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Abstract

Soccer is one of the most popular sports in the world. Therefore, the per-
formance analysis of soccer teams has become a central issue. Statistics like
number of passes, shots or sprints give the trainer information about the
game quality. Currently, available systems uses high-tech measurement tech-
nologies that are based on video analysis. Such systems are cost-expensive
and, thus, only affordable for elite teams. Wearables for performance analy-
sis represent an alternative at low cost compared to video-based analysis.

This thesis focuses on the recognition of simple, soccer-specific activities by
utilisation of MEMS accelerometer data. The defined movements are stand-
ing, walking, running, passing and shooting. The data-acquisition takes place
through two low-cost inertial measurement units: one sensor is mounted
on each shin guard. The diverse analytics are based on Machine Learning
techniques. Suitable features were selected in the time- and frequency do-
main. Feature in the frequency-domain are based on wavelet analysis. A
comparison among dimensionality reduction techniques was made, namely
Principal Component Analysis versus Linear Discriminant Analysis.

A classification scheme for recognising the above-mentioned activities was
developed and tested on real data. The evaluation of the performance
showed that Logistic Regression, Support Vector Machine and Random For-
est in combination with the Linear Discriminant Analysis outperformed the
other approaches. All shots and passes were detected. Only a few instances
were misclassified. Those faults took place in the transition areas between
standing, walking and running. Thus, no fundamental errors were made.
The best overall performance provides Logistic Regression and Random
Forest with an overall accuracy of 95%, an macro-precision score of 97%
and an macro-recall score of 96%. Last but not least, it has been shown that
the proposed classification scheme is real-time capable.
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Kurzfassung

Fußball zählt zu einer der populärsten Sportarten der Welt. Folglich sind
Leistungsanalyse von Fußballteams zu einem zentralen Thema geworden.
Verschiedene Parameter, wie die Anzahl der Pässe, Schüsse oder Sprints
können herangezogen werden um die Spielqualität zu evaluieren. Die
derzeitigen Systeme basieren auf Videoanalysen, sind kostenintensiv und
nur für Profiteams leistbar. Die Verwendung von Wearable für Leistungsanal-
ysen bietet eine kostengünstige Alternative zur videobasierten Analyse.

Diese Masterarbeit behandelt die Erkennung simpler, fußballspezifischer
Aktivitäten basierend auf MEMS-Beschleunigungsdaten. Die definierten
Bewegungen sind Stehen, Gehen, Laufen, Passen und Schießen. Die Datener-
fassung erfolgt mithilfe von zwei inertialen Messeinheiten, die jeweils an
einem Schienbeinschützer angebracht sind. Die Analyseverfahren basieren
auf Techniken des maschinellen Lernens. Features wurden im Zeit- und
Frequenzbereich (Wavelet-Analyse) ausgewählt. Zwei verschiedene Algo-
rithmen zur Dimensionsreduktion wurden miteinander verglichen, nämlich
die Hauptkomponentenanalyse und die linearen Diskriminanzanalyse.

Ein Klassifikationsschema zur Erkennung der oben genannten Aktivitäten
wurde entwickelt und an realen Daten getestet. Die Auswertung zeigte,
dass Logistic Regression, Support Vektor Maschine und Random Forest in
Kombination mit der linearen Diskriminanzanalyse die anderen Ansätze
übertrafen. Alle Schüsse und Pässe wurden erkannt. Nur einige wenige
Instanzen wurden falsch klassifiziert. Diese Fehlklassifizierungen fanden
in den Übergangsbereichen zwischen Stehen, Gehen und Laufen statt. Es
wurden also keine grundlegenden Fehler gemacht. Die beste Gesamtleis-
tung lieferten Logistic Regression und Random Forest mit einer Gesamtge-
nauigkeit von 95%, einer Macro-Precision von 97% und einem Macro-Recall
von 96%. Es wurde gezeigt, dass das vorgeschlagene Klassifikationsschema
echtzeitfähig ist.
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1. Introduction

This chapter gives a short overview of the master’s thesis on Soccer Activity
Recognition using low-cost Inertial Measurement Units. First, the fundamental
motivation of this thesis will be discussed. Second, the research aim will be
explained. And third, the structure of this thesis is stated.

1.1. Motivation

Trainers and soccer players are interesting in profiling the physical fitness
and the movements of playing during a soccer match. The number of
sprints, passes and shots gives information of a player’s performance and
the collective activity within the team. Based on the gained information,
various strategies and tactics can be developed for a soccer match. The
systems, that are currently available, are based on cost-expensive video-
analysis. As an example, skills.lab at Graz can be named. skills.lab (Anton Paar
SportsTec GmbH) is a high-tech training facility for soccer players. Based on
state-of-the-art measurement technologies, specific game situations can be
simulated and individually adapted to the respective player [1]. However,
a specific infrastructure is required, along with high costs. Thus, such
performance analysis are only affordable for professional soccer teams.

The usage of smartphones and commercial wearables, such as smart watches,
to profile the activity and fitness of a person has gained popularity in the last
decades. According to statista [2], a total of around 527 million wearables
should be sold in 2024. In particular, the sports sector is interested in cost-
efficient ways to monitor an athlete’s performance. Wearables, containing
low-cost sensors, represent a promising alternative to video-based analysis.

1



1. Introduction

Such smart sport gadgets comprise, for example, Global Navigation Satellite
System (GNSS) sensors, inertial sensors and heart rate monitors.

The low-cost inertial sensors can be utilised for activity recognition that can
help hobby teams to improve the quality of their moves. Since wrist-worn
devices are at not allowed during a soccer match, it is desirable to embed
the sensors in the player’s equipment. Schuldhaus et al. [3] proposed an
inertial-based approach to detect passes and shots during a soccer game.
The inertial sensors were located in a hollow of the soccer shoe. The study
showed that it is, in general, possible to use low-cost inertial sensors for
pass/shot classification. An overall mean classification rate of 84.2% was
reached. This study represent one development stage for the production of
commercial smart sport gadgets.

However, further investigations revealed that currently no low-cost and
smart soccer equipment is available on market. Thus, the motivation to
develop a smart sports gadget for soccer players at low cost is high.

1.2. Research Aims

This thesis aims to develop a suitable classification algorithm for the recog-
nition of soccer-specified activities using shin guards equipped with iner-
tial measurement units. Such movements are standing, walking, running,
passing and shooting. The data needed for this task is acquired from a
Micro-Electro-Mechanical System (MEMS) accelerometer. Different Machine
Learning algorithms will be evaluated and compared with each other. Vari-
ous feature extraction methods and their effect on the algorithms will be
analysed. The algorithms will be tested in simple, real applications to de-
termine, which Machine Learning concept is best suited for this specific
application. This thesis shall serve as a feasibility study and should indicate
whether it is possible to detect soccer-specific activities based on low-cost
inertial sensors.
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1. Introduction

1.3. Outline

This thesis consists of three parts. Part I corresponds to the theoretical
foundations. The theoretical part is divided into three chapters that give
a brief introduction in MEMS inertial sensors, in fundamentals of wavelet
theory and in the basic concepts of Machine Learning. Part II describes the
development process of the test setup as well as the developed classification
scheme for soccer activity recognition. That includes a brief description of
the activities to detect and the used sensor. The data collection, including
the test setup as well as the sensor calibration, will be a topic; followed
by a wavelet analysis of the collected data. The final chapter of this part
introduces the developed activity recognition scheme. Part III deals with the
model evaluation and the results. It comprises the evaluation of the trained
Machine Learning algorithms and their suitability in real applications. Fi-
nally, the drawn conclusion are summarised and looked at the future fields
of research.
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2. MEMS Inertial Sensors

Inertial sensors comprise accelerometers and gyroscopes, which measure
specific forces and angular rates, respectively [4]. Usually, three mutually
orthogonal accelerometers and three mutually orthogonal gyroscopes are
attached on a platform, also known as Inertial Measurement Unit (IMU). An
IMU is a principal component of an Inertial Navigation System (INS). An
INS is capable of determining an independent navigation solution (position,
velocity and attitude) of a moving object relative to a known reference
system. However, navigation is not the only application field of inertial
sensors. With the introduction of MEMS technology, the scope of application
also includes Activity Recognition (AR) based on wearables [5].

A Micro-Electro-Mechanical System (MEMS) is associated with any sensor
that is produced by microelectronic fabrication techniques [6]. It refers in
general to the sensor’s architecture and construction [7]. These techniques
enable the production of miniatured forms of various sensors at a low-cost
level and in large quantity. The integration of microelectronic circuits al-
lows to record physical parameters like accelerations [6] or angular rates. A
low-cost IMU consists of a MEMS accelerometer and a MEMS gyroscope.
They are usually used in combination with a MEMS magnetometer. Mag-
netometers measure the magnetic field strength [7] in units of microteslas
(µT). A magnetometer gives the direction to the magnetic poles. Together
with the accelerometer and gyroscope, the magnetometer helps to stabilise
the direction determination in navigational tasks.

Since this thesis deals with AR based on MEMS accelerometer data, the
accelerometer will be explained in more detail. The gyroscope, however,
will be discussed merely superficially.
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2. MEMS Inertial Sensors

2.1. Accelerometer

The working principle of an accelerometer is to measure the forces, which
have an effect on a proof mass m [8]. Figure 2.1a shows a spring accelerom-
eter, where the sensitive axis is aligned with the horizontal axis. The ac-
celerometer measures the displacement of the proof mass that is propor-
tional to the acting acceleration. Supposing that no acceleration appears,
the proof mass is at equilibrium. When an acceleration occurs to the right,
the proof mass is pushed to the left side relative to its casing. The output
is a positive acceleration. In the event that the sensitive axis is aligned
vertically with the gravitational field (Figure 2.1b), the proof mass is pulled
downwards and also outputs a positive acceleration, which equals the
gravitational acceleration.

1 -1 -22 0

m

1 -1 -22 0

m
a

(a)

1

-1
-2

2

0
m

g

(b)

Figure 2.1.: Working principle of an accelerometer based on Noureldin et al. [8]: Accelerom-
eter (a) in equilibrium position without an acting acceleration and with an
acting acceleration a, (b) with gravitational acceleration g acting on it.

According to the equivalence principle, it is not possible to distinguish iner-
tial mass from gravitational mass. Therefore, the output of an accelerometer
consists of the acceleration of the object superimposed with the gravitational
acceleration concerning the inertia space and is called specific force [8]:

f = a− g, (2.1)
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2. MEMS Inertial Sensors

where a is denoted as the acceleration with respect to the inertial frame
(Chapter 2.5) and g is the gravitational acceleration.

The displacement of a proof mass due to acceleration of a MEMS accelerom-
eter is measured as a change in voltage by usage of different transduction
principles. Such transduction principles can be capacitive, piezoresistive,
tunneling, resonant, optical, an so on [9]. This displacement is directly pro-
portional to the output voltage. Beside the transduction principle, it can be
also differenced between the sensor architectures [4]:

• Open-loop: Actual movement of the proof mass is measured by a
suitable pickoff mechanism like a mechanical scale, a capacity pickoff,
a piezo-electric pickoff or an optical detector.

• Closed-loop: Determines the force, which is necessary to maintain the
proof mass in its original state by using an electric or magnetic force
generator, called forcer. Sensors, which operate in closed-loop mode
show, in general, a better linearity compared to open-loop mode.

2.1.1. Types of MEMS Accelerometers

MEMS accelerometers can be found in a wide range of applications such
as in air bags of cars or in smartphones. The different types of MEMS ac-
celerometers differ in resolution, range, bandwidth, signal transduction and
in microelectronic fabrication [9]. For example, a high resolution as micro-g
is required in space applications and inertial navigation. Accelerometers
with medium and low resolution are relevant in air bags or seismometry.
The most common commercially available MEMS accelerometers are using
the capacitive or piezoresistive principle.

Capacitive accelerometers

Capacitive accelerometers have a range of sensing of 2 µg up to several
g [9]. Areas of application are inertial navigation or microgravity detection.
Figure 2.2 illustrates the simplified architecture of a capacitive accelerometer,

7



2. MEMS Inertial Sensors

which consists of some pairs of fixed electrodes and a flexible proof mass [10].
When there is no acceleration acting on the proof mass, the distances d1
and d2 are equidistant. Therefore, the two capacitors C1 and C2 measure no
change. When an acceleration is applied, the moveable proof mass is shifted.
As a result, the distances d1 and d2 are not equal so that a capacitance
change is detected. The capacitance change is perceived as a change in
voltage.

anchor

fixed electrodes

tether 
(spring)

no acceleration
d1 d2

C1 C2

d1 d2

C1 C2

moveable 
proof mass under acceleration

 d1 = d2 

 C1 = C2 

 d1 = d2 

 C1 = C2 

Figure 2.2.: Functional principle of capacitive accelerometers based on Amerini et al. [10].

The advantages of such sensors are high sensitivity, good noise performance,
low drift and low-temperature sensitivity [9]. However, they are vulnerable
to electromagnetic interferences.

Piezoresistive accelerometers

Piezoresistive accelerometers show a higher sensing range compared to
capacitive accelerometers (0.001-50 g [9]). These sensors are commonly used
for impact testing, such as in air bags. The principle of a piezoresistive
accelerometer is that the displacement of the proof mass due to bending
causes strains in the suspension beams. That results in a change in re-
sistance detected by a piezoresistor. Such accelerometers are convincing
regarding their simplicity in architecture, but they are highly sensitive to
temperature.

A detailed comparison of various types of MEMS accelerometers can be
found in Krishnan et al. [9].
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2. MEMS Inertial Sensors

2.2. Gyroscope

A gyroscope measures angular rates concerning an inertial frame and
can be used to determine the attitude of an object. A gyroscope, in a
mechanical sense, can be described as a rotating wheel or disk that maintain
its orientation regardless of the movement of its axes. It uses the principle
of conservation of angular momentum [10].

A MEMS gyroscope measures angular rates based on the Coriolis effect [10].
Considering a moving object, which experiences a rotation caused by an-
gular velocity, the Coriolis force is acting perpendicular to its rotation axis
and the trajectory. The Coriolis force affects the proof mass and causes it to
vibrate. That leads to a capacitive change sensed by capacitive sensors.

2.3. Sensor Errors

Inertial sensor errors are divided into [11], [12]:

• Stochastic errors: Errors are random (random noise). They can be
controlled by different signal processing methods.

• Systematic errors: Constant errors or errors that can be described as a
function of the input and environmental factors. Common systematic
errors are biases, scale factor errors, nonlinearity, asymmetry, dead
zone, quantisation errors and hystereses. The main part of systematic
errors are determined during a calibration process.

The major source of errors in an IMU are the bias and the scale factor error
(Figure 2.3). The bias describes a constant offset, which is the difference
between the output and the correct value. The scale factor error is a result
from an incorrect sensitivity. For example, the output corresponds to 98%
of the input. However, such errors can show small changes over time and
day-to-day uncertainties. MEMS inertial sensors are usually uncalibrated
and have large temperature-dependent biases and scale factor errors.

9



2. MEMS Inertial Sensors

Input

Output

(a)

Input

Output

(b)

Figure 2.3.: Bias and scale factor error based on Grewal et al. [13]: (a) Bias, (b) Scale factor
error. The dashed line represents an ideal system.

2.4. Sensor Calibration

This section deals with the calibration of a MEMS accelerometer. The cali-
bration approach uses the fact that the axes of an accelerometer are sensitive
to gravity (gravitation plus centrifugal force). The IMU is aligned to a
horizontal platform so that the vertical axis follows the local plumb line.
The sensor should only measure the vertical acceleration, which equals to
±1 g (≈ ±9.807 m/s2 at latitude for Graz), depending on the direction of
the sensitive axis. However, since accelerometers suffer from sensor errors,
the accelerometer measurements deviate from the actual values. With this
knowledge, the biases and scale factor errors can be determined easily for
each axis.

The calibration process is illustrated in Figure 2.4. Each pair represents the
calibration measurements for a specific coordinate axis. Multiple measure-
ments in static phases are done in all six sensor orientations and averaged.
The measurements between the rotations are neglected.

The determination of the bias bi for each axis (i ∈ {x, y, z}) is shown in
Equation 2.2. The used formulas are based on Bolder Flight Systems [15]. fi
refers to the raw measurements of each pair.

bi =
min ( fi) + max ( fi)

2
(2.2)
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2. MEMS Inertial Sensors
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z

y

z
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Figure 2.4.: Orientations of the accelerometer during the six calibration measurements
based on Stančin and Tomažič [14]. The gravity acceleration g points down-
wards in the direction of the local plumb line.

The scale factor si is obtained by comparing the measurements with the
acceleration of gravity g:

si =
|min ( fi)|+ |max ( fi)|

2g
. (2.3)

The gravity acceleration g is assumed a value of 9.807 m/s2 at current
latitude (Graz). To achieve the corrected measurements f cal

i , the calibration
values are applied to the raw sensor data fi as follows:

f cal
i = ( fi − bi) si. (2.4)
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2. MEMS Inertial Sensors

2.5. Coordinate Systems

The specific force is determined along the axis of a pre-defined reference
frame, also termed as Body Frame (BF). The gyroscope outputs angular rates
between the BF and the Inertial Frame (IF) [4], [12].

Those coordinate systems are usually defined as a right-handed three-
dimensional Cartesian systems. The inertial system corresponds to a refer-
ence system for which the laws of Newtonian mechanics are valid. In other
words, such a system is non-accelerated and at rest or is in uniform motion,
respectively. The IF refers to an inertially non-rotating frame. However, a
strict realisation of an inertial system is impossible since the earth is or-
biting around the sun in a non-steady motion.Thus, quasi-inertial systems
are introduced. A quasi-inertial system is inertial to rotation but not to
translation.

The BF is related to an object or an IMU itself. The origin of the coordinate
system is situated within a pre-defined point of the INS. Its axes are typically
aligned with the principle rotation axes of the object. The BF is described as
an inertially rotating frame. In this application, the BF is associated with the
sensor’s coordinate system, which is attached to the shin guard.
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3. Fundamentals of Wavelet
Theory

The wavelet theory has become a popular “time–frequency decomposition
tool for data analysis” (Addison [16, p. xv]). Therefore it has given many
new opportunities in several applications like signal processing, image com-
pression, filter design, pattern recognition, and so on [16]–[18]. As shown in
Ayachi et al. [19] and Barralon et al. [20], wavelets can be used successfully
for activity recognition. This chapter will give a brief introduction to wavelet
theory.

3.1. Motivation for Wavelets

A traditional method for frequency analysis is represented by the Fourier
Transform (FT) [21]:

S( f ) =
∫ ∞

−∞
s(t)e−i2π f tdt, (3.1)

where i is the imaginary unit, f the frequency and s(t) represents the signal
in time-domain. As a result, S( f ) gives the frequency spectrum of s(t).

