TU

Grazm

Thomas Niedermayr, BSc

Enabling Wireless Automotive SW Updates
for the Infineon AURIX ECU

MASTER'S THESIS

to achieve the university degree of
Diplom-Ingenieur

Master's degree programme: Information and Computer Engineering

submitted to

Graz University of Technology

Supervisor

Ass.Prof. Dott. Dott. mag. Dr.techn. MSc Carlo Alberto Boano

Institute for Technical Informatics

Graz, August 2017

AFFIDAVIT

| declare that | have authored this thesis independently, that | have not used other
than the declared sources/resources, and that | have explicitly indicated all ma-
terial which has been quoted either literally or by content from the sources used.
The text document uploaded to TUGRAZonline is identical to the present master's

thesis.

Date Signature

Kurzfassung

Aufgrund der steigenden Komplexitiat und dem wachsenden Funktionsumfang moderner
Fahrzeuge ist die Anzahl an integrierten Steuergeréten stetig steigend. Sowohl die steigende
Zahl der Steuergerite, als auch die zunehmende Komplexitidt der Software erfordern
einen einfachen, zuverldssigen und schnellen Weg, diese auf den Steuergerdten zu ak-
tualisieren. Der Vorteil einer drahtlosen Ubertragung von Softwareupdates zum Fahrzeug
liegt darin, die Performance zu steigern und Fehler zu beheben, wihrend auf den bisher
dafiir notwendigen und kostenintensiven Riickruf der Fahrzeuge verzichtet werden kann.
Des weiteren wiirde es Erstausriistern (OEMs) erlauben neue Features und Upgrades aus
der Ferne freizuschalten und dem Kunden einen noch personlicheren Service zu bieten.

In dieser Arbeit designte und entwickelte ich ein flexibles und effizientes drahtloses
Updatesystem flir Fahrzeuge. Dieses besteht aus einem Diagnosetester, einem drahtlosen
Fahrzeuginterface und dem AURIX TC277¢ Steuergerét. Der Diagnosetester (z.B. Smart-
phone, Laptop oder Tablet) ist drahtlos mit dem Fahrzeuginterface verbunden, welches
widerum direkt an das Fahrzeugbussystem angeschlossen ist. Um Vertrauen vom Diag-
nosetester bis hin zur Fahrzeug-ECU herzustellen, wird eine “Seed und Key” Challenge-
Response-Authentifizierung verwendet. Ein 32-Bit-CRC schiitzt die Integritdt auf dem
gesamten Datenpfad. Um die Effizienz des Datentransfers am Fahrzeugbus zu steigern,
verwendet das entwickelte System eine modifizierte Version des “UDSonCAN” Protokolls.
Das vorgestellte System beherrscht zudem parallele Updates, bei denen Daten gleichzeitig
an mehrere ECUs gesendet werden. Diese ECUs sind entweder am selben Fahrzeugbus
angeschlossen, oder in unterschiedlichen Fahrzeugen verteilt. Um die Geschwindigkeit des
Updatesystems weiter zu verbessern, bietet das System partielle Updates, bei denen ver-
sucht wird, nur die Veranderungen zwischen zwei SW-Versionen zu iibertragen. Sollte
wahrend des Updateprozesses ein Fehler auftreten oder eine neue SW-Version fehler-
haft sein, bietet das System die Moglichkeit eine zuvor gesicherte SW-Version wieder-
herzustellen.

Das System wurde experimentell getestet und mit einem drahtlosen Updatesystem fiir
die Volvo-FlexECU verglichen. Die Anderungen am “UDSonCAN” Protokoll beschleuni-
gen den Datentransfer am Fahrzeugbus um 38%. Ein einfaches drahtloses Update ben6tigt
lediglich 43% der Zeit verglichen mit der Volvo-FlexECU. Bei Verwendung von parallelen
Updates konnte mit der getesteten Update-Dateigrofie ein um 38% schnelleres Update
ausgefiihrt werden als bei einem sequentiellen Update. Partielle Updates erlaubten im
getesteten Szenario eine Verkiirzung der Updatezeit auf nur 17%, verglichen mit einem
einfachem drahtlosen Update.

Abstract

Due to the rising complexity and the increasing functionality of modern vehicles, the
number of electronic control units (ECU) embedded in a vehicle is continuously growing.
This, together with the increasing code complexity of ECUs, demands for an easy, reliable,
and fast way to update the ECU software. Updating the software of ECUs over the air
would indeed enable performance improvement and bug fixes without the need of expensive
vehicle recalls, and would further allow Original Equipment Manufacturers (OEMs) to
upgrade or enable new features remotely, as well as to offer even more personalized services.

In this thesis, I designed and developed a flexible and efficient concept for wirelessly
updating automotive software. The system consists of a diagnostic test device, a wireless
vehicle interface, and an Aurix TC277¢ ECU. The diagnostic test device (that can be a
smart-phone, laptop, or tablet) is wirelessly connected to the wireless vehicle interface,
which is directly wired to the vehicle bus system. To establish trust between the diagnostic
test device all the way to the ECU, a seed and key challenge response system is used,
whereas a 32-bit CRC ensures integrity on the complete data path. To increase the
efficiency of the data transfer on the vehicle bus, the implemented system uses a modified
“UDSonCAN” protocol. The update system is also capable of performing parallel updates,
i.e., simultaneously sending data to multiple ECUs connected to the same vehicle bus or
distributed to multiple vehicles. To further speed up the update process, the system also
implements a partial update functionality, which identifies the changes between different
software versions and only transfers the portion of code that has actually changed. If any
error occurs during the update process, or the uploaded software is faulty, the system
allows to restore a previously saved firmware version.

The developed system was evaluated experimentally and compared to a wireless update
system for the Volvo FlexECU. The modifications to the “UDSonCAN” protocol increased
the data transfer speed by 38%, and performing a standard wireless update resulted to
be 57% faster compared to the reference system. Parallel updates allowed a performance
improvement of up to 38% compared to a sequential update, whereas a partial update
enables a speed up of 83% in the tested scenario.

Credits

This thesis was written in 2017 at the Institute for Technical Informatics (ITI) at Graz
University of Technology and at the the Virtual Vehicle Research Center, both located in
Graz, Austria.

I want to express my gratitude towards Marco Steger from the Virtual Vehicle Research
Center who assisted in the development of the implemented system and also provided a
lot of expertise. He was also very helpful during our many talks, where he provided moral
support during the many problems when implementing the system. I also want to thank
Dr. Carlo Alberto Boano for the very good assistance during the design of the system
and the writing process of the thesis. He was always available for questions and I could
always rely on a fast answer. A big thanks goes to Dr. Allan Tengg for the hour long
debug sessions and the persistence in finding the errors. Also thanks to the Virtual Vehicle
Research Center for the opportunity to perform this thesis and the provided hardware.

A special thanks to my girlfriend Sarah Stummer, you were always very understanding
during the long hours and late evenings. You also provided the best moral support when
I was doubting that the system would even work at all. Thanks for the countless dinners
you cooked alone, because I was working on this project. Thanks, for the mostly welcome
interruptions that often gave me the ideas I was looking for for hours.

Graz, August 2017 Thomas Niedermayr

Contents

Introduction
1.1 Goals

1.2 Challenges e
1.3 Contributions e
1.4 Structure e

Background

2.1 Automotive Protocols

2.2

2.3

2.4
2.5
2.6

3.1
3.2
3.3
3.4

3.5

3.6

2.1.1
2.1.2

Controller Area Network (CAN)
UDS - “UDSonCAN” (ISO 14229-3)

Wireless protocols for in-vehicle communications

2.2.1
222

TEEE 802.11n
IEEE 802.11s

Hardware

2.3.1
2.3.2

Beagle Bone Black
AURIX ECU e

Cyclic redundancy check (CRC32)
Linker Files
Intel Hex Format

System Architecture

Workflow e
Wireless Interface
CAN Interface o
Diagnostic Test Device oo

3.4.1
3.4.2
3.4.3
WVI
3.5.1
3.5.2
ECU
3.6.1
3.6.2
3.6.3

Parser
Error Handling L
Update Management L.
File Interpreter
Update State Machine L.
Flash Driver
Memory Management
Error Handling

10
11
12
13

14
14
14
16
17
18
18
19
19
20
24
25
26

3.6.4 Update Management

4 Design and Implementation
4.1 General Remarks
4.1.1 AURIX Documentation
4.1.2 Memory e
4.1.3 Reset Behavior
4.1.4 Writing to the Program Flash (PFlash)
4.2 Standard Wireless Update oo
4.2.1 Parser e e e e
4.2.2 Memory Management
4.2.3 Linker File
424 Update Process L
4.2.5 Modified Boot Code
43 Seedand Key
4.4 CRC . . . o e
4.5 AURIX Architecture specific Optimization
4.6 Modified UDS Protocol
4.7 Parallel Update
4.8 Partial Update
4.9 Diagnose Function oL
4.10 Backup and Restore L
5 Evaluation
5.1 Evaluation Setup
5.2 Efficiency e
5.2.1 UDS Evaluation,
5.2.2 Flash driver evaluation.
5.2.3 Volvo FlexECU and AURIX ECU wireless update comparison
5.2.4 Parallel SW update evaluation
5.2.5 Partial SW update evaluation
5.3 Security
5.4 Integrity L
5.4.1 Diagnose function evaluation
5.5 Safety e
6 Related Work
7 Conclusion and Future Work
A Definitions
B Code Samples
B.1 Bootloader
B.2 Flash Driver. e

36
36
36
37
37
37
38
39
39
40
41
44
45
45
46
47
49
51
52
52

54
54
95
95
56
57
57
58
99
60
60
61

63

66

68

C Modifying SW to be used with wireless SW update 75

C.1 Mandatory e 75
C.1.1 Optional - for partial update optimization 76

C.2 Optional e 77
C.2.1 Add CAN and Flash driver 77

C.2.2 Addstats.c/.hfile 78

C.2.3 Add delete and reset command to can handler 78
Literaturverzeichnis 80

List of Figures

1.1 Abstract system architecture of the wireless SW update system developed

in this thesis. 10
1.2 Connection between goals, challenges and contributions. 13
2.1 CAN Frame Format 2.0. 15
2.2 Structure of UDS frames (CAN data frame). 16
2.3 Diagnostic Test Device (BBB with WLAN-USB-Adapter). 19
2.4 Wireless Vehicle Interface (BBB with CAN Cape and WLAN-USB-Adapter). 20
2.5 Schematics of CAN Cape for Beagle Bone Black. 20
2.6 TC277 TFT application kit. (Source: Infineon, 2017) 21
2.7 TC27x Block Diagram. (Source: Infineon TC27x Target Specification V3.0

2011-12, 2017) . . o 22
2.8 Calculation of a simple two bit CRC. 25
2.9 Description of Intel Hex File. 26
3.1 System architecture of the wireless update system. 28
3.2 Sequence for the Update Process. 29
3.3 Layout of parsed file from DT. 33
3.4 Update sequence for the ECU bootloader. 35
4.1 Linker file changes for memory section in RAM. 38
4.2 Intel Hex File and parsed data File with reduced size. 39
4.3 Structure of the DFlash segment. 40
4.4 Changes to linker file of SW to be uploaded. 41
4.5 Example Update Process for a standard wireless update with first code

block containing startup sequence at address 0x80008000. 42
4.6 Changes to the start up code of the bootloader. 44
4.7 Flash driver automatically chooses best way to write data. 46
4.8 Structure of modified UDS frames (CAN data frame). 47
4.9 Types of parallel updates. L 50
4.10 Sector structure of Program Flash. 51
5.1 HW testbed used for evaluation. 54

List of Tables

2.1
2.2

4.1

5.1

5.2
5.3

5.4

5.5
5.6

5.7
5.8
5.9

Sample UDS commands.
Command Sequences for Flash Control.

