.6.1 (Tail-irreducibility). Let f ∈ P , G ⊆ P . We define ...

(i) ... Tail(f) := f − LM(f).

(ii) ... TG(f) := {t ∈ T (f) : t is reducible with respect to G}.

(iii) A polynomial f is called tail-irreducible (with respect to G) if TG(Tail(f)) = ∅.

Let f be an S-polynomial which needs to be reduced by a set G (like in the Buchberger Algo-

rithm) and let t ∈ TG(f), Ct(f) = c. Assume we have a polynomial h ∈ 〈G〉 : LT (h) = t which

is tail-irreducible with respect to G and we apply the reduction step

f → f − h.

The tail-irreducibility of h leads to the following advantage: If h is not known to be tail-

irreducible, we would have to consider all terms

s ∈ T (f − h) ⊆ (T (f) ∪ T (h))\{t}

and check whether they are reducible by G. However by construction, TG(f − h) = TG(f)\{t}
and hence, no new reducible terms are created in the reduction process. This leads in most cases

to a faster reduction of f . To construct such h in a computationally cheap way, we observe

the following: Since t ∈ TG(f), there exists g ∈ G, v ∈ T such that LT (vg) = t. Doing a

reduction on Tail(vg) with respect to G yields by adding LM(vg) a tail-irreducible polynomial

with leading term t. To make this algorithm more efficient, one saves these tail-irreducible

elements in a set of polynomials M . The advantage is the following: If t ∈ TG(g) for some

further S-polynomial g, we already have such a tail-irreducible element with leading term t and

can reduce g by this element straight away. However, we need to be careful about the following

problem: If we add a new polynomial f ′ to G, this element might no longer be tail-irreducible.

One could update all those elements in M instantly, but to save some computation time, we

install so-called generations: If some polynomial f ′ is added to G, a new generation starts.

All elements in M now belong to an earlier generation and hence, they might be tail-reducible.

Therefore, we need to check if those polynomials added to G after the creation of tail-irreducible

elements in M might reduce those. If so, we need to tail-reduce these elements until they are

tail-irreducible again. To work out this idea more precisely, consider the following pseudocode:

Algorithm 6: M4GB main routine

Input: Set of polynomials F = {f1, ..., fk}.
Output: Gröbner basis G of 〈F 〉 with F ⊆ G.

1 Set G = F ;

2 Set M = G;

3 Set P = {Spol(gi, gj) : gi, gj ∈ G};

39

4 while P 6= ∅ do
5 Select some f = Spol(gi, gj) from P ;
6 P = P \{f};
7 f ′ := M4GB-Reduction(f,G,M);
8 if f ′ 6= 0 then
9 Set P = P ∪ {Spol(f ′, g) : g ∈ G};

10 Set G = G ∪ {LC(f ′)−1 ·f ′};
11 Set M = M ∪ {LC(f ′)−1 ·f ′};
12 Set new generation;

13 end

14 end
15 return G;

Algorithm 7: M4GB-Reduction

Input: polynomial f , sets of polynomials G,M .

Output: polynomial f ′ ∈ fG, possibly updated M .

1 Set f ′ = f ;

2 for t ∈ T (f) do

3 if ∃m ∈M,v ∈ T : LT (vm) = t then

4 if ∃m′ ∈M : LT (m′) = t then

5 if m′ is from earlier generation then

6 m′′ = M4GB-Reduction(Tail(m′), G,M);

7 Replace m′ by m′′ in M and in G if m′ ∈ G;

8 Mark m′′ with current generation;

9 m′ = m′′;

10 end

11 end

12 else

13 m′ = M4GB-Reduction(Tail(vm), G,M);

14 Add m′ to M ;

15 Mark m′ with current generation;

16 end

17 f ′ = f ′ − Ct(f)m′;

18 end

19 end

20 return f ′;

2.6.2 Correctness Proof

We will only sketch the proof of correctness here. For a more detailed proof see Remark 4.2.7,

since the correctness of the M4GB Algorithm follows from a special case of the statements

40

proven in Chapter 4. Consider the following definition for a short proof sketch:

Definition 2.6.2 (M4GB-Invariant). A tuple of sets (G,M) where G,M ⊆ P is said to

fulfill the M4GB invariant if it fulfills the following properties:

(i) All leading terms in M are unique, i.e. f, g ∈M,LT (f) = LT (g) implies f = g.

(ii) G ⊆M .

(iii) All elements in M are top-reducible by G.

Lemma 2.6.3. (G,M) fulfills the M4GB invariant during the whole algorithm.

Proof. The M4GB invariant holds trivially after initialization for input sets F with distinct

leading terms. Reducing all polynomials f ∈ F by F \{f}, we can assume without loss of

generality that F fulfills this property. To see that (i) holds, note that we add a polynomial

m to M only if LT (m) /∈ M , otherwise we replace the old element. For (ii), note that if we

add some polynomial g to G, we add it to M as well. To prove (iii), we just need to look

at the construction of polynomials in M : Those polynomials are constructed by tail-reducing

top-reducible elements and hence, are top-reducible by themselves.

Proposition 2.6.4. If f is reduced by some m ∈M during the execution of M4GB-reduction,

then m is tail-irreducible with respect to G.

Proof. If m ∈ M , it was tail-irreducible at the point of its creation by definition. Observe

that m stays tail-irreducible until we add some new polynomial to G and therefore, increase

the generation. Since we reduce f only by polynomials which are marked with the current

generation, m is tail-irreducible.

Lemma 2.6.5. Let (G,M) fulfill the M4GB invariant and let f̃ be the output of M4GB-

Reduction(f,G,M). Then f ′ ∈ fG.

Proof. See Remark 4.2.7.

The correctness of Algorithm 3 follows now immediately by Theorem 2.1.9 since the output is

the same as in the Buchberger Algorithm.

Lemma 2.6.6. Algorithm 3 terminates.

Proof. The while-loop terminates once more by the Noetherian property and the same argu-

mentations as in the Buchberger Algorithm. To see that the iterative call of M4GB-reduction

terminates, note that the leading terms of the polynomials in a chain of such calls strictly de-

crease. Hence, an infinite recursion depth would lead to an infinite strictly descending chain of

polynomials, a contradiction.

41

3 Signature Gröbner bases/F5

3.1 Basic definitions

In this section, we will introduce the basic ideas of signature Gröbner bases. The aim of

constructing these bases is to detect reductions to zero in advance. The following discussion is

based on [8], [10], and [17].

3.1.1 The module Pm and signatures

The idea is, given an input set F = {f1, ..., fm}, to employ the free P -module Pm with generators

f1, ...,fm. Note that this notation is taken on purpose as we will see later. To make use of this

module, we need to define module terms and extend the term order on Pm:

Definition 3.1.1 (Module terms). Let fi denote the i-th generator of Pm and let < be a

term order. We define ...

(i) ... the module terms

Tm := {tfi, t ∈ T, i ∈ {1, ...,m}}.

(ii) ... a compatible extension of < to Tm as a total order < that fulfills:

∀t, u ∈ T, ∀i ∈ {1, ...,m} : t < u⇒ tfi < ufi.

Definition 3.1.2 (Important extensions on Tm). Let < be a term order on T , t, u ∈ T,
i, j ∈ {1, ...,m}. Remember the evaluation homomorphism

v = vF : Pm → P

h 7→
m∑
i=1

hifi.

We define ...

(i) ... the position over term extension tfi <pot ufj ⇔

 i > j or

i = j, t < u.

(ii) ... the term over position extension tfi <top ufj ⇔

 t < u or

t = u, i > j.

43

(iii) ... the weighted order extension tfi <w ufj ⇔

 LT (v(tfi)) < LT (v(ufj)) or

LT (v(tfi)) = LT (v(ufj)), i > j.

Definition 3.1.3. Let

g =
m∑
i=1

gifi, h =
m∑
i=1

hifi

be two nonzero module elements where

gi =

ni∑
j=1

cjgi,j , cj ∈ K\{0}, gi,j ∈ T.

Furthermore, let < be a total order on Tm. We define ...

(i) ... the module leading term of g as

MLT (g) := max{gi,jfi : i ∈ {1, ...,m}, j ∈ {1, ..., ni}}

where the maximum is taken with respect to <.

(ii) ... the module leading monomial of g as

MLM(g) := ci,jgi,jfi

where gi,jfi = MLT (g).

(iii) We extend < to Pm in the following way: Let g, h ∈ Pm, then

g < h :⇔MLT (g) <MLT (h).

If MLT (g) = MLT (h), we define equality with respect to < as g ∼ h to not confuse this

with equality in common sense.

(iv) We say h | g if there exists a monomial m such that mh = g.

(v) We call a module element g monic if LC(v(g)) = 1.

Remark 3.1.4.

1. It is easy to see that < forms a quasi-order on Pm. If we say g ≤ h, we mean g < h or

g ∼ h.

2. As in many definitions of divisibility and orders, h | g implies h ≤ g.

3. If < is a compatible extension of a given term order,

MLT (g) = max{LT (gi)fi : i ∈ {1, ...,m}}.

44

To see the connection between Pm and 〈F 〉, observe that vF (Pm) = 〈F 〉. This implies that each

element in Pm can be associated with a unique element of 〈F 〉, induced by this homomorphism.

We will use the additional algebraic structure on Pm to get rid of many useless S-polynomials.

For that, we introduce the notion of signatures:

Definition 3.1.5 (Signature). Let f ∈ Pm\{0} and let < be a compatible extension of a

term order on Pm. Then we define the signature of a module element f as

Sig(f) := MLM(f).

We create the formal symbol ∞ as a signature with the property

∀f ∈ Pm\{0} : Sig(f) <∞.

Remark 3.1.6. Note that the set of signatures is S := {ct : c ∈ K\{0}, t ∈ Tm} ∪ {∞}.
Furthermore, observe that for all signatures ct ∈ S, we have that ct ∼ t. It is easy to check that

∼ forms an equivalence relation and hence, S/∼ ∼= Tm ∪ {∞}.

As a next step, we need to define the reduction on Pm equivalent to “normal” reduction on

polynomials to fit our purposes. Note the similar notation to normal reduction defined in

Definition 2.1.1.

3.1.2 Reduction on Pm

Definition 3.1.7 (Sig-(top-)reduction). Let f ∈ Pm,G ⊆ Pm\{0} a finite set of monic

module elements.

• f is said to be Sig-reducible (with respect to G) if there exist t ∈ T (v(f)), g ∈ G :

(i) LT (v(g))|t, in that case set u = t
LT (v(g)) .

(ii) Sig(f) ≥ Sig(ug).

If these properties are fulfilled, we define f−Ct(f)ug as the outcome of the Sig-(top-)reduction.

We denote this by

f −−→
G

f − Ct(f)ug

and say

f
∗−−→
G

h

if finitely many reduction steps are done. This also includes the case that no Sig-reduction

steps are done at all, hence f
∗−−→
G

f follows trivially.

• If f is not Sig-reducible, we call it Sig-irreducible.

• If t = LT (f), we call it a Sig-top-reduction.

45

• We say g Sig-(top-)reduces f and f is Sig-(top-)reduced to f − ug.

• If Sig(f) > Sig(ug), we call it a regular reduction. We denote this by

f −−−−−→
G,reg

f − ug

and a finite number of regular reductions to a module element h by

f
∗−−−−−→

G,reg
h.

• If Sig(f) ∼ Sig(ug), we call it a singular reduction.

• We say f ′ ∈ Pm is a normal form of f and G if f
∗−−→
G

f ′ and f ′ is Sig-irreducible.

We define

f
G

:= {f ′ ∈ Pm : f ′ is a normal form of f and G}.

• Similarly, we denote term order on polynomials by < and order extensions on module

terms as <.

• Analogously, we say f ′ is a regular normal form of f and G if f
∗−−−−−→

G,reg
f ′ and f ′

is regularly Sig-irreducible. We define

f
G,reg

:= {f ′ ∈ Pm : f ′ is a regular normal form of f and G}.

• We say

f
∗−−→
G

0

if f
∗−−→
G

h where h is a syzygy. This notation is justified by v(h) = 0.

Remark 3.1.8. To emphasize the difference between polynomials and module elements, we will

use the following notations:

• For polynomials, we use a normal lower letter, e.g. g ∈ P .

• For vectors in Pm, we use a bold lower letter, e.g. g = (g1, ..., gm) ∈ Pm. To be consistent,

we write 0 for the zero element in Pm.

• In that way, we are consistent with using fi for the unit vectors of Pm and fi for the

polynomials spanning the ideal 〈F 〉 since v(fi) = fi.

• Analogously, we handle the set equivalent: If some set is a subset of P , we write a normal

capital letter, e.g. G ⊆ P , for subsets of Pm, we write a bold capital letter, e.g. G ⊆ Pm.

46

• Note that both f
∗−−→
G

0 and f
∗−−→
G

0 are well-defined, but differ in meaning: f
∗−−→
G

0

only signals that f can be reduced to a syzygy whereas f
∗−−→
G

0 means that f can actually

be reduced to the zero element of Pm.

To shorten the notations, we make the following assumptions:

• If not stated otherwise, the evaluation homomorphism is v = vF where F = {f1, ..., fm}.
All other properties (reducible/irreducible,...) are implicitly defined with respect to G re-

spectively G, depending on whether the elements are polynomials or module elements.

Furthermore, all elements in G are assumed to be nonzero and monic. We can assure

that in every algorithmic consideration by computing g′ = LC(g)−1g, not losing any prop-

erty needed.

• For given g ∈ Pm, we define g := v(g).

• Analogously, for given G ⊆ Pm, we define G := v(G).

Remark 3.1.9. If F = {f1, ..., fm} is the input set, we always assume this input set to be

interreduced, meaning that fi is irreducible with respect to F \{fi}. We can state this without

loss of generality since we can do a corresponding preprocessing, not changing the ideal generated

by the polynomials.

3.1.3 Signature Gröbner bases

Definition 3.1.10 (Signature Gröbner basis). Let F = {f1, ..., fm}, s ∈ Tm ∪ {∞}. We

define G ⊆ Pm to be a signature Gröbner basis for 〈F 〉 up to signature s if for all f ∈ Pm such

that Sig(f) < s :

f
∗−−→
G

0.

If G is a signature Gröbner basis up to ∞ (i.e. for all possible signatures), G is a signature

Gröbner basis.

Remark 3.1.11. Note that h ∈ Pm is a syzygy if and only if h is Sig-irreducible and h
∗−−→
G

0.

Proposition 3.1.12. If G is a signature Gröbner basis for 〈F 〉, then G := v(G) is a Gröbner

basis for 〈F 〉.

Proof. Since f
∗−−→
G

0 implies f
∗−−−−→

v(G)
0, this follows directly by a standard characterization

of Gröbner bases.