According to Addison [16] and Lee A. Barford et al. [17] this approach
works well for stationary time series. For non-stationary/dynamic signals
(spectral content changes over time) the FT fails to detect changes in the
signal magnitude, frequency or phase sufficiently. However, most of the
signals in real life are typically non-stationary. Furthermore, the FT lacks of
temporal resolution (Figure 3.1). To solve this issue, the Short-Time Fourier
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3. Fundamentals of Wavelet Theory

Transform (STFT) has been invented:

STFT(τ, f ) =
∫ ∞

−∞
s(t)w(t− τ)e−i2π f tdt, (3.2)

where w is the window and τ the time location.

The STFT is defined by applying the FT over a windowed signal. For short
enough periods of time, the signal can be assumed to be stationary. If the
window is fixed, then a uniform time resolution for all frequencies [22] is
yielded. This leads to difficulties regarding the analysis of signals with wide
bandwidth, which vary strongly with time [23]. The Wavelet Transform
(WT) has been developed as an alternative to the STFT, and provides a

• high time resolution and low frequency resolution for high frequencies,
• low time resolution and high frequency resolution for low frequencies.

Therefore, the WT is well suited for analysing signals, which are charac-
terised by being aperiodic, noisy, dynamic, and so on. Compared to the FT,
the WT requires more complex base functions (wavelets) than sines and
cosines. Besides, the analysis is done at multiple scales. The WT will be
discussed more precisely in the following chapters. An illustration of the dif-
ferences between the Fourier Transform, the Short-Time Fourier Transform
and the Wavelet Transform can be seen in Figure 3.1.

3.2. Wavelet Transform

“Wavelets are used to transform the signal under investigation
into another representation which presents the signal informa-
tion in a more useful form. This transformation of the signal is
known as the Wavelet Transform. Mathematically speaking, the
Wavelet Transform may be interpreted as a convolution of the
signal with a wavelet function,..” (Addison [16, p. 2])

As demonstrated and explained in Addison [16], a wavelet can be under-
stood as a scalable and sliding function with certain characteristics. In other
terms: A wavelet can be shifted, stretched or squeezed as schematically
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3. Fundamentals of Wavelet Theory
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Figure 3.1.: Comparison of time series analysis, Fourier Transform, Short-Time Fourier
Transform and Wavelet Transform in time-frequency plane based on Vandeput
[24].

shown in Figure 3.2b and 3.2c. The mathematical details will be discussed
in Chapter 3.3. Some common examples of wavelets on a single scale are
shown in Figure 3.2a. As it can be seen, there exist different types of
wavelets, called wavelet families. Each family has different features regarding
complexity (shape), smoothness and compactness. A wavelet can be

• symmetric, near symmetric or asymmetric,
• orthogonal or not orthogonal,
• bi-orthogonal or not,
• real or complex.

Each wavelet family can be divided into subcategories and they differ in the
number of vanishing moments and level of decomposition. These features
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3. Fundamentals of Wavelet Theory

play an important role in filter design (Chapter 3.6) [18]. A brief description
of the characteristics, advantages and disadvantages of some common
wavelet families is summarised by Chaudhary and Dhamija [25]. Which
wavelet to choose, depends on the application needs.

Di
sc
re
te
 W

av
el
et
s

Haar Symlets Daubechies Coiflets

Co
nt
in
uo

us
 W

av
el
et
s

Mexican hat wavelet Morlet wavelet Shannon wavelets Gaussian

(a)

time (samples)

(b)

scale = 1

scale = 2

time (samples)

scale = 3

(c)

Figure 3.2.: Wavelets: (a) Examples for wavelets, (b) Shift (Location/Time) and (c) Scale.
Illustrations based on Addison [16].

For the WT, the signal will be correlated with a wavelet. The correlation
value is high, if the wavelet matches the form of the signal well. Conversely,
this means that if the wavelet and the signal do not show similarities,
the transform value is low. The transform value is computed for different
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3. Fundamentals of Wavelet Theory

scales and different locations. This leads to a two-dimensional transform
plane (Figure 3.3). This transform plane can be generated via the Continous
Wavelet Transform (CWT) or by using the discrete approach: the Discrete
Wavelet Transform (DWT). Scales can be converted into pseudo-frequencies
fa at specific scales a: fa = fc

a , where fc is the central frequency of the
corresponding mother wavelet [26]. Consequently, small scales refer to high
frequencies.

time (samples)

Wavelet

Signal

time

sc
al

e

WT

Figure 3.3.: Local matching of wavelet and signal based on Addison [16].
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3. Fundamentals of Wavelet Theory

3.3. Requirements for Wavelets

A wavelet ψ(t), also called mother wavelet, is a localised waveform, which
satisfies the following conditions [16]:

1. The energy E of the wavelet must be finite:

E =
∫ ∞

−∞
|ψ(t)|2dt < ∞. (3.3)

This equations says, that the energy E is equal to the squared magni-
tude.

2. The second condition says:

Cg =
∫ ∞

0

|ψ̂( f )|2
f

d f < ∞, (3.4)

where ψ̂( f ) is Fourier transform of ψ(t):

ψ̂( f ) =
∫ ∞

−∞
ψ(t)e−i2π f tdt. (3.5)

The second condition is also called the admissibility condition. The
admissibility condition implies: ψ̂(0) = 0. Thus, a wavelet ψ must have
a zero-mean. This condition leads to the fact that a wavelet can be
interpreted as a bandpass filter.

3. In case of complex wavelets it applies, that ψ̂( f ) must be real and
vanishes for negative frequencies.

An example of the Wavelet Transform is the Mexican hat wavelet (Fig-
ure 3.2a). Mathematically, the Mexican hat wavelet is defined as [18]:

ψ(t) =
2

π1/4
√

3σ

(
t2

σ2 − 1
)

exp
(
− t2

σ2

)
, (3.6)

where σ is the standard deviation. The term 2
π1/4
√

3σ
is for normalization.

The Mexican hat wavelet is the second derivative of a Gaussian distribution
function

exp
(
−t2/

(
2σ2
))

.
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3. Fundamentals of Wavelet Theory

3.4. Continuous Wavelet Transform

As already mentioned in Chapter 3.2, a wavelet can be stretched and
squeezed (dilation) or it can be shifted along the time axis (location). This
two operations are now expressed via two parameters:

• dilation parameter a (a > 0) and
• location or translation parameter b (b ∈ R).

Taking the Mexican hat wavelet as an example, the dilation (a1, a2) and
translation parameters (b1, b2) are demonstrated in Figure 3.4.

time (samples)

− 0.4

− 0.2

0.0

0.2

0.4

0.6

0.8

1.0

ψ
(t a

)

time (samples)

ψ
(t
−

b
)

b

a2

a1 b1 b2

Figure 3.4.: Dilation (left) and translation (right) of a wavelet based on Addison [16].

Addison [16] introduces

ψa,b(t) =
1√
a

ψ

(
t− b

a

)
, (3.7)

which defines the scaled and shifted wavelet. The factor a−1/2 ensures, that
the energy for all scales will be preserved. As a consequence, the WT of
a continuous signal s(t) with the corresponding mother wavelet can be
expressed as:

T(a, b) = 〈s, ψa,b〉 =
∫ ∞

−∞
s(t)ψ∗a,b(t)dt. (3.8)

ψ∗a,b symbolizes the complex conjugate of Equation 3.7.

19



3. Fundamentals of Wavelet Theory

3.5. Discrete Wavelet Transform

In the previous chapter, the wavelet function was expressed at scale a and
location b (Equation 3.7). Now, discrete values for the scale and the location
are needed. Discretising the dilation parameter

a = am
0

and the translation parameter

b = nb0am
0 ,

the wavelet can be written as [16]:

ψm,n(t) =
1√
am

0
ψ

(
t− nb0am

0
am

0

)
(3.9)

where m is the control parameter for dilation, n the control parameter for
translation, both must be integers. a0 defines a fixed dilation step parameter
set > 1 and b0 refers to the location parameter > 0.

Consequently, the WT is written as

Tm,n = 〈s, ψm,n〉 . (3.10)

Via ψm,n(t), discrete samples are generated in the two-dimensional trans-
form plane [27]:

• linear sampling along the location/time-axis,
• logarithmic sampling along the scale-axis.

3.5.1. Dyadic Grid

As follows, the discrete wavelet transform values Tm,n are as well defined
on the two-dimensional grid (m x n) [16]. In literature, the transform values
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3. Fundamentals of Wavelet Theory

are known as wavelet coefficients or detail coefficients. In practice, the values a0
and b0 are chosen as follows:

a0 = 2,
b0 = 1.

(3.11)

Substituting 3.11 into Equation 3.9 leads to

ψm,n(t) =
1√
2m

ψ

(
t− n2m

2m

)
= 2−m/2ψ

(
2−mt− n

)
. (3.12)

This representation is called dyadic grid or octave wavelet (power-of-two
logarithmic scaling). Using such a grid, the wavelet coefficients can be
written as

Tm,n =
∫ ∞

−∞
s(t)ψm,n(t)dt. (3.13)

To avoid redundant information in the wavelet coefficients Tm,n, the dyadic
grid can be formed as an orthonormal wavelet basis (Equation 3.14).

∫ ∞

−∞
ψm,n(t)ψm′,n′(t)dt =

{
1 if m = m′ and n = n′

0 otherwise (3.14)

Using an orthonormal basis, the reconstruction of a signal s(t) based on
discrete wavelet coefficients can be formulated as

s(t) =
∞

∑
m=−∞

∞

∑
n=−∞

Tm,nψm,n(t). (3.15)

There also exist approximation coefficients

Sm,n =
∫ ∞

−∞
s(t)φm,n(t)dt, (3.16)

where
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3. Fundamentals of Wavelet Theory

φm,n(t) = 2−m/2φ
(
2−mt− n

)
, (3.17)

φm,n(t) are called scaling functions and are related to orthonormal dyadic
discrete wavelets. The scaling function shows the same structure as the
wavelet (Equation 3.12). The scaling function has a smoothing effect on the
signal. The following applies:∫ ∞

−∞
φ0,0(t)dt = 1,

where φ0,0(t) = φ(t). φ(t) is also called father wavelet and characterises
the basic wavelet scale. Another property of it is, that it is orthogonal
regarding translations, but not regarding scaling. The approximation co-
efficients represent simply locally weighted averages of the signal scaled
by the factor 2−m/2. A visualisation of a block scaling function is given in
Figure 3.5.

Figure 3.5.: Father wavelet (red) with two of its corresponding dilations based on Addison
[16].

Now the signal can be represented through detail and approximation coeffi-
cients

s(t) =
∞

∑
n=−∞

Sm0,nφm0,n(t) +
m0

∑
m=−∞

∞

∑
n=−∞

Tm,nψm,n(t), (3.18)

where m0 is an arbitrary scale index. Equation 3.18 leads to the so called
multiresolution representation.
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3. Fundamentals of Wavelet Theory

3.5.2. Scaling Equation and Wavelet Equation

Another term related to the scaling function is the scaling equation:

φ(t) = ∑
k

ckφ(2t− k), (3.19)

where φ(2t− k) is a contracted implementation of φ(t) (shifted by an integer
step k). ck are called scaling coefficient. φ(t) can be achieved by solving this
two-scale difference equation (Equation 3.19). The scaling coefficients must
satisfy

∑
k

ck = 2. (3.20)

Additionally, only taking into account wavelets with compact support1 and
being orthogonal

∑
k

ckck+2k′ =

{
2 if k′ = 0
0 otherwise , (3.21)

the differencing of the corresponding wavelet equation can be written as

ψ(t) = ∑
k
(−1)kcNk−1−k φ(2t− k), (3.22)

where Nk is the number of scaling coefficients. As seen in Equation 3.22, the
same coefficients appear reversed with alternate signs. Equation 3.21 also
implies, that the square sum of the scaling coefficients must be 2. Defining

bk = (−1)kcNk−1−k ... (∑
k

bk = 0)

yields to a different representation of the wavelet equation

ψ(t) =
Nk−1

∑
k=0

bkφ(2t− k). (3.23)

1finite sequences of non-zero scaling coefficients
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3. Fundamentals of Wavelet Theory

An example of an orthonormal wavelet represents the Haar Wavelet. The
Haar wavelet is very popular due to its simple definition. Following, the
solution of the Haar scaling equation

φ(t) = φ(2t) + φ(2t− 1) (3.24)

leads to a single block pulse

φ(t) =
{

1 0 ≤ t < 1
0 elsewhere . (3.25)

The solution of the Haar wavelet equation

ψ(t) = φ(2t)− φ(2t− 1) (3.26)

is carried out in an analogous manner:

ψ(t) =


1 0 ≤ t < 1

2
−1 1

2 ≤ t < 1
0 elsewhere

. (3.27)

Both, the scaling and the wavelet function are shown in Figure 3.6.

1

−1

0

1

Φ(
t) 1

tΨ(
t)

Figure 3.6.: Haar transform: scaling function (right), wavelet function (left)
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3.6. Discrete Wavelet Transform as a Filter Bank

Mallat [28] introduces the idea of multiresolution signal decomposition,
which yielded to the Fast Wavelet Transform (FWT), also called multiresolution
algorithm or pyramid algorithm. Multiresolution decomposition algorithm
represents one part of the FWT, the second part is the reconstruction al-
gorithm, which will not be further discussed. Basically, this multiresolution
decomposition algorithm consists of two main recursive formulas [16]:

Sm+1,n =
1√
2

∑
k

ckSm,2n+k =
1√
2

∑
k

ck−2nSm,k (3.28)

Tm+1,n =
1√
2

∑
k

bkSm,2n+k =
1√
2

∑
k

bk−2nSm,k. (3.29)

In other words: if the approximation coefficients Sm,n at an arbitrary scale
m = m0 are given, then it is possible to compute all approximation and
detail coefficients larger than scale m0.

From now on discrete input signals are taken into account. Starting at index
scale m = 0, the discrete input signal is defined as

S0,n =
∫ ∞

−∞
s(t)φ(t− n)dt. (3.30)

From there it is possible to generate a wavelet multiresolution framework
by applying Equation 3.28 and 3.29 several times. The implementation can
be seen as a cascade of high-pass and low-pass filters:

• (1/
√

2)ck: low-pass filter (smoothing effect),
• (1/

√
2)bk: high-pass filter (signal details).

In practice, the discretely sampled signal st [s(ti) : i = 0, 1, 2, . . . , N − 1, N
length of finite signal st] is equated with the approximation coefficients at
scale m = 0: S0,n. Strictly speaking, this is not correct due to the fact that S0,n
represents the weighted average of a continuous signal s(t) in the vicinity
of n and not the signal itself. However, since s(t) is usually not perfectly
known: S0,n = st.
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3. Fundamentals of Wavelet Theory

Note that the discrete input signal S0,n is finite (length of the signal corre-
sponds to an integer power of 2: N = 2M). Thus, the range of the scales
is 0 < m < M and of the translation 0 < n < 2M−m − 1, respectively. The
decomposition of approximation coefficients into approximation and detail
coefficients for several decomposition levels is sketched in Figure 3.7a. As a
result, the discrete input signal is split in several detail coefficients and one
single remaining approximation coefficient SM,0, which is associated as the
signal mean component.

Figure 3.7b shows one of the most common indexing methods for dyadic
grid wavelet transform coefficients. This representation leads to the discrete
transform plot. In this example, the discrete input signal contains 16 samples.
The scale index m = 1 refers to the lowest scale on the grid and yields to
a spacing of 21 = 2. The discrete input signal would be located at m = 0.
The DWT can be applied to any signal with a length of an integer power
of 2, else the input signal has to be extended before computing the DWT,
for example by adding Zeros at the beginning, as well as at the end of the
signal. This technique is also known as Zero Padding [29].
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Figure 3.7.: Multiresolution signal decomposition: (a) Decomposition of approximation
coefficients into approximation and detail coefficients, (b) Scale indexing: m.
Illustrations are based on Addison [16].
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3. Fundamentals of Wavelet Theory

The associated filtering process is displayed in the following block diagram
(Figure 3.8). An approximation coefficient at a specific scale Sm,n is convolved
with a low-pass filter for approximation and with a high-pass filter for detail,
subsampled (2 ↓: keeping every second sample) to get the approximation
and detail coefficients at the next scale m + 1. This step is repeated to get
the next coefficient pair at scale m + 2. Note that each sub-band contains
half the samples of the previous scale and as a result, the number of the
computed consecutive coefficients stays the same as the number of input
samples [22] yielding to the multiresolution framework (Figure 3.7b).
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Figure 3.8.: Filtering scheme: approximation coefficients and detail coefficients at consecu-
tive scales based on Addison [16].

The result is a pyramid-like structure of filters, called filter bank.

“A filter bank is a set of bandpass filters with staggered center
frequencies so that the whole frequency range is covered. The
first and the last filter are lowpass and highpass filters, respec-
tively.” (Wanhammar and Yu [30, p. 259])

A filter bank has the purpose to divide the input signal into two or more
sub-frequency-bands. So a filter bank is very useful, if only special frequency-
bands are of interest. However, the Nyquist Rule must be taken into account:
To not lose any information of a signal, it must be sampled at a frequency
fs greater or equal twice the highest frequency fmax [19]:

fs ≥ 2 fmax. (3.31)
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Learning

Machine Learning (ML) has become a widely used tool to solve problems,
which are too complicated for traditional approaches or for which no known
algorithm exists [31]. Therefore, many tasks, which deal with Activity
Recognition (AR), are based on ML algorithms. This chapter discusses the
fundamental concepts of ML, including its definition, the main challenges,
and some well-known classification algorithms, like Logistic Regression,
Support Vector Machine, Decision Tree or Neuronal Net.

A definition of ML is given by Bhavsar et al. [32, p. 283]:

“Machine learning is a collection of methods that enable comput-
ers to automate data-driven model building and programming
through a systematic discovery of statistically significant patterns
in the available data.”

ML consists of selecting an appropriate algorithm/model and training it.
In this context, training means that the algorithm is fed with data from
which it tries to learn, without being especially programmed. This process
includes finding the ideal model parameters (Chapter 4.3). However, there
exist several different types of learning. The basic types are categorised
into [31]:

1. Supervised Learning:
In supervised learning, the algorithms are trained on labelled data
(data include input and output (solution)). For a given input and a
known output, the algorithm tries to learn a basic rule, which maps
the input to the desired output. Supervised learning is usually used to
solve Classification or Regression tasks. Classification algorithms predict
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classes, such as True or False. Regression algorithms predict numeric
values such as house prices.

2. Unsupervised Learning:
Algorithms are trained on unlabelled data and are very useful in
the detection of hidden patterns. Therefore they are often found in
clustering problem (k-Means), anomaly detection (Isolation Forest), vi-
sualisation algorithms or dimensionality reduction tasks (t-distributed
Stochastic Neighbor Embedding (t-SNE)).

3. Semisupervised Learning:
Algorithms are trained on partially labelled data since the generation
of labelled data is a resource-intensive task in general.

4. Reinforcement Learning:
The algorithm bases on a trial and error strategy. Learning a roboter
how to walk is realised with the help of reinforcement learning.

