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Notation

Notation

a Scalar
v Vector
A,n Matrix or tensor
‖v‖ Euclidean norm of v
vi,j Derivative of vi with respect to j
v̇i Derivative of vi with respect to time t
a · b Dot product
a : b Contraction of a and b
∇ · v Divergence of a tensor / vector
∇v Gradient of a tensor / vector or scalar field
f ◦ g Composition of the functions f ◦ g = f(g(x))
Ω̂ Reference domain
Ω Real domain
ΓD Dirichlet boundary
ΓN Neumann boundary
F Fluid, e.g. as index in ΩF

S Structure, e.g. as index in ΩS

n Time step n
i Iteration step i
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Michael Kaiser

Acceleration strategies in partitioned coupling of fluid-structure interaction problems V



Abstract

Abstract

The aim of this Master’s thesis about acceleration strategies in partitioned coupling of fluid-structure
interaction (FSI) problems is to find a setting for a strongly partitioned coupled fluid-structure inter-
action solver which is accurate and fast.

In fluid-structure interaction problems a fluid (liquid or gas) and a solid structure interact and for a
strongly partitioned coupling approach the independent solvers for fluid and solid are connected in a
coupling loop.

The first part of this work describes the theoretical background of the single finite element method
(FEM) solvers for the incompressible fluid flow and the solid, modelled using structural dynamics.
The theory about the coupling approach is described and therefore a mesh deformation algorithm for
the fluid domain (computational mesh dynamics) using a pseudo-structure based on Hooke’s solid is
introduced. The algorithm used in this thesis is described theoretically and applied to an example to
show how it works in practice.

The second part of this thesis are two test cases. The algorithm described before is applied on a
fluid-structure interaction problem concerning a thin plate as structure and in the second test case
on a bridge section like the section of the famous Tacoma Narrows bridge which collapsed because of
aeroelastic fluttering in 1940. This is a typical application of FSI between a civil engineering structure
and wind.

The algorithm loops for the fluid solver and for the coupling procedure are solved individually. These
loops have a certain prescribed tolerance to fulfil for convergence. In a tolerance study different toler-
ances are applied to both loops. The result of this study is a setting for which the results are accurate
and the computational time is moderate. It can be shown that the tolerance for the loop in the
nonlinear fluid solver can be high (εF = 1 ·10−2) without comprimising accuracy much. The tolerance
for the coupling loop should be lower (εc = 1 · 10−6) and the fastest convergence of the FSI problem
which leads to accurate results is achieved for this case.

However, for an optimal tolerance setting calculation time is still long for both cases and so further
strategies are considered to shorten the needed computational time. The first approach considered is
to use Aitken’s relaxation method. Here the improvement for the plate test case is small but for the
bridge test case a shortening of nearly 25% can be achieved. The second used acceleration strategy
is extrapolation. Different fields are extrapolated using extrapolation functions with diverse orders. It
can be shown here that the results are as accurate as without extrapolation applied but the calculation
time can be shortened up to nearly 50% for certain configurations.

In this thesis it can be clearly seen that an acceleration of a partitioned coupled fluid-structure in-
teraction problem solver is possible. However, it is mentioned that the speed-up is case dependent
although the used algorithm is the same for each case. The results of these studies are presented using
tables and figures.
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Zusammenfassung

Zusammenfassung

Das Ziel dieser Masterarbeit zum Thema Beschleunigungsstrategien in partitioniert gekoppelten Fluid-
Struktur-Interaktions-Problemen ist es, Einstellungen zu finden, um genau approximierte Lösungen
im Bereich der Fluid-Struktur-Interaktion (FSI) mittels Finiter Elemente Methode (FEM) innerhalb
einer angemessenen Rechenzeit zu bekommen.

Bei FSI Problemen interagiert ein Fluid (Flüssigkeit oder Gas) mit einer Struktur. In dieser Arbeit
wird eine stark gekoppelte partitionierte Lösungsstrategie angewendet, bei der unabhängige FE-Löser
für das Fluid und die Struktur in einer Kopplungsschleife zusammengeführt werden. Zudem ist es
erforderlich eine Fluid-Netzverformung zu berücksichtigen, um die verwendeten mechanischen Mod-
elle anwenden zu können. Für diese Netzverformung ist ein zusätzlicher Löser einer linear-elastischen
Pseudostruktur nach dem Hooke’schem Gesetz im FSI-Algorithmus implementiert.

Der erste Teil der Arbeit zeigt die theoretischen Grundlagen für die verwendeten mathematisch-
mechanischen Modelle und die Funktionsweise des verwendeten FSI-Lösungs-Algorithmus. Dieser
wird abschließend an einem Beispiel intuitiv erklärt.

Den zweiten Teil der Arbeit bilden zwei Testfälle, für die verschiedene Studien durchgeführt wur-
den. Der erste Testfall ist eine dünne Platte und der zweite Testfall stellt die Tacoma-Narrows-Brücke
dar, eine Hängebrücke, welche durch windinduziertes Flattern eingestürzt ist.
In dem nichtlinearen Strömungs- oder Fluid-Löser wird eine Schleife gelöst, deren Lösung eine gewisse
Toleranz erfüllen muss. Die Lösung der partitionierten Kopplungsschleife muss ebenfalls eine vorgegebene
Toleranz erfüllen. In der Studie werden für beide Schleifen unterschiedliche Toleranzen vorgegeben
und kombiniert. Die approximierten Lösungen werden verglichen und auf Genauigkeit geprüft. Das
Ergebnis der Studie ist eine Einstellung für die Toleranzen, für welche die Approximation genau genug
ist und die erforderliche Rechenzeit in einem vertretbaren Bereich liegt. Für die Fluid-Schleife beträgt
die gewählte Toleranz εF = 1 · 10−2 und für die Kopplungs-Schleife εc = 1 · 10−6.
Trotz dieser Einstellungen ist die benötigte Rechenzeit noch hoch. Daher wurden weitere Möglichkeiten
untersucht, um den FSI-Löser zu beschleunigen. Der erste Ansatz hierzu ist die Verwendung der
Aitken-Methode. Beim Platten-Testfall ist die erzielte Verkürzung der Rechenzeit sehr gering, beim
Brücken-Testfall beträgt die Ersparnis an Rechenzeit allerdings beinahe 25%.
Der zweite verwendete Ansatz ist Extrapolation mit Extrapolationsfunktionen verschiedener Ordnun-
gen. Die Extrapolation wird auf verschiedene Felder einzeln oder kombiniert angewendet (Fluid-
Lösung, Stukturverformung und Netzverformung). Es gibt Konfigurationen für die keine Verkürzung
oder sogar eine Verlängerung der Rechenzeit zu verzeichnen ist. Für andere Konfigurationen sind
jedoch Rechenzeitverkürzungen von fast 50% erzielbar.

Die Schlussfolgerung aus dieser Arbeit ist, dass es durchaus möglich ist den verwendeten Algorithmus
eines stark gekoppelten Fluid-Struktur-Interaktions-Lösers zu beschleunigen, die erzielbare Rechen-
zeitverkürzung jedoch sehr stark problemabhängig ist. Das heißt trotz Anwendung desselben Algo-
rithmus auf unterschiedliche Probleme, weichen die erzielbaren Beschleunigungen voneinander ab. Die
Ergebnisse der Studien sind in Tabellen und Diagrammen sowie Flächenplots dargestellt.
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1 Introduction

1 Introduction

Fluid-structure interaction (FSI) is an interdisciplinary area of research. The aim of FSI is to un-
derstand how a fluid (gas or liquid) interacts with a structure (deformable or rigid body). Therefore
the sciences of mathematics, mechanics, and computer sciences, and, depending on the type of FSI,
engineering (civil engineering, mechanical engineering etc.) or life sciences (biology, medicine etc.)
are combined. This work is based on the book The finite element method for fluid dynamics by O.C.
Zienkiewicz et.al. [26, pp. 423 – 450] and dissertations by T.-P. Fries [4], B. Hübner [8], E. Walhorn
[24], and W. A. Wall [25].

Fluid-structure-interaction occurs in natural systems as well as in man-made technical systems. Some
examples from nature are wind deforming trees and other plants, groundwater flow and its impact on
soil particles and the deformation behaviour of blood vessels under pulsatile blood flow. Similar to
this is the study of FSI in relation to airways and especially the lungs. Another example is the flight
of insects and birds, and the relation between the movement of their wings and the surrounding air.
Technical examples are aeroplane-wings and wind-turbines, interaction between sea water and off-
shore-structures like foundations and pillars of wind-turbines and oil platforms. A further interesting
example in Structural Engineering is the performance of a bridge under wind loads.
Fluid-structure-interaction is a phenomenon which occurs in a wide range of geometrical scales.

It is possible to divide FSI in further sub-categories. For instance the solid part (structure) could
be a deformable or a rigid body but in both cases somehow moving in the fluid domain. It could
be further distinguished between FSI considering a liquid or gaseous fluid, which leads to a nec-
essary decision if the gas could be considered as an incompressible fluid or it should be modelled as
a compressible one. This decision could be based on the Mach number of the occurring flow [26, p. 423].

From the short description given so far it is obvious that different physical areas are combined in
FSI. On the one side is a fluid and on the other side the solid (structure). These combinations of two
or more different physical fields are called multi-physics problems. For a long time engineers tried to
reduce such multi-physics problems to a form that it could be described using only one field and the
impacts from the other fields have been considered using a lot of simplifications.[25, pp. 1–2]. Because
of higher calculation performance of modern computers it is nowadays much more possible than ever
before to use multi-physical models to describe reality in a more accurate way.

The different considered fields are described using partial differential equations (PDEs) resulting from
a modelling based on continuum mechanics. In the strongly coupled approach which is used in this
work the individual fields are solved and connected through interface conditions. For each individ-
ual field, these interface conditions are on the boundary and may, therefore, also be seen as special
boundary conditions (BCs). Two types of boundary conditions are considered herein:

• Dirichlet BCs: ΓD, also called first-type, essential or fixed BCs. These are for instance displace-
ments in structural mechanics.

• von Neumann BCs or simply Neumann BCs: ΓN , also called natural or second-type BCs. It is
used to prescribe loads in a structural mechanics problem.

Acceleration strategies in partitioned coupling of fluid-structure interaction problems 1



1 Introduction

Methods of Numerical Mathematics are used to solve the PDEs which describe the fluid domain and
the solid domain of interest. Herein, the Finite Element Method (FEM) is used to approximate the
results.

Although modern computers can solve a huge amount of equations fast and accurate, calculations
in context of FSI are often very time-consuming. The aim of this thesis is to find methods and strate-
gies how the computational time for a FSI solution could be shortened.
Choosing the parameters of the FSI algorithm carefully can lead to a decrease of calculation time
with no loss of accuracy. Further it is possible to use additional mathematical tools to improve the
algorithm’s performance.

The following sections give a short introduction of the mathematical and physical foundations used in
the following chapters. Then a description of the models and solution strategies for the fluid field, the
structural field and the FSI algorithm follows. The second part of this Master’s thesis 1 demonstrates
and interprets the result achieved. .

1.1 Mathematical preliminaries

Some mathematical preliminaries are given here which are used in this thesis and are not a direct part
of another section.

Operators

Figure 1 shows a clockwise Cartesian coordinate system in three dimensions with unit vectors i,
j, and k. These are used for the definitions of the following operators based on [1] and [14].

0

x

y

z

i j

k P (x, y, z)
r

Fig. 1: Cartesian coordinate system

For the definitions of the following mathematical preliminaries an arbitrary function f = f(x, y, z)
with respect to the coordinates x, y, and z is used.

1The calculations have been done with EduFEM [5] in Matlab [16] on a parallel computer described in Appendix E.

Acceleration strategies in partitioned coupling of fluid-structure interaction problems 2



1 Introduction

• Nabla operator

For Cartesian coordinates is defined as [14, p. 158]

∇ ≡ i ∂
∂x

+ j ∂
∂y

+ k ∂
∂z

(1.1)

• Gradient

The gradient of a scalar field can be defined in different ways [1, pp. 710–711] and the vec-
tor gradient is a type of tensors which has an important role in engineering sciences [1, p. 712].
In this work the gradient is used for mathematical modelling in fluid and structural mechanics
and is defined as

grad f = ∇f =


∂f
∂x1...
∂f
∂xn

 (1.2)

• Divergence

The divergence is a scalar field to a vector defined as

div f = ∇ · f = ∂fx
∂x

+ ∂fy
∂y

+ ∂fz
∂z

(1.3)

• Laplace operator

It is defined as
∆ = ∇2 = ∇ · ∇ (1.4)

which is the dot product of the Nabla operator with itself and prescribes the sum over the second
derivatives of a scalar or vector function [1, p. 716].

These operators are applied several times within this thesis.

Acceleration strategies in partitioned coupling of fluid-structure interaction problems 3



1 Introduction

Discretization of initial value problems

For the discretization in time of a first order initial value problem, the θ-method is used (see sec-
tion 2). It is a single-step method which only needs information from the previous time step n for
computing quantities at time step n+ 1 [1, p. 970]. The discretization of

u̇ = f(u, t) (1.5)

is done by
un+1 − un

∆t = θf
(
un+1, tn+1

)
+
(
1− θ

)
f
(
un, tn

)
(1.6)

For different values of θ the method has different orders. For θ = 1
2 it is a second-order method and

called Crank-Nicolson method, for all other θ-values only first order accuracy is possible. Two further
famous values for θ are θ = 0 which is the explicit Euler method and θ = 1 which is the implicit Euler
method. For the calculations in this thesis Crank-Nicolson is used, but in EduFEM [5] it is possible
to choose other values for θ. The Crank-Nicolson method can be written as

u(tn+1)− u(tn) = ∆t
2
(
f
(
un+1, tn+1

)
+ f

(
un, tn

))
(1.7)

[3, p. 389] and [17, p. 298].

Solving of nonlinear equations

To solve nonlinear equations an iteration scheme is used. In this work the Newton-Raphson method
and the Picard iteration are used. These iterative procedures search for the roots of non-linear equa-
tions.

Newton-Raphson method

The Newton-Raphson method is known for its fast convergence [1, p. 954] and the mathematical
expression is

xi+1 = xi −
f(xi)
f ′(xi)

(1.8)

where f ′(xi) is the first derivative of the function f(xi) and i = 0, 1, 2, . . . are the iteration steps until
a given convergence criterium is fulfilled [3, p. 182].

Assume that a non-linear system of equations

F (x) = 0 (1.9)

is to be solved. The scalar Newton-Raphson method for non-linear equations given in Equation (1.8)
can be easily vectorized to

xi+1 = xi − J−1(xi)F (xi) (1.10)

where J is the Jacobi matrix. This matrix is defined as

J(x) = ∂F(x)
∂x

(1.11)

Acceleration strategies in partitioned coupling of fluid-structure interaction problems 4
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This definition of the Newton-Raphson method for systems of non-linear equations is based on [1,
pp. 161–162]. It is easily verified that a non-linear system of equations is solved using successive
solution of a linear system of equations.

Picard iteration

In the Newton-Raphson method the Jacobi matrix has to be obtained, however, it is often cumbersome
to determine. It is possible to linearise the equations based on a fix-point iteration [1, p. 549]. The
following algorithm is based on the so-called Oseen equations. When the non-linear problem

un+1
∂un+1
∂x

= un+1un+1
,x (1.12)

should be solved, the start guess for a new time step n+ 1 is the solution of the previous one

start guess for un+1 = un (1.13)

leading to the following algorithm:

Algorithm 1: Picard Iteration
Data: From the previous time step n the solution un is known and the start guess for the actual

time step n+ 1 is set as un+1 = un

for i = 1 :∞ do

solve uiun+1
,x = 0 for un+1

break if |ui − un+1| ≤ ε

end

The differential equation which is to solve within the for-loop is a linear one.

The presented Algorithm 1 is one possible strategy to find a solution of a non-linear problem within
each time step. Alternatively to the above example un+1ui,x = 0 could be used which also results in
a solution. The specific linearisation chosen may have different convergence properties and therefore
the optimal choice is problem dependent.

Acceleration strategies in partitioned coupling of fluid-structure interaction problems 5



1 Introduction

1.2 Short introduction to the Finite Element Method (FEM)

The aim of this section is to give a short overview and introduction to the FEM which is used through-
out this thesis. In the following chapters it is assumed that the reader is familiar with the basics of
the FEM but a short summary of fundamental aspects is provided here.

The Finite Element Method (FEM) 2 is a tool in numerical mathematics to approximate bound-
ary value problems (BVPs). A general term of this procedure is simulation and it is part of the
scientific field of computational engineering. This discipline deals with modelling a real world problem
using mathematics. Modelling is often based on continuum mechanics and leads to a BVP, which
is composed of differential equations which have to be fulfilled in a domain of interest under certain
boundary conditions. Herein, this BVP is solved using the FEM. The solution is an approximation of
the analytical solution but within a certain range of accuracy which is described by certain numerical
methods. Figure 2 shows a flow diagram of such a simulation process.

reality model solutionmodelling simulation methods
(FEM)

Fig. 2: Flow-diagram of a simulation

Steps in a FEM simulation
The following list shows the steps of a FEM simulation.

• pre-processing

– Model choice including material parameters.

– Bring the differential equation from its strong form into its weak form by multiplication
with test function and application of divergence theorem.

– Domain discretization; decompose the domain of interest (DOI) into a finite number of
non-overlapping elements (meshing). The mesh often only approximates the DOI e.g. at
curved boundaries and is described by elements and nodes.

• processing

– Assembling of the system of equations.

– Consideration of BCs in the system of equations.

– Solve system of equations to obtain the sought solutions at the nodes.

• post-processing

– Obtain the sought solution everywhere in the DOI use numerical interpolation routines.

– Visualization and interpretation of the found solution.

2This section is based on the lecture notes and handouts of the lectures FEM I and FEM II taught by Prof. Dr.-Ing.
T.-P. Fries at TU Graz in 2018/2019. The material is only published for students enrolled in these courses but not
to the general public. [6]

Acceleration strategies in partitioned coupling of fluid-structure interaction problems 6



1 Introduction

The FEM mesh

In the FEM it is necessary to decompose the domain of interest into a mesh composed by elements,
which are simple and uniform building blocks. A mesh is defined by the coordinates of the nodes
and the connectivity matrix. This matrix defines the elements assigning each point of the reference
element to a node in the mesh.

In 2d one may distinguish between triangular and quadrilateral elements and in 3d between tetrahedral
and hexahedral elements. Further there are different types of elements like Lagrangian elements or
Serendipity elements. The elements used in this thesis are of Lagrangian type. Elements are defined
in a reference element in a ζ-η-coordinate system. For each node an element function is defined which
can be linear or of higher order. Figure 3 3 shows a quadratic quadrilateral element in 2d and Figure
4 shows the appropriate element functions of second order polynomials [9, pp. 126–130].

ζ

η

1 2 3

4 5 6

7 8 9

Fig. 3: Quadratic quadrilateral element in reference domain.

3Figures 3 and 4 are copied from the course paper of CE 704 - Environmental Systems Engineering - course project:
Optimization by the author of this thesis submitted to Dr. Zoe Li at McMaster University in Hamilton, Canada in
December 2019 [11]. This work is unpublished.
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1 Introduction

Fig. 4: Quadratic quadrilateral element shape functions.