List of commands for the bootloader.

Modified UDS protocol is 38% faster than standard (ISO 14229-3) UDS
protocol. e
Optimized flash driver is 61% faster than standard flash driver.
Standard wireless update for AURIX ECU only takes 43% of the time,
compared to the Volvo Flex ECU.
Parallel update only takes 62% of the time compared to sequential update
(computed values), and only 25% slower than update of single ECU.
Partial update takes 83% less time than standard wireless update.
Evaluation of Seed and Key algorithm with fixed and random seed. (Results
calculated)
CRC32 succeeded for all tested manipulations.
Diagnose function works correctly or not at all.
Duration of the backup/restore process inms.

56

58

Chapter 1

Introduction

The increasing complexity of automotive software (SW) and the rising number of new
services that vehicles have to offer is drastically increasing the code size in modern elec-
tronic control units (ECUs). More lines of code also introduce more bugs. In the past,
such bugs were either ignored, if not critical for the proper operation of the vehicle and
the safety of its passengers, or had to be fixed in a workshop through a wired connection.
Recalling vehicles to perform a “wired” SW update is indeed quite expensive for Original
Equipment Manufacturers (OEMs). Therefore, if a non-critical bug was present in an
ECU (for example, causing the entertainment system to crash every twentieth time), an
OEM would leave the customer unsatisfied and fix the bug in the next vehicle model,
rather than calling back thousands of vehicles to perform a wired SW update. In recent
years TESLA introduced the world to the possibilities of modern technology in vehicles
[Gab16]. They were the first to implement a large scale wireless update system to keep
their fleet up to date and add new features. One advantage they have, compared to other
vehicle manufacturers, is that they only offer pure battery electric vehicles that are much
simpler than combustion engine vehicles. This reduces the load on the engine control unit
and simplifies the development of the engine control SW. Nevertheless, the possibility to
update the software of ECUs over the air (OTA), and hence to enable performance im-
provement and bug fixes without the need of expensive vehicle recalls, is very attractive to
any OEM. The latter can use wireless SW updates to upgrade or enable new features re-
motely, as well as to offer even more personalized services to customers. Furthermore, the
use of OTA SW updates is not only limited to the remote download of up-to-date software
directly by the car owners, but can also be exploited in several other stages of a vehicles
lifetime: from the vehicle development and the manufacturing stage on the assembly line,
to the diagnosis of problems in a workshop or service center.

To enable those functionalities, I developed and evaluated a flexible and efficient con-
cept for wirelessly updating automotive SW. The system was evaluated in a testbed con-
sisting of one diagnostic tester, two wireless vehicle interfaces (Section 3.5) and two AURIX
ECUs. Such a system, sketched in Figure 1, can be used to enable the wireless remote
installation of new features and to drastically improve the efficiency of maintenance of
modern vehicles. The diagnostic test device can be a laptop, tablet, or PDA and is used
to provide the user interface and the control of the update system. It is connected via
802.11s to a wireless vehicle interface (WVI), which is directly wired to the vehicle bus
system through which all ECUs are interconnected. In this work I used the Controller

CHAPTER 1. INTRODUCTION 10

|
Vehlicle ECY
|
|
|
. . |
& Dlagnost.lc Test ((‘))) ' ((())) Vehicle Interface ECU
Device |
% \ | L & I
|
|
|
| ECU
|

Figure 1.1: Abstract system architecture of the wireless SW update system developed in
this thesis.

Area Network bus (CAN) for the connection between the WVI, and the Infineon AURIX
as electronic control unit.

1.1 Goals

This thesis aims to practically implement a concept for OTA automotive SW updates and
evaluate the latter on a real ECU. The update concept should address four important top
level goals:

e Security e Efficiency

e Integrity e Safety

Efficiency: Some situations, like the VW emission scandal [Newl5] require that a
lot of vehicles need to be updated in a cost and time efficient way. So the goal of the
introduced system is to provide an update mechanism that is as efficient as possible.
To improve efficiency of OTA updates for automotive systems, the update sytem to be
designed needs to support parallel and partial updates. Updating multiple ECUs at the
same time with the same update is called a parallel update and can be done in two ways.
Either two or more ECUs are connected to the same vehicle interface through the vehicle
bus, or two or more WVIs are connected to the diagnostic test device. For both approaches
the same update is done on multiple ECUs at the same time.

A parallel update can be used for the so called “workshop scenario”, where multiple
vehicles in a workshop need to be updated. A mechanic can use the wireless update system
to simultaneously update the SW in multiple vehicles. A partial update hence means that
only the portions of the SW that have changed are wirelessly transferred, speeding up the
whole update process. This method is very suitable for version updates and bugfixes, as in
those cases often only small portions of the SW need to be changed. In a perfect scenario
where only one byte changes, only this single byte has to be transferred. This has the
potential to drastically decrease the transferred data.

Security: In recent years there were some big scandals with vehicles being hacked and
controlled remotely to shut off the engine or control the entertainment system [And15].
This had the consequence that security concerns needed to be addressed in vehicle design.
Introducing a system that is capable of changing the SW that controls the car is indeed a

CHAPTER 1. INTRODUCTION 11

major concern for a lot of people. Because of that, it has to be guaranteed that the update
is only done in a secure environment. To minimize the overhead and maximize efficiency,
an authentication with keys is used to verify the authenticity of the diagnostic test device
to the WVL.

Integrity: As shown in Figure 3.1, there are multiple data transmissions involved and
the data for the update is read and stored multiple times. In such a system it can happen
that some pieces of data get corrupted by an error when reading or storing the data. It is
also possible that the data gets modified during transfer.

Safety: In automotive systems every safety relevant system has to have a fail safe
mechanism, also called “safe state”. To give an example, imagine an electronic steering
column lock that uses a bolt to lock the steering wheel. If any part of the complete system
fails during operation of the vehicle, it has to be guaranteed that the steering must not be
locked. In this case, the “safe state” would be that the bolt stays open indefinitely. For the
software update system this concept is used without that many restrictions, the biggest
one being that the vehicle is not moving during the update, and another being that the
system does not include any moving mechanical components. This radically reduces the
safety efforts that have to be implemented in this work and the costs for such measures.

1.2 Challenges

To reach the goals defined above, there were some specific challenges to conquer. Some
of those challenges are specific to the system architecture and some are general challenges
when designing such a system.

The first challenge deals with security. As I build on top of the SecUp framework
[SBKT16], this thesis focuses mostly on the verification of the diagnostic test device, to
ensure that the diagnostic test dvice is authorized to perform an update. Another set
of challenges comes from the validation of the update process, to ensure that not even a
single bit has changed. First, I want to ensure the integrity of the transferred data from
the diagnostic test device until it is stored at the ECU. The next challenge is to ensure
that the updated SW is executable and that it initializes correctly. The problem in this
regard is to find a trade-off between keeping the SW independent of the update system
and the error handling capabilities of the system. Which means, to keep the changes in
the SW to be updated to a minimum, but ensure that at least the SW is running after an
update.

The next challenges concern efficiency. To improve the overall time for the update
process, 1 identified the data transmission between the vehicle interface and the ECUs
as the bottleneck. On the one hand, the data throughput has to be maximized over
the connection between the interface and the ECU, which means, a redesign of the used
protocol. The ECU must still be able to identify missed or out of order packages. On
the other hand, the data to be transferred has to be minimized, which can be done by
utilizing parallel and partial updates. Parallel updates include multiple ECUs and it has
to be managed, that every ECU knows if it is part of the current update or not. Executing
partial updates, there is the trade off between complexity and bigger deltas. This means,
the bigger the smallest part in a partial update, the easier it is to manage. When the data
transfer is optimized, the ECU has to keep up with the increased transfer speed by using

CHAPTER 1. INTRODUCTION 12

architecture specific commands to optimize performance when storing data.

The last challenge arises from safety concerns. The system must be able to recognize
errors during the update process and retain a functional state. The detection of errors is
already covered by other challenges, which leaves the handling of those errors to be the
last challenge for the system. The handling of those errors has to be done in a way that
keeps the system in a fully-functional state.

During the implementation of the update concept, one of the biggest challenges was the
instability of the debugging environment. Most of the times the debugger was connected
to the ECU that received the update, but apparently the behavior of the microcontroller
changes when connected to the debugging utility. This really complicated the develop-
ment procedure. Another problem was the poorly documented ECU, especially in the
sections describing how to write to flash memory and how to handle its write protec-
tion. This, combined with the limited debugging capabilities, drastically slowed down the
implementation and the debugging process.

1.3 Contributions

The key contribution of this thesis is the introduction of an efficient and feature rich
wireless update system that utilizes architecture-specific functions of the used ECU. The
system uses a redesigned Unified Diagnostic Service (UDS) protocol that maximizes the
data throughput during the transfer, but still keeps the functionality of the protocol. As
it is standard in automotive industry, the diagnostic test device is authenticated by the
ECU with a seed and key algorithm. To ensure data integrity, a cyclic redundancy check
(CRC) is used, so that integrity can be ensured along the complete data path. Once the
data is transferred and the updated SW is running, a diagnose method is used to check
if the initialization was done correctly. Furthermore, the system introduces an approach
to handle multiple executable programs on one ECU that can be selected during the boot
procedure.

To reduce the amount of data, the system is capable of parallel updates (parallel upload
of the data to the ECU). The benefit of a parallel update increases with the number of
connected ECUs, as the data is only sent once to all connected devices that need to be
updated. The implemented system is also capable of basic partial updates. A basic partial
update means that the overhead to minimize the transferred data is kept to a minimum.
This implicates that if only one byte changes, the whole memory sector containing that
byte has to be transferred. In a more advanced system, it can be possible to transmit only
the changed byte and the rest of the management is done on the ECU. Both of the two
previously mentioned update mechanisms are implemented in a way that does not affect
the code size of the bootloader or the updated SW. The necessary calculations are done
on the diagnostic test device to reduce the code overhead on the ECUs. Because there is
always a possibility of failure, I also implemented a fail safe mechanism. The implemented
system offers the possibility to back up a running SW and, in case of an error during the
update, the system is able to perform a rollback to the previously backed up SW. Figure
1.2 shows the connection between the goals, challenges and the contributions.

Scientific publications: The implemented system is combined with the SecUp frame-
work [SBK*16] and will be released as a revised version of the SecUp paper later this year.

CHAPTER 1. INTRODUCTION 13

It utilizes the presented systems capabilities (parallel and partial update) and system opti-
mizations and focuses on the security and safety aspects of an automotive wireless update
system.

1 . .
Goals Challenges ; Contributions
1 N
1
1 Seed and Key
[
Ver_lfy auth_ent\cwty of CRC
diagnostic tester
_
[
Ensure integrity of . .
transferred data Diagnose function
——
Security
[
Ensure executability of Use of architecture
updated SW specific commands
— N
Integrity
[
. Optimize data Modified UDS
P‘lreless SW Update System processing in ECU protacol

H

Efficiency \
1

Safety

Maximize data

|
I g 0 -
; Parallel updat
throughput 1 e st
1
1 s 00000 -
1
| ——™

Handle parallel and
partial updates

H

Partial updates

J

Handle errors during [T Restore

update

AURIX documentation

and development Backup

|
7

[

Figure 1.2: Connection between goals, challenges and contributions.