4.1. Main Challenges

As already mentioned, ML consists of selecting an appropriate algorithm
and training it. Therefore, the main challenge is to choose a “good” algo-
rithm and feed it with “good” data. The following subsections are inspired
by Géron [31].

4.1.1. Data Quality

The first requirement is to collect a sufficient amount of training data, de-
pending on the complexity of the given task. The more data are available to
train the algorithm, the better it can generalise new inputs, provided that
the data is representative. In other terms: If the training set contains too few
instances, it results in sampling noise. Large but skewed or imbalanced data
sets can also be misrepresentative (sampling bias).
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Noisy data with outliers also complicate a good performance of the algo-
rithm. Therefore, it is very important to preprocess the data before feeding
it into the ML system. This leads to another issue, namely the selection of
relevant features (Chapter 4.1.2).

4.1.2. Feature Engineering

A feature is defined as a prominent attribute (variable) plus its value. Gen-
der = “male”, Age = “32”, Height = “182 [cm]” are only some examples
that can be features. Features can be extracted from data to simplify the
classification or regression task. The success of a ML system relies signifi-
cantly on finding good features. This process is called Feature Engineering
and consists of

• Feature selection: exclusion of features with low or redundant infor-
mation,

• Feature extraction: consideration of using feature combinations, which
are more representative.

Variables, which are highly correlated, will not give out any additional
information, quite contrary, it introduces additional noise in the model. In
case that two variables would be perfectly correlated, both features would
contain the same information. As a result, only one of them is needed to
represent the data set. The same effect can be seen with uncorrelated features.
Those features also provide noise and might even bias the model [33]. Only
using relevant features does not only improve the model performance, but
also reduces the computational time. Chandrashekar and Sahin [34] provide
a good overview of different feature selection methods.

4.1.3. Different Feature Scales

Features with different scales might be problematic for the majority of
ML algorithms. Due to the fact that models deal with number, they tend
to weight larger values higher and small values lower, notwithstanding
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which dimension the feature has. Scaling the features is an important pre-
processing step to make them comparable. That process is called Feature
Scaling. One common way is standardisation.

Feature scaling through standardisation describes the process of rescaling the
features to achieve properties of a standard normal distribution with zero-
mean and unit-variance. The mean value from each feature is subtracted
and divided by its standard deviation [35]:

xnew
i =

xi − x̄
σ

, (4.1)

where xi is the ith element of the vector x. The vector x contains multi-
ple observations of one feature. x̄ describes the mean of x and σ is the
corresponding standard deviation.

4.1.4. Overfitting

In terms of ML, overfitting means that the model is trained too well. It
works perfectly on the training set, but on new data, it performs poorly. An
example is given in Figure 4.1. The model, represented by a higher degree
polynomial, strongly overfits. In this case, a simple linear model performs
better.
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Figure 4.1.: Overfitting the training data
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Overfitting appears when the model is too complex compared to the input
data. Countermeasures to mitigate overfitting are collecting more data (if
possible), constraining the model (regularisation) or reducing the number of
features. However, each algorithm has different regularisation techniques
(Chapter 4.3).

4.1.5. Underfitting

Underfitting happens when the model assumptions are too simple relative
to the underlying data. It shows a negative impact on the training data,
as well as on new data. Methods to avoid underfitting are the selection of
a more complex model, better features (feature engineering) or reducing
regularisation.

4.1.6. Hyperparameter Tuning

Hyperparameters are parameters, which have to be defined before the train-
ing process. A hyperparameter cannot be estimated from the input data, in
contrast to model parameters. They can be seen as settings for the model to
control its behaviour. A hyperparameter can be used for regularisation to
prevent over- and underfitting. Another issue is that some hyperparameters
are needed in the training process itself. Some models, like neuronal nets,
need a pre-defined learning rate (Chapter 4.3.4). The finding of good hyper-
parameters represent a meta-optimisation task. However, since the optimal
hyperparameters cannot be determined directly, they need to be searched.
This process is called hyperparameter tuning. One approach is known as Grid
Search. It searches through a manually-specified grid of hyperparameters
and returns the best combination [36].

4.2. Training and Test Sets

Testing and validating is mandatory to verify how well the trained model
generalises to new instances. In practice, the collected data is split into a
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• Training set and a
• Test set.

Usually, the training data contain 80% of the whole data set, 20% are
reserved for the test set [31]. As the terms indicate, the model is trained on
the training set and tested on the withhold test set. The test set simulates new,
unseen data. Both, the training and the test set can be used to evaluate the
models’ performance (Chapter 4.4). As already mentioned in Chapter 4.1.4,
the model is overfitting, if it performs well on the training set, but gives a
high error rate on the test set. When the model performs poor on the training
set as well as on the test set, the model is underfitting (Chapter 4.1.5).
To ensure that the training and test sets are representative, it is necessary
to sample the data so that each class (label) is equally represented (in
percentage terms) in both sets. This approach is also called stratified sampling.
Stratified sampling aims to reduce the sampling bias. Additionally, shuffle
data guarantees that the samples are uniformly distributed (randomised).

4.3. Training Models

In this section some popular supervised classification algorithms in ML will
be discussed:

• Logistic Regression
• Support Vector Machine
• Decision Tree
• Neural Network

The data set, given for classification, consists of m training data points
(x(1), y(1)), (x(2), y(2)), ... , (x(m), y(m)), where x(i) is the instance’s feature
vector and contains n features (|x| = n). y(i) consists of the corresponding
target class (label) [37]. The goal is to use those data points to train the
algorithm (estimation of model parameters), so that it is capable of assigning
new input data to a class.
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There exist two types of classifiers:

• Binary Classifiers:
Classification task distinguishes between two classes:
y(i) ∈ {0, 1}, i = 1, . . . , m.
In practice, y(i) = 1 is termed as the positive class and y(i) = 0 as the
negative class.

• Multiclass Classifiers:
Separation of more than two classes K > 2 is possible.

Some algorithms, which initially are intended to solve binary classification
problems, can be turned into multiclass classifiers. Two strategies are worth
to mention: One-Versus-Rest (OvR) and One-Versus-One (OvO) strategy [31].
Hence, the classification task is to classify an instance into K classes. The
OvR strategy consists of training K binary classifiers: A classifier detects
class 0, a classifier detects class 1, and so on. Each of them outputs a so-
called decision score for a given input. The one classifier with the highest
score defines the selected class. The second approach, OvO, deals with
training several binary classifiers for all pairs of classes: The first classifier,
for example, is trained to separate class 0 and class 1, the second one
distinguishes between class 0 and class 2, and so on. The OvO strategy is
more suitable for small data sets since it is faster to train many classifiers
on small data sets than to run a few classifiers on large data sets.

4.3.1. Logistic Regression

Logistic Regression solves binary classification problems. It estimates the
probability that a certain instance belongs to a class. Is the estimated proba-
bility higher than 50 % , the algorithm predicts that the instance is a member
of the positive class (y(i) = 1), else that it is part of the negative class
(y(i) = 0) [31]. Logistic Regression belongs to the so-called probabilistic dis-
criminative models [38] and is a basic module of artificial neural networks
(Chapter 4.3.4).
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Logistic Regression model

In consideration of a single instance (x, y), the posterior probability of the
positive class can be expressed in terms of the logistic sigmoid function,
applied on a linear combination of the instance’s feature vector x [31], [38]:

p̂ = p (y = 1|x) = hθ(x) = σ
(

θ>x
)

, (4.2)

where

θ ... contains model parameters in a vecorized form:
bias term θ0 plus feature weights θ1, ...θn

x ... instance’s feature vector: x0, ..., xn with x0 = 1
hθ ... hypotesis function, using model parameters

σ (•) ... logistic (sigmoid function)

θ>x ... θ0x0 + · · ·+ θnxn, called linear predictor [39]

and with
p (y = 0|x) = 1− p (y = 1|x) . (4.3)

The sigmoid function has the purpose to map real numbers from (−∞, ∞)
to numbers in the range of [0, 1]. Constraining the range of the output is
necessary since a binary output is required [39]. The sigmoid function is
defined as

σ(t) =
1

1 + exp(−t)
, (4.4)

where t is called logit. As it can be seen in Figure 4.2, the sigmoid function
is S-shaped and converges to zero for large negative values and advancing
towards one for large positive values. Moreover, it is symmetric:

σ(−t) = 1− σ(t). (4.5)
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The inverse of the logistic sigmoid (logit function)

t = ln
(

σ

1− σ

)
(4.6)

describes the log of the ratio of probabilities for the positive and negative
class: ln

(
p(y=1|x)
p(y=0|x)

)
[38]. This ratio of probabilities is called log odds.
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Figure 4.2.: Sigmoid function

In summary, a linear combination (plus its bias term) of features is taken,
applied to a non-linear function, which constrains its output to a number
between 0 and 1 (Equation 4.2). So, for the predicted class ŷ the following
applies:

ŷ =

{
0 if p̂ < 0.5
1 if p̂ ≥ 0.5 . (4.7)

It implicates that the input is classified as the positive class whenever θ>x
is positive and vice versa. Thus, logistic regression can be seen as a linear
classifier. The corresponding decision boundary, which separates the two
given classes, is achieved by solving θ>x = 0 [40]. Generally, it is assumed
that classes are not fuzzy so that they can be separated into decision regions.
Those regions are circumscribed by so-called decision boundaries or decision
surfaces. In the case of linear models, those decision boundaries/surfaces
can be expressed as linear functions [38].
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Cost Function for Logistic Regression

The model for Logistic Regression is defined in Equation 4.2. Another task
is to estimate its model parameters θ (complies with the training process).
The fact that the logistic model deals with probabilities makes it possible to
use Maximum Likelihood Estimation (MLE) for fitting [40].

The likelihood of a single data point can be expressed as follows [37]:

P(y|x) = σ
(

θ>x
)y
·
[
1− σ

(
θ>x

)](1−y)
(4.8)

Note that the label y follows the Bernoulli distribution. Under consideration
of the whole data set, the likelihood equation is written as

L(θ) =
m

∏
i=1

σ
(

θ>x(i)
)y(i)
·
[
1− σ

(
θ>x(i)

)](1−y(i))
, (4.9)

where y(i) represents the target value (label) of the ith data point and x(i)

refers to the corresponding instance’s feature vector. Taking the logarithm
of the likelihood equation (products turn into sums), it simplifies to

LL(θ) =
m

∑
i=1

y(i) log σ
(

θTx(i)
)
+
(

1− y(i)
)

log
[
1− σ

(
θTx(i)

)]
. (4.10)

Equation 4.10 is also known as log likelihood. The model parameters θ can
be achieved by solving the MLE. However, maximising the log likelihood
LL(θ) is equivalent to minimising −LL(θ). Taking the average cost over the
whole data set into account, the cost function for Logistic Regression (called
log loss) reads as follows [31]:

J(θ) = − 1
m

LL(θ). (4.11)

Now the model parameters θ are obtained by minimising Equation 4.11.
Unfortunately, no closed-form exists as it is a transcendental equation [40]. It
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can be solved using an optimisation algorithm like Gradient Descent. Such
optimisation algorithms require the partial derivatives with respect to the jth

model parameters (j = 0, . . . , n) of the cost function (Equation 4.11) [31]:

∂

∂θj
J(θ) =

1
m

m

∑
i=1

(
σ
(

θ>x(i)
)
− y(i)

)
x(i)j . (4.12)

From the partial derivatives the gradient vector ∇θJ(θ) is built:

∇θJ(θ) =


∂

∂θ0
J(θ)
...

∂
∂θn

J(θ)

 . (4.13)

One way to regularise Logistic Regression models is to apply the L1 or the
L2 penalties terms to the cost function.

Gradient Descent

Gradient Descent (GD) refers to a generic optimisation algorithm that uses
an iterative approach to find the minimum value for a function [31]. A
definition of GD is given by Ruder [41, p. 1]

“Gradient descent is a way to minimize an objective function
J(θ) parameterized by a model’s parameters θ ∈ Rd by updating
the parameters in the opposite direction of the gradient of the
objective function ∇θJ(θ) w.r.t. to the parameters.”

So, the GD takes the local gradient of a given cost function and goes in the di-
rection of descending slope until it converges to a minimum. This is realised
by randomly initialising θ. Then the parameters get tweaked iteratively to
minimise the cost function until the valley is reached (Figure 4.3).

Another term related to GD is the learning rate η. The learning rate defines
the step size of the optimisation algorithm and is proportional to the slope
of the corresponding function (Figure 4.3). Finding an appropriate learning
rate is essential for performance-enhancing: On the one hand, is η too low,
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Figure 4.3.: Gradient Descent algorithm based on Géron [31].

the algorithm takes a long time to converge. On the other hand, if η is too
high, the algorithm diverges.

When the cost function is convex, then it is implied that only one global
minimum exists. In other words, it is guaranteed that the minimum can
be found, provided that an appropriate learning rate is chosen. Once the
algorithm deals with non-convex surfaces, it is not guaranteed that the
global minimum is reached. It can get stuck in a local minima or in plateaus
(Figure 4.4). It can be shown that the cost function of Logistic Regression is
convex.
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Figure 4.4.: Possible problems of Gradient Descent based on Géron [31].
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GD works with the gradient vector of the objective function: ∇θJ(θ) (Equa-
tion 4.13). GD can be realised in three different ways [31], [41]:

1. Batch Gradient Descent (BGD):
Computes the gradient of the cost function over whole training data
set:

θnext step = θ− η · ∇θJ(θ). (4.14)

The fact that the entire data set is used, makes this variant time-
consuming for large training sets.

2. Stochastic Gradient Descent (SGD):
Calculations are based on a single random instance at every step:

θnext step = θ − η · ∇θJ
(

θ, x(i), y(i)
)

. (4.15)

This variant is very fast, but due to its stochastic behaviour, it can
never reach the optimum. The final parameters end up close to it1.

3. Mini-batch Gradient Descent:
Gradients are computed based on small random sets of instances,
called mini-batches:

θnext step = θ− η · ∇θJ
(

θ, x(i:i+l), y(i:i+l)
)

(4.16)

where l is the size of a mini-batch. It represents a combination of BGD
and SGD.

Softmax Regression

The Logistic Regression model is capable of solving binary classification
problems. However, the model can be extended to a multiclass classifier.
A multiclass classifier on basis of Logistic Regression is named softmax
regression. The softmax regression uses the OvR scheme (Chapter 4.3). For
each class k a score sk(x) [31]

1Assumption: training data is independent and identically distributed (IID)
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sk(x) = x>θ(k) (4.17)

is computed. Note that only one data point (x, y) is considered. The score
only consists of the linear predictor with the difference that each class has its
own fixedly assigned model parameters θ(k). Storing the model parameters
for every class column by column leads to the parameter matrix Θ. Now the
posterior probability p̂k for every class is achieved by applying the softmax
function to the scores:

p̂k = σ(s(x))k =
exp (sk(x))

∑K
j=1 exp

(
sj(x)

) , (4.18)

where s(x) is a vector filled with the scores of each class concerning the
instance feature vector x. K is the total number of classes. The posterior
probability p̂k gives the probability that one instance x belongs to a class k
based on of the given scores. The highest estimated probability defines the
assigned class, as shown in Equation 4.19.

ŷ = argmax σ(s(x))k = argmax
k

sk(x) = argmax
k

((
θ(k)
)>

x
)

(4.19)

The training process is carried out analogue to Logistic Regression. It con-
sists of minimising the cost function

J(Θ) = − 1
m

m

∑
i=1

K

∑
k=1

y(i)k log
(

p̂(i)k

)
, (4.20)

where y(i)k refers to the target class k of the ith data point: y(i)k ∈ {0, 1} (the
instance is member of the class, or not). The cost function in Equation 4.20 is
also known as cross entropy and can also be seen as a performance measure
of the model. It compares how well the estimations concur with the target
labels. Note that the cross entropy cost function is identical with the log
loss (Equation 4.11) if only two classes are present. As soon as the gradient
vector for each class
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∇θ(k) J(Θ) =
1
m

m

∑
i=1

(
p̂(i)k − y(i)k

)
x(i) (4.21)

is computed, an optimisation algorithm can be chosen to solve the minimi-
sation problem with regard to the parameter matrix Θ [31].

Assumptions

Logistic Regression belongs to non-parametric models, so it does not re-
quire any information of the underlying distribution. However, there exist
some assumptions, which should be considered when performing Logistic
Regression [42]:

• Appropriate outcome structure
The dependent variable (label) should be binary.

• No or little collinearity of independent variables
Highly correlated features can cause problems in the parameter esti-
mation process.

• Linearity of independent variables and log odds
In other terms, the features should be linearly related to the log odds.

• Independence of errors
• Lack of strongly influential outliers
• Adequate sample size

It requires a relatively large sample to avoid a biased model or over-
fitting. However, the correct number of training data depends on the
complexity of the model and will continue to be a key subject of
research.

Furthermore, all features should have similar scales (Chapter 4.1.3), else
the optimisation algorithm (for example GD) will take much longer to
converge [31].
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4.3.2. Support Vector Machine

Support Vector Machine (SVM) is a supervised ML algorithm for binary
classification problems, which combines the theory of ML, optimisation
algorithms and kernel techniques [43]. It offers versatile use in the field of
ML. It can be used for [31]

• linear classification
• nonlinear classification
• regression
• outlier detection

Another advantage compared to other algorithms is that it is capable of
dealing with small or medium sized data sets of complex nature. SVM can
be extended to solve multi-classification problems with the OvO or OvR
strategy. The following subchapters discuss the principle idea behind SVM
and then step deeper into the mathematical details.

Linear SVM Classification

In general, SVM tries to find an optimal hyperplane, which separates the
training data. However, to demonstrate the basic idea behind SVM two
randomly isotropic Gaussian blobs are generated and plotted in a two-
dimensional feature space (Figure 4.5a). The axes x1 and x2 represent the
features of the data set. The goal is to find a decision boundary, which
separates the two given classes with a hyperplane (line in two-dimensional
space) so that the distance between them is as far as possible. That “street”,
pictured by the dashed lines in Figure 4.5b, is only determined by specific
data points, also called support vectors (indicated by the circles). In other
words, SVM maximises the margin2 between the clustered blobs and the
decision boundary (black solid line in Figure 4.5b) by only using a handful of
support vectors. This is also known as Maximum Margin Classification [38].

2“The margin is defined as the perpendicular distance between the decision boundary
and the closest of the data points,...” (Bishop [38, p. 327])

43



4. Fundamentals of Machine Learning

−4 −2 0 2 4
x1

−4

−3

−2

−1

0

1

2

3

4

x 2

Class: 1
Class: 0

(a)

− 4 − 2 0 2 4

x1

− 4

− 3

− 2

− 1

0

1

2

3

4

x
2

(b)

− 4 − 2 0 2 4

x1

− 4

− 3

− 2

− 1

0

1

2

3

4

x
2

(c)

Figure 4.5.: (a) Data set in two-dimensional plane, (b) maximum-margin decision boundary,
(c) Soft Margin Classification based on Géron [31].

