
Andreas Habring, BSc

A Generative Variational Model for Inverse Problems in
Imaging

MASTER’S THESIS
to achieve the university degree of

Diplom-Ingenieur
Master’s degree programme: Mathematics

submitted to

Graz University of Technology

Supervisor

Ass.-Prof. Mag. Dr.rer.nat. Martin Holler

Institut für Mathematik und Wissenschaftliches Rechnen
Karl-Franzens-Universität Graz

Graz, August 2020

2

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly indicated
all material which has been quoted either literally or by content from the sources
used. The text document uploaded to TUGRAZonline is identical to the present
master’s thesis.

Date, Signature

4

Abstract

This thesis is concerned with the development and analysis of a novel regularization
method for mathematical image processing. The proposed method is a combination of
total variation-type regularization with deep learning methods. Total variation regulariza-
tion is mathematically well understood, but unfortunately performs rather badly on images
containing texture. On the contrary, deep learning methods are empirically known to be
well suited also for texture in images, but often lack an underlying mathematical foun-
dation. The proposed method aims to combine the strengths of both types of methods.
The thesis contains a chapter providing a mathematical analysis in a continuous setting,
including existence and stability results, as well as a chapter with an application of the
method in a discrete setting on different test images.

5

Kurzfassung

Diese Masterarbeit ist der Entwicklung und mathematischen Analyse einer neuartigen Reg-
ularisierungsmethode im Bereich der mathematischen Bildverarbeitung gewidmet. Die
vorgeschlagene Regularisierung kombiniert klassische variationelle Methoden, wie etwa
Regularisierung mittels totaler Variation, mit aktuellen machine-learning Techniken. Reg-
ularisierung mit totaler Variation ist ein mathematisch gut verstandenes Verfahren und
eignet sich hervorragend für stückweise glatte Bilder, allerdings sind die experimentellen
Resultate noch deutlich verbesserungswürdig bei Bildern mit feineren Mustern/Textur.
Im Gegensatz dazu erzielen viele machine-learning Verfahren vielversprechende Ergebnisse
auch mit texturlastigen Bildern, es fehlt allerdings häufig eine zugrunde liegende math-
ematische Theorie. Mit der vorgeschlagenen Methode versuchen wir, die Stärken beider
erwähnten Typen von Verfahren zu kombinieren. Diese Arbeit beinhaltet sowohl die the-
oretische Behandlung der vorgeschlagenen Methode inklusive Resultaten, die die Existenz
von Lösungen und Stabilität der Methode sicherstellen, als auch Beispiele zur praktischen
Anwendung unseres Verfahrens mit verschiedenen Testbildern.

6

Acknowledgements

Firstly, I would like to thank my parents for enabling me to live a life mostly free of worries,
which played a crucial role also in enjoying my university education. Secondly, I would like
to thank Dr. Martin Holler, who introduced me to the topic of this thesis and supported
my work, whenever I needed help. Lastly, I would like to thank my girlfriend Paola, who
has been on my side for many years now. You have always been an important source of
support and balance in my life and altogether my favorite human being.

7

8

Contents

1 Introduction 15
1.1 Linear Inverse Problems . 15
1.2 Convolutional Neural Networks in Image Processing - Deep Image Prior . . 16
1.3 The Proposed Method . 19
1.4 Related Works . 19

2 Theoretical Results 22
2.1 Functional Analytic Background . 22

2.1.1 Miscellaneous Results and Definitions 22
2.1.2 Measure Theory . 25
2.1.3 Function Spaces and Related Results 29
2.1.4 Lower Semi-Continuity . 31

2.2 The Problem in a Continuous Setting . 35
2.2.1 Preliminaries . 35
2.2.2 Problem Formulation . 40
2.2.3 The Texture Prior G . 40
2.2.4 The Cartoon Prior R . 51
2.2.5 Existence and Stability Analysis . 59
2.2.6 Explicit Representation of J∗∗ . 65

3 Practical Results 68
3.1 The Algorithm . 68
3.2 The Problem in a Discrete Setting . 78

3.2.1 Preliminaries . 78
3.2.2 Minimization Problem and Solution Algorithm 83

3.3 Experiments . 97

4 Discussion 109

A Auxiliary Results 111

9

List of Figures

1.1 Denoising using total variation regularization 17
1.2 Sketch of a neural network [11] . 18

2.1 Sketch of a neural network [11] . 41

3.1 Subdifferential . 70
3.2 Test images . 98
3.3 Comparison to existing methods . 100
3.4 Inpainting comparison to single layer version 102
3.5 Cartoon-texture decomposition . 103
3.6 Inpainting for different percentages . 104
3.7 Influence of λTV . 105
3.8 Objective functional for different λTV . 106
3.9 Learned features . 107
3.10 Coefficients on different layers . 107
3.11 Delta response . 108
3.12 Results for different numbers of iterations 108

10

List of Tables

3.1 Parameters . 99
3.2 Computation time . 108

11

List of Acronyms and Symbols

d A natural number, denoting the space dimension as in Rd

Ω If not stated differently, Ω ⊆ Rd is a bounded, open domain with compact Lipschitz
boundary.

R The extended real line, R := R ∪ {+∞,−∞}.

P(A) The power set, that is, P(A) denotes the set of all subsets of A.

b For A,B ⊂ Rd, we write A b B, if A is compact and A ⊂ B, i.e., the closure of A is
a compact subset of B.

Ld The d dimensional Lebesgue measure.

a.e. a.e. is short for ”almost everywhere” or ”almost every”. A property is true a.e. in
Ω, if there exists a Lebesgue measurable set N ⊆ Ω with Ld(N) = 0, such that said
property is true for all x ∈ Ω \N .

| . |p For z ∈ Rd, if 1 ≤ p < ∞, |z|p := (
n∑
i=1
|zi|p)

1
p and in the case p = ∞, |z|∞ :=

max
i=1,2,...d

|zi|.

| . | | . |2

‖.‖p For 1 ≤ p < ∞ the Lp-Norm, i.e., for f : Ω → Rn Lebesgue measurable, ‖f‖p :=
(
∫
Ω
|f(x)|p2dx)1/p.

‖.‖∞ The L∞-Norm, i.e., for f : Ω→ Rn Lebesgue measurable, ‖f‖∞ := inf
N⊆Ω
Ld(N)=0

sup
x∈Ω\N

|f(x)|2.

Kn(Ω) The space of constant functions, Kn(Ω) = {f : Ω→ Rn | ∃w ∈ Rn : f(x) = w for a.e. x in Ω}

Lp(Ω,Rn) For 1 ≤ p ≤ ∞ the set {f : Ω→ Rn
∣∣f measurable, ‖f‖p <∞}.

12

Lp(Ω,Rn) The set of all equivalence classes of functions in Lp(Ω,Rn), where an equivalence class
consists of all functions, which are equal on Ω up to a set of Lebesgue measure zero.

Lp(Ω) Lp(Ω,R)

C(Ω,Rn) The set of all continuous functions f : Ω→ Rn. This definition is also valid for more
general Ω.

C(Ω) C(Ω,R)

∂αf For f : Ω→ R and α ∈ Nd, ∂αf := ∂α1

∂x
α1
1

∂α2

∂x
α2
2
... ∂

αd

∂x
αd
d

f . |α| := α1 + α2 + ...+ αd is the
order of the derivative.

Ck(Ω,Rn) The set of all functions f : Ω→ Rn, that are k times continuously differentiable, i.e.,
∀α ∈ Nd, such that |α| ≤ k it holds ∂αf ∈ C(Ω,Rn).

Ck(Ω,Rn) The set of all functions f ∈ Ck(Ω,Rn), such that ∀α ∈ Nd with |α| ≤ k, ∂αf can be
extended continuously to Ω.

Ck(S) Ck(S,Rn) for S ∈
{

Ω,Ω
}

.

C∞(S,Rn) The set of all functions, that are infinitely many times differentiable, i.e., C∞(S,Rn) =⋂
k∈N

Ck(S,Rn) for S ∈
{

Ω,Ω
}

.

C∞(S) C∞(S,R) for S ∈
{

Ω,Ω
}

.

Ckc (Ω,Rn) The set of all k-times continuously differentiable functions compactly supported in
Ω, Ckc (Ω,Rn) := {f ∈ Ck(Ω,Rn)

∣∣ supp(f) ⊆ Ω}, where supp(f) := {x ∈ Ω
∣∣f(x) 6= 0}.

Ckc (Ω) Ckc (Ω,R)

C∞c (Ω,Rn) The set of all smooth functions compactly supported in Ω, C∞c (Ω,Rn) := {f ∈
C∞(Ω,Rn)

∣∣ supp(f) ⊆ Ω}

C∞c (Ω) C∞c (Ω,R)

Ck0 (Ω,Rn) For k ∈ N ∪∞, Ck0 (Ω,Rn) where the closure is taken with respect to ‖.‖∞.

Ck0 (Ω) Ck0 (Ω,R)

L(X,Y) ForX,Y Banach spaces, L(X,Y) := {A : X → Y | A is a linear and bounded operator}.

rg(T) For T : X → Y linear, rg(T) := {Tx | x ∈ X } ⊆ Y is the so-called range of the
linear operator.

13

ker(T) For T : X → Y linear, ker(T) := {x ∈ X | Tx = 0 } ⊆ X is the so-called kernel of
the linear operator.

g̃ For g : Ω→ Rn, g̃ denotes the zero extension of g, i.e., g̃ : Rd → Rn,

g̃(x) =
{
g(x) if x ∈ Ω
0 else.

IM The indicator function on the set M , i.e., IM (x) = 0 if x ∈M and IM (x) =∞ else.

size(µ) For a multidimensional vector µ, size(µ) denotes the tuple of lengths of µ in each
direction, e.g., for µ ∈ Rn×m×d, size(µ) = (n,m, d)

14

Chapter 1

Introduction

In the present thesis, we introduce and investigate a novel method for regularizing linear
inverse problems in image processing. We present the method in a continuous setting and
prove well-posedness before applying it to images in a discrete setting.

In the following, images are meant to be grayscale images. In the discrete setting,
images are described by matrices, where each entry represents a pixel and the value of
the entry represents a shade of gray. In the continuous setting, an image is described by
a function defined on the image domain and the function value at a point represents the
shade of gray of the corresponding point in the image.

1.1 Linear Inverse Problems

In the field of linear inverse problems one usually deals with problems of the form

given y ∈ Y,
find x ∈ X : Tx = y,

(1.1)

where X,Y are normed vector spaces (often Banach spaces) and T : X → Y is a bounded
linear operator. Note, that without further assumptions (1.1) may not even have a solution
at all, since T might not be bijective, which already shows the need of some kind of
reformulation of the problem. In applications, y stems from a measurement and is therefore
distorted by some random noise, which additionally complicates the task described in (1.1).
In other words, instead of the idealistic problem (1.1), we rather aim to solve

given yδ ∈ Y, such that
∥∥∥y − yδ∥∥∥ ≤ δ,

find x ∈ X : Tx = y,
(1.2)

where y ∈ Y is the so-called ground truth data, δ > 0 the noise-level, both unknown, and
yδ is the known, noisy data. Again, finding a solution to (1.2) is not possible in general.

15

1.2. Convolutional Neural Networks in Image Processing - Deep Image Prior

Moreover, since yδ contains noise, it would be futile to search for x, satisfying Tx = yδ,
since Tx is only known to be in a δ neighborhood of yδ. A very common approach, often
referred to as Tikhonov (type) regularization, is to consider the problem of finding xδ, such
that

xδ ∈ argmin
x∈X

∥∥∥Tx− yδ∥∥∥+ λR(x) (1.3)

with λ > 0. R : X → [0,∞] is a so-called regularization functional, which ensures, that the
minimizer of (1.3) satisfies specific properties, i.e., R(x) has a small value, if x is desirable
as a solution and a large value else. By solving (1.3), we balance fitting the data, by
keeping

∥∥∥Tx− yδ∥∥∥ small, with enforcing our solution to be ’nice’, by keeping R small. In
image processing a popular choice of R is the so-called total variation functional, which is
a generalization of the 1-norm of the gradient, R(x) = ‖∇x‖1 for an image x [5]. As the
name suggests, the total variation measures, how much variation/oscillation is contained in
an image. By the very nature of the total variation functional, using it as a regularization
in (1.3) enforces the resulting image to be piecewise smooth or even piecewise constant.
The reason for choosing such a regularization is mainly due to the fact, that random noise
is naturally of high variation. Hence, in order to minimize noise, we enforce low variation
on the image. Unfortunately, when we aim to process images, which contain a lot of texture
(e.g., an image of a person with a plaid shirt), regularization with total variation turns
out to be counterproductive as shown in Figure 1.1. Note, that after the reconstruction in
Figure 1.1 in the second example, the textures on the trousers of the pictured woman and
on the tablecloth are partly removed. For problems of this kind, machine/deep learning
algorithms using convolutional neural networks have shown to be rather successful.

1.2 Convolutional Neural Networks in Image Processing -
Deep Image Prior

Although, there are a lot of subtle details, that can be added, a basic convolutional neural
network (CNN) consists of multiple layers, where each layer is usually composed of a
convolution-type operation, the adding of a constant, called bias, and the application of
a non-linear activation function. Formally, in imaging a layer in a CNN processes input
images (zi)mi=1 = z as follows

z 7→ φ(Wz + b), (1.4)

where (Wz)j =
m∑
i=1

ki,j ∗zi for j = 1, 2, ...k, i.e., for each j, (Wz)j is a sum of convolutions of
the input images with convolution kernels ki,j , b is the bias and φ the activation function,
which is applied pointwise to its input images. A common example for φ is the ReLu
(rectified linear unit), φ(t) = max {0, t} for t ∈ R. Note, that such a layer of a neural
network has multiple images as input and output in general. The convolution kernels ki,j
as well as the bias b are parameters of this convolutional layer and the dimensions of input

16

1.2. Convolutional Neural Networks in Image Processing - Deep Image Prior

Figure 1.1: Denoising using total variation regularization. In both cases, we used additive,
Gaussian random noise with zero mean and variance 0.05. The first column pictures the
noisy images, the second the results after total variation regularization.

and output are part of the architecture of the layer. A CNN is a composition of multiple
such layers, i.e., a basic CNN with n layers acting on an input z can be written as

z 7→ φ (Wn (...φ (W2φ (W1z + b1) + b2) ...) + bn) , (1.5)

where Wi and bi are the convolution operator and bias of layer i. In Figure 1.2, there is
a simplified sketch of a neural network with two layers. The green nodes are the input
images, the yellow node is the output image and the lines connecting the nodes denote
operations of the type of (1.4). The blue nodes are the intermediate result of the first
layer of this network. Note, that the number of images in each layer is variable and can
in principle be chosen arbitrarily, but the output layer shall be a single image in our case.
In the following, let us denote a CNN as a function fθ, where θ are all parameters of the
network. In [15], as a method for image reconstruction, authors tackle (1.2) by solving

min
θ

∥∥∥Tfθ(z)− yδ∥∥∥ , (1.6)

where z is the input image of the neural network, which is fixed (in [15], z is e.g. initialized
as random noise). The reconstructed image is afterwards obtained as fθ(z). This means,

17

1.2. Convolutional Neural Networks in Image Processing - Deep Image Prior

Figure 1.2: Sketch of a neural network [11]

that instead of adding a functional R, the regularization happens implicitly, by only al-
lowing for images, which are the output of a given CNN. This has become popular under
the name deep image prior (DIP). Formulating (1.6) as

min
x

∥∥∥Tx− yδ∥∥∥+ IM (x), (1.7)

where M = {fθ(z) | θ} and IM (x) evaluates to zero, if there exist parameters θ, such that
fθ(z) = x and to infinity otherwise, shows, that (1.7) fits into the framework of (1.3)
with R, ensuring, that the image is the output of the given CNN with some parameters.
However, IM does not satisfy the necessary conditions of a regularization functional in
order to ensure existence of solutions and stability. In the present work, we modify the
set M in such a way, that it becomes closed and bounded, which makes IM a suitable
regularization functional. Despite the experimental results in [15] being very successful,
there are also downsides to this and similar methods. Usually, deep learning algorithms
as in [15] lack a mathematical foundation. Mostly, there is no underlying continuous
model and no guaranteed well-posedness of the method. Moreover, in order to obtain a
visually satisfying result, methods similar to (1.6) often have to be combined with counter-
intuitive stopping rules [15, 23], i.e., the algorithm, used to solve the minimization problem,
has to be stopped prematurely, which means, that the true minimizer of the considered
objective functional is in general not the desired result, hence, the applied model is still
flawed/incomplete. The reason for this issue is, that a CNN of sufficient size may be able
to produce almost any given image, even random noise [23], which implies, that effectively
there is no regularization in (1.7). The CNN solely changes the way, the image space is
searched for a solution with a specific algorithm and therefore a stopping rule is needed,
in order to avoid overfitting of the noisy data.

18

1.3. The Proposed Method

1.3 The Proposed Method

The aim of the method proposed in the present work, is to combine the strengths of
recent machine learning methods like [15] with the mathematical foundation of variational
methods like total variation based regularization. The idea is to implicitly perform a
decomposition of the image into a cartoon part (piecewise smooth) and a texture part,
which is the output of a CNN. The resulting problem is of the form

min
u,v
D(Tu, yδ) + λR(u− v) + µG(v), (1.8)

where yδ is the given data, D is a functional measuring the data fidelity of u, v is the
texture part of u and u− v the cartoon part, R is a total variation-like functional ensuring
that the cartoon part is piecewise smooth and G is a further regularization which, among
other things, ensures, that v is generated from a convolutional network. To be a little more
precise, given a network architecture, G ensures, that there exist parameters θ and input
z, such that fθ(z) = v, while penalizing the norms of θ and z. λ, µ > 0 are parameters
to balance the data fidelity and the regularization. The main difference of this thesis
compared to existing publications, which focus on similar problems [15, 23, 19, 22, 26]
is the introduction and investigation of the problem in a continuous setting including a
rigorous proof of existence of a solution and continuous dependence of the solution on the
data.

1.4 Related Works

The already mention deep image prior introduced in [15] has been a great incentive for
research in the direction the present work is headed. The deep image prior performs rather
well in experiments, but lacks a mathematical investigation. Although, most research about
CNNs in image processing is rather experimental, there is also some work directed more
towards a mathematical point of view. We will list some references in the following.

In [9], a single layer version of the model, provided in the present work, containing only
one convolutional layer is introduced and theoretically investigated as well as tested on
images, showing promising results for images comprised of texture and piecewise smooth
parts. The minimization problem considered in [9] is of the form

min
u,v
D(Tu, yδ) + λR(u− v) + µG(v), (1.9)

where R is a total variation like functional used as a cartoon prior. The definition of
the functional G is somewhat subtle. The idea is, that G shall force v to be a sum of
convolutions, i.e., v =

∑n
i=1 ci ∗ pi for some n and ci, pi. Moreover, G penalizes the

norms of ci, pi and large n. The authors further use relaxation and lifting strategies, to
obtain well-posedness. To be more precise, they introduce a tensor space, enabling a linear

19

1.4. Related Works

lifting of the convolution. The main difference to the present work is, that we modify the
representation of v by employing a deeper convolutional network (instead of one layer).
Further, we do not use similar lifting techniques in order to show well-posedness of the
problem.

In [6, 18], a neural network combined with additional regularization is used for solving
inverse problems. In [6], authors consider a problem of the form

min
θ
D(Tfθ(z), yδ) + λR(fθ(z)), (1.10)

where R is a regularizing functional, fθ is a continuous function with the structure of a
neural network and z is a fixed input for fθ. The problem is introduced in general Banach
spaces and well-posedness and convergence under some assumptions on the used functions
and spaces are ensured. A main difference to our method, is that we penalize θ and z
instead of fθ(z). The problem formulation in [18] is of the form

min
z
D(Tfθ(z), yδ) + λ ‖z‖ . (1.11)

Also in [18], authors provide proofs for well-posedness and convergence of the method. A
further difference to both [6, 18] is the implicit cartoon-texture decomposition we employ,
which is motivated by the particular application in image processing.

In [23], authors combine a deep image prior with total variation regularization leading
to

min
θ

∥∥∥Tfθ(z)− yδ∥∥∥2
+ λTV (fθ(z)) + µR(θ), (1.12)

where TV is the total variation, fθ is a neural network, z a fixed input and R is a learnt
regularization functional (i.e., it uses some parameters, that have to be learnt from data
before). Contrary to the present work, the total variation regularization is applied to
the output of the neural network, which in our model shall be the texture of the image.
Moreover, the problem in [23] is only considered in a discrete setting.

In [12], a different point of view is introduced, showing that under some conditions, a
deep image prior can be interpreted as learning an optimal Tikhonov functional instead of
training a neural network.

A field, that is also related to the problem of concern in this work is sparse coding
[22, 25, 26, 2, 14, 19, 21, 1]. The sparse coding problem is usually formulated as follows.
Given a dictionary D ∈ Rm×n and a vector y ∈ Rm, we ought to find a sparse vector x ∈ Rn
(i.e., x only has few non-zero entries), such that y = Dx. In many cases, the sparsity of x
is relaxed to enforcing small 1-norm. Convolutional sparse coding denotes the special case,
where the matrix D is assumed to be the matrix representation of a convolution operator,

i.e., Dx =
k∑
i=1

di ∗ x for some vectors di. The dictionary D is often supposed to be known
already. Typically, the dictionary is learned from problem specific data, i.e., assume we
are given n training samples (yi)ni=1, then D is determined by solving

20

1.4. Related Works

min
(xi)i,D

n∑
i=1
‖yi −Dxi‖22 + λR((xi)i) + µG(D) (1.13)

where, R and G are regularizing functionals. Often, R = ‖ . ‖1 to enforce before mentioned
sparsity of the xi and G is either a norm or some constraint on the dictionary D [25, 2].
Note, that if in (1.13) we use as a single training sample the given noisy data, we obtain a
problem very similar to the approach of this work. In [22], even a multilayer convolutional
sparse coding method is discussed, i.e., instead of the single dictionary D, a composition
of convolutional dictionaries DNDN−1...D1 is used. Although the model is again only
analysed in a discrete setting and differs in the cartoon texture decomposition we utilize,
it is similar in the sense, that one aims to represent a given image as the outcome of
a composition of convolutions. Worth mentioning is also the solution algorithm for the
dictionary learning (1.13) in [22]. Omitting a lot of details, authors propose an algorithm,
which iteratively for each training sample yi first finds a sparse representation xi, such
that yi ≈ DNDN−1...D1xi for fixed dictionaries (Dk)Nk=1. Afterwards, the dictionaries are
updated by performing several steps of projected gradient descent of the problem (1.13)
with respect to the Dk. The algorithm we use to solve our discrete problem, on the other
hand, minimizes with respect to all variables simultaneously.

The works [26, 19] present methods for cartoon texture decomposition via convolutional
sparse coding utilizing the total variation in a discrete setting. In [26], the dictionary is
assumed to be known, which can be compared to assuming, that the CNN in our approach
was pretrained. In [19], this results in a minimization problem similar to a single layer
version of the one we consider, namely

min
xC ,ΓT ,DT

‖y − xC −DTΓT ‖22 + λTV (xC) + µ ‖ΓT ‖1 , (1.14)

where y is the given data, xC the cartoon part of the image, DT a texture dictionary, ΓT a
(sparse) vector, such that DTΓT is the texture part of the image and TV (xC) is the total
variation of xC .

21

Chapter 2

Theoretical Results

2.1 Functional Analytic Background

In order to formulate and analyze the proposed method for image processing, we will
need some tools from functional analysis, measure theory and variational calculus. In this
section, we will provide the most important definitions and results for later use.

2.1.1 Miscellaneous Results and Definitions

Lemma 2.1. [Uniformly continuous extension, [3, U2.18 Stetige Fortsetzung]] Let X be
a metric space and Y a complete metric space. Further, let A ⊂ X be dense in X. Then
for every uniformly continuous f : A → Y , there exists a unique uniformly continuous
extension f̂ : X → Y .

Definition 2.2. [Continuous, linear functions, [24, Satz II.1.4]] Let X, Y be normed
vector spaces. Then we denote the space of all continuous, linear mappings X → Y as
L(X,Y). For T ∈ L(X,Y), we define the norm

‖T‖ := sup
x∈X
‖x‖≤1

‖Tx‖ ,

which makes L(X,Y) a normed space. If Y is a Banach space, then L(X,Y) is a Banach
space as well.

Theorem 2.3. [Uniform boundedness principle, [24, Theorem IV.2.1]] Let X be a Banach
space, Y a normed space, I an index set and Ti ∈ L(X,Y) for all i ∈ I. Then

sup
i∈I
‖Tix‖ <∞ ∀x ∈ X

implies, that
sup
i∈I
‖T‖ <∞.

22

2.1. Functional Analytic Background

Definition 2.4. [Dual space] Let X be a normed vector space over the field K. Then the
dual space of X, denoted X∗, is defined as the space of all continuous, linear functionals
on X, i.e., X∗ := L(X,K). Moreover, we define on X∗ the dual norm

‖x∗‖ := sup
x∈X
‖x‖≤1

|x∗(x)|.

Further, we will denote the dual space of X∗ as X∗∗ and call it the bidual (space) of X.

Lemma 2.5. [24, Korollar II.2.2] The dual space of a normed vector space equipped with
the dual norm is a Banach space.

Definition 2.6. [Adjoint operator, [24, Definition III.4.1]] Let X and Y be normed spaces
and A ∈ L(X,Y). We define the adjoint (operator) of A, A∗ ∈ L(Y ∗, X∗), via

(A∗y∗)(x) = y∗(Ax), for x ∈ X.

Definition 2.7. [Weak/weak* convergence] Let X be a normed vector space.

• We say, that (xn)n ⊂ X converges weakly to x ∈ X and write xn ⇀ x (as n → ∞),
if for every x∗ ∈ X∗, we have x∗(xn)→ x∗(x) as n→∞.

• We say, that (x∗n)n ⊂ X∗ converges to x∗ ∈ X∗ in the weak* topology and write
x∗n

∗−⇀ x∗ (as n→∞), if for every x ∈ X, we have x∗n(x)→ x∗(x) as n→∞.

Remark 2.8. Weak* convergence can also be regarded as pointwise convergence of a se-
quence of functionals.

Lemma 2.9. Let X and Y be Banach spaces and T ∈ L(X,Y). Then T is weak-to-weak
continuous, i.e., if xn ⇀ x in X, then Txn ⇀ Tx in Y .

Proof. Let xn ⇀ x in X. Then, denoting T ∗ ∈ L(Y ∗, X∗) the adjoint operator of T (see
Definition 2.6), we find for arbitrary y∗ ∈ Y ∗,

y∗(Txn) =︸︷︷︸
defin. of T ∗

(T ∗y∗)(xn) n→∞−−−→︸ ︷︷ ︸
(T ∗y∗) continuous

(T ∗y∗)(x) = y∗(Tx).

Hence, for any y∗ ∈ Y ∗, y∗(Txn)→ y∗(Tx), that is Txn ⇀ Tx in Y .

Lemma 2.10. In the dual space of a Banach space X, every weak* convergent sequence
is bounded.

Proof. Let (x∗n)n ⊂ X∗ = L(X,K) be weak* convergent to x∗ ∈ X∗. Then

sup
n∈N
|x∗n(x)| <∞ ∀x ∈ X,

23

2.1. Functional Analytic Background

due to convergence. Therefore, the uniform boundedness principle, Theorem 2.3, implies,
that

sup
n∈N
‖x∗n‖ <∞,

concluding the proof.

Definition 2.11. Let X be a Banach space. We define the the canonical embedding iX as

iX : X → X∗∗

x 7→ iX(x).

with
iX(x) : X∗ → K
x∗ 7→ x∗(x).

Lemma 2.12. [[24, Satz III.3.1]] Let X be a Banach space. Then the mapping iX from
Definition 2.11 is a linear isometry.

Definition 2.13. [Reflexive space] A Banach space X is called reflexive, if iX is surjective.

Theorem 2.14. [[24, Theorem III.3.7]] In a reflexive Banach space, every bounded se-
quence admits a weakly convergent subsequence.

Definition 2.15. [Separable space] A metric space is called separable, if it admits a count-
able, dense subset.

Theorem 2.16. [Banach-Alaoglu theorem, [3, 6.5 Satz]] Let X be a separable Banach
space. Then the closed unit ball in X∗ is sequentially compact with respect to the weak*
topology, i.e., every bounded sequence in X∗ admits a weak* convergent subsequence.

Definition 2.17. [Precompact sets, [3, 2.5 Kompaktheit]] Let (X, d) be a metric space.
A ⊂ X is called precompact, if for every ε > 0, there exists n ∈ N and x1, x2, ..., xn ∈ A
such that

A ⊂
n⋃
i=1

Bε(xi),

where Bε(xi) := {z ∈ X | d(xi, z) < ε}.

