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Abstract

Sprays generated in atmospheric air by a consumer-type pressure atomizer with off-axis
liquid supply are investigated. Measurements are conducted in numerous spray cross
sections at a high spatial resolution of the measurement points in radial direction using
phase-Doppler anemometry. Altogether, three sprays characterized by different pairs of
Weber and Ohnesorge numbers, using two different test liquids, are examined. The liquid
mass flow rates are in the same order of magnitude as in commercial consumer sprays.
In the sprays, the motion of the gas phase is induced by the interaction with the liquid
phase exclusively. The measurements are conducted in a region with large slip between
the liquid and the gas phases, governed by strong momentum transfer from the droplets
to the gas. Using the phase-Doppler measurement data, a procedure is developed to
determine the velocity field of the gas from the motion of small droplets, accounting
for bimodal velocity spectra observed at certain measurement locations. The resulting
gas-velocity fields exhibit self-similar behavior.
Based on the experimental data, a self-similar description of the gas flow field in the

sprays is derived from boundary-layer theory. For this purpose, the momentum transfer
from the drops to the gas is accounted for by a source term in the momentum equation.
The momentum source is validated against the measurement data showing very good
agreement and revealing self-similarity of the liquid phase. The mathematical description
of the momentum source accounts for solid-cone and hollow-cone sprays. Remarkably, the
obtained self-similar shape function, describing the profiles of the gas velocity components,
is the very same as known from axisymmetric single-phase jets. However, the scaling
variables of the self-similar coordinate and other flow quantities differ significantly from
the single-phase case.

The present study confirms the, long-suspected, self-similarity of spray flow governed
by strong liquid-gas momentum transfer, by revealing the self-similarity of the gas velocity
field and the momentum loss of the liquid phase. The derived analytical self-similar
description of the spray flow is in excellent agreement with the measurement data and
provides a convenient starting point for future spray modeling efforts.
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Kurzfassung

In der vorliegenden Arbeit werden Sprays, die unter atmosphärischen Bedingungen mittels
Druckzerstäubung bei exzentrischer Flüssigkeitszufuhr erzeugt werden, untersucht. Der
verwendete Zerstäuber ist exemplarisch für Sprühgeräte, die in Konsumgütern eingesetzt
werden. Messungen im Strömungsfeld der Sprays werden in zahlreichen Querschnitten, bei
hoher räumlicher Auflösung in radialer Richtung, mittels Phasen-Doppler-Anemometrie
durchgeführt. Insgesamt werden drei Sprays untersucht, die durch unterschiedliche Paare
von Weber- und Ohnesorge-Zahl charakterisiert sind. Dabei werden zwei verschiedene
Flüssigkeiten verwendet. Die Flüssigkeitsmassenströme durch die Düse entsprechen
jenen von kommerziell verfügbaren handelsüblichen Sprays. In den untersuchten Sprays
wird die Bewegung der Gasphase ausschließlich durch Interaktion mit den Tropfen
induziert. Die Messungen decken den Bereich mit großem Schlupf zwischen Flüssig- und
Gasphase, beziehungsweise starkem Impulsübergang von den Tröpfchen auf das Gas,
ab. Bei der Berechnung der Gasphasengeschwindigkeit aus den Messdaten werden an
bestimmten Messpositionen beobachtete bimodale Geschwindigkeitsverteilungen sehr
kleiner Tröpfchen berücksichtigt.

Basierend auf der Grenzschichttheorie, und mit Hilfe der Messdaten, wird eine selbstähn-
liche Beschreibung des Gasströmungsfeldes abgeleitet. Dabei wird der Impulsübergang
von den Tröpfchen auf das Gas durch einen Quellterm in der Gasimpulsbilanz berück-
sichtigt. Der Vergleich von Impulsquelle und Messdaten zeigt sehr gute Übereinstimmung.
Dadurch wird auch die Selbstähnlichkeit der Strömung der Flüssigphase in den vorliegen-
den Sprays bestätigt. Die mathematische Formulierung der Impulsquelle beschreibt Voll-
und Hohlkegelsprays. Bemerkenswerterweise ist die selbstähnliche Formfunktion, welche
die Geschwindigkeitskomponenten der Gasphase beschreibt, ident mit jener von achsen-
symmetrischen einphasigen Freistrahlen. Die Skalierungsfaktoren der selbstähnlichen
Koordinate und anderer Größen des Strömungsfeldes unterscheiden sich jedoch erheblich
vom einphasigen Fall.

Die vorliegende Arbeit bestätigt die seit längerem vermutete Selbstähnlichkeit des
Strömungsfeldes in Sprays mit starkem Impulseintrag der Flüssigphase. Dies wird
durch die Selbstähnlichkeit des Gasgeschwindigkeitsfeldes und des Impulsverlustes der
Flüssigphase aufgezeigt. Die analytische selbstähnliche Beschreibung der Sprayströmung
ist in ausgezeichnetem Einklang mit den Messdaten. Weiters stellt sie einen günstigen
Ausgangspunkt für zukünftige Arbeiten zur Modellierung von Sprayströmungen dar.
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Chapter 1

Introduction

Sprays are everywhere. They occur in natural phenomena, like sea sprays, drizzle and
rainfall, many industrial processes, numerous consumer products and they are relevant
for the most basic applications in everyday life in human society. In general, a spray is
characterized by a system of drops immersed in a continuous gaseous phase (Lefebvre and
McDonell 2017). The generation of sprays for a specific purpose requires the controlled
atomization of bulk liquid in a gaseous environment. For this reason, the process of
spray generation and the design of suitable and efficient atomizers has been extensively
studied for almost a century. Typical spray applications are found in combustion, spray
drying and coating, atomization of liquid metals, agricultural crop spraying, cleaning, air
conditioning and medical sprays (Bayvel and Orzechowski 1993; Lefebvre and McDonell
2017). The list of examples could be continued at will.

Developments in nanotechnology during the past decades enable the application
of manufactured nanomaterials in consumer spray products. To enhance the desired
effects, they may be used as ingredients in commercially available spray products, like
waterproofing sprays or body care products in the near future (Kessler 2011; Lorenz et al.
2011). Moreover, the use of manufactured nanomaterials is already under consideration
for various other areas of application, for example as nanofertilzer in agriculture (Raliya
et al. 2018). Little is known about the potential for inhalation exposure and the connected
health risks of nanoparticle-laden sprays (Quadros and Marr 2010, 2011; Nazarenko
et al. 2011). The models of exposure assessment available are stochastic in nature (Park
et al. 2017, 2018) and do not directly describe the deterministic nature of the underlying
physical processes. The present study aims to contribute to the realistic assessment of
health risks connected to nanoparticulate or other hazardous content in consumer spray
products, by investigating and modeling the flow field of pressure-atomized consumer-type
sprays.
Self-similar phenomena are well-known in mathematics and physics, and can also be

observed in the structure of plants in nature (Barnsley 1993; Barenblatt 1996). In fluid
dynamics, self-similar phenomena occur in flows without imprinted length or time scales
(Brenn 2017). To describe the concept of self-similarity, we follow the example of Pope
(2000). Consider a quantity Q(x, y), depending on two independent variables x and
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1 Introduction

y. As a function of one of the two independent variables, x in the present case, we
define characteristic scales δ(x) and Q0(x) for the other independent variable y and the
dependent variable Q(x, y), respectively. Consequently, the scaled variables

ζ := y

δ(x) and Q̃(ζ, x) := Q(x, y)
Q0(x) (1.1)

can be defined. If the scaling variables δ(x) and Q0(x) are chosen such that the scaled
dependent variable Q̃(ζ, x) is independent of x, i.e.

Q̃(ζ, x) = Q̂(ζ) , (1.2)

then Q(x, y) is self-similar. The advantages of self-similarity are clearly evident if we
consider that the quantity Q(x, y) is governed by a partial differential equation (PDE).
Since Q(x, y) is self-similar, it can be expressed by the quantities δ(x), Q0(x) and Q̂(ζ),
each depending on a single variable only. Thus, the partial differential equation reduces
to an ordinary differential equation (ODE).
The origins of the concept of self-similarity applied to fluid dynamics are difficult to

trace (George 1989). First notable contributions were made by the self-similar descriptions
of the laminar boundary layer by Blasius (1908) and the axisymmtric single-phase jet
by Schlichting (1933). Self-similar phenomena in spray flow are widely reported in the
literature. For example, they are known to occur in sprays generated by air-assisted
atomization (Li and Shen 1999), in Diesel sprays (Wu et al. 1984; Payri et al. 2016) and in
spray flames (Karpetis and Gomez 1999). In regions of the spray where the droplets and
the gas are in dynamic equilibrium, the spray flow was modeled similar to a single-phase
jet, but with variable density to account for the presence of the drops (Shearer et al.
1979; Desantes et al. 2011). In many of the studies reported in the literature, liquid
and gas were injected simultaneously, resulting in negligible slip between the drops and
the gas. This endorses self-similarity with similar scaling as observed in single-phase
jets, since the cross-sectional averages of gas and liquid momentum flow rates remain
approximately constant.

In this study, we investigate sprays where the motion of the gas is induced by interaction
with the liquid drops exclusively. The sprays are generated in atmospheric air by a
single-phase pressure-atomizer with off-axis liquid supply, as in use with consumer spray
cans. The liquid mass flow rates are of the order of magnitude of commercial consumer
spray products. We focus on the region of the sprays where large slip between the
drops and the gas phase occurs. The dynamics of this region are governed by strong
liquid-gas momentum transfer, effectively reducing the cross-sectional momentum flow
rate of the liquid phase and raising the one of the gas phase as the spray propagates
downstream. For the experimental characterization of the sprays, we employ phase-
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1 Introduction

Doppler anemometry (PDA). Using this experimental technique, the size and two velocity
components of individual droplets passing the probe volume are measured. To obtain
a reliable experimental data set for our modeling efforts, extensive measurements in
several cross sections at high spatial resolution are conducted. The main objectives of
the present investigation are: (1) The experimental characterization of pressure-atomized
consumer-type spray flow, (2) the identification of possibly self-similar behavior and (3)
the derivation of a corresponding self-similar mathematical description.
The remainder of the thesis is structured as follows: In Chapter 2, we derive the

theoretical basis for our work and present a thorough literature survey on self-similar
phenomena in spray flow. In Chapter 3, we discuss the spray test rig, the measurement
technique and the parameters of the experiments. Chapter 4 presents the measurement
results. Moreover, the determination of the gas-phase velocity field from the PDA
measurement data is discussed. In Chapter 5, we derive an analytical self-similar model
from boundary-layer theory to describe the gas flow field in the sprays. For that matter,
the momentum transfer from the droplets to the gas is accounted for. All aspects of the
obtained model a thoroughly discussed and compared to the measurement data. Chapter
6 compares certain predictions of the model to results reported in the literature. In
Chapter 7, we identify possible further investigations, like the extension of the model
to heat and mass transfer in evaporating sprays and its application to geometrically
different kinds of spray flow. Chapter 8 concludes the study. The core results of this
thesis are published in Hinterbichler et al. (2020).
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Chapter 2

Fundamentals

The present chapter provides the theoretical foundation of this study. First, we briefly
introduce the fundamentals of spray formation. As a classical example with significant
relevance for the present analysis, we then introduce the mathematical description of
the self-similar flow field in axisymmetric single-phase jets. Finally, in section 2.3, the
current literature on self-similar phenomena in sprays is reviewed.

2.1 Spray generation

The controlled atomization of bulk liquid in a gaseous environment is substantial for a large
variety of processes and applications in human society. The main areas of utilization are
power engineering, mechanical engineering, chemical engineering, transport, agriculture,
environmental protection and various other applications, for example in human health
protection and in the food industry (Bayvel and Orzechowski 1993). In the present
study, we investigate the flow field of sprays generated by consumer-type spray cans. Our
analysis focuses on the downstream propagation of the spray after the drop formation is
finished. Thus, the process of atomization per se, which is influenced by the geometrical
details of the atomizer, is not a subject of the present work. For completeness, however,
we shall provide a brief overview of the mechanisms of spray formation and the regimes
of spray development to be expected from an atomizer such as used in the present study.

2.1.1 The process of drop formation

In general, the main goal of the atomization process is the dispersion of liquid in an
ambient gaseous phase. To facilitate the desired effects, the resulting droplets should, for
example, be as small as possible. Thus, a large interfacial surface area and proper mixing
is ensured. In this way, the objectives of the process, for example the evaporation of
liquid fuel for combustion or the cooling of a hot air stream, are achieved. The purpose
of the atomizer is to ensure proper atomization of the bulk liquid as required for the task
at hand. On the one hand, this is achieved by large relative velocities between the liquid
and the gas phases. On the other hand, the atomizer is designed such that the formed
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2 Fundamentals

liquid shapes are prone to instabilities and therefore disintegrate into droplets. The
first stage of the atomization process, where large continuous liquid structures breakup
into individual filaments and large droplets, is called primary atomization. Secondary
atomization denotes the subsequent breakup of large droplets into smaller drops due to
aerodynamic forces.
According to Lefebvre and McDonell (2017), there are three basic mechanisms for

primary atomization. These are the disintegration of liquid jets, the disintegration of
liquid sheets and a mechanism called prompt atomization. The first two mechanisms
involve the emergence of large liquid structures from the atomizer orifice, which are
subject to fast growing instabilities and ultimately break up into smaller structures like
ligaments and droplets. In certain cases, when there is insufficient time for the growth
of instabilities, the liquid is shattered into droplets immediately after ejection and the
notion of growing instabilities can be dismissed (Lefebvre and McDonell 2017). This
mechanism of atomization has been termed prompt by Lefebvre (1992).

Early works on the disintegration of liquid jets date back more than a century (Rayleigh
1878, 1879). Weber (1931) extended Lord Rayleigh’s inviscid theory to describe the
breakup of viscous jets. Ohnesorge (1936) studied the breakup of liquid jets systematically,
varying the fluid properties of the jet, the initial jet velocity and the nozzle diameter.
He identified three main regimes of jet disintegration, namely Rayleigh jet breakup,
wind-induced breakup and atomization. He observed that the regime of breakup was
determined by the Reynolds number of the jet and a second nondimensional group, which
would later be termed the Ohnesorge number. As a result of further scientific efforts, the
wind-induced breakup regime was subdivided into the first wind-induced breakup regime
and the second wind-induced breakup regime (Reitz 1978).
The Rayleigh jet breakup mechanism is caused by axisymmetric deformations of the

jet surface. At certain wavelengths, the deformations are amplified by surface tension,
leading to the disintegration of the jet. This effect is the so-called Plateau-Rayleigh
instability (Plateau 1873; Rayleigh 1878). In the first wind-induced breakup regime,
the effect of surface tension is amplified by the relative motion between the liquid and
the gas, accelerating the breakup process. The resulting drops are of the same order
of magnitude in diameter as the jet. In the second wind-induced breakup regime, the
growth of unstable short waves on the surface of the jet, caused by the relative motion
between the liquid and the gas phases, lead to its disintegration. In this case, surface
tension opposes the wave growth. The resulting drop are much smaller in diameter than
the jet. In the atomization regime, the liquid jet is immediately disrupted on entering
the gaseous atmosphere at the nozzle orifice.

To produce small droplets from liquid feed streams in cylindrical ducts, either very small
nozzles or high energy input is required (Walzel 2019). To overcome this disadvantage,
the formation of drops from disintegrating liquid sheets represents a more favorable
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approach. Liquid sheets generated by atomizers are typically of a flat or conical shape.
Sheets can also be produced by two impinging jets (Taylor 1960). According to Fraser
and Eisenklam (1953), there are three main modes of sheet disintegration, called rim
mode, wave mode and perforated sheet mode. In the rim mode, the free edge of the liquid
sheet contracts into a thick rim due to surface tension. This rim is subject to the same
instabilities as a liquid jet and disintegrates into droplets by similar means. Wave motion
on the sheet can lead to its disintegration, as liquid structures are torn away before
the leading edge of the sheet is reached (Lefebvre and McDonell 2017). The perforated
sheet mode is characterized by the formation of holes in the sheet. As the holes grow in
size, liquid rims are formed at the free edges of the holes. When the rims of adjacent
growing holes coalesce, irregular structures are formed which disintegrate into ligaments
and droplets. In practice, the boundaries of transition between these three modes of
sheet disintegration are not clear and they often occur superimposed (Walzel 2019).

After the primary atomization process, the resulting drops themselves may be subject to
further breakup due to aerodynamic forces. This process is called secondary atomization.
In general, secondary atomization of droplets occurs when the aerodynamic forces due
to drag exceed the surface tension forces. As a consequence, the drop deforms and
disintegrates into smaller droplets. Typically, this limit is expressed by a critical Weber
number of the droplet (Lefebvre and McDonell 2017). Depending on the drop size, the
relative velocity between the drop and the gas, and the physical properties of the liquid
and the gas phases, eight different breakup regimes are known. Their description and
the definition of the relevant parameters involved can be found elsewhere (Shraiber et al.
1996; Wozniak 2003).

2.1.2 Pressure atomization

Numerous atomizer designs have been developed over time. Bayvel and Orzechowski
(1993) classify the atomizers by the type of energy used for the atomization into four
basic categories. These are, liquid energy, gas energy, mechanical energy and other types
of energy. Lefebvre and McDonell (2017) follow a similar approach. Most commonly, the
energy for the atomization is provided by the liquid itself. The pressure drop through
the atomizer is converted into kinetic energy to achieve high relative velocities between
the liquid and the gas. A plain orifice represents the simplest example for a pressure
atomizer, where a liquid jet is ejected into a gaseous environment. A different concept
for pressure atomization is given by swirl atomizers (also called simplex atomizers). Due
to the swirling liquid inside the atomizer orifice, they eject a conical liquid sheet instead
of a liquid jet. Gas-assisted atomizers use the kinetic energy of a high-speed gas flow to
disintegrate the liquid. Their design is complex because liquid and gas flow through the
atomizer. Compared to pressure atomizers, their operation is also more elaborate, since,
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liquid

Figure 2.1: Schematic design of a pressure-swirl atomizer (adapted from Lefebvre and McDonell 2017).

in addition to the liquid, pressurized air has to be provided (Lefebvre and McDonell
2017). Rotary atomizers use mechanical energy to atomize the liquid. A rotating surface
transfers its rotational energy to the liquid and ejects it by means of centrifugal forces. A
flat disk represents the simplest form for the rotating surface, but there are several other
designs like vaned disks, cups, or slotted wheels. (Lefebvre and McDonell 2017). The
fourth category of Bayvel and Orzechowski (1993) covers all other forms of energy used
for atomization. This includes, for example, ultrasonic atomizers, electrostatic atomizers
and flash-boiling atomization. For a comprehensive review on the technical design of
atomizers we refer to others (Bayvel and Orzechowski 1993; Lefebvre and McDonell
2017).

The atomizer used in the present experiments is a simple single-phase pressure atomizer,
as used in many consumer spray cans. Due to an eccentric liquid supply to the nozzle
orifice, see section 3.1, angular momentum is imposed on the ejected liquid. The emerging
liquid structures appear very similar to the ones generated by classical pressure-swirl
atomizers. For this reason, we will introduce the basic design of pressure-swirl atomizers
and the properties of the sprays they produce.

Figure 2.1 depicts the basic design of a pressure-swirl atomizer. The liquid enters the
swirl chamber through one, or in practice typically several, inlets tangentially. On its path
to the nozzle exit, the swirl chamber narrows to increase the liquid swirl. As a consequence
of the large centrifugal forces, a gaseous core is formed near the swirl axis. As the liquid
is ejected through the nozzle, its high azimuthal velocity is quickly converted into radial
motion, forming a liquid sheet (Schmidt et al. 1999). The liquid sheet disintegrates into
droplets due to the mechanisms described in section 2.1.1. Depending on the pressure
difference between liquid and ambient gas, five different regimes of spray development
may occur. The different regimes are illustrated in figure 2.2. The characteristics of the
different regimes, according to Lefebvre and McDonell (2017), are described below.

(a) In the dribble stage, at very low pressure, liquid simply dribbles from the orifice.

(b) A liquid jet is ejected, forming a distorted pencil.

(c) A curved sheet is formed, but contracted into a closed bubble-shaped lamella due
to surface tension.
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(a) (b) (c) (d) (e)

Figure 2.2: Spray development in pressure-swirl atomizers (adapted from Lefebvre and McDonell 2017).
(a) dribble stage, (b) distorted pencil, (c) onion stage, (d) tulip stage, (e) fully developed
spray. The liquid injection pressure increases from (a) to (e).

(d) The bubble opens, forming a hollow tulip-shaped sheet. The liquid film is still
quite smooth. At the ragged edges of the sheet, the liquid disintegrates coarsely
into large droplets.

(e) The curved liquid tulip straightens to form a hollow conical sheet. Its thickness
decreases as the sheet expands and it quickly disintegrates into a well-defined
hollow-cone spray.

Note that the gaseous core is only formed in stages (c) to (e). In stages (a) and (b), the
swirl chamber is entirely filled with liquid. Depending on the design of the pressure-swirl
atomizer, solid-cone or hollow-cone sprays are generated. In the former, the liquid is
distributed fairly uniformly throughout each spray cross section. In hollow-cone sprays,
the liquid mass is concentrated at the outer edge of the spray. They a characterized by
finer atomization compared to solid-cone sprays (Lefebvre and McDonell 2017).

2.2 Self-similar jet flow

The axisymmetric single-phase submerged jet represents a classical example of self-similar
behavior in free shear flow. Schlichting (1933) derived a mathematical description of the
self-similar two-dimensional flow field of the laminar round jet. His model turned out to
be applicable to predict the mean flow field in turbulent jets as well, simply by using
the turbulent eddy viscosity instead of the molecular kinematic viscosity as a model
parameter (Pope 2000). It has been experimentally confirmed many times since, e.g.
Wygnanski and Fiedler (1969), Panchapakesan and Lumley (1993a), Hussein et al. (1994),
and Djenidi et al. (2016). The flow field of the single-phase round jet is schematically
illustrated in figure 2.3. The fluid exits the nozzle (diameter dor) with the mean velocity
ūor. After a short transition zone, a self-similar flow field emerges. Along lines where the
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ūor

r

z

z0

dor
u0(z)

symmetry axis

η = constant

u(r, z)

virtual origin

Figure 2.3: Flow field of a single-phase round jet.

values of the self-similar coordinate η are constant, the axial velocity ratio u(r, z)/u0(z)
is constant as well. u0(z) denotes the axial velocity at the symmetry axis of the jet. As
illustrated, constant values of η are represented by straight lines in (r, z) space. Thus,
the origin of the self-similar flow field may be conceived as a point source of mass and
momentum (George 1989). This singular point in space is called the virtual origin of
the flow field, and its location is denoted by z0 in figure 2.3. Due to the singularity, the
mathematical description obviously does not match real jets at coordinates very close
to the virtual origin. In general, the virtual origin does not necessarily coincide with
the nozzle exit, but lies in its close vicinity. The exact location of z0 depends on the
geometry of the nozzle and the flow conditions through the orifice.