Soft Margin Classification

As seen in Figure 4.5a, the data set is linearly separable and contains no
outliers. It is possible to generate a decision boundary, where all instances
are on the correct side of the “street”, also known as Hard Margin Classifi-
cation. However, it is not generally the case. Some data are not error-free.
Figure 4.5c shows the same data points with the difference that one outlier
(indicated with the arrow) is included. The Hard Margin Classifier cannot deal
with outliers. Therefore, SVM introduces the Soft Margin. The Soft Margin
allows instances to cross the decision boundary. This results in so-called
margin violations: Instances that are in the middle or outside the “street”.
Figure 4.5c demonstrates a possible solution of a Soft Margin Classification.
The resulting trade-off is to achieve a large margin while limiting the margin
violations. This trade-off is useful to regularise the model. A larger margin
may result in more misclassifications, but can also reduce overfitting [31],
[44].

Kernel Functions

Figure 4.6a shows a non-separable one-dimensional data set (one feature x1).
A possible solution is to add one more feature, such as x2 = (x1)

2, to make
it linearly separable [31] (Figure 4.6b).
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Figure 4.6.: (a) One-dimensional data set, (b) adding polynomial features to make classes
separable based on Géron [31]

It represents the basic idea behind kernel functions: project training data
from a low-dimensional space to a high-dimensional space so that it becomes
separable. Using kernel functions also enables that the transformations can
be done in the input space rather than in a high-dimensional one, which
could be computationally expensive (“feature explosion”). This is accom-
plished by the so-called kernel trick [44]. The kernel trick will be discussed in
the next subchapter, which deals with the mathematical details.

Adding polynomial features is equivalent to applying the polynomial kernel.
There exist many other kernels. Some of them are listed in Table 4.1. The
data set from Figure 4.5a, for example, can also be divided by using the
Gaussian Radial Basis Function (RBF) kernel. The result is a curved line,
which is shown in Figure 4.7a. The data is projected in a higher-dimensional
space, where it can be linearly separated, and then projected back to the
two-dimensional space [44]. This results in a curved line.
Furthermore, it can be shown, that a kernel function can be found, which
makes it possible that any data set can be linearly separated, provided
that the labels are consistent [44]. However, projecting the input space in
a high-dimensional one can cause difficulties since the possible solutions
increase with the number of dimensions. Using a very high dimensional
kernel function results in the solution seen in Figure 4.7b. The decision
boundary borders the instances. This solution strongly overfits.
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(a) (b)

Figure 4.7.: (a) Decision Boundary using a Gaussian Radial Basis Function, (b) Overfitting
of SVM based on Noble [44].

Decision Function, Prediction and Training

The model for a SVM classifier is given in Equation 4.22 [31], [38]. The
predicted class ŷ is either 1, if the linear combination of the transformed
feature vector φ(x) is positive, else the new instance belongs to class 0.
The mapping function φ maps data from the input space in the higher-
dimensional feature space. For linear SVM, for example, the following
applies: φ(x) = x.

ŷ =

{
0 if w>φ(x) + b < 0
1 if w>φ(x) + b ≥ 0

, (4.22)

where b is the bias term, and w is the feature weights vector. The term
w>φ(x) + b is called decision function. The decision boundary (indicated
with the black solid line in Figures 4.5b and 4.5c) is determined by

w>φ(x) + b = 0. (4.23)

The width of the “street” (dashed lines in Figure 4.5 and 4.7a) are the
result of

w>φ(x) + b = −1

w>φ(x) + b = +1.
(4.24)
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The main objective of training the model is to find values for the feature
weights w and the bias term b so that the margin is as large as possible
while limiting the margin violations.

For the Hard Margin Classification it is demanded that the decision function
is greater than 1 for all positive instances and lower than −1 for all negative
instances. Introducing the target values t(i) ∈ {−1, 1} and assuming that
the training data are linearly separable, there exists at least one solution
for w and b that satisfies t(i)(w>φ(x(i)) + b) ≥ 1 for i = 1, . . . , m. Another
constraint is to maximise the margin. The principle applies that the smaller
the weights w, the larger the margin. The task is to maximise ‖w‖−1 or to
minimise ‖w‖2. The constrained optimisation problem of a Hard Margin
Classification can be summarised as follows [31]:

minimise
w,b

1
2
‖w‖2

subject to t(i)
(

w>φ(x(i)) + b
)
≥ 1 for i = 1, 2, · · · , m.

The factor 1
2 simplifies the optimisation task due to the fact that ‖w‖ is not

differentiable at w = 0, while 1
2‖w‖2 is a differentiable function [31].

This optimisation problem is an example of a convex quadratic optimisation
problem with linear constraints. The solution can be obtained by usage of
Lagrange multipliers α(i) ≥ 0 for each constraint [38]. This leads to the dual
representation of the SVM optimisation problem [31], [38]:

minimise
α

1
2

m

∑
i=1

m

∑
j=1

α(i)α(j)t(i)t(j)k(x(i), x(j))−
m

∑
i=1

α(i)

subject to α(i) ≥ 0 for i = 1, 2, · · · , m

(4.25)

where k(x(i), x(j)) = φ(x(i))>φ(x(j)) represents the kernel function. Esti-
mations ŵ and b̂ can be achieved solving the quadratic programming
problem.
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The mapping function φ transforms data from the input space in a higher-
dimensional feature space. This can be computationally expensive. SVM
circumvents the transformation using the kernel trick. As seen in Equa-
tion 4.25, the kernel function consists of the dot product of the transformed
feature input vectors. The kernel trick allows the computation of dot product
φ(a)>φ(b) by only using the input vectors a and b. Some common kernels
are given in Table 4.1 for two vectors a and b. The parameters γ, d and r can
be used for regularisation. A high γ, for example, results in a more irregular
decision boundary, which encircles the instances (Figure 4.7b). With the
parameter d, the degree of the polynomial is defined and r describes a
constant term.

Table 4.1.: Common kernels based on Géron [31].

Linear k(a, b) = a>b
Polynomial k(a, b) = (γa>b + r)d

Gaussian RBF k(a, b) = exp(−γ||a− b||2)

For the Soft Margin Classification the slack variable ζ(i) ≥ 0 is introduced for
each data point. The slack variable quantifies how much the ith instance is
allowed to cross the “street”. Additional to the other constraints, it is now
required that the slack variables are as small as possible, leading to [31]

minimise
w,b,ζ

1
2

w>w + C
m

∑
i=1

ζ(i)

subject to t(i)
(

w>φ(x(i)) + b
)
≥ 1− ζ(i) and ζ(i) ≥ 0 for i = 1, 2, · · · , m

where C is a user-specified hyperparameter, which controls the trade-off
between maximum margin and margin violations: The larger C the smaller
the margin.
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Assumptions

SVM does not require a normally distributed training set [44]. Moreover,
the features must show similar scales since the feature scale influences the
width of the decision boundary.

4.3.3. Decision Tree

Decision Tree (DT) can be used for classification, regression and multioutput
tasks [31]. A multioutput task defines a classification task, where a label
can belong to multiple classes. It is also a basic module for Random Forest
classifiers, which will be a topic in this subchapter.

A DT performs the classification task using a tree-like structure (Figure 4.8a),
containing [45]

• internal node: represents a feature,
• branch: represents a decision rule,
• leaf node: represents the classes,
• root node: represents topmost node with the most information gain,

to make decisions. A node, which can be divided into sub-nodes, is also
known as a parent node. Its sub-nodes are called child nodes [46].

An example of a simple DT is illustrated in Figure 4.8b. Starting at the root
node: if a feature value x1 is smaller than a specific threshold a, the process
continues at the root’s left child node. If the second feature value x2 is greater
than b, the instance is classified as C2. That is how a DT make predictions.
The corresponding decision boundaries are visualised in Figure 4.8c. A DT
is a non-linear model, which builds many linear decision boundaries [47].

There exist many different implementations for DTs. One way is to use the
CART algorithm. It is only capable of creating binary trees (True or False),
but represents the basic component of the Random Forest classifier. Other
algorithms, like ID3, construct multi-way trees (nodes have more than two
children). However, CART algorithms represent one way to train DTs [31].
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Figure 4.8.: (a) Components of DT, (b) example of DT, (c) DT decision boundaries based
on Sá et al. [45].

The CART Training Algorithm

The Classification and Regression Tree (CART) algorithm creates binary
trees based on the selection of features and thresholds, which leads to the
largest information gain at the nodes or to the greatest reduction in Gini
Impurity [47]. The Gini Impurity measures the impurity of each node: A node
is declared as pure, when its Gini score Gi is equal to 0. This means that all
training instances in the corresponding node, belong to the same class. The
Gini Impurity is defined as follows [31]:

Gi = 1−
n

∑
k=1

p2
i,k , (4.26)

where pi,k represents the ratio of the instances, which belongs to the class k,
among the training instances in the ith node. An example of the computation
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of Gini Impurity is given in Table 4.2, where the example refers to Figure 4.8b.
Supposing that there are 80 samples, which are equally split into four classes
Ck ∈ {1, 2, 3, 4}. The Gini score in the root note is equal to

1−
(

20
80

)2

−
(

20
80

)2

−
(

20
80

)2

−
(

20
80

)2

= 0.75 ... (maximum impurity).

The most left leaf node, which corresponds to C1, contains 20 samples,
where 19 samples belong to C1 and one sample is misclassified. This leads
to a Gini score of

1−
(

19
20

)2

−
(

1
20

)2

−
(

0
20

)2

−
(

0
20

)2

= 0.095.

Table 4.2.: Example of computation of Gini Impurity based on Figure 4.8b.
Class 1 2 3 4 Gini Impurity [-]
Counts in root node: x1 < a 20 20 20 20 0.750
Counts in left child node: x2 < b 20 20 0 0 0.500
Counts in most left leaf node: C1 19 1 0 0 0.095

Now the CART algorithm splits the training set into two subsets based on a
single feature x and a threshold tx. The main objective is to find a feature x
plus its corresponding threshold tx, which creates the purest subsets [31].
Once a pair (x, tx) is found, the process is repeated for the next sub-subsets
until the impurity cannot be reduced or the maximum depth is reached.
DTs belongs to the category of nonparametric models, which mean that the
number of parameters is not declared a priori in contrast to linear models,
which shows limitations in degree of freedom. So the model is likely to
overfit when no constraints are set. One way to regularise the model is to
set the maximum depth of the tree, or to define the minimum number of
samples that a leaf node must contain. A DT is also capable of giving the
probability that an instance belongs to a specific class.
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Random Forest

Random Forest is an ensemble of Decision Trees. Instead of looking for the
best feature while a node is split, Random Forest classifier selects the best
feature from a random quantity of features. As a result, it adds additional
randomness to the model while growing. So it ends up in a wide variety,
which generally leads to a better generalisation.

Assumptions and limitations

The features do not need to be scaled or centred. Furthermore, DT does
not make any distributional assumptions. A disadvantage is that DTs are
sensitive to rotations in the training set since the decision boundaries are
orthogonal and linear. Another issue is that DTs are highly sensitive to
small changes in the data set. Small permutations can result in a completely
different tree.

4.3.4. Neural Network

Artificial Neural Network (ANN) is a highly versatile and adaptable ML
algorithm, which is capable of dealing with large, as well as with complex
data sets. It can solve regression, classification and multi-output problems.
ANNs are inspired by the operating principle of the biological neurons in
the human brain. The following subsections are based on Géron [31].

Perceptron

The perceptron represents a simple realisation of an ANN and is based on
a “neuron” called Threshold Logic Unit (TLU) (Figure 4.9a). A TLU takes
the inputs (instance feature vector x) and computes the weighted sum
of them: z = x>w. To get the output, a step function is applied to the
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linear combination: hw = step(z), where w represents the weight vector. A
frequently used step function is the Heavside step function:

heaviside (z) =
{

0 if z < 0
1 if z ≥ 0 . (4.27)
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Figure 4.9.: (a) Threshold logic unit (TLU), (b) Topology of the perceptron with two input
neurons and three TLUs based on Géron [31].

A perceptron consists of a single layer of TLUs, where each TLU is fully
connected to its inputs (input layer). An additional bias feature (x0 = 1) is
added in the input layer. This bias feature is also known as bias neuron and
outputs 1. The architecture of a perceptron is exemplified in Figure 4.9b. The
output of a fully connected layer is computed via the following formula:

hW ,B(X) = φ(XW + B), (4.28)

where X is the matrix of input features and W represents the matrix of the
connection weights (exclusive the bias neuron). The bias matrix B contains
the bias vector b copied into each row. The bias vector b is filled with the
connection weights between the bias neurons and the artificial neurons.
The activation function is defined by φ. In case of TLUs, the activation
function is the step function. However, there exist more activation functions,
which will be discussed later. The training objective is to find the correct
connection weights. The basic principle is defined by the Hebb’s rule, which
says: “neurons wire together, if they fire together” (Löwel and Singer [48]).
Perceptrons use a slightly different approach: The perceptron learning rule
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considers the prediction error made by the network. When an output neuron
makes a wrong prediction, then it reinforces those input neurons that would
lead to the correct answer. The connection weight wi,j of the present training
instance between the ith input neuron and the jth output neuron is computed
as shown in Equation 4.29:

w(next step)
i,j = wi,j + η

(
yj − ŷj

)
xi, (4.29)

where xi is the ith input value, ŷj is the jth output neuron. The target output
of the jth output neuron is declared as yj and η represents the learning rate.

Such perceptrons can, however, cannot solve problems that are too complex.
Furthermore, they make predictions based on a hard threshold. However,
stacking multiple perceptrons can overcome these problems.

The Multilayer Perceptron and Backpropagation

The architecture of a Multilayer Perceptron (MLP) is demonstrated in Fig-
ure 4.10. The MLP introduces hidden layers (one or more layer of TLUs). The
bias neuron is present in every layer except the output layer and is fully
connected to its subsequent layer.
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Figure 4.10.: Topology of a Multilayer Perceptron with two input neurons, one hidden layer
of three neurons and three output neurons based on Géron [31]. φ indicates
an arbitrary activation function.
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The scientific breakthrough brings RUMELHART et al. [49], who proposed
the back propagation training algorithm. It presents an alternative approach
for implementing Gradient Descent (GD), introduced in Chapter 4.3.1,
which computes the gradients automatically: This is achieved in two passes
through the system: one forward and one backwards. Each training instance
is passed through all hidden layers until the output layer is reached (forward
pass). Now the predictions are made. Those predictions are stored since
they play an important role for the backward pass. The next step is to
determine the network’s output error. Therefore, for example, a loss function
is used, which computes the error between the actual and the desired
output. The cross entropy usually serves as a loss function (Equation 4.20).
The next step is to go backwards (through all layers) to quantify the error
contribution and the error gradient from the weights, respectively (backward
pass). Mathematically, the chain rule is utilised for this step. Ultimately, the
connection weights and bias terms are tweaked so that the error is reduced.
Therefore, a Gradient Descent Step is applied by using the error gradients
from the previous step. In contrast to perceptrons, the activation function
is also different. Since the step function is a piecewise constant function,
GD cannot move along. However, there exist several alternative activation
functions. In practice the Rectified Linear Unit (ReLU) function

ReLU(z) = max(0, z) (4.30)

is frequently used, since it is fast to compute. Unfortunately, the ReLU
activation function suffers from the problem called dying ReLUs. During
the training process, it is possible that some neurons only output 0. The
output is 0 if the weighted sum of the inputs is negative (Equation 4.30). An
advanced alternative activation function is the Scaled Exponential Linear
Unit (SELU) activation function (Equation 4.31), which represents a scaled
variant of the exponential linear unit [50].

SELU(z) = λ

{
z if z > 0
αez − α if z ≤ 0 , (4.31)

The values α ≈ 1.6733 and λ ≈ 1.0507 are fixed. The SELU function does not
only circumvent the dying ReLU problem, the network also self-normalises.
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The output of each layer tries to maintain zero-mean and unit-standard
deviation.

Classification Multilayer Perceptrons

For the classification task, the activation function of the output layer (Fig-
ure 4.10) must be adapted. For binary classification tasks, a single output
neuron is needed as well as a output between 0 and 1. This is achieved
by using the logistic (sigmoid) function (Equation 4.4) as output activation.
The output can be interpreted as the probability of the positive class. For
multiclass classification problems, one output neuron per class is needed.
Thus, the softmax activation function, introduced in Chapter 4.3.1, is used as
the output layer activation.

However, training an ANN model is very complex, since there exist many
hyperparameters and strategies to optimise the model. Some hyperparame-
ter are worth to mention:

• Number of hidden layers
• Number of neurons per hidden layer
• Learning rate
• Optimiser: a traditional optimiser represents the Mini-batch Gradient

Descent (Chapter 4.3.1). However, there exist advanced optimisers
such as Momentum Optimisation.

• Batch Size
• Activation function
• Number of iterations

Just as the Logistic Regression model, the ANN can be regularised using
the L1 and L2 norm. However, there also exist much more regularisation
techniques, which lie beyond the scope of this thesis. More information can
be found in Géron [31].
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Assumptions

MLP does not assume that the data is normally distributed. Another con-
dition is that the connection weights of all hidden layers are initialised
randomly so that the backpropagation works properly. Last but not least,
MLP networks are sensitive to feature scaling.

4.4. Evaluation Metrics

The performance of a model can be evaluated using the confusion matrix. The
confusion matrix counts the number of correct/incorrect predictions made
by the trained model and displays the result in a K× K matrix, where K is
the number of classes [51]. The columns indicate the predictions, while the
rows represent the actual labels. The diagonal elements contain the correctly
classified instances. Figure 4.11a exemplifies a confusion matrix (2 × 2)
for binary classification for a soccer game: Assuming that the class “Pass”
corresponds to the positive class and “Shot” to the negative class, there exist
four possible classification results:

• true negative (TN): The matrix entry indicates the number of instances
classified correctly as the negative class. 5 instances are predicted cor-
rectly as class non-pass (=̂ shot).

• true positive (TP): The matrix entry indicates the number of instances
classified correctly as the positive class. In this case, it means that 8
passes are correctly assigned to class pass.

• false negative (FN): The matrix entry indicates the number of in-
stances, which were classified wrongly as the negative class. So one
pass has been misclassified as shot.

• false positive (FP): The matrix entry indicates the number of instances,
which were classified wrongly as the positive class. Figure 4.11a says
that 3 instances are classified as pass, although the instances belong to
shot.
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Figure 4.11.: Confusion matrix for a multi-class and binary-class problem: (a) Example of a
confusion matrix for a binary-class problem where “Pass” is assigned as the
positive class, (b) Confusion matrix for a multi-class problem based on Krüger
[52].