For the discretization of a real domain of interest (e.g. structural element like a shell, a plate or a
beam or a fluid domain etc.) it is necessary to perform a map

x(r) =
n∑
i=1

Ni(r) · xi (1.14)

with n as the number of nodes per element and r =
(
ζ
η

)
as the reference coordinates. r is called

local coordinate system and x is called global coordinate system. Equation (1.14) maps the reference
element from the local coordinate system to the real element in the global coordinate system. This
principle is shown in Figure 5 with the reference element on the left side and the real element on
the right side. The blue lines imply the mapping function. The element function Ni(r) fulfils the
Kronecker-δ-property

δik =
{

1, for i = k

0, for i 6= k
(1.15)

which is not strictly necessary, but convenient, since prescribing essential BCs is achieved by simply
prescribing nodal degrees of freedom. The Kronecker-δ-property yields conditions for the derivation
of element functions.

Acceleration strategies in partitioned coupling of fluid-structure interaction problems 8
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ζ

η

1 2 3

4 5 6

7 8 9

x

y

x(r)

41

42

43

44 45

46

47 48 49

Fig. 5: Mapping of quadratic element from reference to real domain.

For the mapping of functions, vectors, and tensors, the Jacobi matrix is an important. This is the
(b× a) matrix of the first derivatives of the mapping x(r) : Ra → Rb.

J(r) = ∂x(r)
∂r

=


∂x1
∂r1

· · · ∂x1
∂ra... . . . ...

∂xb
∂r1

· · · ∂xb
∂ra

 (1.16)

It is needed when a vector is mapped from the local coordinate system to the global coordinate system

vx = J · vr (1.17)

The derivative of a function f(r) which is mapped by x(r) with respect to x has to be calculated
using the inverted transposed Jacobi matrix

∂f

∂x
= J−T · ∂f

∂r
(1.18)

For the mapping of the element shape functions, this leads to

∂Ni

∂x
= J−T · ∂Ni

∂r
. (1.19)

Considering x(r) = ∑n
i=1Ni(r) · xi the Jacobi matrix is then determined as

J(r) = ∂x(r)
∂r

=
n∑
i=1

∂Ni(r)
∂r

· xi (1.20)

In the context of the FEM it is used to modify integration weights for numerical integration and
determine derivatives of element functions with respect to physical coordinates x in the real domain.

Acceleration strategies in partitioned coupling of fluid-structure interaction problems 9



1 Introduction

For FEM calculations so-called node functions are necessary. These are the union of mapped ele-
ment functions at one node. Node functions are only non-zero in the elements which share the cor-
responding node of a certain node function. It is important to consider that local element functions
are C∞-continuous while global node functions are C0-continuous. This is the reason why first-order
derivatives of the node functions have jumps at element boundaries.

Numerical interpolation and integration

Numerical interpolation and integration are two important fields of numerical mathematics used within
the FEM. Because this section is only an introductory overview about the FEM these two fields are
not explained in detail. The interested reader is referred to specified literature, e.g., Hughes [9] or
Dahmen, Reusken [3].

When interpolating nodal values in the domain of interest, discretized by a mesh, we use

f(x) ≈ fh(x) =
n∑
i=1

Ni(r) · fi (1.21)

For numerical integration in EduFEM [5] Gauß quadrature is used. wi is the integration weight and
using the interpolated value at a Gauß point leads to

∫
Ω
f(x) dx ≈

nQ∑
i=1

fh(xi) · wi (1.22)

The integration weights are scaled by the determinant of the Jacobi matrix (Jacobian). The Jacobi
matrix is given in Equation 1.20.

Acceleration strategies in partitioned coupling of fluid-structure interaction problems 10
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Simple FEM example

To show readers who are not so familiar with the procedures of the FEM a simple example of a
tension bar 4 is given below. The strong form of the differential equation which describes the tension
bar is

EA · u′′(x) = −p(x) (1.23)

To obtain the weak form which is necessary to find a solution using the FEM, Equation (1.23) is
multiplied with a test function w(x) and integrated over the domain. Therefore the divergence theorem
is applied which in one dimension is simply partial integration. These steps written as formulas are

w(x) · EA · u′′(x) = −w(x) · p(x) (1.24)∫ `

0
w(x) · EA · u′′(x) dx =

∫ `

0
−w(x) · p(x) dx (1.25)

−
∫ `

0
w′(x) · EA · u′(x) dx+ [w(x) · EA · û′(x)]`0 = −

∫ `

0
w(x) · p(x) dx (1.26)

EA

∫ `

0
w′(x) · u′(x) dx =

∫ `

0
w(x) · p(x) dx+ [w(x) · N̂(x)]`0 (1.27)

with N̂(x) = EA · û′(x) as normal force.

The system and its discretization is shown in Figure 6.

`

x

z

F

1 2 3 4 51 2 3 4

N1(x) N2(x) N3(x) N4(x) N5(x)

r = −1 r = 1

N1(r) N2(r)

r

reference element:

p(x)

. . . node i
i

k . . . element k

Fig. 6: FEM discretization for a tension bar using linear elements

u(x) is the sought displacement field. The weak form given in Equation (1.27) is to be fulfilled for any
test function w(x). Because this would require an infinite number of checks, it is not possible to do
this. Therefore, we restrict that u(x) and w(x) to be functions which can be represented by a linear

4This example is based on the first lecture in FEM II by Prof. Dr.-Ing. T.-P. Fries [6] and a Master’s project by the
author of this thesis supervised by Dipl.-Ing. D. Pölz at the Institute of Applied Mechanics (AM:BM) at TU Graz
[12]. Figure 6 is a modified copy out of [12]. Both sources are not officially published.
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1 Introduction

combination of the finite element shape functions Ni(x) on a given mesh used for the discretization of
the tension bar. This is an ansatz for u(x) and w(x)

u(x) ≈ uh(x) =
n∑
i=1

Ni(x) · ui = NT(x)u (1.28)

w(x) ≈ wh(x) =
n∑
i=1

Ni(x) · wi = NT(x)w (1.29)

Inserting Equations (1.28) and (1.29) into Equation (1.27) leads to

EA

∫ `

0
wh,x(x)uh,x(x) dx =

∫ `

0
wh(x)p(x) dx+ [wh(x)N̂(x)]`0 (1.30)

Now, the one uh(x) is sought for which this discrete weak form is fulfilled for any test function wh(x).
When the discrete weak form is fulfilled for a finite basis of wh(x) it is also fulfilled for all linear
combinations of the basis functions. The set of each individual finite element shape function Ni(x)
builds the canonical basis of wh. The n equations for n nodes in the FE mesh leads to a system of
equations

EA ·


∫
N1,xN1,x dx

∫
N1,xN2,x dx . . .

∫
N1,xNn,x dx∫

N2,xN1,x dx
∫
N2,xN2,x dx . . .

∫
N2,xNn,x dx

...
... . . . ...∫

Nn,xN1,x dx
∫
Nn,xN2,x dx . . .

∫
Nn,xNn,x dx

 ·

u1
u2
...
un

 =


∫
N1p(x) dx+ [N1N̂ ]∫
N2p(x) dx+ [N2N̂ ]

...∫
Nnp(x) dx+ [NnN̂ ]

 (1.31)

Equation (1.31) in matrix-vector notation is

EA ·
[ ∫ `

0
N,xNT

,x dx
]
· u =

∫ `

0
Np(x) dx+

[
NN̂

]`
0 (1.32)

With stiffness matrix K = EA ·
[ ∫ `

0 N,xNT
,x dx

]
Equation (1.32) can be written as

K · u = b (1.33)

To solve this equation the boundary conditions have to be inserted into K.

The following chapter deals with the fluid. It shows the physical assumptions and properties of the
fluid, how it is described mathematically, and how the governing equations are solved using the FEM.
Although the situation is more complex than in this simple example of a one-dimensional tension bar,
the fundamental principals are the same.
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1.3 ALE formulation

Mechanical models may be described with different reference settings. The settings used in this thesis
are the Lagrangian setting, the Eulerian setting, and the Arbitrary-Eulerian-Lagrangian setting or
short ALE setting. The difference between these formulations is the position of the observer [25, p. 9].
In the material or Lagrangian formulation the observer tracks each material point on its spatial orbital
with its properties and position in space [25, p. 9]. In the spatial or Eulerian formulation the observer
is fixed on a certain point in space and the properties of material points are measured which are at
this point over time [25, p. 10]. In the ALE formulation the observer can move arbitrarily, which
means that the observer does not have to be fixed or moving with a certain material point [25, p. 11].

Figure 7 shows these three different settings. The figure and the following mathematical formula-
tions are based on [4, pp. 10–12].

ΩX = Ω(t = 0)

material domain

(Lagrangian)

Ωx

(Eulerian)

spatial domain

Ωχ

reference domain

(ALE)

dψ dϕ

dφ

X x

χ

φ

ϕ

ψ

Fig. 7: Different configurations of the continuum
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The initial domain is the material domain which is defined as ΩX ⊂ Rd where d is the space dimension.
A mapping

φ : ΩX × (0, T )→ Rd (1.34)

describes the motion of ΩX .

At time t the image of ΩX is the spatial domain Ωx. In addition to these two domains a third,
so called reference domain Ωχ is introduced. The mapping

ϕ : Ωχ × (0, T )→ Rd (1.35)

describes its motion. For sufficiently smooth, bijective functions φ and ϕ exists a third mapping,
defined as

ψ : Ωχ × (0, T )→ Rd, with ψ = ϕ−1 ◦ φ (1.36)

This leads for x ∈ Ωx, X ∈ ΩX , and χ ∈ Ωχ to the following relations

x = φ(X, t)
χ = ψ(X, t) (1.37)
x = ϕ(χ, t)

The deformations are formulated as

dφ = x−X
dϕ = x− χ (1.38)
dψ = χ−X

The velocity is the first derivative of the deformation and follows considering Equations (1.37) and
(1.38) as

ḋφ = ∂dφ
∂t

∣∣∣∣
X

= ∂x

∂t

∣∣∣∣
X

= φ̇

ḋϕ = ∂dϕ
∂t

∣∣∣∣
χ

= ∂x

∂t

∣∣∣∣
χ

= ϕ̇ (1.39)

ḋψ = ∂dψ
∂t

∣∣∣∣
X

= ∂χ

∂t

∣∣∣∣
X

= ψ̇

The following functions f , g, and h are defined in different domains. Defining a function in one domain
leads directly to the definition of two other functions

f(χ, t) = g(x, t) = h(X, t) (1.40)

Considering chain rule, there follows for the derivative with respect to time

∂f

∂χ
ḋψ + ∂f

∂t
= ∂g

∂x
ḋφ + ∂g

∂t
= ∂h

∂t
(1.41)

Equation (1.39) and ∂X
∂t = 0 are used therefore. For x = ϕ(ψ(X, t), t) the time derivative results in

ḋφ = ∂ϕ

∂ψ
ḋψ + ḋϕ ⇒ ḋψ = ∂χ

∂x

(
ḋφ − ḋϕ

)
(1.42)
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Inserting this in Equation (1.41) leads to

∂f

∂x

(
ḋφ − ḋϕ

)
+ ∂f

∂t︸ ︷︷ ︸
referential

= ∂g

∂x
ḋφ + ∂g

∂t︸ ︷︷ ︸
spatial

= ∂h

t︸︷︷︸
material

’ (1.43)

These differences are important because it is stated here that a problem could be formulated in the
reference (ALE) domain while the spatial derivatives are still used as in the spatial setting considering
the difference in the convective velocity [4, p. 12]. This results in the used computational mesh
dynamics (CMD) described in detail in section 4.1.
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2 Fluid Domain

2 Fluid Domain

As explained before for the fluid structure interaction (FSI) a fluid and a structure interact. The fluid
and how it is considered in the model is the topic of this chapter. At the beginning some physical
properties are defined. The fluid is described using the continuity equation and the momentum
equations, together representing the incompressible Navier-Stokes-equations. The derivation of these
important equations in fluid mechanics is shown in this chapter and the main topic is then how the
FEM model for the fluid looks like.

2.1 Physical properties of the fluid

The fluid could be a gas or a liquid. The field of fluid mechanics deals with the physical properties
of the fluid and the flow of it. An example for a gaseous fluid is air and for a liquid one water but
also toothpaste and honey are fluids and it is obvious to see from these examples that the properties
of different fluids can be various but the fundamental equations to describe fluids mathematically are
the same for all of these different fluid types although there are also differences within the models.

An important distinction between fluids and solids is that fluids cannot resist shear forces when
they are in a rest position [25, p. 23]. In this thesis Newtonian fluids are considered. This means that
the shear stresses are proportional to the change of flow velocities of the fluid [19, p. 106]. Shear stress
is defined as

τ = µ
du
dt (2.1)

where µ is the dynamic or shear viscosity [26, p. 6] and du
dt the derivative of the fluid velocity parallel

to the shear direction. Another important quantity of a fluid is its density ρ. The kinematic viscosity
ν [26, p. 15] sets it in relation to the dynamic viscosity

ν = µ

ρ
(2.2)

Reynolds number Re is an important parameter of a fluid. It shows the flow resistance of a viscous
fluid and is defined as

Re = uL

ν
(2.3)

where u is the fluid’s velocity and L is the characteristic length. A small Reynolds number indicates
that friction forces are predominant and a high Reynolds number indicates predominant inertia forces
[19, p. 110].
In the fluid model used in this work the density ρ is constant and the fluid is called incompressible. If
a flow of a gas is compressible or incompressible is characterised by Mach’s number, the ratio between
the characteristic velocity and acoustic velocity [19, p. 190] and [24, p. 19]. The density could depend
on the temperature but this is not considered in this work.
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2 Fluid Domain

2.2 Derivation of the governing equations

The governing equations for the fluid model used in this work are the balance of mass and linear
momentum, which constitute the Navier-Stokes equations (NSEQ) for incompressible flow5. Their
derivation shown here is based on [19, pp. 201 – 209].

Continuity equation

z

x

y

ρ · v · dx · dz

(
ρ · u+ ∂(ρ·u)

∂x dx
)
· dy · dz

(
ρ · w + ∂(ρ·w)

∂z dz
)
· dx · dy

ρ · u · dy · dz

ρ · w · dx · dy

(
ρ · v + ∂(ρ·v)

∂y dy
)
· dx · dz

Fig. 8: Mass flow on infinitesimal volume element dV

Figure 8 shows an infinitesimal small volume element dV = dx · dy · dz. The law of conservation of
mass has to be fulfilled for this element. The change of mass over time is the mass flow which flows in
the volume element minus the mass flow which flows out of dV . These flows are shown in Figure 8.

The change of mass over time is
∂ρ

∂t
· dx · dy · dz (2.4)

This equation combined with the equations shown in Figure 8 leads to

∂ρ

∂t
· dx · dy · dz =

(
ρ · u−

(
ρ · u+ ∂(ρ · u)

∂x
dx
))
· dy · dz+(

ρ · v −
(
ρ · v + ∂(ρ · v)

∂y
dy
))
· dx · dz+(

ρ · w −
(
ρ · w + ∂(ρ · w)

∂z
dz
))
· dx · dy

5Claude Luis Maria Henry NAVIER, 1785-1836, French engineer, and George STOKES, 1819 - 1903, English mathe-
matician and physician [21]
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2 Fluid Domain

Some reshaping of this expression gives the continuity equation

∂ρ

∂t
+ ∂(ρ · u)

∂x
+ ∂(ρ · v)

∂y
+ ∂(ρ · w)

∂z
= 0 (2.5)

For an incompressible fluid with constant density follows

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0 (2.6)

Equation 2.6 can be written in coordinate free notation as

∇ · u = 0 (2.7)

where u is the fluid velocity vector.

Balance of linear momentum (Navier-Stokes equations)

The derivation of the balance of linear momentum shown here is based on laminar flow. It comes
from the law of conservation of momentum on the infinitesimal volume element dV .

z

x

y

ρ · u · u+ ∂(ρ·u·u)
∂x dx

ρ · v · u+ ∂(ρ·v·u)
∂x dx

ρ · w · u+ ∂(ρ·w·u)
∂x dx

ρ · v · u

ρ · u · u

ρ · w · u

Fig. 9: Momentum flow on infinitesimal volume element dV in x-direction

The change over time of momentum in the infinitesimal volume element dV is

∂(ρu)
∂t

· dx · dy · dz (2.8)

Figure 9 shows dV with the necessary components in x-direction. It looks analogously for the other
two coordinate directions. There are three momentum flows at each surface of the cube. In addition
to the momentum also volume forces f (e.g. gravitational forces) act on dV . Further normal stresses
and shear stresses are considered as shown in Figure 10 for x-direction. The other two directions are
considered analogously.
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z

x

y

τxx + ∂(τxx)
∂x dx

τxy + ∂(τxy)
∂x dx

τxz + ∂(τxz)
∂x dx

τxy

τxx

τxz

Fig. 10: Normal and shear stresses on volume element dV in x-direction

Considering for the change of the momentum over time on dV the momentum inflow, the momentum
outflow, the normal and shear stresses, and the mass acting on dV follows in x-direction

∂(ρ · u)
∂t

· dx · dy · dz =
(
ρ · u · u−

(
ρ · u · u+ ∂(ρ · u · u)

∂x
dx
))
· dy · dz+(

ρ · u · v −
(
ρ · u · v + ∂(ρ · u · v)

∂y
dy
))
· dx · dz+(

ρ · u · w −
(
ρ · u · w + ∂(ρ · u · w)

∂z
dz
))
· dx · dy+

fx · dx · dy · dz+(
− τxx +

(
τxx + ∂(τxx)

∂x
dx
))

dy · dz+(
− τyx +

(
τyx + ∂(τyx)

∂y
dy
))

dx · dz+(
− τzx +

(
τzx + ∂(τzx)

∂z
dz
))

dx · dy

Applying some reshaping leads to
∂(ρ · u)
∂t

+ ∂(ρ · u · u)
∂x

+ ∂(ρ · u · v)
∂y

+ ∂(ρ · u · w)
∂z

= fx + ∂τxx
∂x

+ ∂τyx
∂y

+ ∂τzx
∂z

(2.9)

In y-direction follows analogously
∂(ρ · v)
∂t

+ ∂(ρ · v · u)
∂x

+ ∂(ρ · v · v)
∂y

+ ∂(ρ · v · w)
∂z

= fy + ∂τxy
∂x

+ ∂τyy
∂y

+ ∂τzy
∂z

(2.10)

and in z-direction
∂(ρ · w)
∂t

+ ∂(ρ · w · u)
∂x

+ ∂(ρ · w · v)
∂y

+ ∂(ρ · w · w)
∂z

= fz + ∂τxz
∂x

+ ∂τyz
∂y

+ ∂τzz
∂z

(2.11)
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Pressure p is the trace of the stress tensor

p = −τxx + τyy + τzz
3 (2.12)

and is a negative normal stress. Considering Equation (2.12) it is possible to split the normal stresses
into

τxx = σxx − p
τyy = σyy − p (2.13)
τzz = σzz − p

For Newtonian fluids consider the following relations for normal stresses

σxx = 2 · µ · ∂u
∂x
− 2

3 · µ ·
(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)
σyy = 2 · µ · ∂v

∂y
− 2

3 · µ ·
(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)
(2.14)

σzz = 2 · µ · ∂w
∂z
− 2

3 · µ ·
(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)
and for shear stresses with the law of complementary shear stresses

τyx = τxy = µ ·
(
∂v

∂x
+ ∂u

∂y

)
τyz = τzy = µ ·

(
∂w

∂y
+ ∂v

∂z

)
(2.15)

τzx = τxz = µ ·
(
∂u

∂z
+ ∂w

∂x

)
Using these relations in Equations (2.14) and (2.15) together with Equation (2.6) and apply these at
Equations (2.9) to (2.11) leads to the momentum equations for incompressible flows

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
= fx −

∂p

∂x
+ µ

(
∂2u

∂x2 + ∂2u

∂y2 + ∂2u

∂z2

)
ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
= fy −

∂p

∂y
+ µ

(
∂2v

∂x2 + ∂2v

∂y2 + ∂2v

∂z2

)
(2.16)

ρ

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
= fz −

∂p

∂z
+ µ

(
∂2w

∂x2 + ∂2w

∂y2 + ∂2w

∂z2

)
In a coordinate free and vectorized notation this is

ρ

(
∂u

∂t
+ (u · ∇)u

)
= f −∇p+ µ∆u (2.17)

Considering that
µ∆u = µ∇2u = µ∇ ·

(
∇u+∇uT

)
Equation (2.17) can be written as

ρ

(
∂u

∂t
+ (u · ∇)u

)
−∇ · σ = f (2.18)

where σ is defined as
σ(u, p) = −p · I + µ

(
∇u+∇uT) (2.19)
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2.3 Fluid domain in FEM

This section is based on [6]6 and [26], especially chapter 4 (pages 127 to 155).
The governing equations here are the Navier-Stokes equations derived above in Equation (2.18) and
Equation (2.7). With no restriction of generality this section considers a two dimensional flow with
spatial coordinates x = (x, y)T and velocity vector u = (u, v)T.