3.2 First algorithmic ideas

3.2.1 Criterion for Signature Gröbner bases

A natural question arising is how to determine efficiently when a set of module elements forms

a signature Gröbner basis. As in the polynomial case, S-polynomials, now defined on module

47

elements, play a crucial role:

Definition 3.2.1 (S-polynomials for module elements). Let f, g ∈ Pm. We define the

S-polynomial of f and g as

Spol(f, g) :=
lcm (LT (f), LT (g))

LM(f)
f − lcm (LT (f), LT (g))

LM(g)
g.

If Spol(f, g) = uf−vg and Sig(uf) � Sig(vg), we call the pair (f, g) regular, if Sig(uf) ∼ Sig(vg)

singular.

The following theorem is essential for the computation of signature Gröbner bases. Note the

similarity to the criterion for Gröbner bases stated in Theorem 2.1.9:

Theorem 3.2.2. (compare [17, Theorem 1]) Let s ∈ Tm,G ⊆ Pm with {fi ≤ s, i ∈ {1, ...,m}} ⊆ G.

Assume that for all regular pairs (gi, gj) where gi, gj ∈ G, Sig(Spol(gi, gj)) < s:

Spol(gi, gj)
∗−−−−−→

G,reg
0 or Spol(gi, gj)

∗−−−−−→
G,reg

h

for h singularly Sig-top-reducible. Then G is a signature Gröbner basis up to s. In particular, if

Spol(gi, gj)
G,reg

contains a syzygy or a singularly Sig-top-reducible element for all pairs (gi, gj),

then G is a signature Gröbner basis.

To prove Theorem 3.2.2, we need some smaller statements before:

Proposition 3.2.3. Let f, g ∈ Pm\{0},G ⊆ Pm\{0}.

(i) Let f, g be Sig-top-reducible or syzygies with Sig(f), Sig(g) ≤ Sig(f + g). Then at least

one of the following three conditions is fulfilled:

a) f + g is Sig-top-reducible.

b) LM(f) = −LM(g).

c) f = g = 0.

(ii) Let G be a signature Gröbner basis up to s ∈ Tm∪{∞} with {fi : fi ≤ s, i ∈ {1, ...,m}} ⊆ G

and let f be not a syzygy, but Sig-top-irreducible with Sig(f) ∼ s. Then

LM(f) = −LM(f − s).

(iii) Let α, β be monomials and let p = αf − βg ∈ Pm. Assume that LM(αf) = LM(βg) and

gcd(α, β) = 1. Then p = Spol(f, g).

Proof.

(i): Assume LM(f) 6= −LM(g) and f , g are not syzygies. Then we can assume without loss

of generality that LT (f) = LT (f + g). As Sig(f) ≤ Sig(f + g), this implies that f + g

48

is Sig-top-reducible by the top-reducer of f . If, without loss of generality, g is a syzygy

but f is Sig-top-reducible, then once again LT (f) = LT (f + g), and the statement holds

by the same argument already done. If both f, g are syzygies, then f = g = 0 holds by

definition.

(ii): Since Sig(f − cs) < s for suitable c ∈ K\{0} and G is a Gröbner basis up to s, we know

that f−cs ∗−−→
G

0. This implies that f−cs is Sig-top-reducible or a syzygy. Furthermore,

since fi ∈ G, cs is Sig-top-reducible by G. By assumption, f = (f − cs) + cs is Sig-top-

irreducible. Using (i), we get that LM(f) = −LM(f − s) or f = f − s = 0. Since fi 6= 0

and therefore s 6= 0,

LM(f) = −LM(f − s)

follows.

(iii): Since LM(αf) = LM(βg), there exists a monomial d such that

d lcm(LT (g), LT (f)) = LM(f)α = LM(g)β.

As p = dSpol(f, g) and gcd(α, β) = 1, we obtain d = 1 and the results follows.

Remark 3.2.4. The statements from Proposition 3.2.3 are implicitly assumed to be fulfilled

in [10]. We filled this gap not knowing if the authors left this out on purpose due to space

limitations.

Lemma 3.2.5. Let f 6= 0 ∈ Pm be Sig-top-irreducible and let G ⊆ Pm be a signature Gröbner

basis up to Sig(f) where {fi : fi ≤ Sig(f), i ∈ {1, ...,m}} ⊆ G. Then there exists a regular

pair (gi, gj) with gi, gj ∈ G such that Sig(Spol(gi, gj)) |Sig(f).

Proof. (compare [17, Lemma 9]) Let Sig(f) ∼ s = tfi ∈ Tm. As seen in the proof of Proposi-

tion 3.2.3(ii), for suitable c ∈ K,

f − cs ∗−−→
G

0.

If f−cs = 0, ctfi would be a (singular) Sig-top-reducer of f , a contradiction to f being Sig-top-

irreducible. Hence, there exists a monomial m and some g ∈ G such that LM(mg) = LM(f−s)
with

Sig(mg) ≤ Sig(f − s) < Sig(f).

As cs and f − cs are both Sig-top-reducible, but f is not, it follows from Proposition 3.2.3(i)

that

LM(tfi) = LM(s) = −LM(f − s) = −LM(mg). (3.1)

Defining

p := αfi − βg with α :=
t

gcd(t,m)
, β :=

m

gcd(t,m)
,

49

we have LM(αfi) = −LM(βg) and gcd (α, β) = 1. Applying Proposition 3.2.3(iii), we see that

p = Spol(fi, g). Since Sig(mg) < Sig(f), we have

gcd(t,m)Sig(p) = Sig(tfi −mg) = Sig(tfi) = s,

which completes the proof.

Lemma 3.2.6. Let G be a signature Gröbner basis up to s and let (gi, gj) with gi, gj ∈ G be

a regular pair such that Sig(Spol(gi, gj)) | s. Then there exists a monomial b and gi′, gj′ ∈ G

such that q := Spol(gi′, gj′) is regular with the following properties:

(i) Sig(bq) = s.

(ii) bq′ is regularly Sig-top-irreducible for some q′ ∈ qG,reg.

Proof. (compare [17, Lemma 10]) Let a be the monomial such that Sig(ap) = s and let

p′ ∈ pG,reg. If ap′ is regularly Sig-top-irreducible, we set a = b, q = p and are done. So

from now on, we can assume that ap′ is regularly Sig-top-reducible. To prove the rest of the

statement, we construct an S-polynomial q = Spol(gk, gl) for gk, gl ∈ G and a monomial b

with the following properties:

(i) Sig(bq) = s.

(ii) LT (ap) > LT (bq).

We can find this bq in the following way: If a ∈ K, then ap′ is regularly Sig-top-reducible, but

p′ Sig-top-irreducible is a contradiction. Hence a > 1 and therefore Sig(p) < s follows. Due

to the property of G being a signature Gröbner basis up to s, we know that

p
∗−−→
G

0.

Observe that since ap′ is regularly Sig-top-reducible, p′ cannot be a syzygy. Hence, there must

exist a singular Sig-top-reducer vgk with v a monomial, gk ∈ G such that

Sig(vgk) ∼ Sig(p′), LM(vgk) = LM(p′). (3.2)

On the other hand, since ap′ is regularly Sig-top-reducible, there exists a monomial u and some

gl ∈ G such that

Sig(ugl) < Sig(ap′), LM(ugl) = LM(ap′). (3.3)

Combining (3.2) and (3.3), we get that

LM(avgk) = LM(ugl), Sig(avgk) > Sig(ugl).

50

If we define b := gcd (av, u) and q := avgk − ugl, we get due to Proposition 3.2.3(iii) that

q = bSpol(gk, gl). Note that

Sig(q) = Sig(avgk) = Sig(ap′) = Sig(ap) = s,

LT (bq) < LT (avgk) = LT (ap′) ≤ LT (ap),

which completes the construction defined above.

If bq′ is regularly Sig-top-irreducible for q′ ∈ qG,reg, we are done. Otherwise, we can repeat

this construction for bq′ instead of ap′. Since there can only be a finite descending chain of

leading terms, we will eventually obtain an S-polynomial fulfilling the desired properties.

We are left to state one final lemma before we can finally prove Theorem 3.2.2. Note that this

lemma does not only play a role in the current proof, but will be referred to rather often in the

following chapters.

Lemma 3.2.7. Let f , g ∈ Pm and let G be a signature Gröbner basis up to Sig(f) = Sig(g) = s.

If f , g are regularly Sig-irreducible, then f = g. In particular, if f, g are both regularly Sig-

top-irreducible, then LT (f) = LT (g) or f = g = 0.

Proof. (compare [17, Lemma 2]) First note that due to Sig(f) = Sig(g), Sig(f − g) < s.

Since G is a Gröbner basis up to s, f − g
∗−−→
G

0. Assume to the contrary that f − g 6= 0, this

implies that f − g is Sig-top-reducible. Hence, there exist t ∈ T,h ∈ G:

Sig(th) ≤ Sig(f − g) < s, LT (th) = LT (f − g).

Note that LT (f − g) ∈ T (f)∪ T (g), without loss of generality, LT (f − g) ∈ T (f). This implies

that f is regularly reducible by h, a contradiction. The “in particular” statement follows

immediately.

After all these considerations, we can prove the actual result:

Proof of Theorem 3.2.2. (compare [17, Theorem 1]) Assume to the contrary that there exists

a f ∈ Pm such that Sig(f) < s, but f cannot be reduced by G to a syzygy. Taking f as

the one with the smallest signature among those elements, G is a signature Gröbner basis up

to Sig(f). We can assume without loss of generality that f is Sig-irreducible, otherwise we

could take some f ′ ∈ f
G

instead. Applying Lemma 3.2.5 and 3.2.6, we obtain the existence

of a monomial a and a regular S-polynomial p = Spol(gi, gj) with gi, gj ∈ G such that the

following conditions are fulfilled:

• Sig(ap) = Sig(f),

• ap′ is regularly Sig-top-irreducible where p′ ∈ pG,reg.

51

As f is not a syzygy, we can apply Lemma 3.2.7 and obtain by the “in particular” part that

LT (f) = LT (ap′). This implies that p′ is not a syzygy and hence, by assumption must be

singularly Sig-top-reducible. It follows that ap′ is singularly Sig-top-reducible and hence Sig-

top-reducible. Since ap′ has the same signature and leading term as f , every Sig-top-reducer

of ap′ is also a Sig-top-reducer of f which makes f Sig-top-reducible, a contradiction.

3.2.2 First Signature basis algorithm

Theorem 3.2.2 is already enough to state a basic algorithm to compute a signature Gröbner

basis:

Algorithm 10: Basic signature algorithm

Input: Input polynomials F = {f1, ..., fm}.
Output: Signature Gröbner basis G of 〈F 〉, in particular v(G) gives a Gröbner basis.

1 Set G = {fi, i ∈ {1, ...,m}};
2 Set P = {Spol(fi, fj) = c1ufi − c2vfj : Sig(ufi) > Sig(vfj)};
3 while P 6= ∅ do

4 Let f be an element of P with minimal signature;

5 P = P \{f};
6 Compute f ′ ∈ f

G,reg
;

7 if f ′ is not singularly top-reducible, f ′ 6= 0 then

8 P = P ∪ {Spol(f, g) = uf − vg : Sig(uf) 6= Sig(vg), g ∈ G};
9 G = G ∪ {LC(f ′)−1f ′};//add the normalized element

10 end

11 end

12 return G;

Remark 3.2.8. The computation of f ′ ∈ f
G,reg

can be done by a slightly changed variant of

Algorithm 1, checking the signature condition additionally.

Proposition 3.2.9. All elements added to G during Algorithm 10 (except the initial polyno-

mials fi) are added in increasing signature.

Proof. If a module element f ′ is added to G, no S-polynomial in current P has a lower

signature. Note that all regular S-polynomials created by a module element f ∈ G with

Sig(f) > s have a larger signature than s. Thus, after adding f ′ to G, all elements in P will

have a larger or equal signature than f ′ throughout the rest of the algorithm. In particular, no

element with a lower signature will be added to G.

52

3.3 Improvements

3.3.1 Syzygy criterion

Up to now, it does not seem too useful to compute the signature Gröbner basis because due

to restricted reduction steps, this basis can be larger, and carrying the signatures might cause

significant computational overhead. In this section we will see that the additional structure of

signatures leads to further criteria that decide whether we have to compute the Sig-reduction

of certain S-polynomials. To start the discussion, consider the following lemma:

Lemma 3.3.1. Let f ∈ Pm and let G be a signature Gröbner basis up to Sig(f). Assume

there exists a syzygy h ∈ Pm such that Sig(h) |Sig(f). Then f
∗−−→
G

0.

Proof. (compare [8, Lemma 6.4]) Observe that h′ := Sig(f)
Sig(h)h is a syzygy. Since we have

Sig(f − h′) < Sig(f) and G is a signature Gröbner basis up to f ,

f − h′
∗−−→
G

0

follows. As f − h′ = f and Sig(f − h′) < Sig(f), each Sig-reduction step of f − h′ is a

Sig-reduction step on f as well. Hence, f
∗−−→
G

0 follows.

Lemma 3.3.1 leads to the following notion:

Definition 3.3.2 (Known syzygy). Let s ∈ Tm and assume that we have already found a

syzygy f with Sig(f) ∼ s. Then we call s and, justified by Lemma 3.3.1, all monomial multiples

of s known syzygy.

As a next step, we need to find such syzygy signatures to apply the criterion from Lemma 3.3.1 as

often as possible. Obviously, we can find syzygy signatures during the execution of the algorithm:

If some S-polynomial p is regularly reduced to a syzygy h, we can add Sig(p) = Sig(h) to the

set of syzygies, which will be denoted in the further discussion by H. Comparing for each S-

polynomial during the further execution if the criterion from Lemma 3.3.1 holds for a signature

in H, we can discard S-polynomials meeting that criterion. In that way, we would start the

algorithm with an empty set H of syzygy signatures. We can improve this approach further

since we already know some syzygies at the start of the algorithm:

Definition 3.3.3 (Principal syzygies). Recall from Definition 2.3.14 that Syz(F) denotes

the set of all syzygies on F and note that Syz(F) is a submodule of Pm. Define

si,j := fifj − fjfi

for 1 ≤ i < j ≤ m. Those si,j ∈ Syz(F) are called principal syzygies. We denote by

PSyz(F) the submodule of Syz(F) generated by the principal syzygies.

Observe that the signatures of those principal syzygies can already be added to H at the start

of the algorithm.

53

3.3.2 Labelled polynomial optimization

A big issue of Algorithm 10 is that saving the module element takes a lot of memory. Luckily,

we do not need the whole information stored in the module element f , but only its signature

Sig(f) and its evaluation v(f) = f . One can see that by the following observation:

• We only perform regular reductions on f , hence its signature remains unchanged during

the whole Sig-reduction process.