Lemma 2.18. [[3, 2.6 Bemerkungen]] Let (X, d) be a complete metric space. Then A ⊂ X
is precompact if and only if A is compact.

Corollary 2.19. Let (X, d) be a complete metric space. Then A ⊂ X is precompact if and
only if every sequence in A admits a convergent subsequence in X.

Proof.”⇒ ”: Assume A is precompact and let (xn)n be a sequence in A. Then (xn)n is
also a sequence in A, which is compact by Lemma 2.18. Hence, there is a convergent
subsequence in A ⊂ X.

24

2.1. Functional Analytic Background

”⇐ ”: Assume, every sequence in A admits a convergent subsequence in X. By Lemma 2.18,
we need to show, that A is compact. So let (xn)n be a sequence in A. For every
n, pick yn ∈ A, such that d(yn, xn) < 1

n . By assumption, there exists a convergent
subsequence of (yn)n in X, i.e., ynk → y as k → ∞ for some y ∈ X. For this y we
find,

d(xnk , y) ≤ d(xnk , ynk) + d(ynk , y) ≤ 1
nk

+ d(ynk , y) k→∞−−−→ 0,

i.e., xnk → y as k → ∞. Moreover, since A is closed and (xnk)k ⊂ A, also y ∈ A.
Hence, every sequence in A admits a convergent subsequence, whose limit is in A,
that is, A is compact.

Theorem 2.20. [Arzelà-Ascoli theorem, [3, Satz 2.11]] Let K ⊂ Rd be compact and A ⊂
C(K), which is equipped with the uniform norm. Then A is precompact if and only if

1. sup
f∈A
‖f‖∞ <∞ (A is bounded) and

2. sup
x,y∈K
|x−y|<δ

sup
f∈A
|f(x)− f(y)| → 0 as δ → 0 (A is uniformly equicontinuous).

Corollary 2.21. Let K ⊂ Rd be compact and (fn)n ⊂ C(K). Assume

1. sup
n∈N
‖fn‖∞ <∞ and

2. sup
x,y∈K
|x−y|<δ

sup
n∈N
|fn(x)− fn(y)| → 0 as δ → 0.

Then there exists a uniformly convergent subsequence of (fn)n, i.e. there exist (fnk)k and
f ∈ C(K), such that

‖fnk − f‖∞ → 0 as n→ 0.

Proof. The set {fn | n ∈ N} satisfies the conditions of Theorem 2.20, therefore, it is precom-
pact. Since C(K) is a Banach space with respect to the uniform norm, using Corollary 2.19,
we see, that (fn)n admits a convergent subsequence in C(K), concluding the proof.

2.1.2 Measure Theory

Definition 2.22. [Measures] Let T be a set and A a σ-algebra on T .

• A function µ : A → R (or C) is called a signed (or complex) measure, if µ is σ-
additive, i.e. for any sequence of pairwise disjoint sets An ∈ A

µ(
∞⋃
n=0

An) =
∞∑
n=0

µ(An).

25

2.1. Functional Analytic Background

• A function µ : A → [0,∞] is called a positive measure, if

– µ(∅) = 0,
– µ is σ-additive.

We say, that µ is finite if µ(T) <∞ and that µ is σ-finite, if there exists a sequence
of sets (Bn)n ⊂ A, such that Bn ⊂ Bn+1 and µ(Bn) <∞ for all n and T =

∞⋃
n=0

Bn.

• Let µ be a signed or complex measure. Define for A ∈ A,

|µ|(A) := sup
{

n∑
k=1
|µ(Ek)|

∣∣∣∣∣ n ∈ N, Ek pairwise disjoint, A =
n⋃
k=1

Ek

}
.

The map A 7→ |µ|(A) is called the variation of µ.

Proposition 2.23. [24, Satz A.4.3] The variation |µ| of a signed or complex measure µ
on the σ-algebra A is a positive, finite measure on A.

Definition and Proposition 2.24. [24, Section I.1] Let T be a set and A a σ-algebra on
T . We denote by M(T,A,R) and M(T,A,C) the set of all signed and complex measures,
respectively, on A. M(T,A,R) and M(T,A,C) are vector spaces and ‖µ‖M := |µ|(T)
defines a norm on M(T,A,R) and M(T,A,C), respectively. To simplify notation, we will
write M(T,A) for M(T,A,R).

Definition and Proposition 2.25. [5, Remark 1.17 and Section 1.2] Let T be a topo-
logical space, A a σ-algebra on T and µ a positive measure on A. Define for µ-measurable
f : T → R and 1 ≤ p <∞

‖f‖Lp(T,µ) :=

∫
T

|f |p dµ

 1
p

and
‖f‖L∞(T,µ) := inf

N⊂T
µ(N)=0

sup
x∈T\N

|f(x)|.

Further, define for 1 ≤ p ≤ ∞

Lp(T, µ) :=
{
f : T → R

∣∣∣ f µ-measurable, ‖f‖Lp(T,µ) <∞
}

and Lp(T, µ) as the space of all equivalence classes of functions in Lp(T, µ), where one
equivalence class consists of all functions in Lp(T, µ), which are equal everywhere up to a
set of measure zero. Then, for all 1 ≤ p ≤ ∞, (Lp(T, µ), ‖.‖Lp(T,µ)) is a Banach space.

26

2.1. Functional Analytic Background

Definition 2.26. [Absolute continuity and singularity, [5, Definition 1.24]]

• Let T be a topological space and A a σ-algebra on T . Let further µ be a positive
measure and ν a signed measure on A. We say, that ν is absolutely continuous with
respect to µ and write ν � µ if for every B ∈ A

µ(B) = 0⇒ |ν|(B) = 0.

• If µ and ν are positive measures, we say, that they are mutually singular and write
µ ⊥ ν, if there exists E ∈ A, such that

µ(E) = 0 and ν(T \ E) = 0.

If µ or ν are signed measures, we say, that they are mutually singular if |µ| and |ν|
are.

Theorem 2.27. [Radon-Nikodým, [5, Theorem 1.28]] Let T be a topological space and A a
σ-algebra on T . Let further µ be a positive, σ-finite measure and ν a signed measure on A.
Then, there exists a unique pair of signed measures νa and νs, such that νa � µ, νs ⊥ µ
and ν = νa + νs. Moreover, there is a unique function f ∈ L1(T, µ), such that νa = fµ,
i.e., for all B ∈ A,

νa(B) =
∫
B

f(x) dµ(x).

In this case, f is called the density or Radon-Nikodým derivative of ν with respect to µ and
denoted ν

µ .

Definition 2.28. [Borel measures, M(T)] Let T be a topological space and A the Borel
σ-algebra on T , i.e., the σ-algebra generated by the open sets in T . A (signed, complex or
positive) measure µ on A is called (signed, complex or positive) Borel measure. A positive
Borel measure is called regular if

• µ(K) <∞ for any compact K ∈ A and

• for every A ∈ A

µ(A) = sup {µ(K) | K ⊂ A, K compact} =
= inf {µ(O) | A ⊂ O, O open} .

A signed or complex Borel measure is called regular if its variation |µ| is regular. We
denote the set of all signed and complex regular Borel measures on A as M(T,R)
and M(T,C), respectively. For the sake of brevity, we will write M(T) for M(T,R).

Theorem 2.29. [24, Satz I.2.14] If T ⊂ Rd is compact or open, any finite, positive Borel
measure on T is regular.

27

2.1. Functional Analytic Background

Theorem 2.30. [Riesz’ representation theorem, [24, Theorem II.2.5]], [5, Theorem 1.54
(Riesz)]]

• Let K ⊂ Rd be compact, then M(K) ∼= (C(K))∗ via the isometric isomorphism

T :M(K)→ (C(K))∗

(Tµ)(f) =
∫
K

f dµ, ∀f ∈ C(K).

In particular, ‖µ‖M = |µ|(K) = sup
f∈C(K)
‖f‖∞≤1

∣∣∣∣∣∫K f dµ

∣∣∣∣∣.
• Let Ω ⊂ Rd be open, then M(Ω) ∼= (C0(Ω))∗ via the isometric isomorphism

T :M(Ω)→ (C0(Ω))∗

(Tµ)(f) =
∫
Ω

f dµ, ∀f ∈ C0(Ω).

In particular, ‖µ‖M = |µ|(Ω) = sup
f∈C0(Ω)
‖f‖∞≤1

∣∣∣∣∣∫Ω f dµ
∣∣∣∣∣.

Remark 2.31. Based on Theorem 2.30, we will identify Borel measures on a compact set
K and an open set Ω with elements of (C(K))∗ and (C0(Ω))∗, respectively. That is, we
will write, e.g., for µ ∈M(K) and f ∈ C(K)

µ(f) = (Tµ)(f) =
∫
K

f dµ,

for the application of the measure µ regarded as an element of (C(K))∗.

Remark 2.32. Since C(K) is separable if K is compact [24, Section I.2], we can apply
the theorem of Banach-Alaoglu, Theorem 2.16, and obtain, that every bounded sequence
in M(K) ∼= (C(K))∗ admits a weak* convergent subsequence. Analogously, every bounded
sequence in M(Ω) ∼= (C0(Ω))∗ admits a weak* convergent subsequence [5, Theorem 1.59
(Weak* compactness].

Remark 2.33. Let Ω ⊂ Rd open and bounded and u ∈ L1(Ω). Then,

C(Ω)→ R

f 7→
∫
Ω

u(x)f(x) dx and
C0(Ω)→ R

f 7→
∫
Ω

u(x)f(x) dx

define elements of M(Ω) and M(Ω), respectively.

28

2.1. Functional Analytic Background

2.1.3 Function Spaces and Related Results

Definition and Proposition 2.34. [Sobolev spaces, [3, 1.25 Sobolev-Räume]] Let Ω ⊂ Rd
open. For k ∈ N and p ∈ [1,∞] we define the Sobolev space W k,p(Ω) as

W k,p(Ω) =
{
f ∈ Lp(Ω)

∣∣∣ ∀α ∈ Nd, |α| ≤ k : ∂αf ∈ Lp(Ω)
}
,

where |α| =
∑d
i=1 αi, ∂αf = ∂α1

x1 ...∂
αd
xd
f and the derivatives are understood in the weak

sense. Equipped with the norm

‖f‖k,p :=
∑
α∈Nd
|α|≤k

‖∂αf‖p ,

W k,p(Ω) is a Banach space.

Theorem 2.35. [Approximation of Sobolev functions, [3, 1.26 Satz]] For k ∈ N and p ∈
[1,∞), C∞(Ω) ∩W k,p(Ω) is dense in W k,p(Ω), i.e., for every f ∈ W k,p(Ω), there exists a
sequence (fn)n ⊂ C∞(Ω) ∩W k,p(Ω), such that

‖f − fn‖k,p → 0

as n→∞.

Definition and Proposition 2.36. [Total variation, functions of bounded variation, [5,
Chapter 3]] For Ω ⊂ Rd open and u ∈ L1

loc(Ω) we define the total variation of u as

TV(u) := sup
{∫

Ω
u div(φ) dx

∣∣∣∣ φ ∈ C1
c (Ω,Rd), ‖φ‖∞ ≤ 1

}
.

Moreover, the space of functions of bounded variation is defined as

BV(Ω) :=
{
u ∈ L1(Ω)

∣∣∣ TV(u) <∞
}
.

Equipped with the norm
‖u‖BV := ‖u‖1 + TV(u)

BV(Ω) is a Banach space.

Lemma 2.37. [5, Proposition 3.6] Let Ω ⊂ Rd open and u ∈ L1(Ω). Then u ∈ BV(Ω) if
and only if the distributional derivative of u can be represented by a regular Borel measure,
i.e., there exists µ = (µi)di=1 ∈ [M(Ω)]d, such that for all φ ∈ C∞c (Ω)∫

Ω

u
∂

∂xi
φ dx = −

∫
Ω

φ dµi

29

2.1. Functional Analytic Background

for all i = 1, 2, ...d. In this case, we denote µ = Du for the distributional derivative of u.
Moreover, for any u ∈ BV(Ω)

TV(u) = |Du|(Ω) = ‖Du‖M ,

where for µ ∈ [M(Ω)]d the variation and norm are defined as

|µ|(A) := sup
{

n∑
k=1
|µ(Ek)|

∣∣∣∣∣ n ∈ N, Ek pairwise disjoint, A =
n⋃
k=1

Ek

}
, for A measurable and

‖µ‖M := sup
f∈[C0(Ω)]d
|f |≤1

∣∣∣∣∣∣
d∑
i=1

∫
Ω

fi dµi

∣∣∣∣∣∣ ,
respectively.

Definition 2.38. [Approximate jump points, [5, Definition 3.67]] Let u ∈ L1(Ω) and
x ∈ Ω. We say, that x is an approximate jump point of u if there exist a, b ∈ R and ν ∈ Rd
with |ν| = 1, such that a > b and

lim
ρ↓0

∫
B+
ρ (x,ν)

|u(y)− a| dy = 0,

lim
ρ↓0

∫
B−ρ (x,ν)

|u(y)− b| dy = 0,

where B±ρ = {y ∈ R | |y − x| < ρ, ±〈y − x, ν〉 > 0}. The triplet (a, b, ν) is uniquely deter-
mined and denoted by (u+(x), u−(x), νu(x)). We denote the set of all approximate jump
points of u as Ju.

In the next statement, we use the notion of the restriction of a measure. For a measure
µ on the σ-algebra A and a set A ∈ A, we define the restriction of µ on A as µ|A(B) :=
µ(A ∩B) for B ∈ A.

Corollary 2.39. [5, Definition 3.91] Let u ∈ BV(Ω). Then, according to Theorem 2.27, we
can decompose the distributional derivative of u into an absolutely continuous part Dau and
a singular part Dsu with respect to the Lebesgue measure Ld. Denoting ∇u := Du

Ld ∈ L
1(Ω)

we obtain
Du = ∇uLd +Dsu.

Moreover, denoting the restrictions Dju = Dsu|Ju (the so-called jump part of Du) and
Dcu = Dsu|(Ω\Ju) (the so-called Cantor part of Du) we may write

Du = ∇uLd +Dju+Dcu.

30

2.1. Functional Analytic Background

Proposition 2.40. [Approximation of BV functions, [5, Theorem 3.9]] Let Ω ⊂ Rd open
and u ∈ L1(Ω). Then u ∈ BV(Ω) if and only if there exists a sequence (un)n ⊂ C∞(Ω) ∩
W 1,1(Ω) converging to u in L1(Ω), such that

lim
n→∞

∫
Ω

|∇un| dx <∞.

Moreover,

TV(u) = inf

 lim
n→∞

∫
Ω

|∇un| dx

∣∣∣∣∣∣ (un)n ⊂ C∞(Ω), un → u in L1(Ω), lim
n→∞

∫
Ω

|∇un| dx exists

Let us introduce a convenient notation before stating the next result. For 1 ≤ p ≤ d,

we denote p∗ = dp
d−p , where we use the convention q

0 =∞ for q > 0.

Lemma 2.41. [Embedding theorem, [5, Remark 3.49]] Let Ω ⊆ Rd be a bounded Lipschitz
domain with compact boundary. Then BV(Ω) is continuously embedded in L1∗(Ω).

Lemma 2.42. [Poincaré inequality, [5, Remark 3.50]] Let Ω ⊆ Rd be a bounded Lipschitz
domain with compact boundary. Then there exists a constant C > 0, such that for all p
with 1 ≤ p ≤ 1∗

‖u− uΩ‖p ≤ C TV(u), ∀u ∈ BV(Ω),

where uΩ = 1
|Ω|
∫

Ω u dx.

2.1.4 Lower Semi-Continuity

Definition 2.43. [Lower semi-continuity] Let X be a normed space and F : X → R.
We say, that F is lower semi-continuous (lsc), if for every x ∈ X and every sequence
(xn)n ⊂ X converging to x, it holds true, that

F (x) ≤ lim inf
n→∞

F (xn). (2.1)

Similarly, we call F weakly/weak* lower semi-continuous if (2.1) holds true, for every
weakly/weak* convergent sequence.

Lemma 2.44. Let X be a normed space and F,G : X → R be lsc. Then also the sum
F +G is lsc.

Proof. Let xn → x in X. We compute

F (x) +G(x) ≤︸︷︷︸
F,G lsc

lim inf
n→∞

F (xn) + lim inf
n→∞

G(xn) = lim
n→∞

inf
k≥n

F (xk) + lim
n→∞

inf
k≥n

G(xk) =

lim
n→∞

(
inf
k≥n

F (xk) + inf
k≥n

G(xk)
)
≤ lim

n→∞
inf
k≥n

(F (xk) +G(xk)) = lim inf
n→∞

(F (xn) +G(xn)).

31

2.1. Functional Analytic Background

Lemma 2.45. [Weak* lower semi-continuity of the dual norm] Let X be a normed space.
Then the dual norm on X∗ is lsc with respect to weak*-convergence.

Proof. Let x∗n
∗−⇀ x∗. We compute,

‖x∗‖ = sup
‖x‖≤1

|x∗(x)| = sup
‖x‖≤1

lim
n→∞

|x∗n(x)|︸ ︷︷ ︸
≤‖x∗n‖ ‖x‖︸︷︷︸

≤1

≤ sup
‖x‖≤1

lim inf
n→∞

‖x∗n‖ = lim inf
n→∞

‖x∗n‖ .

Lemma 2.46. [[13, Corollary 2.2]] Let X be a normed space and F : X → R be convex.
Then F is lsc, if and only F is weakly lsc.

Lemma 2.47. Let X be a normed space, I an index set and Fi : X → R for all i ∈ I.
Define F : X → R, F (x) = sup

i∈I
Fi(x). Then,

1. if for all i ∈ I, Fi is convex, then also F is convex and

2. if for all i ∈ I, Fi is lsc, then also F is lsc.

Proof. 1. Assume Fi is convex for all i ∈ I. Let x, y ∈ X and λ ∈ (0, 1). We compute,

F (λx+ (1− λ)y) = sup
i∈I

[Fi(λx+ (1− λ)y)] ≤

≤︸︷︷︸
Fi convex

sup
i∈I

[λFi(x) + (1− λ)Fi(y)] ≤

≤︸︷︷︸
Fi≤F

sup
i∈I

[λF (x) + (1− λ)F (y)] =

= λF (x) + (1− λ)F (y).

2. Assume Fi is lsc for all i ∈ I. Let xn → x in X.

F (x) = sup
i∈I

Fi(x) ≤︸︷︷︸
Fi lsc

sup
i∈I

lim inf
n→∞

Fi(xn) ≤

≤︸︷︷︸
Fi≤F

sup
i∈I

lim inf
n→∞

F (xn) = lim inf
n→∞

F (xn).

Definition 2.48. [lsc-regularization, [13, Section 2.2]] Let X be a normed vector space and
F : X → R. We define the lsc regularization of F as the largest lsc function everywhere
less than F and denote it as F . It exists as the pointwise supremum of all lsc functions
everywhere less than F .

32

2.1. Functional Analytic Background

Lemma 2.49. [13, Corollary 2.1] Let X be a normed vector space and F : X → R. Then

epi(F) = epi(F),

where for G : X → R, the epigraph of G is defined as epi(G) := {(x, t) ∈ X × R | G(x) ≤ t}.

Lemma 2.50. Let X be a normed vector space and F : X → R. Then

F (x) = inf
{

lim inf
n→∞

F (xn)
∣∣∣ xn → x as n→∞

}
.

Proof. By definition of F , F ≤ F and F is lsc. Therefore, for any sequence (xn)n converging
to x, we have

F (x) ≤ lim inf
n→∞

F (xn) ≤ lim inf
n→∞

F (xn).

Therefore,
F (x) ≤ inf

{
lim inf
n→∞

F (xn) | xn → x as n→∞
}
.

Since (x, F (x)) ∈ epi(F), by Lemma 2.49, there exists a sequence (xn, tn)n ⊂ epi(F)
converging to (x, F (x)), i.e., xn → x, F (xn) ≤ tn and tn → F (x). Hence,

lim inf
n→∞

F (xn) ≤ lim inf
n→∞

tn = F (x)

and consequently also

F (x) ≥ inf
{

lim inf
n→∞

F (xn) | xn → x as n→∞
}

concluding the proof.

Lemma 2.51. Let F : X → R. Then for every x ∈ X there exists a sequence (xn)n
converging to x, such that F (x) = lim

n→∞
F (xn).

Proof. We will distinguish three different cases.

• Assume, that F (x) = ∞. This means, that for every sequence (xn)n, converging to
x, we find, that lim inf

n→∞
F (xn) = ∞. Therefore, by just picking any such sequence

(xn)n, we obtain the desired result.

• Assume, that F (x) = −∞. Then, for every n ∈ N, we can find a sequence (xnk)k, with
xnk → x as k → ∞, such that lim inf

k→∞
F (xnk) ≤ −2n. By taking subsequences, which

we shall not relabel now, we can also obtain, that lim
k→∞

F (xnk) = lim inf
k→∞

F (xnk) ≤ −2n.
Then, for every n ∈ N, there exists k0

n ∈ N, such that for k ≥ k0
n, F (xnk) ≤ −n. Now,

pick kn ≥ k0
n, such that

∥∥∥xnkn − x∥∥∥ ≤ 1
n . Then, the sequence xn := xnkn satisfies

‖xn − x‖ =
∥∥xnkn − x∥∥ ≤ 1

n
n→∞−−−→ 0 and

F (xn) ≤ −n n→∞−−−→ −∞ = F (x).

33

2.1. Functional Analytic Background

• Assume, that F (x) ∈ (−∞,∞). As before, by definition of F , we can find sequences
(xnk)k with xnk

k→∞−−−→ x for all n ∈ N, such that lim
k→∞

F (xnk) ≤ F (x)+ 1
n . Therefore, for

every n ∈ N, we can find k0
n ∈ N, such that for k ≥ k0

n, F (xnk) ≤ F (x) + 2
n . Finally,

let kn ≥ k0
n, such that

∥∥∥xnkn − x∥∥∥ ≤ 1
n . Then for the sequence xn := xnkn , we find, that

‖xn − x‖ =
∥∥xnkn − x∥∥ ≤ 1

n
n→∞−−−→ 0 and

F (x) ≤︸︷︷︸
Lemma 2.50

lim inf
n→∞

F (xn) ≤ lim sup
n→∞

F (xn) =

= lim sup
n→∞

F (xnkn) ≤ lim sup
n→∞

(
F (x) + 2

n

)
≤ F (x),

(2.2)

yielding, that F (x) = lim
n→∞

F (xn).

Definition 2.52. [Γ-regularization, [13, Sections 3.1, 3.2]] Let X be a normed vector space.

• We define Γ(X) as the set of all functions X → R, which are the pointwise supremum
of a family of continuous, affine functions.

• Let F : X → R, then the Γ-regularization of F is the pointwise supremum of all
continuous, affine functions everywhere less than F .

Note, that by Lemma 2.47, any function in Γ(X), in particular the Γ-regularization,
are convex and lsc. In order to get a better understanding of its utility, in the following,
we will list some properties of the Γ-regularization.

Lemma 2.53. [13, Definition 3.2] Let F and G be two functions mapping X → R. The
following are equivalent to each other:

• G is the largest function in Γ(X), which is everywhere less than F .

• G is the Γ-regularization of F .

Proposition 2.54. [[13, Proposition 3.3]] Let F : X → R and G its Γ-regularization. If
F is convex and admits a continuous affine minorant, then F = G.

Definition 2.55. [Polar (or convex conjugate) function] Let X be a normed vector space
and F : X → R. We define the polar (or convex conjugate) function of F as

F ∗ : X∗ → R
x∗ 7→ sup

x∈X
[x∗(x)− F (x)]

34

2.2. The Problem in a Continuous Setting

Moreover, we define the bipolar of F as

F ∗∗ : X → R
x 7→ sup

x∗∈X∗
[x∗(x)− F ∗(x∗)]

Remark 2.56.

• As the supremum of linear and continuous functions, by Lemma 2.47, F ∗∗ is convex
and lsc.

• In the case that X is reflexive, F ∗∗ = (F ∗)∗, which justifies the name bidual.

Proposition 2.57. [13, Proposition 4.1] Let F : X → R. Then F ∗∗ is the Γ-regularization
of F .

2.2 The Problem in a Continuous Setting

In this section, we will formulate the proposed method in a continuous setting. Afterwards,
we will analyze the method, the two main results being existence of a solution and stability
of the method with respect to the data. In order to do so, we will need some preliminary
definitions and results.

2.2.1 Preliminaries

Before introducing the model, we will state some definitions and results. In the following,
Ω,Σ ⊂ Rd are bounded domains, i.e., bounded, open and simply connected. Moreover,
we denote ΩΣ = {x− y | x ∈ Ω, y ∈ Σ}. For q ∈ [1,∞] used as a Hölder exponent (as in
Lq(Ω)) we will usually denote the conjugate exponent as q′, i.e., q′ ∈ [1,∞] is, such that
1
q + 1

q′ = 1, using the convention, that 1
∞ = 0.

Lemma 2.58. Let µ ∈M(ΩΣ) and θ ∈M(Σ). Define

µ ∗ θ : C0(Ω)→ R,

f 7→
∫

ΩΣ

∫
Σ

f̃(x+ y) dθ(x) dµ(y) (2.3)

where we remember, that f̃ denotes the zero-extension of f outside of Ω. Then (2.3) is
a well-defined, linear and bounded operator with respect to ‖ . ‖∞, i.e., µ ∗ θ ∈ M(Ω) =
(C0(Ω))∗, and ‖µ ∗ θ‖M ≤ ‖µ‖M ‖θ‖M.

35

2.2. The Problem in a Continuous Setting

Proof. Let f ∈ C0(Ω). Then f̃ ∈ C(Rd) and it is uniformly continuous as it has compact
support in Rd. For any y ∈ ΩΣ, f̃(.+ y) ∈ C(Σ). Hence,∫

Σ

f̃(x+ y) dθ(x) = θ(f̃(.+ y))

is well-defined for any y ∈ ΩΣ. In order to to apply µ afterwards, we have to show, that
the function

F : ΩΣ → R

y 7→
∫
Σ

f̃(x+ y) dθ(x)

is en element of C0(ΩΣ). Since f ∈ C0(Ω), by definition, we can find a sequence (fn)n ⊂
Cc(Ω) converging to f with respect to ‖ . ‖∞. We find, that for every n ∈ N

Fn : ΩΣ → R

y 7→
∫
Σ

f̃n(x+ y) dθ(x)

is an element of Cc(ΩΣ). Indeed, to prove the continuity, let δ > 0 and y1, y2 ∈ ΩΣ, such
that |y1 − y2| < δ. Then

|Fn(y1)− Fn(y2)| =

∣∣∣∣∣∣∣
∫
Σ

f̃n(x+ y1)− f̃n(x+ y2) dθ(x)

∣∣∣∣∣∣∣ ≤
≤ ‖θ‖M sup

x∈Σ
|f̃n(x+ y1)− f̃n(x+ y2)| ≤

≤ ‖θ‖M sup
z1,z2: |z1−z2|<δ

|f̃n(z1)− f̃n(z2)| → 0 as δ → 0.

The convergence to zero follows from the uniform continuity of f̃n. Therefore Fn is con-
tinuous for any n. Now denote K = supp(fn) b Ω. Then f̃n(x + y) = 0 for all x ∈ Σ if
y 6∈ K − Σ, i.e.,

∫
Σ
f̃n(x + y) dθ(x) = 0 if y 6∈ K − Σ. K − Σ is compact since K and Σ

are. What is left to show, is, that K −Σ ⊂ Ω−Σ in order to obtain, that Fn is compactly
supported in ΩΣ. So let y = z − x ∈ K − Σ with z ∈ K and x ∈ Σ. Since K b Ω, there
exists δ > 0, such that the open ball with radius δ and center z is contained in the open
set Ω. Moreover, we can find x̃ ∈ Σ, such that |x− x̃| < δ. Therefore, z+ (x̃− x) ∈ Ω. We
find

y = z − x = z + (x̃− x)− x̃ ∈ Ω− Σ,

36

2.2. The Problem in a Continuous Setting

which shows, that K − Σ ⊂ Ω − Σ and therefore Fn is compactly supported in ΩΣ and
altogether, Fn ∈ Cc(ΩΣ) for all n. Moreover, for y ∈ ΩΣ

|F (y)− Fn(y)| =

∣∣∣∣∣∣∣
∫
Σ

f̃(x+ y)− f̃n(x+ y) dθ(x)

∣∣∣∣∣∣∣ ≤
≤ ‖θ‖M sup

x∈Σ
|f̃(x+ y)− f̃n(x+ y)| ≤

≤ ‖θ‖M sup
z∈Ω
|f̃(z)− f̃n(z)| =

= ‖θ‖M sup
z∈Ω
|f(z)− fn(z)| → 0 as n→∞.