Ω

ΓD

ΓD

ΓD ΓN
free outflow

n

t

Fig. 11: Fluid domain Ω

Figure 11 shows the fluid domain of interest (fluid DOI) Ω. The figure depicts a channel flow but
this is arbitrary and the principle holds true for all other possible cases. There are some boundary
conditions (BCs) predescribed. As mentioned before BCs are distinguished into Dirichlet or essential
BCs on ΓD and von Neumann BCs on ΓN . In the sketch also a normal vector n and a tangential
vector t of the edge of DOI Ω are shown.
In component-form the governing equations are

ρ

[
∂u
∂t +

(
u · ∂x + v · ∂y

)
· u

∂v
∂t +

(
u · ∂x + v · ∂y

)
· v

]
−
[
σxx,x + σxy,y
σyx,x + σyy,y

]
=
[
fx
fy

]
(2.20)

u,x + v,y = 0 (2.21)

The velocity vector components u and v, and pressure p are the unknowns in these three equations.
In this work a so-called no-slip boundary condition at walls is assumed for the Dirichlet BCs along the
walls of Ω.

u(x, t) = 0 ∀x ∈ ΓD,Wall t ∈ [0, T ] (2.22)

The von Neumann boundary condition for each case in this work is a free outflow

σ · n = t (2.23)

6These lecture notes for FEM II are not used in the lecture and therefore not published. Prof. Dr.-Ing. T.-P. Fries
gave me access to these documents in personal communication. I would like to acknowledge this here separately.
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For the components of vector t follows

tx = σxx · nx + σxy · ny
ty = σyx · nx + σyy · ny

The initial condition (IC) is
u(x, t = 0) = u0 (2.24)

with ∇ · u0 = 0.
For discretization in time θ-method is used. For the first line of Equation (2.20) follows

ρ
un+1 − un

∆t = θ
[
− ρ

(
un+1 · un+1

,x + vn+1 · un+1
,y

)
+ σn+1

xx,x + σn+1
xy,y + fn+1

x

]
+ (1− θ)

[
− ρ

(
un · un,x + vn · un,y

)
+ σnxx,x + σnxy,y + fnx

]
Reshape this to

ρ

∆tu
n+1 + ρθ

(
un+1 · un+1

,x + vn+1 · un+1
,y

)
− θ

(
σn+1
xx,x + σn+1

xy,y

)
=

ρ

∆tu
n − ρ

(
1− θ

)(
un · un,x + vn · un,y

)
+
(
1− θ

)(
σnxx,x + σnxy,y

)
+ fθx (2.25)

with
fθx = θfn+1

x + (1− θ)fnx
For the second line of Equation (2.20) follows analogously

ρ

∆tv
n+1 + ρθ

(
un+1 · vn+1

,x + vn+1 · vn+1
,y

)
− θ

(
σn+1
yx,y + σn+1

yy,y

)
=

ρ

∆tv
n − ρ

(
1− θ

)(
un · vn,x + vn · vn,y

)
+
(
1− θ

)(
σnyx,x + σnyy,y

)
+ fθy (2.26)

with
fθy = θfn+1

y + (1− θ)fny
The continuity equation is not time-depending. Equation 2.21 should be fulfilled at all times t. This
leads to

uθ,x + vθ,x = 0 ⇔ θun+1
,x + (1− θ)un,x + θvn+1

,y + (1− θ)vn,y = 0 (2.27)
Time discretization using θ-method results to time derivatives free Equations (2.25), (2.26), and (2.27)
but two time-levels tn and tn+1 have to be considered. At tn all quantities are known, at tn+1 the
fields un+1, vn+1, and pn+1 are unknown but fn+1 is given. The advection terms are non-linear so a
procedure to solve non-linear equations is necessary. Here the Picard iteration is used. Considering
Equation (2.19) the semi-discrete Equations (2.25) and (2.26) are linearised to

ρ

∆tu
n+1 + ρθ

(
ui · un+1

,x + vi · un+1
,y

)
− θ

(
− pn+1

,x + 2µun+1
,xx

)
− θµ

(
un+1
,yy + vn+1

,xy

)
=

ρ

∆tu
n − ρ

(
1− θ

)(
un · un,x + vn · un,y

)
+
(
1− θ

)(
− pn,x + 2µun,xx

)
+
(
1− θ

)
µ
(
un,yy + vn,xy

)
+ fθx (2.28)

ρ

∆tv
n+1 + ρθ

(
ui · vn+1

,x + vi · vn+1
,y

)
− θµ

(
un+1
,xy + vn+1

,xx

)
− θ

(
− pn+1

,y + 2µvn+1
,yy

)
=

ρ

∆tv
n − ρ

(
1− θ

)(
un · vn,x + vn · vn,y

)
+
(
1− θ

)
µ
(
un,xy + vn,xx

)
+
(
1− θ

)(
− pn,y + 2µvn,yy

)
+ fθy (2.29)

Equation (2.27) is unchanged.
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2 Fluid Domain

The next task is to determine the weak form of these equations. Therefore the test functions wu, wv,
and wp are necessary.
Multiply Equation (2.28) with test function wu and integrate over the DOI Ω. This leads to∫

wu

[
ρ

∆tu
n+1 + ρθ

(
ui · un+1

,x + vi · un+1
,y

)
− θ

(
σn+1
xx,x + σn+1

xy,y

)]
dΩ =∫

wu

[
ρ

∆tu
n + ρ

(
1− θ

)(
un · un,x + vn · un,y

)
+
(
1− θ

)(
σnxx,x + σnxy,y

)
+ fθx

]
dΩ (2.30)

Apply the divergence theorem on the stress tensor leads to

ρ

∆t

∫
wuu

n+1dΩ + ρθ

∫
wu
(
ui · un+1

,x + vi · un+1
,y

)
dΩ

+ θ

∫
wu,xσ

n+1
xx dΩ− θ

∫
wuσ

n+1
xx nxdΓ

+ θ

∫
wu,yσ

n+1
xy dΩ− θ

∫
wuσ

n+1
xy nydΓ =

ρ

∆t

∫
wuu

ndΩ− ρ
(
1− θ

) ∫
wu
(
un · un,x + vn · un,y

)
dΩ

−
(
1− θ

) ∫
wu,xσ

n
xxdΩ +

(
1− θ

) ∫
wuσ

n
xxnxdΓ

−
(
1− θ

) ∫
wu,yσ

n
xydΩ +

(
1− θ

) ∫
wuσ

n
xynydΓ +

∫
wuf

θ
xdΩ (2.31)

Rearrange this equation and insert Equation (2.19) leads to

ρ

∆t

∫
wuu

n+1dΩ + ρθ

∫
wu
(
ui · un+1

,x + vi · un+1
,y

)
dΩ

+ θ

∫
wu,x

(
− pn+1 + 2µun+1

,x

)
dΩ + θµ

∫
wu,y

(
un+1
,y + vn+1

,x

)
dΩ

= ρ

∆t

∫
wuu

ndΩ− ρ
(
1− θ

) ∫
wu
(
un · un,x + vn · un,y

)
dΩ

−
(
1− θ

) ∫
wu,x

(
− pn + 2µun,x

)
dΩ−

(
1− θ

)
µ

∫
wu,y

(
un,y + vn,x

)
dΩ +

∫
wuf

θ
xdΩ +

∫
wut

θ
xdΓ (2.32)

Analogously follows for Equation (2.29)

ρ

∆t

∫
wvv

n+1dΩ + ρθ

∫
wv
(
ui · vn+1

,x + vi · vn+1
,y

)
dΩ

+ θ

∫
wv,y

(
− pn+1 + 2µvn+1

,y

)
dΩ + θµ

∫
wv,x

(
un+1
,y + vn+1

,x

)
dΩ

= ρ

∆t

∫
wvv

ndΩ− ρ
(
1− θ

) ∫
wv
(
un · vn,x + vn · vn,y

)
dΩ

−
(
1− θ

) ∫
wv,y

(
− pn + 2µvn,y

)
dΩ−

(
1− θ

)
µ

∫
wv,x

(
un,y + vn,x

)
dΩ +

∫
wvf

θ
ydΩ +

∫
wvt

θ
xdΓ (2.33)

The weak form of the continuity equation is

θ

∫
wpu

n+1
,x dΩ + θ

∫
wpv

n+1
,y dΩ = −(1− θ)

∫
wpu

n
,xdΩ− (1− θ)

∫
wpv

n
,ydΩ (2.34)
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As described in 1.2 un+1, vn+1, and pn+1 are sought so that Equations (2.32), (2.33), and (2.34) are
fulfilled for all possible test functions wu, wv, and wp. Therefore the possible functions have to be
restricted to the FE basis with an ansatz of the following form

un+1(x) ≈ uh,n+1(x) = NT(x) · un+1

vn+1(x) ≈ vh,n+1(x) = NT(x) · vn+1

pn+1(x) ≈ ph,n+1(x) = MT(x) · pn+1

un(x) ≈ uh,n(x) = NT(x) · un

vn(x) ≈ vh,n(x) = NT(x) · vn

pn(x) ≈ ph,n(x) = MT(x) · pn (2.35)
ui(x) ≈ uh,i(x) = NT(x) · ui

vi(x) ≈ vh,i(x) = NT(x) · vi

wu ≈ whu = NT(x) ·wu

wv ≈ whv = NT(x) ·wv

wp ≈ whp = MT(x) ·wp

For the velocity components and pressure finite elements with shape functions of different order can
be used and therefore the functions are N(x) for velocities and M(x) for pressure. In this thesis
Taylor-Hood-elements are used. The shape functions have different orders there [7]. This approach is
also known as Q2/Q1, which means that the element order for the velocity field is quadratic and for
the pressure field linear, two meshes have to be generated for the discretization. The reason therefore
is that for incompressible flow problems the interpolation functions should be chosen for error con-
sistency reasons so that the interpolation functions for pressure are a polynomial of one degree lower
than for velocities [10].

un, vn, and pn are known from the previous time step and ui, vi, and pi are known from the previous
iteration step, so uh,n, vh,n, ph,n uh,i, vh,i, and ph,i can be evaluated immediately.

To get the sought discrete weak form of the equations, expressions from Equation (2.35) are ap-
plied to Equations (2.32), (2.33), and (2.34).
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This leads to the following system of equations in two dimensions:

ρ

∆t

∫
NNTdΩun+1 + ρθ

∫ (
NTui

)
NNT

,xdΩun+1

+ ρθ

∫ (
NTvi

)
NNT

,ydΩun+1 − θ
∫

N,xMTdΩpn+1

+ θµ

∫
2N,xNT

,x + N,yNT
,ydΩun+1 + θµ

∫
N,yNT

,xdΩvn+1 = (2.36)
ρ

∆t

∫
N
(
NTun

)
dΩ− ρ(1− θ)

∫ (
NTun

)
N
(
NT
,xu

n)dΩ

− ρ(1− θ)
∫ (

NTvn
)
N
(
NT
,yu

n)dΩ + (1− θ)
∫

N,x
(
MTpn

)
dΩ

− (1− θ)µ
∫

N,x
(
2NT

,xu
n)dΩ− (1− θ)µ

∫
N,y

(
NT
,yu

n + NT
,xv

n)dΩ

+
∫

NfθxdΩ +
∫

NtθxdΓ

ρ

∆t

∫
NNTdΩvn+1 + ρθ

∫ (
NTui

)
NNT

,xdΩvn+1

+ ρθ

∫ (
NTvi

)
NNT

,ydΩvn+1 − θ
∫

N,yMTdΩpn+1

+ θµ

∫
2N,yNT

,y + N,xNT
,xdΩvn+1 + θµ

∫
N,xNT

,ydΩun+1 = (2.37)
ρ

∆t

∫
N
(
NTvn

)
dΩ− ρ(1− θ)

∫ (
NTun

)
N
(
NT
,xv

n)dΩ

− ρ(1− θ)
∫ (

NTvn
)
N
(
NT
,yv

n)dΩ + (1− θ)
∫

N,y
(
MTpn

)
dΩ

− (1− θ)µ
∫

N,y
(
2NT

,yv
n)dΩ− (1− θ)µ

∫
N,x

(
NT
,yu

n + NT
,xv

n)dΩ

+
∫

NfθydΩ +
∫

NtθydΓ

− θ
∫

MNT
,xdΩun+1 − θ

∫
MNT

,ydΩvn+1 =

(1− θ)
∫

M
(
NT
,xu

n)dΩ + (1− θ)
∫

M
(
NT
,yv

n)dΩ (2.38)
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For purposes of a shorter and clearer notation in a matrix-vector equation, the following block matrices
are introduced.

• time or mass matrix 7

T = ρ

∆t

∫
NNTdΩ (2.39)

and shorter
T̂ =

[
T 0
0 T

]
(2.40)

• advection matrix

Ai = ρ

∫ (
NTui

)
NNT

,x +
(
NTvi

)
NNT

,ydΩ (2.41)

An = ρ

∫ (
NTun

)
NNT

,x +
(
NTvn

)
NNT

,ydΩ (2.42)

and shorter
Âi =

[
Ai 0
0 Ai

]
(2.43)

Ân =
[
An 0
0 An

]
(2.44)

• diffusion matrix

D̂ =
[
D11 D12
D21 D22

]
= µ

[∫
2N,xNT

,x + N,yNT
,ydΩ

∫
N,yNT

,xdΩ∫
N,xNT

,ydΩ
∫

N,xNT
,x + 2N,yNT

,ydΩ

]
(2.45)

• constraint matrix (Lagrangian multiplier for continuity)

Ĉ =
[
C1 C2

]
=
[
−
∫

MNT
,xdΩ −

∫
MNT

,ydΩ
]

(2.46)

This leads to[
T̂ + θÂi + θD̂ θĈT

θĈ 0

]
·
[
ûn+1

pn+1

]
=
[(

T̂−
(
1− θ

)
Ân −

(
1− θ

)
D̂
)
ûn −

(
1− θ

)
ĈT
pn + F

−
(
1− θ

)
Ĉûn

]
(2.47)

where û = [uv]T and F = [FxFy]T with

Fx =
∫

NfθxdΩ +
∫

NtθxdΓ (2.48)

Fy =
∫

NfθydΩ +
∫

NtθydΓ (2.49)

Equation (2.47) is the implemented system of equations in the fluid solver in EduFEM [5] for 2d cases.
It is straightforwardly extended to three dimensions.

7T is a mass matrix and therefore often denoted as M. Here M stands for the shape function used in the pressure
mesh, so the mass or time matrix is denoted as T.
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3 Structural Domain

The structural domain or solid in this model can deform with large deformations but it is assumed
that only small strains will occur [25, p. 20]. Figure 12 shows an arbitrary solid in the undeformed or
material configuration ΩX and the deformed or spatial configuration Ωx.

ΩX

Ωx

e1

e2

P

P

X

x

d(X)

Fig. 12: Solid in material and spatial configuration

Strong form

Large displacements and rotations can occur within the structural domain and these lead to a ge-
ometrical non-linear formulation. This structural domain model is also called St. Venant solid and
describes a hyper-elastic material. The following equations and descriptions leading to the strong
form of the model for St. Venant solids are based on [4, pp. 12–13] with combination of [6] 8. It is
formulated in a total Lagrangian framework, that means that all quantities of the solid domain are
given with respect to the material configuration X.

x(X) = X + d(X) (3.1)

is the equation which describes the map from the undeformed configuration to the deformed configu-
ration. d is the occurring displacement. The Jacobi matrix of this map is the so-called deformation
gradient

F = ∂x(X)
∂(X) = ∂d

∂(X) + I = ∇Xd+ I (3.2)

8[6] has not been necessary to work this section out, but Lecture 3 of FEM II has been used as background information.
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where I is the identity tensor.
C = FT · F (3.3)

is the right Cauchy-Green deformation tensor. Another important tensor is the Green-Lagrange strain
tensor.

E = 1
2(C− I) = 1

2
(
FT · F− I

)
= 1

2
(
∇Xd+

(
∇Xd

)T +
(
∇Xd

)T(∇Xd)) (3.4)

This is a non-linear strain tensor which describes the kinematic relations and does not generate strains
considering rigid body motions.
At this stage it is necessary to connect the strains to stresses so some stress tensors are introduced:
Cauchy stress tensor

σ =

σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

 (3.5)

lives in the deformed configuration and is the only stress tensor with a concrete physical meaning.
Multiplying it with the determinant of the deformation gradient gives the Kirchhoff stress tensor

τ = det(F ) · σ (3.6)

The first Piola-Kirchhoff stress tensor is defined as

P = τ · F−T (3.7)

and the second Piola-Kirchhoff stress tensor as

S = F−1P = det(F )F−1 · σ · F−T (3.8)

The constitutive relation is then
S = λ(trE)I + 2ηE (3.9)

with Lamé constants defined as

λ = Eν

(1 + ν)(1− 2ν) (3.10)

η = E

2(1 + ν) (3.11)

with Young’s modulus or modulus of elasticity E and Poisson’s ratio ν.