• We only consider regular S-pairs since singular ones can be discarded instantly.

Furthermore, we can drop the coefficient in the signature without any problems. Hence, the

following structure replaces the module element in implemented algorithms:

Definition 3.3.4 (Labelled polynomial). We call a pair F = (s, f) with s ∈ Tm, f ∈ P a

labelled polynomial if there exists a f ∈ Pm:

(i) v(f) = f .

(ii) MLT (f) = s.

We define poly(F) = f and Sig(F) = s.

Remark 3.3.5.

1. Note that this definition is named and defined quite differently in the literature. We decided

to take over the term introduced by [23] which is used in modern research articles by many

authors. In [12], this construction is called “Rule”, in [10] and [8] “Sig-poly-pair”. A

labelled polynomial is often defined without properties (i) and (ii) from Definition 3.3.4

and when those properties are fulfilled, it is called admissible.

2. During the remaining part of this thesis, we will denote labelled polynomials by calligraphic

letters. To shorten the notation, we introduce the following convention: If F is a labelled

polynomial, then f ∈ Pm is the corresponding module element fulfilling (i) and (ii) from

Definition 3.3.4.

We will use the same notations for labelled polynomials as for module elements. One can always

consider f instead of F to obtain the actual meaning, e.g.

Spol(F ,G) := (MLT (Spol(f , g)), v(Spol(f, g))),

FG,reg
:= {(MLT (f ′), v(f ′)) : f ′ ∈ f

G,reg
)}.

We call a set G = {G1, ...,Gk} a signature Gröbner basis if {g1, ..., gk} is such a basis.

54

3.3.3 Improved algorithm

With the improvements considered in sections 3.3.1 and 3.3.2, we obtain an improved version

of Algorithm 10:

Algorithm 11: Improved signature algorithm

Input: Input polynomials F = (f1, ..., fm), a term order < and a compatible extension

< on Tm.

Output: Signature Gröbner basis G of 〈F 〉, in particular poly(G) gives a Gröbner basis.

1 Set G = {Fi, i ∈ {1, ...,m}};
2 Set P = {Spol(Fi,Fj) = c1uFi − c2vFj : Sig(uFi) > Sig(vFj), i, j ∈ {1, ...,m}};
3 Set H = {Sig(LT (fi)fj − LT (fj)fi) : i 6= j ∈ {1, ...,m}};
4 while P 6= ∅ do

5 Let f be an element of P with minimal signature;

6 P = P \{F};
7 if Sig(F) is not divided by some signature in H then

8 Compute some F ′ ∈ FG,reg
;

9 if f ′ = 0 then

10 H = H ∪ {Sig(F ′)};
11 end

12 else if F ′is not singularly top-reducible then

13 P = P ∪ {Spol(F ′,G) = c1uF ′ − c2vG : Sig(uF ′) 6= Sig(vG),G ∈ G};
14 G = G ∪ {LC(f ′)−1F ′};//add the normalized element

15 end

16 end

17 end

18 return G;

In the next couple of statements, we will show that this algorithm (and also Algorithm 10) are

output-optimal in a certain sense, namely that they return a smallest signature Gröbner basis.

To see this, we need to define certain types of signature Gröbner bases, similar to the ones of

Definition 2.2.2:

Definition 3.3.6 (Reduced/minimal signature Gröbner basis). Let G ⊆ Pm be a sig-

nature Gröbner basis.

(i) G is called a reduced signature Gröbner basis if

∀f, g ∈ G : If Sig(f) ∼ Sig(g), then f = g.

(ii) G is called a minimal signature Gröbner basis if all f ∈ G are Sig-top-irreducible

with respect to G\{g}.

55

We will show some properties of minimal signature Gröbner bases first and prove that Algorithm

10 and Algorithm 11 return minimal signature Gröbner bases afterwards:

Proposition 3.3.7. A minimal signature Gröbner basis is a reduced signature Gröbner basis.

Proof. Let G be a minimal signature Gröbner basis and assume there exist

f 6= g ∈ G, Sig(f) ∼ Sig(g). Since G is minimal we know that f, g are regularly Sig-top-

irreducible. Using Lemma 3.2.7, we obtain LT (f) = LT (g), which implies that f singularly

Sig-top-reduces g (and vice-versa), a contradiction.

Definition 3.3.8. Let G,G′ ⊆ Pm\{0}. We define ...

(i) ... Sig(G) := {Sig(g) : g ∈ G}.

(ii) ... Sig(G) ∼ Sig(G′) :⇔

∀g ∈ G ∃ g′ ∈ G′ : Sig(g) ∼ Sig(g′)

∀g′ ∈ G′ ∃ g ∈ G : Sig(g′) ∼ Sig(g).

(iii) ... s /∈ Sig(G) :⇔ ∀g ∈ G : s � g.

The following theorem shows that all minimal signature Gröbner bases contain the same signa-

tures and leading terms:

Theorem 3.3.9. (compare [10, Theorem 5], stated but not proven there) Let G,G′ be minimal

signature Gröbner bases. Then Sig(G) ∼ Sig(G′), LT (G) = LT (G′). In particular, |G| = |G′|.

Proof. We prove an even stronger result: For all g ∈ G there exists a g′ ∈ G′ :

Sig(g) ∼ Sig(g′), LT (g) = LT (g′).

For that, we first show that it suffices to prove that Sig(G) ∼ Sig(G′): Assume that Sig(G) ∼ Sig(G′),

but there exist g ∈ G, g′ ∈ G′ such that

s := Sig(g) ∼ Sig(g′), LT (g) 6= LT (g′).

Let s be the minimal signature with that property and define

Gs := {h ∈ G : Sig(h) < s}.

Then for all h′ ∈ G′
s there exists h ∈ Gs :

Sig(h) ∼ Sig(h′), LT (h) = LT (h′).

Note that g is Sig-top-irreducible with respect to G by minimality of G, thus g is Sig-top-

irreducible by Gs. It follows that g is also Sig-top-irreducible by G′
s and further by G′. As g

and g′ have the same signature and are both Sig-top-irreducible with respect to G′, applying

Lemma 3.2.7 yields LT (g) = LT (g′), a contradiction.

56

Now we are left to show that Sig(G) ∼ Sig(G′): Let s be the minimal signature such that

Sig(Gs) � Sig(G′
s). Then there exists, without loss of generality, g ∈ G : Sig(g) = s /∈ Sig(G′).

By the same argument as used before, we obtain LT (Gs) = LT (G′
s). Since s /∈ Sig(G′), G′

s

is a signature Gröbner basis in s and hence, there exists g′ ∈ G′
s : LT (g′) |LT (g). But this

contradicts the minimality of G since it follows that g is Sig-top-reducible by G′
s and hence by

G\{g}.
To show the “in particular” part, note that by Proposition 3.3.7, G and G′ are reduced and

therefore,

|G| = |Sig(G)| = |Sig(G′)| = |G′|.

Lemma 3.3.10. (stated in [10, p.4], but not proven there)

(i) Algorithm 10 and Algorithm 11 compute a reduced signature Gröbner basis.

(ii) Algorithm 10 and Algorithm 11 compute a minimal signature Gröbner basis.

Proof.

(i): Assume to the contrary that there exist f 6= g ∈ G such that Sig(f) ∼ Sig(g) where,

without loss of generality, f was added after g. By Proposition 3.2.9 elements are added

in increasing signatures, hence, both f, g are still regularly Sig-irreducible at the step

where f is computed. This implies that LT (f) = LT (g) by Lemma 3.2.7 and thus, g

singularly Sig-top-reduces f . Therefore, f will not be added to G, a contradiction.

(ii): Assume to the contrary that there exists f 6= g ∈ G such that g Sig-reduces f . By

(i), it follows that Sig(g) < Sig(f) and hence g is added before f . By construction, f

is regularly Sig-irreducible at the time it is added to G, so it cannot be regularly Sig-

reduced by g either. Therefore, g singularly Sig-reduces f . But then f would not have

been added to G, a contradiction.

3.4 Rewrite bases

In this section we will mainly follow the ideas of [10] and make use of some aspects considered

in [8].

3.4.1 The idea

We already obtained an output-optimal algorithm which discards many S-polynomials in ad-

vance. Our target here is to strengthen the criteria of discarding unnecessary S-polynomials

as early as possible and to decrease the number of reduction steps taken if a reduction is un-

avoidable. Note that Lemma 3.2.7 helps us for that purpose: If Sig(f) ∼ Sig(g), their regular

57

Sig-reductions with respect to a signature Gröbner basis up to Sig(f) coincide. Hence, it

suffices to compute exactly one of those. To be precise, even more can be said: Instead of

computing the Sig-reduction of an S-polynomial p, we can choose any module element h to

compute the regular Sig-reduction of h as long as Sig(p) = Sig(h). In particular, if p is a

minimal S-polynomial left to examine with signature cs, c ∈ K\{0}, we can take any element

of the set

{vg : v ∈ T, g ∈ G, Sig(vg) ∼ s}

and regularly Sig-reduce this one instead. Together with the set H of known syzygies, we can

choose any element of

Cs := {vg : v ∈ T, g ∈ G ∪H, Sig(vg) ∼ s}.

If H ∩ Cs 6= ∅, we can discard all S-polynomials with this signature straight away by 3.3.1.

Otherwise, we try to find an element of Cs which tends to have few Sig-reduction steps left to

compute and is rather fast to find. The idea is to define a partial order < on G∪H such that all

elements in G are totally ordered and f ≤ h whenever h ∈H. By picking a maximal element

with respect to this order, we discard all S-polynomials of this signature when the signature is

divisible by some known syzygy. Otherwise, we choose the (unique) maximal element of G∩Cs

with respect to the chosen order.

Remark 3.4.1. Note that the examined Cs are always nonempty: We only consider regular S-

polynomials p = uf − vg with Sig(p) ∼ s. Since, without loss of generality, Sig(p) = Sig(uf),

uf ∈ Cs follows.

We are left to define the total order on G. It is useful for the further discussion that this order

fulfills the following property:

Definition 3.4.2.

(i) Let < be a total order on G, fulfilling

∀f, g ∈ G : Sig(f) |Sig(g)⇒ f ≤ g.

Then < is a rewrite order on G.

(ii) Let s be a signature, < a rewrite order on G, u ∈ T . Then uf is called the canonical

rewriter of s if f is the maximal element of Cs and Sig(uf) ∼ s.

Proposition 3.4.3. Let < be a rewrite order on G, f ∈ G and s := Sig(f) not a known

syzygy signature. Then f is the canonical rewriter of s.

Proof. Let u ∈ T, g ∈ G : Sig(ug) ∼ Sig(f). Then Sig(g) |Sig(f) implies by definition that

g ≤ f . Since s is not a syzygy signature, the statement follows.

58

To formalize the discussion above, we introduce a new type of basis, namely the so-called rewrite

basis:

Definition 3.4.4 (Rewrite basis). Let s ∈ Tm, G ⊆ Pm\{0}, < a rewrite order on G.

(i) We call G a rewrite basis in s if the canonical rewriter of s is regularly Sig-top-

irreducible or s is a syzygy signature.

(ii) We call G a rewrite basis up to s if for all t ∈ Tm : t < s, G is a rewrite basis in t.

Theorem 3.4.5. Let s ∈ Tm, G ⊆ Pm\{0}. If G is a rewrite basis up to s, G is a signature

Gröbner basis up to s.

Proof. (compare [10, Lemma 8]) Assume to the contrary that G is not a signature Gröbner

basis. Then there exists f ∈ Pm which is not Sig-reducible to 0 and Sig(f) ∼ t < s. Taking

f with minimal signature, G is a signature Gröbner basis and a rewrite basis up to t. If t is

a known syzygy signature, then f
∗−−→
G

0 follows directly from Lemma 3.3.1, a contradiction.

Thus, t is not a known syzygy signature. Let f ′ ∈ f
G,reg

and let vg with v ∈ T, g ∈ G be the

canonical rewriter of t. Since G is a rewrite basis in t, vg is regularly Sig-top-irreducible and

so is f ′ by construction. Note that

Sig(f ′) = Sig(f) ∼ Sig(vg)

and hence, applying Lemma 3.2.7 yields LT (vg) = LT (f ′). Therefore, we see that for suitable

c ∈ K that cvg singularly Sig-top-reduces f ′. which implies Sig(f ′ − cvg) < t. Since G is a

signature Gröbner basis up to t, f ′−cvg ∗−−→
G

0 follows. Therefore, f
∗−−→
G

0, a contradiction.

Theorem 3.4.5 shows us that finding a correct rewrite basis algorithm leads to a signature

Gröbner basis and therefore, to a Gröbner basis. The following statements show us that exam-

ining certain S-polynomials is enough to create such a rewrite basis.

Lemma 3.4.6. Let G be a rewrite basis up to signature s and s no known syzygy signature.

Furthermore, let uf , u ∈ T,f ∈ G be the canonical rewriter of s and assume there exists a

regular top-reducer g of uf such that LM(cvg) = LM(uf), c ∈ K\{0}, v ∈ T. Then

Spol(f, g) = uf − cvg, Sig(uf − cvg) ∼ s.

In particular: If G is a rewrite basis up to s, but not in s, there exists a regular S-polynomial

p such that Sig(p) ∼ s.

Proof. (compare [10, Lemma 9]) Since LM(cvg) = LM(uf), it suffices by Proposition 3.2.3

(iii) to show that t := gcd(u, v) = 1. Assume to the contrary that t > 1. Defining s = rfi,

observe that t | r since u | r and v | r. Since t > 1, we have that G is a rewrite basis in r
tfi.

59

Therefore, the canonical rewriter of r
tfi, denoted by wh, is regularly Sig-top-irreducible. Note

that

Sig(
u

t
f) =

s

t
fi ⇒ f ≤ h

Sig(twh) = s⇒ h ≤ f .

Since G is totally ordered, it follows that f = h and hence w = u
t . But v

t g regularly Sig-top-

reduces u
t f = wh, a contradiction to wh being regularly Sig-top-irreducible.

The in particular part follows immediately since the canonical rewriter of s is by definition

regularly Sig-top-reducible by some element in Cs.

Corollary 3.4.7. (compare [10, Lemma 10]) G is a rewrite basis up to signature t if and only

if G is a rewrite basis in all signatures s < t where s = fi or there exists a regular S-polynomial

p = Spol(f , g) with f, g ∈ G such that Sig(p) ∼ s.

Proof. The “only if” is obvious by the definition of a rewrite basis. So we are left to show the

“if”-direction: Let G be a rewrite basis in all signatures s < t fulfilling the property defined

above. Assume to the contrary that G is not a rewrite basis up to t. Then there exists a minimal

signature t′ such that G is a rewrite basis up to t′, but not in t′. By the “in particular” part

of Lemma 3.4.6, there exists an S-polynomial p with Sig(p) ∼ t′, a contradiction.