The confusion matrix for a multi-classification task with respect to the
target class k is shown in Figure 4.11b. Several metrics, also called scores,
are derived from the confusion matrix C := (ckj). The most important
evaluation metrics are listed below [52], [53]:

• Accuracy: The accuracy measures the overall-performance of the cor-
rectly predicted labels.

accuracy :=
∑K−1

k=0 ck,k

∑K−1
k=0 ∑K−1

j=0 ck,j
(4.32)

Accuracy as a performance measure can be misleading, especially
when dealing with imbalanced data sets since classes, which are more
present, are preferred [31].

• Precision: represents the accuracy of positive predictions. The preci-
sion for a target class k is computed as follows:

precisionk :=
TPk

TPk + FPk
. (4.33)
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• Recall: also called sensitivity or true positive rate (TPR). It quantifies the
ability of identifying the correct class:

recallk :=
TPk

TPk + FNk
. (4.34)

Increasing the precision results in a lower recall and vice versa. De-
pending on the application, the right trade-off between precision and
recall must be found.

• F1-Score: is the harmonic mean of precision and recall:

F1k :=
2 · TPk

2TPk + FNk + FPk
. (4.35)

• Specificity: also called true negative rate (TNR). It defines the number
of true negatives out of the total amount of true negatives:

TNRk :=
TNk

FPk + TNk
. (4.36)

For the multi-classification problem, it is useful to have an overall per-
formance measure. Therefore the single class scores can be combined by
averaging them. Two common approaches are: micro and macro averages.
The macro average computes the desired metric for each class and then cal-
culates the unweighted mean. The macro-average of the recall, for example,
is shown in Equation 4.37 [53]. This metric is favoured, when the data set is
imbalanced [54] and will be used as an overall-performance measure in this
thesis.

recallmacro :=
∑K−1

k=0 recallk

K
(4.37)

When it is desired to prefer the class with the most instances, then the
micro-average is computed [54]. It takes the individual classification results
into account.
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A good visualisation of the performance of a binary classifier represents the
Receiver Operating Characteristic (ROC) curve [31]. The ROC curve plots
the recall versus the false positive rate (FPR), which equals to 1− TPR. The
corresponding performance measure is the ROC AUC score. It computes
the Area Under the Curve (AUC) ROC curve and gives information about
how separable classes are. The AUC score ranges between 0 and 1. The
following applies: The greater the ROC AUC score the better the model.
A perfect model has a ROC AUC equal to 1.0, whereas a classifier, which
makes random guesses, outputs a ROC AUC of 0.5.

Those evaluation metrics can be computed for the training as well as for
the test set. For the test set, predictions are directly made and compared
with the actual labels. The models’ performance regarding the training set
is obtained via the k-fold cross-validation [55]. The k-fold cross-validation
splits the training set into k random subsets called folds. The model is
trained using k− 1 folds, the remaining fold is used to make predictions.
Those predictions are then compared with the actual labels. This process is
repeated until every fold is once used for making predictions. The result
is usually summarised with the mean of the evaluation scores. The strat-
egy of k-fold cross-validation is also used for hyperparameter tuning [31]
(Chapter 4.1.6).

4.5. Dimensionality Reduction

Having many features makes it harder to find a good solution due to the
curse of dimensionality: The classification accuracy suffers significantly in
high dimensions since additional features in the training set increase the
possible solutions exponentially [44]. Reducing the number of dimensions
does not only help to mitigate the curse of dimensionality, but it also speeds
up training and is a useful visualisation tool. Another object is that the
act of dimensionality reduction can be seen as a feature extraction method
(Chapter 4.1.2) in means of projecting the original feature space onto a
lower-dimensional one without much information loss [51].

Two common dimensionality reduction algorithms correspond to
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4. Fundamentals of Machine Learning

• Principal Component Analysis (PCA) and
• Linear Discriminant Analysis (LDA)

Both represent a linear transformation technique [56]. Hence, the main
objective is to find a linear transformation matrix Wd×k, which maps the
original d-dimensional feature vector x onto a k-dimensional feature sub-
space, where k� d. The vector x is represented by d features. Considering
m independent realisations of the vector x ∈ Rd, the new reduced feature
vector z ∈ Rk can be computed via

z = WTx. (4.38)

4.5.1. Principal Component Analysis

PCA is an unsupervised dimensionality reduction algorithm with the aim of
finding a hyperplane that preserves the maximum variance of the original
data. In PCA, correlated features are transformed in linearly uncorrelated
features, called principal components (PC) [51] (Figure 4.12).

The linear transformation matrix W is obtained by eigenvalue decomposi-
tion of the covariance matrix S [56]:

W← eig−decomposition

(
S =

m

∑
i=1

(
x(i) − x̄

) (
x(i) − x̄

)T
)

, (4.39)

where x(i)denotes the ith instance feature vector and m is the number of
instances. The vector x̄ represents the mean vector

x̄ =
1
m

m

∑
i=1

x(i). (4.40)

In other words, the eigenvalues (S : λ1 > λ2 > · · · > λd) and eigenvectors
(S : w1, w2, . . . , wd) are computed by decomposing the covariance matrix S.
The next step is to select k eigenvectors according to the k largest eigenvalues.
The linear transformation matrix now consists of the selected eigenvectors.
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The number k of PCs can be set as a predefined number or in terms of
percentage of variance explained. For example, a threshold can be set to
preserve 95% of the variance of the original data set [57]:

∑k
i=1 λi

∑d
i=1 λi

> 0.95. (4.41)

PCs are sensitive to the unit and range of the initial input [57]. Therefore it
is needed to perform standardisation (Chapter 4.1.3). One drawback of PCA
is that it gives high weights to features with high variability, irrespective of
any discriminating character [56].

4.5.2. Linear Discriminant Analysis

LDA is a classification algorithm, which tries to find a projection that keeps
the classes as far away as possible. However, LDA can also be seen as a
supervised dimensionality reduction algorithm. In LDA, a linear combina-
tion of the original features is built so that the mean difference between the
classes is maximised. The new features are called linear discriminants (LD)
(Figure 4.12).

The transformation matrix W is achieved by eigenvalue decomposition
of the so-called scatter-matrices [56], [58]: One matrix is called within-class
scatter matrix SW :

SW =
K

∑
j=1

nj

nj

∑
i=1

(
x(i)j − x̄j

) (
x(i)j − x̄j

)T
, (4.42)

where K and nj is the number of classes and the number of samples in

class j, respectively. x(i)j is the ith instance’s feature vector of class j. The
mean vector of the class j is denoted as x̄j. The second scatter matrix is
known as between-class scatter matrix SB:
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SB =
K

∑
j=1

nj
(
x̄j − x̄

) (
x̄j − x̄

)T , (4.43)

where x̄ is the mean vector of the whole input data. The corresponding
algorithm is summarised in Equation 4.44 [56]. The dimension of the new
feature subspace k is restricted by k ≤ K− 1, since the rank of SB is at most
K− 1.

WSW ← eig−decomposition (SW) , xSW = WSW x

WSB ← eig−decomposition
(
SB | xSW

)
W = WSW WSB

(4.44)

The assumption of a normal distribution is applied to LDA as a classifier.
However, for the purpose of reducing dimensions, the algorithm gives
reasonable solutions even though this assumption is violated [59].

A comparison of PCA and LDA is schematically shown in Figure 4.12.
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Figure 4.12.: PCA vs. LDA based on Raschka [59]. PCA: preserving maximum amount of
variance. LDA: maximises distance between classes.
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5. Introduction

This chapter gives a short overview of the defined activities and the em-
bedded sensors. In general, two MEMS IMUs, each attached to one shin
guard of a soccer player, are used to perform Activity Recognition (AR). The
accelerometer data is utilised for this task. All calculations were performed
in Python 3.7. The used Python modules for Machine Learning are scikit-learn
and TensorFlow2.

5.1. Activities

In the course of this thesis, five various soccer-specific activities are studied.
They are listed in Table 5.1 and subsequently shortly described.

Table 5.1.: List of selected activities and their corresponding abbreviations.
Activity Abbreviation
Standing ST
Walking WA
Running RU

Pass PA
Shot SH

• Standing (ST): Standing is defined as being in an upright position
with both feet on the ground. No or little movement with feet notice-
able.

• Walking (WA): Moving on foot at a moderate speed (≈ 5.5 km/h).
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• Running (RU): Moving on foot at an advanced speed. The activ-
ity “Running” includes movements on foot with a speed higher
than 8 km/h.

• Pass (PA): The soccer player tries to kick the ball to a region where a
teammate is located. Passes can be short or long. There exist different
types of soccer passes, such as inside foot and outside foot. The pass
can be done with the right or the left leg.

• Shot (SH): Defines a more intense kick of the ball. Basic techniques
regarding shooting a ball are inside foot, outside foot and full instep
kick. The shot can be done with the right or the left leg.

According to LEVANON and DAPENA [60] the kicking motion consists
of three phases and four key moments (Figure 5.1). The leg is pulled back
to gain momentum. The first phase, “Back-swing”, starts with the toe-off
of the shooting leg until maximum hip extension. The knee bends until
the maximal flexion is achieved (“Leg-cocking”). The last phase (“Leg-
acceleration”) describes the process between maximal knee flexion and ball
impact.

Back-swing Leg-cocking Leg-acceleration

Toe-Off
Max. Hip 
Extension

Max. Knee 
Flexion Ball impact

Figure 5.1.: Kicking motion according to LEVANON and DAPENA [60]
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5.2. Inertial Measurement Unit

The activities are recorded via a MPU-9250 MotionTracking device man-
ufactured by InvenSense Inc. and is available in 3× 3× 1 mm Quad Flat
No-lead package (QFN). It is a multi-chip module that comprises a triaxial
gyroscope, a triaxial accelerometer and a triaxial magnetometer. A 16-bit
Analog-to-Digital Converter (ADC) converts the output for each axis and
sensor. The gyroscope can output angular rates in a user-programmable
range of minimal ±250◦/sec and maximal ±2000◦/sec. The accelerometer
can supply data in a range of ±2 g, ±4 g, ±8 g or ±16 g, respectively. The
displacement of the proof mass is detected by capacitive sensors (Chapter
2.1.1). The magnetometer shows a full range of ±4800 µT. The device also
features an integrated temperature sensor. A detailed explanation of the
sensor specifications can be found in the datasheet of InvenSense Inc. [61].

In this thesis, two MPU-9250 sensors, one sensor assigned to each leg, are
utilised. Following, to distinguish the sensors in the evaluation process, they
are denoted as “Sensor 1” and “Sensor 2”. They are not dependent on any
leg, in terms of left and right.
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6. Data Collection and
Preparation

The accelerometer of MPU-9250 was used to acquire data to study the
five selected activities. The following sections give a detailed overview of
the test setup, including the realisation of data-acquisition, the sensor’s
orientation and calibration as well as the data collection and the following
preprocessing steps.

6.1. Test Setup

To acquire data from the measurement device it is needed to interface
the IMU to a Microcontroller Unit (MCU) via an Inter-Integrated Circuit
(I2C) communication protocol. The chosen MCU is the ESP32, designed by
Espressif. The ESP32 features integrated Wi-Fi and Bluetooth connectivity
as well as a robust design and ultra-low power consumption [62]. Finally, a
Printed Circuit Board (PCB), developed by Christoph Schmied, Dipl.-Ing.
(Institute of Geodesy, Working Group Navigation, TU Graz), represents
the necessary hardware components like an SD card reader, where the
recorded data is stored on a memory card for further post-processing. The
used library to communicate with the MPU-9250 is a modified version from
Bolder Flight Systems [15]. The PCB is mounted to a plastic plate, which
can be attached to the leg using straps. The whole test setup is shown in
Figure 6.1. The power is supplied by a rechargeable battery.
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(a) (b)

Figure 6.1.: Shin guard with mounted sensor (photo: Uni Graz/Konstantinov): (a) Hard-
ware setup, (b) Hardware setup in comparison with future shin guard.

6.1.1. Settings

The output rate is set to 100 Hz. Additionally, an anti-aliasing filter is
used to prevent aliasing or to satisfy the Nyquist theorem, respectively.
An anti-aliasing filter is a low pass filter that removes spectral content,
which is above the defined bandwidth. The used library supports several
programmable digital low pass filter bandwidths: 5 Hz, 10 Hz, 20 Hz, 41 Hz,
92 Hz and 184 Hz. Since the output rate is 100 Hz, the selected digital low
pass filter bandwidth is 41 Hz. The accelerometer range is set to its maximal
range of ±16 g. This corresponds to approximately ±157 m/s2 at latitude
coordinate for Graz (1 g ≈ 9.807 m/s2).

6.1.2. Time Synchronisation

Since the Activity Recognition (AR) is based on two IMUs, each attached
to one shin guard, they must be synchronised with each other. The sensors
are synchronised according to the Precision Time Protocol (PTP) [63]. This
approach allows to synchronise precisely multiple devices in a network. The
synchronisation accuracy is in the nanosecond range. The basic principle
consists of defining synchronisation between a Master and a Slave clock.
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The Master defines the time to which the Slave synchronises. Therefore, a
sequence of four messages between the Master and Slave are sent. Those
messages lead to four timestamps, denoted as T1, T2, T3 and T4. The first
message is the initial sync message from Master to Slave. This results in the
first two timestamps: T1 (transmission time) and T2 (reception time). This
message is followed by a sync follow-up message from the Master. Now
the Slave sends a delay request message to the Master that again results in
two timestamps: T3 (transmission time) and T4 (reception time). The last
message is a delay response from the Master. Based on the four timestamps,
the Slave determines the latency between Master and Slave. The Slave clock
adds the necessary offset to coincide with the Master clock.

One shin guard is defined as Master and one as Slave. The Master uses its
internal clock as the reference time. The transmission of the synchronisation
messages takes place via Wi-Fi.

6.1.3. Sensor Orientation and Placement on Shin Guard

The output data refers to a right-handed coordinate system with z-axis
positive down. The coordinate system of the MPU-9250 is shown in Fig-
ure 6.2. The sensor, together with the hardware components, is located at
the lower end of the shin guard. The placement of the MPU-9250 on the
shin guard with labelled sensor axes is also illustrated in Figure 6.2. Note
that the sensor is rotated relative to the shin guard.

6.2. Sensor Calibration

Since MEMS sensors are usually uncalibrated, it is necessary to calibrate
them. This section deals with the calibration of the accelerometer from
the MPU-9250 based on the approach represented in Chapter 2.4. In the
course of the calibration process, the biases and scale factor error of each
sensor axis are determined. Therefore, several calibration sets took place
on different days from November 2019 until March 2020. They are listed
in Table 6.1. For the determination of the sensor errors, the mean of 50
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z

y

x

MPU9250
y

z x

Figure 6.2.: Sensor orientation: (left) Orientation of MPU-9250. The black point identifies
pin number 1. The pin out diagram diagram for MPU-9250 can be found in [61],
(right) Placement of sensor on shin guard with labelled sensor axes.

samples per orientation are taken into account. The measurements until and
inclusive 11. December 2019 are used to compute the biases and scale factors
that are applied to the raw sensor data for the subsequent measurement
campaigns (Chapter 6.3). The last two data sets are used to observe the
long-time behaviour of the sensor errors.

Table 6.1.: List of calibration sets.
Data set Date [dd.mm.yy] Sensor 1 Sensor 2

1 12.11.19 3 3

2 19.11.19 3 3

3 16.11.19 7 3

4 11.12.19 3 3

5 29.01.20 7 3

6 05.03.20 3 3

The determined biases of all calibration sets are summarised in Figure 6.3. As
it can be seen, Sensor 2 shows significantly larger bias offsets than Sensor 1.
In particular, the y-component of Sensor 2 has a relatively large bias. Its
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mean value is 4.46 m/s2. The largest bias variation in terms of standard
deviation (one sigma) shows the z-axis of Sensor 2, namely ±0.049 m/s2,
followed by the z-axis of Sensor 1 (±0.035 m/s2). The other axes show a
variation between ±0.005 m/s2 up to ±0.024 m/s2. The determined scale
factor errors vary from 0.992 to 1.000 for all calibration sets. The variations
of the scale factor error are around 0.001. Thus, the bias represents the main
error source.
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Figure 6.3.: Accelerometer biases inspired by Moder et al. [7]: (a) Sensor 1, (b) Sensor 2. The
measurements until and inclusive data set 4 are taken into account to compute
the biases and scale factors for the measurement campaigns.

As already mentioned, the final biases and scale factor errors are obtained
using the mean bias and the mean scale factor errors from the first three or
four calibration sets, respectively. Those values are listed in Table 6.2.

Table 6.2.: Biases and scale factor errors used for measurement campaigns.
bias [m/s2] scale factor error [-]

Sensor 1
x 0.06 0.999
y 0.19 0.998
z −0.97 0.994

Sensor 2
x 1.34 0.997
y 4.45 0.999
z 1.30 0.994
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Figure 6.4 shows the total acceleration, once computed from the raw sensor
data and once from the calibrated data. The data shown originate from the
calibration set 4. The six different sensor orientations are well noticeable.
The first two sensor orientations correspond to the z-pair, the next two to the
x-pair and the last two to the y-pair. In the different static phases, the total
acceleration should equal the gravitational acceleration (≈ 9.807 m/s2). The
deviations from the gravitational acceleration are significant. The standard
deviations of the total acceleration, obtained from raw sensor data, are
±0.565 m/s2 for Sensor 1 and ±4.824 m/s2 for Sensor 2. After calibrating
the sensor data, the variation is reduced to ±0.013 m/s2 for both sensors.
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Figure 6.4.: Calibration measurements from calibration set 4: (a) Sensor 1, (b) Sensor 2.
50 samples per orientation.

6.3. Measurement Campaigns

The measurement campaigns took place on February 4 and March 11 in the
year 2020 at the University Sports Centre Rosenhain (Graz). The activities,
as defined in Chapter 5.1, were performed by Philipp Birnbaumer, MSc
(Institute of Sports Science, Exercise Physiology, Training & Training Therapy
Research Group, University of Graz). The author itself and Stefan Laller,
Dipl.-Ing. (Institute of Geodesy, Working Group Navigation, TU Graz), were
responsible for technical support and documentation.
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The Institute of Sports Science developed standardised patterns. Each ac-
tivity pattern was stored in a different log-file on the SD card. The average
speed of walking is defined as 5.5 km/h. For running different speeds are
recorded, namely 8 km/h, 12 km/h and 17 km/h, as well as one shuttle run.
A shuttle run consists of running between marked lines and continually
increasing the speed. In this case, the shuttle starts at 8 km/h and ends up
at 14 km/h. The shuttle run also includes deceleration movements of the
test person. Single passes are performed with different techniques (inside
foot and outside foot). Two different distances (10 m and 20 m) are used to
get different intensities of a pass. Passes are also recorded during running
with different speeds (8 km/h and 12 km/h) to obtain more variation in
the data. Shots are recorded using inside foot, outside foot and full instep.
Passes and shots are done using the right as well as the left leg.