2.2.1 Transport of momentum

In the following, we present the self-similar description of the single-phase round jet by
Schlichting (1933). It serves as a basis for the modeling of self-similar spray flow in the
present study. The laminar flow field illustrated in figure 2.3 can be described by the
boundary layer equations in cylindrical coordinates with constant pressure throughout,
reading

∂u

∂z
+ 1
r

∂(vr)
∂r

= 0 continuity (2.1)

u
∂u

∂z
+ v

∂u

∂r
= ν

1
r

∂

∂r

(
r
∂u

∂r

)
z -momentum (2.2)

∂p

∂r
= 0 r -momentum (2.3)

The molecular kinematic viscosity is denoted by ν. u and v are the velocity components
in axial and radial direction, respectively. In the following, the subscript a refers to the
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axisymmetric single-phase jet. The ansatz to obtain a self-similar flow field reads

ηa = Da
r

(z − z0) and Ψa = ν(z − z0)fa(ηa) , (2.4)

where we require for the self-similar coordinate ηa ∝ (z − z0)−1 and for the Stokesian
stream function Ψa ∝ (z − z0) in order for (2.2) to be independent of z and to ensure
global momentum conservation (Schlichting 1933). fa(ηa) represents the self-similar
shape function and Da denotes a constant model parameter. Note that Schlichting (1933)
did not introduce the parameter Da in the definition of the self-similar coordinate ηa,
but in the solution for fa(ηa). As we will show later, in section 5.2, the definition of ηa
including the parameter Da is of a more general nature, because self-similar coordinates
with arbitrary axial scaling require a constant parameter for dimensional reasons (Brenn
2017). Naturally, the self-similar description derived by Schlichting (1933) and the one
discussed in the present section are equivalent.
The Stokesian stream function Ψa is defined through the axial and radial velocity

components as

u = 1
r

∂Ψa

∂r
= νD2

a

(z − z0)
f ′a
ηa
, (2.5)

v = −1
r

∂Ψa

∂z
= νDa

(z − z0)

(
f ′a −

fa
ηa

)
, (2.6)

automatically satisfying the continuity equation (2.1). Substituting the velocity com-
ponents into the z -momentum equation (2.2) yields an ordinary differential equation
(ODE) for the self-similar shape function (Brenn 2017)

−
(
faf
′
a

ηa

)′
=
[
ηa

(
f ′a
ηa

)′ ]′
, (2.7)

where the prime denotes the derivative with respect to ηa. Equation (2.7) with the
boundary conditions (Schlichting 1933)

fa(0) = 0 and f ′a(0) = 0 (2.8)

is satisfied by the self-similar shape function

fa(ηa) = η2
a

1 + η2
a/4

, (2.9)

which can easily be verified by introducing (2.9) into (2.7). Momentum conservation
requires the initial jet momentum flow rate Ior to be conserved as the jet propagates
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downstream. Thus, we can determine the parameter Da from the global momentum
balance, reading

Ior = 2πρ
∞∫

r=0

u2r dr = 2πρν2D2
a

∞∫
ηa=0

f ′ 2a
ηa

dηa = 16π
3 ρν2D2

a . (2.10)

Here, ρ denotes the fluid density. For Da follows

Da = 1
4ν

√
3Ior
πρ

. (2.11)

Self-similarity has been observed in many other types of jet flow. Self-similar solutions
were derived for the flow fields of axisymmetric buoyant jets, for swirling jets, and also
for plane jets. Self-similar flow fields in jets interacting with solid bodies are documented
as well, i.e. wall jets and swirling jets propagating along solid cones. They are, however,
not considered in the present review. Their description can be found elsewhere (Tropea
et al. 2007; Schlichting and Gersten 2017).

2.2.2 Transport of other scalar quantities

In cases where the temperature of the fluid emerging from the orifice (see figure 2.3)
differs from the temperature of the environment, the resulting temperature field of the jet
can be described as self-similar as well (Schlichting and Gersten 2017). The same is true
for the concentration field if the jet consists of a fluid different from the environment,
e.g. a helium jet injected into ambient air (Panchapakesan and Lumley 1993b). In the
following, we derive the mathematical description of the self-similar temperature field.
This derivation is also applicable to obtain a self-similar concentration field.

The cylindrical axisymmetric thermal energy equation (temperature T ), obtained from
boundary layer theory, reads

u
∂T

∂z
+ v

∂T

∂r
= a

1
r

∂

∂r

(
r
∂T

∂r

)
, (2.12)

where a denotes the thermal diffusivity. The ansatz for the self-similar temperature field
is given by

T − T∞ = Fa
(z − z0)Θa(ηa) , (2.13)

where T∞ is the ambient temperature in the far field, Fa a constant parameter required
for dimensional reasons, and Θa(ηa) the self-similar temperature profile. Introducing
(2.13), and the velocity components (2.5) and (2.6), into the energy equation (2.12) yields
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Pr (faΘa)′ +
(
ηaΘ′a

)′ = 0 . (2.14)

Here, the molecular Prandtl number is denoted by Pr . Using the boundary conditions
(Tropea et al. 2007)

Θa(∞) = 0 and Θ′a(0) = 0 , (2.15)

equation (2.14) has the following solution for the self-similar temperature profile (Tropea
et al. 2007)

Θa(ηa) =
(
f ′a
ηa

)Pr
. (2.16)

The invariant of the thermal field is given by the excess heat transport rate of the jet,
Hor, (Tropea et al. 2007). Its definition reads

Hor = 2πρcp
∞∫

r=0

u(T − T∞)r dr = 2πρcpνFa
∞∫

ηa=0

f ′aΘa dηa =

= 8πρcpνFa
2Pr

2Pr + 1 ,

(2.17)

where cp denotes the specific isobaric heat capacity of the jet. From (2.17), the constant
Fa can be calculated to

Fa = (2Pr + 1)
2Pr

Hor
8πρcpν

(2.18)

and the ansatz for the self-similar temperature field (2.13) turns into

T − T∞ = (2Pr + 1)Hor
8πρcpν(z − z0)

(
f ′a
2ηa

)Pr
. (2.19)

The dependency of the jet temperature on the axial coordinate is the same as for the jet
velocity. For Pr = 1, the shapes of the self-similar temperature and velocity profiles are
identical.

2.3 Self-similar spray flow

In the following, the existing literature on self-similar phenomena in spray flow is reviewed.
In section 2.3.2, we discuss a mathematical model describing the self-similar flow field in
sprays where drops and gas are in dynamic equilibrium.
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2.3.1 Literature survey

Self-similarity in sprays is widely reported in the literature. To facilitate a clear overview,
the studies are divided into six different categories. Note, however, that this categorization
is somewhat arbitrary and some of the studies may fit into other than the selected category
as well.

Air-assisted atomization

Li and Shen (1999) reported self-similar axial drop velocity profiles and self-similar profiles
of the axial drop velocity fluctuations in sprays generated by twin-fluid atomization of
water jets exposed to an inner high-speed air stream. The flow field became self-similar
at axial distances from the orifice z/dor > 29.5. The self-similar mean axial drop velocity
profile was described by the empirical correlation

ūl(r, z)
ūl,0(z) = cosh−2 (10.4η) , (2.20)

where they used the self-similar coordinate of the single-phase round jet, η = r/z. The
mean drop velocity at the spray axis, ūl,0, showed a similar scaling as observed in the
single-phase jet

ūl(z) = Ĉ

z

√
Ior
ρ
, (2.21)

but with a different constant correlation coefficient Ĉ. Values of Ĉ are reported for a
variety of different combinations of water and airflow velocities at the nozzle exit (Li and
Shen 1999).

Vega et al. (2000) reported self-similar velocity profiles and turbulence intensities in a
coaxial airblast atomized spray. Copan et al. (2001) found self-similar axial drop velocity
profiles at axial distances z/dor > 25 in sprays generated by a twin-fluid nozzle (liquid
nitrogen and air). Ariyapadi et al. (2003) generated sprays with a similar twin-fluid
nozzle (water and air) and obtained self-similar mean axial drop velocity profiles when
plotting them against the radial coordinate divided by the spray half-width `0.5. The
spray half-width increased linearly with z, following the relation

`0.5
dor

= 4.7 + 0.024 z

dor
. (2.22)
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The self-similar mean axial drop velocity profile was described by

ūl(r, z)
ūl,0(z) = 0.18 + 2.1

4(r/`0.5)2 + 1.62 , (2.23)

where the constant value of 0.18 for r →∞ was explained by the presence of fast drops
with high inertia.

Chen et al. (2006) reported self-similar mean axial drop velocity profiles of the smallest
drops (d < 3 µm) in air assisted atomization of acetone jets ejected into a uniform
co-flowing airstream. To make the velocity profiles collapse on a single self-similar
curve, they used the self-similar coordinate of the single-phase jet. They determined the
following equation to represent the self-similar velocity profile of drops with d < 3 µm

ūl(r, z)− u∞
ūl,0(z)− u∞

= exp
[
− ln (2)

(
r

`0.5

)2
]
, (2.24)

with account for the velocity u∞ of the co-flowing air.
Hoeg et al. (2008) obtained self-similar axial gas and drop velocity profiles by numerical

simulations of sprays generated by a coaxial airblast atomizer. They used a two-way
coupled Eulerian-Eulerian approach for their computations. Li et al. (2009) reported
self-similar axial drop velocity profiles in a water spray generated by a plain-jet airblast
atomizer. The measurements were taken at axial distances 16.8 < z/dor < 33.3 from the
atomizer orifice. Leboucher et al. (2012) investigated sprays produced by air-assisted
atomization of an annular liquid sheet. They reported self-similar mean axial drop
velocity profiles at axial distances z/dor > 7.5 from the orifice. The self-similar profile
was well described by a Gaussian curve, similar to (2.24).

Spray flames

In spray flames, self-similar vapor source profiles and self-similar axial gas velocity profiles
were reported by Karpetis and Gomez (1998, 1999). The fuel was atomized with an
ultrasonic nebulizer to avoid slip velocities between the droplets and the gas phase,
and carried upwards by a co-flowing air stream. Once ignited, a flame extended from
the atomizer tip through a circular contraction (dor = 12.5 mm) into the measurement
region. As the spray flame exits the burner, the gas jet was accelerated due to the
vaporization-induced volumetric dilatation, resulting in moderate slip velocities between
the droplets and the gas.
Analyzing the axial evolution of the gas velocity, they identified three different spray

regions. First, close to the burner exit, the gas was accelerated. Second, a self-similar
region at 3 < z/dor < 6.5, where the gas velocity at the spray axis decreases with a power
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law u0 ∝ z−κ, was found. They obtained exponents between 0.26 ≤ κ ≤ 0.83 in four
sprays generated at different fuel and air mass flow rates. To make the axial gas velocities
collapse to a universal self-similar profile, the self-similar coordinate had the same axial
dependency as the gas velocity, i.e. η = r+/zκ. Note that the definition of the radial
coordinate r+ involves a Howarth transformation (Howarth 1948) to incorporate the gas
density. This is not discussed here and can be found in the original paper (Karpetis and
Gomez 1999). Third, farther downstream, a region comparable to the single-phase jet
where u0 ∝ z−1 was observed.

As mentioned earlier, in two of the spray flames self-similar vapor sources were
obtained in a region −1 < z/dor < 6.5. Depending on the spray, the axial decrease
of the vapor source is represented by power laws ∝ z−3 and ∝ z−3.5, respectively. To
make the measurement data collapse on a self-similar profile, they rescaled the self-
similar coordinate to η = r/z1.5 and η = r/z1.75, respectively. Note that Karpetis and
Gomez (1999) assumed the position of the virtual origin at the tip of the fuel injector
(z/dor = −2). This may explain the different axial scaling obtained for the self-similar
coordinates to describe the self-similarity of the vapor source and the axial gas velocity.
Self-similar axial gas velocity profiles were reported by Russo and Gomez (2006) in

buoyancy-dominated laminar spray flames and by Gounder et al. (2012) in turbulent
piloted dilute spray flames. Kourmatzis et al. (2015) measured self-similar mean axial
velocity profiles for two different drop size classes (0 < d < 10 µm and 40 < d < 50 µm)
in non-reacting sprays and turbulent spray flames. In addition, they reported self-similar
turbulence intensities deduced from the smallest droplets (0 < d ≤ 10 µm).

Diesel sprays

In Diesel-type sprays, Wu et al. (1984) observed self-similar mean axial drop velocity
profiles at large axial distances from the atomizer orifice (300 < z/dor < 800). In this
region of the spray, droplets and gas phase are in dynamic equilibrium, resulting in
a similar scaling as observed for the single-phase jet. Similar results were obtained
by Felton et al. (1988) by measurements in Diesel sprays in cross sections located at
200 < z/dor < 650. They observed a universal self-similar mean axial drop velocity profile
for z/dor > 300 and minor deviations from it for the drop velocities in cross sections at
z/dor < 300.
Payri et al. (2016) measured the drop velocity field of high-pressure Diesel sprays at

varying ambient densities using particle image velocimetry (PIV) without additional
seeding. They observed self-similar mean axial drop velocity profiles in cross sections
between 503 < z/dor < 727 for all sprays investigated. For this purpose, the self-similar
coordinate of the single-phase round jet was applied. Desantes et al. (2009) and García-
Oliver et al. (2017) reported self-similar velocity profiles in inert and reacting Diesel
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sprays. Additional studies on self-similar phenomena in Diesel sprays are discussed in
section 2.3.2.

Modeling based on similarity assumptions

In the present section we discuss models describing aspects of spray flow, which are based
on self-similar assumptions about the flow field. This excludes modeling of spray flow
where the two phases are in dynamic equilibrium, which will be discussed in more detail
in section 2.3.2. Yeung (1982) suggested the possibility of a mathematical description of a
self-similar axisymmetric boundary-layer spray flow, but concluded that no mathematical
solution for such a problem was possible. A self-similar description was derived for flat
sprays based on the assumption that the droplet motion is not influenced by the gas
velocity, i.e. the droplets travel on straight trajectories at a constant velocity.

Ghosh et al. (1991) and Ghosh and Hunt (1994) developed a one-dimensional model
to describe the motion of gas flow in sprays induced by the droplets. They assumed that
the droplets travel along straight trajectories, implying that the radial distance of the
spray edge from the symmetry axis increases linearly with the axial coordinate. They
obtained an axial scaling of the axial gas velocity u ∝ z−1/2 for the region in sprays with
large slip velocities between the droplets and the air. Based on this result, they derived a
self-similar description of the gas flow in axisymmetric sprays. In doing so, they applied
Oseen’s approximation (Oseen 1910) to neglect the contribution of the radial velocity
component of the advective term in the momentum balance. From our understanding,
this approximation is highly questionable, since Oseen’s approximation is usually only
applied to low Reynolds number flow, i.e. Stokes flow.
The assumption of self-similar flow fields was used in other modeling approaches.

Cossali et al. (1996) measured the entrainment rate in the near field of transient Diesel
sprays and obtained an axial scaling of the entrained mass flow rate ṁ ∝ z3/2. Assuming
a self-similar flow field, similar to a single-phase jet, they calculated a linear increase
of the gas-phase momentum flow rate. Based on similarity assumptions, Cossali (2001)
developed a onedimensional model to predict the gas entrainment into non-evaporating
full cone sprays. The obtained model is, on the one hand, able to predict the axial
dependency of the entrained mass flow rate ṁ ∝ z3/2 in the near field measured by
Cossali et al. (1996) and, on the other hand, describes its linear evolution, ṁ ∝ z, in the
far field.

Dynamical similarity

A recent study by Dhivyaraja et al. (2019) describes a phenomenon they termed as
dynamical similarity. In fact, this does not represent self-similarity in the classical sense,
but it implies the similarity of spray properties observed at given measurement positions
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in different sprays. They showed dynamical similarity of the mean drop velocities,
the Sauter mean drop diameters, the liquid volume fluxes and the probability density
functions (PDF) of the droplet diameter in a given cross section at z/dor = 19. The
sprays were generated by pressure-swirl atomizers at a broad range of different flow
conditions. They defined the similarity variable as the ratio of the local radial coordinate
to the radial coordinate of the spray edge

η = r

z tan θm
, (2.25)

where θm denotes the cone half angle of the spray.
Dynamical similarity has been reported by others as well. For example, Moon et al.

(2014) showed similarity of velocity profiles in two different cross sections in Diesel sprays
generated at different injection pressures. Kobashi et al. (2018) reported dynamical
similarity of axial velocity profiles and turbulence intensities in a given cross section in
non-evaporating Diesel sprays. The sprays were generated at different ambient pressures.

Other self-similar spray flow

Here, we review studies on self-similar spray phenomena that did not fit into the previous
categories. Panchagnula and Sojka (1999) reported self-similar mean axial drop velocity
profiles in sprays produced by an effervescent atomizer. The self-similar velocity profile
was described by an equation similar to (2.20). Soltani et al. (2005) observed areas with
self-similar properties near the core region of sprays generated by coaxial liquid-liquid
swirl atomization. There, they showed self-similar mean drop velocities and Sauter mean
drop diameters. For this purpose they used the self-similar coordinate of the single phase
jet. In medical sprays, Amili et al. (2015) reported self-similar axial velocity profiles in
sprays generated by pressurized metered dose inhalers.

2.3.2 Modeling of equilibrium spray flow

In many of the studies on self-similar spray flow discussed in the previous section, the
drops and the gas flow were in dynamic equilibrium with no, or negligible, slip velocity.
This fact was used by some authors to model the spray flow as a single-phase jet with
variable fluid density. For example, based on the assumption of locally homogeneous flow
(LHF), assuming fast interphase transport rates in comparison to flow development as
a whole, Shearer et al. (1979) found self-similar velocity profiles, with scaling variables
similar to a single-phase jet, in evaporating sprays generated by twin-fluid atomization.
Based on LHF assumptions, similar results were obtained by others (Faeth 1983), also in
non-evaporating sprays (Solomon et al. 1985).
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Desantes et al. (2011) developed a semi-empirical model based on similarity assumptions
to describe the velocity and liquid concentration field of fully developed Diesel sprays.
Their key assumption is negligible slip between the liquid and the gas phases. In the
following, we will give an overview of their model. Note that several other publications
are associated with this work, which are not discussed separately (Desantes et al. 2006a,
2006b, 2007; Payri et al. 2008; Benajes et al. 2016).

Based on experimental observations, Desantes et al. (2011) assumed self-similar Gaus-
sian profiles for the axial velocity and the liquid fuel mass fraction

ū(r, z) = ū0(z) exp
[
−α̃

(
r

z tan (θu/2)

)2
]
, (2.26)

c̄(r, z) = c̄0(z) exp
[
−α̃Sct

(
r

z tan (θu/2)

)2
]
, (2.27)

where α̃ is the shape factor of the Gaussian distribution, θu the cone half angle of the
velocity field, and ū0(z) and c̄0(z) the axial velocity and the liquid fuel mass fraction at
the spray axis, respectively. The effective Schmidt number, Sct, includes molecular and
turbulent contributions. The local fluid density reads

ρ̄(r, z) = ρf
c̄(r, z)(1− ρf/ρg) + ρf/ρg

, (2.28)

where ρf and ρg denote fuel and air density, respectively. Conservation of the initial
liquid momentum flow rate demands

Ior = I(z) = 2π
∞∫

r=0

ρ̄(r, z)ū2(r, z)r dr =

= 2πρf ū2
0(z)

∞∫
r=0

exp
[
−2α̃

(
r

z tan (θu/2)

)2
]

c̄0(z)
(

1− ρf
ρg

)
exp

[
−α̃Sct

(
r

z tan (θu/2)

)2
]

+ ρf
ρg

r dr .

(2.29)

Evaluating the integral and simplifying the results, considering only values of α̃ relevant
for the application, (2.29) turns into (Desantes et al. 2007)

Ior = π

2α̃ρg tan2
(
θu
2

)
z2ū2

0(z)
∞∑
j=0

1
1 + jSct/2

[
c̄0(x)

(
ρf − ρg
ρf

)]j
. (2.30)

19



2 Fundamentals

This expression can be further simplified by the following relation between the axial
velocity and the liquid fuel mass fraction at the spray axis (Desantes et al. 2006a)

c̄0(z) = (1 + Sct)
2

ū0(z)
ūor

, (2.31)

yielding

Ior = π

2α̃ρg tan2
(
θu
2

)
z2ū2

0(z)
∞∑
j=0

1
1 + jSct/2

[
ū0(z)
ūor

(1 + Sct)
2

(
ρf − ρg
ρf

)]j
. (2.32)

Equation (2.32) relates the axial velocity decrease at the spray axis ū0(z) to the inlet
conditions (Ior, ūor), the fluid properties (ρf , ρg) and other properties of the flow field (α̃,
θu, Sct). With these parameters and ū0 known, using the relation (2.31), the velocity and
fuel concentration fields, (2.26) and (2.27), in the fully developed region of Diesel-type
sprays can be determined.
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Chapter 3

Experiments

The analysis of pressure-atomized spray flow is based on measurement data acquired by
means of an optical measurement technique. In this chapter, the atomizer used for spray
generation, the experimental setup and the governing parameters of the experiments
are introduced. Moreover, we discuss the optical measurement technique and the data
analysis associated with it.

3.1 Experimental setup

Our investigation of consumer-type sprays is based on measurements using phase-Doppler
anemometry (PDA). The experimental setup is schematically depicted in figure 3.1. The
atomizer is mounted on a two-axis traverse system allowing for axial and radial navigation
in the spray flow field. A pressurized tank supplies liquid at a constant volumetric flow
rate. The sprayed liquid is captured by a ventilated spray box to avoid recirculation of
drops to the measurement region.

A continuous Argon-ion laser (Coherent Innova 90-C3) serves as the light source for the
PDA system (Dantec Dynamics). The transmitting optics focus two pairs of laser beams
with wavelengths of 488 nm and 514.5 nm, respectively, in coinciding probe volumes.
Drops passing the probe volume scatter light, detected by the receiving optics. The
optical configuration of the PDA system is depicted in figure 3.2. The system is operated
in first-order refraction mode detecting scattered light at a scattering angle of ϕ = 50°.
A PDA processor obtains electrical signals for the axial and radial velocity components,
ul and vl, as well as the drop diameter d, for each drop from the optical signals received.
Table 3.1 lists the geometrical parameters and the measuring ranges of the PDA system
for all sprays investigated. The principles of phase-Doppler anemometry are discussed in
section 3.2. The parameters of the sprays studied in the present work are introduced in
section 3.3.

As indicated in figure 3.2, the sprays are assumed to be axially symmetric. Therefore,
in each cross section, we place the measurement points on a single radial axis. We
cover the half of this axis closer to the receiving optics (positive values of the radial
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Figure 3.1: Illustration of the experimental setup.

PDA parameters Spray 1 Spray 2 Spray 3

Scattering angle ϕ [°] 50 50 50
Beam half angle ϑ [°] 1.386 1.386 1.386
Phase factor P12 [°/µm] 2.231 2.373 2.367
Phase factor P13 [°/µm] 0.870 1.028 1.026
Measuring range d [µm] 298 251 251
Measuring range ul [m/s] -63.8 – 63.8
Measuring range vl [m/s] -20.2 – 20.2

Table 3.1: Geometrical parameters and measuring ranges of the PDA system.

coordinate r, see figure 3.2) at a high spatial resolution. To verify the assumption of
axisymmetry, we place less measurement points on the other half of the axis (negative
values of r). The properties of 100,000 drops are measured at each sampling point to
ensure high statistical reliability of the results, even for spectral spray properties in parts
of the probability density function where the sample numbers are low. By virtue of
the measurement technique, we defined the edge of the spray at the radial positions
where the local frequency of drop detection was 5 % of the maximum drop detection
rate in the current cross section, or less than 300 Hz, to ensure a feasible duration of
the measurements. Typical validation rates of the drop diameter between 60 % and
85 % were achieved. At measurement locations close to the orifice, with very high drop
concentration, validation rates of 50 % occurred. In these dense regions of the sprays,
the single-particle constraint of PDA is violated at a higher probability than in more
dilute regions. The validation rates of the drop velocity were, at every measurement
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Figure 3.2: PDA optics with a spray cross section.

location, always larger than the validation rates of the drop diameter. The validation
rates achieved are well in line with other studies in the literature, e.g. Jedelsky et al.
(2018), and what can be reached in spray measurements by PDA as used in the present
study.
To generate the sprays, we use a consumer-type single-phase pressure atomizer with

off-axis liquid supply. The nozzle diameter is approximately dor = 0.4 mm. Figure
3.3(a) shows a photograph of a meridional section of the atomizer, and figure 3.3(b)
depicts a schematic illustration of the liquid flow through the atomizer. The liquid is
ejected with an angular momentum due to the eccentric liquid feed. As a consequence,
the resulting sprays show larger spray angles than observed for plain-orifice atomizers.
Contrary to a classical pressure-swirl atomizer, a liquid swirl velocity inside the atomizer
is not imprinted (Lefebvre and McDonell 2017). Therefore, the azimuthal velocity
component of the liquid sheet emerging from the nozzle is much smaller than its axial
velocity component. Structures on the liquid sheet, visualized with a high-speed camera
(see figure 3.10), showed radial motion downstream. This endorses our assumption of
negligible azimuthal droplet velocity. In fact, previous studies in the literature have
shown that, even for pressure-swirl atomizers with significant azimuthal liquid motion
inside the atomizer, the swirling flow is quickly converted into radial motion within small
downstream distances from the atomizer (Schmidt et al. 1999; Vashahi and Lee 2018).
The azimuthal velocity component of the resulting drops turned out to be negligible
against their axial and radial velocity components (Dafsari et al. 2017; Jedelsky et al.
2018).
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(a) (b)

liquid

Figure 3.3: (a) Photograph of a meridional section of the atomizer and (b) the corresponding illustration
of the liquid path through the atomizer.

3.2 Phase-Doppler anemometry

Phase-Doppler anemometry (PDA) is a non-intrusive optical measurement technique to
measure the size and the velocity of spherical particles, especially of liquid droplets in spray
flow. In this section, a review of the fundamentals of the phase-Doppler measurement
technique is given. Furthermore, we introduce the procedure to obtain local, statistically
representative results of directly measured quantities, i.e. the drop diameter and velocity,
and indirectly measured quantities, such as the liquid mass and momentum fluxes as
well as the spatial droplet concentration. Then, we define equations to globalize the
local measurement data to quantities representative for entire cross-sectional areas of the
sprays.