Fortunately, we can use the rewriting argument even for the case when Spol(f, g) = uf − vg
with Sig(uf) > Sig(vg) when vg is not the canonical rewriter:

Lemma 3.4.8. Let G be a rewrite basis up to Sig(f) and let t ∈ T (f) be regularly reducible.

Then there exist c′ ∈ K\{0}, w ∈ T,h ∈ G such that c′wh regularly reduces t, fulfilling the

following properties:

(i) wh is regularly Sig-top-irreducible.

(ii) Sig(wh) is not a syzygy signature.

(iii) wh is the canonical rewriter of Sig(wh).

Proof. (compare [10, Lemma 11]) Since t is regularly Sig-top-reducible, there exist regular

top-reducers. Let cvg, c ∈ K\{0}, v ∈ T, g ∈ G be such a top-reducer with minimal signature

s among them. We will show that the canonical rewriter of s, denoted by wh, fulfills all these

properties. At first, we show that c′wh for suitable c′ ∈ K regularly Sig-reduces t: To do that,

we prove that vg is regularly Sig-top-irreducible: Assuming the contrary, this implies there

exists v′ ∈ T, g′ ∈ G such that

LT (v′g′) = LT (vg), Sig(v′g′) < Sig(vg),

60

contradicting the minimality of vg. Hence, vg is regular top-irreducible. As G is a rewrite basis

up to t and Sig(wh) ∼ s < t, wh is regularly Sig-top-irreducible. Therefore, we can apply

Lemma 3.2.7 and obtain LT (vg) = LT (wh), showing that wh regularly Sig-reduces t. We are

left to show the three stated properties for wh:

(i): Already covered by the discussion above.

(ii): Assume to the contrary that there exists a syzygy f ′ such that Sig(f ′) = s. Then

LT (wh− f ′) = LT (wh), Sig(wh− f ′) < s.

By Theorem 3.4.5, G is a signature Gröbner basis up to Sig(f). Thus, there exists a

(possibly singular) Sig-top-reducer g′ ∈ G of wh−f ′. But this implies that g′ regularly

Sig-top-reduces wh, a contradiction to (i).

(iii): Follows immediately by the construction and (ii).

Summing up all these statements, we obtain a theorem which can be stated in a rather compact

form after defining the term “rewriteable”:

Definition 3.4.9 (Rewriteable). Let f ∈ Pm\{0},G ⊆ Pm,H a set of syzygy signatures.

We call f rewriteable if Sig(f) is divisible by a signature of H or if f is not the canonical

rewriter of Sig(f) (with respect to G).

Theorem 3.4.10. Let s ∈ Tm, G ⊆ Pm a rewrite basis up to s, but not in s, H a set of

syzygies. Then there exists a regular S-polynomial Spol(f, g) = uf − vg with f, g ∈ G such

that the following conditions hold:

(i) vg is not rewriteable.

(ii) uf is not rewriteable

(iii) Sig(Spol(f, g)) ∼ s.

Proof. Let uf be the canonical rewriter of s. Applying Lemma 3.4.8 with t := LT (uf), we

obtain a monomial v and some g ∈ G such that vg is a regular top-reducer of uf , the canonical

rewriter of its signature which is not known to be syzygy. Thus, vg is not rewriteable. Since G

is not a rewrite basis in s, uf is not rewriteable as well. By Lemma 3.4.6, Spol(f, g) = uf −vg
and Sig(Spol(f, g)) ∼ s.

61

3.4.2 Rewrite basis algorithm

Theorem 3.4.10 leads to an idea how to construct a rewrite basis algorithm. As in Algo-

rithms 10 and 11, we can apply the labelled polynomial optimization from Section 3.3.2, since

rewrite orders do not need the whole information from the module element. Note that this

new algorithm, in comparison to Algorithms 10 and 11, does not check whether f ′ is singu-

larly Sig-top-reducible. This is left out intentionally to ensure correctness. Furthermore, we

arranged a small improvement in the following pseudocode as well: Instead of adding the initial

polynomials fi directly to G, we add them to P in the start and treat them as they were

S-polynomials. The algorithm will pick the polynomial with smallest signature first, adding the

other initial polynomials fi at the time no S-polynomial with a smaller signature is left. In

that way, we might reduce those initial polynomials even further than we did by the described

preprocessing in Remark 3.1.9. For that approach, we have to shift the construction of princi-

pal syzygies from initialization to the while-loop, adding syzygy signatures of principal syzygies

si,j , j ∈ {i+ 1, ...,m} at the time the element fi is considered.

Algorithm 12: Rewrite basis algorithm

Input: Input polynomials F = {f1, ..., fm}, a rule to define a rewrite order ≤ on all sets

G ∪H created by the algorithm.

Output: Rewrite basis G of 〈F 〉, in particular v(G) is a Gröbner basis.

1 Set G = ∅;
2 Set P = {Fi, i ∈ {1, ...,m}};
3 Set H = ∅;
4 while P 6= ∅ do

5 Let F = c1uG1 − c2vG2 be an element of P with minimal signature; P = P \{F};
6 if uG1 and vG2 are not rewriteable then

7 F ′ ∈ FG,reg
;//or F ′ ∈ uG1

G,reg

8 if f ′ = 0 then

9 H = H ∪ {Sig(F ′)};
10 end

11 else

12 P = P ∪ {Spol(F ′,G) = uF ′ − vG : Sig(uF ′) 6= Sig(vG),G ∈ G};
13 G = G ∪ {LC(f ′)−1F ′};
14 if Sig(F ′) = fi then

15 H = H ∪ {Sig(gFi − fiG) : G ∈ G};
16 end

17 end

18 end

19 end

20 return G;

62

3.4.3 Proof of Correctness

Lemma 3.4.11. Let G be a rewrite basis up to signature t, computed during the algorithm.

Furthermore let uf be the canonical rewriter of t where t is not a known syzygy signature. Then

Algorithm 12 computes the Sig-reduction of an S-polynomial with signature t if and only if uf

is regularly Sig-top-reducible.

Proof. (compare [10, Lemma 12])

• “If”: Follows directly from Theorem 3.4.10.

• “Only if”: Assume that uf is not regularly Sig-top-reducible. Then there exists no

regular p := Spol(f, g) with Sig(p) ∼ t, g ∈ G. If there is a regular S-polynomial

q := Spol(f ′, g′) with f ′, g′ ∈ G, Sig(q) = u′f ′ ∼ t, then f ′ < f and hence, u′f ′ is

rewriteable. Therefore, Algorithm 12 discards q, and thus, no S-polynomial with signature

t is computed.

Theorem 3.4.12. Algorithm 12 is correct.

Proof. (compare [10, Theorem 7],) Assume by contradiction that Algorithm 12 returns a set

G which is not a rewrite basis in some signature s and let s be minimal with that property.

By Lemma 3.4.7, there exists an S-polynomial p such that Sig(p) ∼ s. Since s is not a known

syzygy signature and the canonical rewriter vg of s is regularly Sig-top-reducible, we know by

Lemma 3.4.11 that the regular reduction of some S-polynomial q with signature s was computed

by the algorithm. By assumption, this q′ ∈ qG,reg is no syzygy (since s is no syzygy signature)

and thus, was added to G. It follows from Proposition 3.4.3 that q′ is the canonical rewriter of

s. But q′ is not regularly Sig-reducible, a contradiction.

Remark 3.4.13.

1. One can show that Algorithm 12 terminates (see [10, Theorem 20]). We skip the details

about this proof for the sake of shortness. Note that termination in those algorithms is

far from trivial, many termination “proofs” for signature basis algorithms (e.g. in [15])

turned out to be false.

2. A similarly tough question concerns the running time of those algorithms. As estimations

for “normal” Gröbner basis algorithms, the running time highly depends on the input set.

Generally, one ends up with doubly exponential bounds, but those bounds are often far too

pessimistic compared with empirical results. For detailed information about Gröbner bases

and complexities, see e.g. [21, Chapter 6].

The following Lemma states a property of Algorithm 12 when <pot is taken as the order exten-

sion. Note that this means advantages as well as disadvantages, as discussed later.

63

Lemma 3.4.14. (idea from [23], p.41) Let Gi be the set G at the time some initial polynomial

fi is examined in Algorithm 12 and let <pot be the order extension for an arbitrary term order

<. Then Gi is a rewrite basis for 〈fi+1, ..., fm〉. In particular, v(Gi) is a Gröbner basis for

〈fi+1, ..., fm〉.

Proof. Since <pot was chosen as the order extension, the initial polynomials fi+1, ...,fm have

been examined before. Additionally, all S-polynomials created by those polynomials have been

treated since they have a lower signature than fi. Applying Theorem 3.4.12, we get that Gi

is a rewrite basis for 〈fi+1, ..., fm〉. The “in particular” part follows from Theorem 3.4.5 and

Proposition 3.1.12.

3.4.4 Choosing the best rewrite order

So far, we did not discuss any particular rewrite order. We will examine and discuss the

properties of the most interesting ones in the next section.

Definition 3.4.15 (Interesting rewrite orders).

(i) Number-order <num (see [26]): This order can only be defined via Algorithm 12, equipping

each element in G with a unique number in the following way: When some f is added to

G, we set Num(f) := |G|. In that way, we can define

f <num g :⇔ Num(f) < Num(g).

(ii) Ratio-order <rat (see [10]):

f <rat g :⇔

Sig(f)LT (g) < Sig(g)LT (f) or

Sig(f)LT (g) = Sig(g)LT (f), Sig(f) < Sig(g).

(iii) F5-order <F5 (see [10]): We define the index of a module element f with Sig(f) = ctfi,

c ∈ K\{0}, t ∈ T as index (f) := i. For

Sig(f) = ctfi, Sig(g) = c′ugj ,

we define

f <F5 g :⇔

index(f) > index(g) or

index(f) = index(g), deg(t) ≤ deg(u) or

index(f) = index(g), deg(t) = deg(u), arbitrary rule.

Remark 3.4.16. For shorter notation, we denote the Sig-lead-ratio of f ∈ G by

rf :=
Sig(f)

LT (f)
.

64

Using the default way of defining orders on fractions, we set

rf < rg :⇔ Sig(f)LT (g) < Sig(g)LT (f).

In that way, we can state the ratio order more compactly:

f <rat g ⇔

rf < rg or

rf = rg, Sig(f) < Sig(g).

This explains why we call this “ratio order”.

Proposition 3.4.17. Let f, g ∈ G, Sig(uf) ∼ Sig(vg), vg regularly Sig-top-irreducible.

Then rf ≤ rg.

Proof. (compare [10, Lemma 14]) For f ′ ∈ uf
G,reg

, we have LT (uf) ≥ LT (f ′). Since

Sig(f ′) ∼ Sig(vg) and both elements are regularly Sig-top-irreducible, applying Lemma 3.2.7

yields LT (vg) = LT (f ′). Since Sig(uf) ∼ Sig(vg), rf ≤ rg follows.

Lemma 3.4.18. Let G ⊆ Pm\{0} consist of elements with pairwise distinct signatures. Then

all three defined orders are rewrite orders.

Proof. By definition and the property of distinct signatures in G, all three orders totally order

G, hence, it suffices to show that

∀f, g ∈ G : Sig(f) |Sig(g)⇒ f ≤ g. (3.4)

(i) <num: Let f , g ∈ G. Since elements in Algorithm 12 are added in increasing signature to

G, we have

Sig(f) ≤ Sig(g)⇔ Num(f) < Num(g).

As Sig(f) |Sig(g) implies Sig(f) ≤ Sig(g), (3.4) follows.

(ii) <rat (compare [10, Theorem 13]): Let f, g ∈ G, Sig(f) |Sig(g). Then there exists

t ∈ T : Sig(tf) ∼ Sig(g). We consider two cases:

• If g is an initial polynomial fi, then Sig(f) |Sig(g) implies Sig(f) ∼ Sig(g). By

the property of distinct signatures in G, f = g and thus, (3.4) follows trivially.

• If g is no initial polynomial, it was constructed via regular Sig-reductions and is

regularly irreducible at the time of its construction. Since all elements added later

to G have a larger signature than g, it is still regularly irreducible at the end of

the algorithm. Applying Proposition 3.4.17 for uf , 1g, we obtain rf ≤ rg. For

rf < rg, f ≤rat g holds by definition. So we are left to prove the case rf = rg: Since

Sig(f) |Sig(g) implies Sig(f) ≤ Sig(g), f ≤rat g follows as well.

65

(iii) ≤F5: Let Sig(f) = ctfi, Sig(g) = c′ufj . Note that Sig(f) |Sig(g) implies

indexf = i = j = index g, deg(t) ≤ deg(u).

Thus, f ≤F5 g follows.

One might ask why are those specific orders considered? The idea for the number order is to

choose the element added the latest since we hope that this element is reduced the farthest. For

the ratio-order, see the following result:

Lemma 3.4.19. Let f , g ∈ G, s ∈ Tm and let u, v ∈ T such that Sig(uf) ∼ Sig(vf) ∼ s. If

g is the maximal element of Cs with respect to <rat, then LT (vg) ≤ LT (uf).

Proof. (compare [8, Remark 7.14]) Note that f <rat g implies

LT (g)Sig(f) ≤ LT (f)Sig(g).

Multiplying the inequality by uv yields

LT (vg)s = vLT (g)Sig(uf) ≤ uLT (f)Sig(vg) = LT (uf)s.

Hence, LT (vg) ≤ LT (uf) follows.

Lemma 3.4.19 shows us that the ratio-order chooses an element f where uf has the lowest

leading term among all elements in Cs where Sig(uf) ∼ s. This seems to be a good heuristic

since having a small leading term tends to imply few reduction steps. The order <F5 has no

certain characterization but is implicitly used in the F5 Algorithm as seen later. With the

assumptions made for F5 to work correctly, it behaves similarly to the number order, but not

exactly in the same way. The rule to break ties which was left arbitrary in Definition 3.4.15 is

implicitly defined by F5 in the code. However, the way this rule is defined does not have an

impact on correctness.

To choose the best rewrite order, note that Lemma 3.4.11 shows us that the reduction of an

S-polynomial of signature s has to be computed if and only if the canonical rewriter of s is

Sig-top-reducible. Note that by Proposition 3.4.3, we maximally compute the reduction of

one S-polynomial for each signature, regardless of which rewrite order we choose. Thus, the

following theorem shows that ≤rat is optimal in the following sense:

Theorem 3.4.20. Algorithm 12 applied with rewrite order ≤rat leads to a minimal signature

Gröbner basis.