The right-hand side tends to zero independently of y, since the fn approximate f uniformly.
Therefore F is the uniform limit of the sequence (Fn)n ⊂ Cc(ΩΣ) and accordingly an
element of C0(ΩΣ). As a result, we may apply µ and find that µ ∗ θ is well-defined. The
linearity of µ ∗ θ follows from the linearities of µ and θ. Moreover, we can bound the norm
of µ ∗ θ as follows,

|µ ∗ θ(f)| ≤ ‖µ‖M sup
y∈ΩΣ

|θ(f̃(.+ y))| ≤

≤ ‖µ‖M sup
y∈ΩΣ

(
‖θ‖M sup

x∈Σ
|(f̃(x+ y))|

)
≤ ‖µ‖M ‖θ‖M ‖f‖∞ .

Therefore, ‖µ ∗ θ‖M ≤ ‖µ‖M ‖θ‖M <∞ and µ ∗ θ ∈M(Ω).

Lemma 2.59. Let µ ∈ M(ΩΣ), g ∈ Ls(Σ), s ∈ (1,∞], q ∈ (1, s] and q′ the Hölder
conjugate exponent of q. Then

µ ∗ g : Cc(Ω)→ R,

f 7→
∫

ΩΣ

∫
Σ

f̃(x+ y)g(x) dx dµ(y)

can be extended to a well-defined, linear and bounded operator on Lq
′(Ω), i.e., µ ∗ θ ∈

(Lq′(Ω))∗ ' Lq(Ω). Moreover, there exists C = C(Σ, q, s), such that ‖µ ∗ g‖q ≤ C ‖µ‖M ‖g‖s.

Proof. Let f ∈ Cc(Ω). We need to show, that (y 7→
∫

Σ f̃(x+ y)g(x) dx) ∈ C0(ΩΣ), before
we can apply µ. Let δ > 0, then we find for y1, y2 ∈ Ω, such that |y1 − y2| < δ∣∣∣∣∫

Σ
f̃(x+ y1)g(x) dx−

∫
Σ
f̃(x+ y2)g(x) dx

∣∣∣∣ =
∣∣∣∣∫

Σ

(
f̃(x+ y1)− f̃(x+ y2)

)
g(x) dx

∣∣∣∣ ≤
≤
∫

Σ

∣∣∣f̃(x+ y1)− f̃(x+ y2)
∣∣∣ |g(x)| dx ≤ sup

x∈Σ
|f̃(x+ y1)− f̃(x+ y2)| ‖g‖1 ≤

≤ |Σ|
1
s′ ‖g‖s sup

z1,z2:|z1−z2|<δ
|f̃(z2)− f̃(z1)| → 0 as δ → 0,

37

2.2. The Problem in a Continuous Setting

where we used the fact that with s′ the Hölder conjugate exponent of s, we have, using
Hölder’s inequality, ‖g‖1 =

∫
Σ 1 · |g| dx ≤ ‖g‖s ‖1‖s′ = ‖g‖s |Σ|

1
s′ . The uniform continuity

of the compactly supported, continuous function f then implies convergence to zero as
δ → 0. Therefore, (y 7→

∫
Σ f̃(x+y)g(x) dx) is uniformly continuous. The compact support

of f in Ω again implies that
y 7→

∫
Σ
f̃(x+ y)g(x) dx

is compactly supported in ΩΣ as shown in Lemma 2.58. Hence, we may apply µ, proving,
that µ ∗ g is well-defined. Linearity follows from the linearities of the integral and µ.
Moreover, for s <∞, since s

q ≥ 1,

∫
Σ

|f̃(x+ y)g(x)| dx ≤︸︷︷︸
Hölder

∫
Σ

|f̃(x+ y)|q′ dx

 1
q′
∫

Σ

|g(x)|q dx

 1
q

≤

≤︸︷︷︸
Hölder

‖f‖q′

∫
Σ

|g(x)|q
s
q dx

 1
q
q
s

|Σ|
s−q
sq = |Σ|

s−q
sq ‖f‖q′ ‖g‖s .

In the case s =∞, we find

∫
Σ

|f̃(x+ y)g(x)| dx ≤︸︷︷︸
Hölder

∫
Σ

|f̃(x+ y)|q′ dx

 1
q′
∫

Σ

|g(x)|q dx

 1
q

≤

≤ ‖f‖q′

∫
Σ

‖g‖q∞ dx

 1
q

= ‖f‖q′ ‖g‖∞ |Σ|
1
q .

Therefore, in any case, there exists C > 0, such that∫
Σ

|f̃(x+ y)g(x)| dx ≤ C ‖f‖q′ ‖g‖s .

Hence, we compute for the norm of µ ∗ g,

|µ ∗ g(f)| ≤ ‖µ‖M sup
y∈ΩΣ

|
∫

Σ
f̃(x+ y)g(x) dx| ≤ C ‖µ‖M ‖f‖q′ ‖g‖s .

This shows, that µ ∗ g : Cc(Ω) → R is a linear operator, which is bounded with respect
to ‖ . ‖q′ . Since Cc(Ω) is dense in Lq

′(Ω) for q′ ∈ [1,∞), by Lemma 2.1, we can extend
µ ∗ g to a linear, bounded operator in Lq

′(Ω). Via the isomorphism (Lq′(Ω))∗ ∼= Lq(Ω) for
1 ≤ q′ <∞ we get the desired result.

This enables us to define the convolution of measures.

38

2.2. The Problem in a Continuous Setting

Definition 2.60. [Convolution of measures]
• Let µ ∈M(ΩΣ) and θ ∈M(Σ). We define the convolution of µ and θ, µ∗θ ∈M(Ω),

via
µ ∗ θ(f) =

∫
ΩΣ

∫
Σ

f̃(x+ y) dθ(x) dµ(y), for f ∈ C0(Ω).

• Let µ ∈ M(ΩΣ) and g ∈ Ls(Σ) for s ∈ (1,∞]. Then for q ∈ (1, s], we define the
convolution of µ and g, µ ∗ g ∈ Lq(Ω), as the unique function in Lq(Ω) satisfying∫

ΩΣ

∫
Σ

f̃(x+ y)g(x) dx dµ(y) =
∫

Ω
f(z)(µ ∗ g)(z)dz ∀f ∈ Cc(Ω).

We will denote
µ ∗ g(f) :=

∫
Ω
f(z)(µ ∗ g)(z)dz

for f ∈ Lq′(Ω).
Remark 2.61.
• Assume, that µ and θ are induced by functions, as mentioned in Remark 2.33, i.e.,

µ : C0(ΩΣ)→ R

µ(f) =
∫

ΩΣ

f(x)gµ(x) dx,

θ : C(Σ)→ R

θ(f) =
∫
Σ

f(x)gθ(x) dx,

with gµ ∈ L1(Ω) and gθ ∈ L1(Σ). Then the convolution of µ and θ reduces to the
well-known convolution of two functions. Using Fubinis theorem and a change of
variables for f ∈ C0(Ω) we can compute

µ ∗ θ(f) =
∫

ΩΣ

∫
Σ

f̃(x+ y) dθ(x) dµ(y) =

=
∫

ΩΣ

∫
Σ

f̃(x+ y)gθ(x) gµ(y) dx dy =
∫
Rd

∫
Rd

f̃(x+ y)g̃θ(x) g̃µ(y) dy dx =

=
∫
Rd

∫
Rd

f̃(z)g̃µ(z − x) g̃θ(x) dz dx =
∫
Rd

f̃(z)
∫
Rd

g̃µ(z − x) g̃θ(x) dx dz =

=
∫
Ω

f(z)
∫
Σ

gµ(z − x) gθ(x) dx dz =
∫
Ω

f(z)(gµ ∗ gθ)(z) dz,

where g̃ denotes the zero extension of a function g outside of its domain of definition.

39

2.2. The Problem in a Continuous Setting

• Assume, that gµ ∈ Ls
′(Ω) and gθ ∈ Ls(Σ) with s > 1. Then

|(gµ ∗ gθ)(z + h)− (gµ ∗ gθ)(z)| ≤

∣∣∣∣∣∣
∫
Σ

g̃µ(z + h− x) gθ(x) dx−
∫
Σ

g̃µ(z − x) gθ(x) dx

∣∣∣∣∣∣ ≤
≤
∫
Σ

|g̃µ(z + h− x)− g̃µ(z − x)| |gθ(x)| dx ≤︸︷︷︸
Hölder

‖g̃µ(.+ h)− g̃µ‖s′ ‖gθ‖s → 0

as |h| → 0 as proven in Lemma A.1. So we find, that the convolution of gµ ∗ gθ
is actually continuous, in other words, under some circumstances, the convolution
increases the regularity of functions.

2.2.2 Problem Formulation

We now propose a variational regularization method, whose goal is to narrow the gap be-
tween conventional, variational regularization methods and machine/deep learning methods
in image processing. Variational methods, such as total variation regularization, typically
are very well suited for reconstructing piecewise smooth images and, just as importantly,
they are mathematically well-understood. Machine/deep learning methods, on the other
hand, perform very well also on images containing texture, but they lack an underlying
mathematical foundation in many cases. In order to combine the strengths of both types
of methods, we aim to decompose an image into two parts, one being a piecewise smooth
cartoon part and the other containing the texture of the given image. Each of the to parts
is treated with an appropriate regularizing term according to their nature. This results in
the following formulation.

min
u,v
D(u, y0) + λRR(u− v) + λGG(v), (P)

where D is a data fidelity term with data y0 ∈ Y , Y being a Banach space, R is a cartoon
prior enforcing piecewise smoothness, G is a texture prior, motivated by generative neural
networks as they are found in recent deep learning methods, λR, λG > 0 are parameters
to balance the different regularizers, u is the image, v is the texture part of u and u − v
the remaining cartoon part of u. The image u and the texture part v are assumed to be
elements of Lq(Ω), where for now 1 ≤ q ≤ ∞ and Ω is the image domain, which is open,
bounded and simply connected. The next sections are dedicated to the introduction and
mathematical analysis of the the functionals R and G.

2.2.3 The Texture Prior G

In this section we motivate, introduce and analyze the texture prior G from (P). As
already mentioned in the introduction, there is a lot of research empirically showing the
ability of convolutional neural networks to generate and/or regularize texture heavy images.

40

2.2. The Problem in a Continuous Setting

Therefore, we model the texture part v ∈ Lq(Ω) of (P) to be the output of such a network.
We define the convolutional network N (µ, θ) with parameters (µ, θ) as

N (µ, θ) :=
nf,1∑
k=1

µ1
k ∗ θ1

k, (2.4)

subject to:

µj−1
l =

nf,j∑
k=1

µjk ∗ θ
j
k,l, for j = 2, 3, ..., n, l = 1, 2, ..., nf,j−1.

We denote
µ := (µnk)k=1,2,...,nf,n and

θ := ((θ1
k)k, (θ

j
k,l)j,k,l).

We will refer to µj = (µjk)k as the coefficients at layer j and θj = (θjk,l)k,l for j > 1,
θ1 = (θ1

k)k as the filter kernels at layer j and layer 1, respectively. The coefficients µ in the
deepest layer and the filter kernels are parameters of this neural network. In order to get a
better understanding, we refer to Figure 2.1. This is a simplified sketch of (2.4) with n = 2.
The green nodes illustrate the coefficients µ = µ2, the blue nodes µ1 and the yellow node is
the texture part v, which is the output of the network. The edges connecting the nodes are
to be understood as the convolution with the according filter kernel (each edge corresponds
to one of the kernels θjk,l). Adding the corresponding convolutions gives the coefficients on
the next layer and the output of the network, respectively. The coefficients and the filter

Figure 2.1: Sketch of a neural network [11]

kernels up to the first layer in (2.4) are modeled as Borel measures, since we also want to
be able to capture, e.g., delta peaks, which are not in any Lp space. The texture prior
G of our model enforces v = N (µ, θ) for some parameters (µ, θ). As a regularization, we
penalize the norms of the coefficients µ as well as the filter kernels θ. Moreover, we impose
additional constraints on the filter kernels. That is, in the deeper layers the kernels shall be

41

2.2. The Problem in a Continuous Setting

non-negative and in the top layer they shall have zero mean. Our complete texture prior
is defined as G : Lq(Ω)→ [0,∞],

G(v) = inf
µ,θ

[
λµ ‖µ‖M + λθ

n∑
i=2

(∥∥∥θi∥∥∥
M

+ I{.≥0}(θi)
)

+ IA(θ1)
]
, (TEX)

subject to:
v = N (µ, θ),
µ ∈ [M(Ωµ)]nf,n ,
θ1 ∈ [Ls(Σ)]nf,1 ,
θi ∈ [M(Σ)]nf,i×nf,i−1 , for i = 2, 3, ..., n,

where s ∈ (1,∞), q ∈ (1, s], λµ, λθ > 0 and

A =
{
θ1 ∈ [Ls(Σ)]nf,1

∣∣∣∣ ∀k = 1, 2, ..., nf,1 :
∥∥∥θ1
k

∥∥∥
s
≤ 1,

∫
Σ
θ1
k dx = 0

}
.

Here, Ωµ denotes the domain of definition of the coefficients µ. The size of Ωµ depends
on the sizes of Ω, the image domain, and Σ, the domain of the filter kernels. Employing
Lemma 2.58 and Lemma 2.59 we find, e.g., that the domain of definition of µ1 is ΩΣ and
the domain of definition of µ2 is (ΩΣ)Σ and so on. For η ∈ M(K), we say, that η ≥ 0,
if for all f ∈ C(K), f ≥ 0 it holds true , that η(f) ≥ 0. Accordingly, θi ≥ 0, if all its
components satisfy θik,l ≥ 0. As a norm of a vector of Borel measures we use the sum of
the norms of its components, i.e., for η = (ηi)Ni=1 ∈ [M(K)]N ,

‖η‖M :=
N∑
i=1
‖ηi‖M ,

but any norm in RN applied to (‖ηi‖)Ni=1 would yield an equivalent norm. In the case, that
there are no parameters µ, θ, such that v can be expressed as the output of the given neural
network with these parameters, G(v) is the infimum over the empty set and we therefore
set G(v) =∞. For the sake of brevity, we introduce the following notation,

• M1 := [Ls(Σ)]nf,1 ,

• Mi := [M(Σ)]nf,i×nf,i−1 for i > 1,

• Mθ := M1 ×M2 × ...×Mn

• Mµ := [M(Ωµ)]nf,n .

The different treatment of the first layer of filter kernels θ1 compared to the remaining
layers is explained in detail in Remark 2.62. The reason for choosing the coefficients and
kernels to be Borel measures on open and compact sets, respectively, and not both in the
same manner will be explained later in Remark 2.66, since the explanation relies on a
result, we have not discussed yet.

42

2.2. The Problem in a Continuous Setting

Remark 2.62. There is a particular reason, why we only allow the filter kernels in the
first layer θ1 to be functions in Ls(Σ) and choose all other kernels to be measures. Assume,
that we would have chosen Ls(Σ) as the underlying space for all filter kernels. Then, by
Lemma 2.59, we would find that µn−1

l ∈ Ls(Ωn−1), where Ωi shall now denote the domain
of definition of µi for all i. Recall, that Young’s inequality [8, Satz 3.13] states, that for
1
p + 1

q = 1 + 1
r and f ∈ Lp(Rd), g ∈ Lq(Rd) we have, f ∗ g ∈ Lr(Rd). Since 1

p + 1
q = 1 + 1

r
implies, that r ≥ max{p, q} with strict inequality if p, q > 1, we find that the convolution
increases regularity in terms of increasing the Hölder exponent. For instance, we find for
s ≥ 2 after the second convolution in our network, that µn−2

l ∈ L∞(Ωn−2) and for s ∈ (1, 2),
that µn−2

l ∈ L
s

2−s (Ωn−2) with s
2−s > s. Iterating this procedure shows, that µi is of higher

regularity, the lower i is. In particular, this would further restrict the the images, we can
describe with our model.

The following remark shows, that the assumption, that the texture part v is generated
by a convolutional neural network is not too restrictive. That is, a network according to
(2.4) of appropriate size is able to generate any given texture/image.
Remark 2.63. For an appropriate choice of (nf,i)ni=1, for every u ∈ Ls(Ω), there exists
(µ, θ), such that v(µ, θ) = u.

Proof. In the following proof, we will denote the domain of definition of µi as Ωi and we
will assume for simplicity, 0 ∈ Σ. First we note, that for any x ∈ Σ, y ∈ Ωi, δx ∈ M(Σ)
and δy ∈ M(Ωi) and we find δy ∗ δx = δ(x+y) ∈ M(Ωi−1), which is zero in the case, that
x + y 6∈ Ωi−1. Moreover, for g ∈ Ls(Σ) and y0 ∈ Ω1, we compute for the convolution
δy0 ∗ g ∈ Ls(Ω)

δy0 ∗ g(f) =
∫

Ω1

∫
Σ

f̃(x+ y)g(x) dx dδy0 =
∫
Σ

f̃(x+ y0)g(x) dx =

=
∫
Rd

f̃(x+ y0)g̃(x) dx =
∫
Rd

f̃(z)g̃(z − y0) dx =
∫
Ω

f(z)g̃(z − y0) dz,

i.e., δy0 ∗ g = g̃(.− y0). By boundedness of Ω and the fact, that Σ contains a neighborhood
of 0, there exist nf,1 ∈ N and (xi)

nf,1
i=1 ⊂ Ω, such that

Ω ⊂
nf,1⋃
i=1

(xi + Σ),

i.e., we can cover all of Ω with translated copies of Σ with ’centers’ xi ∈ Ω. Moreover, let

Ai ⊂ Σ, such that all xi +Ai are disjoint and Ω ⊂
nf,1⋂
i=1

(xi +Ai). This can be achieved, e.g.,
by defining A1 = Σ and for i > 1,

Ai = (xi + Σ) \

i−1⋃
j=1

(xj +Aj)

− xi.
43

2.2. The Problem in a Continuous Setting

Let u ∈ Ls(Ω) be arbitrary. Defining

gi : Σ→ R

gi(x) =
{
ũ(x+ xi) if x ∈ Ai
0 else,

we find

δxi ∗ gi(x) = g̃i(x− xi) =
{
ũ(x− xi + xi) = ũ(x) if x ∈ xi +Ai

0 else.

Hence, for x ∈ Ω, we find

nf,1∑
i=1

δxi ∗ gi(x) =
nf,1∑
i=1

χ(xi+Ai)(x)ũ(x) = u(x),

Therefore, we have already determined nf,1, µ1 = (δxi)
nf,1
i=1 and θ1 = (gi)

nf,1
i=1 . The remaining

part is now rather simple. As stated in the beginning, δy ∗ δx = δ(x+y), therefore we can
successively determine the necessary µi and θi in the deeper layers. For all i, xi ∈ Ω1 can
be written as xi = x2

i + y2
i with x2

i ∈ Σ and y2
i ∈ Ω2, consequently, δxi = µ1

i = δy2
i
∗ δx2

i
,

hence we set nf,2 = nf,1, µ2
i = δy2

i
, θ2

i,i = δx2
i
, θ2

j,i = 0 for j 6= i and obtain

nf,2∑
k=1

µ2
k ∗ θ2

k,l = µ2
l ∗ θ2

l,l = δy2
l
∗ δx2

l
= δ(x2

l
+y2

l
) = δxl = µ1

l .

This procedure can be repeated until µ and θ are fully determined, such that v(µ, θ) = u.
Also note, that (nf,i)ni=1 solely depends on the domains Ω and Σ.

We now begin our analysis of the functional G. Our main goals are to prove, that G
is proper, coercive and lower semi-continuous, which makes it an appropriate regularizing
functional. We start by proving a general continuity result, which is a key ingredient for
well-posedness of our method.

Lemma 2.64. [Sequential weak*-continuity of the convolution]

1. Let µn, µ ∈ M(ΩΣ), θn, θ ∈ M(Σ), such that µn
∗−⇀ µ and θn

∗−⇀ θ. Then µn ∗ θn
∗−⇀

µ ∗ θ in M(Ω).

2. Let s ∈ (1,∞] and q ∈ (1, s], q < ∞. Further, let µn, µ ∈ M(ΩΣ), gn, g ∈ Ls(Σ),
such that µn

∗−⇀ µ and gn
∗−⇀ g. Then µn ∗ gn ⇀ µ ∗ g in Lq(Ω).

44

2.2. The Problem in a Continuous Setting

Proof. 1.Step 1: We show the convergence of a subsequence µnk ∗ θnk
∗−⇀ µ ∗ θ:

First, we notice, that by Lemma 2.10, the sequences (µn)n and (θn)n are both
bounded with respect to ‖ . ‖M as they are weak* convergent. Using Lemma 2.58,
we also find,

‖µn ∗ θn‖M ≤ ‖µn‖M ‖θn‖M .

Therefore, (µn ∗ θn)n is a bounded sequence in M(Ω). Hence, Remark 2.32
implies, that there exist η ∈M(Ω) and a subsequence (µnk ∗ θnk)k, such that

µnk ∗ θnk
∗−⇀ η as k →∞.

What is left to show, is, that η = µ ∗ θ. To this aim, we will show, that for
arbitrary f ∈ C0(Ω), η(f) = µ∗θ(f). So let f ∈ C0(Ω). We find for any y ∈ ΩΣ,
due to the weak* convergence θn

∗−⇀ θ,∫
Σ

f̃(x+ y) dθnk(x)→
∫
Σ

f̃(x+ y) dθ(x) as k →∞. (2.5)

The crux of the proof will be, to show that the convergence in (2.5) is uniform
in y. Denote

gnk(y) :=
∫
Σ

f̃(x+ y) dθnk(x)

and
g(y) :=

∫
Σ

f̃(x+ y) dθ(x).

Then gnk , g ∈ C0(ΩΣ) as shown in Lemma 2.58 and gnk(y) → g(y) for any
y ∈ Rd. Moreover, for δ > 0 and y1, y2 ∈ Rd, |y1 − y2| < δ, we find

|gnk(y1)− gnk(y2)| =

∣∣∣∣∣∣∣
∫
Σ

f̃(x+ y1)− f̃(x+ y2) dθnk(x)

∣∣∣∣∣∣∣ ≤
≤ ‖θnk‖M sup

x∈Σ

∣∣∣f̃(x+ y1)− f̃(x+ y2)
∣∣∣ ≤

≤ sup
m∈N
‖θm‖M︸ ︷︷ ︸
<∞

Lemma 2.10

sup
z1,z2: |z1−z2|<δ

∣∣∣f̃(z1)− f̃(z2)
∣∣∣→ 0 as δ → 0.

The convergence to zero is assured by the uniform continuity of f̃ . Since the last
expression tends to zero independently of k and y1, y2, we see, that the sequence

45

2.2. The Problem in a Continuous Setting

(gnk)k ⊂ C0(ΩΣ) ⊂ C(ΩΣ) is uniformly equicontinuous. Moreover, (gnk)k is
uniformly bounded, since

|gnk(y)| = |
∫
Σ

f̃(x+ y) dθnk(x)| ≤ ‖θnk‖M ‖f‖∞ ≤ sup
l∈N
‖θl‖M ‖f‖∞ .

Hence, the Arzelà-Ascoli theorem, Corollary 2.21, states, that there is a subse-
quence (gnkl)l converging to g uniformly, i.e.

sup
y∈ΩΣ

|gnkl (y)− g(y)| = sup
y∈ΩΣ

|
∫
Σ

f̃(x+ y) dθnk(x)−
∫
Σ

f̃(x+ y) dθ(x)| → 0 as k → 0.

This enables us, to make the following estimate.

|µnkl ∗ θnkl (f)− µ ∗ θ(f)| ≤
≤ |µnkl ∗ θnkl (f)− µnkl ∗ θ(f)|+ |µnkl ∗ θ(f)− µ ∗ θ(f)| =

= |µnkl (gnkl − g)|+ |µnkl (g)− µ(g)| ≤

≤
∥∥∥µnkl∥∥∥M sup

y∈ΩΣ

|gnkl (y)− g(y)|+ |µnkl (g)− µ(g)| ≤

≤ sup
l∈N
‖µl‖M︸ ︷︷ ︸
<∞

Lemma 2.10

sup
y∈ΩΣ

|gnkl (y)− g(y)|︸ ︷︷ ︸
(i)

+ |µnkl (g)− µ(g)|︸ ︷︷ ︸
(ii)

→ 0 as l→ 0.

Here, (i) goes to zero as we have proven before and (ii) goes to zero by the weak*
convergence µnkl

∗−⇀ µ. Thus, µnkl ∗ θnkl (f) → µ ∗ θ(f) as l → ∞. But notice,
that for this subsequence, we still have, that

µnkl ∗ θnkl
∗−⇀ η,

i.e., also µnkl ∗ θnkl (f) → η(f). Consequently, we find, that µ ∗ θ(f) = η(f)
by uniqueness of the limit. Since f ∈ C0(Ω) was arbitrary, this implies, that
µ ∗ θ = η and µnk ∗ θnk

∗−⇀ µ ∗ θ.
Step 2: We prove convergence of the original sequence (µn ∗ θn)n:

Assume µn ∗ θn 6
∗−⇀ µ ∗ θ. In other words, there exists f ∈ C0(Ω), ε > 0 and a

subsequence (µnk ∗ θnk)k, such that

|µnk ∗ θnk(f)− µ ∗ θ(f)| > ε

for all k. But for these subsequences we still have, that µnk
∗−⇀ µ and θnk

∗−⇀
θ. Therefore, by the same procedure as in Step 1, we can extract a further
subsequence (µnkl ∗ θnkl)l, such that

µnkl ∗ θnkl
∗−⇀ µ ∗ θ

46

2.2. The Problem in a Continuous Setting

as l→∞, implying also |µnkl ∗θnkl (f)−µ∗θ(f)| → 0 and therefore contradicting
our assumption. Hence, µn ∗ θn

∗−⇀ µ ∗ θ.

2. Notice, that h 7→
∫
Σ h(x)u(x) dx for u ∈ Ls(Σ) is actually an element of M(Σ).

Defining θ, θn ∈M(Σ) as
θ(h) :=

∫
Σ

h(x)g(x) dx

θn(h) :=
∫
Σ

h(x)gn(x) dx

for h ∈ C(Σ), we see, that µn ∗ θn(f) = µn ∗ gn(f) for any f ∈ C0(Ω) and the
convergence gn

∗−⇀ g in Ls(Σ) implies θn
∗−⇀ θ inM(Σ). Therefore, we do not need to

repeat all the computations above and can already conclude, that µn ∗ θn
∗−⇀ µ ∗ θ in

M(Ω), i.e., µn ∗ gn(f)→ µ ∗ g(f) for any f ∈ C0(Ω). In order to prove the stronger
notion of convergence, stated above, let now f ∈ Lq′(Ω) with q′ ∈ (1,∞), such that
1
q + 1

q′ = 1. By density, we can find (fm)m ∈ C∞c (Ω) such that fm → f in Lq
′(Ω).

Now, let ε > 0 be arbitrarily small. Then we can pick m0 ∈ N, such that

‖f − fm0‖q′ <
ε

2C
(

sup
n∈N
‖µn‖M sup

n∈N
‖gn‖s + ‖µ‖M ‖g‖s

) ,
where C is the constant from Lemma 2.59. Note, that the denominator is only zero,
in the case that all elements of the sequence (µn ∗ gn)n are zero. In that case, the
assertion, we want to prove, holds trivially. For this fixed m0, we can then find
n0 ∈ N, such that for n > n0, it holds true that

|µn ∗ gn(fm0)− µ ∗ g(fm0)| < ε

2 ,

because µn ∗ θn
∗−⇀ µ ∗ θ. Accordingly, for all n > n0

|µn ∗ gn(f)− µ ∗ g(f)| ≤
≤ |µn ∗ gn(f − fm0)|+ |µn ∗ gn(fm0)− µ ∗ g(fm0)|+ |µ ∗ g(fm0 − f)| ≤

≤︸︷︷︸
Lemma 2.59

C ‖µn‖M ‖gn‖s ‖f − fm0‖q′ + |µn ∗ gn(fm0)− µ ∗ g(fm0)|+

+C ‖µ‖M ‖g‖s ‖f − fm0‖q′ ≤

≤ C
(

sup
n∈N
‖µn‖M sup

n∈N
‖gn‖s + ‖µ‖M ‖g‖s

)
‖f − fm0‖q′ + |µn ∗ gn(fm0)− µ ∗ g(fm0)| < ε.

Hence, |µn ∗ gn(f)− µ ∗ g(f)| → 0 as n→ 0. Since this is true for all f ∈ Lq′(Ω), we
conclude, that µn ∗ gn ⇀ µ ∗ g in Lq(Ω).

47

2.2. The Problem in a Continuous Setting

Corollary 2.65. Let s ∈ (1,∞] and q ∈ (1, s], q <∞. Assume, that

• µm
∗−⇀ µ in Mµ,

• (θm)i ∗−⇀ θi in Mi for i > 1 and

• (θm)1 ⇀ θ1 in M1.

as m→∞. Then also
N (µm, θm) ⇀ N (µ, θ) in Lq(Ω)

as m→∞.