6.4. Segmentation

To obtain training and test data that can be fed into a ML algorithm, the
inertial sensor data need to be segmented. The activities standing, walking
and running are segmented using an overlapping sliding window of size W.
The overlap is 50%. Concerning passes and shots, the window is set at the
centre of the detected peaks and cut out accordingly. The corresponding
labels are manually assigned. This results in a data set containing several
time series of activity patterns of length W. In this thesis, two different
window sizes W are investigated, namely 128 measuring points (=̂1.28 s)
and 256 measuring points (=̂2.56 s). The distribution of the data set based
on a window size of 256 measuring points is shown in Figure 6.5.

6.5. Data Smoothing

The next preprocessing step consists of smoothing the inertial data. The data
are smoothed by fitting quintic spline functions [60] to each coordinate axis.
Using quintic spline functions make it possible to reduce high-frequency
noise while preserving the activity pattern. However, the smoothing process
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ST

20.7%

WA 11.1%

RU

43.8%

PA
19.4%

SH

5.0%

Figure 6.5.: Distribution of data set with a window size of 256 measuring points. The data
set has a size of 1109 samples. The used abbreviations are listed in Table 5.1.

can also distort the activity pattern since sudden impacts can be mistaken
as noise.

75



7. Wavelet Analysis

In this chapter, the acquired accelerometer data are investigated in more
detail. A multiresolution wavelet analysis is applied to selected sensor data.
Therefore, the Discrete Wavelet Transform (DWT) is used as a filter bank,
as introduced in Chapter 3.6, which results in a discrete transform plot (Fig-
ure 3.7). However, the wavelet analysis includes the selection of a suitable
wavelet. The chosen wavelet for this analysis is the reverse biorthogonal 3.1
(rbio3.1) wavelet. It is symmetric, not orthogonal, but biorthogonal. The cor-
responding scaling function and wavelet function are shown in Figure 7.1.
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Figure 7.1.: Reverse biorthogonal 3.1: (right) scaling function, (left) wavelet function

The approximation and detail coefficients describe the similarity between
the signal and the wavelet at a certain scale. Each scale corresponds to
one decomposition level. The multilevel decomposition is done via the
open-source wavelet transform software PyWavelets 1.1.1 for Python [64].
An 1D DWT is applied to the data. The output is a list of coefficients
arrays, containing the approximation coefficients array (cAM) and the detail
coefficients arrays (cDM, . . . , cD1). The letter M ≥ 0 indicates the level
of decomposition. The level of decomposition depends on the desired
frequencies to analyse. Another aspect is the filter length since the maximum
level of decomposition is reached when the filter length of the wavelet
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becomes shorter than the input data length [64] (Equation 7.1). In this study,
the chosen maximum decomposition level is 7. The corresponding frequency
bands are listed in Table 7.1.

maxlevel =

⌊
log2

(
length(data)

length(filter)− 1

)⌋
(7.1)

Table 7.1.: Frequency ranges corresponding to different decomposition levels. The sampling
rate is 100 Hz.

Frequency range [Hz]
Coefficients arrays Scale indexing to from

cD1 m = 1 50 25
cD2 m = 2 25 12.5
cD3 m = 3 12.5 6.3
cD4 m = 4 6.3 3.1
cD5 m = 5 3.1 1.6
cD6 m = 6 1.6 0.8
cD7 m = 7 0.8 0.4
cA7 - 0.4 0

Run and Shot Records

Running takes mainly place in the sagittal plane. Regarding the sensor
orientation (Figure 6.2), the sagittal plane is defined by the y- and z-axes.
Figure 7.2 shows the discrete transform plot of the difference between the
vertical acceleration (y-component) of the left and right leg in the event
of running. In total, the test persons runs a distance of 60 m three times.
Between the running phases, the test person is at rest. Large positive coeffi-
cient values mean a strong similarity between the signal and the wavelet at
a certain scale index. Thus, it is apparent that the decomposition level 5 and
6 mainly constitute running-phases.

Figure 7.3 shows the wavelet analysis of the total acceleration of two shot-
records. The computation of the total acceleration is described in Formula 8.1.
Only the shooting foot is considered. Between the shots, the test person
walks. It is noticeable that the event of a shot is present in nearly all
frequency bands. The walking phases are barely visible.
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Figure 7.2.: Detail coefficients arrays of acceleration in y. Signal from the right leg is
subtracted from the signal of the left leg. Test person runs with an average
speed of 17 km/h.
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Figure 7.3.: Detail coefficients arrays of total acceleration of right leg during two shots.
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8. Activity Recognition Strategy

This chapter deals with the activity recognition strategy. First of all, an
overview of the different strategies of training and testing the selected
Machine Learning (ML) algorithms are given. Second, the approach towards
recognition of soccer specified activities is introduced as well as the chosen
features. Third, the hyperparameters of the models are given.

8.1. Training and Testing

In total, four different models are compared with each other, namely Logistic
Regression, Support Vector Machine (SVM), Random Forest Classifier and
an Artificial Neural Network (ANN). A detailed description about the ML
algorithms is given in Chapter 4.3. Figure 8.1 shows the flowchart of the
training and testing process. Assuming that the data are already labelled
and smoothed (Chapter 6.5), the data set is split into a training and a test set,
as explained in Chapter 4.2. The next step is to compute the features for the
training set as well as for the test set. Consequently, several transformation
steps for the training data are performed, indicated by the box with the blue
dotted lines. From the sequences of feature scaling and different feature
selection methods, transformation values are generated and applied to the
test data. This guarantees that the test data are not biased. For example, the
features need to be scaled using standardisation (Formula 4.1). The mean and
variance for standardisation is obtained from the training data and those
values are used for the feature scaling process of the test data. However,
that task also includes the selection of an appropriate feature subset. Three
different approaches are taken into account:
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Figure 8.1.: Flowchart of Training and Testing the ML algorithm.

• Variant 1: Removing features with low variance
When the variance of a feature is low or close to zero, respectively,
it is likely that the feature contains approximately constant values.
This means that this feature does not contribute to the separation of
the classes. This step removes all features that are lower than a given
threshold. In this case, the variance threshold is set to 0.24.

• Variant 2: Removing features with low variance followed by PCA:
After removing features with low variance, an unsupervised dimen-
sionality reduction algorithm is applied, namely PCA (Chapter 4.5.1).
The number of components is chosen so that the total amount of vari-
ance explained is larger than 97.5% (Equation 4.41).

• Variant 3: Removing features with low variance followed by LDA
After removing features with low variance, a supervised dimensional-
ity reduction algorithm is applied, namely LDA (Chapter 4.5.2).

The ML block consists of training different algorithms with different feature
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subsets. The training step comprises hyperparameter tuning (Chapter 4.1.6)
and the determination of the model parameters. The algorithm is trained
using the training set. Additionally, since the input data is imbalanced
(Figure 6.5), classes are weighted. The performance is measured by applying
the trained model to the test set. The model outputs predicted labels. The
comparison between the predicted labels and the actual labels gives an
insight about the quality of the model.

8.2. Recognition of Soccer Activities

For a robust pattern recognition model of soccer activities, a classification
construction scheme is introduced. Figure 8.2 gives an idea of it. Accelerom-
eter data are acquired from the left and right leg. Subsequently, the data is
preprocessed. This step includes segmentation and data smoothing by fitting
a quintic spline. The construction scheme consists of two phases [65]: pre-
classifier construction and the construction of the shot/pass-classifier as well
as the standing/walking/running-classifier. The first phase (pre-classifier)
aims to separate activities with a ball impact like passes and shots from ac-
tivities with no ball possession, such as standing, walking and running. The
second phase is specialised to determine the activity that the soccer player
performs (shot/pass-classifier and standing/walking/running-classifier).

Due to separation into different classifiers, features can be customised more
individually for the relevant activities. The features are obtained from the
calibrated three-dimensional accelerometer measurements. All measure-
ments refer to the body-frame (Chapter 2.5). The features are extracted from
the segmented data set. Features are given in the time as well as in the
frequency domain. However, the model scheme and the selected features
for the individual classifiers will be explained in the following subsections.
In general, the process of feature extraction includes the transformation
processes like standardisation, removing features with low variance and
applying the different dimensionality reduction algorithms (Chapter 8.1).
Note that the transformation values are obtained from the training data
and are applied to the new input data. The different classifiers are trained
individually based on the corresponding features.
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8. Activity Recognition Strategy

Figure 8.2.: Flowchart of Soccer Activity Recognition.

8.2.1. Pre-Classifier Construction

The pre-classifier separates passes and shots from the remaining activities.
The whole pre-classification process is indicated with the grey boxes in
Figure 8.2. Therefore, the preprocessed data of the right leg is subtracted
from the preprocessed data of the left leg [3]. One the one hand, in event
of a kick, the shooting leg produces a high peak in the data compared to
the supporting leg. That peak should be still visible after subtraction. On
the other hand, in event of standing, walking or running, the accelerometer
data show a smooth motion of both feet. As a result, no extraordinary peaks
are visible after subtraction. The pre-classifier makes a binary decision: if
the signal refers to a pass or shot, then it is tagged as “1” (positive class),
otherwise as “0” (negative class).
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Feature Extraction

Features are extracted in the time and frequency domain. Each activity is
represented by a signal of length W. From this window statistical values
are selected, which should characterise each activity. The features in time
domain are:

• Largest and second largest value of total acceleration: The total ac-
celeration is computed as follows:

atotal,i =
√

x2
i + y2

i + z2
i . (8.1)

The subscript i indicates the ith element of the vectors x, y and z. Those
contain the accelerometer data of the corresponding sensitive axis. The
length of the vector is equal to the window size W. From atotal the
two largest values are extracted. These features consider the signal
intensity of a kick and the pre- and post-impacts resulting from sharp
decelerations of the kicking process (Figure 5.1). Peripheral regions
of the signal (10% from the beginning and the end of the windowed
time series) are neglected to prevent that stopping movements are
misclassified as kick.

• Signal Magnitude Area (SMA) of the transverse plane: Only using
the x and z component for the computation of the SMA should favour
passes and shots since they mainly take place in the transverse plane.
The SMA is introduced by Yang et al. [65]:

SMA =
1

W

(
W

∑
i=1
|xi|+ |zi|

)
. (8.2)

The subscript i indicates the ith element of a vector.

In the frequency domain, wavelet-based filter banks are utilised (Chap-
ter 3.6). The signal is decomposed into approximation and detail coefficients
that correspond to different decomposition levels as shown in Chapter 7.
Thus, they give a compact representation of the energy distribution in fre-
quency and time. Depending on the chosen wavelet, the maximum level of
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decomposition can be obtained by Formula 7.1. For the pre-classifier the
reverse biorthogonal 3.1 (rbio3.1) wavelet is utilised. For a window length
W of 256 data points, the maximum level of decomposition M is 6. The
corresponding frequency bands are listed in Table 7.1. Note that the approx-
imation coefficients array cover the remaining frequency range. In case of
W = 256, the range is from 0 Hz to 0.8 Hz.

The following wavelet-based features are used for each of the three coordi-
nate axes:

• Maximum of absolute detail coefficient arrays in each subband (ex-
clusive cD1): The maximum value of the absolute detail coefficients
array give information about the intensity of the activity.

• Root Mean Square (RMS) of detail coefficients arrays in each sub-
band (exclusive cD1): These features provide insight into the vari-
ability of the signal in each frequency band. The RMS for the detail
coefficients arrays cDj, where j ∈ {2, . . . , M} and M denotes the maxi-
mum level of decomposition, is given as follows:

RMS(cDj) =

√√√√ 1
Nj

Nj

∑
i=1

cD2
j,i, (8.3)

where cDj,i is associated with the ith component of the detail coeffi-
cients array. Nj is the length of the coefficients array at level j.

• Mean and maximum of absolute approximation coefficients array
and RMS: The approximation coefficients contain information about
low frequency components. Thus, the mean of the approximation
coefficients array cAM is defined as

MEAN(cAM) =
1
N

N

∑
i=1
|cAM,i|, (8.4)

where N is the length of the approximation coefficients array. The
maximum and RMS are computed analogous to the detail coefficients.
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8.2.2. Standing/Walking/Running-Classifier Construction

When the pre-classifier decides that the signal is not an activity with ball
contact, the model tries to assign the activity to standing, walking or running.
The process of the standing/walking/running-classifier is represented by
the blue boxes in Figure 8.2. The relevant features are computed separately
for the sensor data of the left and the right leg. An appropriate feature
subset is selected and fed into the trained model. Based on the input
features, a decision is made whether the activity is recognised as standing,
walking or running. So, the standing/walking/running-classifier represents
a multiclass classifier.

Standing/Walking/Running Feature Extraction

In time domain, the maximum, the mean and the Interquartile Range (IQR)
are computed for each sensor axis. The general formula for the mean of an
arbitrary vector a of length W is

MEAN(a) =
1

W

W

∑
i=1

ai, (8.5)

where ai is the ith element of the vector a. The IQR is defined as

IQR(a) = Q3(a)−Q1(a), (8.6)

where Q1(a) is the first quantile and Q3(a) the third quantile of the vec-
tor a.

Additionally, the SMA, based on all three sensor axis, is extracted:

SMA =
1

W

(
W

∑
i=1
|xi|+ |yi|+ |zi|

)
. (8.7)

The daubechies 2 (db2) wavelet is used to detect standing, walking and
running. The RMS of the detail coefficients arrays of level j ∈ {5, 6, 7} are
computed and used as a feature. The chosen detail coefficients arrays cover a
frequency range of 0.4 Hz to 3.1 Hz. Activities such as walking and running
are mainly performed in the sagittal plane. Hence, the features are extracted
from the y and z-component.
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8.2.3. Pass/Shot-Classifier Construction

The pass/shot-classification is marked with the red boxes in Figure 8.2. The
accelerometer data from the left and right leg are used. A preprocessing
step consists of detecting the shooting leg or the event leg, respectively. This
step is important since the differentiation of the shooting and supporting
leg plays a crucial role in the classification process. This is achieved by the
assumption that the peak of the total acceleration of the transverse plane (x
and z-component) of the shooting leg is higher than the peak produced by
the supporting leg. The shooting leg can be determined via:

R =
max aleft

trans

max aright
trans

{
left leg , if R > 1
right leg , otherwise , (8.8)

where

aleft
trans,i =

√
x(left)2

i + z(left)2

i

aright
trans,i =

√
x(right)2

i + z(right)2

i .

The y-component (vertical component) is neglected since the pre-impacts of
the supporting leg, due to running-up to a shot, can falsify the results. Once
the shooting leg is determined, the features for the pass/shot-classifier are
computed and fed into the pass/shot-classifier. The pass/shot-classifier is a
binary classifier and decides, whether the signal is associated with a pass or
a shot.

Pass/Shot Feature Extraction

In time domain, the two largest values of the total acceleration of the trans-
verse plane are extracted. Additionally, the Pearson correlation coefficient
is computed from the total acceleration (Equation 8.1) of the event and
supporting leg:

r =
∑W

i=1

(
a(support)

total,i − ā(support)
total

) (
a(event)

total,i − ā(event)
total

)
√

∑W
i=1

(
a(support)

total,i − ā(support)
total

)2
√

∑W
i=1

(
a(event)

total,i − ā(event)
total

)2
, (8.9)
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where ā(event)
total and ā(support)

total represent the mean values of event leg and the
supporting leg, respectively. The Pearson’s correlation gives information
about the linear relationship of two variables. This feature is based on the
fact that the behaviour of the supporting leg differs in case of a shot or in
case of a pass, respectively. The intensity of the supporting leg during a shot
is higher than during a pass. Thus, the correlation coefficient is also higher.
In the frequency domain, the rbio3.1 wavelet and the discrete Meyer (FIR
Approximation) (dmey) wavelet are utilised for separating passes and shots.
The maximum values of the absolute wavelet coefficients are extracted. The
input data is the total acceleration (Equation 8.1). Thus, the distinction
between these two classes takes place over the intensity of the kick.

8.2.4. Number of Features

Table 8.1 summarises the total number of features based on each feature
selection variant, as introduced in Chapter 8.1. It can be seen that the num-
ber of features is significantly reduced after applying the dimensionality
reduction algorithms (variants 2 and 3). Variant 3 applies the LDA as dimen-
sionality reduction algorithm. Hence, the number of features is restricted by
K− 1 (K is the total number of classes). For example, the pass/shot classifier
has to separate passes from shots. This means that after applying LDA to
the feature space, only one feature remains.

Table 8.1.: Total number of features.
Variant 1 2 3
Pre-Classifier 42 12 1
Standing/Walking/Running-Classifier 32 10 2
Pass/Shot-Classifier 25 13 1

8.3. Model Hyperparameters

As already mentioned, in total four different ML models are investigated:
Logistic Regression, SVM, Random Forest Classifier and an ANN. In the
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following section, the used hyperparameters are listed for each algorithm
and each sub-classifier (pre-classifier, standing/walking/running-classifier,
pass/shot-classifier). Additionally, the different feature selection methods
(Chapter 8.1) result in a different number of features and can lead to different
hyperparameters.

Table 8.2 shows the hyperparameters for Logistic Regression (Chapter 4.3.1).
The hyperparameter C in Logistic Regression defines the inverse of the
regularisation strength. Smaller values refer to stronger regularisation. The
L2-norm is used as a penalty. The hyperparameters are valid for all feature
selection methods.

Table 8.2.: Model hyperparameters for Logistic Regression.
C Penalty

Pre-Classifier 100 L2
Standing/Walking/Running-Classifier 1 L2
Pass/Shot-Classifier 10 L2

In Table 8.3 the hyperparameters for SVM are listed. The parameter C
describes the regularisation parameter as introduced in Chapter 4.3.2. The
parameter γ represents the kernel coefficient and refers to the RBF kernel.

Table 8.3.: Model hyperparameters for SVM.
Variant 1 2 3

kernel C γ
Pre-Classifier linear linear linear 100 -
Standing/Walking/
Running-Classifier linear linear linear 1 -

Pass/Shot-Classifier RBF RBF linear 10 0.01

Table 8.4 summarised the used hyperparameters for the Random Forest Clas-
sifier. The number of estimators/trees depends on the number of features.
Using one tree as an estimator, as it is the case of variant 3, is equivalent
to the CART training algorithm (Chapter 4.3.3). As already mentioned,
variant 3 uses the LDA for dimensionality reduction and the number of
features is restricted by one less than the total number of classes. When only
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one feature is available (Table8.1), then only one tree is necessary to make a
decision.

Table 8.4.: Model hyperparameters for Random Forest.
Variant 1 2 3 1 2 3

trees [#] maximum depth [#]
Pre-Classifier 30 10 1 4 4 2
Standing/Walking/
Running-Classifier 50 50 10 3 3 3

Pass/Shot-Classifier 50 50 1 3 3 2

The hyperparameters for the ANN (Chapter 4.3.4) are listed in Table 8.5. It
describes the number of hidden layers, including the number of neurons
per layer. All layers are fully connected. SGD with [Nesterov] momentum
is chosen as the optimizer. Momentum can help the algorithm to converge
faster. By usage of momentum technique, information from previous steps
are included in the next estimation steps. The hyperparameter momentum
also dampens fluctuations in the signal [66]. All models are trained with a
momentum of 0.9. The corresponding learning rate η of the SGD optimizer
is also given in Table 8.5. The activation function for all hidden layers is
represented by the SELU function (Equation 4.31). Early Stopping is used
to avoid overfitting of the neural net. The chosen ANN architectures are
made as simple as possible since the size of the training data set is relatively
small.