Proof. (compare [10, Theorem 13]) Let G be the rewrite basis obtained by Algorithm 12 with

rewrite order<rat. Assume to the contrary that there exists g ∈ G with signature t such that g is

66

Sig-top-reducible by G \{g}. Therefore, g is Sig-top-reducible by Gt := {g ∈ G : Sig(g) < t}.
By construction, g is regularly irreducible, thus singularly top-reducible. This means that there

exist u > 1 ∈ T,f ∈ Gt :

Sig(uf) ∼ Sig(g), LT (uf) = LT (g).

Since g was added, it holds that g ∈ whG,reg
where wh was the canonical rewriter of t at that

time. By Lemma 3.4.11, wh is regularly top-reducible and hence,

LT (uf) = LT (g) < LT (wh)

follows. But f ∈ Gt and thus, uf would rewrite wh, a contradiction to wh being the canonical

rewriter.

By Lemma 3.3.9, all minimal signature Gröbner bases have the same cardinality. Since one can

clearly compute a minimal signature Gröber basis out of an arbitrary one by simply deleting

not necessary elements, we have that Algorithm 12 with ≤rat as rewrite order computes the

smallest signature Gröbner basis among all possible rewrite orders.

Remark 3.4.21. Other rewrite orders actually lead, in many examples, to larger Gröbner

bases. To see such an example where order <F5 is used, see [10], Example 19.

3.5 Regular sequences and F5

3.5.1 Regular sequences

In this section we will state the quite famous result (originally stated in [12] for F5) that

Algorithm 12 works specifically well if we use the order extension <pot and the (ordered) input

set F , has a specific structure called “regular sequence”:

Definition 3.5.1 (Regular sequence). Let F = (f1, ..., fm) be a sequence of polynomials

defining a zero-dimensional ideal with deg(fi) = di.

(i) F is called to be a d-regular sequence for some d ∈ N∞ if

∀i ∈ {1, ...,m} ∀g ∈ P with deg(g) < d− di :

If gfi ∈ 〈fi+1, ..., fm〉, then g ∈ 〈fi+1, ..., fm〉.

(ii) F is called to be a regular sequence if it is d-regular with d =∞.

Lemma 3.5.2. (compare [23, Theorem 3.32 and Corollary 3.33]) Let F be a d-regular se-

quence, f not an initial polynomial with signature tfi such that

deg(Sig(f)) := deg(t) + deg(fi) ≤ d. (3.5)

67

Then f will not be reduced to 0 by Algorithm 12 when using <pot as order extension.

Proof. Without loss of generality, let i = 1. Assume to the contrary that f regularly Sig-

reduces to a syzygy h =
∑m

i=1 hifi. Note that

h1f1 = −
m∑
i=2

hifi ∈ 〈f2, ..., fm〉.

Since LM(h1)f1 = Sig(h) = Sig(f), we have deg(f1h1) ≤ d. By the d-regularity of F ,

h1 ∈ 〈f2, ..., fm〉 follows. In particular,

LT (h1) ∈ LT (〈f2, ..., fm〉).

Since f is examined after f1, v(G) contains a Gröbner basis of 〈f2, ..., fm〉 by Lemma 3.4.14 at

that time. Hence, there exists g ∈ G:

index(g) > 1, LT (g) |LT (h1).

Note that LT (g)f1 would have been added to H at the time when the initial polynomial f1

was examined, which was before the reduction of f . But then, Sig(f) would have been a known

syzygy signature and hence, f would have been discarded, a contradiction.

Corollary 3.5.3. If F is regular and no initial polynomial reduces to zero, no reduction to 0

is computed by Algorithm 12 when using <pot as order extension.

Proof. Since all module elements f satisfy (3.5) for d =∞, the statement follows directly from

Lemma 3.5.2.

Remark 3.5.4.

1. An overdetermined system can never be regular. This follows from the algebraic fact that

K[x1, ..., xn] is a Cohen-Macaulay ring of Krull dimension n. Since in Cohen-Macaulay

rings, the Krull dimension equals the longest regular sequence, the result follows. For a

complete treatment of these definitions and statements, see [11, in particular Chapter 18].

Therefore, Corollary 3.5.3 does not say anything for overdetermined systems. However,

one can state similar results to adapted definitions such that very few zero reductions are

actually computed. On the first sight, this seems to suggest that the <pot order extension

works well, but in that way we create more polynomials than necessary. Taking other order

extensions, we create fewer polynomials, but increase the number of zero reductions again.

We will come back to that topic at the end of this chapter.

2. One might be tempted to additionally implement Buchberger’s criteria from section 2.3.2,

but it can be shown (see [7]) that S-polynomials, which can be discarded due to Buchberger’s

criteria, are already detected by the criteria of Algorithm 12. Hence, implementing them

does not decrease the number of examined S-polynomials.

68

To round up this chapter, we want to state an alternative formulation of the Syzygy Criterion,

when considering regular sequences:

Theorem 3.5.5. (compare [10, Theorem 17]) Let G be a signature Gröbner basis up to fi

for some i ∈ {1, ...,m} and let the order extension be <top. Furthermore, let F be a regular

sequence, t ∈ T . Then, the following statements are equivalent:

(i) tfi is a known syzygy signature.

(ii) ∃g ∈ G : index(g) > i, LT (g)| t.

To prove that, we need a Lemma which itself is an interesting structural result for regular

sequences:

Lemma 3.5.6. (compare with [23, Theorem 3.4]) Let F = (f1, ..., fm). Then the following

statements are equivalent:

(i) F is a regular sequence.

(ii) PSyz(F) = Syz(F).

Proof. For this proof, remember the definition of principal syzygies

si,j := fifj − fjfi, 1 ≤ j < i ≤ m.

“(i)→(ii)”: We show this inductively for i = m to i = 1. Obviously,

Syz({fm}) = {0} = PSyz({fm}),

so the induction basis is done. Note that it suffices to show the induction step from 2 to 1. For

that, let s =
∑m

i=1 sifi ∈ Syz({f1, ..., fm}). This implies

s1f1 = −
m∑
i=2

sifi

and since {f1, ...fm} is regular, s1 ∈ 〈f2, ..., fm〉. Therefore,

s1 =
m∑
i=2

gifi for some gi ∈ P

and thus,
m∑
i=2

f1gifi = f1s1 = −
m∑
i=2

sifi.

Hence,

t :=
m∑
i=1

(f1gi + si)fi ∈ Syz({f2, ..., fm}).

69

By induction hypothesis, t ∈ PSyz({f2, ..., fm}) ⊆ PSyz(F) follows. Since

m∑
i=2

gis1,i ∈ PSyz(F)

and

t +
m∑
i=2

gis1,i = t +
m∑
i=2

gifif1 −
m∑
i=2

gif1fi =
m∑
i=2

gifif1 +
m∑
i=2

sifi = s,

we obtain s ∈ PSyz(F).

“(ii)→(i)”: We have to show that for g ∈ P such that gfk ∈ 〈fk+1, ..., fm〉, g ∈ 〈fk+1, ..., fm〉
follows. For that, assume, without loss of generality, k = 1. Since gf1 ∈ 〈f2, ..., fm〉,

gf1 =
m∑
i=2

gifi, gi ∈ P.

Hence,

s = gf1 +

m∑
i=2

gifi ∈ Syz(F) = PSyz(F)

and therefore,

s =
m∑
i=1

m∑
j=i+1

ci,jsi,j with ci,j ∈ P.

This yields

gf1 =
m∑
j=2

c1,jfjf1

and accordingly,

g =

m∑
j=2

c1,jfj ∈ 〈f2, ..., fm〉.

Proof of Theorem 3.5.5. “(i)→(ii)”: Let h ∈ Syz({fi, ..., fm}) with Sig(h) ∼ tfi. Since F

is regular, we know from Lemma 3.5.6 that h ∈ PSyz({fi, ..., fm}). Thus, we can write

h =

m∑
k=i+1

m∑
j=k+1

pj,k(fkfj − fjfk), where pj,k ∈ P.

Therefore,

Sig(h) ∼ LT (
m∑

j=i+1

pj,ifj)fi = tfi.

Note that
∑m

j=i+1 pj,ifj 6= 0 since index(h) = i. By Lemma 3.4.14, v(G) is a Gröbner basis for

70

〈fi+1, ..., fm〉 which implies that for

g̃ =

m∑
j=i+1

pj,ifj ∈ 〈fi+1, ..., fm〉,

there exists a g ∈ G such that

LT (g) |LT (g̃) = t, index(g) > i.

“(ii)→(i)”: Conversely, let g ∈ G such that

LT (g) | t, index(g) =: j > i.

Observe that h := gfi − fig is a syzygy with Sig(h) = LT (g)fi and this syzygy signature is

known since at the iteration we examined fi, Sig(gfi − fig) = LT (g)fi was added to H.

Remark 3.5.7. Note that the condition (ii) of Theorem 3.5.5 was used by the original F5

algorithm in [12] which was designed specifically for regular sequences. The definition of “not

normalized” in [12] is equivalent to condition (ii) of Theorem 3.5.5 and therefore, to the syzygy

criterion of Algorithm 12 applied to regular input sequences. With some small additional con-

siderations, it can be shown that F5 is a special case of Algorithm 12 (see [10]).

Remark 3.5.8. Most authors, in particular in [12] and many following research articles, con-

sider only the <pot order extension. For that extension, well-structured results like the one in

Corollary 3.5.3 about the number of reductions to zero can be shown. However, this order exten-

sion leads to a big issue as well: As we have seen in Lemma 3.4.14, the algorithm incrementally

computes signature Gröbner bases Gi for 〈fi, ..., fm〉. In many cases, such intermediate bases

are much larger than a signature Gröbner basis of 〈f1, ..., fm〉 needs to be. A proposal to over-

come this was F5R in [23] and the further development into F5C in [9] with the following idea:

Once we obtain a signature Gröbner basis Gi, we extract v(Gi) and interreduce this Gröbner

basis to obtain a minimal Gröbner basis {g1, ..., gk} for 〈fi, ..., fm〉. To obtain correct signatures

again, we consider {f1, ...fi−1, g1, ..., gk} as the new initial polynomials and extend the signa-

ture accordingly (the considered module is now P i+k−1). In that way, we reduce the number

of examined S-polynomials a lot since we always interreduce the intermediate Gröbner bases.

Nevertheless, the algorithm still needs to work with those (reduced) intermediate Gröbner bases,

which on its own might be much larger than the final Gröbner basis for 〈f1, ..., fm〉. Thus, the

definition of other order extensions was introduced in [18] with some of them working empirically

better than <pot.

71

4 M5GB - a new hybrid approach

In this section we want to combine the ideas about rewrite bases and those of M4GB. The result

we aim to achieve is an algorithm which combines the strengths of both algorithms:

• The fast reduction of polynomials due to M4GB structure.

• The well-working criteria from signature algorithms to discard almost all unnecessary

S-polynomials.

4.1 Idea explanation

Remember from Remark 3.1.8 that bold small letters, e.g. f, g are module elements with f, g

being their images under the evaluation homomorphism v = vF where F = {f1, ..., fm} is the

set of input polynomials. The overall structure of the algorithm discussed below is mostly the

same as in Algorithm 12, only differing in the regular reduction step. For the sake of simplicity,

we will state the idea in module elements again as we did for Algorithm 10.

Algorithm 13: M5GB main routine

Input: Input polynomials F = {f1, ..., fm}, a rule for a rewrite order < on all G ∪H

created during the algorithm and an order extension < on Tm.

Output: rewrite basis G of 〈F 〉, in particular v(G) is a Gröbner basis

1 Set G = ∅;
2 Set M = ∅;//usage of M described later

3 Set P = {fi : i ∈ {1, ...,m}};
4 Set H = ∅;
5 while P 6= ∅
6 Let f = ug1 − vg2 be a minimal element of P with respect to their signatures.;

7 P = P \{f};
8 if ug1 and vg2 are not rewriteable then

9 f ′ = M5GB-Reduce(f ,M ,G);

10 if f ′ = 0 then

11 H = H ∪ {Sig(f ′)};
12 end

73

13 else

14 P = P ∪ {Spol(f ′, g) = uf ′ − vg : Sig(uf ′) 6= Sig(vg), g ∈ G};
15 G = G ∪ {LC(f ′)−1f ′};//add the normalized element

16 if Sig(f ′) = fi then

17 //f ′ comes from an initial polynomial fi

18 H = H ∪ {Sig(gfi − fig) : g ∈ G};
19 end

20 end

21 end

22 end

23 return G;

The rest of this section is to discuss the function M5GB-Reduce which should compute f ′ ∈ fG,reg
.

A single reduction step will be similar to M4GB with the following changes: First, we need to

change the perspective to modules again, making the sets M ,G ⊆ Pm. Analogously to M4GB,

the set M should contain Sig-tail-irreducible monomial multiples of G. M will be augmented

when needed analogously to M4GB when a term t is Sig-reducible by G, but t /∈ LT (v(M))

yet. As in Algorithm 12, we want G to remain a rewrite basis and hence a signature Gröbner

basis up to the current examined signature. The following problems might occur:

(i) We add a new element f to G with vLT (f) = t ∈ T (Tail(g)) for some g ∈M . Assume

that in a later reduction step, g is chosen to reduce a polynomial h as in M4GB. But since

h−g has a regularly reducible term which was not there in h, the advantageous property

of M4GB is destroyed.

(ii) Assume we already have some f ∈ G with vLT (f) = t ∈ T (Tail(g)) for some g ∈M , but

Sig(vf) > Sig(g). Hence, t was Sig-reducible when g was initially created. Analogously

to (i), this reduction becomes regular when the examined signature increases, causing the

same problem.

The first point is an issue that also occurs in the M4GB algorithm and is there treated by the

introduction of a new generation when an element f is added to G. Doing the same for (ii)

seems computationally very expensive since we would have to introduce a new generation at

each S-polynomial examined and in that way, we almost always need to check whether some

g ∈ M fulfills case (ii), implying the computation of an additional Tail-Reduction. This is

the reason why we came up with the idea to additionally add a so-called “signature flag” to

each module element. The idea of that flag is to define it as the minimal signature for that

(ii) might cause a problem. In that way, if this signature is not yet reached, g ∈ G is still

(Sig-)tail-irreducible and does not need to be updated.

74

4.2 New definitions

To make these ideas more precise, consider the following definition which generalizes the idea

of signature reductions:

Definition 4.2.1 (Reduction up to a signature). Let f ∈ Pm, u ∈ T, s ∈ Tm ∪ {∞}.
Furthermore, let G ⊆ Pm be a set of monic module elements.

• We say u is regularly reducible by G and up to s if there exist g ∈ G, v ∈ T :

vLT (g) = u, Sig(vg) < s.