3.2.1 Fundamentals

The phase-Doppler measurement technique is based on the detection of light scattered
from spherical particles. We introduce the principles by which the velocity and the size
of the particles are measured. The overview given below is by no means exhaustive. The
fundamentals of PDA and relevant aspects for the treatment of acquired measurement
data are discussed. The technical design of phase-Doppler systems is not considered.
Comprehensive reviews on the phase-Doppler technique can be found elsewhere, e.g.
Albrecht et al. (2003).

Measurement of the particle velocity

The measurement of the particle velocity with PDA relies on the measurement technique
called Laser-Doppler velocimetry (LDV). There are two concepts to explain the principle
of LDV. On the one hand, it can be explained by the Doppler effect, where light scatted
from a moving particle exhibits two shifts in its frequency as compared to the light
emitted from the original light source (Durst et al. 1987; Albrecht et al. 2003). On the
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Figure 3.4: (a) Light scattered by a particle passing through the control volume of the two intersecting
laser beams. (b) Doppler-shifted frequencies with f1 = f0 + ∆f1 (top) and f2 = f0 + ∆f2
(center). Superposition of the two signals yields the beat with the frequency fb (bottom). ~
denotes Planck’s constant. The figure is adapted from Feldmann and Mayinger (2001).

other hand, it can be described by the fringe model, which is based on the interference
patterns of two intersecting laser beams, producing bright and dark fringes (Rudd 1969;
Durst et al. 1987).
In general, there are many different types of LDV systems (Feldmann and Mayinger

2001). For illustration purposes, we consider the dual-beam differential technique only.
Two laser beams with the wavelength λ form a control volume by intersecting at the angle
2ϑ. Particles passing the control volume with a velocity up, as shown in figure 3.4(a) for
both laser beams individually, scatter light which is detected by a photo detector. The
scattered light is slightly shifted in frequency due to relative motion of the particle to
the direction of laser beams (Doppler effect). With only one laser beam in place, the
frequency shift is too small in front of the electric field frequencies to be resolved by a
photo detector. Since the two laser beams are not parallel, the frequency shift is also
slightly different for the light scattered from each laser beam. The superimposed Doppler
shifted components result in a beat with a frequency fb that can easily be detected.
This is illustrated in figure 3.4(b). Using the wavelength of the original laser light, the
intersection angle of the two laser beams and the beat frequency, the velocity component
of the particle perpendicular to the symmetry axis between the two laser beams, and
within the plane formed by the beams (see figure 3.4(a)), can be calculated by (Feldmann
and Mayinger 2001)

up = λfb
2 sinϑ . (3.1)
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Figure 3.5: The illustration of the fringe model is adapted from Durst et al. (1987).

With the addition of a second pair of laser beams of different wavelength in a rotated plane
in space, see figure 3.2, and a second photo detector, an additional velocity component in
a second direction can be measured. The intersection angle of the laser beams, defined
by the beam half angle, is equal for both pairs of laser beams in the present work and
listed in table 3.1.
The principles of LDV can alternatively be explained by the fringe model, which is

illustrated in figure 3.5. Two coherent laser beams with wavelength λ intersect at the
angle of 2ϑ. Within the created measurement volume, an interference pattern of bright
and dark fringes emerges. The bright fringes are illustrated by the black horizontal
rectangles in figure 3.5. The fringe spacing ∆x depends on the wavelength of the laser
light λ and the beam half angle ϑ and can be calculated by (Durst et al. 1987)

∆x = λ

2 sinϑ . (3.2)

The intensity of the light scattered by a particle traveling through the measurement
volume varies according to the intensity distribution in the fringe pattern. The frequency
of the detected signal depends on the velocity of the particle normal to the fringes, and
within the plane formed by the two laser beams, and the fringe spacing, resulting in the
same expression for the particle velocity as given in (3.1).

Measurement of the particle diameter

Compared to LDV, phase-Doppler anemometry includes the measurement of the particle
diameter in addition to the measurement of the particle velocity. The measurement
principle is based on the phase of the scattered light emitted from the particle passing
the measurement volume. With two detectors at different known locations, a phase shift
of the scattered light of a given particle can be measured. The phase shift corresponds
to the curvature of the particle’s surface, which in case of spherical particles yields the
particle size. Durst and Zaré (1975) were the first to show that this phase shift scales
linearly with the particle diameter.
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Figure 3.6: Illustration of the detector arrangement in PDA systems (adapted from Albrecht et al.
2003).

Figure 3.6 illustrates the basic arrangement and the detector locations of a PDA
system, operated in first-order refraction mode. The laser beams propagate within the
(x, z) plane and intersect at the focal point with the angle 2ϑ. The detection optics is
placed in the scattering plane (x, y) and rotated by the scattering angle ϕ with respect
to the z axis. The two detectors required to measure the phase shift of the scattered
light are elevated and lowered with respect to the scattering plane by the elevation angle
ξ. For first-order refraction, the detected phase shift ∆Φ relates to the particle diameter
dp as per (Albrecht et al. 2003)

∆Φ = −2πdp
λ

m sinϑ sin ξ[
2(1 + q)

(
1 +m2 −m

√
2(1 + q)

)]1/2 , (3.3)

where

q = cosϑ cos ξ cosϕ . (3.4)

The relative refractive index is denoted by m.
Since the particle diameter can be determined unambiguously only for a phase shift

between 0 and 2π, there is a tradeoff between accuracy and measurable diameter range.
For this reason, usually a third detector is added to the PDA system (Albrecht et al.
2003). In this way, the phase shift between the first and the third detector covers a
wide diameter range, but at low accuracy. With knowledge of the approximate particle
diameter, the 2π ambiguity of the phase shift between the first and the second detector
can be overcome, allowing for an accurate determination of the particle diameter.

Particle-size dependent detection area

The measurement volume in PDA is created by the intersection of two coherent laser
beams. At small beam half angles ϑ, the measurement volume is long and shaped like a
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Figure 3.7: Illustration of the PDA measurement volume adapted from Zhang and Ziada (2000).

cigar. From this cigar-shaped measurement volume, the receiving optics (see figure 3.2)
only detect scattered light from a well-defined portion due to a slit orifice in front of the
aperture of the receiving optics. This is illustrated in figure 3.7, where the slit width is
denoted by W . The resulting measurement volume is assumed to be of cylindrical shape
with oblique ellipsoidal faces. The slit width of the PDA system used in the present
study is W = 100 µm.

The length of the measurement volume is determined by the image slit width W and
the scattering angle ϕ. Despite reports on a particle-size dependent slit effect (Albrecht
et al. 2003), the length of the measurement volume is assumed to be uniform for all
drop sizes in the present study. The effective cross section of the measurement volume,
represented by its diameter dv, however, varies with the size of the particle. The reason
for this phenomenon can be explained by the radial Gaussian distribution of the light
intensity of the laser beams. As a consequence, the probe volume also exhibits a radial
intensity distribution. Particles passing the probe volume close to its axis (represented
by the x axis in figure 3.7) scatter more light with more intensity than particles passing
it at a larger distance. In addition, the light scattered by large particles is more intense
compared to smaller particles because of their larger surface area. Since particles are only
detected when the optical power of the scattered light exceeds the detection threshold of
the photo detectors, the radial distance from the probe volume axis to the location where
this threshold is reached determines the particle-size dependent probe volume diameter.
This effect results in an underrepresentation of smaller particles in the local ensemble
which has to be accounted for. The correction of the local measurement results due to
the particle-size dependent detection area is often referred to as the Saffman correction
(Saffman 1987). Its application in the present study is discussed below.

To determine the measures required to correct for the particle-size dependent detection
area, the effective probe-volume cross section for each particle size class in the local
ensemble has to be determined. The length of the trajectory through the probe volume
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of a given particle, with the diameter dp and the velocity wp, can be calculated by

`p = wpτp , (3.5)

where τp denotes the transit time of the particle through the probe volume measured
by the PDA system. Drops with the longest trajectories are assumed to cross the probe
volume very close to the axis. Therefore, the lengths of their trajectories represent the
probe volume diameter of particles with the same size. At a given particle size, the probe
volume diameter can be determined by the longest trajectory of particles with similar
size in the local ensemble

dv(dp) = max (`p(dp)) . (3.6)

In practice, we do not use the longest trajectory, but the mean of the longest 5 % of all
trajectories at the considered particle size. Note that the obtained values of dv(dp) may
be inaccurate for particle sizes, where the number of particles in the local ensemble is
low. This is usually the case for large particles. This fact is taken into account as follows.
It has been shown, that the diameter of the local probe volume cross section follows in
general the trend given by (Albrecht et al. 2003; Wimmer 2012)

dv(dp) = B1
√
B2d2

p , (3.7)

where the two independent parameters B1 and B2 can be determined by best fit. For
the fitting process, only particles sizes with a sufficiently large number of particles are
considered. Using (3.6) and (3.7), the effective particle-size dependent probe volume
cross section follows from geometrical considerations, see figure 3.7, by (Zhang and Ziada
2000)

Ap(dp) = dv(dp)W
sinϕ + d2

v(dp)π
4

|v̄p(dp)|
w̄p(dp) tanϕ , (3.8)

where v̄p(dp) is the mean velocity component in y direction of particles with diameter dp
and w̄p(dp) denotes the mean total particle velocity of particles with diameter dp. The
Saffman correction can now be applied to each particle size in the local ensemble by

n̂(dp) = n(dp)
max (Ap)
Ap(dp)

, (3.9)

where n(dp) is the number of particles with diameter dp detected, and n̂(dp) is the
Saffman-corrected number of particles with that size.
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For the calculation of liquid mass and momentum fluxes from PDA measurements, the
particle-size dependent probe volume cross sections in the radial and axial directions are
required. They can be calculated by (Dantec Dynamics 2002)

Ar(dp) = dv(dp)W
sinϕ + d2

v(dp)π
4 tanϕ and (3.10)

Az(dp) = dv(dp)W
sinϕ , (3.11)

respectively. In the present PDA system, the radial direction (see figure 3.2) corresponds
to the y axis in figure 3.7. To calculate the area of the probe-volume cross section
corresponding to arbitrary particle trajectory inclination angles γp (see (3.14) below), we
use the simple relation proposed by Dantec Dynamics (2002)

A(dp, γp) =
(

1− 2γp
π

)
Az(dp) + 2γp

π
Ar(dp) . (3.12)

3.2.2 Local spray characteristics

PDA measurements provide local information on the size and dynamics of individual
drops passing the measurement volume. A PDA system operated with two pairs of laser
beams of different wavelengths, as used in the present work, see figure 3.2, measures the
drop velocity components in the axial and radial directions, ul and vl, as well as the
drop diameter d. Assuming axial symmetry of the spray flow, with negligible azimuthal
velocity component of individual droplets, the total drop velocity

wl =
(
u2
l + v2

l

)1/2
(3.13)

and the trajectory inclination angle of the drop

tan γ = vl
ul

(3.14)

can be calculated. In addition, PDA measurements provide the transit time τl of each
drop passing the measurement volume.
Figure 3.8 shows the measured properties of 100,000 drops at a single measurement

position, typical for the sprays investigated in the present study. The diagram represents
a so-called scatter plot, where each data point represents one drop with velocity wl
and diameter d. For statistical analysis, local measurement results are represented as
number-based histograms showing the number of droplets exhibiting a certain property.
For this purpose, the measurement results are classified into classes, with the desired
quantity associated. Table 3.2 lists the different classes utilized for the computation of
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Figure 3.8: Scatter plot of a typical drop diameter-velocity correlation.

Class Index Range Width ∆ Mean Number

d d 0 to 300 µm 5 µm dd D = 60
ul u −10 m/s to 50 m/s 1 m/s ul,u U = 60
vl v −20 m/s to 20 m/s 0.5 m/s vl,v V = 80
wl w −10 m/s to 50 m/s 1 m/s wl,w W = 60
γ γ −π/2 rad to π/2 rad π/60 rad γγ Γ = 60

Table 3.2: Size classes for statistical evaluation of the measurement data.

spray characteristics in the present study together with their ranges and widths. The
number of drops in all size classes must yield the total number N of drops measured at
the present location. For example,

D∑
d=1

nd = N , (3.15)

where nd is the number of drops in size class dd. The droplets can also be classified with
respect to more than one quantity. For example, nuv represents the number of drops in
the axial velocity class ul,u with the radial velocity vl,v. Again, summation over both
classes must yield the total number of drops detected

U∑
u=1

V∑
v=1

nuv = N . (3.16)

Discretizing the measurement data of figure 3.8 into classes of the drop diameter dd,
counting the number of drops with a diameter between dd −∆d/2 and dd + ∆d/2, yields
the number of drops nd in each size class dd, as shown by the number-based histogram
in figure 3.9(a). To obtain a representation which is comparable between different
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measurements, the ordinate values in the number-based histogram are normalized to
express the data in the form of a probability density function (PDF). For this purpose,
the number of drops in each size class is divided by the total number of drops in the
local ensemble and the width of the size class, such that the integral of the PDF equals
unity. The number-based PDF for the drop diameter pdf(d) is calculated by

pdf(d) =
n̂d

∆d
D∑
d=1

n̂d

. (3.17)

and can be seen in figure 3.9(b). n̂d denotes the Saffman-corrected number of drops in
drop size class dd (see section 3.2.1). Similarly, the probability density functions of the
local axial and radial velocity components read

pdf(ul) =
n̂u

∆ul
U∑
u=1

n̂u

and pdf(vl) =
n̂v

∆vl
V∑
v=1

n̂v

. (3.18)

For an infinitely large sample size, the relative frequencies in a histogram converge to a
PDF as the size class width goes to zero.

Other representative local spray characteristics of interest are mean values of the drop
velocity and the drop diameter. The most commonly reported mean drop diameters
are the number-mean drop diameter D10 and the Sauter mean drop diameter D32. The
latter is the ratio of the total droplet volume to the total droplet surface area in the
ensemble. Their definitions are given by

D10 =

D∑
d=1

n̂ddd

D∑
d=1

n̂d

and D32 =

D∑
d=1

n̂dd
3
d

D∑
d=1

n̂dd
2
d

. (3.19)

To determine the scatter in a set of given values, the standard deviation (STD) may
be used. It represents the root of the squared deviation of a given variable from the
number-mean. The standard deviation of the drop diameter std(d) from its mean value
D10 is given by

std(d) =


D∑
d=1

n̂d(dd −D10)2

D∑
d=1

n̂d − 1


1/2

. (3.20)
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Figure 3.9: (a) Typical drop-size histogram and (b) the corresponding probability density function. The
data corresponds to the measurements shown in figure 3.8.

Similar to the number-mean drop diameter D10, see (3.19), the number mean axial and
radial drop velocity components ūl and v̄l are obtained by

ūl =

U∑
u=1

n̂uul,u

U∑
u=1

n̂u

and v̄l =

V∑
v=1

n̂vvl,v

V∑
v=1

n̂v

, (3.21)

respectively. The standard deviations of these two velocity components read

std(ul) =


U∑
u=1

n̂u(ul,u − ūl)2

U∑
u=1

n̂u − 1


1/2

and (3.22)

std(vl) =


V∑
v=1

n̂v(vl,v − v̄l)2

V∑
v=1

n̂v − 1


1/2

. (3.23)

From the PDA measurement data, local fluxes, such as liquid mass and momentum
fluxes, and the local drop concentration can be calculated. The following equations (3.24)
to (3.32) are derived from the works of Dantec Dynamics (2002), Albrecht et al. (2003)
and Wimmer (2012). We define the local drop number flux in drop size class dd, with
the trajectory γγ , as

ψdγ =
ndγ

∆t θdAdγ
. (3.24)
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Here, ndγ is the number of drops in drop size class dd with the trajectory γγ , ∆t denotes
the local measuring time, θd is the local validation rate of the drop diameter and Adγ
represents the Saffman-corrected effective probe-volume cross section for the drop size
class dd with the trajectory γγ . The local droplet number fluxes in the axial and radial
directions are calculated by

ψz = 1
∆tθd

D∑
d=1

Γ∑
γ=1

ndγ cos γγ
Az,d

and ψr = 1
∆tθd

D∑
d=1

Γ∑
γ=1

ndγ sin γγ
Ar,d

, (3.25)

where Az,d and Ar,d are the Saffman-corrected effective probe-volume cross sections of
the drop size class dd in the axial and radial directions, respectively. Introducing the
droplet mass into (3.25) yields the local axial and radial liquid mass fluxes

φz = πρl
6∆tθd

D∑
d=1

Γ∑
γ=1

d3
d ndγ cos γγ
Az,d

and (3.26)

φr = πρl
6∆tθd

D∑
d=1

Γ∑
γ=1

d3
d ndγ sin γγ
Ar,d

. (3.27)

The local liquid momentum fluxes in the axial and radial directions are calculated by

Φz = πρl
6∆tθd

D∑
d=1

U∑
u=1

d3
d nduul,u

Az,d
and (3.28)

Φr = πρl
6∆tθd

D∑
d=1

V∑
v=1

d3
d ndvvl,v

Ar,d
. (3.29)

Here, ndu and ndv represent the numbers of drops in drop size class dd with the axial
and radial drop velocity components ul,u and vl,v, respectively.

Local drop-number and liquid-mass concentrations can be calculated from PDA data
as well. The local drop-number concentration in drop size class dd is obtained by

cn,d = 1
∆tθd

W∑
w=1

Γ∑
γ=1

ndwγ

wl,wAdwγ
, (3.30)

where ndwγ is the number of drops in drop size class dd with the velocity wl,w and
the trajectory γγ . Adwγ represents the corresponding Saffman-corrected effective probe-
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volume cross section. Summation of the drop concentrations in all drop size classes yields
the total local drop-number concentration

cn =
D∑
d=1

cn,d . (3.31)

The local concentration of liquid mass is obtained by

cl = πρl
6

D∑
d=1

d3
dcn,d . (3.32)

3.2.3 Global spray characteristics

Spray characteristics representative for an entire spray cross section are called global
spray characteristics. To calculate global spray characteristics, the local spray parameters
introduced in section 3.2.2 are taken into account by multiplication with two weighting
factors. These weighting factors are the size of the local annular cross-sectional area
Am(ri) of the spray and the local drop number flux ψd(ri) in drop size class dd. With
uniform radial spacing ∆r between radial measurement locations ri, the size of the
annular cross-sectional area Am(ri) can be calculated by

Am(ri) =

∆r2π/4 if ri = 0
∆rπri otherwise

. (3.33)

The local drop number flux in drop size class dd can be obtained from (3.24) as

ψd =
Γ∑
γ=1

ψdγ . (3.34)

To ensure reliable global results, a sufficient radial resolution of the measurement points
ri is required. Moreover, if possible, measurement points must cover the radial axis up
to the edge of the spray in order to minimize the liquid mass systematically overlooked
at large radial distance from the spray axis.
Below, the equations to calculate global spray characteristics related to the drop

diameter are introduced. These are the global number-based PDF of the drop diameter
pdf(d), the global number-mean drop diameter D10 and the global Sauter mean drop
diameter D32. The following equations (3.35) to (3.37) are derived from Wimmer (2012).
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The global number-based probability density function of the drop diameter reads

pdf(d) =

I∑
i=1

ψd(ri)Am(ri)

∆d
I∑
i=1

D∑
d=1

ψd(ri)Am(ri)
, (3.35)

where I is the number of radial measurement locations. The global number-mean and
Sauter mean drop diameters are calculated by

D10 =

I∑
i=1

D∑
d=1

ddψd(ri)Am(ri)

I∑
i=1

D∑
d=1

ψd(ri)Am(ri)
and D32 =

I∑
i=1

D∑
d=1

d3
dψd(ri)Am(ri)

I∑
i=1

D∑
d=1

d2
dψd(ri)Am(ri)

, (3.36)

respectively, where the spray cross-sectional area representative for each radial measure-
ment location Am(ri) is defined by (3.33). The global standard deviation of the drop
diameter reads as follows

std(d) =


I∑
i=1

D∑
d=1

ψd(ri)Am(ri)
(
dd −D10

)2

I∑
i=1

D∑
d=1

ψd(ri)A(ri)− 1


1/2

. (3.37)

Global means of the drop velocities ul and vl can be calculated similar as in equations
(3.35) to (3.37) shown above.

3.3 Performed experiments

The process of single-phase liquid atomization in a stagnant gaseous environment is
governed by five parameters. These are the characteristic liquid velocity through the
atomizer ūor, a characteristic length scale of the atomizer dor and the relevant liquid
fluid properties, namely the liquid density ρl, the liquid dynamic viscosity µl and the
liquid surface tension against the ambient gaseous medium σ. The characteristic velocity
ūor follows from the liquid mass flow rate through the atomizer ṁl,exp, the liquid density
and the characteristic cross-sectional area d 2

orπ/4 of the nozzle. These five parameters,
with three basic dimensions involved, are represented by two nondimensional groups

Wel = ρldorū
2
or

σ
and Ohl = µl

(ρlσdor)1/2 . (3.38)
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Spray 1 Spray 2 Spray 3

Liquid mass flow rate ṁl,exp [g/s] 2.00 2.92 2.45
Density ρl [kg/m3] 998.2 998.2 981.7
Dynamic viscosity µl [mPa s] 1.00 1.00 1.40
Surface tension against air σ [mN/m] 72.8 72.8 51.3

Weber number Wel 1395 2974 2921
Ohnesorge number Ohl 0.0059 0.0059 0.0099

Location of measurement planes z/dor 38 – 375 38 – 450 38 – 625

Table 3.3: Parameters of the performed experiments. The values of the fluid properties are taken from
Khattab et al. (2012) at a temperature of 20 °C.

These two nondimensional numbers, called the Weber and the Ohnesorge numbers,
determine the atomization process and its result. Their values are used for setting the
properties of the spraying process in the experiments. The state of the ambient air is not
varied and therefore not represented.

In the present work, we investigate three sprays with different pairs of Weber and
Ohnesorge numbers. Henceforth, they will be referred to as spray 1, spray 2 and
spray 3. To obtain different pairs of characteristic nondimensional numbers (3.38), we
vary the liquid mass flow rate through the atomizer and use two different liquids with
distinct fluid properties. Table 3.3 lists the experimental parameters, fluid properties
and nondimensional numbers of the three sprays investigated. The liquid mass flow rates
are of the order of magnitude as observed in commercial consumer sprays.
In sprays 1 and 2, demineralized water is used as the test liquid, resulting in equal

Ohnesorge numbers of both sprays. Spray 2 has a larger Weber number since it is
operated at an approximately 50 % higher liquid mass flow rate. The test liquid of spray
3 is an aqueous ethanol solution with an ethanol content of 10 mass percent. Accordingly,
the Ohnesorge number of spray 3 exceeds the ones of the other two sprays. The liquid
mass flow rate of spray 3 is chosen such that its Weber number is approximately equal to
the Weber number of spray 2. Depending on the spray, measurements were carried out
in 10 to 13 cross sections downstream from the nozzle exit (see table 3.3). These cross
sections are located in regions of the sprays dominated by large slip velocity between
the liquid and the gas phases. All experiments were carried out in atmospheric air at
temperatures of 20± 1 °C.
Figure 3.10 depicts instantaneous photographs of the three sprays in a region close

to the orifice to illustrate the atomization process. In all three cases, an annular liquid
sheet emerges from the orifice. In spray 1, the sheet does not open as wide as in the
other two sprays. Due to their motion relative to the ambient gas phase, the sheets are
subject to Kelvin-Helmholtz instabilities (Schmidt et al. 1999). The nonlinear growth of
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(a) (b) (c)

Figure 3.10: Instantaneous photographs of the liquid sheet emerging from the orifice in (a) spray 1,
(b) spray 2 and (c) spray 3. The images were acquired with a high-speed camera at
10,000 frames per second, with an exposure time of 307,000−1s. The white vertical bar
corresponds to a length of 5 mm.

these instabilities causes local thinning of the sheets and their subsequent disintegration
into ligaments and droplets. The ligaments themselves are Rayleigh-Taylor and Plateau-
Rayleigh unstable. The droplets formed are much faster than the stagnant ambient gas
phase and induce the motion of the gas phase. The investigation of this region with large
slip velocities between the droplets and the gas is the subject of the present study.
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Chapter 4

Measurement results

In this chapter, we present the results of the measurements defined in table 3.3. Section
4.1 discusses the results of the liquid-phase flow field, as measured by phase-Doppler
anemometry. The procedure to determine the velocity components of the gas-phase flow
field from PDA measurement data, as well as the corresponding results, are introduced
in section 4.2.

4.1 Flow field of the liquid phase

The measured characteristics of the droplets are presented and discussed. First, we
introduce radial profiles of local variables, computed according to the equations defined
in section 3.2.2. Then, we discuss global spray characteristics, as derived in section 3.2.3.