The strong form of the differential equation describing the structure in the material domain using
St. Venant’s model is

ρSd̈−∇X · (FS) = f on ΩS × (0, T ) (3.12)

ρS is the density of the solid, f is the volume force vector, and ΩS is the undeformed structural
domain.
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Weak form

The continuous weak form of Equation (3.12) is then:

Find d ∈ [H1(ΩS)]d with d = d̂, such that for all w ∈ [H1(Ωs)]d with w|ΓD
= 0

∫
ΩS

ρSw · d̈ dΩ +
∫

ΩS

∇Xw : (FS) dΩ =
∫

ΩS

w · f dΩ +
∫

ΓS ,t
w · t̂ dΓ (3.13)

holds.

To approximate the solution of Equation (3.12) using the FEM, the weak form given in Equation (3.13)
is necessary. The problem is a spatial problem as well as a time-dependent problem and therefore a
spatial discretization and a time discretization of the structural domain of interest are necessary. The
spatial discretization is done using the FEM as it is described in section 1.2.
In [4, p. 20] test and trial function spaces are given to approximate the displacements. The test and
trial spaces are

Shd =
{
dh|dh ∈

(
H1h)d, dh = d̂h on ΓS,d

}
(3.14)

Vhd =
{
wh|wh ∈

(
H1h)d, wh = 0 on ΓS,d

}
, (3.15)

which are constructed from the mapped element functions. For the finite dimensional space can be
stated that

H1h ⊆ H1. (3.16)

Considering these spaces, Equation (3.13) can be formulated in a Bubnov-Galerkin setting:
Find dh ∈ Shd , such that∫

ΩS

ρSw
h · d̈h dΩ +

∫
ΩS

∇Xwh : (FS) dΩ =
∫

ΩS

wh · fh dΩ +
∫

ΓS ,t
wh · t̂h dΓ ∀wh ∈ Vhd (3.17)

t̂
h is the traction along the Neumann boundary ΓN [4, p. 20].

The time discretization is done using Newmark’s method. Another possible approach for time dis-
cretization is to use HHT-α-method. In this thesis only Newmark’s method is used.

Information about time discretization using Newmark’s method can be found in many books, dis-
sertations and articles, e.g. Wall [25], Chopra [2], and Hughes [9].

The following description of Newmark’s method is based on [9, pp. 490 – 504].
The equation of motion in structural dynamics is a semi-discrete system of equations of the form

Md̈+ Cḋ+ Kd = f(t) (3.18)

where M is the mass matrix, C is the viscous damping matrix, K is the stiffness matrix [9, p. 490],
and f is the time-depending force vector. d is the displacement vector, its first derivative is the
velocity vector, and its second derivative the acceleration vector. For Equation (3.17) the considered
equation of motion is [4, p. 20]

Md̈
h
n+1 + Cḋhn+1 + K(dhn+1) = f(tn+1) (3.19)
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It is to mention that the stiffness matrix K is non-linear for St. Venant solids and the damping matrix
C equals zero.
Newmark’s method uses the following two equations [4, p. 21] and [9, pp. 490–491] together with
Equation (3.19)

dhn+1 = dhn + ∆tḋhn + ∆t2
2

[(
1− 2β

)
d̈
h
n + 2βd̈hn+1

]
(3.20)

ḋ
h
n+1 = ḋ

h
n + ∆t

[(
1− γ

)
d̈
h
n + γd̈

h
n+1

]
(3.21)

The Newmark parameters β and γ are responsible for the stability and accuracy characteristics of the
method. In this thesis the average acceleration scheme (implicit method or trapezoidal rule) is used.
The order of accuracy is 2 and the constants are defined therefore as

β = 1
4

γ = 1
2

To achieve second order accuracy γ must be 1
2 [9, p. 493]. For linear cases Newmark’s method using

theses constants is unconditionally stable. For St. Venant solids described by a non-linear geometric
model the energy conservation and stability properties are different compared to linear cases [4, p. 21].

In EduFEM [5] the non-linear structural domain in each time step is solved using a Newton-Raphson
iteration (see section 1.1) while integrating in time is done using Newmark’s method.

For the bridge test case the structure is defined as a rigid body. It is solved in EduFEM using
three decoupled ODEs for horizontal and vertical displacements, and rotations. Therefore no Newton-
Raphson iteration is necessary but Newmark’s method is applied as well. The governing equations for
the rigid body model in strong form are described in section 3.1.
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3.1 Rigid body motion

The structure in the bridge test case of section 6 is modelled as a rigid body. A rigid body is a structural
body in which no deformations occur and distances between two points remain constant during the
entire time of analysis. In a two dimensional model three degrees of freedom - two translations and one
rotation - have to be considered. Here one translation is neglected because it is blocked in the bridge
case in this thesis. This section is based on [8, pp. 12–13]. In Figure 13 the rigid body considered in
this model is shown. It is a modified drawing of the figure given in [8, p. 12]

y

x

kv

kϕ

M(t)

Fy(t)

v

ϕ

Fig. 13: Rigid body with elastic support

The vertical displacement v and the rotation ϕ are the components of vector u. w = v̇ is the vertical
velocity of the rigid body and ω = ϕ̇ is the angular velocity. These are the components of the velocity
vector w. The mass matrix M has on its main diagonal the mass m and the moment of inertia θ
and the stiffness matrix has on its main diagonal the spring stiffnesses kv and kϕ. These vectors and
matrices are written as

u(t) =
[
v
ϕ

]
w(t) =

[
w
ω

]
M =

[
m 0
0 θ

]
K =

[
kv 0
0 kϕ

]
The load vector and the vector of spring forces are

p(t) =
[
Fy(t)
M(t)

]
s(t) =

[
Fs(t)
Ms(t)

]
These matrices and vectors are used for a system of first order differential equations. The first one is
the equation for momentum and rotational momentum given as

Mẇ(t) + s(t)− p(t) = 0 (3.22)

The second one is Hooke’s law to describe linear spring forces and moments. It is given as

K−1ṡ(t)−w(t) = 0 (3.23)

To solve Equations (3.22) and (3.23) initial conditions of the form

u(t = 0) = K−1ṡ(t = 0) = uinit (3.24)
w(t = 0) = winit (3.25)

are necessary. Time discretization is done using Newmark’s method. The mass, moment of inertia, and
the spring characteristics are constant over time and therefore M and K are not time dependent. Two
decoupled ODEs have to be solved to get the solutions for the vertical translation and the rotation.
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4 Fluid-structure interaction

The topic of this chapter is how the fluid and solid interact in fluid-structure interaction (FSI). The
described approaches in chapter 2 for the fluid domain and chapter 3 for the solid domain can be used
independently to approximate the solution of a fluid or solid problem respectively. So far these two
fields have not been coupled. At first a theoretical background on generic coupling strategies is given
and then it is shown how the FSI-scheme looks like using an example.

As mentioned before in chapter 1 there are several possibilities to couple two physical fields in case of
FSI. Here the two fields are coupled with a partitioned coupling and a third auxiliary field is intro-
duced which considers the movement of the fluid domain by updating the fluid mesh. This moving
mesh approach is described later in 4.1.

FSI problems can be tackled using either monolithic or partitioned algorithms. In a monolithic pro-
cedure fluid and solid are treated as a unified system while in a partitioned approach both fields are
treated as separate systems and coupling is done via dynamic and kinematic conditions at the interface
of both systems [26, p. 440].
Using a partitioned algorithm it is possible to use independent solvers for the fluid and structural do-
main respectively. It is easier to change solvers individually. In practice it is possible that the spatial
discretization as well as the entire modelling is done independently. The system which is to solve is
usually smaller and that could have positive effects on the effort needed to solve the overall problem
[25, pp. 169–170]. A disadvantage of the partitioned approach is that it is only conditionally stable,
even when the solution procedures for the individual fields are unconditionally stable [25, p. 170].

It is possible to distinguish between a weakly and a strongly partitioned approach [26, p. 424]. The
weakly or loosely coupled approach is more susceptible to instabilities, especially when the fluid and
solid density are similar [26, p. 440]. Each single field is solved and the solution is given to the next
field which goes further in time using this information. This means that coupling conditions do not
have to be exactly fulfilled at each time step. This is also called one-way staggered [25, p. 170].
The interface conditions are better satisfied using a strong coupled method [26, p. 440]. The coupling
conditions converge at the end of each time step because an iteration over all fields is done for each
time step. This may also be called iteratively staggered. [25, p. 170]. The strongly coupled partitioned
approach is used in this thesis. Figure 14 shows a flow chart diagram of the scheme applied to FSI as
used in this work (compare with Figure 13.7 in [26, p. 441]).

The FSI or coupling loop contains the fluid domain solver, the solid or structural domain solver,
and a computational mesh dynamics (CMD) routine. The latter is described in more detail in 4.1.

The coupling of the individually solved fields is done using a so-called Neumann-to-Dirichlet prin-
ciple [4, p. 23] where the coupling is done at the level of BCs. Figure 14 shows a flowchart of the used
algorithm. The first field for which the solution is approximated is the fluid field. This gives a traction
σ · n along the fluid-structure interface Γc where c stands for coupled fluid-structure interface. The
traction determined with the fluid solver is used as Neumann boundary condition in the structural
solver. The solid solver approximates the displacements d of the structure along Γc and these are used
as Dirichlet boundary condition for the CMD. The moved mesh and the deformed structure must
match each other along the interface in each time step, so the deformation of the structure must be

Acceleration strategies in partitioned coupling of fluid-structure interaction problems 32



4 Fluid-structure interaction

considered carefully. In the solid domain solver the initial structural mesh is used for each approxima-
tion during the entire calculation according to the standard Lagrangian viewpoint for the solid part.
[4, p. 24]. For the convergence criteria of the partitioned coupling loop (in short notation: FSI-loop)
the fluid solution with velocities u, v, and pressure p, and the structural displacements d are consid-
ered. uvp stands for the vector of the FEM approximation of the fluid domain whose components are
u, v, and p.

start
time step

start
iteration

fluid solid

convergence
(uvp and

d) ?
mesh (CMD)

next time
step

stop

no

yes

no

yes

FSI-loop

Fig. 14: Flow-diagram of FSI algorithm

Figure 14 visualizes the algorithm of the FSI partitioned coupling loop for one time step tn with
n ∈ [0, N ]. Therefore the index of this loop is c. The pseudocode for this algorithm for time step tn+1
is:

Acceleration strategies in partitioned coupling of fluid-structure interaction problems 33



4 Fluid-structure interaction

Algorithm 2: FSI partitioned coupling loop for time step n+ 1
Input: From time step tn: The fluid mesh Ωfluid

n with velocity un and pressure pn, the time
independent structural domain mesh Ωsolid

0 and time-dependent solid displacements dn.

initialization

while max
(
uvpcconCrit, dcconCrit

)
> MaxResc do

solve fluid field - CFD to get un+1 and pn+1 using Ωfluid
n+1 , Ωfluid

n , un, and pn
determine fluid forces fn+1
solve solid field - CSD using Ωsolid

0 and fn+1 as BC to get dn+1

get new fluid mesh - CMD Ωfluid
n+1 matching solid displacements dn+1

end

Output: obtain Ωfluid
n+1 , un+1, pn+1, and dn+1

Next time step if tend has not been reached.

MaxResc is the tolerance boundary for the partitioned coupling loop, uvpcconCrit and dcconCrit are the
test quantities (interface norms) as defined in Equations (4.7) and (4.8) respectively. In this work it
is called εc = εFSI = 10−i with i ∈ [1, 2, ..., 6]. More about this topic is described in the following
chapters presenting the results of the test cases.
CFD stands for Computational Fluid Dynamics, CSD stands for Computational Solid Dynamics,
CMD stands for Computational Mesh Dynamics, and Ωd

TS is the spatial domain of field d at time
step TS.

4.1 Computational mesh dynamics

The deformations of the structure changes the position of the fluid-structure interface in each time
step and this interface must match the fluid mesh. The fluid-structure interface at the current time
step must match the initial structural mesh plus the current structural deformation. Therefore the
fluid mesh has to be modified to match the structural deformations correctly. This is achieved using a
mesh deformation algorithm [4, p. 24]. This is also called computational mesh dynamics (CMD). The
CMD solver determines the mesh position of the ALE domain over the entire simulation [25, p. 159].

There are discontinuous and continuous approaches used for mesh deformation [25, pp. 160–161].
In this work mesh deformation is implemented using a continuous approach considering a pseudo-
structure. The pseudo structure is a stationary Hooke solid (linear elastic) and to determine the
sought mesh deformation a system of equations has to be solved. This is a sub-problem in the fluid
domain. The displacements d of the structure along Γc are the prescribed Dirichlet BCs. For all other
parts of the boundary the Dirichlet BCs are zero. [4, p. 24].

The pseudo-structure is an auxiliary field which is described by the following model [22, pp. 60–
68] of a stationary Hooke solid.
As usual in structural mechanics the model consists of an equilibrium equation, kinematic relation
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and constitutive or material relation which are formulated as:

kinematics:
ε(x) = 1

2
[
∇d+ (∇d)T] (4.1)

equilibrium:
∇ · σ(x) = 0 (4.2)

material model or constitutive relation:

σ(x) = λtr(ε)I + 2ηε (4.3)

With Lamé constants λ and η given in Equation (3.10) and Equation (3.11) respectively. Equation
(4.2) is already the strong form of this sub-problem.

The weak form follows for Equation (4.2) analogously as Equation (3.13) as weak form for Equa-
tion 3.12) [4, p. 14]. The discretized weak form is analogously to Equation (3.17) with σ instead
of (FS) [4, p. 20]. The element stiffness in the FE mesh for this pseudo-structure depends on the
element size. Near the fluid-structure interface the fluid mesh is usually finer and built up with smaller
elements around Γc. A higher stiffness of this elements is a strategy to avoid that invalid elements
occur when the mesh deforms.

After a new mesh position has been determined using CMD the mesh velocity uM can be calcu-
lated as

uM = xi+1 − xn
∆t (4.4)

where the node positions in ΩF of the previous time step are xn and these of the current iteration step
in the FSI-loop are xi+1. At the end of the FSI-loop when the stopping criteria is fulfilled xn+1 = xi+1
[4, p. 24]. The Dirichlet BCs for the flow velocities along Γc have to be modified so that the mesh
velocity is considered. This modified Dirichlet BCs, the new node positions, and the node velocities
are considered in the fluid solver as boundary data for the next fluid iteration [4, p. 24].
For u · ∇u follows with uM

(u− uM ) · ∇u (4.5)

what is to consider in the fluid solver routine. Equation (4.5) changes the Navier-Stokes equations
derived in section 2.2. As described in section 1.3 in the arbitrary Lagrangian-Eulerian approach the
observer moves exactly with the mesh. The deformations of the mesh are small with respect to the
mesh of the previous iteration and so many terms of the mapping can be neglected and Equation (4.5)
follows.

Another approach for the mesh movement is to use Laplace’s equation. Therefore the Laplace equa-
tion may be solved for each component of d [4, p. 24]. The Laplace-operator is used as a smoothing
or diffusion operator to get a smooth mesh movement. Throughout this work the pseudo-structure
approach is used.

It may happen that the mesh deformation leads to invalid elements which is not allowed because
the FEM procedure breaks down and the problem can not be solved any more. A negative Jacobian,
i.e. a negative determinant of the Jacobi matrix of the finite element mapping is a result of an invalid
element in a mesh.
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4.2 Vertical flap - FSI algorithm explained on an example

The algorithm used to determine the solution for an FSI problem used in this work should be explained
using an example in a more practical and intuitive way than above. This example was used during
implementation and first tests of this algorithm. Therefore some pre-studies have been made, especially
to check the mesh moving procedure used in the partitioned FSI coupling loop. Figure 15 shows the
geometry of this example. The structural domain ΩS is a vertical flap which is rounded on its top in
shape of a half circle, the fluid domain ΩF is a channel flow with a prescribed parabolic inflow on the
right side of the domain of interest with a velocity of zero at the walls that is

u(x, t) = 0 ∀x ∈ ΓD,Wall, t ∈ [0, T ] (4.6)

The fluid-structure interface Γc is shown purple in Figure 15.

ΩF

ΩS

Γc

inflow ΓFD

2.2

0.45 0.05

0.4
0.25

Fig. 15: Example case for explanation of FSI algorithm - Geometry and domain definition

Although, the geometry and results shown for this example depend of course on its configuration the
main statements are generally valid and therefore also important for the following test cases for which
detailed studies have been made. This test configuration is not considered in these further studies
because the other two cases are bench-mark test cases with known results to compare the correctness
of the implementation.

The mesh used in the following explanation is too rough and must be finer to get acceptable re-
sults but for more overseeable plots of the used mesh the element size has been chosen large here.

Pre-processing

Here the discretization of the three fields and the parameter input is done. Throughout this work
quadrilateral elements are used. For the fluid domain three meshes are generated which are spatially
identical for the initial case but the mesh to obtain the pressure field in the fluid domain has elements
one order lower than the mesh used to obtain the velocity field. This is necessary because the results
would be unsatisfactory if the element order for both fields would be the same without stabilization.
In this work the velocity mesh has quadratic quadrilateral elements with element functions shown in
Figure 4 and the pressure mesh has linear quadrilateral elements then (Q2/Q1 Taylor-Hood-elements,
see section 2.3). It would be possible to use linear elements for the velocity mesh and constant ones
for the pressure (Q1/Q0) but therefore a stabilization is necessary. For the structural domain, the
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discretization is done using the same element order as for the fluids velocity mesh. Both meshes
for fluid velocity and structure are generated together and split in a further step. Figure 16 shows
the discretization of the fluid domain. The blue crosses and circles indicates that Dirichlet BCs are
pre-described on these nodes.

Fig. 16: FE-mesh for fluid domain

There are nine nodes per element (quadratic quadrilateral element as described in 1.2) and the elements
size is smaller near the lower and upper wall and around the flap as shown in Figure 17.

Fig. 17: Detailed FE-mesh for fluid domain around flap

Further all relevant physical and numerical parameters have to be defined in this pre-processing part.
Three fields, the fluid domain, the structural domain, and the pseudo-structural domain for CMD,
require definition here.
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General definitions:

• start time (is 0 for all cases in this work)

• end time or number of time steps considered for entire analysis

For the fluid domain:

• the fluid density ρF
• the dynamic viscosity µ

For the solid domain:

• Young’s modulus of elasticity E

• Poisson’s ratio ν

• Lamé’s constants η and λ

For numerical analysis:

• time step size for numerical analysis

• parameter to define if midpoint rule or trapezoidal rule should be used

• time for ramping

• θ and θcont for θ-method for time discretization, where θcont is used for continuity and pressure
in the fluid domain and applied on the constraint matrix given in Equation (2.46).

Processing

The approximation for the sought solution of the real FSI problem is determined here. In other
words the FSI model is numerically solved using the FEM. Therefore discretization of the physical
domains for fluid and solid and the pseudo-structural field for the mesh movement have been done in
the pre-processing step.

As stated in section 2.3 for the initial condition u(x, t = 0) = u0 the requirement ∇ · u0 = 0
must be fulfilled. This is clearly a contradiction to the prescribed parabolic inflow shown in Figure 15.
Therefore a so-called ramping is used. The higher the order of the polynomial ramping function, being
a smoothed step-function, the better is the approximated FEM solution. Figure 18 shows ramping
functions of first, third, and fifth order.
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Fig. 18: Ramping functions

The order of a ramping function indicates a certain continuity as shown in table 1.