• We say f is regularly reducible by G and up to s if there exists t ∈ T (f) such that t

is regularly reducible by G and up to s. If vg is such a Sig-reducer of f , we define such

a reduction step by

f −−−→
G,s

f − ct(f)vg

and a finite number of such reduction steps (including 0 steps) by

f
∗−−−→

G,s
f ′.

• We define

TG(f, s) := {t ∈ T (f) : t is regularly reducible with respect to G and up to s}.

• f is called Sig-irreducible with respect to G and up to s if TG(f, s) = ∅.

• f ′ ∈ Pm is called to be a normal form of f with respect to G and up to s if

f
∗−−−→

G,s
f ′

and f ′ is Sig-irreducible with respect to G and up to s. We define

f
G,s

:= {f ′ ∈ Pm : f ′ is a normal form of f with respect to G and up to s}.

• f is called Sig-tail-irreducible with respect to G and up to s if TG(Tail(f), s) = ∅.

• f ′ is called to be a tail normal form of f with respect to G and up to s if

f
∗−−−→

G,s
f ′,

LM(f) = LM(f ′) and f ′ is Sig-tail-irreducible with respect to G and up to s. We define

f
Tail,G,s

:= {f ′ ∈ Pm : f ′ is a tail normal form of f with respect to G and up to s}.

75

Remark 4.2.2.

1. If s ∼ Sig(f), then f −−−→
G,s

f ′ coincides with f −−−−→
G,reg

f ′ and therefore, f
G,s

= f
G,reg

.

2. If s = ∞, then f −−−→
G,s

f ′ coincides with f −−−→
v(G)

f ′ since the signature condition from

Definition 4.2.1 is always fulfilled.

Similar to the often used Lemma 3.2.7, we can state the following properties for normal forms:

Lemma 4.2.3. Let f ∈ Pm,G a signature Gröbner basis up to s and Sig(f) < s. Then the

following two statements hold:

(i) If f ′ ∈ f
G,s

, then f ′ is a syzygy.

(ii) If g, g′ ∈ f
G,s

, then g = g′.

Proof.

(i): Since Sig(f ′) < s and G is a signature Gröbner basis up to s, we know that f ′ ∗−−−→
G,s

0.

By definition, f ′ is Sig-irreducible with respect to G and up to s, thus f ′ is already a

syzygy itself.

(ii): Note that LM(g) = LM(g′) and hence, LT (g − g′) < LT (f). Since g, g′ are both

Sig-irreducible with respect to G and up to s, g − g′ is it as well. Furthermore, since

Sig(g − g′) < s, g − g′ ∗−−−→
G,s

0. Therefore, g − g′ is a syzygy, yielding g = g′.

The following statements contain both the basic ideas for the M5GB Algorithm as well as the

main part for its correctness. We will start with a result which seems trivial, but nevertheless

is crucial for further discussion:

Proposition 4.2.4. Let f ∈ Pm, s, t ∈ Tm, s ≥ t.

(i) For f ′ ∈ f
G,t

, we have f ′G,s ⊆ f
G,s

.

(ii) For g ∈ f
Tail,G,t

, we have gTail,G,s ⊆ f
Tail,G,s

.

Proof. Since f
∗−−−→

G,s
f ′ for (i) and f

∗−−−→
G,s

g, LM(f) = LM(g) for (ii), the statements follow

immediately.

Lemma 4.2.5. Let f ∈ Pm, s ∈ Tm∪{∞} and let G ⊆ Pm be a set of monic module elements.

Fixing for all t ∈ TG(f, s) some mt ∈ vtgtTail,G,s where gt ∈ G, LT (vtgt) = t, Sig(vtgt) < s.

Then

f ′ := f −
∑

t∈TG(f,s)

Ct(f)mt ∈ f
G,s

.

In particular, if s ∼ Sig(f),f ′ ∈ f
G,reg

.

76

Proof. Since

TG(f ′, s) ⊆
⋃

t∈T (f)

TG(mt, s) = ∅,

it follows that f ′ is regularly Sig-irreducible with respect to G. So we are left to show that

f
∗−−−→

G,s
f ′ : For that reason, let

TG(f, s) = {t1, ..., tk} with t1 ≥ t2 ≥ ... ≥ tk.

If TG(f, s) = ∅, then f ′ = f and the statement follows trivially. Otherwise, we start to reduce

the term tk by its corresponding Sig-reducer ctk(f)vkgk. Note that

TG(f, s) ∩ TG(Tail(vkgk), s) = ∅

since if both sets are nonempty,

minTG(f, s) > maxT (Tail(vkgk), s) ≥ maxTG(Tail(vkgk), s).

Thus, all Sig-reductions up to s for Tail(ctk(f)vkgk) are Sig-reductions for f − ctk(f)vkgk,

hence,

f
∗−−−→

G,s
f − ctk(f)vkgk +

lk∑
j=1

vk,jgk,j = f −mtk .

Using that argument iteratively for tk−1, ..., t1, we obtain that f
∗−−−→

G,s
f ′ and therefore,

f ′ ∈ f
G,s

follows.

Corollary 4.2.6. Let f ∈ Pm, s ∈ Tm and let G ⊆ Pm be a set of monic module elements.

Fixing for all t ∈ TG(Tail(f), Sig(f)) some mt ∈ vtgt
Tail,G,s where gt ∈ G, LT (vtgt) = t,

Sig(vtgt) < s. Then

f ′ := f −
∑

t∈TG(Tail(f),s)

Ct(f)mt ∈ f
Tail,G,s

.

Proof. The proof can be made completely analogously to that of Lemma 4.2.5 except using

TG(Tail(f), s) instead of TG(f, s).

Remark 4.2.7. Lemma 4.2.5 with the special case of s =∞ (i.e. all reductions are allowed)

can be applied to prove Lemma 2.6.5 from section 2.6. Together with Corollary 4.2.6 and

Proposition 4.2.4, applied with s =∞, we obtain the missing part of correctness for M4GB.

Lemma 4.2.5 and Corollary 4.2.6 include the main ideas how to compute the regular reduction

step in the M5GB Algorithm: For t ∈ TG(f, Sig(f)), we have mt ∈ vtgt
Tail,G,Sig(f) and

apply Lemma 4.2.5 to get some f ′ ∈ f
G,reg

. To compute mt, we use Corollary 4.2.6 with

s = Sig(f), f = vtgt. For that, we apply Corollary 4.2.6 recursively. To increase efficiency,

77

we save at the reduction of some f for given t ∈ T the element mt in a new set M ⊆ Pm. If

we have some g ∈ Pm with Sig(g) > Sig(f), t ∈ T (g), we use Proposition 4.2.4 to start with

the already partially reduced f ′ ∈ vtgt
Tail,G,Sig(f) for computing some g′ ∈ vtgt

Tail,G,Sig(g)

instead of starting over again with vtgt. The advantage is that we only have to reduce terms in

TG(g, Sig(g)) \ TG(g, Sig(f)) instead of all terms in TG(g, Sig(g)).

4.3 Basic Pseudocode

The ideas gathered in Section 4.2 are already enough to state a first M5GB-reduction pseudo

code:

Algorithm 14: M5GB-Reduce

Input: f ∈ Pm, G,M ⊆ Pm.

Output: Possibly changed set M , f ′ ∈ f
G,reg

.

1 Set f ′ = f ;

2 for t ∈ TG(f, Sig(f)) do

3 //∃g ∈ G, v ∈ T such that LT (vg) = t, Sig(vg) < Sig(f)

4 if ∃m ∈M : LT (m) = t then

5 m′ = M5GB-Tail-Reduce(m, Sig(f),G,M);

6 M = M \{m};
7 end

8 else

9 m′ = M5GB-Tail-Reduce(vg, Sig(f),G,M);

10 end

11 f ′ = f ′ − ct(f)m′;

12 M = M ∪ {m′};
13 end

14 return f ′;

Algorithm 15: M5GB-Tail-Reduce

Input: f ∈ Pm, s ∈ Tm,G,M ⊆ Pm.

Output: Possibly changed set M , f ′ ∈ f
Tail,G,s

.

1 Set f ′ = f ;

2 for t ∈ TG(Tail(f), s)

3 //∃g ∈ G, v ∈ T such that LT (vg) = t, Sig(vg) < Sig(f)

4 if ∃m ∈M : LT (m) = t then

5 m′ = M5GB-Tail-Reduce(m, s,G,M);

6 M = M \{m};

78

7 else
8 m′ = M5GB-Tail-Reduce(vg, s,G,M);
9 end

10 f ′ = f ′ − ct(f)m′;
11 M = M ∪ {m′};
12 end
13 return f ′;

Theorem 4.3.1. The basic M5GB Algorithm is correct.

Proof. Since the main layout is the same as the one for Algorithm 12, it suffices to show that

M5GB-Reduce is correct. To see that, note that M5GB-reduction is called for module elements

in increasing signature and hence, correctness follows from Lemma 4.2.3, Proposition 4.2.4,

Lemma 4.2.5 and Corollary 4.2.6. Since we decrease the leading term of the polynomial in each

call, the recursion depth is finite, hence the routine eventually terminates.

4.4 Improvements

In this section, we will concentrate on mathematical improvements and not on implementation

details which are shortly discussed later. There are many ways how we can improve this basic

algorithm, namely:

1. Implementing generations and signature flags.

2. Fast checks for irreducibility.

3. Doing a labelled polynomial optimization as in Section 3.3.2.

4. Checking divisibility by M instead of G.

4.4.1 Generations and signature flags

A major problem of the basic M5GB-reduction is that we call M5GB-Tail-Reduce at all times,

even when some m ∈M is found which is Sig-tail-irreducible up to the current signature. To

avoid those useless comparisons, we introduce generations like in M4GB and signature flags as

two fast checks whether some m ∈M is still Sig-tail-irreducible. Assume that some element m

is added to M when some element f is M5GB-reduced. Then, m is by construction Sig-tail-

irreducible with respect to GSig(f) and up to Sig(f). When m is called later when reducing

some g with respect to GSig(g) where Sig(g) > Sig(f), there are, as mentioned in Section 4.1,

two possibilities for m being not Sig-tail-irreducible with respect to GSig(g) and up to Sig(g):

(i) ∃t ∈ T (Tail(m)),h ∈ GSig(f), v ∈ T, Sig(f) ≤ Sig(vh) < Sig(g) : LT (vh) = t.

79

(ii) ∃t ∈ T (Tail(m)),h ∈ GSig(g)\GSig(f), v ∈ T, Sig(vh) < Sig(g) : LT (vh) = t.

To treat (i), we introduce the signature flag:

Definition 4.4.1 (Signature flag). Let m be constructed when some element f is M5GB-

reduced. We define

Flag(m) := inf{s ∈ Tm ∪ {∞} : m is Sig-tail-reducible with respect to GSig(f) and up to s}.

Remark 4.4.2. Note that this set is always finite. Hence, if the set is non-empty, we can

define it as minimum as well. For the case of an empty set, we apply the definition of the

infimum to obtain the signature ∞.

If we have Flag(m) = s and Sig(g) ≤ s, then (i) is not possible. The idea to compute this

signature flag is straightforward: During M5GB-Tail-reduce, we check for each term

t ∈ T (Tail(m))\TGSig(f)
(Tail(m), s) if there exist h ∈ G, v ∈ T such that

LT (vh) = t, Sig(vh) > Sig(f). (4.1)

We obtain Flag(m) as the minimal signature of those vh fulfilling the properties in (4.1).

Remark 4.4.3. Note that

inf{Sig(vh) > Sig(f) : h ∈ GSig(f), v ∈ T : LT (vh) ∈ T (Tail(m))\TGSig(f)
(Tail(m), s)} =

inf{s ∈ Tm : m is Sig-tail-reducible with respect to GSig(f) and up to s}

if

{h ∈ GSig(f), v ∈ T : LT (vh) ∈ T (Tail(m))\TGSig(f)
(Tail(m), s), Sig(vh) > Sig(f)}

is nonempty. If this set is empty, m is irreducible and hence,

inf{s ∈ Tm : m is Sig-tail-reducible with respect to GSig(f) and up to s} =∞.

To treat (ii), we introduce generations with the same idea already used in [20] for M4GB:

Definition 4.4.4 (Generation). Let m be constructed when some element f is M5GB-

reduced. We define

Gen(m) := |GSig(f)|.

If we have Gen(m) = k and |GSig(g)| = k, then (ii) is not possible. To sum up, assume we want

to reduce some g by some m where Flag(m) ≥ Sig(g) and Gen(m) = |GSig(g)|. Then we know

that m is Sig-tail-irreducible up to Sig(g) and hence, can be directly used to reduce g. Let us

80

consider now what we do if one of those cases is not fulfilled. If Gen(m) = |GSig(f)| < |GSig(g)|,
we check if

{h ∈ GSig(g)\GSig(f) : ∃t ∈ T (Tail(g)), v ∈ T : LT (vh) = t}

is nonempty. If this is the case, we call Tail-M5GB-reduce on all those vh and reduce m by

that vh
Tail,G,s

. Note that we need to update the signature flag of this reduced element as well,

in the same way as discussed above. However, it is sufficient to look through GSig(g)\GSig(f).

To sum up, see the improved M5GB-Tail-reduce routine:

Algorithm 16: Flag-Generation M5GB-Tail-Reduce

Input: f ∈ Pm, s ∈ Tm,G,M ⊆ Pm where M,G are equipped with signature flags

and generations.

Output: Possibly changed set M , f ′ ∈ f
Tail,G,s

.

1 Set f ′ = f ;

2 for t ∈ TG(Tail(f), s) do

3 //∃g ∈ G, v ∈ T such that LT (vg) = t, Sig(vg) < Sig(f)

4 if ∃m ∈M : LT (m) = t then

5 m′ = Update(m, sG,M);

6 M = M \{m};
7 end

8 else

9 m′ =Flag-Generation M5GB-Tail-Reduce(vg, s,G,M);

10 Gen(m′) = |G|;
11 end

12 f ′ = f ′ − ct(f)m′;

13 M = M ∪ {m′};
14 end

15 CreateFlag(f ′,G);

16 Gen(f ′) = |G|;
17 return f ′;

Algorithm 17: Update

Input: f ∈ Pm, s ∈ Tm,G,M ⊆ Pm where M,G are equipped with generations and

signature flags.

Output: Possibly changed set M , f ′ ∈ f
Tail,G,s

.