1.4 Structure

The remaining part of this work is structured as follows. In Chapter 2, I give an in-
troduction into the necessary background starting with the automotive bus transmission
protocols followed by the wireless protocols for in-vehicle communication. After that I will
describe the used hardware which includes the Infineon AURIX application kit and the
platform that is used for the vehicle interface as well as the diagnostic test device. The
chapter is ended with the description of the used CRC algorithm and a short introduction
to GNU linker files as well as the Intel Hex Format. Chapter 3 describes the system archi-
tecture, before Chapter 4 illustrates the design choices and describes the implementation
details. In Chapter 5 I cover the evaluation of the different contributions before Chapter
6 discusses past work related to this thesis. Finally Chapter 7 concludes the thesis and
presents future work to further improve the presented system.

Chapter 2

Background

This chapter introduces the necessary background and clarifies some terms that will be
used throughout this work. For all used abbreviations see the list of abbreviations at
the end of this thesis. Section 2.1 illustrates the automotive transmission protocols used
to communicate between the WVI and the ECU. It describes the CAN protocol and its
corresponding top level protocol “UDSonCAN” (ISO 14229-3). Following is the description
of the hardware that is used for the testbed, which includes two different platforms (Section
2.3). The chapter continues with the description of the used CRC algorithm (Section 2.4)
and a very short introduction into linker files (Section 2.5) which are very important for
memory management during development. Finally, Section 2.6 introduces the basics of the
Intel Hex File format, which is the file format of the SW to be uploaded and is generated
by the toolchain used to develop the SW.

2.1 Automotive Protocols

The implemented system has two main data transmission paths with very different phys-
ical properties. This requires the use of different transmission protocols and transceivers
(transmitter and receiver). The first transmission is a wireless connection between the
diagnostic test device and the WVI. The second one is the connection between the WVI
and the AURIX. As the system should nicely integrate into the existing vehicle infrastruc-
ture, it uses the existing data transmission buses installed in vehicles. The most popular
is the CAN bus and is therefore used in this work. On top of the CAN protocol, the
“UDSonCAN” protocol described in Section 2.1.2 manages higher level diagnostic func-
tions. In future vehicles, there will probably be more advanced and faster transmission
systems which will require some adaptions to be used with the implemented system, or
the new transmission systems already provides mechanisms that had to be added to the
UDSonCAN protocol in this work.

2.1.1 Controller Area Network (CAN)

CAN 2.0 was introduced in 1991 by Robert Bosch GmbH. It is a vehicle bus standard that
allows different devices inside a vehicle to communicate with each other. It is a message
based protocol, which means there is no receiver or sender address. Instead, every message
has an identification that represents the contents of that frame. It was originally designed

14

CHAPTER 2. BACKGROUND 15

for multiplex electrical systems in vehicles, and since then it is also used in many other
contexts.

Interframe < DATA FRAME > Interframe
Space — p l@— Space
‘ or
Overload
Frame

Start of Frame ‘
Arbitration Field
Control Field

Data Field

CRC Field

ACK Field

End of Frame
Figure 2.1: CAN Frame Format 2.0.

The CAN bus has some very important properties:

e prioritization of messages;

guarantee of latency times;

system-wide data consistency;

error detection and signaling;

automatic re-transmission of corrupted messages as soon as the bus is idle again.

Information is sent in fixed format messages of different but limited length. There are
two bus levels, 0 as the dominant level and 1 as the recessive level. Transmission is
event-triggered, which means the nodes decide individually when to send and there is no
master/slave or scheduling required. Therefore, the CAN node checks the bus and, if
free, it starts transmitting. At the beginning of the message (see Figure 2.1) there is the
Arbitration Field which contains the ID for the message. If two nodes start transmitting
at the same time, a collision occurs. This is handled through the following technique.
Every node that is sending also monitors the bus and, if a recessive bit is sent, but there
is a dominant level during the arbitration field, the node that detects the inconsistency
stops transmitting without signaling an error and starts again after the bus is free. To
recognize bit errors inside the frame, a 15 bit CRC checksum is included in every message.
The transceivers count the number of errors and, if there are too many, they shut down.

CHAPTER 2. BACKGROUND 16

2.1.2 UDS - “UDSonCAN” (ISO 14229-3)

Unified Diagnostic Services (UDS) is a diagnostic communication protocol specifically
designed for the automotive environment. ISO 14229 tries to generalize the principles of
KWP 2000 diagnostics (ISO 14230-3) to make them independent of the underlying bus
protocols. ISO 14229-3 describes the mechanism to implement UDS on the CAN bus. As
it is a higher level protocol, it only defines the contents of the data frame from the CAN
protocol. The message structure of those data frames can be seen in Figure 2.2. A request
always starts with a service identifier (ID) specifying the type of service that is requested.
For more complex services and some communication control, there is also one byte for
the sub function level. The rest of the message is the parameter for the defined service
request. The response, if positive, contains the same service ID ored with 0x40 and the
same sub function level. For errors there is a list of error IDs and error response codes.

Service ID E-Subfunction : R {p ¢ Service
SID E--I:-e-\-/-e-I-I:-E-X--l eques arameters Request
.
i Subfunction i Positive
SID | 40h i__'_—_e_‘_’?_'_l_-fz‘{__i Response Parameters Response
Error ID Service ID ||Error (Resp.) Negative
7Fh SID Code Response

Byte 1 Byte 2 Byte 3

Figure 2.2: Structure of UDS frames (CAN data frame).

The specification of UDS still leaves vehicle manufactures room for specific commands.
All ECUs in modern vehicles support this diagnostic service, and one specific function of
it is to update the firmware. UDS also defines specific sequences that have to be executed
in order to execute a firmware update. It also defines different sessions:

e Default diagnostic session: standard session to read and delete diagnostic trouble
codes and session control;

e Programming session: used to update the firmware;

e Extended diagnostic session: unlocks additional diagnostic commands (e.g., sen-
sor adjustment);

e Safety system diagnostic session: to test safety relevant functions (e.g., airbag).

The standard also reserves some session identifiers that can be used by vehicle manufac-
turers and suppliers for specific sessions. For security purposes the standard also defines
a “Seed and Key” procedure for security critical services. A “Seed” is sent from the ECU
to the diagnostic test device. The device computes a corresponding “Key” and sends it
back to the ECU to unlock the requested services.

Table 2.1 lists a few example commands.

CHAPTER 2. BACKGROUND 17

Service CAN data frame Description
Diagnostic session control 0x1001 Default Session
0x1002 Programming Session
Security Access 0x2701 Request Seed
0x2702 Send Key
ECU Reset 0x1101 Hard Reset
0x1102 Soft Reset
0x1140 - 0x117E Manufacturer specific commands

2.2

Table 2.1: Sample UDS commands.

Wireless protocols for in-vehicle communications

In todays vehicles, wireless in-vehicle entertainment and communication is on the rise.
Vehicle manufacturers like Opel with their “On-Star” [Opel7] on-board WIFI solution
and VW with their “Car-Net” [Voll7] solution, are bringing wireless communication into
the vehicles. In the context of this thesis, we have quite a lot requirements to the wireless
vehicle communication, that are not all present in the aforementioned solutions. In the
following the most relevant requirements that must be considered designing a wireless
update system are listed.

Reliability: the automotive environment is quite harsh in terms of interference due
to the firing of the spark plugs and the seclusion of the vehicle to the outside world.

Security: as security is a very hot topic for vehicle manufacturers, adding a WVI
to the vehicle that is capable of updating the SW of an ECU is a very critical task.

Interconnection: the WVI should be able to connect to existing networks (e.g., a
workshop WLAN) to enable remote updates.

Throughput: due to SW sizes of infotainment systems exceeding 100 Mb, the
wireless connection needs to offer high throughput for a fast data transfer.

Extendability: the system should be easily extendable to cover larger distances
without the need to reconfigure the whole network.

Multicast: the system should be able to send updates to multiple vehicles at once,
enabling parallel updates, where several vehicles can be updated at the same time
with the same SW version.

Functional safety: in the automotive environment, functional safety is very critical
topic. As updating a vehicle ECU is for sure a safety relevant task, functional safety
requirements have to be considered selecting the wireless protocol.

With the listed requirements, a suitable communication technology for the wireless
update system can be selected. There are a lot of very power-efficient protocols like IEEE
802.15.4, which was designed specifically for power efficiency and simplicity, and Bluetooth
Low Energy (BLE), which are not suitable for the desired system due to the low data

rate.

IEEE 802.11p [80210] was developed specificaly for the automotive environment

CHAPTER 2. BACKGROUND 18

and is intended for vehicle-to-vehicle communication. A problem is the availability and
the expensive price of the hardware. On top of that, the connection to other IEEE 802
networks would be hard, because IEEE 802.11p uses an automotive specific stack and
is not IP based. Other IEEE 802.11 networks like IEEE 802.11b/g/n offer the desired
data rates and range, and are easily connectable to most of the existing infrastructure as
they are the most commonly used wireless protocols. More and more of those wireless
chips also support IEEE 802.11s, which is an amendment for mesh networking. It allows
additional devices to be used as relay nodes (e.g., a parked vehicle or a placed relay node)
between two end nodes to extend the range of the wireless update system without any
configuration of the network or the nodes.

2.2.1 IEEE 802.11n

IEEE 802.11n, published in 2009, is the latest broadly used amendment to the IEEE 802.11
protocol. Due to its maximum data rates from 54 Mbit/s up to 600 Mbit/s it is the fastest
broadly available and supported standard to date. It adds support for multiple-input
multiple-output (MIMO) and 40 MHz channels. MIMO is a technology utilizing multiple
antennas to resolve more information than using one antenna. Additionally, the 40 MHz
channels double the data rate compared to the previously used 20 MHz channels. This
leads to a transfer rate superior to IEEE 802.11a and IEEE 802.11g. IEEE 802.11n is also
backwards compatible and enables to connect to devices supporting previous standards
(IEEE 802.11b/g). The benefit of the MIMO technology strongly depends on the number
of antennas used. For every antenna at the sender and the receiver, an additional data
stream can be transferred. To reduce the overhead of the multiple protocol layers, IEEE
802.11n utilizes frame aggregation, which is the process of sending multiple data frames
in one transmission. Therefore, multiple Ethernet frames are collected and wrapped in a
single IEEE 802.11 header. Because the Ethernet headers are much shorter compared to
IEEE 802.11, this drastically reduces overhead and increases the throughput.

2.2.2 IEEE 802.11s

IEEE 802.11s extends the IEEE 802.11 Media Access Control standard by defining a
protocol, that supports broadcasts, multicasts and unicasts. To achieve this, it uses radio-
aware metrics over self-configuring multi-hop technologies. It defines the Hybrid Wireless
Mesh Protocol [80206] as a default mandatory routing protocol which uses on-demand ad
hoc routing and tree based routing. Wireless mesh network devices (mesh stations) form
mesh links with one another, which forms so called mesh paths that can be used for multi
hop communication. ITEEE 802.11s also includes mechanisms for deterministic network
access, congestion control and power save.

As IEEE 802.11s only changes the MAC layer, it depends on IEEE 802.11 a/b/g/n to
carry the actual data. In the implemented wireless update system, IEEE 802.11s is used
with IEEE 802.11n carrying the actual traffic.

CHAPTER 2. BACKGROUND 19

2.3 Hardware

The testbed requires two different hardware components. First, a Beagle Bone Black is
used as diagnostic test device and as WVI. The two Beagle Bone Black boards are equipped
with a TP-Link WLAN-USB adapter to enable an 802.11s connection. The WVT is also
equipped with a custom made CAN-Cape, illustrated in Figure 2.5, that enables a CAN
connection between the WVI and the AURIX platform, which is the second hardware
component.