Proof. The proof is simply a successive application of Lemma 2.64.

Remark 2.66. Having proven Lemma 2.64, we now explain, why we have chosen θ ∈
M(Σ) and not M(Σ), which were less restrictive. The issues in this case will arise,
when investigating continuity of the convolution as in Lemma 2.64. Consider as a counter
example Ω = (−2, 2)2, Σ = (−1, 1)2 and therefore, ΩΣ = (−3, 3)2. Moreover, define the
measures θn = δ(1− 1

n
,1− 1

n
), θ = 0, µn = µ = δ(0,0) and λ = δ(1,1), where δx denotes the

Dirac-measure in the point x. Then

for f ∈ C0(ΩΣ): µn(f) = f(0, 0)→ f(0, 0) = µ(f),

for f ∈ C0(Σ): θn(f) = f(1− 1
n
, 1− 1

n
)→ f(1, 1) = 0 = θ(f),

for f ∈ C0(Ω): µn ∗ θn(f) =
∫

ΩΣ

∫
Σ
f̃(x+ y) dθn(x) dµn(y) =

=
∫

ΩΣ
f̃((1− 1

n
, 1− 1

n
) + y) dµn(y) =

= f(1− 1
n
, 1− 1

n
)→ f(1, 1) = λ(f) and

for f ∈ C0(Ω): µ ∗ θ(f) =
∫

ΩΣ

∫
Σ
f̃(x+ y) dθ(x) dµ(y) = 0

Therefore, µn
∗−⇀ µ inM(ΩΣ), θn

∗−⇀ θ inM(Σ) and µn∗θn
∗−⇀ λ inM(Ω), but λ = δ(1,1) 6=

0 = µ ∗ θ in M(Ω). The problem lies in the fact, that the convergence of θn depends on the
space we consider. Applied to functions with zero boundary condition, θn

∗−⇀ 0, but applied
to functions in C(Σ), θn

∗−⇀ δ(1,1) 6= 0. Since, in the convolution, we apply θn to f̃(. + y),
which is not necessarily zero on the boundary of Σ, problems will occur, when choosing
θn ∈M(Σ) = (C0(Σ))∗.

48

2.2. The Problem in a Continuous Setting

In the following, in order to simplify notation, we denote for θ ∈Mθ and µ ∈Mµ,

G(µ, θ) = λµ ‖µ‖M + λθ

n∑
i=2

(∥∥∥θi∥∥∥
M

+ I{.≥0}(θi)
)

+ IA(θ1). (2.6)

This implies, that G(v) = inf
µ,θ:

v=N (µ,θ)

G(µ, θ), where the infimum is taken over µ ∈ Mµ, and

θ ∈Mθ. Recall, that we assumed s ∈ (1,∞) and q ∈ (1, s], therefore we are allowed to use
Lemma 2.64 and reflexivity of Ls(Σ) in the following.

Lemma 2.67. Let v ∈ Lq(Ω) and assume

• µm
∗−⇀ µ in Mµ,

• (θm)i ∗−⇀ θi in Mi for i > 1 and

• (θm)1 ⇀ θ1 in M1.

as m→∞. Then
G(µ, θ) ≤ lim inf

m→∞
G(µm, θm).

Proof. We will consider all terms of G separately at first.

‖ . ‖M: By Lemma 2.45, ‖ . ‖M is lsc with respect to weak*-convergence, as it can be viewed
as a dual norm (Theorem 2.30). Therefore we find,

‖µk‖M ≤ lim inf
m→∞

‖(µm)k‖M for k = 1, 2, ...nf,n and∥∥∥θik,l∥∥∥M ≤ lim inf
m→∞

∥∥∥(θm)ik,l
∥∥∥
M
, for i > 1 and all k and l.

I{.≥0}: We want to show, that I{.≥0}(θi) ≤ lim inf
m→∞

I{.≥0}((θm)i). If the right-hand side is
∞, we are done. Otherwise, assume lim inf

m→∞
I{.≥0}((θm)i) = lim

m→∞
I{.≥0}((θm)i) <∞,

which we could always achieve by taking a subsequence. This means, that for suffi-
ciently large m, we find that for all f ∈ C(Σ), f ≥ 0, it holds true that (θm)ik,l(f) ≥ 0
for i > 1 and all k and l. Due to weak* convergence, also

θik,l(f) = lim
m→∞

(θm)ik,l(f) ≥ 0,

i.e., θi ≥ 0, implying I{.≥0}(θi) = 0 ≤ lim inf
m→∞

I{.≥0}((θm)i) = 0.

49

2.2. The Problem in a Continuous Setting

IA: Finally, we want to show, that IA(θ1
k) ≤ lim inf

m→∞
IA((θm)1

k). As above, assume, that
the right-hand side of the inequality is finite, because otherwise, the result follows
trivially and again we suppose, that lim inf

m→∞
IA((θm)1

k) = lim
m→∞

IA((θm)1
k). Therefore,

by definition of A, we know, that
∥∥(θm)1

k

∥∥
s ≤ 1 and

∫
Σ(θm)1

k dx = 0 for m sufficiently
large. Since ‖ . ‖s is convex and continuous in Ls, it is also weakly lsc. Thus,

∥∥∥θ1
k

∥∥∥
s
≤ lim inf

m→∞

∥∥∥(θm)1
k

∥∥∥
s
≤ 1.

Moreover, due to the fact, that the constant 1 is in Ls
′(Σ) = (Ls(Σ))∗ with s′ the

Hölder conjugate exponent of s, because |Σ| <∞, we also obtain∫
Σ

1 · θ1
k dx = lim

m→∞

∫
Σ

1 · (θm)1
k dx = 0,

Altogether, θ1 ∈ A and consequently IA(θ1
k) = 0 ≤ lim inf

m→∞
IA((θm)1

k).

Now it is time, to deduce the desired result. For real sequences (am)m, (bm)m, we always
have

lim inf
m→∞

am+lim inf
m→∞

bm = lim
m→∞

(
inf
k≥m

ak + inf
k≥m

bk

)
≤ lim

m→∞
inf
k≥m

(ak + bk) = lim inf
m→∞

(am + bm) .

Noting, that λµ, λθ > 0, a successive application of this inequality eventually yields

G(µ, θ) ≤ lim inf
m→∞

G(µm, θm).

Lemma 2.68. Let v ∈ Lq(Ω) and assume, that G(v) < ∞. Then the infimum in G(v) is
attained.

Proof. By assumption G(v) <∞, that is, there exist parameters µ ∈Mµ and θ ∈Mθ, such
that v = N (µ, θ) and G(µ, θ) <∞. We can therefore pick minimizing sequences (µm)m ⊂
Mµ, (θm)m ⊂ Mθ, such that for all m, v = N (µm, θm) and G(v) = lim

m→∞
G(µm, θm). The

definition of G immediately implies, that the sequences µm and θm are bounded in their
spaces of definition. By reflexivity of Ls(Σ) for s ∈ (1,∞) and the theorem of Banach-
Alaoglu, Remark 2.32, we can therefore find a subsequence again labeled m and µ, θ, such
that µm

∗−⇀ µ in Mµ, (θm)1 ⇀ θ1 in M1 and for i > 1, (θm)i ∗−⇀ θi in Mi as m → ∞.
By Corollary 2.65, N (µ, θ) = lim

m→∞
N (µm, θm) = v. Note, that this subsequence is still a

minimizing sequence of G. Hence, by Lemma 2.67 we find

G(µ, θ) ≤ lim inf
m→∞

G(µm, θm) = G(v),

which shows, that (µ, θ) is the desired minimizer and concludes the proof.

50

2.2. The Problem in a Continuous Setting

Lemma 2.69. The texture prior G : Lq(Ω)→ [0,∞] is weakly lsc.

Proof. Let vm ⇀ v in Lq(Ω). We want to show, that G(v) ≤ lim inf
m→∞

G(vm). Let us assume,
that lim inf

m→∞
G(vm) <∞, because otherwise, there is nothing to prove. Assume further, that

lim inf
m→∞

G(vm) = lim
m→∞

G(vm) and that G(vm) <∞ for all m, which could always be achieved
by extracting a subsequence. By Lemma 2.68, for every m, there exist µm ∈ Mµ and
θm ∈ Mθ, such that vm = N (µm, θm) and G(vm) = G(µm, θm). The fact, that (G(vm))m
is bounded as a convergent sequence and the definition of G imply, that the sequences
(µm)m and (θm)m are bounded in the respective spaces. As in the proof of Lemma 2.68,
we can extract a subsequence again labelled with m and find µ, θ, such that µm

∗−⇀ µ in
Mµ, (θm)1 ⇀ θ1 in M1 and for i > 1 (θm)i ∗−⇀ θi in Mi as m → ∞. By Corollary 2.65,
v = lim

m→∞
vm = lim

m→∞
N (µm, θm) = N (µ, θ). Therefore,

G(v) ≤ G(µ, θ) ≤︸︷︷︸
Lemma 2.67

lim inf
m→∞

G(µm, θm) = lim inf
m→∞

G(vm) = lim
m→∞

G(vm).

Lemma 2.70. G : Lq(Ω)→ [0,∞] is proper and coercive.

Proof. In order to show, that G is proper, we simply note, that G(0) = 0, since N (0, 0) = 0
and G(0, 0) = 0. To prove coercivity, let (vm)m ⊂ Lq(Ω), such that ‖vm‖q → ∞. We
have to show, that G(vm) → ∞ as well. Assume to the contrary, G(vm) 6→ ∞, i.e.,
there is a subsequence mk, such that (G(vmk))k is bounded. By Lemma 2.68, we can
pick µmk and θmk , such that vmk = N (µmk , θmk) and G(vmk) = G(µmk , θmk). Therefore,
as before µmk and θmk are bounded by the very definition of G and the boundedness
G(vmk) = G(µmk , θmk). Employing Lemma 2.59 and Lemma 2.58, this implies, that also
vmk = N (µmk , θmk) is bounded in Lq(Ω), contradicting our assumption.

2.2.4 The Cartoon Prior R

This section is dedicated to the introduction and mathematical analysis of the cartoon
prior R from (P). Luckily, regularizing functionals for piecewise smooth images are al-
ready well-understood. A very well-known example of such regularizing functionals is the
total variation functional TV (see Definition and Proposition 2.36). The total variation
L1(Ω)→ [0,∞], w 7→ TV(w) is a lsc generalization of w 7→ ‖∇w‖1 on the space L1(Ω). Un-
fortunately, the numerical solution algorithm, we will apply later, relies on certain stronger
smoothness properties, which ‖ . ‖1 lacks. Therefore, instead of TV we will from now on
consider the more general functional

R : L1(Ω)→ [0,∞]
w 7→ J∗∗(w),

(CAR)

51

2.2. The Problem in a Continuous Setting

where J∗∗ : L1(Ω)→ [0,∞] is the bipolar of

J : L1(Ω)→ [0,∞]

w 7→

∫
Ω
j(∇u(x)) dx if u ∈W 1,1(Ω)

+∞ else.

(2.7)

with a function j : Rd → [0,∞). This way, under some assumptions on j, J∗∗ will be
lsc and convex (and hence also weakly lsc) and the discrete analogue will be smooth. We
impose the following assumptions on j.

Assumption 2.71. The function j : Rd → [0,∞) shall satisfy the following conditions:

1. j is convex.

2. j has linear growth, i.e., there exists γ > 0, such that for any p ∈ Rd, we have

1
γ

(|p| − 1) ≤ j(p) ≤ γ(|p|+ 1).

3. j is Lipschitz continuous, i.e., there exists L > 0, such that for any p, q ∈ Rd,

|j(p)− j(q)| ≤ L|p− q|.

We will now present a few examples, satisfying our assumptions, in order to show, that
they are not too restrictive.

Example 2.72. [Examples for possible j]
The following functions satisfy Assumption 2.71:

1.
j : Rd → [0,∞),
j(p) = |p|.

2. For ε > 0,
j : Rd → [0,∞),

j(p) =
√
|p|2 + ε.

3. (Huber TV) For ε > 0,
j : Rd → [0,∞),

j(p) =
{ |p|2

2ε if |p| < ε

|p| − ε
2 else.

52

2.2. The Problem in a Continuous Setting

Proof. 1. The proof is straightforward and will therefore be omitted here.

2. • Convexity:
Defining h : [0,∞)→ [0,∞), h(t) =

√
t2 + ε, we can write j(p) = h(|p|). Notice,

that h is monotonically increasing and h′′(t) = ε

(t2+ε)
3
2
> 0 for all t, hence h is

also strictly convex. Let p, q ∈ Rd and λ ∈ (0, 1). Then, by convexity of | . | on
Rd, we get

j(λp+ (1− λ)q) = h(|λp+ (1− λ)q|) ≤︸︷︷︸
h increasing

h(λ|p|+ (1− λ)|q|) ≤

≤︸︷︷︸
h convex

λh(|p|) + (1− λ)h(|q|) = λj(p) + (1− λ)j(q).

• Linear growth:
Let p ∈ Rd be arbitrary.

|p| =
√
|p|2 ≤

√
|p|2 + ε = j(p) ≤

√
|p|2 + ε+ 2|p|

√
ε =

√
(|p|+

√
ε)2 = |p|+

√
ε ≤

≤ max
{
1,
√
ε
}

(|p|+ 1).

• Lipschitz continuity:
Using again the notation h(t) =

√
t2 + ε for t ∈ [0,∞), we find, that h′(t) =

t√
t2+ε = 1√

1+ ε
t2
≤ 1. This implies, that h is Lipschitz continuous with Lipschitz

constant 1. Thus, for p, q ∈ Rd,

|j(p)− j(q)| = |h(|p|)− h(|q|)| ≤ | |p| − |q| | ≤ |p− q| .

3. • Convexity:
Defining

h : [0,∞)→ [0,∞)

h(t) =
{
t2

2ε if t < ε

t− ε
2 else,

we can write j(p) = h(|p|) as before. It follows

h′(t) =
{
t
ε if t < ε

1 else.

We find, that h and h′ are monotonically increasing, i.e., h is increasing and
convex. Let p, q ∈ Rd and λ ∈ (0, 1). Then, by convexity of | . | on Rd, we get

53

2.2. The Problem in a Continuous Setting

as above
j(λp+ (1− λ)q) = h(|λp+ (1− λ)q|) ≤︸︷︷︸

h increasing

h(λ|p|+ (1− λ)|q|) ≤

≤︸︷︷︸
h convex

λh(|p|) + (1− λ)h(|q|) = λj(p) + (1− λ)j(q).

• Linear growth:
It holds true, that for all t > 0,

t− ε

2 ≤ h(t) ≤ t.

Thus, for p ∈ Rd arbitrary, we compute

|p| − ε

2 ≤ h(|p|) = j(p) ≤ |p|.

• Lipschitz continuity:
We have, that h′(t) ≤ 1 for all t > 0. Hence, h is Lipschitz continuous with
Lipschitz constant 1, and we find for p, q ∈ Rd,

|j(p)− j(q)| = |h(|p|)− h(|q|)| ≤ | |p| − |q| | ≤ |p− q|.

As in Section 2.2.3, we will no mathematically analyze the cartoon prior R = J∗∗ with
the main goal being, to establish lower semi-continuity of the functional and a Poincaré
type inequality.

Lemma 2.73. Under Assumption 2.71, J : L1(Ω)→ [0,∞], defined as in (2.7), is convex.

Proof. Let u,w ∈ L1(Ω). We want to show, that for any λ ∈ (0, 1),

J(λu+ (1− λ)w) ≤ λJ(u) + (1− λ)J(w). (2.8)

If one of the functions u,w is not in W 1,1(Ω), the right-hand side of (2.8) is ∞ and we are
done. So assume now u,w ∈W 1,1(Ω) and λ ∈ (0, 1). Then, by linearity of ∇ and linearity
and monotonicity of the integral, we find

J(λu+ (1− λ)w) =
∫
Ω

j(λ∇u(x) + (1− λ)∇w(x)) dx ≤

≤︸︷︷︸
j convex

∫
Ω

λj(∇u(x)) + (1− λ)j(∇w(x)) dx =
∫
Ω

λj(∇u(x)) dx+
∫
Ω

(1− λ)j(∇w(x)) dx =

= λJ(u) + (1− λ)J(w).

54

2.2. The Problem in a Continuous Setting

Corollary 2.74. It holds true, that

J∗∗ = J = inf
{

lim inf
n→∞

J(un)
∣∣∣un → u in L1(Ω)

}
.

In particular, we find, that J∗∗ is the lsc regularization of J on the space L1(Ω).

Proof. Since J is convex and bounded from below by zero, Proposition 2.54 implies,
that J is equal to the Γ-regularization of J , which again is equal to J∗∗ according to
Proposition 2.57. This proves the first inequality. The second one is an application of
Lemma 2.50.

Lemma 2.75. Under Assumption 2.71, J∗∗ : L1(Ω)→ [0,∞] satisfies

J∗∗(u) <∞⇐⇒ u ∈ BV(Ω).

Proof.”⇒ ” Assume J∗∗(u) < ∞. By Corollary 2.74 and Lemma 2.51, we can find a
sequence (un)n ⊂ L1(Ω) converging to u in L1(Ω), such that

J∗∗(u) = lim
n→∞

J(un).

Since J∗∗(u) <∞, we can assume, without loss of generality, that J(un) <∞ for all
n, i.e., (un)n ⊂ W 1,1(Ω). By density, we can also find a sequence (wn)n ⊂ C∞(Ω) ∩
W 1,1(Ω), such that ‖un − wn‖1,1 ≤

1
n . Then, ‖wn − u‖1 ≤ ‖wn − un‖1+‖un − u‖1 →

0. We also find, that

lim sup
n→∞

∫
Ω

|∇wn| dx ≤ lim sup
n→∞

∫
Ω

|∇wn −∇un| dx+
∫
Ω

|∇un| dx

 ≤
≤︸︷︷︸

‖∇wn−∇un‖1→0

lim sup
n→∞

∫
Ω

|∇un| dx ≤

≤︸︷︷︸
Assumption 2.71

lim sup
n→∞

∫
Ω

γ(j(∇un) + 1) dx = γJ∗∗(u) + γ|Ω| <∞.

We can further extract a subsequence (wnk)k, satisfying

lim
k→∞

∫
Ω

|∇wnk | dx = lim sup
n→∞

∫
Ω

|∇wn| dx <∞.

Then, Proposition 2.40 implies, that u ∈ BV(Ω).

55

2.2. The Problem in a Continuous Setting

”⇐ ” Assume now u ∈ BV(Ω). Using Proposition 2.40, we can find a sequence (un)n ⊂
C∞(Ω) ∩W 1,1(Ω), converging to u in L1(Ω), such that

lim
n→∞

∫
Ω

|∇un| dx <∞.

This implies,

lim inf
n→∞

J(un) = lim inf
n→∞

∫
Ω

j(∇un) dx ≤︸︷︷︸
Assumption 2.71

lim inf
n→∞

∫
Ω

γ(|∇un|+ 1) dx <∞,

As a result,

J∗∗(u) = inf
{

lim inf
n→∞

J(wn)
∣∣∣ (wn)n ⊂ L1(Ω), wn → u in L1(Ω)

}
≤ lim inf

n→∞
J(un) <∞.

Lemma 2.76. Under Assumption 2.71, for every u ∈ BV(Ω)

J∗∗(u) = inf
{

lim inf
n→∞

J(un)
∣∣∣ (un)n ⊂W 1,1(Ω) ∩ C∞(Ω), un → u in L1(Ω)

}
.

Proof. From Corollary 2.74, we already know, that

J∗∗(u) = inf
{

lim inf
n→∞

J(un)
∣∣∣ (un)n ⊂ L1(Ω), un → u in L1(Ω)

}
.

Therefore, we can already conclude, that

J∗∗(u) ≤ inf
{

lim inf
n→∞

J(un)
∣∣∣ (un)n ⊂W 1,1(Ω) ∩ C∞(Ω), un → u in L1(Ω)

}
.

In order to prove the remaining inequality, let (un)n ⊂ L1(Ω) be a sequence, converging to
u in L1(Ω), such that

J∗∗(u) = lim
n→∞

J(un),

which exists according to Corollary 2.74 and Lemma 2.51. Since we assumed, u ∈ BV(Ω),
J∗∗(u) < ∞ and we can suppose without loss of generality, that J(un) < ∞ for all n. By
definition of J this means, un ∈W 1,1(Ω) for all n. By density (see Theorem 2.35), we can
then find a sequence (φn)n ⊂ C∞(Ω) ∩W 1,1(Ω), such that

‖φn − un‖1,1 <
1
n
.

As a result, φn → u in L1(Ω) and

|J(φn)− J(un)| ≤
∫
Ω

|j(∇φn)− j(∇un)| dx ≤

≤︸︷︷︸
Assumption 2.71

∫
Ω

L |∇φn −∇un| dx = L ‖∇φn −∇un‖1 ≤ L ‖φ− u‖1,1 ≤
L

n
.

56

2.2. The Problem in a Continuous Setting

Therefore,
|J∗∗(u)− J(φn)| ≤ |J∗∗(u)− J(un)|+ |J(un)− J(φn)| → 0

as n→∞. Hence, J∗∗(u) = lim
n→∞

J(φn) = lim inf
n→∞

J(φn) with a sequence (φn)n ⊂ C∞(Ω)∩
W 1,1(Ω) converging to u in L1(Ω), implying

J∗∗(u) ≥ inf
{

lim inf
n→∞

J(un)
∣∣∣ (un)n ⊂W 1,1(Ω) ∩ C∞(Ω), un → u in L1(Ω)

}
and concluding the proof.

Corollary 2.77. Under Assumption 2.71, for every u ∈ BV(Ω), there exists a sequence
(un)n ⊂ C∞(Ω) ∩W 1,1(Ω) converging to u in L1(Ω), such that

J∗∗(u) = lim
n→∞

J(un).

Proof. By Lemma 2.76, for every n ∈ N, we can find a sequence (unk)k ⊂ C∞(Ω)∩W 1,1(Ω),
such that unk → u as k →∞ and∣∣∣∣ lim

k→∞
J(unk)− J∗∗(u)

∣∣∣∣ ≤ 1
n
.

For any n ∈ N, pick kn ∈ N, such that

∥∥unkn − u∥∥1 ≤
1
n

and ∣∣J(unkn)− J∗∗(u)
∣∣ ≤ 2

n
.

Then, the sequence (un)n ⊂ C∞(Ω) ∩W 1,1(Ω), defined as un := unkn for n ∈ N satisfies
un → u in L1(Ω) and

lim
n→∞

J(un) = J∗∗(u).

Lemma 2.78. Under Assumption 2.71, for every u ∈ BV(Ω), we have

1
γ

(TV(u)− |Ω|) ≤ J∗∗(u) ≤ γ(TV(u) + |Ω|).

Proof. Since we only consider u ∈ BV(Ω), Corollary 2.77 states, that we can find a sequence
(un)n ⊂ C∞(Ω) ∩W 1,1(Ω), converging to u in L1(Ω), such that

J∗∗(u) = lim
n→∞

J(un).

57

2.2. The Problem in a Continuous Setting

Therefore,

J∗∗(u) = lim
n→∞

J(un) = lim
n→∞

∫
Ω

j(∇un) dx ≥︸︷︷︸
Assumption 2.71

lim sup
n→∞

∫
Ω

1
γ

(|∇un| − 1) dx =

= 1
γ

lim sup
n→∞

∫
Ω

|∇un| dx− |Ω|

 ≥︸︷︷︸
Proposition 2.40

1
γ

(TV(u)− |Ω|) .

Therefore, 1
γ (TV−|Ω|) ≤ J∗∗. On the other hand, as stated in Proposition 2.40, we can

also find a sequence (un)n ⊂ C∞(Ω)∩W 1,1(Ω), such that un → u in L1(Ω) as n→∞ and

TV(u) = lim
n→∞

∫
Ω

|∇un| dx.

Then, we find, by definition of J∗∗ = J and Lemma 2.50

J∗∗(u) ≤ lim inf
n→∞

J(un) = lim inf
n→∞

∫
Ω

j(∇un) dx ≤︸︷︷︸
Assumption 2.71

lim inf
n→∞

∫
Ω

γ(|∇un|+ 1) dx =

= γ(TV(u) + |Ω|).

Lemma 2.79. [Translation invariance of J∗∗] Let

K(Ω) = {f : Ω→ R | ∃w ∈ R : f(x) = w for a.e. x in Ω} .

Then, for every u ∈ BV(Ω) and g ∈ K(Ω) it holds true, that

J∗∗(u+ g) = J∗∗(u).

Proof. Let u ∈ BV(Ω) and g ∈ K(Ω). First, we note, that for w ∈ W 1,1(Ω), it holds true,
that

J(w) =
∫
Ω

j(∇w) dx =
∫
Ω

j(∇(w + g)) dx = J(w + g).

By Lemma 2.76, we can compute

J∗∗(u+ g) = inf
{

lim inf
n→∞

J(wn)
∣∣∣ (wn)n ⊂ C∞(Ω) ∩W 1,1(Ω), wn → u+ g in L1(Ω)

}
=

= inf
{

lim inf
n→∞

J(wn − g)
∣∣∣ (wn)n ⊂ C∞(Ω) ∩W 1,1(Ω), wn → u+ g in L1(Ω)

}
=

= inf
{

lim inf
n→∞

J(un)
∣∣∣ (un)n ⊂ C∞(Ω) ∩W 1,1(Ω), un → u in L1(Ω)

}
= J∗∗(u).

58

2.2. The Problem in a Continuous Setting

Lemma 2.80. [Poincaré inequality] There exists a constant CP > 0, such that for all p
with 1 ≤ p ≤ d

d−1
‖u− uΩ‖p ≤ CP (J∗∗(u) + 1) ∀u ∈ BV(Ω).

Proof. This follows from Lemma 2.78 together with Lemma 2.42.

2.2.5 Existence and Stability Analysis

In this section, we will briefly recall the proposed problem including the data fidelity term
and then prove, that the problem admits a solution and that it is stable under certain
conditions. The proposed problem reads as follows:

min
u,v∈Lq(Ω)

F (u, v, y0) := D(u, y0) + λRR(u− v) + G(v), (P (y0))

where Y is a Banach space, y0 ∈ Y is the data and λR > 0. The functionals R and G
can be found in (CAR) and (TEX), respectively. For the data term, we will consider two
different cases. For A ∈ L(Lq(Ω), Y), a forward operator, either

• D(u, y0) = λDψ(‖Au− y0‖) with ψ : [0,∞) → [0,∞) continuous, increasing and
coercive (linear inverse problem) or

• D(u, y0) = I{.=y0}(Au) (inpainting).

Usually, ψ(t) = tq

q for some q ∈ [1,∞).

Example 2.81. [Forward operator for inpainting] What we typically mean by inpainting
can be obtained by defining the forward operator as the restriction

A : Lq(Ω)→ Lp(M)
u 7→ u

∣∣
M
.

for M ⊂ Ω, such that |M | > 0 and p ∈ [1, q].

Before stating the first main result, we prove lower semi-continuity of the objective
functional in the following sense:

Lemma 2.82. Let

• um ⇀ u in Lq(Ω),

• ym0 ⇀ y0 in Y ,

• vm ⇀ v in Lq(Σ)

as m→∞. Then,
F (u, v, y0) ≤ lim inf

m→∞
F (um, vm, ym0).

59

2.2. The Problem in a Continuous Setting

Proof. D: Let us start by investigating the data term D. We have to distinguish the two
possible cases.

– Linear inverse problem: D(u, y0) = λDψ(‖Au− y0‖)
‖ . ‖ is continuous and convex in Y and therefore, also lsc with respect to weak
convergence in Y (see Lemma 2.46). Lemma A.2 implies, that as a result also
ψ(‖ . ‖) is weakly lsc. Continuous linear operators between Banach spaces are
also weakly continuous (see Lemma 2.9), thus um ⇀ u implies Aum ⇀ Au.
Moreover, the sum/difference of weakly convergent sequences is again weakly
convergent, therefore, Aum − ym0 ⇀ Au− y0 in Y . Altogether, we find

ψ(‖Au− y0‖) ≤ lim inf
m→∞

ψ(‖Aum − ym0 ‖).

Noting, that λD > 0, we obtain D(u, y0) ≤ lim inf
m→∞

D(um, ym0).

– Inpainting: D(u, y0) = I{.=y0}(Au)
Again we find, that D is convex. In order to prove lower semi-continuity of D,
let wm → w in Lq(Ω) and zm0 → z0 in Y as m → ∞. Our goal is, to show,
that D(w, z0) ≤ lim inf

m→∞
D(wm, zm0). We may assume, lim inf

m→∞
D(wm, zm0) < ∞,

because otherwise, there is nothing to prove. In this case, let (wmk)k, (zmk0)k
be, such that lim inf

m→∞
D(wm, zm0) = lim

k→∞
D(wmk , z

mk
0) < ∞. This means, for k

large enough, Awmk = zmk0 . Hence,

Aw = lim
k→∞

Awmk = lim
k→∞

zmk0 = z0.