4.1.1 Local spray characteristics

Figures 4.1 to 4.6 depict the local results of the liquid-phase flow field. In these figures,
the results are shown from top to bottom for the sprays 1, 2 and 3. Figures 4.1(a,c,e)
depict the local drop detection rate and (b,d,f ) the drop diameter validation rate θd, as
reported by the PDA system. For all three sprays, the frequency of drop detection has
a maximum at the spray axis. The profiles decrease radially outwards and along the
spray axis with increasing distance from the orifice. The radial positions of the edges
of the profiles indicate a stronger radial expansion in sprays 2 and 3 as compared to
spray 1. The validation rate of the drop diameter typically ranges between 60 % and
85 %, see figures 4.1(b,d,f ). At measurement positions very close to the orifice, validation
rates approximately as low as 50 % occurred. In this dense region of the sprays, the
single-particle constraint and the sphericity constraint of the PDA system are violated at
higher probability than in more dilute regions of the sprays farther downstream. The
validation rate of the drop diameter θd is an important parameter in the calculation of
the local drop number flux (3.24).
Figures 4.2(a,c,e) show the profiles of the number-mean drop diameter D10. In all

three sprays, the number-mean drop diameter is smallest at the spray axis and increases
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Figure 4.1: (a,c,e) Frequency of drop detection and (b,d,f ) validation rate of the drop diameter θd,
reported by the PDA system. From top to bottom, the results of sprays 1, 2 and 3 are
shown.

40



4.1 Flow field of the liquid phase

0
10
20
30
40
50
60
70
80
90

−20 −10 0 10 20 30

(a)

D
10

[µ
m

]

radial coordinate r (mm)

40

60

80

100

120

140

−20 −10 0 10 20 30

(b)

D
32

[µ
m

]
radial coordinate r (mm)

38

125

250

375

500

625

z
/
d
o
r

0
10
20
30
40
50
60
70
80
90

−20 −10 0 10 20 30

(c)

D
10

[µ
m

]

radial coordinate r (mm)

40

60

80

100

120

140

−20 −10 0 10 20 30

(d)

D
32

[µ
m

]

radial coordinate r (mm)

38

125

250

375

500

625

z
/
d
o
r

0
10
20
30
40
50
60
70
80
90

−20 −10 0 10 20 30

(e)

D
10

[µ
m

]

radial coordinate r (mm)

40

60

80

100

120

140

−20 −10 0 10 20 30

(f )

D
32

[µ
m

]

radial coordinate r (mm)

38

125

250

375

500

625
z
/
d
o
r

Figure 4.2: Experimentally obtained local mean drop diameters. (a,c,e) Number-mean drop diameter
D10 and (b,d,f ) Sauter mean drop diameter D32. From top to bottom, the results of sprays
1, 2 and 3 are shown.

41



4 Measurement results

0

5

10

15

20

−20 −10 0 10 20 30

(a)
m
ea
n
ax

ia
ld

ro
p
ve
lo
ci
ty
ū
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ū
l
[m
/
s]

radial coordinate r (mm)

−8

−6

−4

−2

0

2

4

6

8

−20 −10 0 10 20 30

(f )

m
ea
n
ra
di
al

dr
op

ve
lo
ci
ty
v̄ l

[m
/
s]

radial coordinate r (mm)

38

125

250

375

500

625

z
/
d
o
r

Figure 4.3: Experimentally obtained local mean drop velocities. (a,c,e) Number-mean axial drop
velocity ūl and (b,d,f ) number-mean radial drop velocity v̄l. From top to bottom, the results
of sprays 1, 2 and 3 are shown.
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Figure 4.4: Experimentally obtained liquid mass fluxes. (a,c,e) Axial liquid mass flux φz and (b,d,f )
radial liquid mass flux φr. From top to bottom, the results of sprays 1, 2 and 3 are shown.
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Figure 4.5: Experimentally obtained liquid momentum fluxes. (a,c,e) Axial liquid momentum flux Φz
and (b,d,f ) radial liquid momentum flux Φr. From top to bottom, the results of sprays 1, 2
and 3 are shown.
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Figure 4.6: Experimentally obtained concentration profiles. (a,c,e) Local drop-number concentration
cn and (b,d,f ) local concentration of liquid mass cl. From top to bottom, the results of
sprays 1, 2 and 3 are shown.
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radially outwards. This shape of the profiles can be explained by the interaction of the
liquid drops with the gas phase. The smallest drops preferentially stay in the core region
near the spray axis, while larger drops, with more inertia, rather stay on their trajectories
away from the spray axis. With increasing axial distance from the orifice, the mean drop
diameter increases along the symmetry axis. This is due to the more pronounced decrease
of the number flux of small droplets, compared to larger droplets. Drop coalescence is of
minor importance in sprays like the present ones and does not significantly contribute
to the increase of the number-mean drop diameter along the spray axis. This point
will be discussed in more detail in section 4.1.2. Therefore, the evolution of the mean
drop diameter in space is mainly governed by the convective transport of droplets in the
two-phase flow field.
The profiles of the Sauter mean drop diameter D32 are depicted in figures 4.2(b,d,f ).

In sprays 2 and 3, they exhibit similar trends as the profiles of the number-mean drop
diameter D10 . For spray 1, however, the shape of the profiles is quite ragged and does
not show an obvious trend. D32 is approximately of constant value in each cross section.
This behavior can be explained by different stages of spray atomization (see figure 2.2)
associated with different liquid mass flow rates (see table 3.3). Due to the low liquid
mass flow rate in spray 1, the liquid sheet emerging from the orifice is not fully open (see
figure 3.10(a)), resulting in coarser atomization as compared to the two other sprays.
In the profiles of the number-mean axial drop velocity, shown in figures 4.3(a,c,e),

significant differences between the sprays can be observed. Bell-shaped profiles, with a
maximum at the spray axis, can be seen for spray 1. In contrast, the profile closest to
the nozzle exit in spray 2 (z/dor = 38), exhibits a local minimum at the spray axis and
an additional off-axis maximum. This difference can be explained by the geometry of
the atomizer. Due to the eccentric liquid supply, see figure 3.3(b), angular momentum is
imposed on the liquid flow through the atomizer, leading to the formation of a hollow
cone-shaped liquid sheet (see figure 3.10(b)). In spray 2, the off-axis peak in the velocity
profile indicates the location of this sheet. At the lower liquid mass flow rate of spray 1,
the angular momentum is not sufficient to fully open the conical sheet, leaving it rather
in what is called the "tulip stage" (Lefebvre and McDonell 2017). The "tulip stage" is
associated with coarser atomization, where the highest mean drop velocities occur at
the spray axis. This explanation is endorsed by the profiles of the axial liquid mass and
momentum fluxes, shown in figures 4.4(a,c) and 4.5(a,c), respectively. In spray 1, liquid
mass and momentum accumulate at the spray axis, whereas the profiles of spray 2 exhibit
an off-axis peak.
With increasing axial distance from the orifice, the shapes of the velocity profiles of

all three sprays evolve into one with two peaks. One is located at the symmetry axis
and the other next to the axis. The former is mainly determined by the motion of
small droplets, yielding the maximum observed at the spray axis. The off-axis peak is
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induced by the inertia-driven radial motion of large droplets, which stay on their initial
trajectories radially outwards. In spray 3, the number-mean axial drop velocity profile
closest to the orifice is bell-shaped, similar as in spray 1, but wider, extending over a
larger cross-sectional area. The profiles of the axial liquid mass and momentum fluxes in
spray 3 (see figures 4.4(e) and 4.5(e)), however, also exhibit an off-axis peak, suggesting
the formation of a conical liquid sheet. This indicates that the velocity profile closest to
the orifice in spray 3 represents an intermediate state, where both peaks, on- and off-axis,
are merged into a single maximum. In spray 2, we expect an axial velocity profile of
similar shape somewhere in the region between the two velocity profiles closest to the
nozzle exit, i.e. 38 < z/dor < 63 (see figure 4.3(c)).
Figures 4.3(b,d,f ) show the profiles of the number-mean radial drop velocity in the

three sprays. Due to axisymmetry, the mean radial drop velocity is zero at the spray
axis in all cross sections. The absolute value of the mean radial drop velocity increases
radially outwards, and the profiles are antisymmetric with respect to the spray axis. The
highest mean radial velocities are observed near the edge of the spray. Inertia-driven
large drops with strong radial momentum are observed at a higher probability in this
region, explaining this trend. With increasing axial distance from the atomizer, the mean
radial drop velocity decreases.
The axial liquid mass flux in the sprays is depicted in figures 4.4(a,c,e). The profiles

reflect the different regimes of atomization in the three sprays. In sprays 2 and 3, the
profiles exhibit an off-axis peak in all cross sections, as a consequence of the fully open
liquid sheet. The peaks indicate the propagation of droplets emerging from the breakup
of the liquid sheet. The peak shifts radially outwards with increasing axial distance
from the orifice, corresponding to the inertia-dominated motion of large droplets, which
contain the major part of the liquid mass. As a result of the tulip-stage atomization
process, the profiles in spray 1 (see figure 4.4(a)) are bell-shaped, with a maximum at the
spray axis. The profiles of the radial liquid mass flux, as shown in figures 4.4(b,d,f ), are
antisymmetric with respect to the spray axis in all three sprays. The radial liquid mass
flux grows with increasing radial distance from the symmetry axis, until a maximum is
reached. Farther radially outwards it decreases to zero. The radial transport of liquid
mass is responsible for the widening of the sprays with increasing axial distance from the
atomizer.
The profiles of the axial and radial liquid momentum fluxes, shown in figure 4.5,

resemble the profiles of the corresponding liquid mass fluxes in figure 4.4. The profiles of
both, liquid mass and momentum fluxes, are of similar shape. In each spray, the mass
and momentum fluxes in axial direction are at least one order of magnitude larger than
the corresponding fluxes in the radial direction. Note that the reported magnitude of the
mass and momentum fluxes has to be interpreted with caution. As discussed in section
3.2.1, flux terms calculated from PDA measurements are prone to errors, especially due

47



4 Measurement results

to uncertainties in the calculation of the drop-size and trajectory-dependent effective
probe-volume cross section. An estimate of this error in the present measurements is
given in section 4.1.2.
Figures 4.6(a,c,e) depict the local drop-number concentration. In all three sprays,

the profiles are bell-shaped with a peak at the spray axis. Small drops, with diameters
around d ≈ 15 µm, exhibit high frequencies in the drop size spectrum and are preferably
located in the core region of the sprays, near the symmetry axis. Large drops occur in
lower numbers, and their contribution to the drop-number concentration is therefore of
less importance. However, the opposite is true for the local concentration of liquid mass,
see figures 4.6(b,d,f ). The profiles of cl in sprays 2 and 3 exhibit trends different from
the profiles of the drop-number concentration cn. This is due to the higher contribution
of the large droplets to the total liquid mass (cl ∝ d3). The profiles exhibit an off-axis
peak, similar to the axial mass and momentum fluxes. In spray 1, most of the liquid
mass is concentrated near the spray axis.

4.1.2 Global spray characteristics

Global spray characteristics are representative for a cross section of a spray. Their
calculation is discussed in section 3.2.3. We introduce the results for the global drop size
distributions and the corresponding mean drop diameters in the three sprays. Then, the
liquid mass flow rates are calculated from the PDA measurement data and compared to
the values set in the experiments.

Drop size spectra

Figure 4.7 depicts the global number-based probability density functions of the drop
diameter in the sprays investigated. For all three sprays, the PDFs exhibit a peak at
a droplet size of d ≈ 15 µm. The PDF of spray 1 exhibits higher frequencies at larger
drop diameters as compared to sprays 2 and 3. For spray 1, the PDF approaches zero at
d & 200 µm, for spray 2 at d ≈ 150 µm and for spray 3 at d . 150 µm. This is in agreement
with the profiles of the local number-mean drop diameters shown in figures 4.2(a,c,e),
which indicate coarse atomization in spray 1 and fine atomization in spray 3. The profiles
of the probability density functions of the drop diameter do not significantly change
with increasing distance from the orifice, suggesting that drop coalescence, secondary
atomization and drop evaporation play a minor role in these sprays. A similar trend
can be observed in the results for the global mean drop diameters. Figure 4.8 shows
(a) the global number-mean drop diameter D10, and (b) the global Sauter mean drop
diameter D32, as a function of the axial distance of the corresponding measurement
plane from the orifice. Both, D10 and D32, are largest in spray 1 and smallest in spray
3, with the mean drop diameters of spray 2 exhibiting values in between. The global
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Figure 4.7: Global drop size spectra of (a) spray 1, (b) spray 2 and (c) spray 3.

number-mean drop diameter D10 is approximately constant in each spray, independent
of the location of the measurement cross section. Deviations close to the orifice can be
attributed to the low validation rate of the PDA in this region, see figures 4.1(b,d,f ).
Far downstream, deviations occur due to the lower spatial resolution of measurement
points and the increasing liquid mass near the spray edge not covered by measurement
points. The constant values of D10 indicate that drop coalescence plays a minor role, as
expected in dilute sprays such as investigated in the present study. The global Sauter
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Figure 4.8: (a) Global number-mean and (b) global Sauter mean drop diameters.

mean drop diameters exhibit a similar axial evolution with approximately constant values.
For sprays 2 and 3, D32 decreases slightly with increasing axial distance from the orifice.
To conclude, in the sprays investigated, on the one hand, the atomization quality

increases with the momentum flow rate through the orifice, i.e. with increasing Weber
number (see table 3.3). On the other hand, Spray 3 exhibits the finest atomization
because of the low surface tension of the liquid used, resulting in a larger Ohnesorge
number than in the two other sprays. Changes in drop size due to drop coalescence and
drop evaporation are of minor importance in the present sprays, see figures 4.7 and 4.8.
Thus, the local profiles of the mean drop size (see figure 4.2) are mainly determined by
the convective propagation of the drops in the two-phase liquid-gas flow downstream.

Liquid mass and momentum flow rates

The results obtained from the PDA measurements for the local axial liquid mass and
momentum fluxes (see figures 4.4 and 4.5) can be integrated over the spray cross section to
calculate the global mass and momentum flow rates, ṁl(z) and Il(z). For this purpose, we
sum the local axial mass and momentum fluxes, (3.26) and (3.28), respectively, weighted
with the representative local annular cross-sectional area (3.33), yielding

ṁl(z) =
I∑
i=1

φz(ri, z)Am(ri) and (4.1)

Il(z) =
I∑
i=1

Φz(ri, z)Am(ri) . (4.2)
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ṁ
l
[N

]
axial coordinate z [mm]

spray 1
spray 2
spray 3

Figure 4.9: (a) Axial evolution of the liquid mass flow rate (4.1) calculated from PDA measurement
data and scaled with the experimentally measured values of ṁl,exp (see table 3.3). (b)
Liquid momentum flow rate (4.2) obtained from PDA measurement data versus z. The
values of Il are scaled to compensate for the overestimation of the liquid mass flow rate by
the PDA.

Figure 4.9(a) shows the axial evolution of the liquid mass flow rate ṁl, as defined by (4.1),
normalized with the experimentally measured liquid mass flow rate ṁl,exp. The value of
ṁl/ṁl,exp is expected to be equal to unity and to be independent of the z coordinate. The
values of ṁl,exp are obtained by collecting the liquid of the sprays during a certain period
of time, 100 s in the present case. It can be observed that, depending on the spray and
the axial distance from the orifice, the liquid mass flow rate is overestimated by the PDA
up to 600 %. This is due to inaccuracies in the computation of mass fluxes from PDA
data. Especially the determination of the drop-size dependent effective probe-volume
cross section is prone to uncertainties (Albrecht et al. 2003; Sipperley et al. 2018). The
data of spray 1 exhibits the largest overestimation of the liquid mass flow rate, and the
data of spray 3 the lowest. This is consistent with the expectation of a larger error in
coarse sprays than in fine sprays since ṁl ∝ d3. Overestimates of flux terms calculated
from PDA measurements in this order of magnitude are well reported in the literature
(Tropea 2011; Bade and Schick 2011). With increasing axial distance from the orifice, the
axial evolution of the liquid mass flow rate reaches first a plateau, and then it decreases
slightly farther downstream in all three sprays. Close to the orifice, the overestimation is
not as pronounced as farther downstream. This can be explained by the lower validation
rates of the drop diameter in this region (see figure 4.1(b,d,f )), where large deformed
drops are possibly not validated at a higher probability. An additional source of error
is introduced by the fact that the measurement locations do no cover the entire spray
cross section up to the edge of the spray (see section 3.1). Thus, far downstream, liquid
mass is systematically overlooked. This error increases with the axial distance from the
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orifice since the gap between the edge of the measurement positions and the spray edge
increases. However, it partly compensates the overestimation of the mass flux by the
PDA measurement data, and therefore contributes to the decrease of ṁl with increasing
z, as shown in figure 4.9(a).
Next, we discuss the evolution of the liquid momentum flow rate Il, calculated from

PDA measurement data by (4.2). The obtained values are prone to the same errors as
the results of the liquid mass flow rate. Therefore, we scale Il at each axial position with
the error reported for ṁl (see figure 4.9(a)) to include the correct axial trend of the liquid
mass flow rate into liquid momentum flow rate. Figure 4.9(b) depicts the resulting axial
evolution of the corrected liquid momentum flow rate. In all three sprays, the rate of
liquid momentum flow through each cross section decreases with increasing axial distance
from the atomizer. This is due to the transfer of momentum from the fast droplets to
the slower gas phase.

4.2 Flow field of the gas phase

The motion of a liquid drop, or a particle, suspended in a continuous gaseous flow field is
characterized by the nondimensional Stokes number. This number represents the ratio of
the characteristic relaxation time scale of the particle tp to the characteristic relaxation
time of the continuous phase tf , and is defined as

St = tp
tf
. (4.3)

For Stokes numbers much smaller than unity, i.e. tp � tf , the particles quickly adapt
to velocity changes in the surrounding flow field and therefore may be used as tracer
particles to represent the flow field of the continuous phase. For large Stokes numbers the
opposite is true, particles are only weakly influenced by velocity changes in the ambient
flow field.
The characteristic relaxation time scale of a particle is obtained from Stokes flow

(Stokes 1851) and reads

tp =
ρpd

2
p

18µ , (4.4)

where ρp denotes the particle density, dp the particle diameter and µ the dynamic
viscosity of the continuous phase. The determination of a characteristic time scale for the
continuous phase requires characteristic length and velocity scales. However, selection of
appropriate values for these two quantities is not always straightforward, especially in
two-phase spray flow. In theory, the smallest scales of turbulent motion are defined by
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Figure 4.10: (a,c,e) Drop diameter-velocity correlations and (b,d,f ) size-class number-mean drop velocity
as a function of the drop size at the three different measurement positions z = 25 mm;
r = 0, 7, 14 mm (top to bottom) for spray 2.

the Kolmogorov microscales (Pope 2000). In practice, however, to determine the velocity
of the gas phase in spray flows from PDA measurements, usually the smallest drops
in the local ensemble are assumed to have relaxation time scales, and therefore Stokes
numbers, small enough to represent the mean velocity of the gas flow field. To ensure
a proper representation of the gas flow field, a threshold droplet size must be defined,
which depends on the turbulence of the gas flow field, the liquid density of the drop and
the dynamic viscosity of the gas phase (see equations (4.3) and (4.4)). Detailed analysis
of the experimental PDA data yields the threshold drop size.
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Figure 4.11: Bimodal velocity spectra observed for small droplets in spray 2 at z = 25 mm and r = 7 mm.

In figure 4.10, on the left-hand side, scatter plots of the diameter-velocity correlation
of droplets measured at three different radial positions r = 0, 7, 14 mm (a,c,e) in the
cross section z = 25 mm of spray 2 are shown. It can be observed that the drop velocity
increases with the drop size. This is characteristic for sprays injected into a stagnant
gaseous medium. The smallest droplets, with approximately d < 20 µm, however, deviate
from this trend. A secondary cloud of data points at unexpectedly high velocities is found.
The number-mean drop velocities w̄l in each size class dd, corresponding to data in the
scatter plots, are depicted in figures 4.10(b,d,f ). According to the physical expectation,
the mean velocity of the drops increases with the drop diameter. For small droplets,
here smaller than approximately 25 µm in size, however, the opposite trend is observed.
This is an unexpected finding, since we expect the smallest droplets to decelerate fastest
to the velocity of the ambient gas phase. This effect, which we call the teaspoon effect,
due to the shape of the profiles of the mean drop velocities at varying drop size, was
observed in all three sprays investigated. It has been reported by others already, but not
explained (Li et al. 1991; Li and Tankin 1992). We are sure that this effect is not an
artifact of the PDA measurements and, therefore, requires further investigation.
Figure 4.11 provides a spectral view of the teaspoon effect. It shows the probability

density function of the drop velocity, pdf(wl), for drops in the seven smallest drop
size classes. The data corresponds to the results of figure 4.10(c,d). For drops with
approximately d < 10 µm, the PDF exhibits two peaks. One at a relatively low velocity
of wl ≈ 6 m/s and a second one at a larger velocity of wl ≈ 25 m/s. The two modes of
the PDF indicate that two different physical mechanisms influence the velocity spectra
of these droplets. We attribute the first peak, at the lower drop velocity, to the mean
velocity of the ambient gas flow field. It represents the drops which follow the mean
gas flow tightly due to drag. All drop size classes with d < 20 µm show this peak at
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Figure 4.12: Bimodal velocity spectra of drops with d < 15 µm obtained in spray 2 at z = 25 mm and
r = 7 mm.

approximately the same velocity. For the second peak in the bimodal distributions of
the smallest drops, at the higher drop velocity, a satisfactory explanation has yet to be
found. A detailed analysis of the PDA data revealed a higher probability of the detection
of these small fast droplets directly after a large fast droplet was detected. This may be
an indication for a grouping effect, keeping the velocities of small drops high due to the
wake of larger drops. However, the statistical reliability of these results is low since they
require pairs of validated drops in the data set where a large fast drop directly precedes a
small drop. As shown in figure 4.11, for drop size classes with drop diameters d > 20 µm,
only unimodal probability density functions are observed. With increasing drop size, the
peaks shift to larger velocities, indicating that these drops move faster than the ambient
gas flow.
For the correct determination of the mean gas velocity from the bimodal velocity

distributions observed in the present sprays, we exclude the in this sense unphysically
high drop velocities from the data analysis. Accordingly, we define a threshold velocity,
below which the velocities of the small droplets represent the gas velocity at each
measurement location. For this purpose, we determine the PDF of the drop velocity
for all drops smaller than 15 µm. Then, we fit this experimental data with a skewed
probability density function of the form

Λ(x) = qλ1(x) + (1− q)λ2(x) with (4.5)

λi(x) = 2
ωi
√

2π
exp

(
−(x− ξi)2

2ω2
i

)∫ α̂i
x−ξi
ωi

−∞
exp

(
−τ2

2

)
dτ . (4.6)
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Figure 4.13: Axial velocity profiles of the gas flow field in the sprays, deduced from the mean velocities
of small droplets. (a) Spray 1, (b) spray 2 and (c) spray 3.