Table 8.5.: Model hyperparameters for ANN.
Variant 1 2 3 1 2 3

hidden layers
[#]

neurons per
hidden layer [#]

η
[-]

Pre-Classifier 2 2 1 (5, 3) (2, 1) (4) 0.02
Standing/Walking/
Running-Classifier 4 4 4 (3, 3, 2, 2) (1, 1, 1, 1) (3, 3, 2, 2) 0.01

Pass/Shot-Classifier 2 2 1 (4, 2) (4, 2) (4) 0.02
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9. Training and Testing

The performance of the different models is evaluated on the basis of the
training and test sets. In the following sections, the evaluation scores

• Accuracy
• Precision
• Recall
• Area Under the Receiver Operating Characteristic Curve (ROC AUC)

of the trained models are discussed in detail (see Chapter 4.4). The perfor-
mance on the training set is evaluated on each classifier individually. For
selected classifiers, the decision boundaries are visualised. The display of
the decision boundaries is only possible for the feature extraction variants
that are based on dimensionality reduction algorithms. The test set is tested
on the final construction scheme that is illustrated in Figure 8.2. The analysis
is valid for a window size of 256 samples. However, the last section deals
with analogous investigations on basis of a smaller window size.

In total, four different ML algorithms are investigated: the Logistic Regres-
sion classifier, the Support Vector Machine (SVM) classifier, the Random
Forest classifier and the Artificial Neural Network (ANN). The different
feature extraction variants are stated below:

• Variant 1: Removing features with low variance

• Variant 2: Removing features with low variance followed by PCA
Principal Component Analysis (PCA) is an unsupervised dimension-
ality reduction algorithm.

• Variant 3: Removing features with low variance followed by LDA
Linear Discriminant Analysis (LDA) is a supervised dimensionality
reduction algorithm.
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9.1. Training Models

The performance metrics for the training data of Logistic Regression, Sup-
port Vector Machine (SVM) and Random Forest are computed by using
10-fold cross-validation. The evaluation of the Artificial Neural Network
(ANN) model takes place during the iterative training process. The perfor-
mance of the ANN is monitored during the training process. The desired
performance metrics can be displayed at each epoch until the algorithm
converges to a solution. This results in so-called learning curve and gives
information about possible problems of the model. An example of a learning
curve is given in the following section.

9.1.1. Pre-Classifier

To evaluate the performance of the pre-classifier, several metrics are cal-
culated: accuracy, precision, recall and the ROC AUC score. The Logistic
Regression classifier and the SVM show perfect scores of 100% for all feature
extraction methods. However, the Random Forest classifier and the ANN
also show a high percentage in all performance metrics (≥ 98.6%). That im-
plies each classifier has a high ability to separate classes correctly. Figure 9.1
gives an insight about the operating mode of the Logistic Regression classi-
fier. Class 1 corresponds to activities, which are associated with a pass or a
shot. Class 0 refers to activities with no ball contact. The figure shows the
training set, the decision boundaries and the model’s estimated probabilities
that an instance belongs to the positive class (Class 1): once represented by
the first two Principal Component (PC) and once represented by the Linear
Discriminant (LD). The black line indicates the positions where a fifty-fifty
chance is given. The final models that bases on variant 2 are trained on all
PCs and not only on the first two. The utilisation of the first two PCs only
aims as a visualisation tool. The first two PCs constitute 83% of variance
explained. Note that after applying LDA to the feature subspace, only one
feature remains. As is can be seen, the two classes are well separable.

Figure 9.2 shows an example of the learning curves of the ANN where
the features of variant 1 are fed into. The loss function computes the error
in prediction. Thus, decreasing values of the loss function and increasing
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Figure 9.1.: Decision boundaries for Logistic Regression with probabilities: (a) using first
two PCs as features, (b) using LD as feature.

values of the performance metrics imply that the model works well on
the training instances. The learning curves for the other two variants also
converge well after some iterations.
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Figure 9.2.: Learning curves for pre-classifier (variant 1): performance metrics measured
over each epoch. The binary accuracy counts how often predictions correspond
to binary labels.

9.1.2. Standing/Walking/Running-Classifier

The evaluation metrics (accuracy, precision, recall, ROC AUC) for all classi-
fiers and variants are all above 99%. Consequently, some computed decision
boundaries are shown. The decision boundaries based on the LDs can be
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seen from the example of the SVM classifier and the Random Forest Classi-
fier (Figure 9.3). The decision boundaries are indicated with the black solid
lines. However, the discriminative character of the features is clearly visible.
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Figure 9.3.: Decision boundaries for standing/walking/running-classifier based on LDA:
(a) SVM, (b) Random Forest.

Figure 9.4 contrasts the approaches, which are based on PCA. The prob-
abilities for the class walking are marked. Since SVM does not provide
estimated probabilities, only the decision boundary is highlighted. The
decision boundaries show quite different growth patterns. The Random
Forest classifier seems to slightly overfit the walking instances.

9.1.3. Pass/Shot-Classifier

For the given training set, the separation between passes and shots work well,
although the training size is relatively small. The training set contains 172
passes and 44 shots. Logistic Regression, SVM and ANN show perfect scores
in all metrics. Random Forest performs well for variant 2 and variant 3.
Random Forest based on variant 1 performs worst with a recall score
of 90%.
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Figure 9.4.: Decision boundaries for standing/walking/running-classifier based on first
two PCs (correspond to 91% of variance explained): (a) Logistic Regression,
(b) SVM, (c) Random Forest Classifier, (d) ANN.

9.2. Feature Importance

Random Forest classifier also computes the relative importance of the input
features. It measures how useful a feature is, based on the impurity on
average. The computed feature importance scores of all features together
sum up to 100%. Figure 9.5a illustrates the ten most important features
according to the Random Forest classifier for the standing/walking/running
classification process. Only features based on the y and z-component are
present among the ten best features. This is the case since the the forward
movements mainly affect the coordinates in the sagittal plane. The most
important feature is the RMS of the detail coefficients array at decomposition
level 7 [0.4-0.8 Hz] with almost 14%.

Figure 9.5b shows the measure of the then most important features corre-
sponding to the pass/shot classification. It seems that actions of post- and
pre-impacts (represented by the second largest values) are higher weighted
than the actual ball impact. Another point is, that the features based on
the supporting leg are more important than the features based on the
event leg.
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Figure 9.5.: Feature importance: (a) standing/walking/running-classifier. “Left” refers to
data from the left leg. “Right” refers to data from the right leg. (b) pass/shot-
classifier. “Event” refers to data from the event/shooting leg. “Support” refers
to data from the supporting leg.

Regarding the feature importance of PCs, it can be said that features with a
higher variance are tendentiously higher weighted than PCs with a lower
one. The feature importance concerning the LDs is promptly explained.
Only one feature is fed into the pass/shot-classifier. Thus, the one LD
contributes 100% of the decision process. The LDA, applied on the feature
subset related to the standing/walking/running-classifier, results in two
LDs. The relevance of the first and second LD is almost equally distributed:
LD1 makes up 56% and LD2 44%.

9.3. Testing Models

The evaluation scores of the test set are listed in Table 9.1. All metrics, except
for the accuracy score, are based on the computation of the macro-average.
The accuracy score refers to the overall accuracy. In general, all models work
reasonably well on the training as well as on the test set. Thus, no clearly
recognisable link would indicate that a model outperforms.
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Table 9.1.: Evaluation scores of test set using a window size of 256 samples.

Class Accuracy
[%]

Precision
[%]

Recall
[%]

ROC AUC
[%]

Logistic
Regression

1 100.0 100.0 100.0 100.0
2 99.5 99.5 98.2 99.0
3 99.5 98.3 99.5 99.7

SVM
1 100.0 100.0 100.0 100.0
2 99.5 99.5 98.2 99.0
3 100.0 100.0 100.0 100.0

Random
Forest

1 98.6 97.3 97.5 98.6
2 99.1 99.1 97.7 98.8
3 100.0 100.0 100.0 100.0

ANN
1 99.1 96.9 99.1 99.4
2 99.5 98.3 99.5 99.7
3 99.5 98.3 99.5 99.7

9.4. Different Window Size

In this section, the influence of a smaller window size is investigated. The
chosen window size comprises 128 samples. That complies with 1.28 s. A
smaller window size results in a different distribution of the features. One
reason is that the maximum level of decomposition regarding the wavelet
decomposition is lower due to the lower number of samples in the data.
However, the classifier trained on the smaller window size performs at the
same level as using a classifier trained with the window size of 256 samples.
The corresponding evaluation scores are given in Table 9.2. The vast majority
of the models show evaluation scores above 99%.
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Table 9.2.: Evaluation scores of test set using a window size of 128 samples.

Class Accuracy
[%]

Precision
[%]

Recall
[%]

ROC AUC
[%]

Logistic
Regression

1 99.8 99.6 99.9 99.9
2 99.5 99.1 99.8 99.9
3 99.8 99.5 98.2 99.1

SVM
1 99.8 99.6 99.9 99.9
2 99.5 99.1 99.8 99.9
3 99.5 99.1 98.1 99.0

Random
Forest

1 98.7 96.4 99.2 99.4
2 97.3 96.1 96.6 97.9
3 100.0 100.0 100.0 100.0

ANN
1 99.8 99.6 99.7 99.9
2 99.3 97.5 99.4 99.6
3 100.0 100.0 100.0 100.0
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10. Recognition of Soccer
Activities

This chapter deals with the final evaluation of the different models with
different window sizes. As is had been shown in Chapter 9, all models and
variants have the potential to detect standing, walking, running, passing and
shooting. It has been proven that the chosen features and hyperparameters
work. So, the final model is trained on the whole data set (training set plus
test set) and is validated on new data to analyse the performance in real
applications. The new data is declared as validation set. The validation set
consists of five sequences, which contain various soccer-specific elements.

10.1. Validation Set

The validation set chains together five sequences. Figure 10.1 shows the
corresponding time series that is represented by the total accelerations of the
sensor data from the left and right leg. The different sequences are divided
by the grey dotted lines. One sequence consists of:

• Standing (≈ 1 min)
• Running with increasing speed continually ( 8 km/h up to 12 km/h).

During the running phase two passes and one shot are performed:

– Pass during running with 8 km/h
– Pass during running with 10 km/h
– Shot during running with 12 km/h

The running phase lasts for about 45 s.
• Short pause of approximately 12 s.

99



10. Recognition of Soccer Activities

• Walking with an average speed of 4 km/h. During the walking phase,
one pass is done. This phase lasts for about 36 s.
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Figure 10.1.: Validation set.

Each sequence consists of different types of passes and shots, executed
with the left or the right leg. Shots are indicated by red dots and letters
(Figure 10.1) and characterised in Table 10.1. The location of the dots in the
subplots gives information about the leg that performed the kick. In total, 5
shots had been performed.

Table 10.1.: Description of shots. In each sequence one shot is present.
Letter A B C D F
Leg right right left right left
Type full instep full instep full instep outside foot full instep

Passes are also done in two different distances, namely 10 m and 20 m. The
passes are marked by orange dots, numbered from 1 to 15 and described in
Table 10.2. From Figure 10.1, it is already noticeable that the main difference
between passes and shots is the activity of the supporting leg.
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Table 10.2.: Description of passes.

Sequence 1

Point number 1 2 3
Leg left right right
Type insight foot insight foot insight foot
Distance [m] 10 10 10

Sequence 2

Point number 4 5 6
Leg right right right
Type outside foot insight foot insight foot
Distance [m] 10 10 20

Sequence 3

Point number 7 8 9
Leg left right right
Type insight foot outside foot insight foot
Distance [m] 10 10 20

Sequence 4

Point number 10 11 12
Leg right right left
Type outside foot insight foot insight foot
Distance [m] 10 10 20

Sequence 5

Point number 13 14 15
Leg left left left
Type insight foot insight foot insight foot
Distance [m] 10 10 20

10.2. Comparison of Classifiers and Feature
Extraction Methods

The data from the validation set is fed into the classification construction
scheme. The corresponding flowchart is illustrated in Figure 8.2. The data
are segmented using a window size W of 256 samples (=̂2.56 s) and an
overlap of 154 samples that equals to exactly 60.15625%. In this section, the
different models and feature extraction methods are compared with each
other.

The segmented validation set has been manually labelled to allow a com-
parison between the predicted and the actual labels. Due to the overlapping
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windows, passes or shots can be present in consecutive windows. Figure 10.2
shows, as an example, the Shot C that is visible in three consecutive win-
dows. The definition of a shot includes pre- and post-impacts. Therefore, all
three time-series are labelled as shot.
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Figure 10.2.: Shot in overlapping windows: shown by the example of Shot C.

10.2.1. Variant 3

The classification scheme is applied to the validation set using the dif-
ferent feature extraction variants. The analysis has shown that the ML
algorithms combined with the Linear Discriminant Analysis (LDA) as di-
mensionality reduction algorithm (variant 3) outperforms the other fea-
ture extraction methods. However, in Figure 10.3a, the reference solution
is visualised. The crosses refer to the actual labels. The output from the
standing/walking/running-classifier is visualised “under” the time series,
the output from the pass/shot-classifier “above” of it. Figure 10.3b shows
the recognition result of Logistic Regression based on variant 3. Now, the
crosses refer to the predicted labels. From a purely visual point of view, all
passes and shots are correctly detected. Upon closer inspection of the illus-
tration, it is noticeable that the transition areas between standing, walking
and running have faults. However, the confusion matrix provides a more
detailed analysis of the model’s performance. The corresponding confusion
matrix is given in Figure 10.8c (Chapter 10.2.4). The confusion matrix con-
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firms that some misclassification between standing, walking and running
took place as well as that passes and shots are perfectly detected.
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Figure 10.3.: Recognition result: (a) reference solution (b) Logistic Regression (variant 3).
The abbreviations used in the legend are listed in Table 5.1.

From the confusion matrix several evaluation metrics, like accuracy, preci-
sion, recall and ROC AUC are derived, which are summarised in Table 10.3.
In general, perfect scores are indicated with a green background. Scores
between 81% and 61% are filled with an orange background. Every score
under 61% is marked with a red background. In addition, the algorithm
with the best overall-performance is also highlighted with green. The overall
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performance represents the overall accuracy and the macro-averages of the
precision, recall and ROC AUC scores.

Table 10.3.: Evaluation scores for variant 3 with window size W = 256 samples. The overall
performance for accuracy score =̂ overall-accuracy. The overall performances
of precision, recall and ROC AUC score =̂ macro-average.

Class Accuracy
[%]

Precision
[%]

Recall
[%]

ROC AUC
[%]

Logistic
Regression

ST 95.7 91.8 99.2 96.0
WA 95.3 97.8 83.4 91.4
RU 98.9 98.5 98.0 98.6
PA 100.0 100.0 100.0 100.0
SH 100.0 100.0 100.0 100.0

Overall Performance [%]: 94.9 97.4 96.1 97.2

SVM

ST 94.1 85.5 99.7 94.6
WA 93.8 100.0 75.8 87.9
RU 98.8 96.5 98.5 98.7
PA 100.0 100.0 100.0 100.0
SH 100.0 100.0 100.0 100.0

Overall Performance [%]: 93.4 97.0 94.8 96.2

Random
Forest

ST 95.7 91.8 92.2 96.0
WA 95.4 98.3 83.4 91.5
RU 98.8 97.0 98.0 98.5
PA 100.00 100.0 100.0 100.0
SH 100.00 100.0 100.0 100.0

Overall Performance [%]: 94.9 97.4 96.1 97.2

ANN

ST 95.5 91.6 99.2 95.9
WA 95.5 97.3 84.8 92.0
RU 98.7 99.5 94.9 97.4
PA 99.4 87.8 100.0 99.7
SH 100.0 100.0 100.0 100.0

Overall Performance [%]: 94.6 95.2 95.8 97.0

The table shows that nearly all algorithms, except for ANN, could recognise
all passes and shots. However, the main difference between the different
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algorithms is the separation of standing, walking and running. The main
faults take place in the transition areas, as seen in Figure 10.3. The lowest
recall score has the SVM classifier for the class walking, but shows a perfect
precision score. That means that the ability of correctly assigning a walking
instance to the class walking is approximately 3 : 4. The accuracy of the
positive predictions is, however, 100%. The best overall performance metrics
is shown by the Logistic Regression classifier and the Random Forest classi-
fier. Both classifiers provide the same result. In general, all misclassification
regarding standing, walking and running happened in the transition areas
of those activities. For example, the first steps of a running movement or
deceleration movements show errors. Therefore, they are not considered as
serious errors since the switching between standing, walking or running is
a fuzzy process.

10.2.2. Variant 2

Variant 2 deals with the feature extraction method that bases on Principal
Component Analysis (PCA). In Table 10.4, the corresponding evaluation
metrics are listed. It is noticeable that the Random classifier has the lowest
scores. The recall-score of walking and shot as well as the precision of
passing are under 54%. That means that the algorithm’s predictions are
rather random. The SVM classifier and ANN classifier have as well troubles
in detecting walking. The best performance shows the Logistic Regression
classifier. However, compared to the solution that bases on a supervised LDA
dimensionality reduction algorithm, the overall performance has become
worse.

Figure 10.4a illustrated the computed recognition result of the Random
Forest classifier. It is visible that walking is mixed up with running as
well as that there are too many detected passes in the transition zones.
Another issue is that passes and shots are not recognised clearly in means
of detecting a pass or shot in consecutive overlapping windows, as shown
in Figure 10.4b. The red and orange circles refer to false classifications of
shots and passes, respectively.
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Table 10.4.: Evaluation scores for variant 2 with window size W = 256 samples

Class Accuracy
[%]

Precision
[%]

Recall
[%]

ROC AUC
[%]

Logistic
Regression

ST 96.7 93.9 99.2 97.0
WA 95.9 95.4 88.2 93.3
RU 98.3 96.9 95.9 97.5
PA 99.4 97.0 88.9 94.4
SH 100.0 100.0 100.0 100.0

Overall Performance [%]: 95.2 96.6 94.4 96.4

SVM

ST 92.5 88.9 95.2 92.8
WA 91.9 88.3 78.7 87.6
RU 97.6 94.4 95.4 96.8
PA 99.2 96.8 83.3 91.6
SH 100.0 100.0 100.0 100.0

Overall Performance [%]: 90.6 93.7 90.5 93.7

Random
Forest

ST 95.5 93.3 97.0 95.7
WA 84.7 97.7 40.8 70.2
RU 86.4 64.0 96.9 90.0
PA 96.0 53.1 72.2 84.7
SH 99.3 100.0 53.8 76.9

Overall Performance [%]: 80.9 81.6 72.2 83.5

ANN

ST 88.2 79.3 99.7 89.2
WA 87.3 93.4 54.0 76.4
RU 98.1 97.4 94.4 96.8
PA 99.4 94.3 91.7 95.7
SH 100.0 100.0 100.0 100.0

Overall Performance [%]: 86.5 92.9 88.0 91.6
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Figure 10.4.: Recognition result: Random Forest (variant 2): (a) Recognition result, (b) Zoom
of Figure 10.4a. Errors regarding pass/shot classification are highlighted.