Therefore, D(w, z0) = 0 and D is lsc. Again, the convexity and lower semi-
continuity imply lower semi-continuity with respect to weak convergence and
we conclude, D(u, y0) ≤ lim inf

m→∞
D(um, ym0).

R: Recall, that R = J∗∗, i.e., R is defined as the bipolar of the functional J . By
definition of the bipolar function (Γ-regularization) J∗∗ is convex and lsc in L1(Ω)
and consequently weakly lsc in L1(Ω). For q ≥ 1, weak convergence in Lq implies
weak convergence in L1, therefore, um − vm ⇀ u− v in L1(Ω). Consequently,

J∗∗(u− v) ≤ lim inf
m→∞

J∗∗(um − vm).

Noting, that λR > 0, we also obtain

λRR(u− v) ≤ lim inf
m→∞

λRR(um − vm).

G: We have already shown weak lower semi-continuity of G in Lemma 2.69. Therefore,

G(v) ≤ lim inf
m→∞

G(vm).

60

2.2. The Problem in a Continuous Setting

For real sequences (am)m, (bm)m, it holds true, that

lim inf
m→∞

am + lim inf
m→∞

bm ≤ lim inf
m→∞

(am + bm) .

A successive application of this elementary fact eventually yields

F (u, v, y0) ≤ lim inf
m→∞

F (um, vm, ym0).

Theorem 2.83. [Existence of solutions] Consider (P (y0)) with data y0 ∈ Y . Suppose, that
Assumption 2.71 holds true and that q ≤ d

d−1 . In the case of inpainting, further assume,
that there exists a function û0 ∈ BV(Ω) such that Aû0 = y0. Then, there exists a solution
to (P (y0)).

Proof. First of all, we notice, that by the assumption on q, we have the continuous embed-
ding BV(Ω) ⊂ Lq(Ω), Lemma 2.41, and the Poincaré inequality, Lemma 2.80, on Lq(Ω).
Now let us begin with the proof, which we will divide in 3 steps, namely, showing, that the
problem has a finite value, finding a convergent minimizing sequence and proving optimality
of the corresponding limit.

Step 1: We show, that the problem has a finite value:

The objective functional is bounded from below by zero. Moreover, we will now
show, that we can pick (u, v), such that F (u, v, y0) < ∞, proving that the objective
functional is proper. First let us choose v = 0 = N (0, 0). Therefore, G(v) = 0 as
well and F (u, 0, y0) = D(u, y0) + λRR(u). In order to obtain a finite value of the
objective functional, we only need to find u ∈ Lq(Ω), such that D(u, y0) < ∞ and
R(u) = J∗∗(u) < ∞. The second condition is equivalent to asking u ∈ BV(Ω) as
stated in Lemma 2.75.

– Linear inverse problem: D(u, y0) = λDψ(‖Au− u0‖)
Since D(u, u0) <∞ for every u ∈ Lq(Ω), any element of BV(Ω), e.g., u = 0 will
serve the purpose.

– Inpainting: D(u, y0) = I{.=y0}(Au)
In this case, we may pick u = û0 ∈ BV(Ω), as stated in the theorem.

In both cases, we find that the objective functional is proper, implying, that (P (y0))
has a finite value. Hence, we can pick a minimizing sequence (um, vm)m.

Step 2: Using typical compactness arguments, we show, that there is a convergent
minimizing sequence:

61

2.2. The Problem in a Continuous Setting

Since G is coercive, as proven in Lemma 2.70, and D and R are non-negative, we
find, that the sequence (vm)m is bounded in Lq(Ω). Unfortunately, boundedness of
(um)m is not as trivial. Lemma 2.80, Poincaré’s inequality, implies, that

‖(um − vm)− (um − vm)Ω‖q ≤ CP (J∗∗(um − vm) + 1) ≤
≤ C(F (um, vm, y0) + 1),

where in the constant C, also λR is taken into account. Hence,

((um − vm)− (um − vm)Ω)m

is bounded in Lq(Ω). Since (vm)m is already known to be bounded in Lq(Ω), also
(vm − (vm)Ω)m is bounded, because for any w ∈ Lq(Ω), we find

|wΩ| =
1
|Ω| |

∫
Ω

w dx| ≤︸︷︷︸
Hölder

1
|Ω| ‖w‖q ‖1‖q′ = |Ω|

1−q′
q′ ‖w‖q

⇒ ‖vm − (vm)Ω‖q ≤ ‖vm‖q (1 + |Ω|
1−q′
q′),

where q′ denotes the Hölder conjugate exponent of q. As a result, also (um−(um)Ω)m
is bounded in Lq(Ω). In the following, we will alter the sequence (um)m in a way, such
that the evaluation of the objective functional remains unchanged and the sequence
becomes bounded. Denote U = K(Ω)∩ker(A) with K(Ω) again the finite dimensional
space of functions defined on Ω, which are constant a.e.. As a subspace of K(Ω), U
is finite dimensional. Let U⊥ be a complement of U in K(Ω), and P : K(Ω) → U⊥

be the continuous, linear projection onto U⊥. Instead of (um)m, we will now consider
the sequence

wm := um − (I − P)(um)Ω.

Since (I − P)(um)Ω ∈ U = K(Ω) ∩ ker(A), we find, that Aum = Awm and by
Lemma 2.79, that J∗∗(um − vm) = J∗∗(wm − vm). In other words, (wm, vm)m is a
minimizing sequence as well. We will now show boundedness of (wm)m. Notice, that

wm = um − (um)Ω + P (um)Ω.

We have already shown, that (um − (um)Ω)m is bounded in Lq(Ω), therefore, it only
remains to prove, that (P (um)Ω)m is bounded as well. In order to do so, we introduce
the restriction

A
∣∣
U⊥

: U⊥ → A(U⊥)
u 7→ Au.

This operator is actually a bijective operator between finite dimensional spaces.
Surjectivity follows from the restriction of the image set. To see injectivity, as-
sume Au = 0 for u ∈ U⊥ ⊂ K(Ω). This implies, that u ∈ ker(A) ∩ U⊥ =

62

2.2. The Problem in a Continuous Setting

(ker(A) ∩K(Ω)) ∩ U⊥ = U ∩ U⊥ = {0}. Therefore, we can compute

‖P (um)Ω‖q =
∥∥∥(A∣∣

U⊥
)−1AP (um)Ω

∥∥∥
q
≤
∥∥∥(A∣∣

U⊥
)−1
∥∥∥ ‖AP (um)Ω‖ =

=
∥∥∥(A∣∣

U⊥
)−1
∥∥∥ ‖A(um)Ω‖ ≤

∥∥∥(A∣∣
U⊥

)−1
∥∥∥ (‖A(um − (um)Ω)‖+ ‖Aum‖) ≤

≤
∥∥∥(A∣∣

U⊥
)−1
∥∥∥
‖A‖ ‖(um − (um)Ω)‖q︸ ︷︷ ︸

(i)

+ ‖Aum‖︸ ︷︷ ︸
(ii)

We have already shown, that (i) is bounded. To show boundedness of (ii) we distin-
guish the two possible data terms:

– Linear inverse problem: D(u, y0) = λDψ(‖Au− y0‖)
Assume to the contrary, (ii) was unbounded, i.e., we could find a subsequence,
such that ‖Aumk‖

k→∞−−−→∞ and therefore, also ‖Aumk − y0‖
k→∞−−−→∞. Then the

coercivity of ψ would imply, that ψ(‖Aumk − y0‖)→∞, which contradicts the
boundedness of (F (um, v(µm, θm), µm, θm, y0))m, ergo (ii) is bounded as well.

– Inpainting: D(u, y0) = I{.=y0}(Au)
This already implies, that Aum = y0, and therefore (ii) is bounded

In any case, we find, that (P (um)Ω)m is bounded as well. As a result, the sequence
(wm)m is bounded in Lq(Ω) and we can therefore extract a subsequence, such that
wm ⇀ u and vm ⇀ v for some u, v ∈ Lq(Ω). We consider as our new minimizing
sequence (wm, vm)m. What is now left to prove, is, that the obtained limit (u, v) is
a solution to (P (y0)).

Step 3: We show optimality of the limit:
We are now exactly in the setting of Lemma 2.82, implying

F (u, v, y0) ≤ lim inf
m→∞

F (wm, vm, y0).

Since (wm, vm)m is a minimizing sequence, (F (wm, vm, y0))m converges to the infi-
mum of (P (y0)), proving, that (u, v) is a solution of (P (y0)).

The next result shows stability of the proposed method with the data term of a linear
inverse problem.

Theorem 2.84. [Stability of the linear inverse problem] Suppose, that Assumption 2.71
holds true and consider (P (y0)) with q ≤ d

d−1 . Let D(u, y0) = λDψ(‖Au− y0‖) (linear

63

2.2. The Problem in a Continuous Setting

inverse problem). Further, let ym0 , y0 ∈ Y , such that ym0 → y0 as m → ∞. Let (um, vm)m
be a sequence of solutions to (P (y0)) with data ym0 , i.e.,

(um, vm) ∈ argmin
u,v∈Lq(Ω)

F (u, v, ym0).

Then, there exists a subsequence (umk , vmk)k and u, v ∈ Lq(Ω), such that umk ⇀ u and
vmk ⇀ v in Lq(Ω), where (u, v) is a solution to (P (y0)) with data y0, i.e.,

F (u, v, y0) ∈ argmin
ũ,ṽ∈Lq(Ω)

F (ũ, ṽ, y0).

Proof.

Step 1: We show, that the sequence of solutions is bounded and find a convergent
subsequence:
Since (um, vm)m are minimizers of F (., ., ym0), we find, that

F (um, vm, ym0) ≤ F (0, 0, ym0) = λDψ(‖ym0 ‖) + λRR(0) ≤

≤︸︷︷︸
ψ increasing

λDψ(sup
l∈N

∥∥∥yl0∥∥∥) + λRR(0) <∞,

where we used, that (ym0)m is convergent and therefore bounded. As a result, we find,
that the sequence of objective functional evaluations F (um, vm, ym0))m is bounded.
As before, by the coercivity of G and non-negativity of D and R, we find that the
sequence (vm)m is bounded in Lq(Ω). By coercivity of ψ, we obtain boundedness
of (Aum − ym0)m and by the fact, that (ym0)m is convergent in Y , boundedness of
(Aum)m. Since Lq(Ω) is reflexive for 1 < q < ∞, we can find v ∈ Lq(Ω) and
a subsequence, again labeled with m, such that vm ⇀ v in Lq(Ω). The Poincaré
inequality, Lemma 2.80, implies, that

‖(um − vm)− (um − vm)Ω‖q ≤ CP (J∗∗(um − vm) + 1) ≤
≤ C(F (um, vm, ym0)︸ ︷︷ ︸

bounded

+1). (2.9)

The boundedness of (vm)m in Lq(Ω) implies, that also (vm − (vm)Ω)m is bounded in
Lq(Ω) as shown in Theorem 2.83. Together with (2.9), this shows boundedness of
(um − (um)Ω)m. In the same way as in Theorem 2.83, we alter our sequence to

wm := um − (um)Ω + P (um)Ω.

Again, for all m, (wm, vm) is a solution to (P (y0)) with data ym0 . In order to show
boundedness of (wm)m, it is sufficient, to show, that (P (um)Ω)m is bounded. We use
the same notation as in Theorem 2.83 and estimate

64

2.2. The Problem in a Continuous Setting

‖P (um)Ω‖q =
∥∥∥(A∣∣

U⊥
)−1AP (um)Ω

∥∥∥
q
≤
∥∥∥(A∣∣

U⊥
)−1
∥∥∥ ‖AP (um)Ω‖ =

=
∥∥∥(A∣∣

U⊥
)−1
∥∥∥ ‖A(um)Ω‖ ≤

∥∥∥(A∣∣
U⊥

)−1
∥∥∥ (‖A(um − (um)Ω)‖+ ‖Aum‖) ≤

≤
∥∥∥(A∣∣

U⊥
)−1
∥∥∥
‖A‖ ‖(um − (um)Ω)‖q︸ ︷︷ ︸

(i)

+ ‖Aum‖︸ ︷︷ ︸
(ii)

We have already shown both, boundedness of (i) and (ii). As a result also (wm)m
is bounded in Lq(Ω). We can therefore extract a further subsequence again labeled
with m, such that also wm ⇀ u in Lq(Ω) for some u ∈ Lq(Ω) and we consider as a
new sequence of solutions to (P (y0)) with data ym0 the sequence (wm, vm)m.

Step 2: We show, that the limit of our sequence is a solution to (P (y0)) with data
y0:
As in Theorem 2.83, we use the lower semi-continuity of the objective functional in
order to obtain the desired result. To be precise, using Lemma 2.82, we find for (ũ, ṽ)
arbitrary,

F (u, v, y0) ≤︸︷︷︸
lower semi-continuity

lim inf
m→∞

F (wm, vm, ym0)

≤︸︷︷︸
optimality

lim inf
m→∞

F (ũ, ṽ, ym0) =︸︷︷︸
ym0 →y0

F (ũ, ṽ, y0).

Thus, (u, v) is optimal, concluding the proof.

2.2.6 Explicit Representation of J∗∗

In the following section, we will derive an explicit formula for the functional J∗∗ for the
examples mentioned in Example 2.72.

Definition 2.85. [Recession function, [4, 2.5. The integrand f and its recession function]]
Let j : Rd → [0,∞) be Borel measurable and convex. Then we define the recession function
of j as

j∞ : Rd → R

j∞(p) = lim
t→∞

j(tp)
t

= sup
t>0

j(tp)− j(0)
t

.

Example 2.86. As an example and for later use, we will now compute the recession
functions of the functions presented in Example 2.72.

65

2.2. The Problem in a Continuous Setting

1.
j : Rd → [0,∞)
j(p) = |p|.

Then for any p ∈ Rd,

j∞(p) = lim
t→∞

|tp|
t

= |p| = j(p).

Hence, j∞ = j.

2. For ε > 0,
j : Rd → [0,∞)

j(p) =
√
|p|2 + ε.

Then for any p ∈ Rd,

j∞(p) = lim
t→∞

√
|tp|2 + ε

t
= lim

t→∞

√
|p|2 + ε

t2
= |p|.

3. For ε > 0,
j : Rd → [0,∞),

j(p) =
{ |p|2

2ε if |p| < ε

|p| − ε
2 else.

Let p ∈ Rd, p 6= 0. Then for t large enough, we find, that |tp| > ε and therefore

j∞(p) = lim
t→∞

j(tp)
t

= lim
t→∞

|tp| − ε
2

t
= |p|.

For p = 0, we find

j∞(0) = lim
t→∞

j(t0)
t

= 0.

Therefore, altogether again we find j∞(p) = |p|.

Theorem 2.87. [Explicit formula for J∗∗, [4, Theorem 4.1]] Let j : Rd → [0,∞) be
continuous and convex. Assume moreover, there exists Λ > 0, such that for all p ∈ Rd

j(p) ≤ Λ(1 + |p|).

Let J : L1(Ω)→ [0,∞] be defined as

J(u) =

∫
Ω
j(∇u(x)) dx if u ∈W 1,1(Ω)

∞ else.

66

2.2. The Problem in a Continuous Setting

Then for every u ∈ BV(Ω),

J(u) =
∫
Ω

j(∇u(x)) dx+
∫
Ω

j∞(D
cu

|Dcu|
)d|Dcu|+

∫
Ju∩Ω

dHd−1
u+(x)∫
u−(x)

j∞(νu) ds,

where Hd−1 denotes the (d− 1) dimensional Hausdorff measure (see [5, Definition 2.46]),
which coincides with the (d−1) dimensional Lebesgue measure on ’nice’ surfaces/manifolds
(see [5, Remark 2.72]).

Example 2.88. Let us apply Theorem 2.87 to the examples we presented for j. Since
for all the examples, we have shown, that j∞(.) = |.|, we find for all functions j from
Example 2.72, that for u ∈ BV(Ω)

J(u) = J∗∗(u) =
∫
Ω

j(∇u(x)) dx+
∫
Ω

| D
cu

|Dcu|
| d|Dcu|+

∫
Ju∩Ω

dHd−1
u+(x)∫
u−(x)

|νu|︸︷︷︸
=1

ds =

=
∫
Ω

j(∇u(x)) dx+
∫
Ω

| D
cu

|Dcu|
|︸ ︷︷ ︸

=1
[5,Corollary1.29]]

d|Dcu|+
∫

Ju∩Ω

dHd−1(u+(x)− u−(x)) =

=
∫
Ω

j(∇u(x)) dx+ |Dcu|(Ω) +
∫

Ju∩Ω

dHd−1(u+(x)− u−(x)) =

Here,
∫

Ju∩Ω
dHd−1(u+(x)−u−(x)) can be interpreted as a measure for jumps of u, since we

integrate u+(x)− u−(x), which is the height of a jump at the point x ∈ Ju.

67

Chapter 3

Practical Results

This chapter is dedicated to the investigation of the proposed method in a discrete setting,
the end goal being, to apply the method to real images. In this chapter, for 1 ≤ p < ∞
and z ∈ Rd, we will denote

‖z‖p :=
(

d∑
i=1
|zi|p

) 1
p

and
‖z‖∞ := max

i=1,2,...d
|zi|.

If z ∈ Rd1×d2×...×dn for n ∈ N, then ‖z‖p is the norm as above evaluated at z, understood
as an element of Rd1d2...dn . Moreover, for a matrix A ∈ Rd2×d1 (a map A : Rd1 → Rd2 ,
respectively) and 1 ≤ p, q ≤ ∞, we will denote the induced norm as

‖A‖p,q := max
z∈Rd1
‖z‖p≤1

‖Az‖q .

3.1 The Algorithm

In this section, we introduce an algorithm for solving non-convex minimization problems,
which will afterwards be applied to an instance of the regularization method proposed in
Chapter 2. The presented algorithm is a special case of the Inertial Proximal Alternating
Linearized Minimization (iPALM) algorithm [20]. We consider problems of the form

minF (x) := H(x) +
n∑
i=1

fi(xi) over all x = (x1, x2, ..., xn) ∈ Rd1 × Rd2 × ...× Rdn , (3.1)

where fi for i = 1, 2, ..., n are extended valued, potentially non-smooth functions and
H is a smooth coupling function. Typically, the functions fi contain constraints and/or

68

3.1. The Algorithm

regularizing terms, whereas H is a term to be minimized, that arises from the modeling
process. Before discussing the method in detail, we have to state some necessary definitions
and results, in particular the notion of the subdifferential, which is a generalization of the
gradient for non-differentiable functions.

Definition 3.1.

• Let σ : Rd → (−∞,∞]. We define the domain of σ as

dom(σ) :=
{
x ∈ Rd

∣∣∣ σ(x) <∞
}
.

• Let G : Rd → P(Rd), i.e., G is a function, whose values are subsets of Rd, then we
define the domain of G as

dom(G) :=
{
x ∈ Rd

∣∣∣ G(x) 6= ∅
}
.

Definition 3.2. [Normal cone, [17, Definition 1.1]] Let ∅ 6= Ω ⊂ Rd and x ∈ Ω.

• We define for ε ≥ 0

N̂ε(x; Ω) :=

y ∈ Rd

∣∣∣∣∣∣∣ lim sup
u∈Ω
u→x

〈y, u− x
‖u− x‖2

〉 ≤ ε

 .
In the case that ε = 0, we denote N̂0(x; Ω) = N̂(x; Ω).

• We further define the normal cone to Ω at x as

N(x; Ω) :=
{
y ∈ Rd

∣∣∣ ∃εk ↓ 0, (xk)k ⊂ Ω, xk → x, yk ∈ N̂εk(xk; Ω) : yk → y
}
.

Proposition 3.3. [17, Proposition 1.5] Let Ω ⊂ Rd be locally convex at x ∈ Ω, i.e., there
exists a neighborhood U of x, such that U ∩ Ω is convex. Then N̂(x; Ω) = N(x; Ω).

Definition 3.4. [Subdifferential, [17, Definition 1.77]] Let σ : Rd → R. We define the
subdifferential of σ at x as

∂σ(x) =
{
y ∈ Rd

∣∣∣ (y,−1) ∈ N((x, σ(x))); epi(σ))
}

if |σ(x)| <∞ and ∂σ(x) = ∅ else.

Remark 3.5. The subdifferential can be interpreted well in simple cases.

69

3.1. The Algorithm

• If σ is continuously differentiable in a neighborhood of x, then the subdifferential
reduces to the classical gradient, i.e.,

∂σ(x) = {∇σ(x)} .

For a proof, see [17, Corollary 1.82].

• If σ is convex, the subdifferential coincides with the well-known subdifferential of
convex analysis (see [17, Theorem 1.93]). That is, if σ : Rd → R is convex and finite
at x, we find that

∂σ(x) =
{
y ∈ Rd

∣∣∣ ∀x ∈ Rd : σ(x) + 〈y, x− x〉 ≤ σ(x)
}
. (3.2)

Note, that in this case, 0 ∈ ∂σ(x) is a sufficient condition for x being a minimum
of σ. As an example, let σ : R → R, σ(x) = |x|. We would like to compute the
subdifferential at x = 0. By (3.2), it consists of the slopes of all affine functions,
which are everywhere less than σ and 0 at x = 0. In Figure 3.1 one can observe two
of those functions with different slopes. Altogether, we find ∂σ(0) = [−1, 1].

Figure 3.1: Affine minorants of σ.

The proof methodology used in the convergence analysis in [20] is based on the concept
of KL functions, which shall be introduced in the following.

70

3.1. The Algorithm

Definition 3.6. [Kurdyka- Lojasiewicz property, KL functions, [7, Definition 3]] For η ∈
(0,∞], we define

Φη =
{
φ ∈ C([0, η),R)

∣∣∣ φ is concave, φ(0) = 0, φ ∈ C1((0, η),R), ∀s ∈ (0, η) : φ′(s) > 0
}
.

A function σ : Rd → (−∞,∞] is said to have the Kurdyka- Lojasiewicz (KL) property, at
u ∈ dom(∂σ), if there exist η ∈ (0,∞], a neighborhood U of u and a function φ ∈ Φη, such
that for all

u ∈ U ∩
{
w ∈ Rd

∣∣∣σ(u) < σ(w) < σ(u) + η
}

the following inequality holds

φ′(σ(u)− σ(u)) dist(0, ∂σ(u)) ≥ 1, (3.3)

where for S ⊂ Rd and x ∈ Rd,

dist(x, S) = inf {‖x− y‖2 | y ∈ S} .

If σ satisfies the KL property at each point of dom(∂σ), then σ is called a KL function.

Remark 3.7. Let us take a brief moment to interpret the definition of a KL function. In
the case, that σ is continuously differentiable, (3.3) reads as

φ′(σ(u)− σ(u)) ‖∇σ(u)‖2 ≥ 1.

The KL property is mostly interesting at critical points. Assume for simplicity σ(u) = 0
and that u is a critical point, i,e., ∇σ(u) = 0. Then, the KL property states, that

φ′(σ(u)) ‖∇σ(u)‖2 = ‖∇(φ ◦ σ(u))‖2 ≥ 1.

This means, that up to the reparametrisation φ, the function σ is sharp at the critical point
(similar to x 7→ |x| at x = 0).

Considering the problem (3.1) again, we aim to find critical points of F , that is, we seek
to find x ∈ Rd1×Rd2×...×Rdn , such that 0 ∈ ∂F (x). This is a meaningful generalization of
the gradient vanishing. We take the following basic assumptions on the functions involved
in (3.1).

Assumption 3.8.

1. For i = 1, 2, ..., n, fi : Rdi → (−∞,∞] is proper (not ∞ everywhere), lower semi-
continuous, convex and infRdi fi > −∞.

2. H : Rd1 × ...× Rdn → R is differentiable and infRd1×...×Rdn F > −∞.

3. F is a KL function.

71

3.1. The Algorithm

4. ∇H is Lipschitz continuous on bounded sets, i.e., for any bounded subset B1 × ... ×
Bn ⊂ Rd1 × ...× Rdn, there exists L > 0, such that for all x, y ∈ B1 × ...×Bn,

‖∇H(x)−∇H(y)‖2 ≤ L ‖x− y‖2 .

Further, let us introduce the notion of the proximal mapping.

Definition 3.9. [Proximal mapping] Let σ : Rd → (−∞,∞] be proper. The proximal
mapping of σ is defined as

proxσt (p) := argmin
{
σ(q) + t

2 ‖q − p‖
2
2 | q ∈ Rd

}
,

for t > 0.

Note, that in general proxσt (p) might be the empty set. The following lemma provides
a sufficient condition for proxσt (p) to contain at least one element.

Lemma 3.10. Let σ : Rd → (−∞,∞] be proper, lower semi-continuous and infRd σ > −∞.
Then for every t > 0 and p ∈ Rd, proxσt (p) 6= ∅. Moreover, if σ is also convex, then proxσt (p)
consists of a single element.

Proof. Since infRd σ > −∞, also inf
{
σ(q) + t

2 ‖q − p‖
2
2 | q ∈ Rd

}
> −∞. Let (qn)n ⊂ Rd

be a minimizing sequence, i.e., inf
{
σ(q) + t

2 ‖q − p‖
2
2 | q ∈ Rd

}
= lim

n→∞

(
σ(qn) + t

2 ‖qn − p‖
2
2

)
.

Then (qn)n is bounded, because t > 0 and

t

2 ‖qn − p‖
2
2 =

(
σ(qn) + t

2 ‖qn − p‖
2
2

)
− σ(qn) ≤

(
σ(qn) + t

2 ‖qn − p‖
2
2

)
︸ ︷︷ ︸

(i)

− inf
Rd
σ︸ ︷︷ ︸

(ii)

,

where (i) is bounded, since (qn)n is a minimizing sequence of expression (i), and (ii) is
bounded as an assumption of this lemma. Therefore, we can find a convergent subsequence
(qnk)k and q̂ ∈ Rd, such that qnk → q̂ as k → ∞. Since σ is assumed to be lower semi-
continuous, we find, that

σ(q̂) + t

2 ‖q̂ − p‖
2
2 ≤ lim inf

k→∞
σ(qnk) + lim inf

k→∞

t

2 ‖qnk − p‖
2
2 =

= lim
k→∞

(
inf
l≥k

σ(qnl) + inf
l≥k

t

2 ‖qnl − p‖
2
2

)
≤ lim

k→∞
inf
l≥k

(
σ(qnl) + t

2 ‖qnl − p‖
2
2

)
=

= lim inf
k→∞

(
σ(qnk) + t

2 ‖qnk − p‖
2
2

)
= inf

{
σ(q) + t

2 ‖q − p‖
2
2 | q ∈ Rd

}
.

Therefore, q̂ ∈ proxσt (p), which shows, that proxσt (p) 6= ∅.

72

3.1. The Algorithm

Now, assume that σ is convex, then q 7→ f(q) := σ(q) + t
2 ‖q − p‖

2
2 is strictly convex,

since for q, q̃ ∈ Rd, q 6= q̃ and λ ∈ (0, 1) we find, that

λf(q) + (1− λ)f(q̃)− f(λq + (1− λ)q̃) =

= λσ(q) + λ
t

2 ‖q − p‖
2
2 + (1− λ)σ(q̃) + (1− λ) t2 ‖q̃ − p‖

2
2−(

σ(λq + (1− λ)q̃) + t

2 ‖λq + (1− λ)q̃ − p‖22
)
≥

≥︸︷︷︸
σ convex

t

2
(
λ ‖q − p‖22 + (1− λ) ‖q̃ − p‖22 − λ

2 ‖q − p‖22 − 2λ(1− λ)〈q − p, q̃ − p〉 − (1− λ)2 ‖q̃ − p‖22
)

=

= tλ(1− λ)
2

(
‖q − p‖22 + ‖q̃ − p‖22 − 2〈q − p, q̃ − p〉

)
=

= tλ(1− λ)
2 ‖(q − p)− (q̃ − p)‖22 =

tλ(1− λ)
2 ‖q − q̃‖22 > 0.

The strict convexity implies uniqueness of the minimizer, which proves that proxσt (p) con-
tains only a single element.

The proposed algorithm reads as follows.

Algorithm 3.11 iPALM
1: initialize: x0 = (x0

1, x
0
2, ..., x

0
n) ∈ Rd1 × ...× Rdn

2: for m = 1, 2, ...: do
3: for i = 1, 2, ..., n: do
4: Take αmi , βmi ∈ [0, 1] and τmi > 0 and compute

ymi = xmi + αmi (xmi − xm−1
i),

zmi = xmi + βmi (xmi − xm−1
i),

xm+1
i ∈ proxfiτmi

(
ymi −

1
τmi
∇xiH(xm+1

1 , ..., xm+1
i−i , z

m
i , x

m
i+1, ..., x

m
n)
)
. (3.4)

5: end for
6: end for

The proof of convergence of the sequence, generated by Algorithm 3.11 can be found
in [20]. Therefore, we will not present most of the details, but the following two results,
which play a crucial role in the proof.