Here, q is a weighting factor taking values between 0 and 1, ξi represents an arithmetic
mean, ω2

i corresponds to a variance and α̂i defines the skewness of the distribution. As an
example, figure 4.12 shows that the fit curve (4.5) (solid line) and the experimental data
(symbols) are in excellent agreement. The data corresponds to the results shown in figure
4.10(c,d). We define the local minimum between the two peaks of the PDF, indicated
by the dashed vertical line, as the threshold velocity. Only drops with d < 15 µm and
velocities smaller than the threshold velocity are taken into account for the calculation of
the mean gas velocity. Using smaller drop size ranges, for example d < 10 µm, did not
change the mean gas velocities obtained significantly.
With the method described above, we deduce the gas velocities from the PDA mea-

surement data. The resulting axial gas velocity profiles are depicted in figure 4.13 for
(a) spray 1, (b) spray 2 and (c) spray 3. In all three cases, bell-shaped profiles, with
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Figure 4.14: (a) Radial evolution of the teaspoon effect at z = 35 mm and (b) axial evolution of the
teaspoon effect at r = 7 mm in spray 2.

their peaks at the spray axis, are obtained. The maximum value of the velocity on the
symmetry axis decreases with increasing axial distance from the orifice. As the spray
propagates in the ambient air downstream, its cross-sectional area increases. The radial
expansion is evident from the downstream increase of the axial gas velocity at larger
radial distances from the symmetry axis. The self-similar description of these velocity
profiles is the main objective of the present work and discussed in chapter 5.
Note, the bimodal velocity distributions shown in figures 4.11 and 4.12 do not occur

at all measurement positions in the sprays. Far downstream from the atomizer, the
teaspoon effect vanishes and only unimodal distributions are observed. As an example,
figure 4.14 shows (a) the radial evolution in a given cross section and (b) the axial
evolution at a given radial position of this phenomenon in spray 2. In figure 4.14(a),
in the cross section z = 35 mm, close to the atomizer, the teaspoon effect exists at all
radial positions. In figure 4.14(b), it vanishes with increasing axial distance from the
orifice. These findings support the wake-based explanation of this phenomenon. Since
the spatial drop concentration decreases with increasing distance from the orifice, see
figures 4.6(a,c,e), the potential interaction of drop motions in the spray reduces. An
in-depth analysis of the teaspoon effect is beyond the scope of this work and, certainly,
also beyond the capabilities of the utilized optical measurement method. To shed light
on this effect, individual droplets and their change in velocity need to be resolved along
their trajectories in the spray.
Beside the works of Li et al. (1991) and Li and Tankin (1992), who already reported

the phenomenon of the teaspoon effect, a similar effect has also been observed for jets in
crossflow. There, the liquid jet is subjected to the aerodynamic forces from the, typically
very fast, gaseous crossflow. As a consequence, the liquid jet is bent perpendicular to
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its symmetry axis by the interaction with the gas flow and subsequently disintegrates
into liquid droplets. In comparison to the sprays in the presents study, the roles of
the liquid and gas phases are reversed. At the nozzle exit, the undisturbed liquid jet
exhibits no velocity component in the direction of the high-speed gaseous crossflow.
The formed droplets are accelerated by the gas flow. Smaller droplets are expected
to accelerate faster than larger droplets. Thus, a decrease of the mean drop velocity
with increasing drop size is expected. However, in certain studies, the opposite trend
has been reported in the smallest drop size classes. For example, Sinha et al. (2015)
investigated drop size and velocity distributions of airblast sprays in crossflow. The
utilized particle tracking velocimetry (PTV) and particle/droplet imaging analysis (PDIA)
as measurement techniques. They reported unexpectedly small mean velocities of the
smallest drop size classes at certain measurement locations (see figure 20 in Sinha et al.
2015), which may be interpreted as a "reversed teaspoon effect". As an explanation
for this unexpected trend, they suspect a significant influence on the gas flow field by
vortex shedding of the gas jet from the airblast injector. As in the present case, an
in-depth analysis of this effect is yet to be done. Due to the similarity of the present
pressure-atomized sprays and the airblast sprays in crossflow (one phase stagnant, the
other phase at high velocity) these phenomena may be caused by the same physical
mechanism.
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Chapter 5

Self-similar modeling

A self-similar description of the gas- and liquid-phase flow fields of pressure-atomized
sprays, accounting for momentum transfer between the two phases, is derived from
boundary-layer theory. This development constitutes a generalization of the description
by Schlichting (1933) for the single-phase submerged round jet, reviewed in section 2.2.

5.1 Equations of motion

For the present analysis, the sprays are treated as non-evaporating, i.e., heat and mass
transfer between the liquid and the gas phases are not considered. The flow field of
the gas phase in the sprays is of turbulent boundary-layer type with constant pressure
throughout. For the description of the turbulent shear stress in the momentum balance,
the Boussinesq eddy-viscosity concept is applied (Boussinesq 1877; Schmitt 2007). The
turbulent eddy viscosity νt is assumed to be much greater than the molecular kinematic
gas viscosity ν. Therefore, the molecular viscous contributions to the extra stresses are
neglected. Moreover, the turbulent eddy viscosity νt is assumed to be of approximately
constant value throughout the flow field, as known from the self-similar description of
turbulent single-phase round jets (Tennekes and Lumley 1972; Peters 1997). Based on
these assumptions, the steady-state axisymmetric boundary-layer equations in cylindrical
coordinates for the gas phase read

∂u

∂z
+ 1
r

∂(rv)
∂r

= 0 continuity gas (5.1)

u
∂u

∂z
+ v

∂u

∂r
= νt

1
r

∂

∂r

(
r
∂u

∂r

)
+ fd z -momentum gas (5.2)

The mean gas velocities in axial and radial direction are denoted by u and v, respectively.
Depending on the location in the spray and the drop size, large slip velocities occur
between the drops and the gas phase. This is due to the injection of liquid into stagnant
air. Therefore, we introduce the momentum source term fd on the right-hand side of the
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z -momentum equation (5.2). It represents the transfer of momentum by aerodynamic
forces from the liquid to the gas phase. The radial momentum balance simplifies to the
statement that the dependency of pressure on the radial coordinate in the boundary-layer
flow is weak.

The equations of motion for the liquid phase describe the conservation of liquid mass
and the loss of momentum due to the interaction with the gas phase. For this purpose
we use the local liquid mass fluxes in axial and radial direction calculated from PDA
measurement data, φz,d and φr,d, as defined in section 3.2.2. The subscript d denotes the
dth drop size class. We define the continuity equation and the z -momentum equation of
the liquid phase as

∂

∂z

 D∑
d=1

φz,d

+ 1
r

∂

∂r

r D∑
d=1

φr,d

 = 0 continuity liquid (5.3)

∂

∂z

 D∑
d=1

ūl,dφz,d

+ 1
r

∂

∂r

r D∑
d=1

ūl,dφr,d

 = −ρfd z -momentum liquid (5.4)

The momentum equation in the radial direction is not considered due to the boundary-layer
nature of the flow. In the z -momentum equation (5.4), ūl,d represents the number-mean
axial velocity of the drops in size class dd. The terms on the left-hand side of the
z -momentum equation (5.4) represent the total change of axial momentum carried by
the axial and radial liquid mass fluxes φz and φr, respectively. This change of momentum
is balanced by the force term −ρfd on the right-hand side. It dynamically couples the
liquid-phase momentum balance (5.4) to the gas-phase momentum balance (5.2). It
appears as a sink term in the liquid momentum balance due to its negative sign. The
liquid momentum balance describes the net change in the axial liquid momentum flux.
Liquid-liquid momentum transfer due to drop coalescence and breakup is not considered
separately, and, as discussed in section 4.1.2, it is of little importance in the present
sprays. Gravitation is neglected in the present analysis.

5.2 Self-similar transformation

To reveal, possibly, self-similar behavior of both the gas and the liquid phases in the
pressure-atomized sprays investigated, we transform the z -momentum equation (5.2)
of the gas phase into a self-similar form. For this purpose, the velocity components are
represented as derivatives of the Stokesian stream function Ψ, so that the gas-phase
continuity equation (5.1) is satisfied. The stream function is defined through the axial
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and radial velocity components as

u = 1
r

∂Ψ
∂r

and v = −1
r

∂Ψ
∂z

. (5.5)

In terms of the stream function, the z -momentum equation of the gas phase (5.2) reads

1
r

∂Ψ
∂r

1
r

∂2Ψ
∂r∂z

− 1
r

∂Ψ
∂z

∂

∂r

(1
r

∂Ψ
∂r

)
= νt

1
r

∂

∂r

[
r
∂

∂r

(1
r

∂Ψ
∂r

)]
+ fd . (5.6)

The self-similar coordinate η and the stream function Ψ are assumed to take the forms

η = rg(z) and Ψ = h(z)f(η) , (5.7)

where g(z) is a scaling and h(z) a mapping function. The function f(η) represents the
self-similar shape function. Introducing (5.7) into (5.6) yields

(
h′

νt
+ 2
νt

g′

g
h

)
f ′ 2 − h′

νt
ηf

(
f ′

η

)
= η

[
η

(
f ′

η

)′ ]′
+ 1
νtg4h

η2fd . (5.8)

The prime denotes the derivative with respect to the coordinate η for f(η) and with
respect to the coordinate z for g(z) and h(z). The functions g(z) and h(z), as well as
the source term fd, must allow (5.8) to become an ordinary differential equation for f(η).
We therefore require

h′

νt
= constant := Ã , (5.9)

h′

νt
+ 2
νt

g′

g
h = constant := C̃ , (5.10)

yielding the functions h(z) and g(z) as

h(z) = Ãνtz + B̃ , (5.11)

g(z) = D̃
(
Ãνtz + B̃

)(C̃−Ã)/2Ã
= D̃h(z)(C̃−Ã)/2Ã (5.12)

with the four constants Ã, B̃, C̃ and D̃. To ensure independence of the axial coordinate
z in (5.8), the source term fd is assumed to take the form

fd(r, z) = νtÃg(z)4h(z)Ω(η) , (5.13)
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where Ω(η) is a yet unknown self-similar shape function. For convenience, we introduce
the constants

α := − C̃ − Ã
2Ã

, z0 := − B̃

Ãνt
, C := Ãνt , D := D̃

(
Ãνt

)(C̃−Ã)/2Ã
. (5.14)

Thus, the ansatz for self-similarity (5.7) and for the momentum source term (5.13) become

η = D
r

(z − z0)α , Ψ = C(z − z0)f(η) , fd = C2D4(z − z0)1−4αΩ(η) , (5.15)

where z0 marks the virtual origin of the self-similar flow field, α is an exponent, and C
and D are constants required for dimensional reasons. The z -momentum equation (5.8)
transformed into the self-similar coordinate η becomes

(1− 2α)f ′ 2 − ηf
(
f ′

η

)′
= νt
C
η

[
η

(
f ′

η

)′ ]′
+ η2Ω(η) . (5.16)

For α = 1 and Ω(η) = 0, this equation reduces to the self-similar momentum equation of
the single-phase round jet (see section 2.2). The axial and radial velocity components
(5.5) turn into

u = g2h
f ′

η
= CD2(z − z0)1−2α f

′

η
and (5.17)

v = −gh′ f
η
− g′hf ′ = CD(z − z0)−α

(
αf ′ − f

η

)
. (5.18)

In general, the solution of (5.16) is subject to three boundary conditions for the gas
flow field. The first two read

u|η→0 = finite ⇒ f ′(0) = 0 (5.19)

v|η→0 = 0 ⇒ f(0) = 0 (5.20)

where we made use of the formulation of the velocity components with the self-similar
function f(η) in (5.17) and (5.18). The third boundary condition cannot be determined
from general considerations on the velocity components of the flow field. As shown by
Schlichting (1933), from the self-similar shape function of single-phase round jets follows
that f ′′(0) depends on global parameters of the flow field, such as the global momentum
flow rate and the fluid properties. We expect a similar relation in the present case.
To fully describe the self-similar gas flow field, and solve equation (5.16) for f(η), the
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quantities z0, α, νt, C, D and Ω(η) must be determined. The determination of these
quantities, as well as the solution obtained for f(η), are discussed in the subsequent
sections 5.3 to 5.6.

5.3 Scaling variables

The virtual origin z0 and the exponent α, and additional constraints relating to the
self-similar solution, are determined from the self-similar representation (5.15). For this
purpose, we link the self-similar transformed flow quantities to the experimental data.
We specifically make use of three measured trends of the gas-flow field. These are the
decrease of the axial gas velocity, u0(z) = u(0, z), on the symmetry axis of the spray,
the increase of the axial momentum flow rate, I(z), and the scaled axial gas velocity,
u(r, z)/u0(z).
For self-similarity these measured trends must meet the following constraints

u0(z) = Uexp(z − z0)1−2α , (5.21)

I(z) = Mexp(z − z0)2−2α , (5.22)

u(r, z)
u0(z) = constant for r = Rexp(z − z0)α . (5.23)

Their derivation is discussed in the following sections 5.3.1 to 5.3.3. Here, unknowns are
the model parameters z0 and α, and the constants Uexp, Mexp and Rexp. These unknowns
are determined by best fit using the experimental data for u(r, z), u0(z) and I(z), acquired
in the present study. Each constraint has its own independent fit parameter, i.e. Uexp,
Mexp and Rexp, while z0 and α appear in all of them. We have to choose z0 and α such
that all three constraints are simultaneously met. For this purpose, we fit the equations
(5.21) to (5.23) separately to the experimental data for a range of specified values of α.
Thus, for constraint (5.21) we obtain for each value of α corresponding values of z0 and
Uexp by best fit. The same applies to constraint (5.22), where we obtain corresponding
values of z0 and Mexp. The third constraint (5.23) at first glance appears a bit more
complicated, since the values of z0 and α may also depend on the velocity ratio u/u0.
However, for the flow field to be self-similar, z0 and α must be independent of u/u0, i.e.
z0 6= z0(u/u0) and α 6= α(u/u0). We show in section 5.3.3 that this is indeed the case.
As a consequence of constraint (5.23) we obtain for each value of α corresponding values
of z0 and Rexp by best fit, where only the value of Rexp changes with the velocity ratio
u/u0. With pairs of values (z0, α) for each constraint at hand we then determine the
best value for z0 and the best value for α to satisfy the three constraints (5.21), (5.22)
and (5.23). This is shown in section 5.3.4.
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5 Self-similar modeling

5.3.1 Axial gas velocity on the spray axis

The experimentally measured axial gas velocity on the symmetry axis of the spray
u0(z) = u(0, z), where r = 0, i.e. η = 0, is represented by the formulation in equation
(5.17). It reads

u0(z) = CD2f ′′(0)︸ ︷︷ ︸
=:Uexp

(z − z0)1−2α , (5.24)

where the constant factor Uexp represents the product of the indicated quantities. The
exponent α determines the axial decrease of u0. We expect a value of α > 0.5, since the
experimental data show a velocity decrease along the spray axis (see figure 4.13). We fit
equation (5.24) to the experimental data (u0, z) for α ranging between 0.5 and 1. For
each α, the values of Uexp and z0 are determined by best fit.
Figure 5.1(a) depicts the resulting fit curves in spray 2 for different values of the

exponent α. Very good agreement can be observed for α ≈ 0.7. Conducting the same
fitting process for sprays 1 and 3 as well, the results reveal that the experimental data
agrees well with (5.24) for values of α in the range 0.6 < α < 0.75. Figure 5.1(b) shows
the coefficient of determination R2 of the best fits versus α for all three sprays. The
dependency of the fitted values of the virtual origin z0 on α is depicted in figure 5.1(c).
Its values are close to zero for α ≈ 0.62 and decrease with increasing α. Figure 5.1(d)
shows the best fit of Uexp as a function of α in the three sprays. Its values decrease with
increasing α.

5.3.2 Gas momentum flow rate

The self-similar solution must meet the axial dependency of the momentum flow rate of
the gas phase I(z), deduced from the experimental PDA data. In general, and in self-
similar coordinates, the rate of axial momentum transport through a plane z = constant
is defined by

I(z) = 2πρ
∞∫

r=0

u2r dr = 2πρC2D2
∞∫

η=0

f ′ 2

η
dη

︸ ︷︷ ︸
=:Mexp

(z − z0)2−2α . (5.25)

Here, ρ is the density of the gas phase and the constant parameter Mexp represents the
product of the indicated quantities. In contrast to the single-phase jet, the momentum
flow rate of the gas phase is not constant, but it increases with the z coordinate due to
momentum transfer from the liquid to the gas phase. The exponent α determines the
axial scaling of the momentum flow rate. With increasing distance from the orifice, we
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Figure 5.1: Best fit of the axial gas velocity at the spray axis (5.24) for different values of α in (a) spray
2. (b) The coefficient of determination R2, (c) the virtual origin z0 and (d) the parameter
Uexp versus α for the three sprays.
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Figure 5.2: Experimental and fitted axial gas velocity profiles in the cross section at z = 25 mm.
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expect the momentum flow rate to increase, but, on the other hand, its rate of change to
decrease, i.e. 0 < α < 1. To calculate the experimental momentum flow rate of the gas
phase I from the PDA data, we require an analytical expression of the axial gas velocity
u obtained experimentally at discrete positions ri (see figure 4.13). For this purpose, the
measured axial gas velocity profiles of each cross section are fitted with a bell-shaped
function of the form

u(r, z) = A1(z)
(1 +A2(z) r2)2 , (5.26)

with the two independent functions A1(z) and A2(z). The function A1(z) represents
the axial gas velocity at the spray axis. The obtained velocity profiles (5.26) are in
excellent agreement with the experimental data, as exemplarily depicted in figure 5.2 at
z = 25 mm. With the velocity profiles (5.26), the evolution of the experimental values of
I is calculated from (5.25) to

I(z) = π

3 ρ
A1(z)2

A2(z) . (5.27)

With knowledge of the gas momentum flow rate I, we determine the parametersMexp and
z0 in equation (5.25) by curve fitting. As an example, figure 5.3(a) shows the resulting
fit curves in spray 2 for different values of α. For each α, z0 and Mexp are determined
by best fit. In figure 5.3(b), the coefficient of determination of the fits is depicted as
a function of α for all three sprays. Similar to the velocity decrease along the spray
axis, as discussed in the previous section 5.3.1, excellent agreement of the experimental
data for I with (5.25) can be observed for values of α around 0.7. The dependencies of
the virtual origin z0 and parameter Mexp on α are shown in figures 5.3(c) and 5.3(d),
respectively. The values of virtual origin z0 increase with α, whereas the opposite is true
for the parameter Mexp. For a given value of α, the fit results in sprays 1 and 3 exhibit
the smallest and the largest values of Mexp, respectively.

5.3.3 Normalized axial gas velocity

The concept of self-similarity requires the normalized axial gas velocities u/u0 to satisfy

u(r, z)
u0(z) = constant for η = D

r

(z − z0)α = constant . (5.28)

From our experimental data we compute the (r, z) coordinates in each cross section for
a given velocity ratio u/u0. For this purpose, we use the fitted velocity profiles (5.26)
in order to also consider small velocity ratios near the spray edge, not covered by the
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Figure 5.3: Best fit of the gas momentum flow rate according to equation (5.25) for different values of
α in (a) spray 2. The experimental momentum flow rate is obtained from (5.27). (b) The
coefficient of determination R2, (c) the virtual origin z0 and (d) the parameter Mexp versus
α in the three sprays.

measurements. Rewriting (5.28) for r yields

u(r, z)
u0(z) = constant for r = η

D︸︷︷︸
=:Rexp

(z − z0)α , (5.29)

where Rexp represents the ratio η/D. For a given velocity ratio u/u0, with known (r, z)
coordinates, we fit the virtual origin z0 and parameter Rexp to (5.29) for a range of given
values of α. For spray 2, the obtained results are shown in figure 5.4(a). It depicts the
(r, z) coordinates of four corresponding velocity ratios u/u0 between 0.3 and 0.9. The
solid lines are obtained by curve fitting of (5.29) with α = 0.7. The virtual origin z0 and
the parameter Rexp are parameters determined by the fit. Excellent agreement between
fit curves and experimental data can be observed.
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Figure 5.4: (a) Best fit of the coordinates corresponding to constant velocity ratios u/u0 according to
equation (5.29) for α = 0.7 in spray 2. Evolution of (b) z0 and (c) the parameter Rexp with
u/u0 for different values of α in spray 2. (d) Dependency of z0 on α in all three sprays.

For the flow field to be self-similar, the value of the virtual origin z0 and the value of
the exponent α must be identical for all velocity ratios u/u0 in a given spray. This is
indeed the case, as shown in figure 5.4(b) for spray 2. For a given value of α, we obtain
uniform values for z0 as a result of the fitting process, independent of the velocity ratio
u/u0. This fact can also be observed in 5.4(a), where lines η = constant corresponding
to different velocity ratios u/u0 intersect in a single point, the virtual origin. Thus, only
the ratio Rexp changes with u/u0, which is shown in figure 5.4(c) for three different
values of α in spray 2. The fact that the virtual origin z0 changes with α only was also
observed in the two other sprays investigated. Figure 5.4(d) depicts the evolution of z0
with α obtained by curve fitting of the experimental data to (5.29). In all three sprays,
z0 decreases with increasing α.
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Figure 5.5: Determination of the exponent α and the virtual origin z0 for (a) spray 1, (b) spray 2 and
(c) spray 3.

5.3.4 Results

In the previous sections 5.3.1 to 5.3.3, we linked the experimental data to the mathematical
self-similar description of the gas flow field. By means of curve fitting, the parameters
z0, Uexp and Mexp were obtained from the three different constraints (5.24), (5.25) and
(5.29) for a range of values of α. The virtual origin z0 and the exponent α appear in all
of these three constraints. Therefore, in each spray, the values of z0 and α satisfying all
three constraints need to be determined.

For this purpose, we compare the evolution of z0 with α for the axial velocity decrease
along the spray axis (see figure 5.1(c), constraint (5.24)), for the increase of the gas
momentum flow rate (see figure 5.3(c), constraint (5.25)) and for the scaled axial velocity
profiles (see figure 5.4(d), constraint (5.29)). This can be seen in figure 5.5 for each
individual spray. If the gas flow fields of the sprays are truly self similar, we expect the
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Spray 1 Spray 2 Spray 3
α 0.66 0.69 0.65
z0 [mm] −3.0 −13.1 −4.2
Uexp [m2α/s] 3.49 4.10 4.58
Mexp [kg m2α− 1/s2] 0.114 0.208 0.309

Table 5.1: Best values of the listed parameters.

three curves, corresponding to the constraints (5.24), (5.25) and (5.29), to intersect in
a single point (z0, α). This is indeed almost the case in each spray, as the three binary
intersection points of the three curves lie very close together. We determine the best
values of α and z0 by calculating the mean of their values in the three binary intersection
points. The result corresponds to the centers of mass of the triangles enclosed by the
three lines, which are marked by the black crosses in figure 5.5.
Table 5.1 lists the values of z0 and α, and of the corresponding quantities Uexp and

Mexp. The values of Uexp and Mexp were determined by curve fitting to (5.24) and (5.25)
using the values z0 and α obtained from figure 5.5. In contrast to the single-phase round
jet, where its value is unity, the exponent α is close to a value of 2/3 for all the three
sprays investigated. As a result, the lines η = constant are no longer straight lines, as
in the single-phase case, but curved in the (r, z) space due to the acceleration of the
gas phase by the liquid drops. This corresponds to the physical process of momentum
transfer from the liquid to the gas phase. The virtual origins are located inside the nozzle,
as indicated by the negative values obtained.
The values of Uexp and Mexp increase with the Weber and the Ohnesorge number

(see table 3.3). A higher Weber number reflects a larger injected momentum flow rate,
resulting in a larger velocity at the spray axis, i.e. a larger value of Uexp. In addition,
the rate of momentum transfer from the liquid to the gas phase is increased, as indicated
by a larger value of Mexp. At a high Ohnesorge number (spray 3), the liquid is finer
atomized, resulting in smaller droplets (see figures 4.7 and 4.8(a)). Due to the increase
in total liquid surface area, the momentum transfer to the gas phase is more intense,
resulting in larger values of Uexp and Mexp. As indicated in equations (5.24) and (5.25),
the two parameters Uexp and Mexp relate to the self-similar function f(η) as per

Uexp = CD2f ′′(0) and Mexp = 2πρC2D2
∞∫

η=0

f ′ 2

η
dη . (5.30)

Equation (5.30) represents the constraints for determining the model constants C and D.
In order to compute their values, the self-similar shape function f(η) is required.
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Figure 5.6: (a) Axial gas velocity on the spray axis as a function the axial position. (b) Axial evolution
of the global gas momentum flow rate. The parameters of the fit curves are listed in table
5.1.

Figure 5.6(a) shows the velocity decrease along the spray axis, as introduced in section
5.3.1, and figure 5.6(b) depicts the axial evolution of the gas momentum flow rate, as
discussed in section 5.3.2. In both cases, the fit curves, which relate to the mathematical
description per (5.30), are in excellent agreement with the experimental data. The axial
gas velocity decreases due to the widening of the flow field. The gas momentum flow rate
increases with the axial distance from the orifice due to the momentum transfer from
the liquid to the gas phase. The scaled experimental axial gas velocity profiles u/u0,
as discussed in section 5.3.3, are depicted in figure 5.7. They collapse very well when
plotted against the self-similar coordinate η/D, confirming the values obtained for α and
z0. Minor deviations are observed for sprays 2 and 3 in the cross section closest to the
atomizer (at z/dor = 38). In this region, the self-similar behavior of the spray flow may
not be fully developed yet. This is a well-known behavior of self-similar boundary-layer
flows. In addition, the collapse of the radial gas velocity profiles is shown in figure 5.8.
The radial gas velocity v is scaled with its axial dependency (z − z0)−α, as defined in
equation (5.18). In comparison to the self-similar axial gas velocity profiles, their scatter
is larger due to the larger influence of the measurement uncertainty on the relatively
small radial velocity components.

5.4 Self-similar shape function

The determination of the shape function f(η) requires the coupled solution of the self-
similar transformed z -momentum equation of the gas phase (5.16), together with the
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Figure 5.7: Self-similar profiles of the axial gas velocity for (a) spray 1, (b) spray 2 and (c) spray 3.
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Figure 5.8: Self-similar profiles of the radial gas velocity for (a) spray 1, (b) spray 2 and (c) spray 3.

self-similar equivalents of the equations of motion of the liquid phase, (5.3) and (5.4).
For this purpose, we require a functional description of the shape function Ω(η) of the
momentum source term fd. Such a description for Ω(η) could be deduced from the PDA
measurement data. The determination of momentum fluxes from PDA data, however, is
inaccurate, as known from the literature (Roisman and Tropea 2001; Bade and Schick
2011) and discussed in section 4.1.2 (see figure 4.9(a)). For this reason, we propose a
different approach.