1 if Gen(f) = |G| then

2 if Flag(f) ≥ s then

3 return f ;

4 end

81

5 else

6 return Flag-Generation M5GB-Tail-Reduce(f , s,G,M);

7 end

8 end

9 else

10 for t ∈ TG\Gf
(Tail(f), s) do

11 //∃g ∈ G\GSig(f), v ∈ T such that LT (vg) = t, Sig(vg) < Sig(f)

12 if ∃m ∈M : LT (m) = t then

13 m′ =Update(m, sG,M);

14 M = M \{m};
15 end

16 else

17 m′ =Flag-Generation M5GB-Tail-Reduce(vg, s,G,M);

18 Gen(m′) = |G|;
19 end

20 f ′ = f ′ − ct(f)m′;

21 M = M ∪ {m′};
22 end

23 if Flag(f) ≥ s then

24 Flag(f ′) = min{Flag(f), CreateF lag(f ′,GSig(f))};
25 return f ′;

26 end

27 else

28 return Flag-Generation M5GB-Tail-Reduce(f ′, s,G,M);

29 end

30 end

Algorithm 18: CreateFlag

Input: f ∈ Pm, s ∈ Tm,G ⊆ Pm.

Output: Signature s ∈ Tm ∪ {∞} such that f is Sig-tail-irreducible with respect to G

and up to s

1 if {g ∈ G | ∃v ∈ T, t ∈ T (Tail(f)) : LT (vg) = t} 6= ∅ then

2 return min{Sig(vg) | v ∈ T, g ∈ G, t ∈ T (Tail(f)) : LT (vg) = t};
3 end

4 else

5 return ∞;

6 end

82

Theorem 4.4.5. Let m be Sig-tail-irreducible with respect to GSig(f) and up to Sig(f) where

Gen(m) = |GSig(f)|. Then m′ :=Update(m, s,G,M) ∈mTail,G,s.

Proof. If Gen(m) = |G| and Flag(m) ≥ s, the result follows immediately by the discussion

above. If Gen(m) = |G| but Flag(m) < s, we call a normal M5GB-reduction on m and

hence, correctness follows as well. If Gen(m) 6= |G|, the candidates which might reduce m

are in G\GSig(f). Since we do the same steps as in M5GB-tail-reduce, the returned element

is Sig-tail-irreducible with respect to G\GSig(f) and up to s. Furthermore, m is Sig-tail-

irreducible with respect to G and up to Sig(f). If the old flag is greater or equal to s, it is

Sig-tail-irreducible with respect to G and up to s. Hence, updating the flag suffices. Otherwise,

we call a normal M5GB-reduction on the result again, and thus, correctness follows.

4.4.2 Fast irreducibility checks

Note that an implementation of the M5GB Algorithm so far would spend a lot of time to

check whether some t ∈ T (f) is Sig-reducible up to some signature s or not. If we find some

element in M with leading term t, we can speed this up, but otherwise, we need to check for

Sig-reducibility in G which is costly. Hence, our idea is to save those currently Sig-irreducible

terms in a set Irr ⊆ T if once characterized as Sig-irreducible. Similar to Sig-tail-irreducibility

for some element in m ∈M , those (at the moment) Sig-irreducible terms might become Sig-

reducible again during the algorithm. Equipping all terms in Irr with generation and flag,

applying the same updates as described in Section 4.4.1, solves this problem. The advantages

are the following:

1. In the process of M5GB-reducing some f , we can immediately skip the examination of

all t ∈ T (f)∩ Irr as long as the elements in Irr are updated. This update only checks for

Sig-reducibility by g ∈ G\Gs, where Gen(t) = |Gs|, instead of Sig-reducibility by the

whole set G. This saves a lot of time since we do not have to check again whether some

g ∈ Gs Sig-reduces t. Obviously, the same improvement works for M5GB-Tail-reduce

and t ∈ T (Tail(f)) ∩ Irr.

2. We can update Flag(m) for m ∈M even faster: This can be done since

Flag(m) = min{Flag(t) : t ∈ T (Tail(m))}

follows from its definition.

Remark 4.4.6. Improvement 4.4.2 consumes additional storage, but reduces the computational

effort significantly.

4.4.3 Labelled polynomial optimization

Similar to the discussion in Section 3.3.2, we do not want to save the whole module element

f explicitly, but F = (Sig(f), v(f)). We have already seen in 3.3.2 how we can adapt this

83

for the overall routine without losing any needed property. This worked well in Algorithm 12

because we only did regular reductions there and hence, the signature stayed the same during

the reduction step. Since we do the same for elements in G, we can guarantee this for M5GB-

reduction too. The problem arises when we consider M5GB-Tail-reduce: Assume we reduce

some element f ∈ Pm up to some signature s, which is larger than Sig(f). Then, we get

f ′ ∈ f
G,s

which might have Sig(f ′) > Sig(f). The first idea is to do the following: If we want

to reduce F by some vG, we define

Sig(F − vG) := max{Sig(F), Sig(vG)}.

This works well unless the reduction is singular. In that case, this computation might not be

longer correct, because by the definition above, we possibly end up with Sig(f − vg) < Sig(F − vG).

The fact we can guarantee is that Sig(F − vG) is an upper bound for Sig(f − vg) in that way.

In particular, if F ′ = M5GB-Tail-reduce(F , G, s), we have Sig(f ′) ≤ Sig(F ′) < s. Such a

F ′ does no longer fulfill the properties of a labelled polynomial as defined in Definition 3.3.4,

leading to the following weaker definition:

Definition 4.4.7 (Over-labelled polynomials). We call a pair F = (s, f) with s ∈ Tm,

f ∈ P an over-labelled polynomial if there exists f ∈ Pm:

(i) v(f) = f .

(ii) MLT (f) ≤ s.

We set poly(F) := f and Sig(F) := s. To define this upper bound described above by Sig+(f),

we apply following rules:

(i) For initial polynomials f1, ..., fm, we set for all i ∈ {1, ...,m}

Sig+(fi) := Sig(fi).

(ii) For c ∈ K, u ∈ T,f ∈ Pm, we define

Sig+(cuf) := cuSig+(f).

(iii) For f, g ∈ Pm, we define

Sig+(f + g) = max{Sig+(f), Sig+(g)}.

If Sig+(f) ∼ Sig+(g), we can choose Sig+(f) or Sig+(g) arbitrarily.

Remark 4.4.8. It is straightforward to see that F := (Sig+(f), f) is an over-labelled polyno-

mial. This is the structure over-labelled polynomials will always have in the M5GB algorithm.

84

At the first sight, working with over-labelled polynomials might seem to destroy the correctness,

but in fact, it does not. To see that, observe that G still consists of labelled polynomials and

only M has over-labelled ones. For M5GB-reduce, this means that we might not be allowed

to reduce some F ∈ G by some M ∈M , although Sig(f) > Sig(m), but Sig(F) ≤ Sig(M).

Nevertheless, by the construction of M , there exist g ∈ G, v ∈ T such that

LT (vg) = LT (m), Sig(vg) < Sig(f).

Hence, a Sig-reducer for F exists if and only if f is Sig-reducible. In particular, the element

F ′ computed by labelled polynomial reduction is regularly irreducible as its module equivalent.

Observe that the same argumentation can be applied analogously for M5GB-Tail-reduce. This

might lead to a small decrease in straightforward reductions and, therefore, to more computa-

tional effort. Nevertheless, the advantage of less storage and faster additions of (over-)labelled

polynomials in comparison to module elements outweigh this by far. Note that working with

over-labelled polynomials helps for the following improvement as well.

4.4.4 Check divisibility by M

Consider the following scenario: We want to M5GB-reduce some t ∈ TG(f, Sig(f)) for f , but

there exists no m ∈ M such that LT (m) = t. In the basic version of the algorithm, we

would call Tail-M5GB-reduce on vg where g ∈ G, v ∈ T, LT (vg) = t. But assume there exists

m ∈ M , u ∈ T : LT (um) = t. Since m was at some time Sig-tail-irreducible, it seems to be

a better choice to call Tail-M5GB-reduce on um because one expects less Sig-reducible terms

in um than in some vg, v ∈ T, g ∈ G. Note that this idea was already considered for M4GB

by [20]. The following lemma tells us when we are allowed to take such an m ∈ M without

threatening correctness:

Lemma 4.4.9. Let m ∈ vgTail,G,t where v ∈ T, g ∈ G, t ∈ Tm. Define r := Sig+(m) and let

u ∈ T, s ∈ Tm such that s ≥ ur. Then

umTail,G,s ⊆ uvgTail,G,s.

Proof. By definition of r, we have that m ∈ vgTail,G,r. Moreover, note that

vg
∗−−−→

G,r
m, LT (vg) = LT (m)⇒ uvg

∗−−−−→
G,ur

um, LT (uvg) = LT (um).

Since s ≥ ur, this implies

uvg
∗−−−→

G,s
um, LT (uvg) = LT (um).

85

Taking an arbitrary m′ ∈ umTail,G,s, we get

uvg
∗−−−→

G,s
um

∗−−−→
G,s

m′, LM(uvg) = LM(umTail,G,s),

which proves the statement.

Remark 4.4.10. At the first sight, it seems unnecessary to take Sig+(m) instead of Sig(m),

but if Sig(m) < t < Sig(vg), the statement does no longer hold. Since by construction r ≤ t,

we could take t instead of r. But as this r might be a strict lower bound, we proved a stronger

statement which enables us to apply the improvement discussed above more often.

If there is more than one element in M with that property, we look for an element that seems

to be the most promising. For that, we can order the elements in M by different heuristics.

Some suggestions are:

• Take the m with the largest generation.

• Take the m with the largest signature flag.

• Take the m with the largest leading term.

• Take the m with the smallest number of terms.

• Take the m with the smallest remainder (in notation from above, smallest u).

Approaches (i),(ii) and (iv) seek m itself to contain the least Sig-reducible terms and hence,

um tends to have few Sig-reducible terms. (iii) and (v) minimize u, hoping to obtain few Sig-

reducible terms for um directly. To decide which heuristic is the best one or if simply taking

the first element appearing, skipping this comparing process, is faster, needs to be tested in

actual implementations.

Remark 4.4.11. Note that if some t ∈ T is Sig-reducible by M (with signatures Sig(M))

and up to signature s, it is Sig-reducible by G up to signature s as well. Hence, one can check

first if this t is reducible at all by looking for a Sig-reducer in G before selecting a Sig-reducer

in M . For some irreducible t (which is not yet marked as irreducible), this is an improvement

since G tends to be much smaller than M . To further speed up this process, create a map where

each m ∈ M is mapped to the g ∈ G which originally created m. This helps to find those

candidates in M faster since LT (g)|LT (m) still holds.

4.4.5 Taking the best element with current signature

Lemma 3.2.7 gives us the following optimization choice: Given an S-polynomial p of minimal

signature s, we could choose any module element f with the same signature and reduce this

one instead. In Section 3.4, we exploited this to search in

{vg : v ∈ T, g ∈ G : Sig(vg) ∼ s}

86

for a representative that is easy to reduce by rewrite orders induced by heuristics similar to

those in Section 4.4.4. Note that we have more freedom for this heuristics than for the rewrite

order since we do not have to fulfill

∀f, g ∈ G : Sig(f) |Sig(g)⇒ f ≤ g.

We can extend the search for such an element further to M and go through

{vm : v ∈ T,m ∈M : Sig(vm) ∼ s} (4.2)

to find the best representative. Since the elements in M tend to be far reduced, this might

reduce the number of reduction steps even further, although checking for such an element might

cost too much time.

Remark 4.4.12. Using the labelled polynomial optimization, M contains over-labelled poly-

nomials, thus, taking those elements in general destroys the correctness of the algorithm. One

could check at the construction/update of some m ∈M whether the element is indeed a labelled

polynomial. This can be done by checking at each reduction step whether it is singular. If not,

m is still a labelled polynomial. In our implementation, we examined the whole set M and

decided to ignore this fact. In all tested cases, we ended up with a correct Gröbner basis output,

although this can not be guaranteed for all inputs.

4.5 Implementation and results

We did a small test implementation of our proposed M5GB Algorithm in C++ which can be

found on [3]. Due to the restricted time scope of this thesis, we concentrated on correctness and

implementation of the improvements, but not on computation time efficiency due to storage

management and optimized sub-routines. We decided to implement the algorithm with term

order <grevlex and order extension <w as defined in 3.1.2. It was chosen in that way since

<grevlex seems to be the best choice for generic Gröbner basis computations in basically all

modern algorithms and <w was empirically tested to be the best in [18]. Actually, we compared

it with extension <pot, but this led to a much worse result. Considering the rewrite order,

we both implemented ratio <rat and <num as they are the best rewrite orders known so far.

Since M4GB is one of the most modern algorithms and similar to M5GB, we compared our

implementation with the original implementation from [2] and chose some small examples from

the Fukuoka MQ challenges [1]. For the implementation of the M5GB Algorithm, we considered

all five improvements discussed in the last section. As already mentioned, we did not concentrate

on time efficiency, hence, we counted operation steps rather than actual time consumption. To

compare, we concentrated on three main counters:

1. The number of polynomials which are (full-)reduced. In M5GB this equals the number of

critical pairs which are indeed reduced, in M4GB this equals twice the number of critical

87

pairs examined since uf and vg are separately reduced for spol(f, g) = uf − vg.

2. The number of reduction steps in Full-reduce. This counts all steps in full-reductions

where some term is reduced.

3. The number of overall reduction steps: This counts all reduction steps combined, i.e.

reduction steps in Full-reduce, reduction steps in Tail-reduce, reduction of the basis before

and after the algorithm, updating polynomials throughout the algorithm, ...

We mainly considered the MQ challenges of Type I and Type IV, meaning we concentrated on

the case p = 2. We did this on purpose since signature algorithms tend to work quite well on

small fields due to the additional syzygies coming from the field equations. At first, we tested

the different heuristics described above against each other to get appropriate options to compete

with M4GB. Note that we used the rewrite order <rat for the first tests. For documentation in

this thesis, we chose the following ideals from [1] as benchmarks:

(i) n = 15, Type I, Seed 0.

(ii) n = 10, Type IV, Seed 0.

In the following lines, we will refer quite often to two certain improvements described above.

We will call them shortly “divisibility-improvement” for the one considered in Section 4.4.4,

respectively “best-element-improvement” for the one considered in Section 4.4.5. We considered

the following heuristics at the same time for those improvements:

• Take the module element with the largest generation.

• Take the module element with the largest signature flag.

• Take the module element with the largest leading term.

• Take the module element with the minimal number of terms.

• Take the module element with the smallest remainder.

This led for n = 15, Type I, Seed 0 to the following table (green indicates the best value in each

counter):

Heuristic critical pairs full reductions total reductions zero reductions

No optimization 1135 75274 238666 854

Largest generation 1135 75021 239073 854

Largest signature flag 1135 75137 241545 854

Largest leading term 1134 75277 246210 853

Smallest leading term 1132 75028 230315 851

Minimal number of terms 1135 42617 349891 854

Smallest remainder 1134 42694 422661 853

88

Remark 4.5.1.