2.3.1 Beagle Bone Black

Beagle Bone Black (BBB), as seen in Figure 2.3, is a low-cost, community-supported
linux development platform for developers and hobbyists. It has an AM335x 1GHz ARM
Cortex-A8 CPU and 512MB RAM. For further extensions it also hosts a USB connector
and two 46 pin headers. It is optimized to boot linux in under 10 seconds and can easily
be programmed through the USB port.

Diagnostic Test Device (DT)

The diagnostic test device, seen in Figure 2.3, is based on the BBB, which is equipped
with a TP-LINK TL-WN722N WLAN-USB-Adapter to enable an 802.11s connection to
the vehicle interface.

Figure 2.3: Diagnostic Test Device (BBB with WLAN-USB-Adapter).

Wireless Vehicle Interface (WVI)

The wireless vehicle interface, seen in Figure 2.4, is also based on a BBB and is placed
inside the vehicle. It is equipped with the same WLAN-USB-Adapter a the DT, which
enables a wireless connection outside of the vehicle. Furthermore the BBB is equipped
with a CAN cape (see Section 2.3.1) which connects the WVT to the vehicle bus system,
and enables it to communicate with the ECUs inside the vehicle.

CHAPTER 2. BACKGROUND 20

=

(dewd) |

Figure 2.4: Wireless Vehicle Interface (BBB with CAN Cape and WLAN-USB-Adapter).

CAN Cape

Figure 2.5 shows the cape used to enable a CAN connection between the ECU and the
WVI. It is equipped with two Texas Instruments CAN transceivers (SN65HVD231), each
connected to a 9 pin D-Sub connector. The cape is plugged into the BBB with two 46 pin
headers.

~No @ o

o .
*123311221% L Y LY P Y Y Y Y

Figure 2.5: Schematics of CAN Cape for Beagle Bone Black.

2.3.2 AURIX ECU

I use the AURIX Application Kit TC277 TFT, illustrated in Figure 2.6 as electronic
control unit. It is a high performance platform compliant to support safety requirements
up to ASIL-D'. Among others, it has the following features:

! Automotive Safety Integrity Level (ASIL) is a risk classification scheme with four levels, A to D with
D being the highest.

CHAPTER 2. BACKGROUND 21

ﬂ AT ; ! g

Figure 2.6: TC277 TFT application kit. (Source: Infineon, 2017)

3 x 32-bit scalar TriCore™ CPU running at 200 MHz in the full automotive tem-
perature range;

Up to 4MB Flash and 472KB RAM;

Ethernet 100 Mbit/sec;
Support for FlexRay, CAN, CAN FD, LIN, SPI;
Multi Voltage Safety Micro Processor Supply TLF35584;

e Dedicated closely coupled memory areas per core.

Figure 2.7 shows the block diagram of the TC27x. Relevant for this thesis is the
MultiCAN+ module on the left, which is connected to the system peripheral bus (SPB),
and the flash modules, in the middle of the upper half that are connected to the CPUs
via the Shared Resource Interconnection (SRI) high speed system bus.

AURIX Program memory unit (PMU)

The Program Memory Unit (PMU) controls the flash memory and the BootROM. For the
description of the flash memory and its operations I need a specific terminology.

e Flash module: A PMU contains one flash module with its own operation control
logic.

e Bank: A flash module contains separate banks. In the PFlash there are one or more
PFx banks and in the DFlash two DFx banks. Banks support concurrent operations
with some limitations due to common logic.

CHAPTER 2.

BACKGROUND

22

e Page: In the PFlash a page is an aligned group of 32 bytes and in DFlash of 8 bytes.
It is the smallest unit that can be programmed.

e Program burst: A burst is the maximum amount of data that can be programmed
with one command. The programming throughput is higher than for programming
single pages. A burst in PFlash consists of 8 pages (256 bytes) and in DFlash 4
pages (32 bytes).

e Assembly Buffer: A buffer for the data before it is stored to the memory. A “Load
Page” command fills the buffer and a “Write Page” or “Write Burst” command flush

the buffer.
System Peripheral Bus(SPB)
Checker Core ‘ < v
FPU | I FPU | I | LMU
PMI DMI PMI DMI
32 KB PSPR TC1.6P oo 32KB PSPR TC1.6P —_— 32KB
ChCHE Lif:;ﬂ 8KB DCACHE CachE CPU2 8 KB DCACHE RAM
[ws] MiS [ws] [ws] [
~‘ TSRI Cross Bar InterconnectT T(XBar_SRI) T I
<—‘ — | XxBAR
iy Checker Core | ‘
I ws I FPU M/s I S I S | | S Abbreviations:
ICACHE: Instruction Cache
PMI DMI DFlash | prjasho | PFIashi DCACHE: Data Cache
TC1.6E {12 KBIBSPR 384KB | 5B 2MB DSPR: Data Scratch-Pad RAM
gigﬁ*&%ﬁ’_’% CPUO ey DF_HSM PSPR: Program Scratch-Pad RAM
3 BROM: Boot ROM
Lol g Dgagﬁs PFlash: Program Flash
DFlash: Data Flash (EEEPROM)
[PMUO : SRISlave Interface
E : SRI Master Interface
SRI Cross Bar Interconnect (XBar_SRI)
5V Ext. Supply
‘ (Optional1.3V, 3.3V)
L0
| N
HSSL
DMA
HsCT ¢ chamels T
=1 L1 Debug
I Interfacel JTAG
- System Peripheral Bus (SPB)
Multi CAN+ B
(4 Nodes, 256 MO)) Scu ST™M
4 MTU
e SENT — —
ASCLIN vy 1 (10 cramneis) EVR K HSM
PLL
" PLL ERAY
E-Ra
QasPI e fl S R A = A
CAPCOMO Ports b— () Interrupt
GTM —]
(84 e Confia) — K (CCu 60, CCUBT) Router
2 PSI5 SMU — BCU
MSC [/ chamele)
oM —N DS-ADCx —
EtherMAC |——) (—— PSI5$ =05)
i)
12C K GPT12 BMU g— V(A[:(:)x (agviz |
X=0-
System Peripheral Bus(SPB)

Figure 2.7: TC27x Block Diagram. (Source: Infineon TC27x Target Specification V3.0

2011-12, 2017)

CHAPTER 2. BACKGROUND 23

The used application kit with the AURIX TC277 has the following flash structure:

e PFO and PF1: 2 MByte each;

e DFO consisting of:
DF_EEPROM: 384 KByte (48 logical sectors EEPROM0 EEPROMA47);
DF_UCB: Flash area for protection data (16 logical sectors UCBO UCB15 with
1 KByte each).
e DF1 consisting of:
DF_HSM: 64 KByte.
To program and erase the flash memory, there are certain command sequences that

have to be used. Also, there are some additional requirements when writing to program
flash. In Table 2.2 the most important command sequences are summarized.

Table 2.2: Command Sequences for Flash Control.

Command sequence | l.cycle | 2.cycle | 3.cycle | 4.cycle
Enter Page | Address| .5554
Mode Data ..XX5y
Load Page | Address| .55F0
Data WD
Write Page | Address| .AA50 | .AA58 | .AAA8 | .AAAS
Data PA Lxx00 | LxxA0 | ..xxAA
Write Burst | Address| .AA50 | .AA58 | .AAAS | .AAAS
Data PA Lxx00 | .xxA0 | .xx7TA
Clear Sta- | Address| .5554
tus Data .xxFA

The parameter data of the command sequences can be one of the following:

e PA: Absolute start address of the Flash page. Must be aligned to burst size for
Write Burst or to the page size for Write Page.

e WD: 64-bit or 32-bit write data to be loaded into the page assembly buffer.
e xxYY: 8-bit write data as part of a command cycle. Only the byte YY is used for

command interpretation. The higher order bytes xx are ignored.

xx5y: Specific case for YY. The y can be 0x0 for selecting the PFlash or 0xD
to select the DFlash.

Before a page can be programmed, it is very important that it is deleted. After that,
the containing Flash has to be put in page mode with the command Enter Page Mode.
Next, the Load Page command sequence loads the given data into the page assembly buffer.

CHAPTER 2. BACKGROUND 24

When enough data for a page is loaded, the Write Page starts the programming process
for a single page. To increase performance, there is also the Write Burst command, which
starts the programming process for an aligned group of pages. Both write commands
automatically reset the page mode flag.

Safety mechanisms (Endinit)

The Endinit function of the AURIX platform is a protection mechanism to prevent initial-
ization registers from being written during normal application run. The Endinit feature
consists of an ENDINIT bit incorporated in each WDT control register. Registers pro-
tected via an Endinit determine whether or not writes are enabled. There are 2 types
of Endinit protections. The first is an Endinit bit for each CPU. The second one is the
safety Endinit, which is very important for writing to program flash. During the command
sequences for the program flash, the safety Endinit has to be disabled otherwise program-
ming fails. Another thing to consider is that as soon an Endinit bit is set, the watchdog
starts a time-out. If the bit is not set before the time-out runs out, a malfunction is
assumed.

2.4 Cyclic redundancy check (CRC32)

To confirm if data is transmitted and stored correctly, cyclic redundancy checks can be
used. CRCs are designed to protect against common communication errors and to provide
assurance of data integrity. They are based on the remainder of a polynomial division of
the data. The transmitter calculates a check sum that is sent to the receiver, which
also calculates a checksum with the received data and the same polynomial. If the two
checksums do not match, there was either an error during data transmission or during the
transmission of the checksum. CRCs are the remainder of a polynomial division with a
fixed polynomial. The selection of the polynomial used, is crucial for the error-detecting
capabilities and the collision probability. A CRC is called an n-bit CRC when its result
(check value) is n bits long. For an n bit check value an n+1 bit polynomial is needed.
The CAN protocol defines a 15-bit CRC that is attached to every message. The generator
polynomial that is used for CAN is 1100 0101 1001 1001. To protect the integrity of
whole data blocks, a 32-bit CRC is used. It uses the same polynomial that is used for
Ethernet, i.e., 1 0000 0100 1100 0001 0001 1101 1011 0111. The mathematical analysis of
the error detection capabilities is a very complex subject and mostly focuses on random
data. Partridge, Hughes and Stone [SGPH98] evaluated the performance of checksums on
real data and found a significant deviation to the mathematical results for random data.
For the 32-bit Ethernet CRC it is safe to say, that it detects the following errors:

e Any 1 bit error;
e Any two adjacent 1 bit errors;
e Any odd number of 1 bit errors;

e Any burst of errors with a length of 32 or less.

CHAPTER 2. BACKGROUND 25

Figure 2.8 illustrates the calculation of a simple two bit CRC. The quotient of the
division is not needed for the CRC.

Message = 110101
Polynomial = 101

010100—=101=111 01
1

1
0

111 T
101

Quotient (has no function in CRC calculation)

1 - Remainder = CRC checksum

Message with CRC =110101 11

Figure 2.8: Calculation of a simple two bit CRC.

2.5 Linker Files

Linker files are used to determine the memory layout before compilation. The basic
principle is to define different named sections that can be alligned as defined in the linker
file. The names of those sections can then be used in the C code to define which parts of
the code should be placed in which sections. For every section, the absolute start address
and the size can be defined. Following are some of the most important operators and
commands.

e “ENTRY?”: defines the first executable instruction in an output file;
o “MEMORY?”: describes the location and size of blocks of memory in the target;

¢ Global definitions: integer variables and symbols can be defined global in the
linker file;

e dot*“.”: always contains the current output location counter. Assigning a value to
the . symbol will cause the location counter to be moved (never backwards). This
may be used to create holes in the output section;

o “SECTIONS”: controls exactly where input sections are placed into output sec-
tions, their order in the output file, and to which output sections they are allocated.

This is by far not a complete list, but should provide a very basic understanding of
how linker files work and what they can be used for.