From the self-similar description of the axial gas velocity (5.17) follows that the scaled
axial gas velocity profiles u/u0, as depicted in figure 5.7, relate to the self-similar shape
function f(η) per

u

u0
= 1
f ′′(0)

f ′(η)
η

. (5.31)
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5.4 Self-similar shape function

Spray 1 Spray 2 Spray 3
Wel 1395 2974 2921
Ohl 0.0059 0.0059 0.0099

C [m2/s] 0.00328 0.00511 0.00678
D [mα− 1] 23.05 20.04 18.38

Table 5.2: Model parameters C and D obtained from (5.34) with the parameters listed in table 5.1.

As it turned out, the experimental self-similar velocity profiles are in fact best represented
by the self-similar velocity profile obtained by Schlichting (1933) for the single-phase
round jet. We therefore assume that the self-similar shape function f(η) is of the form

f(η) = η2

1 + η2/4 , (5.32)

which yields the expression

u

u0
= 1
f ′′(0)

f ′(η)
η

= 1
(1 + η2/4)2 (5.33)

for the self-similar axial gas velocity profile (5.31) (with f ′′(0) = 2).
Using the self-similar shape function (5.32), the constants C and D are calculated

from (5.30) to

C = 3
8π

Mexp

ρUexp
, D = 2Uexp

√
π

3
ρ

Mexp
. (5.34)

Their values are listed in table 5.2. The constant D corresponds to the width of the spray
flow field. As indicated by equation 5.29, at a given axial position (z − z0) and for given
values of η and α, a smaller value of D yields a larger radial coordinate r. Thus, smaller
values of D reflect a wider spray and vice versa. The value of D is smallest in spray
3 and largest in spray 1. Accordingly, it decreases with the Weber and the Ohnesorge
number (see table 5.2). The constant C, together with the constant D, determines the
velocity magnitude of the gas flow field as well as the strength of the momentum source
term. C is proportional to the turbulent eddy viscosity of the gas phase, see equation
(5.14), and therefore represents a diffusion coefficient, as indicated by its physical units.
Its value is largest in spray 3 and smallest in spray 1 (see table 5.2). This implies that
the value of C increases with the Weber and the Ohnesorge number.
With the values of the constant D known, the scaled axial gas velocity profiles of all

three sprays (see figure 5.7) can be represented in a single diagram. Figure 5.9 depicts
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Figure 5.9: Universal self-similar axial gas velocity profile. Symbols: data from the experiments.

the universal self-similar axial gas velocity profile. The self-similar velocity profiles of all
three sprays collapse excellently on the single profile given by the self-similar function
(5.33), as indicated by the solid green line. As mentioned earlier, the deviations of some
data points in sprays 2 and 3 correspond to the cross section closest to the orifice, where
the self-similarity of the flow field may not be fully established yet.
It is interesting to note that streamlines Ψ = constant, see equation (5.15), are of

similar shape in the present sprays and in the case without momentum transfer from the
liquid phase, i.e. the single-phase round jet. In both cases, Ψ scales linearly with z and
is proportional to the same self-similar shape function f(η). The only difference emerges
from different values of the constant C. Figure 5.10 depicts streamlines Ψ = constant in
spray 2. The value of Ψ corresponding to each streamline increases from left to right.
With the solution of the self-similar shape function f(η) determined, the self-similar

shape function of the momentum source term Ω(η) and the turbulent eddy viscosity
νt remain the only unknowns in the self-similar transformed z -momentum equation
(5.16). Thus, Ω(η) can be obtained from this equation as a function of f(η). Before, we
determine the turbulent eddy viscosity νt.

5.5 Turbulent eddy viscosity

We determine the turbulent eddy viscosity of the gas flow field from the PDA measurement
data. The analysis is based on the Boussinesq eddy viscosity concept (Boussinesq
1877; Schmitt 2007), representing the turbulent (r, z) shear stress in boundary-layer
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Figure 5.10: Streamlines (5.15) of the gas flow field in spray 2, calculated with the self-similar shape
function (5.32). The value of Ψ, with the physical unit m3/s, corresponding to each
streamline, is given on the right-hand side of the diagram.

approximation as per

−u′v′ = νt
∂u

∂r
. (5.35)

The cross-correlation of the turbulent velocity fluctuations in axial and radial direction,
is assumed as the product of the radial gradient of the mean axial gas velocity and νt. u′
and v′ denote the turbulent gas velocity fluctuations in the axial and radial directions,
respectively. The cross-correlation u′v′ is determined from the PDA measurement data
by

u′v′ =

U∑
u=1

V∑
v=1

n̂uv(u− uu)(v − vv)

U∑
u=1

V∑
v=1

n̂uv

. (5.36)

As in the determination of the mean gas velocity, see section 4.2, only the smallest
drops with d < 15 µm are considered in this analysis. We assume that these small drops
represent the gas flow field, also under turbulent flow conditions. Therefore, in equation
(5.36), n̂uv represents the Saffman-corrected number of drops with d < 15 µm in the
axial velocity class uu with the radial velocity vv. The resulting experimental profiles of
u′v′ are depicted in figures 5.11(a,c,e). In all three sprays they are of the same order of
magnitude. Their trends are similar as observed for the single-phase round jet (Hussein
et al. 1994).
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Figure 5.11: (a,c,e) Cross-correlation u′v′ of the turbulent velocity fluctuations (5.36). (b,d,f ) Self-
similar cross-correlation of the turbulent velocity fluctuations. The black solid line corre-
sponds to the best fit of νt,exp to the self-similar description (5.37). From top to bottom,
the diagrams correspond to sprays 1, 2 and 3.
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5.6 Momentum source

Spray 1 Spray 2 Spray 3
νt,exp [m2/s] 77.1ν 92.5ν 101.6ν

Table 5.3: Turbulent eddy viscosity obtained from (5.37). The molecular viscosity of air at 20 °C has a
value of ν = 15.4 mm2/s.

Transforming (5.35) into the self-similar coordinate, we obtain

−u′v′ = νtCD
3 (z − z0)1−3α

(
f ′

η

)′
(5.37)

with the axial dependency of the cross-correlation of the turbulent velocity fluctuations
on the axial coordinate given by −u′v′ ∝ (z − z0)1−3α. The cross-correlations calculated
from the experimental data (equation (5.36), see figures 5.11(a,c,e)) are scaled with
their axial dependency (5.37) and plotted in figures 5.11(b,d,f ) against the self-similar
coordinate η. The profiles collapse and match well the scaled radial gradient of the axial
velocity. This confirms the earlier assumption of constant turbulent eddy viscosity. The
experimental values of the turbulent eddy viscosity νt,exp are obtained by curve fitting
of (5.37) to the scaled experimental data. The obtained results are listed in table 5.3.
The values of νt,exp are two orders of magnitude larger than the molecular kinematic
viscosity of air at 20 °C (ν = 15.4 mm2/s), in a range reported for the single-phase round
jet (Tennekes and Lumley 1972; Peters 1997).

5.6 Momentum source

Using the self-similar shape function f(η), the model constants α, z0, C, and D, and
the turbulent eddy viscosity νt determined in the previous sections 5.3 to 5.5, the shape
function of the momentum source term Ω(η) remains the only unknown of equation
(5.16). With the definition of the self-similar shape function f(η), see (5.32), Ω(η) can
be calculated from equation (5.16) as

Ω(η) = 2
(1 + η2/4)4

[
2 (1− 2α) + η2 + νt

C

(
2− η2

)]
. (5.38)

Depending on the values of the exponent α and the ratio νt/C, Ω(η) exhibits different
shapes. This is illustrated in figures 5.12(a) and 5.12(b) for different values of α and
νt/C, respectively. In the far field, i.e η →∞, Ω(η) approaches zero. Depending on the
values of α and νt/C, shapes with a local minimum at the spray axis (at η = 0) and an
off-axis peak, or shapes with a single peak at the spray axis are obtained.
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Figure 5.12: Self-similar shape function of the momentum source term (5.38) obtained with (a) α = 2/3
and different values of νt/C, and (b) with νt/C = 1/2 and a range of values of α.

To verify the theoretical description of the momentum-source shape function Ω(η), it
is compared to measurement data. With the PDA data at hand, there are two options to
determine the local gas momentum source. The first option is to compute the divergence
of the drop momentum flow rate and balance it with the drag force, i.e. the momentum
source term. The second option is to compute the momentum source by applying a
single-drop drag law to each drop size class in the local ensemble and weight it with
the local droplet-number concentration. In the following, we determine the momentum
source according to both options and compare the resulting profiles to the self-similar
description (5.38). As discussed earlier, flux terms calculated from PDA data are often
inaccurate. As a consequence, the results obtained must be interpreted with care. We
expect to obtain rather an estimate of the shape of the momentum source term from the
measurements than an exact functional description.

5.6.1 Divergence of liquid momentum

The momentum source term is determined from the divergence of the axial drop momen-
tum (5.4), where the change of liquid momentum in space is balanced by the source term.
Since the momentum source is assumed to be self-similar, the two terms on the left-hand
side of equation (5.4), which read

Γ1 := ∂

∂z

 D∑
d=1

ūl,dφz,d

 and Γ2 := 1
r

∂

∂r

r D∑
d=1

ūl,dφr,d

 , (5.39)
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Figure 5.13: Self-similar profiles of (a,c,e) Γ1 and (b,d,f ) Γ2, as defined in (5.39), corresponding to the
left-hand side of the liquid-phase z -momentum equation (5.4). The red line indicates the
mean of the scaled profiles, denoted Γ̄1 and Γ̄2. Top: spray 1, center: spray 2 and bottom:
spray 3.
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5 Self-similar modeling

must exhibit self-similarity as well. To collapse the profiles obtained for each of the two
terms Γ1 and Γ2, to a single self-similar profile, they are scaled with the axial dependency
of the momentum source (z − z0)1−4α, as required by the self-similar ansatz (5.15). In
figures 5.13(a,c,e), the scaled profiles of Γ1, and in figures 5.13(b,d,f ), the scaled profiles
of Γ2, are plotted against the self-similar coordinate η. From top to bottom, the results
correspond to sprays 1, 2 and 3. In view of the mentioned inaccuracies inherent to the
calculation of momentum fluxes from PDA measurement results, and the fact that the
axial and radial contributions of the flux terms to the divergence are evaluated as ratios
of differences to calculate Γ1 and Γ2, the profiles collapse well, confirming the self-similar
behavior of the liquid phase. In each diagram, the red line indicates the mean of the
scaled profiles, denoted by Γ̄1 and Γ̄2, respectively.
From equations (5.4) and (5.15) follows the experimental profile of the self-similar

shape function of the momentum source term as

Ω(a)
exp(η) = − Γ̄1 + Γ̄2

ρC2D4 , (5.40)

which is depicted in figure 5.14 for the three sprays. The profile of spray 1 is approximately
bell-shaped and exhibits a peak at the spray axis. This shape corresponds to the
atomization of the not fully open tulip-stage liquid sheet. In sprays 2 and 3, the
experimental profiles of Ω(a)

exp(η) have an off-axis peak, with a local minimum at the spray
axis. This agrees with the regime of atomization in these two sprays, as discussed in section
4.1.1. Note that the magnitudes of the profiles cannot be compared directly between
the three sprays. This is due to the uncertainties associated with the determination of
momentum fluxes from PDA data, which differ between the three sprays, as discussed in
section 4.1.2.

5.6.2 Single-drop drag law

The momentum source term is determined from the total aerodynamic drag force acting
on the average number of droplets at the local position. The drag force acting on a single
spherical drop p, moving relative to its ambient medium, can be calculated from (Cossali
2001)

Fd,p = 3πµdp
(

1 + 1
6Re

2/3
p

)
(u− ul,p) , (5.41)

where the drop Reynolds number is defined as

Rep = dp|u− ul,p|
ν

. (5.42)
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Figure 5.14: Experimental self-similar shape function of the momentum source term (5.40), determined
from the divergence of the axial liquid momentum flow rate.

With the drop-number concentration cn obtained from the PDA measurements, see
figures 4.6(a,c,e), the drag force per unit volume relates to the momentum source of the
gas phase per

ρfd = −
D∑
d=1

cn,dFd,d . (5.43)

Here, cn,d is local drop-number concentration in drop size class dd and Fd,d denotes the
average drag force acting on a drop in this size class. Consequently, the local momentum
source term reads

fd = −3πν
D∑
d=1

cn,ddd

(
1 + 1

6Re
2/3
d

)
(u− ul,d) , (5.44)

where ul,d represents the mean axial drop velocity in drop size class dd. This representation
of fd does not consider the contribution of the radial velocity component to the drag
force, since it is expected to be negligible.

We compute fd from (5.44) in each cross section and scale it with the axial dependency
(z − z0)1−4α required by the self-similar ansatz (5.15). Figure 5.15 shows the resulting
profiles as a function of the self-similar coordinate η. The profiles collapse reasonably well,
again confirming the self-similarity of the momentum source. The mean of the scaled
profiles fd/(z − z0)1−4α is denoted by f̄d and depicted by the red line. The experimental
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Figure 5.15: Self-similar profiles of the momentum source (5.44). The red line, denoted by f̄d, indicates
the mean of the scaled profiles. (a) Spray 1, (b) spray 2 and (c) spray 3.

profiles of the self-similar shape function of the momentum source are calculated from

Ω(b)
exp(η) = f̄d(η)

C2D4 . (5.45)

Figure 5.16 depicts the self similar shape functions of the momentum source obtained
from (5.45). Their trends are similar to those obtained from the divergence of the
liquid momentum flow rate (see figure 5.14). However, in the profiles obtained with the
single-drop drag law, the off-axis peaks in sprays 2 and 3 appear at slightly larger values
of η. In spray 1, the decrease of Ω(b)

exp(η) with increasing η is less pronounced as in the
profile reported in figure 5.14.
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Figure 5.16: Experimental self-similar shape function of the momentum source term (5.45), determined
by the application of a single-drop drag law.

5.6.3 Comparison

The analytical expression of the self-similar shape function of the momentum source (5.38)
is compared to the experimental shape functions, as obtained in the previous sections
5.6.1 and 5.6.2. In Figure 5.17, the experimental shape functions of the momentum source
are depicted by dotted and dashed lines, corresponding to equations (5.40) and (5.45),
respectively. Since we are interested in the shape of the profiles only, they are rescaled to
meet the analytical solution. This is required, due to the earlier discussed inaccuracies
in the determination of momentum fluxes from PDA data. Table 5.4 lists the scaling
factors applied to the experimental profiles of each spray, depending on the method it
was determined. Their values are in a range reported by others (Tropea 2011; Bade and
Schick 2011). The overestimation of the source term appears less pronounced by the
results obtained on the basis of the single-drop drag law. The corresponding analytical
profiles of Ω(η), given by equation (5.38), are depicted in figure 5.17 as solid lines. At
large radial coordinates, i.e. large values of η, they approximately capture the trend of
the experimental profiles. However, close to the sprays axis, around η = 0, the profiles
deviate. In sprays 2 and 3, Ω(η) even exhibits negative values, indicating momentum
transfer from the gas to the liquid phase. This is not physical in the present sprays, since
momentum transfer goes from the liquid to the gas phase exclusively.
This discrepancy can be explained by the underestimation of the turbulent eddy

viscosity of the gas phase νt based on the PDA data. After increasing the experimentally
obtained values of νt,exp by 50 %, effectively increasing the ratio νt/C in equation (5.38),
the experimental and analytical profiles agree reasonably well. This is shown in figure
5.18 for (a) spray 1, (b) spray 2 and (c) spray 3. In each diagram, the experimental
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Figure 5.17: Self-similar shape functions of the momentum source obtained from the self-similar de-
scription (5.38) (solid lines) and estimated from PDA data (dotted and dashed lines). The
scaling factors are listed in table 5.4.

Spray 1 Spray 2 Spray 3

Scaling factor for Ω(a)
exp(η) obtained by equation (5.40) 21.3 7.4 4.0

Scaling factor for Ω(b)
exp(η) obtained by equation (5.45) 3.0 3.1 1.2

Table 5.4: Scaling factors for the experimental profiles of the momentum source. They are required due
the overestimation of momentum fluxes by PDA measurement data.

profiles are depicted as gray and black solid lines. The mathematical description (solid red
line) exhibits the same trends as observed in the corresponding experimental profiles and
agrees very well with the mean of the two experimental profiles (dashed black line) in all
three cases. They underestimation of νt,exp is attributed to the fact, that it is determined
from the velocity fluctuations of the smallest droplets in the sprays, which, however,
cannot be considered as perfect tracer particles. Due to their finite mass, they can follow
turbulent fluctuations only up to a threshold fluctuation frequency. As a consequence,
we only observe the fluctuations of large-scale turbulent structures, resulting in values of
νt,exp in the correct order of magnitude. High-frequency turbulent fluctuations in the
turbulent energy spectrum, however, are not captured. This phenomenon, justifying the
increase of νt,exp by 50 %, is analyzed in detail in the following section.

5.6.4 Underestimation of the turbulent eddy viscosity

The motion of a liquid drop in an ambient gaseous medium is governed by the Stokes
number (see section 4.2). Drops with St < 1 quickly adapt to changes in the motion of
the ambient phase and may be used as tracer particles to determine the magnitude of its
mean motion. For drops to represent the turbulent motion of the gas phase, even the
high-frequent turbulent fluctuations, their Stokes number is required to be much smaller

84



5.6 Momentum source

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3

(a)

Ω
(η

)

self-similar coordinate η

Ω(a)
exp(η) (scaled), equation (5.40)

Ω(b)
exp(η) (scaled), equation (5.45)

mean experimental data
equation (5.38), νt = 116ν

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3

(b)

Ω
(η

)

self-similar coordinate η

Ω(a)
exp(η) (scaled), equation (5.40)

Ω(b)
exp(η) (scaled), equation (5.45)

mean experimental data
equation (5.38), νt = 139ν

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3

(c)

Ω
(η

)

self-similar coordinate η

Ω(a)
exp(η) (scaled), equation (5.40)

Ω(b)
exp(η) (scaled), equation (5.45)

mean experimental data
equation (5.38), νt = 152ν

Figure 5.18: Self-similar shape function of the momentum source term (5.38) (red solid line) of (a)
spray 1, (b) spray 2 and (c) spray 3, obtained after increasing the turbulent eddy viscosity
νt,exp by 50 %. The scaling factors for the experimental profiles (black and gray solid
lines) are listed in table 5.4. The dashed black line depicts the mean of the two scaled
experimental profiles.

than unity, St � 1. To determine to which extent the drops used as tracer particles in the
present sprays represent the turbulent motion of the gas phase, we follow the analysis of
Chao (1964). In this way, we analyze if the drops used to determine the cross-correlation
u′v′, and therefore the turbulent eddy viscosity νt, see equation (5.37), fully represent all
frequencies of the gas-phase turbulent energy spectrum, yielding the correct value of νt.
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Figure 5.19: Spectral energy ratio (5.48) according to the work of Chao (1964) for spherical water
droplets of different size in ambient air.

In his work, Chao (1964) analyzed the transport behavior of a single particle in a dilute
turbulent suspension. He solved a linearized Lagrangian equation, describing the particle
motion in a turbulent flow field, by means of a Fourier transformation. The obtained
expression for the particle velocity allows the determination of the kinetic energy ratio of
a given particle, in a given continuous phase, as a function of the turbulent fluctuation
frequency of the continuous phase. The kinetic energy ratio of the particle provides a
measure for the ability of the particle to follow closely the turbulent fluctuations of the
ambient phase. Its derivation is discussed below.

The analysis is based on the assumption of a locally uniform flow field near the particle.
The expression obtained for the Fourier-transformed particle velocity up,c reads (Chao
1964)

up,c =

[
αc + (3αcωc/2)1/2

]
+ i

[
ωc + (3αcωc/2)1/2

]
[
αc + (3αcωc/2)1/2

]
+ i

[
ωc/βc + (3αcωc/2)1/2

]uc . (5.46)

The subscript c in these variables refers to the work of Chao (1964). up,c is proportional
to the Fourier-transformed velocity of the continuous phase uc, i.e. the gas phase in
the present sprays, and depends on two constant parameters, αc and βc, as well as the
turbulent angular fluctuation frequency ωc. i denotes the imaginary unit. The parameters
αc and βc depend on properties of the particle and the continuous phase, and are defined
as (Chao 1964)

αc = 3ν
d2
p

and βc = 3ρ
2ρp + ρ

. (5.47)
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Here, ρp and ρ are the densities of the particle and the continuous phase, respectively. ν
denotes the molecular kinematic viscosity of the continuous phase and dp is the particle
diameter. Thus, βc may be interpreted as a density ratio, whereas αc has the dimension
of a frequency.
With the conjugate complex Fourier-transformed velocities u∗p,c and u∗c , one can

calculate the ratio of the spectral kinetic energies (Chao 1964)

up,cu
∗
p,c

ucu∗c
= Ω(1)

c

Ω(2)
c

, (5.48)

with (Chao 1964)

Ω(1)
c =

(
ωc
αc

)2
+
√

6
(
ωc
αc

)3/2
+ 3

(
ωc
αc

)
+
√

6
(
ωc
αc

)1/2
+ 1 (5.49)

and (Chao 1964)

Ω(2)
c = 1

β2
c

(
ωc
αc

)2
+
√

6
βc

(
ωc
αc

)3/2
+ 3

(
ωc
αc

)
+
√

6
(
ωc
αc

)1/2
+ 1 . (5.50)

The spectral energy ratio Ω(1)
c /Ω(2)

c is a measure for the ability of a particle to exhibit
turbulent fluctuations at a given turbulent fluctuation frequency ωc. For Ω(1)

c /Ω(2)
c = 1,

the instantaneous particle velocity perfectly agrees with the instantaneous velocity of the
continuous phase. At ratios lower than unity, there is a slip velocity between the particle
and the continuous phase because the particle oscillates at a frequency different from
the continuous phase. A ratio of zero indicates that the turbulent fluctuations at this
frequency are too weak to influence the motion of the particle. For illustration, figure
5.19 depicts Ω(1)

c /Ω(2)
c as a function of the angular turbulent frequency ωc for spherical

water droplets of different diameters in ambient air. For a given drop diameter, at low
frequencies ωc, the spectral energy ratio is unity. With increasing ωc, the spectral kinetic
energy ratio decreases and approaches zero. For smaller drops, Ω(1)

c /Ω(2)
c approaches

zero at higher frequencies ωc. This implies that smaller droplets may follow turbulent
fluctuations of higher frequencies, which was to be expected due to their lower mass.
To determine to which extent the smallest drops in the present sprays can follow

the turbulent fluctuations of the gas phase tightly, we need to estimate the fluctuation
frequencies of the smallest turbulent structures, i.e. the highest turbulent fluctuation
frequencies, occurring in the flow field. The smallest scales in turbulent flow are defined
by the Kolmogorov microscales (Pope 2000). At this scale, the viscous forces dominate,
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Figure 5.20: Viscous dissipation rate according to (5.56) in (a) spray 1, (b) spray 2 and (c) spray 3.

dissipating the turbulent kinetic energy into heat. The Kolmogorov time scale is defined
as

τµ =
(
ν

ε

)1/2
(5.51)

and depends on the kinematic viscosity ν and the viscous dissipation rate per unit mass ε.
On the other hand, the characteristic turbulence time scale is given by the eddy turnover
time (Pope 2000), which is considered as the time scale of large-scale turbulent structures.
It is defined by

τt = k

ε
, (5.52)

where k denotes the turbulent kinetic energy. Naturally, the eddy turnover time scale is
larger than the Kolmogorov time scale.
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The calculation of the characteristic time scales (5.51) and (5.52) in the spray flow
fields requires the viscous dissipation rate ε and the turbulent kinetic energy k. We
calculate the latter by

k = 1
2
(
u′ 2 + 2v′ 2

)
, (5.53)

where the mean squared velocity fluctuations in radial direction v′ 2 are multiplied by two
to account for the velocity fluctuations in azimuthal direction. u′ 2 and v′ 2 are computed
from the PDA measurement data, similar to the cross-correlation u′v′, as defined in
equation (5.36). Again, only drops with d < 15 µm, representing the mean gas velocity
(see section 4.2), are considered for this analysis. Assuming local equilibrium between
production and dissipation, P = ε, so that

−u′v′∂u
∂r

= ε , (5.54)

and an approximately constant ratio

C1/2
µ = u′v′

k
≈ 0.3 , (5.55)

the viscous dissipation rate ε can be estimated recalling the eddy viscosity ansatz (5.35)
as

ε = Cµ
k2

νt
, (5.56)

with the empirical constant Cµ = 0.09 (Pope 2000). The profiles obtained for the viscous
dissipation rates in the three sprays are shown in figure 5.20. In a given cross section, ε
is of approximately constant value, except near the edge of the spray, where its values
are lower. Moreover, it decreases with increasing axial distance from the orifice. We
take the largest value of ε occurring in each cross section, εmax, and plot it against the
axial distance from the virtual origin, as shown in figure 5.21. This axial evolution of the
viscous dissipation rate is compared to the experimental results of Friehe et al. (1971),
who found the following relation for the dissipation rate in the self-similar region of
turbulent single-phase round jets (Su 1998)

ε = 0.075 u3
0

δ0.05
. (5.57)

δ0.05 denotes the full width of the jet at the 5 % points of the axial velocity profile. The
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Figure 5.21: Axial evolution of the viscous dissipation rate. The data points correspond to the three
sprays and the solid lines correspond to expression (5.57), obtained by Friehe et al. (1971)
and Su (1998).

full width for the present sprays can be determined from equation (5.33) by solving

u

u0
= 1

(1 + η2/4)2 := 5
100 (5.58)

for η. Consequently, the full width of the gas flow fields in the sprays reads

δ0.05(z) = 4
D

(
2
√

5− 1
)1/2

(z − z0)α . (5.59)

Although derived for the single-phase round jet, (5.57) shows good agreement with
the dissipation rate in the present sprays (see figure 5.21), calculated from (5.56) . This
indicates universal small-scale behavior of fully developed turbulence in this type of free
shear flow, which is described by the parameters u0 and δ0.05 exclusively. Note that
the relation (5.57) implies that the viscous dissipation rate scales with ε ∝ (z − z0)3−7α.
In the present two-phase spray flow, ε decreases more slowly than in the case of the
single-phase round jet, where, with α = 1, ε ∝ (z − z0)−4 is obtained (Djenidi et al.
2016).