1. The divisibility-improvement decreases the number of total reductions, the best-element-

improvement decreases the number of full reductions (and hence, indirectly affects the

number of total reductions).

2. It makes no sense to use the largest flag heuristic or largest leading term for the best-

element-improvement, hence, those heuristics are applied only on the divisibility-improvement

in the table above.

3. Largest leading term and smallest remainder naturally coincide for the divisibility-improvement.

This test (repeated with similar results for other inputs) suggests that minimal number of

terms and smallest remainder tend to be the most promising heuristics for the divisibility-

improvement, but are bad for the best-element-improvement. Hence, we tested other heuristics

for the best-element-improvement again, keeping the heuristic for the divisibility-improvement

fixed. The best options we could find was minimal number of terms combined with smallest

leading term. We tested this setting with rewrite order <num and got slightly worse values (as

before, tested with several inputs with similar results):

Rewrite order critical pairs full reductions total reductions zero reductions

<rat 1135 42789 340712 854

<num 1136 42820 340751 855

To compete against M4GB, we considered smallest leading term in both improvements to min-

imize the number of total reductions and minimum number of terms combined with smallest

leading term to minimize the number of full reductions. For the sake of shortness, we denote

these two variants from now on simply by “Smallest LT” and “Number of Terms”. We can see

that M4GB outperforms those variants for n = 15, Type I, Seed 0, by far:

Rewrite order critical pairs full reductions total reductions zero reductions

Number of terms 1135 42789 340712 854

Smallest LT 1132 75028 230315 851

M4GB 818 30924 155275 No information

This is at least partly due to the property that we chose a much overdetermined system (n =

15,m = 30, with added field equations even m = 45). In such a system, most reductions

computed are still unnecessary since such a system is very far away from being regular, but there

is no possibility known to determine these zero reductions in advance. Note that we empirically

observed the following for this Type I equations: Once the first zero reduction occurs, every

reduction turns out to be a zero reduction. Therefore, we tested the program to stop computing

new S-polynomials as soon as the first zero reduction occurs. For all tested inputs of Type I,

we obtained with that “cut” algorithm the desired Gröbner basis. This algorithm, which is of

course no longer guaranteed to be correct in general, leads to nice numbers:

89

Algorithm critical pairs full reductions total reductions zero reductions

Cut Number of terms 281 11311 159749 1

Cut Smallest LT 281 18224 113160 1

M4GB 818 30924 155275 No information

We tested this approach on a slightly larger example as well, getting a worse result than for

M4GB again: For n = 20,m = 40, Seed 0:

Algorithm critical pairs full reductions total reductions zero reductions

Cut Number of terms 1307 126218 3075908 1

Cut Smallest LT 1307 338013 2480574 1

M4GB 972 152596 990054 No information

Since the first zero reduction will definitely not work for all ideals, we propose to test every

k ∈ N zero reduction steps or every l ∈ N reduction steps whether the current v(G) already

is a Gröbner basis. In these overdetermined cases of Type I, a reduced Gröbner basis has n

elements with degree 1 for all tested inputs. Hence, reducing v(G) (without signatures) and

checking if we obtain such n elements, might cut down the computation time a lot. Another

possibility would be to change to a non-signature algorithm as soon as a certain signature

bound is reached. Then we can interreduce v(G) and if we are not yet done, we can reduce the

remaining S-polynomials quite fast since the elements in the reduced Gröbner basis candidate

tend to be of low degree.

For underdetermined systems, we expected the original M5GB algorithm to work better since

only few zero reductions should be computed. For that reason, we tested Type IV, Seed 0,

n = 10, which is an underdetermined system with m = 7. In the following table, “with M”

denotes the idea of considering the set defined in (4.2). Indeed, M5GB seems to be competitive

for underdetermined systems:

Algorithm critical pairs full reductions total reductions zero reductions

Number of terms/smallest LT 232 5260 100413 74

With M 208 3963 92971 74

Smallest LT/Smallest LT 200 7320 33572 41

M4GB 351 5817 35768 No information

To make sure this was not a coincidence, we tested the other seeds of the same type as well,

showing that M5GB performs great in those settings:

Seed1:

90

Algorithm critical pairs full reductions total reductions zero reductions

Number of terms/smallest LT 243 5554 98943 90

With M 220 4273 93251 74

Smallest LT/Smallest LT 235 8051 36830 41

M4GB 395 6255 37385 No information

Seed2:

Algorithm critical pairs full reductions total reductions zero reductions

Number of terms/smallest LT 264 5546 75095 90

with M 248 4481 102959 91

Smallest LT/Smallest LT 259 8918 40563 41

M4GB 324 5995 35875 No information

Seed3:

Algorithm critical pairs full reductions total reductions zero reductions

Number of terms/smallest LT 212 4478 84420 90

with M 191 3701 78015 34

Smallest LT/Smallest LT 222 7999 40471 65

M4GB 393 6126 36405 No information

4.5.1 Implementation details and possible improvements

As pointed out earlier, our implementation is not time-optimized in many different areas. We

left out the following aspects completely which should be possible to implement quite easily:

1. The Update function: Using a complete tail-reduction on some m ∈ M when either

the signature flag condition or the generation condition is not fulfilled leads to lots of

unnecessary computations. We described in Section 4.4.1 how one can overcome this.

Nevertheless, since this optimization does not decrease the number of reduction steps

itself, it was left out by our implementation.

2. Suitable data structures: We did not optimize the used data structures. Therefore, it

should be easy to save a lot of time there. To speed up the process of searching for a

divisor in G, one could save already computed multiples or implement some fast check

whether some g does not divide some module element f . Similarly for M , as discussed

earlier, one could create a map that maps each m ∈M to the element g ∈ G which was

used to create m. Testing for divisibility with that m is only needed to be computed

when that corresponding LT (g) divides the considered term as well.

91

3. Fast field operations: We did not optimize the operations done on single polynomials, one

needs to optimize the addition of polynomials, the multiplication of terms (see below) and

the computation of field inverses.

4. The encoding of terms: This encoding should be optimized to do the following operations

for t, u ∈ T very quickly:

• Check if t < u.

• Check if t |u.

• Compute t · u.

The data structure we chose to do that is a large lookup table where each term t, up

to some degree d as degree bound, is encoded once as an exponent vector and once as

an integer k such that t is the kth smallest term with respect to <grevlex. The idea is

to check divisibility via the exponent vector, the comparison operator via the integer

representation. For the multiplication of terms, we constructed a separate multiplication

table where for each term t encoded as an integer, we saved the n different integers

corresponding to t · xi, i ∈ {1, ..., n}. In that way, the multiplication of t · u takes exactly

deg(u) table lookups. Unfortunately, the construction of such a table is quite time and

storage consuming, since these tables have size O(n ·
(
n+d
n

)
). For large n, this might be

an issue and worth to overthink.

4.6 Conclusion and future work

In this thesis, we started with an application from the cryptographic area that is using Gröbner

bases to emphasize their importance. Then we revised some characteristic facts about those

bases and defined a new Gröbner basis equivalence (Lemma 2.1.5). We revised, in a short

way, some commonly used Gröbner basis algorithms, namely F4 and FGLM. Additionally, we

described a modification of M4GB which is easy to understand, but contains all the main ideas

of this algorithm.

In the following course of this thesis, we summed up, in a mathematically precise manner, the

theory of signature and rewrite Gröbner basis algorithms and revised that F5 can be seen as

a special case of the latter. Doing that, we closed some small proof gaps (e.g. Proposition

3.2.3, Theorem 3.3.9, Lemma 3.3.10 and most of Lemma 3.4.18). In addition, we proved some

statements more rigorously than the original authors do, e.g. Theorem 3.4.20 and found different

proofs of already shown statements (e.g. Lemma 3.5.2, Theorem 3.5.5).

Lastly, we proposed with M5GB a new hybrid approach between rewrite basis algorithms and

M4GB. For that, we generalized the theory of rewrite bases and signature reductions, came up

with many new statements and proved them. We showed the correctness of this new algorithm

and in this context, main parts of the correctness proof of M4GB, which are missing in the

original paper. We implemented this new algorithm and compared it with M4GB. It turned

92

out that the algorithm can most likely compete with M4GB when implemented more efficiently,

especially for underdetermined systems and small prime fields. For largely overdetermined

systems, we proposed a heuristic to adapt M5GB to work well.

To determine the practicability of M5GB, one needs a more efficient implementation, considering

the suggestions from Section 4.5.1 as well as additional computer science tools to improve the

actual running time. From the mathematical point of view, one could look for new criteria to

detect reductions to zero. This would be highly advantageous since using the most suitable

order extension and overdetermined systems still leads to many unnecessary reductions.

93

Bibliography

[1] Fukuoka MQ challenge. https://www.mqchallenge.org/. Accessed: 2020-06-29.

[2] Github - M4GB Implementation. https://github.com/cr-marcstevens/m4gb/. Ac-

cessed: 2020-08-27.

[3] Github - M5GB basic Implementation. https://github.com/manschga/M5GB. Accessed:

2020-08-31.

[4] Bruno Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restklassen-

ringes nach einem nulldimensionalen Polynomideal. PhD thesis, University of Innsbruck,

01 / 1965.

[5] David Cox, John Little, and Donal O’Shea. Using Algebraic Geometry. Springer New York,

03 / 1998.

[6] David A. Cox. Ideals, varieties and algorithms. Springer International PU, Second edition,

2016.

[7] Christian Eder. Predicting zero reductions in Gröbner basis computations. In Proceedings

of the 2014 Symposium on Symbolic-Numeric Computation, page 109–110, New York, NY,

USA, 2014. Association for Computing Machinery.

[8] Christian Eder and Jean-Charles Faugère. A survey on signature-based algorithms for

computing Gröbner bases. Journal of Symbolic Computation, 80:719 – 784, 2017.

[9] Christian Eder and John Perry. F5C: A variant of Faugère’s F5 algorithm with reduced

Gröbner bases. Journal of Symbolic Computation, 45(12):1442 – 1458, 2010.

[10] Christian Eder and Bjarke Roune. Signature rewriting in Gröbner basis computation. Pro-

ceedings of the International Symposium on Symbolic and Algebraic Computation, ISSAC,

pages 331–338, 06 / 2013.

[11] David Eisenbud. Commutative Algebra - with a view toward Algebraic Geometry. Springer

Science & Business Media, Berlin Heidelberg, 2013.

[12] Jean-Charles Faugère. A new efficient algorithm for computing Gröbner bases without

reduction to zero (F5). Proceedings of the 2002 international symposium on Symbolic and

algebraic computation - ISSAC 02, 2002.

95

https://www.mqchallenge.org/
https://github.com/cr-marcstevens/m4gb/
https://github.com/manschga/M5GB

[13] Jean-Charles Faugère, Patrizia Gianni, Daniel Lazard, and Teo Mora. Efficient computation

of zero-dimensional Gröbner bases by change of ordering. J. Symb. Comput., 16:329–344,

10 / 1993.

[14] Jean-Charles Faugère and Ludovic Perret. On the security of UOV. IACR Cryptology

ePrint Archive, 2009:483, 01 / 2009.

[15] Jean-Charles Faugére. A new efficient algorithm for computing Gröbner bases (F4). Journal

of Pure and Applied Algebra, 139(1-3):61–88, 1999.

[16] Alessandro Giovini, Teo Mora, Gianfranco Niesi, Lorenzo Robbiano, and Carlo Traverso.

“One Sugar cube, Please” or selection strategies in the Buchberger Algorithm. In ISSAC

’91: Proceedings of the 1991 international symposium on Symbolic and algebraic computa-

tion, pages 49–54, 01 / 1991.

[17] Bjarke Hammersholt Roune and Michael Stillman. Practical Groebner Basis Computation.

arXiv e-prints, page arXiv:1206.6940, 06 / 2012.

[18] Amir Hashemi and Gwénolé Ars. Extended F5 criteria. Journal of Symbolic Computation,

45(12):1330 – 1340, 2010. MEGA’2009.

[19] Aviad Kipnis, Jacques Patarin, and Louis Goubin. Unbalanced Oil and Vinegar signature

schemes. In Advances in Cryptology — EUROCRYPT ’99, volume 1592, pages 206–222,

04 / 1999.

[20] Rusydi H. Makarim and Marc Stevens. M4GB: An efficient Gröbner-Basis Algorithm. In

ISSAC ’17: Proceedings of the 2017 ACM on International Symposium on Symbolic and

Algebraic Computation, pages 293–300, 07 / 2017.

[21] Ernst W. Mayr. Some complexity results for polynomial ideals. Journal of Complexity,

13(3):303 – 325, 1997.

[22] A.J.M Segers. Algebraic attacks from a Gröbner basis perspective. Master’s thesis, Uni-

versity of Technology Eindhoven, 01 / 2004.

[23] Till Stegers. Faugere’s F5 algorithm revisited. Master’s thesis, University of Technology

Darmstadt, 09 / 2005.

[24] Alan Szepieniec. Mathematical and Provable Security Aspects of Post-Quantum Cryptog-

raphy. PhD thesis, KU Leuven, 12 / 2018.

[25] Volker Weispfenning Thomas Becker. Gröbner Bases, A Computational Approach to Com-

mutative Algebra. Springer, New York, NY, 1993.

[26] Dingkang Wang. The F5 algorithm in Buchberger’s style. Journal of Systems Science and

Complexity, 24, 06 / 2010.

96

	Multivariate Quadratic polynomial systems and Gröbner bases
	The Multivariate Quadratic problem
	Introduction of Gröbner bases
	Solving polynomial equations via Gröbner bases

	Computation of Gröbner bases
	Gröbner basis properties
	Buchberger Algorithm
	Improvements in the Buchberger Algorithm
	Selection strategy
	Reduction criteria

	FGLM Algorithm
	F4 Algorithm
	Matrix representation
	The algorithm

	M4GB Algorithm
	Idea
	Correctness Proof

	Signature Gröbner bases/F5
	Basic definitions
	The module Pm and signatures
	Reduction on Pm
	Signature Gröbner bases

	First algorithmic ideas
	Criterion for Signature Gröbner bases
	First Signature basis algorithm

	Improvements
	Syzygy criterion
	Labelled polynomial optimization
	Improved algorithm

	Rewrite bases
	The idea
	Rewrite basis algorithm
	Proof of Correctness
	Choosing the best rewrite order

	Regular sequences and F5
	Regular sequences

	M5GB - a new hybrid approach
	Idea explanation
	New definitions
	Basic Pseudocode
	Improvements
	Generations and signature flags
	Fast irreducibility checks
	Labelled polynomial optimization
	Check divisibility by M
	Taking the best element with current signature

	Implementation and results
	Implementation details and possible improvements

	Conclusion and future work

	Bibliography