73

3.1. The Algorithm

Lemma 3.12. [Descent lemma] Let h : Rd → R be differentiable and u, v ∈ Rd. Further
assume that ∇h is Lipschitz continuous with Lipschitz constant L on the line connecting u
and v, given as {tu+ (1− t)v | t ∈ [0, 1]}. Then

h(v) ≤ h(u) + 〈v − u,∇h(u)〉+ L

2 ‖u− v‖
2
2 .

Proof. Using the fundamental theorem of calculus, we obtain

h(v)− h(u) =
∫ 1

0

d

dt
h(u+ t(v − u))dt =

∫ 1

0
〈v − u,∇h(u+ t(v − u))〉dt =

=
∫ 1

0
〈v − u,∇h(u+ t(v − u))−∇h(u)〉dt+ 〈v − u,∇h(u)〉 ≤

≤
∫ 1

0
|〈v − u,∇h(u+ t(v − u))−∇h(u)〉|dt+ 〈v − u,∇h(u)〉 ≤

≤︸︷︷︸
Cauchy-Schwartz

∫ 1

0
‖v − u‖2 ‖∇h(u+ t(v − u))−∇h(u)‖2 dt+ 〈v − u,∇h(u)〉 ≤

≤︸︷︷︸
∇h Lipsachitz

∫ 1

0
‖v − u‖2 Lt ‖v − u‖2 dt+ 〈v − u,∇h(u)〉 = L

2 ‖v − u‖
2
2 + 〈v − u,∇h(u)〉.

Lemma 3.13. [Proximal inequality] Let h : Rd → R be differentiable with ∇h Lipschitz
continuous with Lipschitz constant L and let σ : Rd → (−∞,∞] be proper, lower semi-
continuous, convex and infRd σ > −∞. Further, let v, w ∈ Rd, t > 0 and

u+ = proxσt (v − 1
t
∇h(w)).

Then for every u ∈ dom(σ) and s > 0, we have

h(u+) + σ(u+) ≤ h(u) + σ(u)+

+L+ s− t
2

∥∥∥u+ − u
∥∥∥2

2
+ t

2 ‖v − u‖
2
2 −

t

2

∥∥∥v − u+
∥∥∥2

2
+ 1

2sL
2 ‖u− w‖22 .

Proof. First, note that we can write the proximal mapping in a more convenient way.

proxσt (v − 1
t
∇h(w)) = argmin

{
σ(ξ) + t

2

∥∥∥∥v − 1
t
∇h(w)− ξ

∥∥∥∥2

2
| ξ ∈ Rd

}
=

= argmin
{
σ(ξ) + t

2

(
‖v − ξ‖22 − 2〈v − ξ, 1

t
∇h(w)〉+

∥∥∥∥1
t
∇h(w)

∥∥∥∥2

2

)
| ξ ∈ Rd

}
=

= argmin

σ(ξ) + t

2 ‖v − ξ‖
2
2 − 〈v − ξ,∇h(w)〉︸ ︷︷ ︸

=:f(ξ)

| ξ ∈ Rd

 .
(3.5)

74

3.1. The Algorithm

The function f to be minimized is convex, since σ is assumed to be convex. In fact, f is
even strictly convex, since for η, ξ ∈ Rd and λ ∈ (0, 1), similar to the proof of Lemma 3.10
we find

λf(ξ) + (1− λ)f(η)− f(λξ + (1− λ)η) ≥

≥︸︷︷︸
σ convex

t

2
(
λ ‖v − ξ‖22 + (1− λ) ‖v − η‖22 − ‖v − λξ − (1− λ)η‖22

)
=

= t

2
(
λ ‖v − ξ‖22 + (1− λ) ‖v − η‖22 − λ

2 ‖v − ξ‖22 − 2λ(1− λ)〈v − ξ, v − η〉 − (1− λ)2 ‖v − η‖22
)

=

= t

2
(
λ(1− λ) ‖v − ξ‖22 + (1− λ)(1− (1− λ)) ‖v − η‖22 − 2λ(1− λ)〈v − ξ, v − η〉

)
=

= tλ(1− λ)
2

(
‖v − ξ‖22 + ‖v − η‖22 − 2〈v − ξ, v − η〉

)
= tλ(1− λ)

2 ‖(v − ξ)− (v − η)‖22 =

= tλ(1− λ)
2 ‖ξ − η‖22 .

(3.6)
We are now able, to quantify the growth of the function f at its minimum. With u+ ∈ Rd,
the unique minimizer of f , u ∈ Rd arbitrary and λ ∈ (0, 1), by setting ξ = u and η = u+

in (3.6), we obtain

f(λu+ (1− λ)u+) + tλ(1− λ)
2

∥∥∥u+ − u
∥∥∥2

2
≤ λf(u) + (1− λ)f(u+)

⇒ f(λu+ (1− λ)u+)− f(u+)
λ︸ ︷︷ ︸
≥0

+ t(1− λ)
2

∥∥∥u+ − u
∥∥∥2

2
≤ f(u)− f(u+)

⇒ t(1− λ)
2

∥∥∥u+ − u
∥∥∥2

2
≤ f(u)− f(u+).

Since this is true for all λ ∈ (0, 1), letting λ→ 0+ yields

t

2

∥∥∥u+ − u
∥∥∥2

2
≤ f(u)− f(u+).

By plugging in the definition of f , we obtain

σ(u+) + t

2

∥∥∥v − u+
∥∥∥2

2
− 〈v − u+,∇h(w)〉+ t

2

∥∥∥u+ − u
∥∥∥2

2
≤ σ(u) + t

2 ‖v − u‖
2
2 − 〈v − u,∇h(w)〉

⇒ σ(u+) ≤ σ(u) + t

2 ‖v − u‖
2
2 − 〈v − u,∇h(w)〉 − t

2

∥∥∥v − u+
∥∥∥2

2
+ 〈v − u+,∇h(w)〉 − t

2

∥∥∥u+ − u
∥∥∥2

2
.

75

3.1. The Algorithm

Combining this inequality with Lemma 3.12, we obtain

h(u+) + σ(u+) ≤ h(u) + 〈u+ − u,∇h(u)〉+ L

2

∥∥∥u+ − u
∥∥∥2

2
+

σ(u) + t

2 ‖v − u‖
2
2 − 〈v − u,∇h(w)〉 − t

2

∥∥∥v − u+
∥∥∥2

2
+ 〈v − u+,∇h(w)〉 − t

2

∥∥∥u+ − u
∥∥∥2

2
=

= h(u) + σ(u) + 〈u+ − u,∇h(u)−∇h(w)〉+ L− t
2

∥∥∥u+ − u
∥∥∥2

2
+ t

2 ‖v − u‖
2
2 −

t

2

∥∥∥v − u+
∥∥∥2

2
.

(3.7)
We note, that for p, q ∈ Rd and any s > 0, we have

0 ≤
∥∥∥∥√sp− 1√

s
q

∥∥∥∥2

2
= s ‖p‖22 − 2〈p, q〉+ 1

s
‖q‖22

⇒ 〈p, q〉 ≤ s

2 ‖p‖
2
2 + 1

2s ‖q‖
2
2 .

Therefore, we can compute

〈u+ − u,∇h(u)−∇h(w)〉 ≤ s

2

∥∥∥u+ − u
∥∥∥2

2
+ 1

2s ‖∇h(u)−∇h(w)‖22 ≤︸︷︷︸
∇h Lipschitz

≤ s

2

∥∥∥u+ − u
∥∥∥2

2
+ L2

2s ‖u− w‖
2
2 .

Plugging this into (3.7) gives the desired result.

Remark 3.14. Carefully reviewing the proof of Lemma 3.13, we notice, that the assump-
tions on h may be weakened. To be precise, we do not need global Lipschitz continuity of
∇h. Indeed, it is sufficient, that only in the points u, u+, w the following conditions are
satisfied:

(i) Descent property:

h(u+) ≤ h(u) + 〈u+ − u,∇h(u)〉+ L

2

∥∥∥u+ − u
∥∥∥2

2

(ii) Lipschitz property:
‖∇h(u)−∇h(w)‖2 ≤ L ‖u− w‖2

In the proof of convergence of Algorithm 3.11 presented in [20], Lemma 3.13 is applied
at the step (3.4), where the old and new iterates will take the place of u and u+. Combined
with the presented results in [20], this motivates the following assumption, which also covers
the choice of the parameters αmi , βmi and τmi in Algorithm 3.11.

Assumption 3.15. Using the notations of Algorithm 3.11, we make the following assump-
tions:

76

3.1. The Algorithm

1. There exists ε ∈ (0, 1), such that for all i = 1, 2, ..., n there are αi, βi ∈ (0, 1 − ε),
such that for all m ∈ N, 0 ≤ αmi ≤ αi and 0 ≤ βmi ≤ βi.

2. Using ε from item 1 above, for all i = 1, 2, ..., n,

δi = αi + 2βi
2(1− ε− αi)

Li,

τmi = (1 + ε)δi + (1 + βmi)Lmi
2− αmi

,

where 0 < Lmi ≤ Li for all m and Lmi satisfies the following properties:

i) Descent property:

H(xm+1
1 , ..., xm+1

i−i , x
m+1
i , xmi+1, ..., x

m
n) ≤

≤ H(xm+1
1 , ..., xm+1

i−i , x
m
i , x

m
i+1, ..., x

m
n)+

+〈xm+1
i − xmi ,∇xiH(xm+1

1 , ..., xm+1
i−i , x

m
i , x

m
i+1, ..., x

m
n)〉+ Lmi

2

∥∥∥xm+1
i − xmi

∥∥∥2

2

ii) Lipschitz property:∥∥∥∇xiH(xm+1
1 , ..., xm+1

i−i , z
m
i , x

m
i+1, ..., x

m
n)−∇xiH(xm+1

1 , ..., xm+1
i−i , x

m
i , x

m
i+1, ..., x

m
n)
∥∥∥

2
≤

≤ Lmi ‖zmi − xmi ‖2

Remark 3.16. If the sequence (xm)m, generated by Algorithm 3.11, is bounded, it is
possible, to find Lmi satisfying the descent and the Lipschitz property. In order to see this,
let B = B1× ...×Bn be a bounded, convex set, such that (xmi)m, (ymi)m, (zmi)m ⊂ Bi for all
i. Then, by Assumption 3.8, ∇xiH is Lipschitz continuous on B. If now Lmi is a Lipschitz
constant for ∇xiH on B, it fulfills both properties (see Lemma 3.12).

This enables us, to present the main result of this section.

Theorem 3.17. Suppose, that Assumption 3.8 and Assumption 3.15 hold true. Then, if
the sequence (xm)m, generated by Algorithm 3.11, is bounded, it converges to a critical
point of F .

Proof. The proof is done analogously to the one of [20, Theorem 4.1] and we only sketch
the necessary modifications to cover the setting considered here:

Firstly, we should note, that the results in [20] are presented for the case n = 2,
but can be extended to the general case without significant modifications. As stated in
Remark 3.14, the descent and Lipschitz property in Assumption 3.15 enable us, to prove
and use the proximal inequality, Lemma 3.13, at all iterations in Algorithm 3.11. Using this,
all proofs in [20] can be carried through with the assumptions we have made, eventually
leading to the desired result.

77

3.2. The Problem in a Discrete Setting

3.2 The Problem in a Discrete Setting

3.2.1 Preliminaries

In the following we will introduce some notations and present several results, which will
be used afterwards.

Definition 3.18. [Discrete convolution] Let µ ∈ Rn×m and θ ∈ Rr×s, such that r ≤ n and
s ≤ m. We define the discrete convolution µ ∗ θ ∈ R(n−r+1)×(m−s+1) as

(µ ∗ θ)i,j :=
∑

k=1,2,...,r
l=1,2,...,s

µi+r−k,j+s−lθk,l

for i = 1, 2, ..., n− r + 1 and j = 1, 2, ...m− s+ 1.

Remark 3.19. Most readers may be familiar with the convolution. The distinctive property
of the convolution in Definition 3.18 is just, that we compute exactly those values, where
no boundary extension of µ is needed. For θ, effectively we use a zero extension.

Definition 3.20. [Strided upconvolution] Let µ ∈ Rn×m, θ ∈ Rr×s and σ ∈ N. Further,
let ñ, m̃ ∈ N, such that σ(n − 1) + 1 ≤ ñ ≤ σn and σ(m − 1) + 1 ≤ m̃ ≤ σm. We define
the strided upconvolution µ ∗σ θ as

µ ∗σ θ := µ̃σ ∗ θ,

where the zero interpolation µ̃σ ∈ Rñ×m̃ is defined as

µ̃σi,j :=

µk,l if ∃k ∈ {1, 2, ..., n}, l ∈ {1, 2, ...,m} :

i = σ ∗ (k − 1) + 1, j = σ ∗ (l − 1) + 1
0 else

.

Remark 3.21.

• The strided upconvolution can also be interpreted as the adjoint operator of a down-
sampled convolution. In order to see this, let us compute the adjoint of

∗σθ : Rn×m → RN×M

µ 7→ µ ∗σ θ

(N,M can be computed according to the definitions above). Let µ ∈ Rn×m and
u ∈ RN×M be arbitrary. In the following, a tilde denotes the zero extension, i.e., for
i, j ∈ Z

θ̃i,j =
{
θi,j if 1 ≤ i ≤ r, 1 ≤ j ≤ s
0 else.

78

3.2. The Problem in a Discrete Setting

We compute

〈µ ∗σ θ, u〉 =
∑

i=1,2,..,N
j=1,2,..,M

(µ ∗σ θ)i,jui,j =
∑

i=1,2,..,N
j=1,2,..,M

ui,j
∑

k=1,2,..,r
l=1,2,..,s

µ̃σi+r−k,j+s−lθk,l =

=
∑

i=1,2,..,N
j=1,2,..,M

ui,j
∑

k′=i,i+1,..,i+r−1
l′=j,j+1,..,j+s−1

µ̃σk′,l′θi+r−k′,j+s−l′ =

=
∑

i=1,2,..,N
j=1,2,..,M

ui,j
∑

k′=1,2,..,ñ
l′=1,2,..,m̃

µ̃σk′,l′ θ̃i+r−k′,j+s−l′ =

=
∑

k′=1,2,..,ñ
l′=1,2,..,m̃

µ̃σk′,l′
∑

i=1,2,..,N
j=1,2,..,M

ui,j θ̃i+r−k′,j+s−l′ =

=
∑

k=1,2,..,n
l=1,2,..,m

µk,l
∑

i=1,2,..,N
j=1,2,..,M

ui,j θ̃i+r−σ(k−1)−1,j+s−σ(l−1)−1.

Hence, we see, that the adjoint of ∗σθ is a convolution operation with the convolution
kernel (θ−i,−j)i,j (up to a shift) evaluated at every σ-th entry.

• Note that, there is some wiggle room to choose the size of µ̃ without losing any
information about µ. This will be relevant later, when we are given an image size
and want to fit the architecture of a convolutional network accordingly, such that we
can generate images of the given size.

• As the name suggests, the strided upconvolution is a method of up sampling. Figura-
tively speaking, µ̃ is the result of adding zeros in between the values of µ, such that
only every σth entry of µ̃ is non-zero. This increases the size of µ approximately by
the factor σ. Afterwards, we perform the regular convolution of Definition 3.18 on
µ̃.

• If σ = 1, we recover the regular convolution.

• We will refer to θ as the (filter) kernel, µ as coefficient and σ as the stride of the
convolution.

Definition 3.22. Let N,M,mf , σ ∈ N, µ ∈ Rn×m×nf , θl ∈ Rs×s×nf (we use square
filter kernels now, to simplify writing) for l = 1, 2, ...,mf , such that N = ñ − s + 1 and
M = m̃ − s + 1 with σ(n − 1) + 1 ≤ ñ ≤ σn and σ(m − 1) + 1 ≤ m̃ ≤ σm (compare to
Definition 3.20 and Remark 3.21). We define

Kσ
θ : Rn×m×nf → RN×M×mf

p = (pk)
nf
k=1 7→

(nf∑
k=1

pk ∗σ (θl)k

)mf
l=1

79

3.2. The Problem in a Discrete Setting

and
Cσµ : Rs×s×nf → RN×M

D = (Dk)
nf
k=1 7→

nf∑
k=1

µk ∗σ Dk.

Lemma 3.23. With the notation of Definition 3.22 it holds true, that

‖Kσ
θ ‖2,2 ≤

√√√√mf∑
l=1

nf∑
k=1
‖(θl)k‖21

and ∥∥∥Cσµ∥∥∥2,2
≤

√√√√ nf∑
k=1
‖µk‖21.

Proof. Let p ∈ Rn×m×nf be arbitrary. We compute

‖pk ∗σ (θl)k‖22 =
∑

i=1,...,N
j=1,...,M

|(p̃kσ ∗ (θl)k)i,j |2 =
∑

i=s+1,...,ñ+1
j=s+1,...,m̃+1

∣∣∣∣∣∣
∑

r,t=1,...,s
(p̃kσ)i−r,j−t((θl)k)r,t

∣∣∣∣∣∣
2

≤

≤
∑
i,j

∑
r,t

|(p̃kσ)i−r,j−t|
√
|((θl)k)r,t|

√
|((θl)k)r,t|

2

≤︸︷︷︸
Hölder

≤
∑
i,j

∑
r,t

|(p̃kσ)i−r,j−t|2 |((θl)k)r,t|

∑
r,t

|((θl)k)r,t|

 ≤
≤ ‖θl‖21 ‖p̃k

σ‖22 = ‖θl‖21 ‖pk‖
2
2 .

(3.8)
Therefore,

∥∥∥∥∥
nf∑
k=1

pk ∗σ (θl)k

∥∥∥∥∥
2

≤
nf∑
k=1
‖pk ∗σ (θl)k‖2 ≤

nf∑
k=1
‖(θl)k‖1 ‖pk‖2 ≤︸︷︷︸

Hölder

‖p‖2

√√√√ nf∑
k=1
‖(θl)k‖21.

Altogether, we find

‖Kσ
θ (p)‖2 =

√√√√√mf∑
l=1

∥∥∥∥∥
nf∑
k=1

pk ∗ (θl)k

∥∥∥∥∥
2

2

≤

√√√√mf∑
l=1

nf∑
k=1
‖(θl)k‖21 ‖p‖

2
2 = ‖p‖2

√√√√mf∑
l=1

nf∑
k=1
‖(θl)k‖21.

80

3.2. The Problem in a Discrete Setting

Analogously to (3.8), we obtain for arbitrary D ∈ Rs×s×nf

‖µk ∗σ Dk‖22 =
∑

i=1,...,N
j=1,...,M

|(µ̃kσ ∗Dk)i,j |2 =
∑

i=s+1,...,ñ+1
j=s+1,...,m̃+1

∣∣∣∣∣∣
∑

r,t=1,...,s
(µ̃kσ)i−r,j−t(Dk)r,t

∣∣∣∣∣∣
2

≤

≤
∑
i,j

∑
r,t

√
|(µ̃kσ)i−r,j−t|

√
|(µ̃kσ)i−r,j−t| |(Dk)r,t|

2

≤︸︷︷︸
Hölder

≤
∑
i,j

∑
r,t

|(µ̃kσ)i−r,j−t| |(Dk)r,t|2
∑

r,t

|(µ̃kσ)i−r,j−t|

 ≤
≤ ‖µ̃kσ‖21 ‖Dk‖22 = ‖µk‖21 ‖Dk‖22 .

(3.9)
This enables us to compute

∥∥∥Cσµ (D)
∥∥∥

2
=
∥∥∥∥∥
nf∑
k=1

µk ∗σ Dk

∥∥∥∥∥
2

≤
nf∑
k=1
‖µk ∗σ Dk‖ ≤

nf∑
k=1
‖µk‖1 ‖Dk‖2 ≤︸︷︷︸

Hölder

‖D‖2

√√√√ nf∑
k=1
‖µk‖21,

(3.10)
which concludes the proof.

Definition 3.24. [Discrete gradient] We define the discrete gradient operator as

∇ : RN×M → RN×M×2

u 7→ ∇u,

with

(∇u)1
i,j :=

{
ui+1,j − ui,j for i < N

0 for i = N,

(∇u)2
i,j :=

{
ui,j+1 − ui,j for j < M

0 for j = M.

Lemma 3.25. With the notation of Definition 3.24, it holds true, that

‖∇‖2,2 ≤
√

8.

Proof. Using Young’s inequality, we find for a, b ∈ R,

(a+ b)2 = a2 + b2 + 2ab︸︷︷︸
≤ a2 + b2

≤ 2
(
a2 + b2

)
.

81

3.2. The Problem in a Discrete Setting

Deploying this elementary inequality, we compute

‖∇u‖22 =
∑

i=1,...,N−1
j=1,...,M−1

[
(ui+1,j − ui,j)2 + (ui,j+1 − ui,j)2

]
+

+
∑

i=1,...,N−1
(ui+1,M − ui,M)2 +

∑
j=1,...,M−1

(uN,j+1 − uN,j)2 ≤

≤ 2
∑

i=1,...,N−1
j=1,...,M−1

[
u2
i+1,j + u2

i,j + u2
i,j+1 + u2

i,j

]
+

+2
∑

i=1,...,N−1

(
u2
i+1,M + u2

i,M

)
+ 2

∑
j=1,...,M−1

(
u2
N,j+1 + u2

N,j

)
=

= 4
∑

i=1,...,N−1
j=1,...,M−1

u2
i,j+

+2
∑

i=1,...,N−1
j=1,...,M

u2
i+1,j + 2

∑
i=1,...,N

j=1,...,M−1

u2
i,j+1 + 2

∑
i=1,...,N−1

u2
i,M + 2

∑
j=1,...,M−1

u2
N,j ≤

≤ 4
∑

i=1,...,N
j=1,...,M

u2
i,j + 2

∑
i=1,...,N−1
j=1,...,M

u2
i+1,j + 2

∑
i=1,...,N

j=1,...,M−1

u2
i,j+1 ≤

≤ 8 ‖u‖22 ,

which proves, that ‖∇‖2,2 ≤
√

8.

Definition 3.26. [Discrete divergence] We define the discrete divergence operator as

div : RN×M×2 → RN×M

p 7→ div(p),

with, for 1 ≤ i ≤ N , 1 ≤ j ≤M ,

(div p)i,j :=

p1
i,j − p1

i−1,j + p2
i,j − p2

i,j−1 for i < N, j < M

p1
i,M − p1

i−1,M − p2
i,M−1 for i < N, j = M

−p1
N−1,j + p2

N,j − p2
N,j−1 for i = N, j < M

−p1
N−1,M − p2

N,M−1 for i = N, j = M,

where we use the convention pki,j = 0 if i = 0 or j = 0.

Lemma 3.27. Using the scalar product

〈p, q〉 =
N∑
i=1

M∑
j=1

L∑
k=1

pki,jq
k
i,j

82

3.2. The Problem in a Discrete Setting

on RN×M×L, it holds true, that
∇∗ = −div .

Proof. The proof is done by elementary computations. Let u ∈ RN×M and p ∈ RN×M×2

be arbitrary. Using a zero extension of p, i.e., pki,j = 0 if (i, j) 6∈ {1, 2, ...N} × {1, 2, ...M},
we compute

〈∇u, p〉 =
N∑
i=1

M∑
j=1

(∇u)1
i,jp

1
i,j + (∇u)2

i,jp
2
i,j =

N−1∑
i=1

M∑
j=1

(ui+1,j − ui,j)p1
i,j +

N∑
i=1

M−1∑
j=1

(ui,j+1 − ui,j)p2
i,j =

=
N−1∑
i=1

M∑
j=1
−ui,jp1

i,j +
N∑
i=1

M∑
j=1

ui,jp
1
i−1,j +

N∑
i=1

M−1∑
j=1
−ui,jp2

i,j +
N∑
i=1

M∑
j=1

ui,jp
2
i,j−1 =

=
N−1∑
i=1

M∑
j=1
−ui,j(p1

i,j − p1
i−1,j) +

M∑
j=1

uN,jp
1
N−1,j +

N∑
i=1

M−1∑
j=1
−ui,j(p2

i,j − p2
i,j−1) +

N∑
i=1

ui,Mp
2
i,M−1 =

=
N−1∑
i=1

M−1∑
j=1
−ui,j(p1

i,j − p1
i−1,j + p2

i,j − p2
i,j−1)+

+
N−1∑
i=1
−ui,M (p1

i,M − p1
i−1,M) +

N∑
i=1

ui,Mp
2
i,M−1 +

M−1∑
j=1
−uN,j(p2

N,j − p2
N,j−1) +

M∑
j=1

uN,jp
1
N−1,j =

=
N−1∑
i=1

M−1∑
j=1
−ui,j div(p)i,j +

N−1∑
i=1
−ui,M (p1

i,M − p1
i−1,M − p2

i,M−1)

+uN,Mp2
N,M−1 +

M−1∑
j=1
−uN,j(p2

N,j − p2
N,j−1 − p1

N−1,j) + uN,Mp
1
N−1,M =

=
N−1∑
i=1

M−1∑
j=1
−ui,j div(p)i,j+

+
N−1∑
i=1
−ui,M (p1

i,M − p1
i−1,M − p2

i,M−1) +
M−1∑
j=1
−uN,j(−p1

N−1,j + p2
N,j − p2

N,j−1)

−uN,M (−p1
N−1,M − p2

N,M−1) =
N∑
i=1

M∑
j=1
−ui,j div(p)i,j = 〈u,−div(p)〉.

3.2.2 Minimization Problem and Solution Algorithm

In this section, we introduce a discrete analogue of the continuous model (P (y0)) from
Chapter 2. We will focus on the task of inpainting, since in this case we require on
parameter less than for the linear inverse problem. This is due to the nature of the data

83

3.2. The Problem in a Discrete Setting

fidelity term for inpainting, which has values in {0,∞}, hence a multiplicative factor has
no effect on the value of the data fidelity term. The choice of such a parameter could
significantly impact the results of the method, making it more difficult to compare the
performance to existing methods. Let u0 ∈ RN×M be the unknown, original image, we
would like to reconstruct. There are some pixels of u0, which are known and others, which
are not, formally we are given an image M, called mask, of the same size as u0, such that
Mi,j = 1, when (u0)i,j is known andMi,j = 0 else. To simplify notation, we introduce the
set

M(u0) :=
{
v ∈ RN×M

∣∣∣ vi,j = (u0)i,j if Mi,j = 1
}
.

We propose the following minimization problem, in order to obtain a reconstruction of u0:

min
u,µ,θ

F (u, µ, θ) := IM(u0)(u) + λTVTVε(u− v)+

+λµ ‖µ‖1 + λθ

n∑
i=2

(∥∥∥θi∥∥∥
1

+ I{.≥0}(θi)
)

+ IA(θ1),
(DP)

subject to

v = v(µ, θ) =
nf,1∑
k=1

µ1
k ∗σ θ1

k

and for j = 2, 3, ..., n, l = 1, 2, ..., nf,j−1 : µj−1
l =

nf,j∑
k=1

µjk ∗σ θ
j
k,l,

where the filter kernels θ1
k ∈ Rksz×ksz for k = 1, 2, ...nf,1, θjk,l ∈ Rksz×ksz for j = 2, 3, ..., n,

k = 1, 2, ..., nf,j and l = 1, 2, ..., nf,j−1 (ksz is short for kernel size) and and the closed and
convex set A is defined as

A =

θ1 ∈ Rksz×ksz×nf,1
∣∣∣∣∣∣ ∀k = 1, 2, ...nf,1 :

∥∥∥θ1
k

∥∥∥
2
≤ 1,

ksz∑
i,j=1

θ1
i,j = 0

The superscripts indicate the layer of our convolutional model and nf,j is the number of
filters/the filter depth in layer j. We denote

µ := (µnk)k=1,2,...,nf,n ,

µj := (µjk)k=1,2,...nf,j ,

θ := ((θ1
k)k, (θ

j
k,l)j,k,l) and,

θjl := (θjk,l)k=1,2,...nf,j .

In practice, the sizes of the filter kernels and the stride may be chosen arbitrarily, but
the size of the coefficient image µ is then determined according to Definition 3.18 and

84

3.2. The Problem in a Discrete Setting

Definition 3.20. TVε is the following discrete analogue of J from Chapter 2.

TVε : RN×M → [0,∞)
u 7→ φε(∇u),

(3.11)

with
φε : RN×M×2 → [0,∞)

p = (pki,j) i=1,2,...,N
j=1,2,...,M
k=1,2

7→
N∑
i=1

M∑
j=1

√
(p1
i,j)2 + (p2

i,j)2 + ε.
(3.12)

The problem (DP) is the discrete analogue to the continuous problem investigated in
Section 2.2.2 in the case of inpainting. Clearly, the goal is to apply Algorithm 3.11 to
(DP). Accordingly, we have to distinguish different blocks of variables, which are updated
separately in the algorithm, i.e., x1 := u, x2 := µ and x3 := θ. Further we identify the
smooth coupling function

H(x) = H(u, µ, θ) = λTVTVε(u− v(µ, θ))

and the non-smooth functions

f1(x1) = f1(u) = IM(u0)(u),
f2(x2) = f2(µ) = λµ ‖µ‖1 ,

f3(x3) = f3(θ) = λθ

n∑
i=2

(∥∥∥θi∥∥∥
1

+ I{.≥0}(θi)
)

+ IA(θ1).