Order of ramping function Continuity
1 C0-continuous
3 C1-continuous
5 C2-continuous
7 C3-continuous

Tab. 1: Order of ramping function and depending continuity

Ramping functions with order higher than 1 have a horizontal tangent at their beginning and ending
time, which is 1 second here, leading to a smooth transition.

Another approach without a ramping function would be to evaluate the stationary solution for the
FSI problem using a stationary fluid solver and a stationary solid solver respectively and use this
stationary solution as the initial case for the time loop of the instationary FSI solver.
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Within each time step the partitioned coupled fluid-structure iteration loop (FSI loop in Figure 14)
is used. The initial values for the new iteration in time step n+ 1 are the results of the previous time
step n. For the entire FSI loop a maximum tolerance criteria εFSI = εc = 10−i is pre-described. The
criteria are

uvpcconCrit =
‖uvpci+1‖ − ‖uvpci‖

‖uvpci‖
< εc (4.7)

and
dcconCrit =

‖dci+1‖ − ‖dci‖
‖dci‖

< εc (4.8)

where uvp is the vector of the velocity components and the pressure in the FEM, and i + 1 is the
actual iteration step and i the previous one. For the first iteration step the i stands for the start
values which are the results of the last time step n. Additionally a maximum number of iteration
steps is given. If this quantity should be reached the loop breaks and gives an error message that
convergence was not achieved within the coupled loop. The Euclidean norm or L2-norm is defined as
‖x‖ = ‖x‖2 =

√∑M
k=1|xk|2 where x is a vector with M entries.

The first field solved in an independent solver is the fluid. The fluid solver solves the instationary
and incompressible fluid flow using the Navier-Stokes equation described in 2 and solves the system
of equations given in Equation (2.47). Within this solver are again a tolerance criteria εF and a
maximum number of iteration steps defined. It is not necessary that these are the same as used for
the partitioned FSI-loop as stated above. The convergence criterion is mathematically expressed as

uvpFconCrit =
‖uvpFi+1‖ − ‖uvpFi ‖

‖uvpFi ‖
< εF (4.9)

The fluid iteration scheme is a Picard iteration loop as described in 1. The mesh deformation is con-
sidered within this procedure as the Dirichlet BCs for the fluid are modified with the mesh velocities.
The result of the fluid solver is the vector uvp containing the velocity components u and v and the
pressure p, and fluid forces on the Neumann boundary which act on the structure.

These forces are applied with negative sign (actio et reactio) as Neumann BCs in the solid solver.
The solid solver approximates the result of the St. Venant solid as described in 3. Within the solid
solver the reference mesh is the initial (undeformed) solid mesh. The non-linear structure is solved
using a Newton-Raphson iteration described in 1.1. The convergence criterion is defined as

dSconCrit =
‖dSi+1‖ − ‖dSi ‖

‖dSi ‖
< εS (4.10)
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The results of the solid solver are the approximated displacements d, velocities v, and accelerations a
of the structure and the forces on the fluid-structure interface. The displacements of the fluid-structure
interface are part of d and the initial quantity for the mesh movement described in 4.1.

The mesh movement is the third field considered in the coupling loop and solved with the CMD
solver. It is an auxiliary structural field described by the model of a Hooke solid. It is used to de-
termine new nodal positions inside the fluid domain and does not have any further physical meaning.
The two previous solvers could be used independently to approximate solutions for dynamic fluid
or solid problems. The mesh deformation is necessary for the FSI-coupling loop and therefore some
pre-studies have been made to check the CMD algorithm and its ability to achieve valid and useful
deformed meshes. As described in 4.1 it must be ensured that an element within the mesh remains
valid. An example of an invalid linear quadratic element is shown in Figure 19. After the deformation
of the element, node B (originally at B0) is located on the left side of AC and so inside the triangular
area spanned by ACD, which is invalid.

A

B

C

D

B0

Fig. 19: Invalid linear quadrilateral element

In these pre-studies it was obvious to see that a rectangular flap with a horizontal line on its upper
end instead of the half circle as used here easily leads to an invalid mesh in the area around the upper
corner points. Figure 20 shows an example of an invalid mesh. The load applied to get this mesh is
too high for a plausible FSI-problem and the mesh is still too rough but the purpose is to show how
an invalid mesh may look like.

Fig. 20: Invalid fluid mesh
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As described in 4.1 the mesh deformation is calculated using a linear elastic pseudo-structural ap-
proach. Therefore the stiffness of the elements has to be known and considered. In the CMD-algorithm
used in this work the stiffness of the elements depends on the area of the element, the smaller an ele-
ment is, the higher is its stiffness ke. Furthermore, it has proven useful in some cases to also consider
the distance of the element from the boundary of the domain or selected corner points (where the
stiffness is largely increased). Figure 21 shows the stiffness distribution for this flap example. The
elements around the top of the flap have the highest stiffness and the farther away an element is from
the flap and the lower and upper wall, the smaller is its stiffness. Figure 21 demonstrates that the
value of the elements stiffness ke depends on the element size.

Fig. 21: Stiffness distribution in pseudo-solid field

It is also described in 4.1 that the mesh discretizing the structural domain must fit the mesh discretizing
the fluid domain along the fluid-structure interfache Γc. This is shown in Figure 22 depicting the
deformed fluid and structure mesh during an instationary FSI iteration using the described algorithm
shown in Figure 14.

Fig. 22: Deformed fluid and structural domain during an FSI-iteration

Post-processing

Here plots of the results and further studies using the obtained results are made. The fields of
the fluid quantities velocity, vorticity, and pressure can be plotted in field colour plots and movies can
be generated showing the development of these fields and the deformation of the structure over time.
Time measurements and counted numbers of iteration steps for different time steps and the entire
calculation can be used for further interpretation. This is done for the next two test cases and shown
detailed in the following chapters.
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Figure 23 shows the vorticity, velocity, and pressure field respectively of the FSI flap test case at 1.84
seconds on the deformed fluid mesh.

Fig. 23: Vorticity, velocity, and pressure fields respectively of flap test case - at 1.84 seconds.

To check the FSI algorithm and generate these three figures more elements are used to get more ac-
curate results.

This test case it not considered in the following because the deformation is rather small and there are
no published benchmark solutions available.
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5 Plate structure in FSI

This plate case is based on the detailed description in [24, p. 101] by Walhorn it elaborating the initial
test case design of Wall [25, p. 194].

Figure 24 shows the geometrical configuration of this two dimensional plate test case. pme (plate
middle edge) is a reference point in the middle of the right edge of the plate used later to show results
of the FE-calculation.

y

x

pme

6.5 14.5

1 4

121 0.06

[cm]

Fig. 24: Geometrical configuration of plate test case

The plate is an elastic plate which oscillates as a result of the fluid-structure interaction. The oscilla-
tion of this plate is induced by vortices which are a result of the flow around the quadratic rigid body
support of the plate shown grey in Figure 24 which is fixed and not able to move [24, p. 101].

The deformations of the plate are expected to be large so that a St. Venants material model as
described in chapter 3 is used to model the plate in this test case. The fluid is modelled by an incom-
pressible instationary fluid as described in chapter 2.

Figure 25 shows the physical configuration of this test case. The prescribed inflow is constantly
distributed over the height of the two-dimensional fluid domain from the left side and also constant
over time. On the top and bottom domain boundaries, zero vertical velocity components are enforced,
whereas on the outflow on the right side, zero-traction BCs are prescribed.
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Fig. 25: FSI configuration of plate test case

ΩF

ΩS

Γc

Fig. 26: Detail of the configuration of plate test case

Figure 26 is a zoomed in view of Figure 25, because the plate is very thin and so the solid domain ΩS

is seen in more detail.

The prescribed inflow velocity is ū = 31.5 m/s in this case. This leads to a Reynolds number of
Re = 204.
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The parameters used for the following studies for this case are given below.

General parameters: The considered time is five seconds and the time step size ts is 0.005, so 1000
time steps are used for the analysis. The tolerance of the partitioned coupled FSI loop is εc = 1 ·10−6,
if not noted otherwise clearly within the text.

The fluid parameters are listed below and given as:

• Fluid density ρF = 1.18 · 10−3 g/cm3.

• Fluid dynamic viscosity µ = 1.82 · 10−4 g/cm/s.

• θ and θcont for the numerical analysis of the fluid domain are 0.5.

• The ramping time for the fluid due to the inflow conditions is done for 2 seconds.

• The tolerance boundary for the fluid is εF = 1 · 10−2 if not noted otherwise clearly within the
text.

For the plate two different cases are implemented. The following studies are done with plate 2 and
therefore the parameters are listed below and given as:

• Solid density ρS = 2.0 g/cm3.

• Solid Young’s modulus of elasticity 2.0 · 106 g/cm/s2.

• Poisson’s ratio ν = 0.35 [−].

• Lamé’s parameter λ is used for plane stress for a thin plate here, given as

λ = E · ν
(1− ν2) (5.1)

• Time discretization is done using Newmark’s method.

• The tolerance for the solid is εS = 1 · 10−12 throughout this work. The reason is that the fluid
and coupling tolerances and their influence on results should be investigated. The solid solver
is fast and a low tolerance number 9 which leads to better results is not expensive in relation to
the number of iteration steps and calculation time. Therefore, a low εS is accepted here.

The physical parameters are the same as used and given in [24, p. 102].

The spatial discretization is done in the same way for all of the further shown studies. Within the
program code the spatial discretization is defined. At first a mesh containing several so-called super
blocks is generated for the entire spatial domain. In a further step the fluid mesh and the solid mesh
are divided. For the fluid domain two meshes are generated because the element order for the mesh
used to obtain the fluid pressure is one order lower than the mesh used for all other calculations in the
fluid domain as described above. For this test case, as not clearly stated otherwise, the order of the

9Tolerances ε are positive numbers smaller than one, so the lower it is, the better. This might sound confusing
sometimes.
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pressure mesh is linear. For the entire spatial discretization quadrilateral elements are used. Figure
27 shows the concrete fluid mesh used for all computations of this test case.

Fig. 27: FE-mesh for fluid domain

As stated in section 4.2 the mesh is finer near the fluid-structure interface Γc.

5.1 Tolerance study

Solving fluid-structure interaction problems often requires a large amount of time. Settings which
lead to fast calculations with high accuracy are to be found but they should not be too expensive
10. It is not possible that a model of a real world problem is 100% accurate. There is always a
certain error to consider, called model or modelling error. This error could be estimated with about
up to five per cent. Another error type in numerical analysis is the error made in the approxima-
tion of the model. There are tools and approaches used in numerical mathematics that reduce the
error and leads to highly accurate approximations. However, it does not make much sense to use an-
other method or parameters of an existing and already used method to get a results which is perhaps
0.5% better than the former one, but is much more expensive and needs a lot more time to get finished.

The aim of this study is to find settings in EduFEM [5] as algorithmically described above which
leads to approximations which are accurate enough to describe the real problem correctly and without
large errors and are not too expensive.

10Expensive in this context means a long duration of a calculation.
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First, the parameters from above are used. The only two parameters which are used differently
here are the tolerances εc and εF . These two parameters are given as

εc = 1 · 10−i (5.2)

with
i ∈ [1, 2, 3, 4, 5, 6]

and
εF = 1 · 10−j (5.3)

with

j ∈
{

[1, 2, 3, 4] for i = 1,
[2, 3, 4, 5, 6] for i ∈ [2, 3, 4, 5, 6]

The reason therefore is that the first part of the study has been done with i ∈ [2, 3, 4, 5, 6] and
j ∈ [2, 3, 4, 5, 6] respectively. As shown later, higher values for j and therefore smaller values for εF
are not relevant for the sought setting so j ∈ [5, 6] for i = 1 were not calculated to save time on the
parallel computer for more interesting and relevant studies. In tables ‘n.c.’ stands therefore for not
calculated.

This results in 34 entire FSI calculations for a time frame of five seconds with t ∈ [0, 5] in the
configuration described above. For this and all further studies in this thesis the calculation time on
the parallel computer described in Appendix E and the number of iterations are compared. The time
includes pre-processing (meshing) and processing but not post-processing. The number of iterations
for the partitioned coupling loop 11 are the numbers for each time step, e.g. five FSI or partitioned
coupling loop iterations 12. For the fluid and solid in one partitioned coupling loop, the iterations
for all fluid and solid iterations respectively within the fluid solver or solid solver are summed up.
This sum is used further and means that, e.g. 22 fluid iterations are the fluid iterations for the entire
partitioned coupling loop.

11FSI iterations and partitioned coupling loop iterations means the same. Partitioned coupling loop is the technically
correct expression but FSI is shorter and means the same in diagrams, other plots, and tables.

12Average (avg.) FSI-iterations are the average iterations over the partitioned coupling loop needed for the entire
analysis, in this example five seconds.
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Table 2 shows the calculation time on the parallel computer as specified in Appendix E in hours.
εc = 1 · 10−i is the tolerance boundary of the partitioned coupled loop and εF = 1 · 10−j of the Picard
iteration loop in the fluid solver used within the partitioned coupled loop. Figure 28 shows Table 2
visualized in a bar plot.

HH
HHHHi

j 1 2 3 4 5 6

1 17.7 21.0 27.4 32.1 n.c. n.c.
2 22.1 22.9 29.6 37.7 46.9 56.1
3 25.8 24.8 31.4 38.4 49.0 59.0
4 28.7 29.6 35.4 43.0 53.3 66.1
5 33.8 34.4 40.6 45.7 54.3 66.4
6 39.0 38.2 44.0 49.2 58.5 70.3

Tab. 2: Calculation time to find parallel computed solution in hours

1 2 3 4 5 6

exponent i in FSI-loop tolerance

0

10

20

30

40

50

60

70

80

ti
m

e
 i
n

 h
o

u
rs

FSI-Iteration-Time [h]
j=1

j=2

j=3

j=4

j=5

j=6

Fig. 28: Calculation time to find parallel computed solution in hours

Tables 3 and 4 show the average iterations for the partitioned coupled loop FSI, for the fluid solver
F, and for the solid solver S. These tables are visualized in Figure 29 and Figure 30.
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j→ 1 2 3
i↓ FSI F S FSI F S FSI F S
1 2.0 3.0 6.8 2.0 3.9 6.9 2.0 5.8 6.9
2 3.0 3.7 9.5 2.9 5.0 9.2 2.9 7.0 9.3
3 3.9 4.2 11.5 3.2 5.3 9.8 3.1 7.3 9.7
4 4.6 4.9 12.8 4.2 6.3 11.8 4.0 8.1 11.4
5 5.5 5.8 14.7 5.1 7.2 13.6 4.9 9.0 13.2
6 6.5 6.8 16.6 5.8 7.9 15.0 5.6 9.7 14.6

Tab. 3: Iteration steps to find parallel computed solution for j ∈ [1, 2, 3]

j→ 4 5 6
i↓ FSI F S FSI F S FSI F S
1 2.0 7.2 6.9 n.c. n.c. n.c. n.c. n.c. n.c.
2 2.9 9.3 9.3 2.9 12.0 9.3 2.9 14.7 9.3
3 3.1 9.5 9.7 3.1 12.5 9.7 3.1 15.2 9.7
4 3.9 10.3 11.3 3.9 13.3 11.3 3.9 16.9 11.3
5 4.2 10.6 11.9 4.2 13.5 11.8 4.2 17.1 11.8
6 5.2 11.5 13.8 5.0 14.3 13.4 4.9 17.9 13.3

Tab. 4: Iteration steps to find parallel computed solution for j ∈ [4, 5, 6]
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Fig. 29: Average number of FSI-Iteration loop iterations to find parallel computed solution
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Fig. 30: Average number of summed fluid iterations to find parallel computed solution

Considering Table 2 and Figure 28 it can clearly be seen that higher exponents i and therefore smaller
tolerances εc for the partitioned coupled loop need more time. This is expected because the higher
accuracy may need more iterations of the partitioned coupled loop and therefore more time to reach
convergence. For i = 3 and i = 6 the combination with j = 2 is slightly faster than the combination
with j = 1 although j = 1 is less strict for the fluid convergence.

Figures 29 and 30 may look unexpected, viewed for the first time. Especially the averaged num-
ber of iterations over the entire time domain of the partitioned coupled loop with i = 6 in Figure 29 is
vice versa to i = 6 for the calculation time in hours in Figure 28. The average number of iterations in
the partitioned coupled loop decreases for increasing exponents j of the fluid tolerance boundary εF .
In Figure 30 it can clearly be seen that the averaged number of iterations of the fluid solver increases
with increasing j and i respectively.

This leads to the interpretation that the tolerance for the partitioned coupled loop is decisive. The
smaller εF is, the more exact is the solution of the fluid solver. This needs less iterations of the
partitioned coupled loop because the convergence criteria of Equation (4.7) is faster reached but the
higher calculation time needed for the fluid solver can not be balanced by a decrease of the averaged
number of partitioned coupled loop iterations. The tolerance defined in Equations (4.7) for the fluid
domain and (4.8) for the structural domain is a relative one. It uses the solution of the last iteration
step of the partitioned coupling loop and not the solution of the previous time step. Therefore the
tolerance of the fluid domain is not so important any more because the used fluid solution is always
the best one that exists at a certain iteration step of the partitioned coupled loop.
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In the post-processing step it is further possible to visualize the vector fields of the fluid velocity
and vorticity, the vector field of fluid velocity arrows shown in the midpoint of each finite element
in the deformed fluid mesh, and the scalar field of fluid pressure at a certain time. Furthermore for
the middle point of the right edge of the plate (point pme is shown in Figure 15) the horizontal and
vertical displacements over time and the horizontal and vertical forces acting on this point over time
can be plotted in a diagram. Such figures are shown and described in detail below.

To find the best setting of parameters for this plate case it is not enough to look only at the amount
of required iteration steps and needed calculation time of the FEM analysis of this problem. It is
necessary to consider the quality of the results when making this decision. Therefore some plots of
these mentioned quantities are shown and interpreted here.

Figures 32, 31, 33, and 34 13 show the horizontal displacement, the vertical displacement, the hor-
izontal force, and the vertical force of point pme for i = 1 and appropriate j ∈ [1, 2, 3, 4], and for
i = 6 and appropriate j ∈ [1, 2, 3, 4, 5, 6] over time t of analysis which is in this case 5 seconds. The
plots for i ∈ [2, 3, 4, 5] and appropriate j ∈ [1, 2, 3, 4, 5, 6] are shown in Appendix A. In these figures
it can clearly be seen that for i = 1 and i = 2 the results are different for different values of j. For
the horizontal and vertical forces an oscillation occurs for i = 1 as shown in Figures 33 and 34. The
solution for displacements are quite accurate already for i = 1 and j ≥ 2. However, it is not pos-
sible to accept these tolerances for the partitioned coupling loop as a setting which is accurate enough.