Linker files also offer the possibility to put program code, data and variables into the
RAM for faster access. To accomplish that the regarding section has to be put into the
copy section, i.e., during the start up procedure that section is copied from the ROM to
the RAM memory. An example for a new memory section placed at a specific address can
be seen in Figure 4.4 in Section 4.2.3.

CHAPTER 2. BACKGROUND 26

2.6 Intel Hex Format

The program data, generated from the TriCore Entry Toolchain used to program the
ECU, is presented as an Intel Hex File. This format was introduced in 1973 by Intel and
is used ever since. This file is selected at the diagnostic test device to be uploaded to the
ECU. It contains the program code of the updated SW and needs to be interpreted by the
diagnostic test device. Figure 2.9 shows the most important commands that are relevant
for this thesis:

e :02000004 is followed by the first two bytes of the starting address of the data;
e :04000005 is followed by the starting address of the first code to execute;

e :00000001 signals the end of file;

e :06 to :10 at the beginning of the lines is the number of data bytes in the line;

— The number of data bytes, is followed by the lower two bytes of the address.

:020000048640642=P starting address of data
:1000000000000000700059B3000000000000000074
:10001000000000000000000064B81E799B47E186E4

number of data bytes
start address of first data byte

1104028000 FFFFFFFOO000000000000008A
:10403 0D058080000000000D0O0O0O00000078
:10404808000000D000000000000000DO0OOO0O0000CS
:08405800FFFFFFFFFFFFFFFF68
:1040600018401080000000D0O0000000000401080C8
:10407000000000D00000000000401080000000D0ODO
:104080000000000000401080000000D0O0O0O0O0O0O00090
:0C409000FFFFFFFFFFFFFFFFFFFFFFFF30

:04000005 80+660626047P start address of first Code to execute
:00000001 M cnd of file record

Figure 2.9: Description of Intel Hex File.

The hex file always starts with the first two bytes of the starting address. The following
lines contain the data bytes, starting with the number of data bytes in this line and, the
lower two bytes of the start address of the first byte of this line. The following byte is
always “0x00” for lines containing data bytes, followed by the actual data and concluded
with a one byte checksum. The checksum is the two’s complement of the least significant
byte of the sum of all byte values in the line, except the start symbol “:”. If at some point,
the last two bytes of the start address of the first byte of a line reaches an overflow, a new
line starting with “:02000004” increments the start address. Interpreting a hex file it has
to be considered, that consecutive data lines are not necessarily connected in the memory.

CHAPTER 2. BACKGROUND 27

Therefore it can be checked if the number of data bytes added to the lower two bytes of
the start address result in the next lines start address. At the end of every hex file, there
are two lines. Second to last, a line starting with “:04000005” and the address of the first
code to be executed. The last line always signals the end of the hex file.

Chapter 3

System Architecture

This section describes the system architecture for the wireless update system. Figure 3.1
shows the different parts of the system, including the diagnostic test device, the WVI and
the ECU, as well as the two data transmission paths.

Diagnostic Test Device Wireless Vehicle Interface ECU

; Beagle Bone Black with USB-WIFI i ¢
Beagle Bone Black with USB-WIFI and CAN-Cape AURIX TC277 TFT Application Kit

[User Interface File Interpreter Flash Driver

Error Signaling Error Handling

Update Management

|
—
|
|

[Error Handling

| | | |
e T
| | | |
| | | |

Update Management Update State Machine

[Wireless Interface J(--------------- b[Wireless Interface]

[CAN Interface] o CELCETYETET T > CAN Interface

Figure 3.1: System architecture of the wireless update system.

28

CHAPTER 3. SYSTEM ARCHITECTURE 29

This chapter starts with the description of the workflow for a wireless update (for more
details, please refer to Section 3.1). After that it describes the different parts introduced
in Figure 3.1, beginning with the two data transmission paths, the wireless interfaces
(Sect. 3.2) followed by the CAN interfaces (Sect. 3.3). This chapter further describes the
three hardware components and their responsibilities in the wireless update system: the
diagnostic test device (Sect. 3.4), the WVI (Sect. 3.5), and the ECU (Sect. 3.6).

3.1 Workflow

Diagnostic Tester WVI ECU

Discover WVI

“«——————————Connect and authenticate WVI—————————>

Choose WVI and
hex-File

Parse hex-File

I A

Init Programming
Request Programming Session >:
Enter Proéramming

| Session
Init Security Acces: > H
Request Seed >E

< Seed
Calculate Key

; Key from Seed >

S ——— Trusted Communication E—

Ny
»

Send parsed file for update:

Start Upload to ECU————————————>
» Request Download

N Y .

i Transfer
for each
block

Y.

Transfer Exit

CRC for Block

Validate Download

'
'
'
.
'
3!
>
'

Y

Reboot ECU

Figure 3.2: Sequence for the Update Process.

Figure 3.2 describes the overall workflow of the complete system. First, the hex file
(Section 2.6) is parsed and the necessary information is being extracted. The program data
is temporary copied into another file, where it is stored according to the memory sections.
For the partial update, the data file is now compared to the data file of the original SW
currently running on the ECU. This is done such that only the memory sections that have
changed need to be transferred. Now the WVI connects to the ECU using the specific
sequence defined by the UDS protocol described in detail in Section 4.6. The next step
is the data transfer, whose integrity is ensured by a CRC at the end of every frame, and
also at the end of every memory section. The latter is checked against the CRC calculated
over the stored memory content. Those redundancy checks ensure the integrity of the

CHAPTER 3. SYSTEM ARCHITECTURE 30

transfered SW. After the transfer is complete and the data has been checked, the system
has to switch from the bootloader to the newly transferred SW. This is done by storing
the start address to the data flash block and rebooting the ECU.

To handle errors in a newly downloaded SW, the system offers the possibility to backup
SW on the ECU and restore it, if the new SW is faulty. This is done with two newly
introduced commands and described in more detail in Section 4.10.

3.2 Wireless Interface

The wireless interface connects the DT to the WVI. To support the desired functionali-
ties the wireless interface has to meet the following requirements (detailed description in
Section 2.2):

e Fast data transfer;
e Mesh networking;
e Multicast.

The fast data transfer is necessary to ensure short update times. As the data transfer is
sequential, first the upload from the DT to the WVI on the wireless path, and after , the
download from the WVI to the ECU, a performance benefit on the wireless path, directly
contributes to a shorter overall update time. To enable a broad range of applications, the
wireless path should enable mesh networking. In a future scenario, it should be possible
that vehicles parked on the workshop parking slot, are connected to the workshop network.
To improve the signal quality and enable connections to vehicles parked further away, a
future wireless update system should provide multi-hop connections. For the parallel
update, the wireless interface should provide the possibility for multicasts, to send an
update to multiple recipients at the same time. Those requirements are fulfilled by the
IEEE 802.11s protocol (described in Section 2.2.2). It provides all desired functions and
is easy to implement. 802.11s was introduced by a study group back in 2003 and was
incorporated in the 2012 release of the 802.11 specification. The amendment adds mesh
networking capabilities and allows wireless devices to be connected in a way that broad-
and multicasts are possible.

This enables the “workshop-scenario”, where multiple vehicles in a workshop need to
be updated at the same time. In such a scenario, a mechanic can use the wireless update
system to simultaneously update the SW in multiple vehicles, and the same data packets
can be sent to multiple receivers at the same time. This applies when multiple vehicles
needing the same update are connected to the same mesh and can therefore be updated
at the same time. The time improvement depends on how many vehicles are updated at
the same time which means, the more vehicles are updated, the bigger the benefit. The
connection is already part of the SecUp framework [SBK™16] and can be used as is.

3.3 CAN Interface

As connection between the WVI and the ECU, only automotive buses can be used. There
are multiple possibilities like Controller Area Network (CAN), FlexRay, Lin and MOST.

CHAPTER 3. SYSTEM ARCHITECTURE 31

MOST is used for multimedia systems and optimized for high data rates, but is not used
for safety critical systems as it is not a deterministic bus system. LIN is the simplest bus
system, which was designed to connect sensors and actors. It is mostly used for comfort
systems where the higher performance of CAN is not needed. That leaves only the CAN
and FlexRay bus to be used for the implemented system. Due to the reduced complexity
and lower cost compared to FlexRay, CAN was selected for the connection between the
WVI and the ECU. The Controller Area Network (CAN) is a deterministic and fault
tolerant bus system that offers data rates up to 1 MBit on its two data lines “CAN
high” and “CAN low” (for a more detailed description, please refer to Section 2.1. The
communication between the WVI and the ECU complies with a redesigned “UDSonCAN”
protocol. “UDSonCAN?” is specified by ISO 14229 and, as a higher level protocol, describes
the contents of the CAN data frame. Its redesign focused on maximizing the data transfer
capabilities by increasing the number of data bytes that can be transferred with every
message from 5 to 7 . Those changes required a redesign of the complete protocol, which
is described in Section 4.6, to keep the functionality provided by the original protocol.
The messages have to follow a defined sequence illustrated in Figure 3.2. If a message
violates the sequence, a defined error message is sent.

3.4 Diagnostic Test Device

The diagnostic test device is a Beagle Bone Black (BBB) running linux equipped with a
USB Wi-Fi stick. The SW running on the BBB is responsible for parsing the hex file,
generating the intermediary file, containing the data split into the different blocks and,
sending the data wirelessly to the WVI using the 802.11s wireless protocol described in
Section 3.2. The diagnostic tester is also responsible to calculate the delta of the data
files for the partial update, as described in Section 4.8. The 802.11s protocol enables the
diagnostic test device to send data to multiple WVIs at the same time, which is used for
the parallel update. The diagnostic test device is placed outside the vehicle, for example
a tablet or a smartphone in a workshop.

3.4.1 Parser

The parser is part of the diagnostic test device SW and responsible for interpreting the Intel
Hex File. The Hex File illustrated in Figure 2.9 contains a lot of added data. To reduce
the transferred data, this file needs to be interpreted and the necessary information stored
in a new file containing the different blocks of data from the Hex File. An illustration of
the desired functionality can be seen in Figure 4.2.

3.4.2 Error Handling

The DT needs to detect and handle errors during the update procedure. The code overhead
and the complexity of the error handling should be minimal. The DT should be able
to detect if the sequence of commands complies with the defined sequence of the UDS
protocol. It should also handle CRC errors and errors establishing the connection between
the DT and the WVI. Most of the errors are detected by the ECU and forwarded to the

CHAPTER 3. SYSTEM ARCHITECTURE 32

DT through the WVI. The handling of most of them is the responsibility of the DT. The
details are listed in Section 4.2.4.

3.4.3 Update Management

The update management is mainly done by the DT. It is responsible for the following
tasks:

e Connection to the WVI: Establish a secure connection to the WVTI;
e Upload of SW to the WVI: Upload the parsed hex file to the WVT;

e Choose download mode: Signal to WVI if normal, partial or parallel update is
used;

e Initiate download to ECU: The DT commands the WVI to start programming
with the selected mode;

e Validate update: Check responses from ECU for CRC checks;

e Reboot ECU: Signal the WVI to send reboot command after update is done.

A description of a complete wireless update process, including the aforementioned
tasks, can be found in Section 4.2.4.