With the dissipation rate εmax known, the turbulent time scales (5.51) and (5.52)
of the spray flow fields can be determined. Their values are depicted in figure 5.22 as
functions of the axial position. Both time scales increase with the axial distance from
the orifice, reflecting the decrease of the viscous dissipation rate. The turbulence time
scale of large-scale structures, τt, is more than an order of magnitude larger than the
Kolmogorov time scale, τµ, representing the smallest turbulent structures. The inverse of
the time scales yields the corresponding fluctuation frequencies.
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Figure 5.22: Turbulent time scales of the gas flow field, τµ and τt, obtained from (5.51) and (5.52),
respectively.
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Figure 5.23: Spectral energy ratio (5.48) according to the work of Chao (1964), for droplets of different
size in spray 2. The dashed and dash-dotted lines indicate the fluctuation frequencies at
the Kolmogorov time scale τµ (red lines) and at the turbulence time scale τt (black lines),
respectively.

The values of the turbulent eddy viscosity νt,exp were obtained from the cross correlation
of the velocity fluctuations u′v′ of the smallest drops in the sprays (see section 5.5). For
this purpose, the same measurement data was used as for the determination of the mean
gas velocity (see section 4.2), namely the data of drops with diameter d < 15 µm. The
smallest drop size class included drops with diameters 0 < d < 5 µm. Figure 5.23 shows
the spectral energy ratios (5.48), as obtained from the mathematical formulation of Chao
(1964), for drops of different diameter in spray 2. The kinetic energy ratios for drops with

91



5 Self-similar modeling

−2

−1

0

1

2

−4 −3 −2 −1 0 1 2 3 4

u
′ v
′ (
z
−
z 0

)3α
−

1
/
(ν
t,
e
x
p
C
D

3
)

self-similar coordinate η

spray 1
spray 2
spray 3
2η/(1 + η2/4)3

3η/(1 + η2/4)3

Figure 5.24: Self-similar profile of the cross-correlation u′v′. The solid line indicates the corresponding
self-similar description obtained from equation (5.37). The dashed line illustrates the
relation between the self-similar description and the experimental data when νt,exp is
increased by 50 %, as required by the mathematical description of the momentum source.

the mean diameter and the upper limit of the smallest drop size class, i.e. d = 2.5 µm
and d = 5 µm, respectively, and for much smaller drops with d = 1 µm, are depicted. The
vertical lines denote the large-scale and the small-scale turbulent fluctuation angular
frequencies obtained from the respective time scales τt and τµ (see figure 5.22). For each
time scale, two lines are depicted. One corresponds to a cross section very close to the
atomizer and the other to a cross section farther downstream. Drops of 5 µm in diameter
are representative for fluctuation frequencies in the turbulent energy spectrum of up
to ωc = 103 Hz. Smaller drops with d = 2.5 µm, fully capture turbulent fluctuations
up to frequencies in an order of magnitude corresponding to the large-scale turbulence
time scale. However, for fluctuations at the Kolmogorov scales, the spectral energy ratio
Ω(1)
c /Ω(2)

c is close to zero for a drop of this size. As a consequence, even smaller droplets,
i.e. tracer particles of d < 1 µm, would be required to fully resolve turbulent fluctuations
at the smallest scales. Hussein et al. (1994) used droplets of approximately 1 µm in
diameter as tracer particles for laser-Doppler measurements in turbulent single-phase jet
flow.

The analysis carried out in the present section strongly suggests that the values of the
turbulent eddy viscosity νt,exp, obtained from the present PDA data, are underestimated
due to the relatively high inertia of the larger droplets used as tracer particles. The
data captures large scale turbulent structures in the gas phase, resulting in values of
νt,exp in the correct order of magnitude. In turn, small-scale turbulent fluctuations
are not fully adopted by all the tracer particles used. An investigation of the exact
magnitude of the underestimation of νt is beyond the scope of the present analysis. The
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analytical expression for the shape function of the momentum source (5.38) suggests
an underestimation by approximately 33 % (see figure 5.18), and therefore justifies the
increase of the experimentally obtained values by 50 %, i.e. νt = 1.5νt,exp.
Figure 5.24 depicts the universal self-similar profile of the cross-correlation of the

turbulent velocity fluctuations u′v′ (solid line). The experimental data corresponds to
the results presented in figure 5.11 and collapses reasonably well to the profile of the
self-similar description (solid line). The dashed line illustrates the discrepancy between
the turbulent eddy viscosity obtained from the experiments, νt,exp, and the increased
eddy viscosity νt = 1.5νt,exp, as required by the self-similar description of the momentum
source.
The analytical self-similar description of the gas flow in the sprays is hereby fully

consistent with the experimental data. In the next section, the scope and limitations of
the self-similar model are discussed.

5.7 Scope and limitations

Based on PDA measurement data, a model for the self-similar description of the two-phase
flow fields of pressure-atomized sprays was developed. It is built on an axisymmetric
boundary-layer approximation of the gas flow field, accounting for momentum transfer
from the liquid to the gas phase. As a consequence, the analytical description of the gas
flow field is valid downstream from a certain distance of the atomizer only, where the self-
similar behavior of the flow field is fully developed. This is connected to the slenderness
of the flow field, required for the boundary-layer approximation to be applicable, and
well known from other boundary-layer type flows (Schlichting and Gersten 2017). In
the present case, the minimum distance from the atomizer where experimental data is
available is z/dor = 38. At this axial distance, the analytical description already agrees
very well with the measurement data in spray 1 and exhibits small deviations in sprays 2
and 3 (see figures 5.7 and 5.9). This distance corresponds to approximately two times
(spray 1) and three times (sprays 2 and 3) the breakup length of the liquid sheet (see
figure 3.10).

The limit of the self-similar description downstream is set by the mathematical structure
of the analytical solution. The main characteristic of the self-similar solution is the
dependency of all flow field properties on the axial coordinate z following a power law
(z−z0)κ. For the momentum flow rate of the gas phase through every plane z = constant,
the exponent κ is given in equation (5.25) by 2− 2α and therefore positive (see figure
5.6(b)). Consequently, the momentum flow rate of the liquid phase must exhibit a
negative exponent κ (see figure 4.9(b)). However, the increase of the gas momentum
flow rate can only persist as long as the drop velocities are higher than the gas velocity.
This fact sets the limit to the validity of the present self-similar description. Due to the
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Figure 5.25: Downstream limitation criterion (5.60) of the self-similar description of the spray flow field.
(a) Spray 1, (b) spray 2 and (c) spray 3.

nature of the solution in the form of a power law, this limit does not emerge from the
asymptotics of the applied mathematical description.

As a limiting criterion we propose the difference of the volume-mean liquid velocity ûl
and the gas velocity u, normalized by the liquid velocity through the orifice ūor, i.e.

ûl(r, z)− u(r, z)
ūor

> 0 , (5.60)

where the volume-mean liquid velocity is calculated by

ûl =

U∑
u=1

D∑
d=1

ul,ud
3
dψud

U∑
u=1

D∑
d=1

d3
dψud

. (5.61)
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Spray 1 Spray 2 Spray 3
Uexp [m2α/s] 3.49 4.10 4.58
Mexp [kg m2α− 1/s2] 0.114 0.208 0.309
νt,exp [m2/s] 77.1ν 92.5ν 101.6ν

α 0.66 0.69 0.65
z0 [mm] −3.0 −13.1 −4.2
C [m2/s] 0.00328 0.00511 0.00678
D [mα− 1] 23.05 20.04 18.38
νt [m2/s] 1.5νt,exp 1.5νt,exp 1.5νt,exp

Table 5.5: Summary of the model constants. The molecular viscosity of air at 20 °C has a value of
ν = 15.4 mm2/s.

Here, ψud represents the drop number flux in the drop velocity class ul,u with the
diameter dd (see section 3.2.2). As long as the ratio (5.60) is sufficiently larger than
zero, momentum is transferred from the liquid to the gas phase. Thus, the downstream
boundary of the self-similar model described by (5.60) is located at an axial position,
where the velocity difference between the two phases is small compared to the mass-flux
equivalent liquid velocity inducing the two-phase flow field. Figure 5.25 depicts the
criterion (5.60) in the sprays investigated. Its values are well above zero, indicating that
the self-similar theory holds. The ratio (5.60) decreases with increasing axial distance
from the atomizer and its corresponding profiles flatten out, showing the progression
of the spray flow towards an equilibrium state. In the equilibrium state, the liquid-gas
mixture is characterized by a mixture density moving at a mixture velocity. This so-called
locally homogeneous flow is described by others (Shearer et al. 1979; Desantes et al. 2011).
Additional thought on the transition from the state governed by momentum transfer to
the equilibrium state is given in section 7.2.

5.8 Summary

The constants of the self-similar model listed in tables 5.1, 5.2 and 5.3 are summarized
in table 5.5.
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Chapter 6

Predictions

Certain predictions of the model derived in chapter 5 are compared against results
reported in the literature. In section 6.1 we discuss the rate of mass entrainment into
the sprays. Section 6.2 compares the gas-flow turbulent Reynolds number of the present
sprays to the results reported for the single-phase round jet.

6.1 Rate of mass entrainment

The rate of mass entrainment describes the mass of ambient gas entrained into the spray
flow. It is of interest in many technical applications, since the entrainment rate relates
to the mixing of the liquid and the gas phases. In the present sprays, the definition of
the gas mass flow rate, with constant gas density ρ, reads in its general form

ṁ(z) = 2πρ
∞∫

r=0

u(r, z)r dr . (6.1)

Using the self-similar description of the gas flow field, see section 5.2, we obtain

ṁ(z) = 2πρC(z − z0)
∞∫

η=0

f ′ dη = 8πρC(z − z0) . (6.2)

The mass flow rate depends on the gas density ρ, the constant C and the axial distance
from the virtual origin only. It increases linearly with z− z0. The linear increase emerges
from the mathematical structure of the equation and the ansatz for self-similarity (5.15).
The exponent α does not appear in (6.2), indicating that the linear trend is universal for
boundary-layer type flow described by equation (5.16).
The axial evolution of the entrained mass is usually represented in the form of a

nondimensional entrainment rate, which is the ratio of the entrained mass flow rate,
ṁ−ṁor, to initial mass flow rate ṁor. According to Medrano et al. (2017), who considered
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two-phase jets with the phases in dynamic equilibrium, it is defined as

ṁ+(z) = ṁ(z)− ṁor

ṁor
= Ke

(
z

dor

)(
ρ

ρor

)1/2
, (6.3)

where ṁor is the mass flow rate through the nozzle orifice, z the axial distance from the
orifice, dor the orifice diameter, ρor the density of the ejected fluid and ρ the density of
the ambient gas. Ke represents the nondimensional entrainment rate coefficient. Ricou
and Spalding (1961) measured the entrainment rate coefficient for different combinations
of jet gas and ambient gas in the region 25 < z/dor < 400. They found a constant value
of Ke = 0.32 for non-reacting isothermal jets. From (6.2) and (6.3) we calculate the
entrainment rate coefficients of the present sprays as

Ke = 8πρC
(

dor
ṁl,exp

)(
ρl
ρ

)1/2
, (6.4)

where we replaced the ratio (ṁ− ṁor)/ṁor by ṁ/ṁl,exp, since the initial gas flow rate
ṁor is zero, and the axial distance from the orifice z with the axial distance from the
virtual origin of the self-similar flow field z − z0. The values obtained for Ke are 0.57,
0.61 and 0.95 for sprays 1, 2 and 3, respectively and therefore much larger than the
entrainment rate coefficient reported by Ricou and Spalding (1961). This is reasonable
since the presence of the droplets results in a more pronounced widening of the spray
flow compared to the single-phase round jet. Notably, the values for sprays 1 and 2 are
almost identical. This suggest that the entrainment rate coefficient only weakly depends
on the Weber number Wel, and is mainly determined by the Ohnesorge number Ohl of
the spray (see table 3.3).

In sprays, the entrainment rate coefficient is not necessarily of constant value, but may
also change with the axial distance from the orifice. Its modified definition, according to
Cossali et al. (1996), reads

K̂e(z) = dṁ
dz

(
dor
ṁor

)(
ρor
ρ

)1/2
. (6.5)

In the present sprays, however, the entrainment rate K̂e reduces to the result given in
(6.4) since ṁ ∝ (z − z0). In other type of sprays, however, entrainment rate coefficients
depending on the axial distance from the orifice were reported. Ruff et al. (1989) found
K̂e to be axially increasing for pressure atomization of water jets. They measured
entrainment rates in sprays generated with two different nozzles of 9.5 mm and 19.1 mm
in diameter. The reported entrainment rate coefficients were of much lower value as in
the present sprays, and also lower than the value reported by Ricou and Spalding (1961)
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Figure 6.1: Entrainment rate coefficient of the three sprays investigated (solid lines) compared to results
reported in the literature (symbols). The dashed line indicates the constant entrainment
rate coefficient in the far-field of turbulent single-phase round jets. From the work of Cossali
et al. (1996), the case C is depicted where the condition of the ambient atmosphere is closest
to our experiments.

for the single-phase round jet, but increasing with its axial position. The difference in
scaling and magnitude of K̂e to the sprays of the present work can be attributed to the
different types of sprays investigated. Ruff et al. (1989) atomized liquid jets resulting in
very slim and dense sprays. Cho et al. (1990) reported a constant entrainment coefficient
K̂e = 0.32 for a steady water spray with an elliptical nozzle cross section (3 mm× 4 mm)
and a diesel spray, originating from a circular nozzle of 0.29 mm in diameter, injected
into a high pressure environment. Cossali et al. (1996), on the other hand, reported
an axial increase of the entrainment rate coefficient in unsteady full-cone sprays. In
contrast to the linear scaling of the entrained gas mass in the present sprays, their results
showed an axial scaling of ṁ ∝ (z − z0)3/2. This difference may be attributed to the
different interaction between the liquid and the gas phases in their unsteady full-cone
sprays, as compared to the sprays investigated the present study. Figure 6.1 depicts the
entrainment rate coefficients K̂e of sprays 1, 2 and 3, as well as the ones of the studies
discussed above. The values of K̂e in the present sprays are evidently much larger than
the results selected from the literature. This is due to the different types of spray flows.

6.2 Gas-flow turbulent Reynolds number

The Reynolds number relates inertial forces to viscous forces. In self-similar turbulent
free shear flow, the gas-phase turbulent Reynolds number is usually defined as the ratio
of the product of a characteristic velocity scale times a characteristic length scale to the
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Figure 6.2: Axial evolution of the gas-phase Reynolds number (6.7) in the three sprays. The data of
Tennekes and Lumley (1972) and Peters (1997) corresponds to turbulent single-phase round
jets.

turbulent eddy viscosity (Pope 2000). For the single-phase round jet it is defined as

Ret = u0(z) `0.5(z)
νt

(6.6)

with `0.5(z) representing the half-width of the jet, i.e. the radial distance of the 50 %
point of the axial velocity profile from the jet axis (Tennekes and Lumley 1972). Tennekes
and Lumley (1972) reported a constant turbulent Reynolds number throughout the flow
field in single-phase round jets of Ret = 32, and Peters (1997) reported a similar value of
Ret = 35. In the single-phase round jet `0.5(z) ∝ (z − z0) and the velocity at the jet axis
scales u0(z) ∝ (z − z0)−1. From the value of the constant Reynolds number (6.6), the
constant turbulent eddy viscosity can be calculated. In the present two-phase spray flow,
the turbulent Reynolds number of the gas flow reads

Ret = u0(z) `(z)
νt

= 4
(√

2− 1
)1/2 CD

νt
(z − z0)1−α , (6.7)

where the half-width of the axial velocity profile is calculated from

u

u0
= 1

(1 + η2/4)2 := 1
2 (6.8)

as

`(z) = 2
(√

2− 1
)1/2 (z − z0)α

D
. (6.9)
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6.2 Gas-flow turbulent Reynolds number

With α ≈ 2/3 in the present sprays, equation (6.7) suggests that the gas-phase Reynolds
number is not of constant value as in the single-phase round jet , but increases with the
axial distance from the virtual origin. In light of the increasing momentum flow rate of the
gas phase, this finding is plausible. Figure 6.2 compares the gas-phase Reynolds numbers
of the three sprays with the constant Reynolds numbers obtained in the single-phase
round jet by Tennekes and Lumley (1972) and by Peters (1997). The values of the
constant prefactor 4(

√
2− 1)1/2CD/νt in the definition of the Reynolds number (6.7),

are different in all three sprays (spray 1: 109.6 mα− 1, spray 2: 123.7 mα− 1, spray 3:
137.1 mα− 1). Its value is smallest in spray 1 and largest in spray 3. From this it follows
that the turbulent gas-flow Reynolds number increases with the Weber number Wel and
the Ohnesorge number Ohl (see table 3.3).
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Chapter 7

Implications

The self-similar model developed in chapter 5 allows for a convenient description of the
gas phase in non-evaporating two-phase axisymmetric spray flow. In the following, we will
extend this analysis to heat and mass transport, and discuss other possible applications
in two-phase flow fields, which may be the subject of future scientific efforts.

7.1 Heat and mass transport

The self-similar analysis of the gas flow field is extended to describe heat and mass
transport in evaporating sprays. Both problems, the transport of heat and mass, are
subject to similar equations, but with different characteristic numbers. Thus, we will
describe mass transport only and define the corresponding variables in the case of
heat transport. The cylindrical axisymmetric equation for the transport of the mass
concentration %j of the vapor component j, obtained from boundary-layer theory, reads

u
∂%j
∂z

+ v
∂%j
∂r

= Dt
1
r

∂

∂r

(
r
∂%j
∂r

)
+ Sj . (7.1)

Similar to the self-similar analysis of the gas flow field in chapter 5, the turbulent effective
diffusion coefficient Dt is assumed to be of constant value throughout the flow field and
much larger than the contribution of molecular diffusion. Sj represents a source term
of vapor mass, accounting for the evaporation of the liquid component j. u and v are
the velocity components of the self-similar gas flow field, (5.17) and (5.18). To facilitate
a self-similar description, the present analysis neglects the influence of the evaporating
component both on the velocity field and on the physical properties of the gas flow field,
i.e. ρ, µ and σ. As a consequence, it may be applicable to weakly evaporating sprays
with low vapor concentrations only. The mass transport equation (7.1) is applicable to
heat transport as well. For this purpose, the following quantities need to be replaced

%j → T , Dt → at and Sj → Sh . (7.2)
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T denotes the local temperature of the gas flow field, at the effective thermal diffusivity
and Sh the heat source term.
To transform the transport equation (7.1) into the self-similar coordinate, we choose

the following ansatz for the self-similar vapor concentration field

%j(r, z)− %j,∞ = t(z)Θ(η) , (7.3)

where t(z) is a scaling function, Θ(η) represents the self-similar vapor concentration
profile and η is the same coordinate as in the dynamic analysis. %j,∞ denotes the ambient
concentration of the vapor component %j in the undisturbed far field of the spray. For the
transport of heat, %j,∞ is replaced by the temperature in the far field T∞. Introducing
the ansatz (7.3) and the velocity components (5.17) and (5.18) into the mass transport
equation (7.1) yields

h
t′

t
f ′Θ− h′fΘ′ = Dt

(
ηΘ′

)′ + η

g2t
Sj . (7.4)

The functions h(z) and t(z), as well as the source term Sj , must allow equation (7.4) to
become an ordinary differential equation for Θ(η). With h′ = C (see equations (5.9) and
(5.14)), we require

h
t′

t
= constant := Ẽ (7.5)

resulting in

t(z) = F (z − z0)Ẽ/C (7.6)

with the two unknown constants Ẽ and F . Moreover, we require the vapor source to be
of the form

Sj(r, z) = Dtg(z)2t(z)Φj(η) (7.7)

for equation (7.4) to be independent of z. Φj(η) denotes a yet unknown self-similar shape
function of the vapor source. Introducing the constant

β := Ẽ

C
, (7.8)

the self-similar ansatz for the concentration field (7.3) and the vapor source (7.7) turn
into

%j(r, z)− %j,∞ = F (z − z0)βΘ(η) and (7.9)
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Figure 7.1: Self-similar shape function of the vapor concentration profile calculated from equation (7.12)
for (a) Sct = 1 and different values of the exponent β, and (b) for β = 1− 2α and a range
of different turbulent Schmidt numbers Sct. For the computation of Θ(η), the self-similar
shape function of the vapor source term Φj(η) is assumed to be equal to the self-similar
shape function of the momentum source term (5.38). The parameters of spray 2 are used.
The dashed red line represents the self-similar axial velocity profile of the gas phase.

Sj(r, z) = DtD2F (z − z0)β−2αΦj(η) , (7.10)

respectively. Here, the exponent β determines the axial dependency of the vapor concen-
tration. F is a constant required for dimensional reasons with the physical unit kg/m3 + β .
In the case of heat transport, the physical unit of the constant F is K/mβ . Introducing
the turbulent Schmidt number

Sct = νt
Dt

, (7.11)

which relates the coefficients of turbulent momentum and turbulent diffusive mass
transport, the self-similar transform of the mass transport equation (7.4) reads

Sct
C

νt

(
βf ′Θ− fΘ′

)
=
(
ηΘ′

)′ + ηΦj . (7.12)

For β = −1 and Φj = 0, (7.12) reduces to the equation of the single-phase round jet
(Tropea et al. 2007). To describe heat transport, the turbulent Schmidt number Sct is
replaced by the turbulent Prandtl number Pr t. Two boundary conditions are required to
determine the solution of (7.12). They are given by

∂%j
∂η

∣∣∣∣
η→0

= 0 ⇒ Θ′(0) = 0 , (7.13)
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Figure 7.2: Schematic sketch of the axial evolution of the gas-phase momentum flow rate.

%j |η→∞ = %j,∞ ⇒ Θ(η →∞) = 0 . (7.14)

The first one considers the symmetry of the vapor concentration field. The second one
refers to the ambient vapor concentration in the far field.
To solve equation (7.12) for Θ(η) and determine the concentration field (7.9), the

constants β, F and Sct, as well as the shape function of the self-similar vapor source term
Φj(η), are required. For the turbulent Schmidt number, Tominaga and Stathopoulos
(2007) suggest a value of Sct = 0.9 in turbulent free shear flow. The determination of
the remaining parameters, the exponent β, the constant F , and the self-similar shape
function of the vapor source Φj(η), is not feasible with the experimental PDA data at
hand and therefore beyond the scope of this work. Measurement of the concentration
fields in such sprays, as investigated in the present study, is required to derive these
model parameters.