Considering all results described here and the plots of the velocity, vorticity, and pressure fields of the
fluid domain the setting for the tolerances of the partitioned coupling loop and the fluid solver are
chosen as

εc = 1 · 10−6 (5.4)

and
εF = 1 · 10−2 (5.5)

Figures 35, 36, and 37 show the plots of the resulting fluid fields for this configuration. More of
these plots are found in Appendix A. In Figure 36 some numerical errors occur, especially in the plots
for t ≥ 4 seconds. Here is noted that the vorticity field is the derivative of the velocity field. An
analogy to structural engineering are the stresses which are the derivative of displacements being the
primary obtained variables in a FEM approximation [13, p. 125]. Using standard C0-continuous FE
shape functions, the vorticity of the fluid field is discontinuous across element boundaries just as the
stresses in standard solid simulations. However, in the plots, the vorticity field has been smoothed,
numerical oscillations can still be seen. The pressure field is a primary quantity and, hence, continuous.

The results could be different for larger or smaller time steps and other physical parameters. Therefore
further investigations including more parameter studies and a larger time range could be useful. This,
however, is beyond the scope of this thesis.

13The curves within these plots are very close together. In Appendix A in Figure 79 different line types and markers
are used to show that there are different lines plotted in one diagram.
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Fig. 31: Horizontal displacement of the middle point of the right edge of the plate
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Fig. 32: Vertical displacement of the middle point of the right edge of the plate
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Fig. 33: Horizontal force acting on the middle point of the right edge of the plate
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Fig. 34: Vertical force acting on the middle point of the right edge of the plate
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Fig. 35: Velocity field of reference case εc = 10−6 and εF = 10−2

Acceleration strategies in partitioned coupling of fluid-structure interaction problems 57



5 Plate structure in FSI

Fig. 36: Vorticity field of reference case εc = 10−6 and εF = 10−2
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Fig. 37: Pressure field of reference case εc = 10−6 and εF = 10−2
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5.2 Aitken’s relaxation

The calculation time for the standard setting chosen in section 5.1 was 38.2 hours at the parallel
computer for pre- and processing steps. The aim is to reduce the needed calculation time and get
results within the same range of accuracy as before. One approach used and tested in this thesis is
Aitken’s relaxation or Aitken’s ∆2 method as described in [15].

Aitken’s relaxation is used on the structural displacements d. Algorithm 3 is an adaption of Al-
gorithm 2 and shows how Aitken’s relaxation is applied within the partitioned coupled loop. Figure
38 visualizes Algorithm 3.

Algorithm 3: FSI partitioned coupling loop for time step n+ 1 using Aitken’s relaxation
Input: From time step tn: The fluid mesh Ωfluid

n with velocity un and pressure pn, the time
independent structural domain mesh Ωsolid

0 and structural domains displacements dn.

initialization
while max

(
uvpcconCrit, dcconCrit

)
> MaxResc do

solve fluid field - CFD to get un+1 and pn+1 using Ωfluid
n+1 , Ωfluid

n , un, and pn
determine fluid forces fn+1
solve solid field - CSD using Ωsolid

0 to get dn+1
use Aitken’s relaxation to get dARi+1
get new fluid mesh - CMD Ωfluid

n+1 matching solid displacements dARi+1
end

Output: obtain Ωfluid
n+1 , un+1, pn+1, and dn+1

Next time step if tend has not been reached.

The general form of Aitken’s relaxation for a variable xi+1 where i+ 1 is the actual iteration step and
i the previous one is defined as

xi+1 = (1− ωi+1)xi + ωi+1x̃i+1 (5.6)

with relaxation factor which is recursively defined as

ωi+1 = −ωi
ri · (ri+1 − ri)
‖ri+1 − ri‖2

(5.7)

where ‖·‖ is the Euclidean norm. It can be obtained for i ≥ 2 and for i = 1 a defined value ωi=1 =
ωmax = 1 is used. Another choice is to use the constraint parameter [15]

ωn+1
1 = max(ωn, ωmax) (5.8)

where ωn is the relaxation factor of the last iteration of the partitioned coupled loop in the previous
time step n.

The residuum r is defined as
ri+1 = x̃i+1 − xi (5.9)
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In the notation used within this thesis x stands for the structural displacements d and therefore fol-
lows xi+1 = dARi+1 and x̃i+1 = di+1.

For the further procedure within the partitioned coupled loop (CMD and update of variables) the
relaxation dARi+1 is used as the result of the solid field.
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start
iteration

fluid solid

Aitken’s relaxation

convergence
(uvp and
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mesh (CMD)

next time
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stop

no

yes

no

yes

FSI-loop

Fig. 38: Flow-diagram of FSI algorithm with Aitken’s relaxation applied
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Table 5 shows the number of iteration steps and needed time compared with the reference case with
εc = 1 · 10−6 and εF = 1 · 10−2. AR stands for Aitken’s relaxation.

case no AR AR
notation FSI F S FSI F S

min. iterations 5 5 11 5 5 11
max. iterations 8 11 20 8 11 20
avg. iterations 5.8 7.9 15.0 5.8 7.9 14.8

min. time FSI [s] 94.5 91.4
max. time FSI [s] 190.5 194.3
avg. time FSI [s] 137.7 132.3

time [h] 38.2 36.8

Tab. 5: Results of reference case left and Aitken’s relaxation applied on this case right.

Values written in red are worse in the actually considered case than in the reference case and values
written in green are better than in the reference case. This is done for all further studies.

For this case about 1.4 hours can be saved for the entire calculation time which is about 3.7%.
Consequently, not a big improvement can be achieved using Aitken’s relaxation to accelerate the
fluid-structure iteration loop.

However, it is shown here that an improvement is possible. The iterations of the case without re-
laxation are already relatively low with an average number of FSI-iterations of 5.8 and maximum of
three fluid iterations during one FSI iteration step in time steps 1 to 10, 495 to 505, and 990 to 1000 as
shown in Appendix B 14. Generally, it can be said according to the literature, e.g. [15], that relaxation
is most effective when the number of iterations in the unrelaxed case would otherwise be quite large.
Therefore, the small improvement achieved here is not surprising.

Figures 39 and 40 show the horizontal and vertical displacements, and the horizontal and vertical
forces obtained with Aitken’s relaxation in blue over the plot of the reference case in green. Figures
41, 42, and 43 show in their left column the results of the fluid fields for the reference case and in
their right column for the case where Aitken’s relaxation has been used. It is obvious that the so-
lution is undistinguishable using Aitken’s relaxation so that there is no disadvantage resulting from
relaxation.

14Only for the mentioned time steps an exact analysis of iteration numbers per FSI iteration steps has been done for
each case. However, considering the summation it is obvious that the number of required iterations per time step
and FSI iterations respectively is relatively low.

Acceleration strategies in partitioned coupling of fluid-structure interaction problems 62



5 Plate structure in FSI

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time t

-0.5

-0.4

-0.3

-0.2

-0.1

d
is

p
la

c
e

m
e

n
t 

u
Horizontal displacement

reference case

Aitken´s relaxation

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time t

-1.5

-1

-0.5

0

0.5

1

1.5

d
is

p
la

c
e

m
e

n
t 

v

Vertical displacement

reference case

Aitken´s relaxation

Fig. 39: Horizontal and vertical displacement of the middle point of the right edge of the plate
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Fig. 40: Vertical and horizontal force of the middle point of the right edge of the plate
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Fig. 41: Velocity field of reference case left and the study case for Aitken’s relaxation right
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Fig. 42: Vorticity field of reference case left and the study case for Aitken’s relaxation right
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Fig. 43: Pressure field of reference case left and the study case for Aitken’s relaxation right
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5.3 Extrapolation

Another approach to accelerate the FSI algorithm is extrapolation which is investigated next. The
extrapolation is applied in a new time step before the partitioned coupling loop starts. This is
visualized in Figure 44.
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Fig. 44: Flow-diagram of FSI algorithm

Extrapolation has been used in context of fluid-structure interaction before, e.g. in [20]. The aim is
to find out to which fields of the FSI procedure used in this thesis extrapolation should be applied
and how large the improvement is.
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The idea of extrapolation is to assume that an existing trend, known by considering history, e.g.
solutions of the partitioned coupling loop of the previous time steps, continues and the procedure
could be accelerated by better start values of partitioned coupled fluid-structure interaction loop cy-
cles.

The extrapolation functions used in this thesis are easily obtained using finite differences based on the
Taylor series expansions, see, e.g. [20].

The resulting extrapolation functions for different orders are given as:

• 1st order:
xn+1 = −1 · xn−1 + 2 · xn (5.10)

• 2nd order:
xn+1 = xn−2 − 3 · xn−1 + 3 · xn (5.11)

• 3rd order:
xn+1 = −1 · xn−3 + 4 · xn−2 − 6 · xn−1 + 4 · xn (5.12)

• 4th order:
xn+1 = xn−4 − 5 · xn−3 + 10 · xn−2 − 10 · xn−1 + 5 · xn (5.13)

• 5th order:

xn+1 = −xn−5 + 6 · xn−4 − 15 · xn−3 + 20 · xn−2 − 15 · xn−1 + 6 · xn (5.14)

x is the quantity which is to be extrapolated at time n+1 based on already computed quantities of
previous time steps n, n-1, etc. Of course, this is only a prediction for n+1 which is then actually
determined based on the partitioned coupling loop. For Equation (5.10) at least two previous time
steps are necessary, for Equation (5.14) six previous time steps. In the first time steps, the required
number of computed time steps (according to the desired order) may not be available yet. Then, for
the first time steps, always the best extrapolation rule is chosen based on the available data.

Table 6 shows the results. In the left column the field which is extrapolated is shown, the refer-
ence case is defined in section 5.1. Table 6 shows clearly that for this test case the extrapolation
applied to a single field or result is not useful. There is not only no improvement but the performance
of the calculation with respect to the number of iterations and calculation time is worse than for the
reference case without any extrapolation. However, the results are correct as shown in Appendix C.
If the extrapolation is applied to all fields, which are the vector of fluid velocities and pressure uvp,
the structural displacements d, and the actual nodal coordinates of the deformed fluid mesh mesh
an improvement is achieved. For extrapolation functions of first order, the calculation time is about
21.2% lower than for the reference test case and for fifth order extrapolation functions, it is about
34.8% less.
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uv
p

extrapolation | order reference case yes | 1 yes | 5
notation FSI F S FSI F S FSI F S

min iterations 5 5 11 5 7 14 5 7 14
max iterations 8 11 20 8 18 30 8 18 30
avg. iterations 5.8 7.9 15.0 6.7 13.6 21.4 6.7 13.6 21.4
min time FSI [s] 94.5 115.4 119.2
max time FSI [s] 190.5 403.6 448.6
avg. time FSI [s] 137.7 240.6 244.9

time [h] 38.2 66.8 (174.9%) 68.0 (178.0%)

d

extrapolation | order reference case yes | 1 yes | 5
notation FSI F S FSI F S FSI F S

min iterations 5 5 11 5 8 14 5 8 14
max iterations 8 11 20 8 18 23 8 18 23
avg. iterations 5.8 7.9 15.0 6.7 13.7 18.4 6.7 13.7 18.4
min time FSI [s] 94.5 133.4 128.3
max time FSI [s] 190.5 425.5 408.6
avg. time FSI [s] 137.7 246.0 240.8

time [h] 38.2 68.6 (179.6%) 66.9 (175.1%)

m
es
h

extrapolation | order reference case yes | 1 yes | 5
notation FSI F S FSI F S FSI F S

min iterations 5 5 11 4 5 11 4 5 10
max iterations 8 11 20 7 9 29 7 9 28
avg. iterations 5.8 7.9 15.0 5.5 7.4 17.7 5.3 7.1 15.7
min time FSI [s] 94.5 88.7 89.6
max time FSI [s] 190.5 257.1 278.3
avg. time FSI [s] 137.7 138.9 130.4

time [h] 38.2 38.6 (101%) 36.2 (94.8%)

d,
uv

p,
m
es
h

extrapolation | order reference case yes | 1 yes | 5
notation FSI F S FSI F S FSI F S

min iterations 5 5 11 4 4 9 3 3 7
max iterations 8 11 20 7 9 17 7 9 16
avg. iterations 5.8 7.9 15.0 5.2 5.5 12.9 4.3 4.6 9.9
min time FSI [s] 94.5 78.4 58.5
max time FSI [s] 190.5 163.8 165.9
avg. time FSI [s] 137.7 108.5 89.7

time [h] 38.2 30.1 (78.8%) 24.9 (65.2%)

Tab. 6: Extrapolation results and reference case

The reason for the worse results for extrapolations applied only to single quantities is probably, that
the extrapolated quantity and the quantities which are not extrapolated do not fit together any more
and therefore more iterations are necessary to reach convergence. Especially the deformed mesh, de-
pending on the structural displacements which, in turn, depend on the fluid solution, does not match
the other fields.
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Figures 45 and 46 show the horizontal and vertical displacements, and the horizontal and vertical
forces obtained with extrapolation of all fields d, uvp, and mesh for fifth order extrapolation functions
in blue over the plot of the reference case in green. Figures 47, 48, and 49 show in their left column
the results of the fluid fields for the reference case and in their right column for the case where fifth
order extrapolation on all three fields has been used. It is obvious that the solution is identical enough
to say that there is no visible error made by using extrapolation. As shown in Appendix C this holds
true for cases where more iteration steps and time are required if extrapolation is applied. There it is
shown for first order extrapolation applied on the structural displacements because this is the worst
case compared with the reference case.
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Fig. 45: Horizontal and vertical displacement of the middle point of the right edge of the plate
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Fig. 46: Vertical and horizontal force of the middle point of the right edge of the plate
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Fig. 47: Velocity field of reference case left and extrapolation right
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Fig. 48: Vorticity field of reference case left and extrapolation right
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Fig. 49: Pressure field of reference case left and extrapolation right
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Figure 50 shows the iteration history for the reference case (lower bar-plot) and the fifth order extrap-
olation function applied on the structural displacements d, the fluid solution uvp, and the mesh nodes
of the deformed mesh. The green line is at four iterations and the pink line at nine iterations in both
plots. It is obvious, that with extrapolation applied less iterations are necessary.

Fig. 50: Iterations over timesteps for reference case (lower bar-plot) and fifth order extrapolation
applied on this case for uvp, d, and mesh
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6 Bridge structure in FSI with wind

This bridge case is based on [8, pp. 99–113]. The model of the bridge describes a simplification
of the Tacoma Narrows Bridge in Washington State, USA. This bridge collapsed in 1940 because
of aeroelastic flutter [18, pp. 836–837]. FSI is a highly recommended tool to investigate structures
with respect to their performance under wind loading. Tests of models of structures like towers
or bridges in wind channels are common during the design process but these experiments are time
consuming and expensive. Therefore computational FSI simulation is a practicable tool within the
design process. However, the calculation time is still high for such cases and therefore the aim is again
to find a reasonable parameter setting and to apply acceleration strategies on the chosen reference
case analogously to the plate case described in section 5. Figure 51 shows the collapse of the Tacoma
Narrows Bridge in 1940.

Fig. 51: Tacoma Narrows Bridge collapse [23]

Figure 52 shows the geometrical configuration of this two dimensional bridge test case as used in this
thesis.
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Fig. 52: Geometrical configuration and inflow condition of bridge test case

The bridge section is modelled as a rigid body which is supported horizontally. For the vertical and
rotational support, springs are located at the geometric centre point of the section which is the point
(0, 0) in the used x-y-coordinate system. This is shown in Figure 53.
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Fig. 53: Geometrical and mechanical configuration of bridge section as rigid body.

The prescribed inflow velocity is ū = 10.0 m/s in this case. This leads to a Reynolds number of
Re = 1500.
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The parameters used for the following studies for this case are given below.

General parameters: The considered time is 50 seconds and a time step size of 0.05 is chosen so
1000 time steps result. The tolerance for the partitioned coupled FSI loop is εc = 1 ·10−6, if not noted
otherwise in the text.

The fluid parameters are listed below and given as:

• Fluid density ρF = 1.25 kg/m3

• Fluid dynamic viscosity µ = 0.1 Ns/m2.

• θ = 0.5 and θcont = 0.51 for the time integration.

• Ramping is considered for the fluid due to the inflow conditions within the first four seconds.

• The tolerance boundary for the fluid is εF = 1 · 10−2, if not stated otherwise in the text.

For the bridge being a two-dimensional rigid body, the following parameters are defined:

• Solid mass m = 4000 kg and moment of inertia Θ = 80000 kg m2.

• Stiffness of vertical spring is kv = 2467 N/m and of the rotational spring kϕ = 126330 Nm.

• Time discretization is done using Newmark’s method.

The physical parameters are the same as given in [8, p. 105].

The spatial discretization is done in the same way for all studies and analogously to the descrip-
tions in sections 4.2 and 5. Within the program code the spatial discretization is defined. At first a
mesh containing several so-called super blocks is generated for the entire spatial domain. In a further
step the fluid mesh and the solid mesh are split. For the fluid domain two meshes are generated because
the element order for the mesh used to obtain the fluid pressure is one order lower than the mesh used
for all other calculations as described above. These two meshes are used for the Taylor-Hood-elements
Q2/Q1 [7] (see section 2.3), which means that for this test case again, if not clearly stated otherwise,
the order of the pressure mesh is linear. For the entire spatial discretization quadrilateral elements
are used. Figure 54 shows the fluid mesh used for this test case.

According to Hübner [8, p. 105] the chosen parameters for the rigid body leads to eigenfrequencies for
the spring-mass-system of fv = 0.125 Hz and fϕ = 0.20 Hz which are about the eigenfrequencies of
the Tacoma Narrows Bridge.
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Fig. 54: FE-mesh for fluid domain

As stated in section 4.2 and used before for the plate test case in section 5 the mesh is finer near the
fluid-structure interface Γc. This refined mesh is shown in a detailed view of Figure 54 in Figure 55.

Fig. 55: FE-mesh for fluid domain around Γc around bridge H-section
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6.1 Tolerance study

Analogously to 5.1 a tolerance study is done here. The aim is again to find a setting for the toler-
ances which is good enough to produce accurate results in reasonable time. The algorithm for the
partitioned coupling loop and the fluid solver are the same as for the plate test case before. The solid
domain is a rigid body and therefore another sub-solver is used here as described in section 3.1.

The only two parameters which are used systematically varied in contrast to those given above are
the tolerances εc and εF . These two parameters are given as

εc = 1 · 10−i (6.1)

with
i ∈ [1, 2, 3, 4, 5, 6]

and
εF = 1 · 10−j (6.2)

with
j ∈ [1, 2, 3, 4]

These leads to 24 computations in a time interval of 50 seconds, i.e. t ∈ [0, 50] in the configuration
described above. The calculation times and numbers of iterations given in the result tables are here
again with respect to the parallel computer specified in Appendix E. The calculation time includes
pre-processing (meshing) and processing but not post-processing. The number of iterations for the
partitioned coupling loop are the numbers for each time step. For fluid and solid for one partitioned
coupling loop the iterations for all fluid iterations within the fluid solver are summed up. Table 7
shows the calculation time for the entire analysis on the parallel computer in hours.

εc = 1 · 10−i is the tolerance boundary of the partitioned coupling loop and εF = 1 · 10−j of the
Picard iteration loop in the fluid solver used within the partitioned coupled loop. Figure 56 shows
Table 7 visualized in a bar plot.