In order to apply the algorithm, we need the gradient of H and the proximal mappings of
all fj . Using, that the adjoint operator of ∇, satisfies ∇∗ = − div, with div the discrete
divergence (see Lemma 3.27), we obtain

∇uH(u, µ, θ) = λTV ∇∗ ∇φε(∇(u− v)) =

= −λTV div

 (∇(u− v)1

i,j ,∇(u− v)2
i,j)√

(∇(u− v)1
i,j)2 + (∇(u− v)2

i,j)2 + ε

i,j︸ ︷︷ ︸

∇φε(∇(u− v))

.

(3.13)

Moreover, by the linearity of the convolution we get for the derivative with respect to µ,
denoted as Dµ,

Dµv = DµK
σ
θ1(µ1) = Kσ

θ1Dµµ
1 = Kσ

θ1DµK
σ
θ2(µ2) = Kσ

θ1Kσ
θ2Dµµ

2 =
= ... = Kσ

θ1Kσ
θ2Kσ

θ3 ...Kσ
θn

85

3.2. The Problem in a Discrete Setting

and consequently, with ∗ denoting the adjoint of an operator

∇µv = (Kσ
θn)∗(Kσ

θn−1)∗...(Kσ
θ2)∗(Kσ

θ1)∗.

Therefore, we can compute

∇µH = −λTV ∇µv ∇∗ ∇φε(∇(u− v)) =

= λTV(Kσ
θn)∗(Kσ

θn−1)∗...(Kσ
θ2)∗(Kσ

θ1)∗ div

 (∇(u− v)1

i,j ,∇(u− v)2
i,j)√

(∇(u− v)1
i,j)2 + (∇(u− v)2

i,j)2 + ε

i,j

 .
(3.14)

A similar procedure yields for the derivatives with respect to θjl ,

D
θj
l
v = Kσ

θ1Kσ
θ2 ...Kσ

θj−1Dθj
l
(Cσµj (θ

j
ij−1

))ij−1

and hence
∇
θj
l
H = −λTV ∇θj

l
v ∇∗ ∇φε(∇(u− v)) =

= λTV(0, 0, ..., (Cσµj)
∗︸ ︷︷ ︸

position l

, 0, ..., 0)(Kσ
θj−1)∗(Kσ

θj−2)∗...

...(Kσ
θ2)∗(Kσ

θ1)∗ div

 (∇(u− v)1

i,j ,∇(u− v)2
i,j)√

(∇(u− v)1
i,j)2 + (∇(u− v)2

i,j)2 + ε

i,j

 .
(3.15)

Let us now compute the proximal mappings of the functions (fj)j . We start by computing
proxf1

τ .
proxf1

τ (w) = argmin
{
IM(u0)(u) + τ

2 ‖w − u‖
2
2

∣∣∣∣ u} =

=
{

(u0)i,j for Mi,j = 1
wi,j else

.

(3.16)

The computation of proxf2
τ can be done by invoking some elementary analysis.

proxf2
τ (η) = argmin

{
λµ ‖µ‖1 + τ

2 ‖η − µ‖
2
2

∣∣∣∣ µ} =

= argmin

∑
k,i,j

λµ|µk,i,j |+
τ

2 (ηk,i,j − µk,i,j)2

∣∣∣∣∣∣ µ
 .

In this case, we can minimize with respect to all entries of µ separately, yielding the
following result,

proxf2
τ (η) =

ηk,i,j − λµ

τ for ηk,i,j > λµ
τ

ηk,i,j + λµ
τ for ηk,i,j < −λµ

τ

0, else
. (3.17)

86

3.2. The Problem in a Discrete Setting

Next, let us consider the proximal mapping of f3.

proxf3
τ (ρ) = argmin

{
λθ

n∑
i=2

(∥∥∥θi∥∥∥
1

+ I{.≥0}(θi)
)

+ IA(θ1) + τ

2 ‖ρ− θ‖
2
2

∣∣∣∣∣ θ
}
.

Again, the solution θ̂ := proxf3
τ (ρ) is obtained by minimizing with respect to all layers θi

separately. Starting with θ1, we find by definition of A

θ̂1 = argmin

∥∥∥ρ1 − θ1
∥∥∥2

2

∣∣∣∣∣∣ θ1 : ∀k = 1, 2, ...nf,1 :
∥∥∥θ1
k

∥∥∥
2
≤ 1,

∑
i,j

(θ1
k)i,j = 0

 (3.18)

According to equation (3.18), θ̂1
k is the projection of ρ1

k onto the closed and convex set{
θ1
k |

∥∥θ1
k

∥∥
2 ≤ 1,

∑
i,j(θ1

k)i,j = 0
}

. Invoking Lemma A.3, we see, that we obtain proxf3
τ (ρ1)k

by projecting ρ1
k first onto the linear space

{
θ1
k |

∑
i,j(θ1

k)i,j = 0
}

and then the result onto
the unit ball. Altogether, we find, that

(θ̂1
k)r,s =

(ρ1
k)r,s − 1

(ksz1)2
∑
i,j(ρ1

k)i,j

max
{

1,
∥∥∥∥((ρ1

k)r′,s′ −
1

(ksz1)2
∑
i,j(ρ1

k)i,j
)
r′,s′

∥∥∥∥
2

} . (3.19)

The remaining layers θ̂i for 1 < i ≤ n are all computed identically and similarly to proxf2
τ ,

θ̂i = argmin
{
λθ
∥∥∥θi∥∥∥

1
+ I{.≥0}(θi) + τ

2

∥∥∥ρi − θi∥∥∥2

2
| θi
}

=

argmin

 ∑
k,l,r,s

(
λθ
∥∥∥(θik,l)r,s∥∥∥1

+ τ

2 ((ρik,l)r,s − (θik,l)r,s)2
)
| θi : (θik,l)r,s ≥ 0

 .
Again, the minimization can be performed for each component of θi separately and the
result is

(θ̂ik,l)r,s =
{

(ρik,l)r,s −
λθ
τ for (ρik,l)r,s >

λθ
τ

0 else
. (3.20)

This finishes our computations and we are now prepared to write down the algorithm.
Please note, that in the following, the sub- and superscripts denoted as ’m’ always refer to
the iteration number of the algorithm.

87

3.2. The Problem in a Discrete Setting

Algorithm 3.28 Generative Regularization
1: inputs: corrupted input image u0, image with info about known pixels M , ε ∈ (0, 1),
βu, βµ, βθ ∈ (0, 1− ε)

2: initialize: u0 = u1, µ0 = µ1, θ0 = θ1

3: for m = 1, 2, ... do
4: update u:
5: Take βmu ∈ [0, βu] and compute

ũm = um + βmu (um − um−1).

6: Find Lmu satisfying the descent and Lipschitz property with respect to u (see As-
sumption 3.15, 3), then compute step length τmu and update u.

δmu = 3βu
2(1− ε− βu)

Lmu ,

τmu = (1 + ε)δmu + (1 + βmu)Lmu
2− βmu

,

um = ũm − 1
τmu
∇uH(ũm, µm, θm)

(um+1)i,j =
{

(u0)i,j if Mi,j = 1
(um)i,j else

(3.21)

7: update µ:
8: Take βmµ ∈ [0, βµ] and compute

µ̃m = µm + βmµ (µm − µm−1).

9: Find Lmµ satisfying the descent and Lipschitz property with respect to µ (see As-
sumption 3.15, 3), then compute step length τmµ and update µ.

δmµ = 3βµ
2(1− ε− βµ)

Lmµ ,

τmµ =
(1 + ε)δmµ + (1 + βmµ)Lmµ

2− βmµ
,

µm = µ̃m − 1
τmµ
∇µH(um+1, µ̃m, θm)

(µm+1)k,i,j =

(µm)k,i,j − λµ

τmµ
for (µm)k,i,j > λµ

τmµ

(µm)k,i,j + λµ
τmµ

for (µm)k,i,j < − λµ
τmµ

0, else

(3.22)

88

3.2. The Problem in a Discrete Setting

10: update θ:
11: Take βmθ ∈ [0, βθ] and compute

θ̃m = θm + βmθ (θm − θm−1).

12: Find Lmθ satisfying the descent and Lipschitz property with respect to θ (see As-
sumption 3.15, 3), then compute step length τmθ and update θ.

δmθ = 3βθ
2(1− ε− θµ)

Lmθ ,

τmθ = (1 + ε)δmθ + (1 + βmθ)Lmθ
2− βmθ

,

θ
m = θ̃m − 1

τmθ
∇θH(um+1, µm+1, θ̃m)

((θm+1)1
k)r,s =

((θm)1
k)r,s − 1

(ksz1)2
∑
i,j((θ

m)1
k)i,j

max
{

1,
∥∥∥((θm)1

k)r′,s′ −
1

(ksz1)2
∑
i,j((θ

m)1
k)i,j)r′,s′

∥∥∥
2

} ,

and for i = 2, 3, ..., n :

((θm+1)ik,l)r,s =

((θm)ik,l)r,s −
λθ
τm
θ

for ((θm)ik,l)r,s >
λµ
τm
θ

0 else

(3.23)

13: end for

Remark 3.29. Algorithm 3.28 slightly differs from Algorithm 3.11. The parameters δmu , δmµ
and δmθ are not constant, as Assumption 3.15 suggests. In order to compute δmu , δ

m
µ , δ

m
θ

according to Assumption 3.15, we would need upper bounds for Lmu , Lmµ and Lmθ , which are
not easily accessible.

Remark 3.30. The computation of Lmu , Lmµ and Lmθ is not mentioned explicitly in Algo-
rithm 3.28. Exemplarily, we will show it now for Lmu in the form of a pseudo algorithm.

89

3.2. The Problem in a Discrete Setting

Algorithm 3.31 Backtracking
1: Compute Lmu , satisfying the Lipschitz property (Assumption 3.15)
2: descent = False
3: while not descent do
4: Compute an update um+1 according to (3.21) using Lmu
5: if Descent property satisfied for um, um+1 (Assumption 3.15) then
6: descent = True
7: else
8: Lmu = 2Lmu
9: end if

10: end while

In other words, we increase Lmu , until it satisfies both, the Lipschitz and the descent prop-
erty. By Remark 3.16, this process terminates after a finite amount of iterations.

It would also be possible, to obtain admissible Lmu , Lmµ and Lmθ by explicitly computing the
Lipschitz constants of the partial gradients of H (see Lemma 3.37). In practice, however,
this took longer than performing the backtracking above. Moreover, by Remark 3.14, the
obtained values will in general be greater than necessary resulting in a smaller step size in
the algorithm.

Convergence of the Algorithm

In this section, we will show, that Algorithm 3.28 indeed converges to a critical point
of the objective functional F , as stated in Theorem 3.17. Assumption 3.15 is fulfilled
by the parameter choices and computations done in Algorithm 3.28 (up to the difference
mentioned in Remark 3.29). Therefore, we are left to verify only the conditions stated in
Assumption 3.8.

First of all, the functions (fi)i are proper, convex and greater than or equal to zero.
Moreover, they are lower semi-continuous, since indicator functions on closed sets are lower
semi-continuous, multiplication with a positive real number does not affect lower semi-
continuity and sums of lower semi-continuous functions are also lower semi-continuous.
Also the coupling function H is differentiable and the objective function F = H+f1+f2+f3
is greater than or equal to zero. The remaining tasks, in order to verify Assumption 3.8,
are to investigate local Lipschitz continuity of the gradient of H, as well as showing that
the objective function is a KL function (Definition 3.6). We start by showing the latter.
In order to do so, we will first have to introduce the concept of semi-algebraic functions.

Definition 3.32. [Semi-algebraic sets and functions, [7, Definition 5]]

i) A subset S ⊆ Rd is called semi-algebraic, if there exist p, q ∈ N and polynomial

90

3.2. The Problem in a Discrete Setting

functions gi,j , hi,j : Rd → R for i = 1, 2, ..., p, j = 1, 2, ..., q, such that

S =
p⋃
i=1

q⋂
j=1

{
x ∈ Rd | gi,j(x) = 0, hi,j(x) < 0

}

ii) A function φ : Rd → (−∞,∞] is called semi-algebraic, if its graph{
(x, φ(x)) | x ∈ Rd

}
is a semi-algebraic subset of Rd+1.

Example 3.33. The function φ : R→ R, φ(x) =
√
|x| is semi-algebraic.

Proof. We can write the graph of φ as follows:

{(x, φ(x)) | x ∈ R} =
{

(x,
√
|x|) | x ∈ R

}
=

=
{
(x,
√
x) | x ∈ R, x > 0

}
∪
{

(x,
√
−x) | x ∈ R, x < 0

}
∪ {(0, 0)} =

=
{

(x, t) | x− t2 = 0,−t < 0
}
∪
{

(x, t) | x+ t2 = 0,−t < 0
}
∪ {(x, t) | x = 0, t = 0} .

The following theorem will enable us to show the desired result.

Theorem 3.34. [7, Theorem 3] Let φ : Rd → (−∞,∞] be a proper and lower semi-
continuous function. If φ is semi-algebraic, then φ is a KL function.

Lemma 3.35. The objective function

F (u, µ, θ) = H(u, µ, θ) + f1(u) + f2(µ) + f3(θ) = λTVTVε(u− v) + IM(u0)(u)+

+λµ ‖µ‖1 + λθ

n∑
i=2

(∥∥∥θi∥∥∥
1

+ I{.≥0}(θi)
)

+ IA(θ1
k)

is a KL function.

Proof. Since the objective function F is indeed proper and lower semi-continuous, it suffices
to prove, that F is semi-algebraic in order to apply Theorem 3.34. According to [7, Example
2] the following functions Rd → (−∞,∞] are semi-algebraic,

i) real polynomial functions

ii) indicator functions on semi-algebraic sets

iii) semi-algebraic functions multiplied with a real scalar

91

3.2. The Problem in a Discrete Setting

iv) finite sums and products of semi-algebraic functions

v) composition of semi-algebraic functions

vi) x 7→ ‖x‖p :=
(∑d

i=1 |xi|p
) 1
p for p ≥ 1 rational.

Now, let us apply this to the objective function F .

• by ii), f1 is semi-algebraic

• by iii), and vi) f2 is semi-algebraic

• by ii), iii), iv) and vi), f3 is semi-algebraic

• Recall, that H(u, µ, θ) = λTV
N∑
i=1

M∑
j=1

√
((∇(u− v))1

i,j)2 + ((∇(u− v))2
i,j)2 + ε. Since

v(µ, θ) is polynomial in (µ, θ) and the discrete gradient is linear, by i) we obtain, that
the expression under the square root is semi-algebraic for any i, j. By Example 3.33
the square root is a semi-algebraic function as well, hence, by v), iv) and iii) H is
semi-algebraic.

Altogether, by successive application of iv), the objective function F is semi-algebraic, and
as a consequence also a KL function.

We continue by investigating ∇H, which will conclude the verification of Assump-
tion 3.8.

Lemma 3.36. With

φε : RN×M×2 → [0,∞)

p = (pki,j) i=1,2,...,N
j=1,2,...,M
k=1,2

7→
N∑
i=1

M∑
j=1

√
(p1
i,j)2 + (p2

i,j)2 + ε,

it holds true, that ∇φε is Lipschitz continuous with a Lipschitz constant L ≤ 3
2
√
ε

with
respect to ‖ . ‖2, i.e., for all p, q ∈ RN×M×2

‖∇φε(p)−∇φε(q)‖2 ≤
3

2
√
ε
‖p− q‖2 .

Proof. We start by simply computing the gradient of φε explicitly,

∂pki,j
φε =

pki,j√
(p1
i,j)2 + (p2

i,j)2 + ε
.

92

3.2. The Problem in a Discrete Setting

In order to show Lipschitz continuity of ∇φε, it suffices to prove, that the the Jacobian of
∇φε is bounded. Hence, we continue by also computing all second partial derivatives of φε.
Note that, ∂pki,j∂pk′i′,j′

φε = 0, whenever i 6= i′ or j 6= j′. Therefore, and due to the symmetry
in k of ∂pki,jφε, it suffices to compute ∂p1

i,j
∂p1

i,j
φε and ∂p2

i,j
∂p1

i,j
φε. We obtain

∣∣∣∂p1
i,j
∂p1

i,j
φε
∣∣∣ =

∣∣∣∣∣∣∣∣
√

(p1
i,j)2 + (p2

i,j)2 + ε− p1
i,j

p1
i,j√

(p1
i,j)2+(p2

i,j)2+ε

(p1
i,j)2 + (p2

i,j)2 + ε

∣∣∣∣∣∣∣∣ =

=

∣∣∣∣∣∣∣∣
(p1
i,j)2 + (p2

i,j)2 + ε− (p1
i,j)2(

(p1
i,j)2 + (p2

i,j)2 + ε
) 3

2

∣∣∣∣∣∣∣∣ =
(p2
i,j)2 + ε(

(p1
i,j)2 + (p2

i,j)2 + ε
) 3

2
≤

(p2
i,j)2 + ε(

(p2
i,j)2 + ε

) 3
2

=

= 1√
(p2
i,j)2 + ε

≤ 1√
ε

and similarly

∣∣∣∂p2
i,j
∂p1

i,j
φε
∣∣∣ =

∣∣∣∣p1
i,j

(
−1

2

)(
(p1
i,j)2 + (p2

i,j)2 + ε
)− 3

2 2p2
i,j

∣∣∣∣ =

∣∣∣∣∣∣∣∣
p1
i,jp

2
i,j(

(p1
i,j)2 + (p2

i,j)2 + ε
) 3

2

∣∣∣∣∣∣∣∣ ≤

≤︸︷︷︸
Young’s inequality

(p1
i,j)

2

2 + (p2
i,j)

2

2(
(p1
i,j)2 + (p2

i,j)2 + ε
) 3

2
= 1

2
1√

(p1
i,j)2 + (p2

i,j)2 + ε︸ ︷︷ ︸
≤ 1√

ε

(p1
i,j)2 + (p2

i,j)2

(p1
i,j)2 + (p2

i,j)2 + ε︸ ︷︷ ︸
≤ 1

≤ 1
2
√
ε
.

Therefore, we can already conclude, that ∇φε is Lipschitz continuous, since every entry of
its Jacobian is bounded by the constant 1√

ε
. In order to get an estimate of the Lipschitz

93

3.2. The Problem in a Discrete Setting

constant, we now have to compute a bound for the norm of the Jacobian matrix.

‖D∇φε(p)‖22,2 = max
v∈RN×M×2

‖v‖2≤1

‖D∇φε(p)v‖22 = max
v∈RN×M×2

‖v‖2≤1

∑
i=1,...,N
j=1,...,M
k=1,2

∣∣∣(D∇φε(p)v)ki,j
∣∣∣2 =

= max
v∈RN×M×2

‖v‖2≤1

∑
i=1,...,N
j=1,...,M
k=1,2

∣∣∣∣∣∣∣∣∣∣∣∣
∑

i′=1,...,N
j′=1,...,M
k′=1,2

= 0, if (i, j) 6= (i′, j′)︷ ︸︸ ︷
∂k
′
i′,j′∂

k
i,jφε(p) vk

′
i′,j′

∣∣∣∣∣∣∣∣∣∣∣∣

2

≤

≤ max
v∈RN×M×2

‖v‖2≤1

∑
i=1,...,N
j=1,...,M

(1√
ε

∣∣∣v1
i,j

∣∣∣+ 1
2
√
ε

∣∣∣v2
i,j

∣∣∣)2
+
(1√

ε

∣∣∣v2
i,j

∣∣∣+ 1
2
√
ε

∣∣∣v1
i,j

∣∣∣)2
=

= 1
ε

max
v∈RN×M×2

‖v‖2≤1

∑
i=1,...,N
j=1,...,M

(∣∣∣v1
i,j

∣∣∣2 + 1
4

∣∣∣v2
i,j

∣∣∣2 +
∣∣∣v1
i,jv

2
i,j

∣∣∣+ ∣∣∣v2
i,j

∣∣∣2 + 1
4

∣∣∣v1
i,j

∣∣∣2 +
∣∣∣v1
i,jv

2
i,j

∣∣∣) =

= 1
ε

max
v∈RN×M×2

‖v‖2≤1

∑
i=1,...,N
j=1,...,M

5
4

∣∣∣v1
i,j

∣∣∣2 + 5
4

∣∣∣v2
i,j

∣∣∣2 + 2
∣∣∣v1
i,jv

2
i,j

∣∣∣︸ ︷︷ ︸
≤
∣∣v1
i,j

∣∣2 +
∣∣v2
i,j

∣∣2

 ≤

≤ 1
ε

max
v∈RN×M×2

‖v‖2≤1

∑
i=1,...,N
j=1,...,M

(9
4

∣∣∣v1
i,j

∣∣∣2 + 9
4

∣∣∣v2
i,j

∣∣∣2) =

= 9
4ε max

v∈RN×M×2

‖v‖2≤1

‖v‖22 = 9
4ε .

Consequently, ‖D∇φε(p)‖2 ≤
3

2
√
ε
, which is also a bound for the Lipschitz constant.

Lemma 3.36 was already the most difficult part of proving the Lipschitz continuity of
the (partial) gradient(s) of H. Now we can collect the results.

Lemma 3.37. The following functions are Lipschitz continuous:

i) u 7→ ∇uH(u, µ, θ) for fixed µ and θ,

ii) µ 7→ ∇µH(u, µ, θ) for fixed u and µ,

iii) for j = 1, 2, ..., n, θj 7→ ∇θjH(u, µ, θ) for fixed u, µ and θi for i 6= j and

94

3.2. The Problem in a Discrete Setting

iv) ∇H on bounded sets, i.e., for any bounded set Bu × Bµ × Bθ ⊂ Rsize(u) × Rsize(µ) ×
Rsize(θ), there exists M > 0, such that for all (u, µ, θ), (v, η, ρ) ∈ Bu ×Bµ ×Bθ,

‖∇H(u, µ, θ)−∇H(v, η, ρ)‖2 ≤M ‖(u− v, µ− η, θ − ρ)‖2 .

Proof. The proof is done by computation and invoking previous results.

i) We start with ∇uH. In the following we will simply write v = v(µ, θ).

‖∇uH(u, µ, θ)−∇uH(ũ, µ, θ)‖2 =
= ‖λTV∇∗∇φε(∇(u− v))− λTV∇∗∇φε(∇(ũ− v))‖2 ≤
≤ λTV ‖∇∗‖2 ‖∇φε(∇(u− v)−∇φε(∇(ũ− v)‖2 ≤

≤︸︷︷︸
Lemma 3.36

λTV ‖∇∗‖2
3

2
√
ε
‖∇(u− ũ)‖2 ≤ λTV ‖∇∗‖2

3
2
√
ε
‖∇‖2 ‖u− ũ‖2 ≤

≤︸︷︷︸
Lemma 3.25 with
‖∇∗‖2=‖∇‖2

λTV
12√
ε
‖u− ũ‖2 .

This shows not only that u 7→ ∇uH(u, µ, θ) is Lipschitz continuous, but also that the
Lipschitz constant is uniform in µ and θ.

ii) We continue with ∇µH. Note, that, since v(µ, θ) is linear in µ, ∇µv(µ, θ) = ∇µv(µ̃, θ)
and we will simply denote it as ∇µv(θ).

‖∇µH(u, µ, θ)−∇µH(u, µ̃, θ)‖2 =
= ‖λTV∇µv(θ)∇∗∇φε(∇(u− v(µ, θ)))− λTV∇µv(θ)∇∗∇φε(∇(u− v(µ̃, θ)))‖2 ≤
≤ λTV ‖∇µv(θ)‖2 ‖∇

∗‖2 ‖∇φε(∇(u− v(µ, θ)))−∇φε(∇(u− v(µ̃, θ)))‖2 ≤

≤︸︷︷︸
Lemma 3.36

λTV ‖∇µv(θ)‖2 ‖∇
∗‖2

3
2
√
ε
‖∇(v(µ, θ)− v(µ̃, θ))‖2 ≤

≤ λTV ‖∇µv(θ)‖2 ‖∇
∗‖2

3
2
√
ε
‖∇‖2 ‖v(µ, θ)− v(µ̃, θ)‖2 ≤

≤︸︷︷︸
‖∇∗‖2=‖∇‖2

λTV ‖∇µv(θ)‖2 ‖∇‖
2
2

3
2
√
ε
‖Dµv(θ)‖2 ‖µ− µ̃‖2 ≤

≤︸︷︷︸
‖Dµv‖2=‖∇µv‖2

λTV ‖∇‖22
3

2
√
ε

∥∥Kσ
θ1K

σ
θ2 ...K

σ
θn

∥∥2
2 ‖µ− µ̃‖2 ≤

≤︸︷︷︸
Lemma 3.25
Lemma 3.23

λTV
12√
ε

nf,1∑
k=1

∥∥∥θ1
k

∥∥∥2

1

nf,1∑
l=1

nf,2∑
k=1

∥∥∥(θ2
l)k
∥∥∥2

1
...

nf,n−1∑
l=1

nf,n∑
k=1
‖(θnl)k‖21 ‖µ− µ̃‖ .

95

3.2. The Problem in a Discrete Setting

Therefore, µ 7→ ∇µH(u, µ, θ) is Lipschitz continuous with a Lipschitz constant de-
pending on θ.

iii) Let us now consider ∇θjH. Let θ and θ̃ be, such that θi = θ̃i for i 6= j, but it may
be θj 6= θ̃j . Again, v(µ, θ) is linear in θj , therefore ∇θjv(µ, θ) does not depend on θj

(but it does indeed depend on θi for i < j). We compute∥∥∥∇θjH(u, µ, θ)−∇θjH(u, µ, θ̃)
∥∥∥

2
≤

≤ λTV ‖∇θjv(µ, θ)‖2 ‖∇
∗‖2

3
2
√
ε
‖∇‖2

∥∥∥v(µ, θ)− v(µ, θ̃)
∥∥∥

2
≤

≤︸︷︷︸
definition of
v(µ,θ)

λTV ‖∇θjv(µ, θ)‖2 ‖∇‖
2
2

3
2
√
ε

∥∥∥Kσ
θ1Kσ

θ2 ...Kσ
θj−1

[
(Cσµj (θ

j
ij−1

))ij−1 − (Cσµj (θ̃
j
ij−1

))ij−1

]∥∥∥
2
≤

≤ λTV ‖∇θjv(µ, θ)‖2 ‖∇‖
2
2

3
2
√
ε
‖Kσ

θ1Kσ
θ2 ...Kσ

θj−1‖2

√√√√nf,j−1∑
i=1

∥∥∥Cσµj (θji)− Cσµj (θ̃ji)∥∥∥2

2
≤

≤ λTV ‖∇θjv(µ, θ)‖2 ‖∇‖
2
2

3
2
√
ε
‖Kσ

θ1Kσ
θ2 ...Kσ

θj−1‖2

√√√√nf,j−1∑
i=1

∥∥∥Cσµj∥∥∥2

2

∥∥∥θji − θ̃ji ∥∥∥2

2
=

= λTV ‖∇θjv(µ, θ)‖2 ‖∇‖
2
2

3
2
√
ε
‖Kσ

θ1Kσ
θ2 ...Kσ

θj−1‖2
∥∥∥Cσµj∥∥∥2

∥∥∥θj − θ̃j∥∥∥
2
≤

≤︸︷︷︸
Lemma 3.25
Lemma 3.23

λTV
12√
ε

nf,1∑
k=1

∥∥∥θ1
k

∥∥∥2

1

nf,1∑
l=1

nf,2∑
k=1

∥∥∥(θ2
l)k
∥∥∥2

1
...

nf,j−2∑
l=1

nf,j−1∑
k=1

∥∥∥(θj−1
l)k

∥∥∥2

1

nf,j∑
k=1

∥∥∥µjk∥∥∥2

1

∥∥∥θj − θ̃j∥∥∥
2

iv) Lastly, we have to show, that ∇H is Lipschitz continuous on bounded sets. To this
aim it suffices to note, that H(u, µ, θ) = λTVφε(∇(u−v(µ, θ))) is C∞, since φε is C∞,
the discrete gradient ∇ is linear and v(µ, θ) is polynomial in (µ, θ). As a consequence,
H is Lipschitz continuous on bounded sets.

Lemma 3.38. Let (um, µm, θm)m be the sequence generated by Algorithm 3.28. If the
sequence (F (um, µm, θm))m is bounded, then also (um, µm, θm)m is bounded.

Proof. First of all, we should recall the definition of the objective functional.