The exponent β relates to the global mass flow rate of the vapor component j per

Mj(z) = 2π
∞∫

r=0

u(%j − %j,∞)r dr = 2πCF (z − z0)1+β
∞∫

η=0

f ′Θ dη . (7.15)

Due to the evaporation of the liquid component j, with the density ρl,j , we expect the
vapor mass flow rateMj to increase with the axial distance from the orifice. Thus, the
lower limit for the exponent β is given in equation (7.15) by β > −1. In the case of heat
transport, the global enthalpy balance has to be considered

H(z) = 2πρcp
∞∫

r=0

u(T − T∞)r dr , (7.16)

where cp denotes the specific isobaric heat capacity of the gas.
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7.2 Transition to equilibrium

As an example, we numerically calculate the self-similar concentration profile from
(7.12) by means of a shooting method. For this purpose, we assume similarity between
mass and momentum transfer, i.e. Φj(η) := Ω(η). Figure 7.1, depicts the solutions for
various values of (a) β and (b) Sct in spray 2. As expected, larger Schmidt numbers result
in more slender profiles of Θ(η). A stronger axial decrease in the momentum source term,
i.e. smaller values of β, also results in more slender self-similar concentration profiles.
For total analogy between mass and momentum transport (Sct = 1 and β = 1− 2α), the
self-similar concentration profile collapses with the self-similar axial velocity profile. The
latter is depicted as the dashed red lines in figure 7.1.

7.2 Transition to equilibrium

The self-similar model of the gas flow field developed in chapter 5 covers the region of
large slip velocities between the phases, i.e. the region where momentum is transferred
from the liquid to the gas phase. After the droplets transferred their excess momentum
to the gas phase, both phases are in an equilibrium state. In the far field, the spray flow
propagates similar to a single-phase jet, but with a variable mixture density due to the
presence of the droplets. In this so-called locally homogeneous flow (LHF), the two-phase
mixture propagates at a mixture velocity (Faeth 1983; Desantes et al. 2011). Figure 7.2
schematically depicts the axial evolution of the momentum flow rate of the gas phase in
the present sprays. The initial entry region 1 is succeeded by a region of self-similar
liquid-gas momentum transfer 2 as reported in the present work (see chapter 5). In the
far field 4 , the spray flow behaves similar to a single-phase jet flow. Little is known
about the transition from the regime of self-similar momentum transfer to the regime of
self-similar momentum conservation (region 3 ). In the following, we propose a simple
model to transfer the scaling variables of self-similar liquid-gas momentum transfer 2 to
self-similar constant momentum flow rate regime 4 .
The gas-flow field in both regimes is in general described by the same self-similar

equation (5.16), with Ω(η) = 0 in the regime 4 , and which is in both cases satisfied by
the same solution (5.32) for the self-similar shape function. We base our analysis on two
assumptions. First, the transition occurs at a discrete axial location zb, i.e., at z = zb the
exponent switches from α = 2/3 to α = 1. This implies a kink in the axial evolution of
the momentum flow rate of the gas at this point, where it is therefore not continuously
differentiable with respect to the z coordinate. Second, for simplicity, we assume that
the density of the two-phase mixture in the far field regime 4 is equal to the density of
the gas phase, neglecting the presence of the liquid drops. In the following, we denote
parameters corresponding to the regimes of liquid-gas momentum transfer and constant
momentum flow rate with the subscripts 2 and 4, respectively.
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In the cross section of transition between the two regimes, at zb, the gas momentum
flow rate is conserved. From its definition (5.25) we obtain, with α4 = 1, the relation

C2
2D

2
2(zb − z0,2)2−2α2 = C2

4D
2
4 , (7.17)

implying that the velocity profiles u2(η, zb) and u4(η, zb) are equal as well. Moreover we
demand at zb that η2 = η4 and r2 = r4, respectively, yielding the relation

D2
(zb − z0,2)α2

= D4
(zb − z0,4) (7.18)

from the definition (5.15) of the self-similar coordinate η. The velocity profiles and the
lines of constant self-similar coordinates are assumed to be continuously differentiable at
zb, i.e.

∂u2
∂z

∣∣∣∣
z→zb

= ∂u4
∂z

∣∣∣∣
z→zb

and (7.19)

∂η2
∂z

∣∣∣∣
z→zb

= ∂η4
∂z

∣∣∣∣
z→zb

. (7.20)

Using the definitions of the self-similar coordinate η and the axial gas velocity u, (5.15)
and (5.17), the constraints (7.19) and (7.20) result in the requirements

(1− 2α)C2D
2
2(zb − z0,2)−2α2 = −C4D

2
4(zb − z0,4)−2 and (7.21)

αD2
(zb − z0,2)1+α2

= D4
(zb − z0,4)2 , (7.22)

respectively. Equations (7.17), (7.18), (7.21) and (7.22) represent four constraints for the
parameters C4, D4 and z0,4. Since this system of equations is overdetermined, only either
the continuity of the velocity profiles (7.21) or the continuity of the lines of constant
self-similar coordinates (7.22) can be ensured. This is due to the earlier assumption of
a sudden transition between the two regimes at zb, resulting in the kink in the axial
evolution of the momentum flow rate. In the following, the results corresponding to
(7.21) are labeled with subscript I and the results for (7.22) are labeled with subscript II.

From (7.17), (7.18) and (7.21), left column, and from (7.17), (7.18) and (7.22), right
column, we obtain the expressions

z0,4-I = zb −
zb − z0,2
2α2 − 1 z0,4-II = zb −

zb − z0,2
α2

(7.23)

C4-I = (2α2 − 1)C2 C4-II = α2C2 (7.24)
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Figure 7.3: Transition from the regime of momentum transfer to jet-like momentum conservation. (a)
Momentum flow rate, (b) lines of the self-similar coordinate η = 1, (c) axial gas velocity
at the spray axis and (d) gas mass flow rate. The assumed cross section of transition is
indicated by the dashed vertical line at zb. The data corresponds to spray 2.

D4-I = D2
(zb − z0,2)1−α2

2α2 − 1 D4-II = D2
(zb − z0,2)1−α2

α2
(7.25)

for the parameters C4, D4 and z0,4. Note that the virtual origin z0,4 is not located in the
vicinity of the orifice (z = 0), but rather at large negative distances of z.

As an example, figure 7.3 depicts the transition to the equilibrium state in spray 2
using the constants given in (7.23) to (7.25). We assume the axial position of transition
to be at zb = 320 mm (z/dor = 800). This value is purely hypothetical and chosen for
illustration purposes only. In practice, the axial position zb is determined by the limiting
criterion (5.60), which sets the limit to the regime with liquid-gas momentum transfer.
In figure 7.3(a) the evolution of the momentum flow rate with a kink at zb is depicted.
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Figure 7.3(b) shows lines η = constant in the (r, z) space. In case I (7.21), a kink in the
line can be observed at zb, whereas the profile is smooth in case II (7.22). Figure 7.3(c)
shows the decrease of the gas velocity at the spray axis u0(z). For case I (7.21), a smooth
transition between the regimes can be observed. The evolution of the gas mass flow rate
is depicted in figure 7.3(d). It exhibits a change in the entrainment rate in both cases, as
indicated by the different slopes before and after zb. The axial scaling is linear in both
regimes.
In real spray flows, the scaling variables describing the spray propagation in the far

field may be in between the results corresponding to the two different cases reported
in (7.23) to (7.25). Experimental data is required to reveal the details of the transition
from regime 2 to regime 4 , i.e. regime 3 (see figure 7.2). This may be an interesting
subject for future studies.

7.3 Self-similarity of the liquid phase

The present analysis revealed self-similarity of the z -momentum equation of the liquid
phase (5.4), by showing that both terms on its left-hand side are self-similar in the
sprays investigated (see section 5.6). From this finding followed the self-similarity of the
momentum source fd. In the present section, we present further evidence for the self-
similar behavior of the liquid phase. We take the profiles of the liquid mass concentration,
cl, see figures 4.6(b,d,f ), scale them with the concentration at the spray axis, cl,0, and plot
them against the self-similar coordinate η. The resulting profiles are shown in figure 7.4.
They collapse quite well on a single curve in each spray, with some deviations in spray 2
for the profile closest to the orifice. This indicates that not only the liquid momentum
equation behaves self-similar, but also the concentration of the liquid mass.

This finding raises the question if there exist self-similar mean velocity profiles of the
liquid phase as well, and if they can be described mathematically. In fact, Yeung (1982)
suggested a similarity solution for axisymmetric spray flow. Instead of considering the
liquid as an ensemble of discrete droplets for the equations of motions, as in the present
study, see (5.3) and (5.4), he treated the liquid phase as a continuum

∂

∂z
(clǔl) + 1

r

∂

∂r
(rclv̌l) = 0 continuity liquid (7.26)

∂

∂z

(
clǔ

2
l

)
+ 1
r

∂

∂r
(rclǔlv̌l) = −ρfd,z z -momentum liquid (7.27)

∂

∂z
(clǔlv̌l) + 1

r

∂

∂r

(
rclv̌

2
l

)
= −ρfd,r r -momentum liquid (7.28)
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Figure 7.4: Self-similar profiles of the concentration of liquid mass. The liquid mass concentration at
the spray axis is denoted by cl,0. (a) Spray 1, (b) spray 2 and (c) spray 3.

Here, ǔl and v̌l denote the mean velocities in axial and radial directions of the liquid
phase, respectively. Yeung (1982) coupled these equations of motion of the continuous
liquid phase to the equations of motion of the gas phase. The latter are defined similar
to (5.1) and (5.2).

There are certainly many open questions to this approach. For example, the coupling
of the liquid and gas phases through the source terms fd,z and fd,r is not straightforward,
since the drag force is drop-size and drop-velocity dependent. Moreover, the momentum
equation of the gas phase in radial direction is neglected due to the boundary-layer
approach. But it has to be considered in the description of the liquid phase in order to
obtain three equations for the determination of three unknown quantities (cl, ǔl and v̌l).
Despite these open questions, however, this topic may be interesting for future scientific
investigations, since our measurement data clearly show the self-similarity of cl (see figure
7.4).
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7.4 Self-similar planar flows

The self-similar analysis of a boundary-layer type flow including a momentum source
term, as documented in chapter 5, may be applicable to spray flows produced by other
types of atomizers as well. The self-similar shape function of the momentum source (5.38)
covers a range of different shapes (see figure 5.12). In theory, other combinations of f(η)
and Ω(η) satisfying the self-similar momentum equation (5.16) are possible. Experimental
data at hand is required to carry out the analysis. In the present section, we derive
the governing equation for a possibly self-similar flow field of plane sprays, for example
produced by flat fan nozzles. This type of flow is well-known for its self-similar behavior
in the single-phase case. In contrast to the single-phase round jet, in the single-phase
plane jet, the governing equations and the resulting axial scaling functions differ between
the laminar and the turbulent case. Thus, we will first investigate the simpler laminar
case with a constant dynamic viscosity, and then examine the turbulent case, where the
turbulent eddy viscosity may scale with the axial distance from the orifice.

7.4.1 Plane laminar two-phase flow

In plane sprays, the governing equations of the gas flow field are described in Cartesian
coordinates. The equations of motion are of laminar boundary-layer type with constant
pressure throughout and read

∂uq
∂x

+ ∂vq
∂y

= 0 continuity gas (7.29)

uq
∂uq
∂x

+ vq
∂uq
∂y

= νq
∂2uq
∂y2 + fd,q x -momentum gas (7.30)

where x and uq are the coordinate and the velocity component in streamwise direction,
and y and vq denote the coordinate and the velocity component in normal direction.
fd,q denotes the momentum source term and νq the constant molecular kinematic gas
viscosity. In the following, all variables corresponding to the laminar plane flow are
denoted by the subscript q. We introduce the Stokesian stream function Ψq, which is
defined through the downstream and transverse velocity components

uq = ∂Ψq

∂y
and vq = −∂Ψq

∂x
, (7.31)

respectively. The x -momentum equation (7.30) reads in terms of the stream function as
follows

∂Ψq

∂y

∂Ψq

∂x∂y
− ∂Ψq

∂x

∂2Ψq

∂y2 = ν
∂3Ψq

∂y3 + fd,q . (7.32)
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7.4 Self-similar planar flows

We introduce the ansatz for the self-similar coordinate and the stream function

ηq = gq(x) y and Ψq = hq(x)fq(ηq) , (7.33)

the latter depending on the self-similar shape function fq(ηq). gq(x) is a scaling function
and hq(x) is a mapping function. Introduction of (7.33) into (7.32) yields

(
h′q
νqgq

+
g′qhq

νqg2
q

)
f ′ 2q −

h′q
νqgq

fqf
′′
q = f ′′′q + 1

νqg3
qhq

fd,q . (7.34)

For (7.34) to be an ordinary differential equation for the self-similar shape function fq(ηq)
only, we require

h′q
νqgq

= constant =: Ãq , (7.35)

h′q
νqgq

+
g′qhq

νqg2
q

= constant =: C̃q , (7.36)

so that the functions hq(x) and gq(x) read

hq(x) = D̃q

[(
1− ν2

q Ãq(C̃q − Ãq)
)
x+ B̃q

]−[1−ν2
q Ãq(C̃q−Ãq)] (7.37)

gq(x) = D̃q

νqÃq

[
1− ν2

q Ãq(C̃q − Ãq)
] [(

1−

− ν2
q Ãq(C̃q − Ãq)

)
x+ B̃q

]−[1−ν2
q Ãq(C̃q−Ãq)]−1

.

(7.38)

The constants Ãq, B̃q, C̃q and D̃q are replaced by

αq := −
[
1− ν2

q Ãq(C̃ − Ãq)
]
, (7.39)

x0,q := − B̃q

1− ν2
q Ãq(C̃q − Ãq)

, (7.40)

Cq := D̃q

[
1− ν2

q Ãq(C̃q − Ãq)
]−[1−ν2

q Ãq(C̃q−Ãq)]
, (7.41)

Dq := D̃q

νqÃq

[
1− ν2

q Ãq(C̃q − Ãq)
] [

1− ν2
q Ãq(C̃q − Ãq)

]−[1−ν2
q Ãq(C̃q−Ãq)]−1

. (7.42)
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For the momentum source term fd,q, we require

fd,q(x, y) := νqCq
Dq

gq(x)3hq(x)Ωq(ηq) , (7.43)

where Ωq(ηq) is a yet unknown self-similar shape function of the momentum source. With
the constants (7.39) to (7.42), the ansatz for self-similarity (7.33) and the momentum
source term (7.43) become

ηq = Dq
y

(x− x0,q)1−αq , (7.44)

Ψq = Cq(x− x0,q)αqfq(ηq) , (7.45)

fd,r = D4
q(x− x0,q)4αq−3 . (7.46)

The x -momentum equation transformed into the self-similar coordinate, (7.34), turns
into

(2αq − 1)f ′ 2q − αqfqf ′′q = νqDq

Cq
f ′′′q + Ωq(ηq) . (7.47)

The velocity components uq and vq become

uq = gqhqf
′
q = CqDq(x− x0,q)2αq−1f ′q and (7.48)

vq = −h′qfq −
g′qhq

gq
ηf ′q = Cq(x− x0,q)αq−1

[
(1− αq)ηqf ′q − αqfq

]
. (7.49)

The value of the exponent αq depends on the global momentum flow rate. For the
plane flow field of the gas phase, the momentum flow rate per unit width B reads

Iq(x)
B

= 2πρq
∞∫

y=−∞

u2
q(x, y) dy = 2πρqC2

qDq(x− x0,q)3αq−1
∞∫

ηq=−∞

f ′ 2q dη . (7.50)

For an increasing momentum flow rate we expect αq > 1/3. In the single-phase plane jet,
with a constant momentum flow rate, we obtain αq = 1/3. Together with Ωq(ηq) = 0,
equation (7.47) simplifies to the single-phase case (Brenn 2017). Note, in laminar flow
the molecular Reynolds number increases with the distance from the orifice, even for
single-phase plane jets with a constant momentum flow rate

Req = u0,q(x)`q(x)
νq

∝ hq(x) ∝ (x− x0,r)αq . (7.51)
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7.4.2 Plane turbulent two-phase flow

Turbulent plane jets differ significantly from their laminar counterparts. Unlike the
axisymmetric case, the turbulent eddy viscosity νt is not constant throughout the flow
field, but scales with the axial distance from the orifice (Schlichting and Gersten 2017).
We expect similar behavior in plane self-similar two-phase spray flow. In this section, we
present the corresponding analysis.
The equations of motion of the gas phase (7.29) and (7.30) are given in the previous

section. In the turbulent case, the constant molecular kinematic viscosity νq is replaced
with the turbulent eddy viscosity νt,s(x), depending on the axial coordinate x. In the
following, variables referring to the turbulent plane spray flow are denoted by the subscript
s. Introducing the Stokesian stream function Ψs, similar to (7.31), the velocity field
satisfies the continuity equation (7.29). The ansatz for self-similarity is given by

ηs = gs(x) y and Ψs = hs(x)fs(ηs) , (7.52)

similar to (7.33). Additionally, we require an ansatz for the non-constant turbulent
eddy viscosity νt,s. In turbulent single-phase plane jets, νt,s is independent of ηs and
proportional to a length and velocity scale, ` ∝ 1/gs(x) and u0 ∝ gs(x)hs(x), of the
flow field, producing in a constant turbulent Reynolds number Ret,s (Schlichting and
Gersten 2017). For example, Tennekes and Lumley (1972) reported a constant turbulent
Reynolds number of Ret,s = 25.7 in turbulent single-phase plane jets. In the axisymmetric
two-phase spray flow, however, we have shown an axial increase in the turbulent gas flow
Reynolds number (6.7). We expect a similar increase of Ret,s in the turbulent plane spray
flow. With the length-scale 1/gs(x) and the velocity scale gs(x)hs(x), and the definition
of the Reynolds number (6.6), our ansatz for the turbulent eddy viscosity reads

νt,s(x) = hs(x)
ks(x) . (7.53)

The scaling function ks(x) represents the a priori unknown streamwise scaling of the
turbulent Reynolds number Ret,s of the gas phase. With (7.52) and (7.53), we transform
the x -momentum equation (7.30) into the self-similar coordinate yielding

(
h′sks
gshs

+ g′sks
g2
s

)
f ′ 2s −

h′sks
gshs

fsf
′′
s = f ′′′s + ks

g3
sh

2
s

fd,s . (7.54)

To obtain an ordinary differential equation, independent of x, we require

h′sks
gshs

= constant , (7.55)
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h′shs
gshs

+ g′sks
g2
s

= constant . (7.56)

The momentum source term fd,s must be of the form

fd,s(x, y) := gs(x)3hs(x)2

ks(x) Ωs(ηs) , (7.57)

where Ωs(ηs) is the self-similar shape function of the momentum source. The system
of equations (7.55) to (7.56), to determine gs(x), hs(x) and ks(x) is, however, under-
determined. Thus we follow a different approach, assuming the following power laws

gs(x) = Ds(x− x0,s)αs , (7.58)

hs(x) = Cs(x− x0,s)βs , (7.59)

ks(x) = Es(x− x0,s)γs , (7.60)

as an ansatz for gs(x), hs(x) and ks(x). Consequently, the momentum equation (7.54)
turns into

(x− x0,s)γs−αs−1
[
(αs + βs) f ′ 2 − βsfsf ′′s

]
= Ds

Es
f ′′′s + Ds

Es
Ωs(ηs) , (7.61)

where the exponents γs and αs have to be chosen such that the exponent of the x
coordinate vanishes. Additional information on the axial scaling of the flow field is
obtained from the global momentum flow rate. We assume it to be proportional to a
power function with the exponent ms, i.e. Is(x) ∝ (x− x0,s)ms with ms > 0. The axial
scaling of the momentum flow rate of the gas phase in self-similar coordinates is given by

I(z) ∝ (x− x0,s)ms ∝ (x− x0,s)αs+2βs . (7.62)

From (7.61) and (7.62) we obtain the following constraints for the exponents

γs − αs − 1 = 0 , (7.63)

ms = αs + 2βs . (7.64)

Solved for αs and βs they read

αs = γs − 1 , (7.65)

βs = 1
2 (ms − γs + 1) . (7.66)
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7.4 Self-similar planar flows

The axial dependency of the turbulent eddy viscosity (7.53) turns into

νt,s(x) ∝ (x− x0,s)βs−γs ∝ (x− x0,s)(ms−3γs+1)/2 . (7.67)

Without liquid-gas momentum transfer, i.e. Ωs(ηs) = 0, ms = 0 and γs = 0, we obtain
the exponents αs = −1 and βs = 1/2, the axial scaling νt,s(x) ∝ (x− x0,s)1/2, and the
self-similar momentum equation (7.61) of the turbulent single-phase plane jet (Schlichting
and Gersten 2017).
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Chapter 8

Summary and conclusions

Sprays generated by a prefilming consumer-type pressure atomizer were investigated in
the present study. The analysis is based on phase-Doppler (PDA) measurements at a
high spatial resolution in spray cross sections from 38 nozzle diameters up to 625 nozzle
diameters downstream from the orifice. This region of the sprays is dominated by large
slip velocities between the droplets and the gas phase. To ensure high statistical reliability,
each local sample consists of 100,000 droplets. Measurements were conducted in three
sprays, generated in atmospheric air. The sprays had different pairs of characteristic
Weber and Ohnesorge numbers. The liquid mass flow rates were in the range of commercial
consumer sprays. Demineralized water and a dilute aqueous ethanol solution were used as
the test liquids. The PDA measurements revealed the effect of different sheet geometries,
producing, at low Weber numbers, sprays with the liquid concentrated near the spray
axis, i.e. solid-cone sprays, and hollow-cone sprays at high Weber numbers.

The motion of the gas phase in the present sprays was induced by momentum transfer
from the droplets exclusively. With the PDA measurement data at hand, we determined
the velocity field of the gas phase using the smallest droplets in the local ensemble as
tracer particles. A procedure was developed to account for local bimodal velocity spectra,
as observed for the smallest droplets. The origin of these bimodal velocity distributions
remains to be explained. Our measurement data hint at possible group effects of drops
of different sizes interacting with each other, since the effect was only observed in cross
sections close to the atomizer where the local drop number concentration is high. We
term this phenomenon, which has been reported by others before, the teaspoon effect,
suggested by the shape of the drop size-velocity correlations. A similar effect has also
been observed by others for jets in crossflow.
Based on the experimental results, we derive an analytical model for the self-similar

flow field of the gas phase in the sprays, revealing the self-similarity of both the liquid
and the gas phases. The self-similar mathematical description of the gas phase is derived
from boundary-layer theory, accounting for momentum transfer between the droplets
and the gas. Notably, despite the strong momentum transfer from the liquid to the gas
phase, the obtained self-similar shape function of the velocity field is similar to the one
of the axisymmetric single-phase jet. The scaling variables, however, differ significantly.
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8 Summary and conclusions

In axisymmetric free-shear boundary layer flow, the self-similar variable η is in general
defined as η ∝ r/zα. In the single-phase case α is unity, resulting in straight lines
η = constant in the (r, z) space. In the present sprays, α is of approximately constant
value, with α = 2/3. Thus, lines of η = constant are curved in the (r, z) space, reflecting
the axial increase of the gas momentum flow rate I ∝ z2−2α = z2/3. As a consequence,
the decrease of the axial gas velocity, which is inversely proportional to the axial distance
from the orifice for the single-phase jet, turned out to be much slower in the present
sprays with u ∝ z1−2α = z−1/3. This finding seems plausible due to the acceleration of
the gas by the droplets.
The momentum source term in the z -momentum equation of the gas phase was

modeled by a self-similar shape function. The model is in very good agreement with the
loss of momentum of the liquid phase calculated from the PDA measurement data and
thereby revealed the self-similar behavior of the liquid phase. Notably, the mathematical
description of the momentum source term was able to represent both solid-cone and hollow-
cone sprays. Focus was set on the determination of the turbulent eddy viscosity, which
represents a model parameter of the self-similar description. As assumed beforehand,
and as known from turbulent round jets, the analysis of the experimental data revealed
approximately constant values for νt throughout the spray flow field. The values obtained
for νt from the PDA measurement data were in the correct order of magnitude, but
slightly too small for the model to represent all aspects of the measurements correctly.
An increase of the measured values of νt by approximately 50 % yielded perfect agreement
between model and experimental data. This increase was justified by demonstrating that
the underestimation of νt is connected to the underestimation of the gas-phase turbulence
intensities using the spray droplets as tracer particles.
The application of the model is limited due to the power-law dependency of the flow

field variables on the axial coordinate. Thus, the model is valid in regions of the sprays
with momentum transfer from the drops to the gas phase, until the two phases reach a
state of dynamic equilibrium. In the equilibrium state, the spray flow can be modeled
similar to a single-phase jet, but with variable density due to the non-uniform distribution
of the liquid droplets. This has been demonstrated by others.
The results of the present study contribute to the understanding of droplet-driven

spray flow. The self-similar analytical model, derived from boundary-layer theory, allows
for a convenient description of the gas-phase velocity field. It provides a powerful basis
to facilitate and enhance future spray modeling efforts.
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