H
HHH

HHi
j 1 2 3 4

1 25.4 34.1 44.2 56.8
2 28.4 36.9 46.8 60.8
3 32.3 39.6 50.0 64.0
4 58.7 63.3 72.4 75.1
5 65.5 68.4 75.6 87.5
6 73.4 76.9 81.8 92.8

Tab. 7: Calculation time to find parallel computed solution in hours
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Fig. 56: Calculation time to find parallel computed solution in hours

Table 3 shows the average iterations for the partitioned coupled loop FSI and for the fluid solver F.
This table is visualized in Figure 57 and Figure 58.

j→ 1 2 3 4
i↓ FSI F FSI F FSI F FSI F
1 3.0 5.4 3.0 7.9 3.0 10.7 3.0 14.1
2 3.6 6.0 3.5 8.4 3.5 11.2 3.5 15.0
3 4.3 6.8 4.0 8.9 4.0 11.7 4.0 15.5
4 5.6 8.0 4.9 9.9 4.5 12.2 4.4 16.0
5 7.0 9.4 5.9 10.9 5.2 13.0 4.9 16.5
6 8.4 10.8 7.4 12.3 6.5 14.2 5.9 17.5

Tab. 8: Iteration steps to find parallel computed solution
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Fig. 57: Average number of FSI-Iteration loop iterations to find parallel computed solution
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Fig. 58: Average number of summed fluid iterations to find parallel computed solution

Considering Table 7 and Figure 56 it can clearly be seen that higher exponents i and therefore smaller
tolerances εc for the partitioned coupling loop need more time. This is expected because the higher
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accuracy may need more iterations of the partitioned coupling loop and therefore more time to reach
convergence. This was also be observed for the previous considered plate case in section 5.1.

Figures 57 and 58 show similar results to Figures 29 and 30 in the analogous study for the plate
case which is expected here. Again this leads to the interpretation that the tolerance boundary for the
partitioned coupling loop is decisive as described in section 5.1. To find the best setting of parameters
for this bridge case analogously to the plate case it is necessary to consider the quality of the results in
addition to the amount of calculation time and number of iteration steps needed. Figures 59, 60, 61,
62, and 63 show the vertical fluid force, the vertical spring force, the fluid moment, the spring moment
and the angle of rotation for i = 1 and appropriate j ∈ [1, 2, 3, 4], and for i = 6 and appropriate
j ∈ [1, 2, 3, 4] over time t of analysis which is in this case 50 seconds. For the vertical fluid forces an
oscillation occurs for i = 1 as shown in Figure 64. A numerical error is also seen in the fluid moment
at about two seconds. These errors occur only for i = 1. For i ≥ 2 no differences of the solution plots
are visible.

Considering all results described here and the plots of the velocity, vorticity, and pressure fields of the
fluid domain the setting for the tolerances of the partitioned coupling loop and the fluid solver are
chosen as

εc = 1 · 10−6 (6.3)

and
εF = 1 · 10−2 (6.4)

as for the plate case before in section 5.1. Figures 65, 66, and 67 show the plots of the resulting fluid
fields for this configuration.

Again, it should be noted that the results may be different for larger or smaller time steps and
other physical parameters. Therefore further investigations including more parameter studies and a
larger time range would have been necessary. This, however, is beyond the scope of this thesis for
time reasons.
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Fig. 59: Vertical fluid forces
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Fig. 60: Vertical spring forces
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Fig. 61: Fluid moments
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Fig. 62: Spring moments
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Fig. 64: Vertical fluid forces over first 8 seconds

Acceleration strategies in partitioned coupling of fluid-structure interaction problems 89



6 Bridge structure in FSI with wind

Fig. 65: Velocity field of reference case εc = 10−6 and εF = 10−2
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Fig. 66: Vorticity field of reference case εc = 10−6 and εF = 10−2
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Fig. 67: Pressure field of reference case εc = 10−6 and εF = 10−2
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6.2 Aitken’s relaxation

The calculation time for the standard setting chosen in section 6.1 was 76.9 hours with the parallel
computer for pre- and processing steps. The aim, as it was before for the plate case, is to reduce the
needed calculation time and get results within the same range of accuracy than before. The first ap-
proach here is again Aitken’s relaxation or Aitken’s ∆2 method as described in [15]. Aitken’s relaxation
is used on the structural displacements d. The used Algorithm 3 is given in section 5.2 and Figure 38
visualizes this algorithm. The equations used in this procedure are also given in section 5.2.

Table 9 shows the number of iteration steps and required time compared to the reference case with
εc = 1 · 10−6 and εF = 1 · 10−2. AR stands for Aitken’s relaxation.

case no AR AR
notation FSI F FSI F

min. iterations 4 6 4 6
max. iterations 10 15 10 15
avg. iterations 7.4 12.3 7.4 12.3

min. time FSI [s] 174.4 100.8
max. time FSI [s] 436.0 296.5
avg. time FSI [s] 276.7 210.4

time [h] 76.9 58.4 (75.9%)

Tab. 9: Results of reference case left and Aitken’s relaxation applied on this case right.

For this case about 18.5 hours can be saved for the entire calculation time which is about 24.1%. This
is much more than for the plate test case. The improvement achieved using Aitken’s relaxation to
accelerate the fluid-structure interaction for the bridge test case is 6.5 times higher compared with the
plate test case but the calculation time for the reference case is about two times higher for the bridge
case.

Figure 68 shows the fluid and spring forces, Figure 69 shows the fluid and spring moments, and
Figures 70, 71, and 72 show in their left column the results of the fluid fields for the reference case
and in their right columns for the case where Aitken’s relaxation has been used. It is obviously to
see that the solution is close enough to conclude that there is no visible error made by using Aitken’s
relaxation.
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Fig. 68: Vertical forces
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Fig. 69: Moments
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Fig. 70: Velocity field of reference case left and Aitken’s relaxation applied on this case right
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Fig. 71: Vorticity field of reference case left and Aitken’s relaxation applied on this case right
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Fig. 72: Pressure field of reference case left and Aitken’s relaxation applied on this case right

Acceleration strategies in partitioned coupling of fluid-structure interaction problems 98



6 Bridge structure in FSI with wind

6.3 Extrapolation

As shown in section 5.3 another approach to accelerate the FSI simulation is extrapolation which is
now studied for the bridge test case. The relevant background on extrapolation is given in section
5.3. There the approach is visualized in Figure 44 and the extrapolation formulas are given. Here first
order and fifth order extrapolation formulas are used as before.

uv
p

extrapolation | order reference case yes | 1 yes | 5
notation FSI F FSI F FSI F

min iterations 4 6 4 6 4 6
max iterations 10 15 10 21 10 21
avg. iterations 7.4 12.3 8.0 16.6 8.0 16.6
min time FSI [s] 174.4 100.4 102.4
max time FSI [s] 436.0 355.3 362.3
avg. time FSI [s] 276.7 275.0 279.6

time [h] 76.9 76.4 (99.3%) 77.7 (101.0%)

d

extrapolation | order reference case yes | 1 yes | 5
notation FSI F FSI F FSI F

min iterations 4 6 4 6 4 6
max iterations 10 15 10 21 10 21
avg. iterations 7.4 12.3 8.0 16.7 8.0 16.7
min time FSI [s] 174.4 101.4 101.5
max time FSI [s] 436.0 372.4 367.6
avg. time FSI [s] 276.7 278.4 276.1

time [h] 76.9 77.3 (100.5%) 76.7 (99.7%)

m
es
h

extrapolation | order reference case yes | 1 yes | 5
notation FSI F FSI F FSI F

min iterations 4 6 4 6 4 5
max iterations 10 15 9 13 9 12
avg. iterations 7.4 12.3 7.0 11.1 6.5 9.4
min time FSI [s] 174.4 102.9 93.2
max time FSI [s] 436.0 292.7 253.8
avg. time FSI [s] 276.7 195.8 170.9

time [h] 76.9 54.4 (70.7%) 47.5 (61.8%)

d,
uv

p,
m
es
h

extrapolation | order reference case yes | 1 yes | 5
notation FSI F FSI F FSI F

min iterations 4 6 4 6 3 3
max iterations 10 15 9 13 10 13
avg. iterations 7.4 12.3 7.0 10.1 5.9 8.2
min time FSI [s] 174.4 101.3 72.4
max time FSI [s] 436.0 270.5 302.3
avg. time FSI [s] 276.7 161.2 149.6

time [h] 76.9 50.3 (65.4%) 41.6 (54.1%)

Tab. 10: Extrapolation results and reference case
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d,
uv

p,
m
es
h
di
re
ct
ly extrapolation | order reference case yes | 1 yes | 5

notation FSI F FSI F FSI F
min iterations 4 6 4 5 2 3
max iterations 10 15 9 13 10 13
avg. iterations 7.4 12.3 6.9 9.9 5.9 8.2
min time FSI [s] 174.4 102.1 53.3
max time FSI [s] 436.0 268.9 266.4
avg. time FSI [s] 276.7 177.6 149.0

time [h] 76.9 49.3 (64.1%) 41.4 (53.8%)

Tab. 11: Extrapolation results and reference case

Table 10 shows the extrapolation results with the approach analogously to the plate case in section
5.3. It is obvious that the results are much better here. The calculation time is almost the same as for
the reference case without extrapolation in the worst case and the best result is about twice as fast
as the reference case.

Another approach considered here is shown in Table 11. There, the extrapolation is applied to the
structural displacements and the fluid quantities. The extrapolated structural displacements are the
input data for the computational mesh dynamics routine to get a deformed mesh based on these
extrapolated displacements. For this configuration the CMD-module is already used before the first
iteration step with the extrapolated structural displacement as input data. The difference between
this approach and the approach where the mesh nodes are extrapolated is minimal but in this study
the new approach considering extrapolated displacements within CMD leads to the best results.

Again, the results for forces, moments and fluid fields are virtually the same for all cases. Figure
73 shows the forces and Figure 74 shows the moments obtained with extrapolation of all fields d, uvp,
and mesh for fifth order extrapolation functions in blue over the plot of the reference case in green.
Figures 75, 76, and 77 show in their left column the results of the fluid fields for the reference case
and in their right columns for the case where extrapolation is used.

Acceleration strategies in partitioned coupling of fluid-structure interaction problems 100



6 Bridge structure in FSI with wind

0 5 10 15 20 25 30 35 40 45 50

time t

-2000

-1500

-1000

-500

0

500

1000

1500

2000

v
e

rt
ic

a
l 
fl
u

id
 f

o
rc

e
Vertical forces

reference case

extrapolation 5th order - uvp, d, mesh

0 5 10 15 20 25 30 35 40 45 50

time t

-2000

-1500

-1000

-500

0

500

1000

1500

2000

v
e

rt
ic

a
l 
s
p

ri
n

g
 f

o
rc

e

Vertical forces

reference case

extrapolation 5th order - uvp, d, mesh

Fig. 73: Vertical forces
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Fig. 74: Moments
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Fig. 75: Velocity field of reference case left and fifth order extrapolation applied on this case for fluid
and solid solutions, and the mesh right
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Fig. 76: Vorticity field of reference case left and fifth order extrapolation applied on this case for
fluid and solid solutions, and the mesh right
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Fig. 77: Pressure field of reference case left and fifth order extrapolation applied on this case for fluid
and solid solutions, and the mesh right
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Figure 78 shows the iteration history for the reference case (lower bar-plot) and the fifth order ex-
trapolation function applied on the structural displacements d, the fluid solution uvp, and the mesh
nodes of the deformed mesh. The green line is at five iterations and the pink line at twelve iterations
in both plots. It is obvious that with extrapolation applied less iterations are necessary.

Fig. 78: Iterations over timesteps for reference case (lower bar-plot) and fifth order extrapolation
applied on this case for uvp, d, and mesh
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6.3.1 Extrapolation for εc = εF = 1 · 10−2

Here the reference case is the case with the tolerance boundaries εc = 1 ·10−2 and εF = 1 ·10−2. Table
12 shows the results for first and fifth order extrapolation of the deformed fluid mesh nodes (mesh),
the solid field solution, the fluid field solution, and the deformed mesh (d, uvp, mesh), and the solid
field solution, the fluid field solution, and the deformed mesh calculated using CMD (d, uvp, mesh
directly).

m
es
h

extrapolation | order reference case yes | 1 yes | 5
notation FSI F FSI F FSI F

min iterations 3 5 3 3 2 3
max iterations 4 10 3 8 3 6
avg. iterations 3.5 8.4 3.0 7.0 2.0 4.9
min time FSI [s] 85.2 89.5 53.7
max time FSI [s] 160.5 158.4 97.2
avg. time FSI [s] 133.0 116.5 79.4

time [h] 36.9 32.4 (87.8%) 22.1 (59.9%)

d,
uv

p,
m
es
h

extrapolation | order reference case yes | 1 yes | 5
notation FSI F FSI F FSI F

min iterations 3 5 3 5 1 1
max iterations 4 10 3 8 3 7
avg. iterations 3.5 8.4 3.0 6.1 2.0 4.3
min time FSI [s] 85.2 85.2 21.6
max time FSI [s] 160.5 126.6 108.6
avg. time FSI [s] 133.0 101.2 73.2

time [h] 36.9 28.1 (76.2%) 20.3 (55.0%)

d,
uv

p,
m
es
h
di
re
ct
ly extrapolation | order reference case yes | 1 yes | 5

notation FSI F FSI F FSI F
min iterations 3 5 1 1 1 1
max iterations 4 10 3 8 3 7
avg. iterations 3.5 8.4 3.0 6.0 2.0 4.3
min time FSI [s] 85.2 26.1 21.5
max time FSI [s] 160.5 138.9 115.0
avg. time FSI [s] 133.0 102.5 72.4

time [h] 36.9 28.5 (77.2%) 20.1 (54.5%)

Tab. 12: Extrapolation results and reference case

The pattern of acceleration which is seen in Table 12 is similar to those shown in Tables 10 and 11 but
the improvement is relatively smaller for first order extrapolation functions here. Calculation time
can be accelerated with about the same relative values for fifth order extrapolation formulas for this
reference case. The solution plots for the vertical forces and the moments are shown in Figures 94 and
95, and the three fluid fields are shown in Figures 96, 97, and 98 in Appendix D. For all other cases
these plots look similar.
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6 Bridge structure in FSI with wind

6.4 Aitken’s relaxation and extrapolation

As shown above, high acceleration of the calculation time is possible using Aitken’s relaxation or
extrapolation for this test case. The aim is now to combine Aitken’s relaxation and extrapolation in
one algorithm. Table 13 compared with Tables 10 and 12 shows that the improvement is very similar
to the case where extrapolation is used alone without Aitken’s relaxation. For the upper part of Table
13 the tolerances are εc = 1 · 10−6 and εF = 1 · 10−2 and for the lower part of this table the tolerances
are εc = εF = 1 · 10−2. The results and their plots are almost the same as before and are, therefore,
not repeated here.

d,
uv

p,
m
es
h
di
r.

+
A
R extrapolation | order reference case yes | 1 yes | 5

notation FSI F FSI F FSI F
min iterations 4 6 4 5 2 3
max iterations 10 15 9 13 10 13
avg. iterations 7.4 12.3 6.9 9.9 5.9 8.2
min time FSI [s] 174.4 107.7 54.1
max time FSI [s] 436.0 235.8 240.2
avg. time FSI [s] 276.7 178.1 147.8

time [h] 76.9 49.5 (64.5%) 41.1 (53.4%)

d,
uv

p,
m
es
h
di
r.

+
A
R extrapolation | order reference case yes | 1 yes | 5

notation FSI F FSI F FSI F
min iterations 3 5 1 1 1 1
max iterations 4 10 3 8 3 7
avg. iterations 3.5 8.4 3.0 6.0 2.0 4.3
min time FSI [s] 85.2 21.2 20.9
max time FSI [s] 160.5 127.5 120.7
avg. time FSI [s] 133.0 101.8 71.8

time [h] 36.9 28.3 (76.7%) 19.9 (53.9%)

Tab. 13: Reference case without any acceleration and results for extrapolation used together with
Aitken’s relaxation for different loop tolerances
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7 Conclusion

7 Conclusion

The findings for possible acceleration strategies in FSI-simulations are summarized according to the
findings made in two different benchmark test cases. We have investigated tolerances of iterative
loops, Aitken’s relaxation and extrapolation schemes herein. It can clearly be seen that the used
FSI-algorithm is quite stable and the results are good when the tolerance for the coupling loop is
εc ≤ 1 · 10−3. The chosen reference case with εc = 1 · 10−6 and εF = 1 · 10−2 leads to accurate results
and computational times which are acceptable for both test cases. However, the computational time
is still long for both cases and so acceleration strategies are important.

Aitken’s relaxation leads to a good acceleration for the bridge case but for the plate case nearly
no improvement has been achieved.

Applying the extrapolation functions leads to acceleration for both considered cases. The most notice-
able difference is that in the plate case for some extrapolation configurations, when single fields are
extrapolated only, the calculation time is much longer than without extrapolation and for the bridge
test case the calculation time for the same configurations is almost the same than for the reference
case. It should be clearly noted here that the main FSI algorithm is the same for both cases. The only
difference is that the solid solver for the bridge only considers a rigid body whereas it is deformable
in the plate test case. However, for both cases the solid solvers are fast and have almost no influence
on the overall computing times.

This leads to the conclusion that the applied acceleration strategies may be used reliably to solve
FSI-problems in various settings. However, it can clearly be seen that the quantities considered in
this thesis, like numbers of iteration steps for different loops and computational time, depend on the
cases which are to be solved. This means that the tolerances chosen based on the studies in this work
represent a good default setting. It is thus seen that the aim of this work has been achieved success-
fully and recommended settings for tolerances and acceleration strategies such as Aitken’s relaxation
and extrapolation are suggested. Those are expected to work in a variety of FSI test cases.
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Appendices

A More result plots for tolerance study of plate test case

Here the results of the plate test case are shown in plots which are not used in section 5.1 but are
included in this thesis for completeness. Figure 79 shows the same as the lower plot in Figure 31 but
with different line types plotted to show that all six lines are virtually identical and not just the result
for i = j = 6 is shown. Figures 80 and 81 show the results for the horizontal displacements, Figure 82
and 83 those for the vertical displacements, Figure 84 and 85 for the horizontal forces, and Figures 86
and 87 for the vertical forces, for i ∈ [2, 3, 4, 5].
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Fig. 79: Horizontal displacement of the middle point of the right edge of the plate with a different
line type for each case, to show that all lines are laying over each other
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A More result plots for tolerance study of plate test case
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Fig. 80: Horizontal displacements of the middle point of the right edge of the plate
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A More result plots for tolerance study of plate test case
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Fig. 81: Horizontal displacements of the middle point of the right edge of the plate
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A More result plots for tolerance study of plate test case
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Fig. 82: Vertical displacements of the middle point of the right edge of the plate
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A More result plots for tolerance study of plate test case
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Fig. 83: Vertical displacements of the middle point of the right edge of the plate
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A More result plots for tolerance study of plate test case
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Fig. 84: Horizontal forces of the middle point of the right edge of the plate
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A More result plots for tolerance study of plate test case

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time t

0

0.5

1

1.5

2

2.5

3

fo
rc

e
 F

x
Horizontal force

i=4, j=1

i=4, j=2

i=4, j=3

i=4, j=4

i=4, j=5

i=4, j=6

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time t

0

0.5

1

1.5

2

2.5

3

fo
rc

e
 F

x

Horizontal force

i=5, j=1

i=5, j=2

i=5, j=3

i=5, j=4

i=5, j=5

i=5, j=6

Fig. 85: Horizontal forces of the middle point of the right edge of the plate
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A More result plots for tolerance study of plate test case
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Fig. 86: Vertical forces of the middle point of the right edge of the plate
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A More result plots for tolerance study of plate test case
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Fig. 87: Vertical forces of the middle point of the right edge of the plate
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B Iteration history of plate study reference case

B Iteration history of plate study reference case

Here the iteration history is visualized for the reference test case. Figure 88 shows the iteration steps
over time and the calculation time over time.