3.5 WVI

The WVI is the gateway from the outside into the vehicle. It is connected to the CAN
bus and also features a USB Wi-Fi stick capable of the 802.11s protocol. To enable CAN
on the BBB it is equipped with a cape that is connected to the pin headers. The cape,
as seen in Figure 2.5 was custom made to fit the BBB. The responsibility of the WVI is
to receive the SW from the diagnostic tester and send it to the ECU that needs to be
updated. The WVT is used as a wireless gateway to the vehicle bus. The DT manages the
update by sending commands to the WVI that trigger specific update sequences. Those
sequences have to be triggered in a defined order to successfully execute an update. It has
to interpret the file received from the DT and send the data to the ECU. If errors occur,
the ECU sends a message to the WVI that has to be forwarded to the DT. To receive
status updates, the WVI also has to inform the DT on the status of the update.

3.5.1 File Interpreter

The WVTI has to interpret the file received from the DT and illustrated in Figure 3.3. Every
line represents a data block of the SW, starting with the start address for the following
data. For the standard update, the first block contains the start up section of the uploaded
SW (see Section 4.2.4 for details).

CHAPTER 3. SYSTEM ARCHITECTURE 33

_~~Start Address of Block
80100000:00000000B359007000000000000. ..

80101e00:0200000DFDO0009100A8F419F40...

80102000:0000A0000000000000000000000. ..
Data

Figure 3.3: Layout of parsed file from DT.

3.5.2 Update State Machine

Contrary to the DT that actively manages the update process, the WVI is controlled by
the DT to execute specific command sequences. The WVI is triggered to execute the
update process once the parsed file is transferred from the DT. The sequence is the same
for every block and repeated until all blocks are transferred.

If an error occurs during the update process, the ECU sends an error message to the
WVI. This message has to be forwarded to the DT to signal the error. The responsibilities
of the WVI during the update process are described in Section 4.2.4.

3.6 ECU

The ECU needs to handle the communication to the WVI. Therefore it has to interpret
the modified UDS protocol as described in Section 4.6. It is also responsible to perform
the switch to the new SW and to run the bootloader which coordinates the whole update
process on the ECU.

3.6.1 Flash Driver

To store data on the ECU, a flash driver (Section 4.5) is needed to handle the communica-
tion with the memory controller. Before storing data, the flash page has to be set to Page
Mode, which is reset after every write command. The flash memory offers two different
techniques for storing data. First, the standard Write Page command that writes only
one page (32 bytes) to the flash memory and second, the Write Burst command, which
writes up to 256 bytes at once. The write address has to be aligned with the page borders
(every 32 bytes), to enable the Write Page command. The Write Burst command is only
enabled if the address is aligned to the burst size, which is every 256 bytes. The driver
should automatically use the fastest method to store the data and simplify the complexity
of the memory controller.

3.6.2 Memory Management

The ECU has to handle the data for the update and store all relevant information for the
update process (Section 4.2.2). Due to the limited amount of flash memory and RAM,
the placement of data has to be well thought. This starts by minimizing the code size and
therefore memory usage of the bootloader. Furthermore the additional information that
has to be stored can be divided into two types, persistent and non persistent data. The
non persistent data, is information that is necessary for the update process itself, but not

CHAPTER 3. SYSTEM ARCHITECTURE 34

the uploaded SW afterwards. The main part is, storing the status of the memory sections
to prevent deleting already stored data. The rest are some flags and temporary variables.
Non persistent data is stored in RAM for fast and easy access. The persistent data, is
information that is important for the ECU at anytime and needs to be valid even after a
reset and after the update system switched to the newly uploaded SW. It consists of the
following information:

e ECU identification number: uniquely identifies an ECU inside a vehicle;
e Vehicle Identification Number (VIN): uniquely identifies a vehicle;

e SW Version: the version number of the currently installed SW that is running on
the ECU;

e Program Address: the address where the currently installed SW starts;

e Layout of SW: the start and end addresses of the different blocks of the currently
installed SW;

e Layout of Backup SW: the start and end addresses of the different blocks of the
previously backed up SW.

This information is valid not only for the bootloader, but for the uploaded SW as well.
That means during development of the SW to be uploaded, it has to be prevented, that
this information is overwritten by the SW. As the memory overhead should be minimized,
this information has to be managed to use minimal memory resources. The persistent
data can be stored in the program or the data flash. For larger data sets, the AURIX
ECU also offers an SD card interface, which again needs a separate driver.

3.6.3 Error Handling

If an error occurs during the update, the ECU has to be able to detect it and handle the
consequences. The following errors have to be considered:

e Single and multiple bit errors during transmission;
e Single and multiple bit errors storing the data;

e Unauthorized access to update procedure;

Invalid commands;

Invalid command sequences;

Memory violations.

Single and multiple bit errors are mostly a result of so called “bit flips”, where a single
or multiple bits unintentionally change their state, altering the data. Such errors can
happen during data transmission or when storing the data, but have to be detected by
the ECU (Section 4.4). As updating the ECUs SW is a very sensitive process, it has to
be assured that only authorized systems (Section 4.3) are allowed to perform an update.

CHAPTER 3. SYSTEM ARCHITECTURE 35

If during the initialization of the update or the update process itself, an invalid command
is received, the ECU has to react accordingly, sending a predefined error message. The
whole update process follows a defined sequence of commands as seen in Figure 3.2 and
described in Section 4.2.4 that, if not correctly followed, leads to the termination of the
update. During the update, the ECU also has to check for memory violations from the
uploaded SW. It has to be guaranteed that the uploaded SW only uses memory sections
that it is allowed to. In any error case, the ECU has to send defined error messages to
inform the WVI, which forwards the messages to the DT.

3.6.4 Update Management

The ECU is the main part of the wireless update system and has to manage the update
process. It has to implement all valid commands (see Table 4.1) and perform the cor-
responding tasks. It has to support parallel and partial updates, described in Sections
4.7 and 4.8, and therefore offer some identification to distinguish between multiple ECUs
connected to the same WVI. Figure 3.4 illustrates the sequence of commands, that has to
be sent to perform an update. Every command is acknowledged and if a command violates
the defined sequence, the ECU has to decide if the update is aborted or the command,
violating the sequence, is ignored.

WVI ECU

Request Programming Session—>i

Enter Proéramming

Session
Request Seed }E
< Seed f
Calculate Key :
: Key from Seed >
= Trusted Communication —
> Request Download >
Transfer >

i h
foreach |
block

y_..

Transfer Exit:

G e

CRC for Block

Reboot ECU

Figure 3.4: Update sequence for the ECU bootloader.

The overhead for the parallel and partial update should be minimized, so the sequence
of commands is the same as for a standard wireless update described in Section 4.2.4.

Chapter 4

Design and Implementation

The following section describes the implemented parts in more detail. It begins with some
general remarks on the implementation in Section 4.1 and a description of the wireless
update process in Section 4.2. After that, I will describe the different contributions from
Figure 1.2, starting with the implementation of the seed and key algorithm in Section
4.3 followed by the CRC implementation in Section 4.4. To maximize the performance of
the wireless update system, Section 4.5 describes the AURIX architecture specific opti-
mizations and Section 4.6 describes the changes to the UDS protocol made to maximize
the data throughput during the update. The details for the parallel and partial update
are described in Sections 4.7 and 4.8, respectively. Thereafter, Section 4.9 details the
implementation and purpose of the diagnose function and Section (4.10) illustrates the
implementation details of the backup and restore feature.

4.1 General Remarks

Before describing the details of the different parts of the system, I want to shed light
on some important details that have affected the design of the system as well as the
implementation process.

4.1.1 AURIX Documentation

Before starting the development of the system, extensive research into the AURIX platform
was necessary. The documentation of the platform is spread through multiple files and
application notes, where in some cases the files contradict each other. One of the bigger
issues was the flawed documentation of the watchdog mechanism. The AURIX ECU has a
safety watchdog mechanism that needs to be deactivated during programming. To do so a
specific command sequence has to be transferred. In the original data sheet, this command
sequence is wrong and leads to the ECU being stuck in a reset loop and shutting down after
a few tries. The correct command sequence was only published in a separate application
note that appeared once the system was already partially developed.

36

CHAPTER 4. DESIGN AND IMPLEMENTATION 37

4.1.2 Memory

One of the biggest challenges during development was the instability of the flash drivers.
The program flash has some specific addresses that do not behave as expected. In partic-
ular, trying to write to those addresses results in undefined memory contents. As of now,
the identified memory locations are:

e 0x80110000 to 0x80110040;
e 0x80120000 to 0x80120040;

e 0x80130000 to 0x80130040.

The datasheet does not describe the mentioned memory sections as special, but that
behavior is still under investigation. To avoid this complications, the SW to be updated
should be situated in other memory areas than the ones mentioned above.

4.1.3 Reset Behavior

The next problem I have been facing during the design and implementation of the system
is the behavior of the reset. There are two different reset mechanisms that can be triggered
from SW. The first is an application reset, that leads to a defined state of the application
system by re-initializing all peripherals, the CPU and parts of the system control unit
(SCU). The second is the system reset, which affects the complete system without a reset
of the power subsystem and with no effect on the reset configuration.

After an update, the ECU receives a message triggering a SW reset. After the reset,
the start up code looks for the start address of the uploaded SW and jumps directly to it.
This leads to the immediate execution of the uploaded SW after the reset. Now there are
two options to return to the bootloader. The first is to send a command to the ECU that
clears the starting address and another command to execute the reset. The second is the
use of a pin that is checked during the start up section of the bootloader before the start
address of the SW is checked. If that pin is set after a reset, the bootloader ignores the
uploaded SW and executes the bootloader.

A problem with that procedure is that the switch from the uploaded SW back to the
bootloader did not work as desired. After the reset, the system was stuck in a reset loop
and had to be reset manually again to resume its normal operation.

4.1.4 Writing to the Program Flash (PFlash)

During the execution of a write command, the flash memory in question must not be
accessed. This includes the execution of code from the program flash while it is written
to. Therefore the flash driver has to be placed in the RAM. Figure 4.1 shows the changes
to the linker file to add a new memory section called .fastcode that is placed in the RAM
and is therefore able to host the flash driver for the program flash. That means all of the
code that is used to program the memory, has to be put into this section. . This section
is placed at “> LMU_SRAM AT > PMU_PFLASHO0”, which means that the original code
is in the program flash but is copied to the RAM. After that the used section also has to
be placed in the so called “copy table”. This results in the PFlash driver being copied

CHAPTER 4. DESIGN AND IMPLEMENTATION 38

to the RAM during the start up procedure, before the actual bootloader code starts.For
simplification the complete flash driver is put in the RAM. For platforms with very little
RAM, only the critical program flash driver parts can be placed in the RAM.

I
* Section for copy table
* f
.Copy_sec :
{
. = ALIGN(B) ;
PROVIDE (_ copy_table = .) ;
LONG (LORDADDR (.data)) ; LONG(J + ADDR(.data)); LONG(SIZEOF(.data));
LONG (LOBDADDR (. sdata)) ; LONG (0 + ADDR(.sdata)); LONG(SIZEOF(.sdata)):
LONG (LORDADDR (. zdata)) ; LONG (0 + ADDR(.zdata)); LONG(SIZEOF(.zdata)) :;
LONG (LOADADDR (.bdata)) ; LONG (0 + ADDR(.bdata)); LONG(SIZEOF(.bdata)):
/*PROTECTED REGICN ID(Protection: iROM copy section) ENABLED START*/
/*Protection—Area for your own LDF-Code*/

LONG (LOADADDR(. fastcode)) ; LONG (0 + ADDR(.fastcode)) ; LCNG (SIZEQF(.fastcode)) ;
T.ONG (LOADADDR (. text)); TLONG(0 + ADDR(.text)); LONG(SIZEOF(.text));
LONG (LOADADDR (. traptab)) ; LONG (0 + ADDR(.traptab)) ; LONG (SIZEOF(.traptab)) ;
LONG (LOADADDR(.inttab)) ; LONG(? + ADDR(.inttab)) ; LONG (SIZEOF (.inttab)) ;
/*PROTECTED REGICN END*/
LONG (-1) ; LONG (1) ; LONG (-1) ;

} > PMU_PFLASHO
/*PROTECTED REGION ID(Protection:iROM-User-Sections) ENABLED START*/
/*Protection-Area for your own LDF-Code*/

-fastcode :

{
. = ALIGN(S);
* (.fastcode) /*user defined section for PFlash code moved into internal RAM */
* (.fastcode™)

PROVIDE(fastcode end = .);

} > LMU_SRAM AT > PMU_PFLASHO
/*PROTECTED REGION END*/

Figure 4.1: Linker file changes for memory section in RAM.