The inability of the Random Forest classifier in detecting walking can be
explained in the characteristics of its decision boundary. Figure 10.5 shows
the decision boundary of the trained model based on the first two Principal
Components (PC). The plotted points represent the transformed points
of the validation set, thus, the reference solution. Looking closer at the
encircled area, it is noticeable that the walking instances are partly present
in the decision regions of walking and running. The most misclassifications
took place in this area. The reason is that the model is trained on walking
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instances that are performed on an average speed of 5.5 km/h and the
walking phase of the validation phase is performed at an average speed of
4 km/h.
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2

Figure 10.5.: Decision boundary of Random Forest (variant 2) with plotted validation set.
Encircled area highlights the problem area in walk detection.

In comparison to the solution of the Random Forest classifier, the Logistic
Regression classifier (Figure 10.6) outperforms, although Pass 8 has not been
detected.
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Figure 10.6.: Recognition result: Logistic Regression (variant 2).
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10.2.3. Variant 1

The classification scheme is applied to the validation set using the first
feature extraction variant. Variant 1 implies that features with a low variance
are excluded. No dimensionality reduction algorithm is applied. Figure 10.7a
shows the recognition result of the ANN, based on variant 1. As it can be
seen, Pass 8 has not been detected. Furthermore, a stopping movement
has been misclassified as pass in the running phase of the fourth sequence
(indicated by the red box). Another issue is that passes are not recognised
clearly in means of detecting a pass in consecutive overlapping windows.
The corresponding confusion matrix is given in Figure 10.8j. None of the
algorithms have recognised all passes. Logistic Regression, SVM and ANN
had overlooked Pass 8. Random Classifier detected Pass 8, but missed Pass 5.
The ANN classifier is the only classifier that mistook a stopping movement
for a pass.
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Figure 10.7.: Recognition result of ANN (variant 1).

Table 10.5 gives information about the performance of the different models.
Every algorithm, except for the Random Forest, can detect shots includ-
ing pre- and post-impacts. Logistic Regression provides the best overall
performance, although the assumption of no or little collinearity of the
features is violated. Compared to variant 3 (Table 10.3), however, the overall-
performance has deteriorated.
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Table 10.5.: Evaluation scores for variant 1 with window size W = 256 samples

Class Accuracy
[%]

Precision
[%]

Recall
[%]

ROC AUC
[%]

Logistic
Regression

ST 96.6 93.7 99.2 96.9
WA 95.8 95.4 87.7 93.1
RU 98.2 96.6 95.9 97.4
PA 99.3 96.9 86.1 93.0
SH 100.0 100.0 100.0 100.0

Overall Performance [%]: 94.9 96.5 93.8 96.1

SVM

ST 95.2 90.9 99.2 95.5
WA 94.4 97.7 80.1 89.7
RU 97.7 92.8 98.0 97.8
PA 99.2 100.0 80.6 90.3
SH 100.0 100.0 100.0 100.0

Overall Performance [%]: 93.2 96.3 91.6 94.7

Random
Forest

ST 97.1 94.4 99.5 97.3
WA 96.1 95.9 88.6 93.7
RU 97.6 94.9 94.9 96.7
PA 98.8 88.2 83.3 91.4
SH 99.8 100.0 84.6 92.3

Overall Performance [%]: 94.7 94.7 90.2 94.3

ANN

ST 95.5 91.4 99.5 95.9
WA 94.4 95.1 82.5 90.5
RU 98.3 96.9 95.9 97.5
PA 99.2 93.9 86.1 92.9
SH 100.0 100.0 100.0 100.0

Overall Performance [%]: 93.7 95.5 92.8 95.4

10.2.4. Confusion Matrices

This section compares the evaluated models based on the confusion matrices.
The confusion matrices create more transparency regarding the errors made
in the classification process. All evaluation metrics from the Table 10.3 to 10.5
are derived from those matrices.
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(a) Logistic Regression: variant 1
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(b) Logistic Regression: variant 2
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(c) Logistic Regression: variant 3
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(d) SVM: variant 1
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(e) SVM: variant 2
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(f) SVM: variant 3
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(g) Random Forest: variant 1
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(h) Random Forest: variant 2
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(i) Random Forest: variant 3
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(j) ANN: variant 1
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(k) ANN: variant 2
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(l) ANN: variant 3

Figure 10.8.: Confusion matrices for validation set with a window size of 256 samples. In
total, 12 different models are evaluated. The rows compare the feature extrac-
tion variants for the same algorithm. The columns compare the algorithms
with the same feature extraction variant.
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10.3. Different Window Size

This section deals with the effect on real applications with a window size
half it’s former size. That corresponds to W = 128 samples or 1.28 s. The
analysis is analogous to the previous chapter. The evaluation has shown that
a smaller window size results in an insufficient detection of shots. Table 10.6
shows the precision and recall scores for the shot-recognition. Although
the precision values are relatively high, the recall-scores are not satisfying.
Due to a smaller window size, pre- and post-impacts of a shot are often
misclassified as pass or not even identified as a kick. So, a clean detection of
a shot is not possible. A complete list of the evaluation scores can be found
in Appendix A. The corresponding confusion matrices are summarised in
Appendix B.

Table 10.6.: Precision and recall scores of validation set for class shot using a window size
of 128 samples.

Variant Precision [%] Recall [%]

Logistic Regression
1 100.0 80.0
2 92.3 80.0
3 100.0 60.0

SVM
1 100.0 66.7
2 100.0 73.3
3 100.0 60.0

Random Forest
1 100.0 66.7
2 85.7 40.0
3 100.0 60.0

ANN
1 92.3 80.0
2 92.3 80.0
3 83.3 66.7

10.4. Real-Time Capability

The following section investigates, whether the presented AR-scheme for
soccer-specific activities can be carried out in real-time, or not. Therefore,
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the real-time capability is tested based on two instances. One instance
belongs to the class running and the other to the class shot. The duration
of time is measured that is needed to get a recognition result: time needed
to preprocess data and time needed to get the final prediction. The test is
carried out with the Logistic Regression classifier as ML algorithm based
on variant 3 (removing features with low variance followed by LDA) with
a window size of 2.56 s since this combination has shown one of the most
reasonable solutions. The final computation time was determined by using
the average value of five times repeating the AR process1. The results
are listed in Table 10.7. It can be seen that the classification process only
represents a small part of the whole classification process. The main part
is the data smoothing by fitting quintic spline functions. The duration of
the data smoothing depends on the complexity of the signal. Thus, a signal
that contains a shot takes longer to be smoothed than a running instance,
for example.

Table 10.7.: Computation time (averaged values from five repetitions).
Running Shot

Data Smoothing [ms] 18.7 36.6
Classification Process [ms] 2.1 2.2
Total [ms] 20.8 38.8

The classification process itself also takes longer for an instance that belongs
to a shot. A detailed breakdown of the classification process is shown in
Figure 10.9. The pre-classification is the same for both activities. It comprises
the computation of the features, followed by the transformation, and the
prediction of the label. The feature transformation includes feature scal-
ing, removing features with low-variance and applying the transformation
matrix that is determined from the LDA. After the recognition result of
the pre-classifier is available, the classification process splits. The running
instance undergoes the standing/walking/running-classification scheme.
The shot instance goes through the pass/shot-classification scheme. Both

1Notebook: ASUS A55V, CPU: Intel Core i7-3610QM (2.3 GHz), Memory: 8 GB,
OS: WIN10 Pro
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also include the feature computation, feature transformation and the predic-
tion of the class. However, for the pass/shot detection, the determination
of the shooting leg has to be done besides. The most time-consuming task
represents the different transformation steps in each sub-classifier.
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Figure 10.9.: Detailed view: computation time of classification process (averaged values
from five repetitions).

The proposed classification scheme uses overlapping sliding windows to
segment the data. The used overlap is about 60% and the used window size
is 2.56 s. Thus, about every second a new instance is available for which the
classification process has to be performed. However, the final prediction of
an instance is made under 40 ms. Hence, predictions can be done under one
second. Based on these investigations, it can be assumed that the presented
classification scheme is real-time capable.
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This thesis aimed to develop a suitable classification scheme based on
Machine Learning (ML) and MEMS accelerometer data to detect soccer-
specific activities, such as passing, shooting and running. Therefore, different
ML algorithms, as well as various feature extraction methods, were analysed
and compared with one another. The trained models were tested on real data
sets to find out which algorithm suits best for this particular application.

First of all, it has been shown that the Discrete Wavelet Transform (DWT)
is a useful and compact method to characterise the temporal and spectral
components of a signal. Due to the usage of wavelets, complex signals can
be better analysed. The implementation of DWT as a filter bank and, thus,
decomposing the signal into approximation and detail coefficients, allows
a better understanding of the energy distribution of a signal. The filter
bank divides the signal into two or more sub-frequency-bands. Extracting
statistical values from the desired sub-frequency-band provides an efficient
and compact way to characterise a signal.

For distinguishing passes and shots, investigations of the feature importance
indicated that features based on the supporting leg are more useful com-
pared to features based on the shooting leg. Thus, pre- and post-impacts of
the kicking movement play an essential role in the classification process.

A classification scheme, which consists of a pre-classifier, a shot/pass-
classifier and a standing/walking/running-classifier, has been introduced.
The different sub-classifiers have been trained individually. Two different
window sizes were investigated: 2.56 s and 1.28 s. The training and testing
process of the classification scheme has shown that all classifiers based
on the various feature extraction methods can correctly classify standing,
walking, running, passing and shooting. At that time, it was not clear yet,
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which classifier and which feature extraction method is significantly better
than another.

More information about the suitability of the various models was provided
through tests on real data. The real data contains of simple sequences of
soccer-specific activities, such as pass during running. The investigation
were carried out with a degree of overlap of approximately 60%. A window
size of 2.56 s results in a better solution than a window size of 1.28 s. A
time span of 1.28 s is too short to cover a full process of a shot. Pre- and
post-impacts were often mistaken for other activities. The topped recall
score of the class shot was 80%. Such a recall score is judged as insufficient
for this specific applications.

It has been shown that applying the Linear Discriminant Analysis (LDA)
to the feature subspace significantly outperforms the other two feature
extraction methods in real applications. Logistic Regression, Support Vector
Machine (SVM) and Random Forest were able to perfectly detect passing
and shooting. That means that the accuracy, precision, recall and ROC AUC
scores received 100%. The only misclassifications took place in the transition
areas of standing, walking and running and are therefore not considered
as critical errors. The best overall performance accomplished the Logistic
Regression classifier and the Random Forest classifier with an accuracy
score of 94.6%, a precision score of 97.4%, a recall score of 96.1% and a ROC
AUC score of 97.2%. The ability to precisely detect the defined activities is
given.

The other two feature extraction methods were not able to detect kicks in
the sense of detecting a shot including pre- and post-impacts. Another issue
was that not all passes were recognised. The performance has deteriorated
compared with the variant based on LDA. The worst performance was
reached using the Random Forest classifier based on Principal Component
Analysis (PCA). The recall-score for shots was only about 54% and for
walking only around 40%. A possible explanation is that the Decision Tree
classifiers built many linear and orthogonal decision boundaries. Therefore,
it is likely that they tend to overfit. That implies that new instances that
are slightly different than the training instances are misclassified. Using
the PCA for dimensionality reduction does not lead to a gain in precision
compared to using the raw feature subset. In general, the Artificial Neural
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11. Conclusion and Outlook

Network (ANN) showed a mediocre performance. That can be due to several
factors, such as the small-sized data set since neural networks are designed
to deal with large data sets. Another error source could be the chosen
hyperparameters.

To summarise the result of this thesis, with the selection of an appropri-
ate feature subset (feature engineering), it is possible to detect simple,
soccer-specific activities using low-cost IMUs. Using the Logistic Regression
classifier or the Random Forest classifier in combination with LDA has lead
to the most reasonable solutions. It has also been proven, that the presented
classification scheme is real-time capable. And since the sensor exceeds
the range of ±16 g during the performance of a shot, it was sufficient to
distinguish between passes and shots.

However, this topic provides a favourable outlook for further research. On
the one hand, additional movements such as dribbling, tackling or other
gestures could be included in the classification process. On the other hand,
the gyroscope measurements could be used together with the accelerometer
data for the feature computation.

Furthermore, the analysis is only based on data of one test person. Hence,
the user dependency should be investigated since different persons show
different kick-patterns with different intensities. For example, top-level
soccer players exhibit more intensive kicks than hobby soccer players. By
the way, the shin guard with embedded, low-cost IMUs could be a possible
application for hobby teams. It represents a cost-effective performance
analysis (number of passes/shots/sprints) of individual soccer players in
comparison to video-based approaches that are present in professional
soccer teams. Another interesting point would be the determination of the
current running speed of the soccer player to gain more information about
the player’s performance. Therefore, a regression task could be integrated
in the ML process.
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A. Evaluation Scores

The evaluation scores are based on the analysis of the validation set (Chap-
ter 10.1) using a window size of 128 samples. Scores between 81% and 61%
are filled with an orange background. Every score under 61% is marked
with a red background. The overall performance of the accuracy score refers
to the overall-accuracy. For the precision, recall and ROC AUC score, the
overall performance is computed using the macro-average.
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A. Evaluation Scores

Table A.1.: Evaluation scores for variant 1 with window size W = 128 samples.

Class Accuracy
[%]

Precision
[%]

Recall
[%]

ROC AUC
[%]

Logistic
Regression

ST 94.0 88.5 99.9 94.5
WA 93.5 94.4 76.2 88.0
RU 99.9 96.7 99.5 92.2
PA 99.5 90.3 84.8 92.3
SH 99.8 100.0 80.0 90.0

Overall-Performance [%]: 93.3 95.5 88.1 92.8

SVM

ST 94.6 89.5 99.7 95.0
WA 93.2 97.4 76.7 88.0
RU 98.1 94.4 98.3 98.2
PA 95.5 90.0 81.8 90.8
SH 99.7 100.0 66.7 83.3

Overall Performance [%]: 92.5 94.3 84.6 91.1

Random
Forest

ST 97.2 94.2 99.9 97.4
WA 96.2 99.0 86.8 93.2
RU 98.7 95.6 99.3 98.9
PA 99.2 82.8 72.7 86.2
SH 99.9 100.0 86.7 93.3

Overall Performance [%]: 95.5 94.3 89.1 93.8

ANN

ST 95.1 90.5 99.7 95.5
WA 94.3 98.9 79.8 89.7
RU 98.7 95.6 99.3 98.9
PA 99.6 96.4 81.8 90.9
SH 99.8 92.3 80.0 90.0

Overall Performance [%]: 93.7 94.7 88.1 93.0
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A. Evaluation Scores

Table A.2.: Evaluation scores for variant 2 with window size W = 128 samples.

Class Accuracy
[%]

Precision
[%]

Recall
[%]

ROC AUC
[%]

Logistic
Regression

ST 95.1 90.5 99.7 94.3
WA 94.3 98.9 79.8 87.5
RU 98.7 95.6 99.3 99.0
PA 99.6 96.4 81.8 95.4
SH 99.8 92.3 80.0 90.0

Overall Performance [%]: 93.7 94.7 88.1 93.0

SVM

ST 88.7 80.2 99.7 89.7
WA 87.7 97.3 55.8 77.6
RU 98.5 95.5 98.5 98.5
PA 99.3 83.9 78.8 89.2
SH 98.8 100.0 73.3 86.7

Overall Performance [%]: 87.0 91.4 81.2 88.3

Random
Forest

ST 97.0 94.1 99.7 97.3
WA 85.4 98.6 46.2 73.0
RU 86.9 65.9 98.1 90.6
PA 99.2 80.6 75.8 87.7
SH 99.4 85.7 40.0 70.0

Overall Performance [%]: 83.9 85.0 71.9 83.7

ANN

ST 95.1 90.5 99.7 95.5
WA 94.3 98.9 79.8 89.7
RU 98.7 95.6 99.3 98.9
PA 99.6 96.4 81.8 90.9
SH 99.8 92.3 80.0 90.0

Overall Performance [%]: 93.7 94.7 88.1 93.0
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A. Evaluation Scores

Table A.3.: Evaluation scores for variant 3 with window size W = 128 samples.

Class Accuracy
[%]

Precision
[%]

Recall
[%]

ROC AUC
[%]

Logistic
Regression

ST 98.2 96.8 99.3 98.3
WA 96.4 98.0 88.6 94.0
RU 98.0 93.8 98.5 94.0
PA 99.3 75.6 93.9 98.2
SH 99.6 100.0 60.0 96.7

Overall Performance [%]: 95.8 92.8 88.1 93.4

SVM

ST 95.2 90.7 99.7 95.6
WA 92.3 97.9 72.9 86.1
RU 96.8 89.6 98.5 97.4
PA 99.4 81.1 90.9 95.2
SH 99.6 100.0 60.0 80.0

Overall Performance [%]: 91.7 91.9 84.4 90.9

Random
Forest

ST 97.8 95.9 99.5 98.0
WA 96.0 98.7 86.3 93.0
RU 97.8 92.5 99.0 98.2
PA 99.3 78.9 90.9 95.2
SH 99.6 100.0 60.0 80.0

Overall Performance [%]: 95.3 96.0 97.8 92.9

ANN

ST 98.4 97.3 99.3 98.5
WA 96.9 98.8 89.7 94.6
RU 98.0 93.8 98.5 98.2
PA 99.2 75.0 90.9 95.1
SH 99.6 83.3 66.7 83.3

Overall Performance [%]: 96.1 89.6 89.0 94.0
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B. Confusion Matrices

The confusion matrices are a result of the evaluation of the validation set
(Chapter 10.1) using a window size of 128 samples (=̂1.28 s). In total, 12
different models are evaluated. The rows compare the feature extraction
methods using the same ML algorithm. The columns compare the different
ML algorithms based on the same feature extraction method.
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B. Confusion Matrices

(a) Logistic Regression: variant 1
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(b) Logistic Regression: variant 2
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(c) Logistic Regression: variant 3
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(d) SVM: variant 1
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(e) SVM: variant 2
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(f) SVM: variant 3
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(g) Random Forest: variant 1
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(h) Random Forest: variant 2
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(i) Random Forest: variant 3
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(j) ANN: variant 1
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(k) ANN: variant 2
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(l) ANN: variant 3

Figure B.1.: Confusion matrices for validation set with a window size of 128 samples.
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