F (u, µ, θ) = IM(u0)(u) + λTVTVε(u− v(µ, θ))+

+λµ ‖µ‖1 + λθ

n∑
i=2

(∥∥∥θi∥∥∥
1

+ I{.≥0}(θi)
)

+ IA(θ1).

96

3.3. Experiments

Now assume, that (F (um, µm, θm))m is bounded. Since

λTVTVε(u− v(µ, θ)) ≤ F (u, µ, θ),
λµ ‖µ‖1 ≤ F (u, µ, θ),

λθ
∥∥∥θi∥∥∥

1
≤ F (u, µ, θ) for i = 2, 3, ..., n and

IA(θ1) ≤ F (u, µ, θ),

we can conclude, that also (µm)m and (θm)m are bounded. The remaining task is to show,
that also (um)m is bounded. By definition of TVε, we have for w ∈ RN×M

TVε(w) = φε(∇w) =
N∑
i=1

M∑
j=1

√
((∇w)1

i,j)2 + ((∇w)2
i,j)2 + ε ≥

≥
N∑
i=1

M∑
j=1

√
((∇w)1

i,j)2 + ((∇w)2
i,j)2.

Thus, we obtain, that (∇(um − v(µm, θm)))m is bounded. By Lemma 3.23, v(µm, θm)m
is also bounded, since we have already shown, that (µm)m and (θm)m are. The discrete
gradient is continuous, therefore we can deduce, that (∇(v(µm, θm)))m and consequently
(∇um)m are bounded. The inpainting term of the objective functional IM(u0)(u) ensures,
that for some (i, j), (umi,j)m is constant for all m. Together with the boundedness of
(∇um)m, this yields also boundedness of (um)m.

Ultimately, we are allowed to use Theorem 3.17, which guarantees, that the sequence
generated by Algorithm 3.28 converges to a critical point of the objective functional F , pro-
vided that the generated sequence is bounded. Boundedness of the sequence is given, e.g., if
the according sequence of objective functional values is bounded, as stated in Lemma 3.38.

3.3 Experiments

In this section, we present some visual results of the proposed method. The three different
test images, that we use, can be found in Figure 3.2.

97

3.3. Experiments

Figure 3.2: The test images we use for our experiments. From left to right, we will refer
to the images as Barbara, Barbara crop and mix.

Comparison to Existing Methods

We compare our method to total variation inpainting, to the deep learning method [15] and
to the single layer version of the proposed method from [9]. We implemented our method
in Python and compute as much as possible parallelly on the GPU using PyOpenCL. For
all results from [15], we use the code, that was published by the authors [16]. In particular,
we use the version of their code, that was designed for inpainting with the same network
architecture and parameters, that were used for [15, Figure 7 (top)]. The minimization
problem considered for the task of inpainting in [15] is

min
η
‖M� (fη(z)− u0)‖22 ,

where M ∈ {0, 1}size(u0) is an inpainting mask, as in our problem formulation, � denotes
the pointwise product and fη(z) denotes a convolutional neural network with parameters
η and input z. In particular, we emphasize, that the data term used in [15] is different to
ours. That is, the authors of [15] use the L2-norm on the set of pixels, where the original
image is known, whereas we use an indicator function. As a result, the objective functional
in [15] is of greater smoothness than the one we use.

The code from [9] is also publicly available [10]. We use the TGV (total generalized
variation) version of their method for inpainting, resulting in the following formulation

min
u,v
IM(u0)(u) + λTGV(u− v) + µN (v),

where TGV denotes the total generalized variation and N is a functional ensuring, that
the texture part v is the output of a single layer convolutional neural network. N also
includes a penalty term, which acts as a further regularization. For further details we refer
to [9]. We use the parameters, that the authors of [9] provided to reproduce the results
from [9].

98

3.3. Experiments

For total variation inpainting, we solve

min
u
IM(u0)(u) + TV(u),

where no parameter is needed, due to the very nature of the functional. For given p ∈ (0, 1),
the inpainting mask M is initialized, such that independently for all (i, j), Mi,j = 1 with
probability p and Mi,j = 0 with probability 1 − p. Practically, this means, that p is
approximately the rate of known pixels of the original image. The parameters of the
objective functional in (DP), including the network dimensions, and the parameters of
Algorithm 3.28 are set according to Table 3.1 if not stated differently. We use the same
filter depth nf,j = nf for all layers j = 1, 2, ...n. In order to show applicability of the
method, we use the same parameters for all examples except for the parameter λTV, which
varies.

Parameter Value
Parameters in (DP)

ε 0.05
Network depth n 4
Filter depth nf,j = nf 12
Kernel size ksz 4
Stride σ σ = 1 in 1st layer, σ = 2 in

remaining layers
λTV see examples
λµ 1.0
λθ 1.0

Parameters in Algorithm 3.28
ε 0.03
βmu , βu, β

m
µ , βµ, β

m
θ , βθ 0.7

Number of iterations 5000

Table 3.1: Parameters of the objective functional and the algorithm

As a measure for the error of a result, we use the peak signal-to-noise ratio PSNR =
−10 log10

(
1

NM ‖u− u0‖22
)
, where u ∈ RN×M is the output of an algorithm and u0 ∈ RN×M

is the original image. This means, a high PSNR value implies, that the result u is close
to the original image u0. In Algorithm 3.28, we initialize u as ui,j = (u0)i,j for Mi,j = 1
and ui,j = 0 else. The coefficients µ and kernels θ from (DP) are initialized randomly. To
be precise, each entry of θ is initialized independently according to a uniform distribution
on [0, nf) and each entry of µ is initialized independently according to a uniform distri-
bution on [0, 1) and then scaled, such that ‖v(µ, θ)‖∞ = 1. Unfortunately, the algorithm
sometimes gets stuck in a local minimum, where the texture part is zero. In order to avoid
this, we re-initialize µ and θ, when they become zero. Usually, after several iterations the

99

3.3. Experiments

re-initialization is not necessary anymore, which leads us to believe, that this issue could
also be avoided by choosing appropriate initial values for the algorithm. Let us begin our
practical investigation by comparing our results to existing methods. In Figure 3.3, we
display examples of our method compared to TV inpainting and [15].

PSNR ≈ 8.89 PSNR ≈ 25.49 PSNR ≈ 29.32 PSNR ≈ 29.54

(a) Barbara with p=50% of known pixels, λTV = 1.0.

PSNR ≈ 6.84 PSNR ≈ 19.26 PSNR ≈ 22.14 PSNR ≈ 23.83

(b) Barbara crop with p=30% of known pixels, λTV = 1.2.

PSNR ≈ 7.10 PSNR ≈ 20.16 PSNR ≈ 28.10 PSNR ≈ 25.11

(c) Mix with p=30% of known pixels, λTV = 0.8

Figure 3.3: Comparison of our method to total variation inpainting and [15]. From left to
right: Corrupted image, total variation inpainting, [15], proposed method

In all examples, our method outperforms total variation inpainting, in particular at
areas of the image, where texture is located. Eventhough our method performs better
than [15] regarding the PSNR value with the Barbara and Barbara crop image, the results
from [15] appear visually superior to ours. One reason therefor could be the different data
fidelity term. As mentioned above, our data term comprises a hard constraint to the known

100

3.3. Experiments

pixels, whereas [15] allows for deviation from the data also at known pixels. This might
force the results of our method to be closer to the data. Another significant difference
between the experiments in [15] and in the present thesis is the network architecture. In
[15], authors use convolutional networks, that are substantially larger than the ones we
use. For instance, when running the code from [15] with the mix image, there are 3002369
parameters to be fitted, while with our method, there are only 11436 network parameters
(kernels θ and coefficients µ). Unfortunately, for comparably sized convolutional networks
we experienced convergence problems when applying our algorithm to larger images such
as the Barbara image. Moreover, in [15], there are also skip connections and activation
functions included in the convolutional networks, which we did not use.

In Figure 3.4, we compare our method to the single layer version from [9]. We also added
the result of our method with just one layer to the comparison. Note, that our method
with only one convolutional layer still differs from [9], since there authors used lifting and
relaxation techniques to obtain a convex problem, whereas we solved the original, non-
convex problem (DP). The method from [9] outperforms the proposed method with the
mix image, in particular in the upper right and lower left quadrants of the image. In
the upper right area, the issue is, that our method does not generate the texture via the
convolutional network, but treats it as cartoon part and therefore the TV penalty partly
removes the texture (this effect can be observed in Figure 3.5 and Figure 3.7). In the lower
left area, our method does not create as sharp edges as we would wish for. This could
possibly be due to the fact, that we use a smooth approximation of TV, where we replaced
the 1-norm by a smooth alternative (3.12), which lacks the sparsity enforcing property of
the 1-norm. For a better comparison to [9], it would be interesting to adapt our method
in the sense, that we also make use of a TGV-type cartoon prior.

101

3.3. Experiments

PSNR ≈ 23.89 n = 1, nf = 9, ksz = 15
λTV = 11

PSNR ≈ 23.77

λTV = 1.2
PSNR ≈ 23.83

(a) Barbara, p = 30%.

PSNR ≈ 25.89 n = 1, nf = 9, ksz = 15
λTV = 12.0

PSNR ≈ 25.93

λTV = 1.2
PSNR ≈ 25.11

(b) Mix, p = 30%.

Figure 3.4: Comparison of the results to the single layer version. From left to right: [9]
single layer, proposed method single layer, proposed method multilayer

Characteristics of the Proposed Method

In Figure 3.5 one can observe the implicit cartoon-texture decomposition of our method
for the same examples and parameters as in Figure 3.3. With the Barbara image, as one
would expect, the texture part contains the stripe pattern on the clothes of the pictured
woman as well as the checked pattern on the table cloth. Also with the Barbara crop image,
the stripe pattern is contained in the texture part. With the mix image, the texture is
recognized as expected everywhere up to the upper right quadrant of the image, as already
mentioned above. There, the convolutional network seems to fail to identify the texture

102

3.3. Experiments

correctly, at least for this specific parameter choice (see Figure 3.7).

Figure 3.5: Implicit cartoon-texture decomposition of the proposed method. From left to
right: Corrupted image, reconstructed image, texture part, cartoon part.

In Figure 3.6, the results of inpainting for different percentages of known pixels are
displayed. As expected, as the value of p increases, the quality of the result improves as
well. This can be observed among others at the right leg in the Barbara image, at the left
bottom area in the Barbara crop image and at all four parts of the mix image.

103

3.3. Experiments

p = 40%, PSNR ≈ 27.48 p = 50%, PSNR ≈ 29.54 p = 60%, PSNR ≈ 30.80

(a) Barbara, in all cases λTV = 1, 0.

p = 30%, PSNR ≈ 23.83 p = 40%, PSNR ≈ 26.93 p = 50%, PSNR ≈ 29.58

(b) Barbara crop, in all cases λTV = 1, 2.

p = 20%, λTV = 1, 2
PSNR ≈ 22.83

p = 30%, λTV = 0, 8
PSNR ≈ 25.11

p = 40%, λTV = 1, 8
PSNR ≈ 27.14

(c) Mix

Figure 3.6: Comparison of the results of inpainting for different values of p

As a further experiment in order to gain more understanding of the proposed method,

104

3.3. Experiments

we illustrate the influence of the parameter λTV on the result of the method. In Figure 3.7,
one can observe, that for small λTV, texture is penalized strongly enough, that the texture
part of the image becomes zero. Therefore, we recover a similar result as for TV regulariza-
tion. As λTV increases, the cartoon part becomes smoother and consequently the texture
part has to be non-trivial.

λTV = 0.2
PSNR ≈ 21.95

λTV = 0.4
PSNR ≈ 23.84

λTV = 1.0
PSNR ≈ 26.56

λTV = 1.8
PSNR ≈ 27.14

λTV = 5.0
PSNR ≈ 26.60

Figure 3.7: Mix with p = 40% of known pixels and different values of λTV. From left to
right: Result of the method, texture, cartoon

105

3.3. Experiments

In Figure 3.8, we plot the objective functional over the number of iterations for the
examples of Figure 3.7. Please keep in mind, that for different values of λTV the objective
functional itself is different, therefore the different curves are not to be compared in absolute
values, but rather qualitatively. The curves denoted ’original image’ and ’data’ show the
objective functional value for u being the original image and data, respectively, and the
texture being zero. One should not be surprised, that the original image has a larger
objective functional value than the result of our method, since the original image is not
decomposed into texture and cartoon properly.

Objective functional value over number
of iterations for different λTV

Objective functional value for λTV = 1.8 vs. ob-
jective functional for the data and the original im-
age

Figure 3.8: Objective functional for different λTV

We will now have a closer look on the learned features, i.e., the convolution kernels and
coefficients. The convolution kernels are difficult to interpret. Due to the penalty of the
1-norm in our objective functional, in the deeper layers, the kernels are highly sparse and
some of them vanish entirely. But also the convolution kernels in the first layer seemed to
be rather unstructured as can be observed in Figure 3.9. This might be due to the fact,
that the kernels are rather small (4x4) and therefore not capable of containing a lot of
structural information individually.

106

3.3. Experiments

Figure 3.9: Learned kernels (θ1
k)12
k=1 for inpainting applied to mix with p = 40%, λTV = 1.8

In Figure 3.10, we show the coefficient of maximal norm of each layer, that is, for all j
we display the coefficient µjij , where ij = argmax

k

∥∥∥µjk∥∥∥1
.

(a) Inpainting applied to mix with p = 40%, λTV = 1.8

(b) Inpainting applied to mix with p = 100%, λTV = 0.8

Figure 3.10: Coefficient of the greatest norm of each layer. From left to right: Deepest
layer to top layer

It seems in Figure 3.10, the higher the layer, the more details of the texture are de-
veloped. In the deeper layers, there are only non-zero entries at pixels, where texture is
located and in the higher layers the texture itself is developed at those locations. In an
effort to further visualize the information contained in the convolution kernels θ, in Fig-
ure 3.11 we show an exemplary delta response of the neural network. That is, we replace
the input µ of the convolutional network resulting from our algorithm with δ ∈ Rsize(µ),
containing only zeros up to a single entry, that is one. Then, in Figure 3.11 for each layer
j, we display the coefficient of maximal norm as before in Figure 3.10. The network used
for this experiment is obtained from solving the inpainting problem with the mix image

107

3.3. Experiments

and p = 40%.

Figure 3.11: Delta response of the mix network with p = 40%, λTV = 1.8. From left to
right: Deepest layer to top layer

Note, that in Figure 3.11 and Figure 3.10, we show the zero-interpolations of the coef-
ficients on each layer, i.e., using the notation of Definition 3.20, we show µ̃ instead of µ.
Unfortunately, the delta response does not allow for a lot of interpretation. It seems, that
only the superposition of several delta responses builds a meaningful texture.

Timing

Lastly, we would like to show some timing results of our method. As already mentioned
in the beginning of this section, we implemented the method in Python using parallel
computation with PyOpenCL. In Table 3.2, there are the computation times for the mix
image with p = 40% and λTV = 1.8 for different numbers of iterations. Moreover, in
Figure 3.12 one can observe the corresponding results of the method. After 500 iterations,
visually there is hardly any further change in the result.

Number of itera-
tions

100 500 1000 2500 5000

Computation
time in sec

8 53 127 360 698

Table 3.2: Computation times for different numbers of iterations for the mix image with
p = 40% and λTV = 1.8.

Figure 3.12: Results for different numbers of iterations for the mix image with p = 40%
and λTV = 1.8. From left to right, number of iterations is: 100, 500, 1000, 2500, 5000.

108

Chapter 4

Discussion

In the present thesis, we have developed and analysed a novel method for solving inverse
problems in image processing. Our method aims to combine the strengths of conventional
methods, such as total variation based image reconstruction, and more recent deep learn-
ing methods. The main contribution of the present work compared to most publications
about deep learning in image processing is the introduction of the model in a continuous
setting. Employing functional analytic results, we could prove well posedness of the pro-
posed method. We have also introduced our method in a discrete setting and applied it
to test images using a state of the art optimization algorithm. Although the results are
promising and outperform simple total variation based methods, there is still potential for
improvement. First of all, the numerical implementation suffered from instability in some
cases. Especially in the case of larger sized neural networks, it sometimes happened, that
the used algorithm did not converge to a meaningful result. Unfortunately, sometimes
this happened despite the previous iterates already looking very promising. As possible
remedies to this issue we propose either to find better initial values for the algorithm, or
to change the data fidelity term. Using appropriate initial values for the algorithm is a
reasonable idea, since the considered objective functional is non-convex and may there-
fore have several local minima. Hence, in order to find a good solution, we should start
the algorithm with an initial value, that is somehow close to this solution. Changing the
data fidelity term to e.g. a L2-norm type functional is inspired by the results presented
in [15] and by our stability result Theorem 2.84 and could improve the convergence of the
algorithm due to increased smoothness of the objective functional. Further, the results of
the proposed method are still inferior compared to some recent deep learning methods,
such as [15]. However, we would like to point out, that the slightly decreased performance
can be seen as a trade off for the gain of an underlying mathematical foundation of our
method and we aim to decrease this discrepancy in performance in the future. For fur-
ther research we propose extending our method to more complex convolutional networks,
possibly employing also activation functions and skip connections etc., in order to improve

109

the visual results of the method. This extension should be performed, without losing the
solid underlying mathematical foundation in the form of an understood continuous model.
Further, it would be interesting, to try to replace the functional J from (P (y0)) with a
functional like the total generalized variation, in order to obtain an even richer model for
the cartoon part as done in [9]. Finally, an even more extensive parameter determination
could possibly yield better results.

110

Appendix A

Auxiliary Results

Lemma A.1. Let 1 ≤ p <∞ and u ∈ Lp(Rd). Then

‖u(.+ h)− u‖p → 0

as |h| → 0.

Proof. We will prove the desired result, by showing it for smooth functions first and ex-
tending the result via density of smooth functions in Lp(Rd). So let φ ∈ C∞c (Rd) and
Ω ⊂ Rd bounded and open, such that supp(φ) b Ω. As a continuous function on compact
support, φ is bounded. Denoting Ωδ = {x+ v | x ∈ Ω, |v| < δ} and χΩδ the characteristic
function on Ωδ, we find for x ∈ Rd and |h| < δ

|φ(x+ h)− φ(x)|p ≤ (2 ‖φ‖∞)pχΩδ(x) ∈ L1(Rd).

Moreover, |φ(x+ h)− φ(x)|p → 0 as |h| → 0 for all x ∈ Rd by continuity. By Lebesgue’s
dominated convergence theorem, we find

lim
|h|→0

∫
Rd

|φ(x+ h)− φ(x)|p dx = 0,

i.e., ‖φ(.+ h)− φ‖p → 0 as |h| → 0. Now for general u ∈ Lp(Rd), by density we can find
a sequence (φn)n ⊂ C∞c (Rd), converging to u in Lp(Rd). Let ε > 0 arbitrary. Choose
n0 ∈ N, such that ‖u− φn0‖p <

ε
4 . For n0 fixed, choose δ > 0, such that for |h| < δ,

‖φn0(.+ h)− φn0‖p <
ε
2 , which is possible, as we have shown above. Then for |h| < δ, we

find

‖u(.+ h)− u‖p ≤ ‖u(.+ h)− φn0(.+ h)‖p + ‖φn0(.+ h)− φn0‖p + ‖φn0 − u‖p ≤
≤ 2 ‖u− φn0‖p + ‖φn0(.+ h)− φn0‖p < ε.

111

Lemma A.2. Let X be a topological space, F : X → [0,∞) (weakly) lsc, and φ : [0,∞)→
[0,∞) continuous and monotonically increasing. Then the composition φ ◦F : X → [0,∞)
is (weakly) lsc.

Proof. Let (xn)n ⊂ X be a sequence converging (weakly) to x ∈ X. First we note, that for
all n ∈ N and all l ≥ n,

φ(inf
k≥n

F (xk)) ≤ φ(F (xl)),

due to monotonicity of φ. Therefore, by taking the infimum over l on the right-hand side,
we obtain

φ(inf
k≥n

F (xk)) ≤ inf
k≥n

φ(F (xk)). (A.1)

We distinguish two cases. Assume first, that lim inf
n→∞

F (xn) = ∞, i.e., (inf
k≥n

F (xk))n is an
increasing sequence, converging two ∞. Hence, for n sufficiently large, it will be true, that
inf
k≥n

F (xk) ≥ F (x). For such n, due to monotonicity of φ, we see, that

φ(F (x)) ≤ φ(inf
k≥n

F (xk)) ≤︸︷︷︸
(A.1)

inf
k≥n

φ(F (xk))

and as a consequence

φ(F (x)) ≤ lim
n→∞

inf
k≥n

φ(F (xk)) = lim inf
n→∞

φ(F (xk)).

In the case, that lim inf
n→∞

F (xn) <∞, we can compute

φ ◦ F (x) = φ(F (x)) ≤︸︷︷︸
F lsc,

φ increasing

φ(lim inf
n→∞

F (xn)) = φ(lim
n→∞

inf
k≥n

F (xk)) =

=︸︷︷︸
φ cont

lim
n→∞

φ(inf
k≥n

F (xk)) ≤︸︷︷︸
(A.1)

lim
n→∞

inf
k≥n

φ(F (xk)) = lim inf
n→∞

φ(F (xn)).

Lemma A.3. [Composition of projections] Let d ∈ N and consider Rd equipped with the
standard scalar product and the induced Euclidean norm. Let W ⊆ Rd be a linear subspace
of Rd and B ⊆ Rd the closed unit ball in Rd. Let further PW : Rd →W and PB : Rd → B
be the projections onto W and B respectively and PW∩B : Rd →W ∩B the projection onto
W ∩B. Then it holds true, that

PW∩B = PBPW .

112

Proof. Firstly, we note that all the mentioned projections exist, since B is a closed and
convex set and W is a vector space, so both sets as well as their intersection admit a
projection. For v ∈ Rd

PBv = v

max{‖v‖2 , 1}
.

Hence, PB is a multiplication with a scalar function. Therefore, for any v ∈ Rd, PBPW v ∈
B, since PB maps to B and PBPW v ∈W , since PW v ∈W and W is a linear vector space,
ergo multiplication with a scalar does not map out of W . So PBPW v ∈ W ∩ B. Now let
v ∈ Rd and w ∈W ∩B arbitrary. We compute

‖w − v‖22 = ‖w − PBPW v + PBPW v − v‖22 =
= ‖w − PBPW v‖22 + ‖PBPW v − v‖22 + 2〈w − PBPW v, PBPW v − v〉 =

= ‖w − PBPW v‖22 + ‖PBPW v − v‖22
−2 〈w − PBPW v, v − PW v〉︸ ︷︷ ︸

(i)

−2 〈w − PBPW v, PW v − PBPW v〉︸ ︷︷ ︸
(ii)

≥

≥ ‖w − PBPW v‖22 + ‖PBPW v − v‖22 .

The presented inequality may need some justification. Expression (i) is equal to zero since
w − PBPW v ∈ W and v − PW v ⊥ W since PW is an orthogonal projection and (ii) is less
than or equal to zero due to the basic properties of projections onto convex, closed sets.
As a result, we see that

‖PBPW v − v‖22 = min
{
‖w − v‖22 | w ∈ B ∩W

}
,

proving, that PBPW v = PW∩Bv.

113

Bibliography

[1] Aviad Aberdam, Jeremias Sulam, and Michael Elad. Multi-layer sparse coding: The
holistic way. SIAM Journal on Mathematics of Data Science, 1(1):46–77, 2019.

[2] Michal Aharon, Michael Elad, and Alfred Bruckstein. K-svd: An algorithm for design-
ing overcomplete dictionaries for sparse representation. IEEE Transactions on signal
processing, 54(11):4311–4322, 2006.

[3] Hans Wilhelm Alt. Lineare Funktionalanalysis. Springer, 2006.

[4] Micol Amar, Virginias De Cicco, and Nicola Fusco. Lower semicontinuity and re-
laxation results in bv for integral functionals with bv integrands. ESAIM: Control,
Optimisation and Calculus of Variations, 14:456–477, 21 2007.

[5] Luigi Ambrosio, Nicola Fusco, and Diego Pallara. Functions of Bounded Variation
and Free Discontinuity Problems. Oxford Mathematical Monographs, 2000.

[6] Daniel Otero Baguer, Johannes Leuschner, and Maximilian Schmidt. Computed to-
mography reconstruction using deep image prior and learned reconstruction methods,
2020.

[7] Jérôme Bolte, Shoham Sabach, and Marc Teboulle. Proximal alternating linearized
minimization for nonconvex and nonsmooth problems. Mathematical Programming,
146(1):459–494, 2014.

[8] Kristian Bredies and Dirk Lorenz. Mathematische Bildverarbeitung. Vieweg Teubner,
2011.

[9] A. Chambolle, M. Holler, and T. Pock. A convex variational model for learning
convolutional image atoms from incomplete data. Journal of Mathematical Imaging
and Vision, 62(3):417–444, 2020.

[10] A. Chambolle, M. Holler, and T. Pock. A convex variational model for learning
convolutional image atoms from incomplete data. https://github.com/hollerm/
convex_learning, 2020.

114

https://github.com/hollerm/convex_learning
https://github.com/hollerm/convex_learning

[11] Mysid Dake. A simplified view of an artifical neural network. https://commons.
wikimedia.org/w/index.php?curid=1412126, 2006. Accessed: 2020-07-28.

[12] Sören Dittmer, Tobias Kluth, Peter Maass, and Daniel Otero Baguer. Regularization
by architecture: A deep prior approach for inverse problems. Journal of Mathematical
Imaging and Vision, pages 1–15, 2019.

[13] Ivar Ekeland, Roger Temam, and Diego Pallara. Convex Analysis and Variational
Problems. Siam, 1987.

[14] Michael Elad and Michal Aharon. Image denoising via sparse and redundant rep-
resentations over learned dictionaries. IEEE Transactions on Image processing,
15(12):3736–3745, 2006.

[15] V. Lempitsky, A. Vedaldi, and D. Ulyanov. Deep image prior. In 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 9446–9454, 2018.

[16] V. Lempitsky, A. Vedaldi, and D. Ulyanov. Deep image prior. https://github.com/
DmitryUlyanov/deep-image-prior, 2018.

[17] Boris S. Mordukhovich. Variational Analysis and Generalized Differentiation I.
Springer, 2006.

[18] Daniel Obmann, Johannes Schwab, and Markus Haltmeier. Deep synthesis regular-
ization of inverse problems. arXiv preprint arXiv:2002.00155, 2020.

[19] Vardan Papyan, Yaniv Romano, Jeremias Sulam, and Michael Elad. Convolutional
dictionary learning via local processing. In Proceedings of the IEEE International
Conference on Computer Vision, pages 5296–5304, 2017.

[20] Thomas Pock and Shoham Sabach. Inertial proximal alternating linearized mini-
mization (ipalm) for nonconvex and nonsmooth problems. SIAM Journal on Imaging
Sciences, 9(4):1756–1787, Jan 2016.

[21] Jeremias Sulam, Aviad Aberdam, Amir Beck, and Michael Elad. On multi-layer basis
pursuit, efficient algorithms and convolutional neural networks. IEEE transactions on
pattern analysis and machine intelligence, 2019.

[22] Jeremias Sulam, Vardan Papyan, Yaniv Romano, and Michael Elad. Multilayer con-
volutional sparse modeling: Pursuit and dictionary learning. IEEE Transactions on
Signal Processing, 66(15):4090–4104, 2018.

[23] Dave Van Veen, Ajil Jalal, Mahdi Soltanolkotabi, Eric Price, Sriram Vishwanath,
and Alexandros G. Dimakis. Compressed sensing with deep image prior and learned
regularization, 2018.

115

https://commons.wikimedia.org/w/index.php?curid=1412126
https://commons.wikimedia.org/w/index.php?curid=1412126
https://github.com/DmitryUlyanov/deep-image-prior
https://github.com/DmitryUlyanov/deep-image-prior

[24] Dirk Werner. Funktionalanalysis. Springer, 2011.

[25] Brendt Wohlberg. Efficient algorithms for convolutional sparse representations. IEEE
Transactions on Image Processing, 25(1):301–315, 2015.

[26] He Zhang and Vishal M Patel. Convolutional sparse coding-based image decomposi-
tion. In BMVC, 2016.

116

	Introduction
	Linear Inverse Problems
	Convolutional Neural Networks in Image Processing - Deep Image Prior
	The Proposed Method
	Related Works

	Theoretical Results
	Functional Analytic Background
	Miscellaneous Results and Definitions
	Measure Theory
	Function Spaces and Related Results
	Lower Semi-Continuity

	The Problem in a Continuous Setting
	Preliminaries
	Problem Formulation
	The Texture Prior G
	The Cartoon Prior R
	Existence and Stability Analysis
	Explicit Representation of J**

	Practical Results
	The Algorithm
	The Problem in a Discrete Setting
	Preliminaries
	Minimization Problem and Solution Algorithm

	Experiments

	Discussion
	Auxiliary Results