4.2 Standard Wireless Update

The basic principle for the wireless update as seen in Figure 3.2 consists of multiple SW
parts in the different hardware components (DT, WVI and ECU). This section describes
the different parts of the wireless update system that where not already mentioned, and
tries to describe how all of them work together to perform an efficient, secure, and reliable
update.

Before the wireless update process is described in Section 4.2.4, I introduce the parser
for the hex file in Section 4.2.1 which is responsible to extract the data necessary for the
update. To understand what information is necessary on the ECU, Section 4.2.2 describes
the implemented data structures for the persistent and non-persistent data storage, about
the update process itself as well as the updated SW. Section 4.2.3 illustrates the necessary
changes in the linker files of the bootloader itself, as well as the SW to be uploaded. After
the update process is completed, a switch to the uploaded SW is only possible thanks to
a modification of the bootloader’s boot code, described in Section 4.2.5.

CHAPTER 4. DESIGN AND IMPLEMENTATION 39

4.2.1 Parser

The Intel Hex File described in Section 2.6 contains a lot of extra data that is not needed
for the update. Therefore, to minimize the transferred data, the parser should extract
only the necessary data and store it into a new file as seen in Figure 4.2. The hex file is
parsed line by line. If the line starts with “:02000004”, the parser stores the following two
bytes as the first two bytes of the address of the data. For data lines after that, beginning
with “:06” to “:10”, the lower two bytes of the start address are combined with the higher
two bytes stored previously. If the first two bytes of the start address are changing in the
middle of the hex file, another line starting with “:02000004” indicates that. The parser
constantly checks for jumps in the addresses. This can happen if small memory sections are
not completely filled, resulting in small jumps in the start address. This is not indicated
inside the hex file and needs to be recognized by the parser. The resulting file is built in a
way that every line starts with the address of the first byte in the row, and is followed by
the continuous data block starting at that address. The parser also considers the memory
structure of the ECU, such that if a continuous data block reaches over multiple memory
sections, it is split up to fit the memory sections. The reason for that, is described in
Section 4.2.2. At the end of the hex file, the line starting with “:04000005” contains the 4
byte address for the entry point of the SW. This is the address the bootloader has to jump
to, in order to execute the SW. This address is usually 0x20 added to one of the starting
addresses of the blocks in the parsed file. The parser identifies the line that contains the
start up procedure and moves it to the top.

Intel Hex |::> Parsed File

:0200000480106A
:1000000000000000700059B3000000000000000074
:10001000000000000000000064B81E799B47E186E4

:100020001D0002004DCOE10F8F7000118F310020C4 80100000:00000000B3590070000000000000000000
:10003000062142129130002FD92200466027302736 80108000:0200000DFD00009135F0F419F4024F6000
:1000400054716F11050040745D009B004DCOELOFED 8010a000:0000A00000000000000000000000000000
:1000500076023C109130004FD944303654416F1134 80110000:C243E8F2C251C2BAC24C578FC23568B6C2. *+oree

:1000600004005D008BE009130004FD94400465D00D 1
:100070007800910000ADDOARABE17B00000D1BBOFE
:10008000E201CD80E20FO0D00C0044D40EQOF8FF0E 3
:1000900047018F00C801CD40EQOF0D00C0044D4066
:1000A000EOOF8F005001CD40EO0FOD0O0C004911013
:1000B000000DD900000891100118D911000C910011
:1000C0000080D988000091000090D9990000407408
:1000D0005D00570040745D004400194004008FB80AE

80120000:B9EOFASFEFAS5A1IDFO5EF0D84559FF153D3
80130000:B30B0300850B2100390B225002DF229029
80140000:FF99F7004F02E9C40F2DF3BCF4850000FF

Figure 4.2: Intel Hex File and parsed data File with reduced size.

4.2.2 Memory Management

There are two different types of information that needs to be stored. The first is the
data that needs to be available during the update and can be discarded afterwards. Such
information can be stored in a non persistent memory like the RAM and is lost after a
reset of the system, which is done immediately after the update is finished. The second
type is information that is necessary for the next update and needs to be available after a
reset. The only available persistent memories are the program and the data flash.

CHAPTER 4. DESIGN AND IMPLEMENTATION 40

DFlash - persistent data

To store all necessary variables, a section in the DFlash is reserved. The structure of this
segment is shown in Figure 4.3. It contains all information necessary to uniquely identify
the ECU and the SW running on it. When a back up is executed, that data has to be
copied so that it is not overwritten by the next update. The backed up block is using an
offset of 0x1000, so that the address for the data block of the backup is 0xaf05f000.

DFlash Address Byte 0 Byte 1 Byte 2 Byte 3
0xaf05e000 ECUID | Number of Blocks VIN

0xaf05e010 SW Version Backup Prog. Address Prog. Address
0xaf05e020 Start Address Block 1 End Address Block 1 Start Address Block 2 End Address Block 2
0xaf05e030 Start Address Block 3 End Address Block 3

Figure 4.3: Structure of the DFlash segment.

RAM - non persistent data

The only non persistent data that is needed (apart from some flags), is a vector that
stores which memory sectors have been deleted. It is a vector with 27 entries that, for
every sector contains “07, if the sector has not been deleted or “1”, if it has been. This
is needed, as it is possible that multiple blocks of the SW to be uploaded are situated
in the same memory sector. If a new block is transferred, the ECU always checks if the
corresponding memory sector has been deleted and if not, deletes it. This is necessary,
because a memory sector can only be written to, if it has been deleted before. A problem
is, that it is not possible to delete just parts of a sector but only the complete sector. For
the case mentioned above, the system keeps track of the deleted sectors and does not delete
them again, possibly deleting previously transferred data, if the next block is in the same
memory sector as the previous one. This check is done for every “Request Download”
command (see Section 4.6), which means if a block stretches over multiple memory sectors
and is not split up in multiple blocks in the parsed data file, the following memory sector
is not being deleted and therefore the write command fails.

4.2.3 Linker File

The linker file is used for two reasons. The first is to put the PFlash driver into the
Random Access Memory (RAM) as described in Section 4.1.4. This is necessary, because
during the programming of the PFlash, the latter must not be accessed.

The second use of the linker file is necessary to prevent the uploaded SW from using
the same memory sections as the bootloader. Therefore, a linker file is used to reduce the
available memory. To optimize the system for partial updates, the SW to be uploaded can
be split into two parts. One part contains all the SW parts that are likely to be updated.
The other one contains all data that will most likely stay the same. It is also possible
to have multiple sections likely to be updated in different sectors of the PFlash. With
the partial update enabled, if one of those SW parts changes, only the concerning section
needs to be updated. An example for such a section can be seen in Figure 4.4 where a
new memory region, called “PMU_PFLASHX”, is defined. It has its start address at the

CHAPTER 4. DESIGN AND IMPLEMENTATION 41

beginning of a smaller memory sector and its size is limited to that memory sector. Now,
all data that is likely to be updated can be put in a new section “.update”, which is placed
in the previously defined memory region. The rest of the code is placed in the scaled-
down “PMU_PFLASHO0”. It should be considered that, if multiple smaller sections are
used, those sections should not adjoin each other, or span over multiple memory sectors.
If this would be the case, a change in one of the smaller sections could potentially result
in a shift in the following sections. This would mean, that all shifted sections require an
update, even if the data itself has not changed, eradicating the effect of dedicated update
sections.

* Global
ki
__PMU_PFLASHX_BEGIN =
__ PMU_PFLASHX SIZE =
/*Program Flash Memory (PFLASHO)*/
PMU PFLASHO BEGIN = 5
*7PMU7PFLASH075IZE =
/*Program Flash Memory (PFLASH1)*/
__PMU_PFLASHI_BEGIN = 5
__PMU_PFLASHI_SIZE =
/*Data Flash Memory (DFLASHO)*/

/lr
* internal flash configuration
't
MEMORY
{
PMU PFLASHX (rx!p): org = , len = /*Program Flash Memory (PFLASHO)*/
PMU PFLASHO (rx!p): org = , len = /*Program Flash Memory (PFLASHO)*/
PMU PFLASH1 (rx!p): org = ;. dleni = /*Program Flash Memory (PFLASH1)*/
PMU DFLASHO (r!xp): org = Lilens= /*Data Flash Memory (DFLASHO)*/
update

. = ALIGN (%) ;
*(.update) /*user defined section for PFlash code in section PMU PFLASHX */
* (.update¥*)

PROVIDE(update end = .);

} > PMU PFLASHX
/*PROTECTED REGION END*/

Figure 4.4: Changes to linker file of SW to be uploaded.

4.2.4 Update Process

Figure 4.5 illustrates the update process on the ECU for a wireless update. The first step
in the update process is the authentication of the DT to the WVI, which is part of the
SecUp framework [SBKT16]. After the DT is authenticated and connected to the WVI,
the DT parses (Section 4.2.1) the selected hex-file containing the program code for the
update, producing the parsed data file as seen in Figure 4.2. Now the DT initiates the
WVI to send the “Request Programming Session” command to the ECU (processing of
the command in the Appendix, Listing B.1) which resets the “MemoryDeletionMap”, a

CHAPTER 4. DESIGN AND IMPLEMENTATION 42

wireless: WLAN (IEEE 802.11) - SecUp wired: CAN (modified UDSonCAN)

Discover WVI
<7Connect and authenticate WVI‘)‘

Choose WVI and
hex-File

Parse hex-File

Init Programming: 120#FF1002

Request Programming Sesswn—)

Enter Programming
120#FF5002 Session

Ack:

N

/

Init Security Access:

.

120#FF2701
Request Seed

- ___‘r<__<__

' 120#FF6701XXXXXX (3 ByteSeed)
< -Ack (Seedy

Calculate Key Calculate Key
! 120#FF2702XXXXXX (3 Byte Key) :
Key from Seed: >

_ Trusted Communication I —
Send parsed file for update————> :

Star — >
t Upload to ECU : 120#FF340102080008000 (4 Byte Start Address)
g Request Download

120#FF74

<
<€ -Ack

120#0100000000B35900

ransfer

120#01

-Ack:

. SN

for each ‘<
block

120#FF3700000590 (4 Byte Block Length)
Transfer Exit >

Calc CRC for block

. 120#FF77XXXXXXXX (4 Byte CRC)
""""" <€ CRC for Block

\ali —_
Validate Download d 120#FF1181
Reboot ECU

120#FF5181

-Ack:

IS AU P

KT

Figure 4.5: Example Update Process for a standard wireless update with first code block
containing startup sequence at address 0x80008000.

vector storing the already deleted memory sectors, and sets the ECUs internal state to
“Programming Session”. Now, before an update can be started, the DT has to request
the seed and calculate the correct key to gain permission. Therefore the DT sends the
“Request Seed” command which is acknowledged by the ECU with the seed. Now the DT
as well as the ECU calculate the key with the secret algorithm. When finished, the DT
sends the key to the ECU with the “Key from Seed” command. The ECU now checks if
the received key matches the one calculated by the ECU and if that is the case, it sets
an internal flag (“TRUSTED”) that signals that the programming session is initiated by
a trusted device. Now that the “Trusted Communication” link is established, the parsed
file is transferred from the DT to the WVI. After the transfer is finished, the DT initiates
the download from the WVI to the ECU.Only if all previous steps encountered no errors,
an update is possible. The WVI now starts to interpret the file received from the DT and
sends the following commands for every block (every line in the parsed file):

CHAPTER 4. DESIGN AND IMPLEMENTATION 43

¢ Request Download: Setting the start address for the following data;

— Start Block Byte: Signaling the type of the following data block. “0x01” if
the block contains the start up sequence, “0x02” otherwise;

— Offset Byte: Only relevant for block containing the start up sequence. Is added
to the “Start Address” to get the starting point for the uploaded SW (typically
0x20);

— Start Address: Four byte start address of the following data block;
e Transfer: Sending 7 bytes of data with a one byte sequence number;
e Transfer Exit: Signaling the end of the current block;

— Block Length: Four byte block length.