Fig. 88: Number of iterations and computational time over time steps
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B Iteration history of plate study reference case

Fig. 89: Iteration steps of fluid and structure solvers within partitioned coupled loop for time step n

Acceleration strategies in partitioned coupling of fluid-structure interaction problems 120



B Iteration history of plate study reference case

Fig. 90: Iteration steps of fluid and structure solvers within partitioned coupled loop for time step n
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B Iteration history of plate study reference case

Fig. 91: Iteration steps of fluid and structure solvers within partitioned coupled loop for time step n
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C Results for first order extrapolation applied on plate case

C Results for first order extrapolation applied on plate case

Here the results for the first order extrapolation applied on structural displacements d are shown in
Figures 92 and 93.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time t

-0.5

-0.4

-0.3

-0.2

-0.1

d
is

p
la

c
e

m
e

n
t 

u

Horizontal displacement

reference case

extrapolation 1st order - d

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time t

-1.5

-1

-0.5

0

0.5

1

1.5

d
is

p
la

c
e

m
e

n
t 

v

Vertical displacement

reference case

extrapolation 1st order - d

Fig. 92: Horizontal and vertical displacement of the middle point of the right edge of the plate
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C Results for first order extrapolation applied on plate case
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Fig. 93: Vertical and horizontal force of the middle point of the right edge of the plate
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D Result plots for section 6.3.1

D Result plots for section 6.3.1
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Fig. 94: Vertical forces
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D Result plots for section 6.3.1
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Fig. 95: Moments
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D Result plots for section 6.3.1

Fig. 96: Velocity field of reference case left and fifth order extrapolation applied on this case for fluid
and solid solutions, and the mesh right
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D Result plots for section 6.3.1

Fig. 97: Vorticity field of reference case left and fifth order extrapolation applied on this case for
fluid and solid solutions, and the mesh right
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D Result plots for section 6.3.1

Fig. 98: Pressure field of reference case left and fifth order extrapolation applied on this case for fluid
and solid solutions, and the mesh right
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E Technical properties of used parallel computer

E Technical properties of used parallel computer

The used parallel computer is called ‘Sisyphus’ and specified below:

CALLEO Datacenter Server 2460

• 19” Quad-Socket Xeon E5-4600 Barebone, 2HE, SAS, 10GBE

• 4x Intel®Xeon®8-Core E5-4627v2 (3.3GHz, 7.2GT/s QPI, 130W)

• 32x 16 GB DDR3 SDRAM,1866 MHz, registered, ECC

• 2x 1 TB Enterprise SATA-3 hard drive, 7200 U/min

• Intel PCH 602 Onboard Controller

• Intel®X540 Dual Port 10GBase-T LAN onboard

Acceleration strategies in partitioned coupling of fluid-structure interaction problems 130



List of Figures

List of Figures

1 Cartesian coordinate system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Flow-diagram of a simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3 Quadratic quadrilateral element in reference domain. . . . . . . . . . . . . . . . . . . . 7
4 Quadratic quadrilateral element shape functions. . . . . . . . . . . . . . . . . . . . . . 8
5 Mapping of quadratic element from reference to real domain. . . . . . . . . . . . . . . 9
6 FEM discretization for a tension bar using linear elements . . . . . . . . . . . . . . . . 11
7 Different configurations of the continuum . . . . . . . . . . . . . . . . . . . . . . . . . 13
8 Mass flow on infinitesimal volume element dV . . . . . . . . . . . . . . . . . . . . . . . 17
9 Momentum flow on infinitesimal volume element dV in x-direction . . . . . . . . . . . 18
10 Normal and shear stresses on volume element dV in x-direction . . . . . . . . . . . . . 19
11 Fluid domain Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
12 Solid in material and spatial configuration . . . . . . . . . . . . . . . . . . . . . . . . . 27
13 Rigid body with elastic support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
14 Flow-diagram of FSI algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
15 Example case for explanation of FSI algorithm - Geometry and domain definition . . . 36
16 FE-mesh for fluid domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
17 Detailed FE-mesh for fluid domain around flap . . . . . . . . . . . . . . . . . . . . . . 37
18 Ramping functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
19 Invalid linear quadrilateral element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
20 Invalid fluid mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
21 Stiffness distribution in pseudo-solid field . . . . . . . . . . . . . . . . . . . . . . . . . 42
22 Deformed fluid and structural domain during an FSI-iteration . . . . . . . . . . . . . . 42
23 Vorticity, velocity, and pressure fields respectively of flap test case - at 1.84 seconds. . 43
24 Geometrical configuration of plate test case . . . . . . . . . . . . . . . . . . . . . . . . 44
25 FSI configuration of plate test case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
26 Detail of the configuration of plate test case . . . . . . . . . . . . . . . . . . . . . . . . 45
27 FE-mesh for fluid domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
28 Calculation time to find parallel computed solution in hours . . . . . . . . . . . . . . . 49
29 Average number of FSI-Iteration loop iterations to find parallel computed solution . . 50
30 Average number of summed fluid iterations to find parallel computed solution . . . . . 51
31 Horizontal displacement of the middle point of the right edge of the plate . . . . . . . 53
32 Vertical displacement of the middle point of the right edge of the plate . . . . . . . . . 54
33 Horizontal force acting on the middle point of the right edge of the plate . . . . . . . . 55
34 Vertical force acting on the middle point of the right edge of the plate . . . . . . . . . 56
35 Velocity field of reference case εc = 10−6 and εF = 10−2 . . . . . . . . . . . . . . . . . 57
36 Vorticity field of reference case εc = 10−6 and εF = 10−2 . . . . . . . . . . . . . . . . . 58
37 Pressure field of reference case εc = 10−6 and εF = 10−2 . . . . . . . . . . . . . . . . . 59
38 Flow-diagram of FSI algorithm with Aitken’s relaxation applied . . . . . . . . . . . . . 61
39 Horizontal and vertical displacement of the middle point of the right edge of the plate 63
40 Vertical and horizontal force of the middle point of the right edge of the plate . . . . . 64
41 Velocity field of reference case left and the study case for Aitken’s relaxation right . . 65
42 Vorticity field of reference case left and the study case for Aitken’s relaxation right . . 66
43 Pressure field of reference case left and the study case for Aitken’s relaxation right . . 67
44 Flow-diagram of FSI algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Acceleration strategies in partitioned coupling of fluid-structure interaction problems 131



List of Figures

45 Horizontal and vertical displacement of the middle point of the right edge of the plate 71
46 Vertical and horizontal force of the middle point of the right edge of the plate . . . . . 72
47 Velocity field of reference case left and extrapolation right . . . . . . . . . . . . . . . . 73
48 Vorticity field of reference case left and extrapolation right . . . . . . . . . . . . . . . . 74
49 Pressure field of reference case left and extrapolation right . . . . . . . . . . . . . . . . 75
50 Iterations over timesteps for reference case (lower bar-plot) and fifth order extrapolation

applied on this case for uvp, d, and mesh . . . . . . . . . . . . . . . . . . . . . . . . . 76
51 Tacoma Narrows Bridge collapse [23] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
52 Geometrical configuration and inflow condition of bridge test case . . . . . . . . . . . . 78
53 Geometrical and mechanical configuration of bridge section as rigid body. . . . . . . . 78
54 FE-mesh for fluid domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
55 FE-mesh for fluid domain around Γc around bridge H-section . . . . . . . . . . . . . . 80
56 Calculation time to find parallel computed solution in hours . . . . . . . . . . . . . . . 82
57 Average number of FSI-Iteration loop iterations to find parallel computed solution . . 83
58 Average number of summed fluid iterations to find parallel computed solution . . . . . 83
59 Vertical fluid forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
60 Vertical spring forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
61 Fluid moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
62 Spring moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
63 Angle of rotation in degrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
64 Vertical fluid forces over first 8 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
65 Velocity field of reference case εc = 10−6 and εF = 10−2 . . . . . . . . . . . . . . . . . 90
66 Vorticity field of reference case εc = 10−6 and εF = 10−2 . . . . . . . . . . . . . . . . . 91
67 Pressure field of reference case εc = 10−6 and εF = 10−2 . . . . . . . . . . . . . . . . . 92
68 Vertical forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
69 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
70 Velocity field of reference case left and Aitken’s relaxation applied on this case right . 96
71 Vorticity field of reference case left and Aitken’s relaxation applied on this case right . 97
72 Pressure field of reference case left and Aitken’s relaxation applied on this case right . 98
73 Vertical forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
74 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
75 Velocity field of reference case left and fifth order extrapolation applied on this case for

fluid and solid solutions, and the mesh right . . . . . . . . . . . . . . . . . . . . . . . . 103
76 Vorticity field of reference case left and fifth order extrapolation applied on this case

for fluid and solid solutions, and the mesh right . . . . . . . . . . . . . . . . . . . . . . 104
77 Pressure field of reference case left and fifth order extrapolation applied on this case for

fluid and solid solutions, and the mesh right . . . . . . . . . . . . . . . . . . . . . . . . 105
78 Iterations over timesteps for reference case (lower bar-plot) and fifth order extrapolation

applied on this case for uvp, d, and mesh . . . . . . . . . . . . . . . . . . . . . . . . . 106
79 Horizontal displacement of the middle point of the right edge of the plate with a different

line type for each case, to show that all lines are laying over each other . . . . . . . . . 110
80 Horizontal displacements of the middle point of the right edge of the plate . . . . . . . 111
81 Horizontal displacements of the middle point of the right edge of the plate . . . . . . . 112
82 Vertical displacements of the middle point of the right edge of the plate . . . . . . . . 113
83 Vertical displacements of the middle point of the right edge of the plate . . . . . . . . 114
84 Horizontal forces of the middle point of the right edge of the plate . . . . . . . . . . . 115
85 Horizontal forces of the middle point of the right edge of the plate . . . . . . . . . . . 116

Acceleration strategies in partitioned coupling of fluid-structure interaction problems 132



List of Tables

86 Vertical forces of the middle point of the right edge of the plate . . . . . . . . . . . . . 117
87 Vertical forces of the middle point of the right edge of the plate . . . . . . . . . . . . . 118
88 Number of iterations and computational time over time steps . . . . . . . . . . . . . . 119
89 Iteration steps of fluid and structure solvers within partitioned coupled loop for time

step n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
90 Iteration steps of fluid and structure solvers within partitioned coupled loop for time

step n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
91 Iteration steps of fluid and structure solvers within partitioned coupled loop for time

step n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
92 Horizontal and vertical displacement of the middle point of the right edge of the plate 123
93 Vertical and horizontal force of the middle point of the right edge of the plate . . . . . 124
94 Vertical forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
95 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
96 Velocity field of reference case left and fifth order extrapolation applied on this case for

fluid and solid solutions, and the mesh right . . . . . . . . . . . . . . . . . . . . . . . . 127
97 Vorticity field of reference case left and fifth order extrapolation applied on this case

for fluid and solid solutions, and the mesh right . . . . . . . . . . . . . . . . . . . . . . 128
98 Pressure field of reference case left and fifth order extrapolation applied on this case for

fluid and solid solutions, and the mesh right . . . . . . . . . . . . . . . . . . . . . . . . 129

Except Figure 51 which is a download from [23] all figures are made by Michael Kaiser with Matlab
[16] or tikzpicture in LATEX.

List of Tables

1 Order of ramping function and depending continuity . . . . . . . . . . . . . . . . . . . 39
2 Calculation time to find parallel computed solution in hours . . . . . . . . . . . . . . . 49
3 Iteration steps to find parallel computed solution for j ∈ [1, 2, 3] . . . . . . . . . . . . . 50
4 Iteration steps to find parallel computed solution for j ∈ [4, 5, 6] . . . . . . . . . . . . . 50
5 Results of reference case left and Aitken’s relaxation applied on this case right. . . . . 62
6 Extrapolation results and reference case . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7 Calculation time to find parallel computed solution in hours . . . . . . . . . . . . . . . 81
8 Iteration steps to find parallel computed solution . . . . . . . . . . . . . . . . . . . . . 82
9 Results of reference case left and Aitken’s relaxation applied on this case right. . . . . 93
10 Extrapolation results and reference case . . . . . . . . . . . . . . . . . . . . . . . . . . 99
11 Extrapolation results and reference case . . . . . . . . . . . . . . . . . . . . . . . . . . 100
12 Extrapolation results and reference case . . . . . . . . . . . . . . . . . . . . . . . . . . 107
13 Reference case without any acceleration and results for extrapolation used together with

Aitken’s relaxation for different loop tolerances . . . . . . . . . . . . . . . . . . . . . . 108

Further acknowledgement

The used LATEX-template is from DI Daniel Schöllhammer, BSc (Institute of Structural Analysis
at Graz University of Technology).

Acceleration strategies in partitioned coupling of fluid-structure interaction problems 133



References

References

[1] I. N. Bronstein, K. A. Semendyayev, G. Musiol, and H. Mühlig. Handbook of Mathematics.
6th ed. Springer-Verlag Berlin Heidelberg New York Dordrecht London, 2015.

[2] A. K. Chopra. Dynamics of Structures - theory and applications to earthquake engineering. New
Jersey: Prentice Hall Inc., 1995.

[3] W. Dahmen and A. Reusken. Numerik für Ingenieure und Naturwissenschaftler. 2nd ed. Berlin
Heidelberg: Springer-Verlag, 2008.

[4] T.-P. Fries. A stabalized and coupled meshfree/meshbased method for fluid-structure-interaction
problems. Technische Universität Braunschweig, 2005.

[5] T.-P. Fries. EduFEM - a finite element method educational software. TU Graz, 2019.
[6] T.-P. Fries. Finite Element Method, Lecutures FEM I and FEM II. TU Graz, 2019, unpublished.
[7] P. Hood and C. Taylor. “Navier-Stokes equations using mixed interpolation”. In: Finite element

methods in flow problems (1974), pp. 121–132.
[8] B. Hübner. Simultane Analyse von Bauwerk-Wind-Wechselwirkungen. Technische Universität

Braunschweig, 2002.
[9] T. J. R. Hughes. The Finite Element Method, Linear Static and Dynamic Finite Elemente

Analysis. NewYork: Dover Publications, 2000.
[10] P. S. Huyakorn, C. Taylor, R. L. Lee, and P. M. Gresho. “A comparison of various mixed-

interpolation finite elements in the velocity-pressure formulation of the Navier-Stokes equations”.
In: Computers & Fluids 6.1 (1978), pp. 25–35.

[11] M. Kaiser. A finite element based topology optimization for structural design. Hamilton: McMas-
ter University, 2019, unpublished.

[12] M. Kaiser. Dynamically loaded tension bar, a time-stepping finite element method. TU Graz,
2018/19, unpublished.

[13] K. Knothe and H. Wessels. Finite Elemente. 5th ed. Berlin: Springer, 2017.
[14] G. A. Korn and T. M. Korn. Mathematical handbook for scientists and engineers: definitions,

theorems, and formulas for reference and review. New York: Dover Publications, 2000.
[15] U. Küttler and W. A. Wall. “Fixed-point fluid-structure interaction solvers with dynamic relax-

ation”. In: Computational Mechanics 43.1 (2008), pp. 61–72.
[16] https://de.mathworks.com/help/matlab/index.html.
[17] A. Meister and T. Sonar. Numerik - Eine lebendige und gut verständliche Einführung mit vielen

Beispielen. Berlin: Springer Spektrum/Springer Nature, 2019.
[18] C. Petersen and Werkle H. Dynamik der Baukonstruktionen. 2nd ed. Wiesbaden: Springer

Vieweg, 2017.
[19] L. Prandtl and H. Oertel. Führer durch die Strömungslehre. 10th ed. Braunschweig: Vieweg,

2001.
[20] S. Sachs, M. Streitenberger, D. Sternel, and M. Schäfer. “Extrapolation methods for accelerating

unsteady partitioned fluid-structure interaction simulations”. In: The International Journal of
Multiphysics 5.4 (2011), pp. 287–298.

Acceleration strategies in partitioned coupling of fluid-structure interaction problems 134

https://de.mathworks.com/help/matlab/index.html


References

[21] H. Sigloch. Technische Fluidmechanik. 10th ed. Berlin: Springer, 2017.
[22] P. Steinke. Finite-Elemente-Methode. 5th ed. Berlin: Springer, 2015.
[23] https://en.wikipedia.org/wiki/File:Tacoma-narrows-bridge-collapse.jpg.
[24] E. Walhorn. Ein simultanes Berechnungsverfahren für Fluid-Struktur-Wechselwirkungen mit

finiten Raum-Zeit-Elementen. Technische Universität Braunschweig, 2002.
[25] W. A. Wall. Fluid-Struktur-Interaktion mit stabilisierten finiten Elementen. Universität Stuttgart,

1999.
[26] O. C. Zienkiewicz, R. L. Taylor, and P. Nithiarasu. The Finite Element Method, Vol. 3 Fluid

Dynamics. 7th ed. Butterworth-Heinemann, Oxford, 2005.

Acceleration strategies in partitioned coupling of fluid-structure interaction problems 135

https://en.wikipedia.org/wiki/File:Tacoma-narrows-bridge-collapse.jpg

	 Notation
	 Preface
	 Abstract
	 Zusammenfassung
	1 Introduction
	1.1 Mathematical preliminaries
	1.2 Short introduction to the Finite Element Method (FEM)
	1.3 ALE formulation

	2 Fluid Domain
	2.1 Physical properties of the fluid
	2.2 Derivation of the governing equations
	2.3 Fluid domain in FEM

	3 Structural Domain
	3.1 Rigid body motion

	4 Fluid-structure interaction
	4.1 Computational mesh dynamics
	4.2 Vertical flap - FSI algorithm explained on an example

	5 Plate structure in FSI
	5.1 Tolerance study
	5.2 Aitken's relaxation
	5.3 Extrapolation

	6 Bridge structure in FSI with wind
	6.1 Tolerance study
	6.2 Aitken's relaxation
	6.3 Extrapolation
	6.3.1 Extrapolation for c = F = 110-2

	6.4 Aitken's relaxation and extrapolation

	7 Conclusion
	Appendices
	A More result plots for tolerance study of plate test case
	B Iteration history of plate study reference case
	C Results for first order extrapolation applied on plate case
	D Result plots for section 6.3.1
	E Technical properties of used parallel computer
	 List of Figures
	 List of Tables