The “Request Download” command also contains the type of the following block in
the “Start Block Byte”. If the block contains the start up procedure for the uploaded
SW indicated by “0x01” as the third data byte, as in the example above, the ECU stores
the address and the offset as the entry point for the uploaded SW. This entry point is
stored to the “DFlash Block” (Section 4.2.2) before the reboot and is the address of the
first command that is executed after the ECU restarts. If the next block does not contain
the start up procedure, indicated by “0x02” as the third data byte, the entry point does
not change. Independent of the type of the block, the ECU sets the address in the flash
driver for the next data block. Now that the start address for the next data block is
set, the WVI sends all the data of the block using the “Transfer” command, capable of
transporting 7 data bytes. The “Transfer” command includes a one byte sequence number
that ensures the correct sequence of the data packets. The sequence number starts with
0x01 for every new block. 0xFE is the highest valid sequence number, as OxFF is reserved
for commands, and 0x00 for future extensions. The code segment in the Appendix, Listing
B.3, illustrates the handling of the sequence numbers of the data packages. The ECU does
not return an error if it receives the same packet multiple times. If one or more package is
lost, the ECU calculates the number of missed packages and cancels the update procedure.
As long as all packages arive in order, the ECU always waits for 8 bytes before it uses
the “Load Page” command to write the data into the assembly buffer. As described
in Section 4.5, the ECU picks the best time to flush the buffer and store the data, to
maximize performance (example of the “Load Page” function illustrated in the Appendix,
Listing B.5). The “Load Page” function is called directly out of the CAN handler and
returns “1”, if the data in the assembly buffer should be flushed. If that is the case, the
ECU disables the interrupts and flushes the buffer using the “Write Buffer” function, as
illustrated in the Appendix, Listing B.6. The function automatically uses the fastest way
to store the data. When the block is transferred completely, the “Transfer Exit” command
is sent by the WVI to signal the end of a data block. The command also contains the size
of the previously transferred data block. If any data is still in the assembly buffer, the
ECU flushes the buffer and stores all remaining data before calculating the CRC for the
transferred block. The calculated CRC is transferred to the WVI in the acknowledgment
message for the “Transfer Exit” command. Now the WVI interprets the next line in the
parsed file and transfers the next data block. This cycle is repeated until all blocks are

CHAPTER 4. DESIGN AND IMPLEMENTATION 44

transferred. If all blocks were transferred correctly, the DT validates the download and
the WVI sends the “Reboot ECU” command, which initiates the ECU to store the entry
point for the SW in the DFlash block (Section 4.2.2) and reboot. After the reboot, due
to the modified start up code (Section 4.2.5), the bootloader automatically executes the
uploaded SW.

If an error occurs during the update process, the procedure is simply repeated or the
data block re transmitted and after multiple failed attempts, the update process is aborted.

4.2.5 Modified Boot Code

As described earlier, to handle multiple SW parts in one memory, the system needs to
be able to execute any of them depending on the current state of the system. To achieve
that, I modified the start up code of the bootloader. It has to be the start up code of
the bootloader, as it is placed at the beginning of the Program Flash and is automatically
executed after reset.

When a SW is uploaded, the start address is stored to the Data Flash at address
0xAF05E01C. After a reset the start up code checks that address. If the address contains
zero, the ECU starts the bootloader SW. If the address contains the start address of a
previously uploaded SW, the ECU executes this program. Based on a problem with the
reset, I introduced P33 Pin 10 to be used to force the bootloader to start even if a program
was uploaded to the ECU. Figure 4.6 shows the changes implemented in the start up code
of the bootloader.

_start:
.code32
J _startaddr
.align

_startaddr:

#Check P33 Pin 10
movh.a %al5,hi:0xf003d324

lea %$alb, [$al5]10:0xf003d324
LD.W %d155 [$albhl
JNZ.T %d15,8, =zero

#Check user program
movh.a %alb,hi:0xaf05e0lc

lea %alb, [%alb]lo:0xaf05e0l1c
ILD.W $d2, [$al5]
JZ %$d2, zero
#If allchecks ok jump to user
mov.a %alb, $d2
Jji %als
___zZero:
mfcr $d0, CORE_ID # core ID
and %d1,%do, # CORE_ID MASK

Figure 4.6: Changes to the start up code of the bootloader.

CHAPTER 4. DESIGN AND IMPLEMENTATION 45

4.3 Seed and Key

To comply with the UDS procedure and to strengthen security, I implemented a “Seed
and Key” algorithm. The algorithm uses bit masks and bit shifting to calculate the key
from the seed. An existing implementation from an automotive OEM was translated from
Java to C for the AURIX ECU. To protect the wireless update system, the algorithm to
calculate the key from the seed should be kept a secret as it allows a system to access the
update system. The details of the algorithm can not be disclosed, as the automotive OEM
does not allow distributing the algorithm. Basically any typical seed and key algorithm
can be applied.

The basic sequence is that the diagnostic tester sends the “Request Seed” command
to the ECU which returns the Seed, a three byte random number. The ECU and the
diagnostic tester are calculating the key based on the seed with a defined algorithm. First
the seed is expanded to eight byte by extending it with a five byte security constant. The
resulting eight byte value is shifted and combined with various constants multiple times.
Now that the key is calculated, the diagnostic tester sends the key to the ECU using the
“Key from Seed” command. If the received key matches the calculated one, the ECU
knows it is communicating with a trusted diagnostic tester. This is necessary, because
only a trusted device can be allowed to perform an update of the ECUs SW.

4.4 CRC

The system uses two different CRC algorithms. A 15 bit CRC for every CAN frame as
described in the CAN specification [NXP13]. It is included in every CAN frame and ensures
the integrity of the data transmission between the WVI and the ECU. Using a standard
CAN transceiver, the CRC for the CAN messages is calculated and transmitted by the
transceiver. If the CRC does not match the transmitted data, the sender automatically
re-transmits the data, until it is either received correctly or the transmission is aborted
due to an error on the bus or the transceivers.

When the data is received on the ECU, it is analyzed and if it contains data of the
uploaded SW, it is stored in the program flash. During this process the data is transmitted
on ECU internal buses to the program flash. To ensure the integrity of the transferred
SW, I use a standard Ethernet 32 bit CRC library as described in Section 2.4. This
CRC is calculated after the “Transfer Exit” command is received. The command contains
the length of the last block that was received. The ECU calculates the CRC32 over the
complete data block and sends the result to the WVI in the acknowledgment. The CRC is
calculated over the previously transferred block, where the start address is stored from the
“Request Download” command, and the end address is the current flash address after the
last write command, which should be the same as the start address added with the block
length. If the DT detects that the CRC does not match, the whole block is transferred
again.

CHAPTER 4. DESIGN AND IMPLEMENTATION 46

4.5 AURIX Architecture specific Optimization

To maximize the performance and the usability for the programmer, as well as the user
of the wireless update system, the bootloader SW and the developed flash driver should
automatically utilize the architecture specific functions of the AURIX ECU. In the re-
mainder of this section, we describe the implemented flash driver and the optimizations
for the AURIX ECU.

Writing to the flash memory of the ECU can be done in two ways. First, a standard
“Write Page” command, which stores 32 bytes of data from the assembly buffer and can
be used if the current flash address is aligned with the page borders (every 32 bytes).
Second, a “Write Burst” command, which stores 256 bytes at once, but it can only be
used if the current flash address is aligned with the flash burst size (every 256 bytes). The
flash driver should automatically choose the write mode to optimize the performance.

To achieve that, the “Load Page” command returns if the data from the write buffer
is ready to be written to the memory. Depending on the alignment of the current flash
address, the return value indicates if data should be written. Figure 4.7 shows part of the
“Load Page” function that automatically checks the alignment of the current flash address
and the amount of data in the assembly buffer and returns if it is necessary to flush the
buffer and store the data. During the write commands, all interrupts are disabled, such
that nothing except the flash driver has access to the program flash.

switch (mConfigFlash. addr allignment)
{
case PFlash alligned:
if (mConfigFlash. assemblyBufferCount = IFXFLASH PFLASH BURST LENGTH)
return
break;
case PFlash single:
if (mConfigFlash. assemblyBufferCount = IFXFLASH PFLASH PAGE LENGTH)
return
break;
case DFlash alligned:
if (mConfigFlash._ assemblyBufferCount == IFXFLASH DFLASH BURST LENGTH)
return
break;
case DFlash single:
if (mConfigFlash. assemblyBufferCount = IFXFLASH DFLASH PAGE LENGTH)
return
break;
default:
break;
}

return

Figure 4.7: Flash driver automatically chooses best way to write data.

To reduce the complexity of the driver, the two write commands where combined,
such that the only remaining write function (WriteBuffer()) automatically chooses either
to use the “Write Page” or the “Write Burst” command. The function is illustrated
in the Appendix, Listing B.6 .Before data can be written to a flash page, the page has
to be put in “Page Mode” with the “Enter Page Mode” command. This command is
automatically transmitted before the write command if the page in question is not already
in “Page Mode”. After the write command, the flash driver waits until the storage process
is completed and returns afterwards.

CHAPTER 4. DESIGN AND IMPLEMENTATION 47

4.6 Modified UDS Protocol

For the data transfer I have one assumption, that proved correct during the tests, that
nearly all of the messages are data messages of the transferred SW. This assumption lead
to one main goal for redesigning the protocol. Optimize the amount of data that can be
transferred in one message.

Before the implementation I analyzed the UDSonCAN specification and its message
structure, especially the data transfer message. In the original protocol the data transfer
message is structured as seen in Figure 2.2, which means that without any added data,
only 7 bytes are available for the data transfer. Another byte is lost due to the fact that
some kind of sequential ID is needed to keep the messages in order and, to be able to
recognize missing packets. It is also very common to use 16 bit sequential IDs which need
two bytes. That means that only 5 byte of data can be sent with every message. After
carefull consideration I completely redesigned the protocol to increase the data transfer
performance.

To achieve this goal I used the first byte of the data transfer message as a one byte
sequential ID with values between 0x01 and OxFE. This improves the data transfer capa-
bilities to 7 bytes per message, which is an increase of 40%. This improvement made it
necessary to change the structure of all remaining services. The services now all start with
OxFF as the first byte, moving the service identifier to the second and the sub function
level to the third byte. The number of possible parameters is reduced to five. To provide
the same functionality as defined in UDSonCAN, some requests need to be split into two
messages. Figure 4.8 shows the modified structure of the UDS commands optimized for
data transfer performance.

FEh Service ID |{ Subfunction R tp t Service
SID Level LEV eques arameters Request

Subfunction Positive
FFh SID | 40h LevellLEV/ Response Parameters Response
e Error ID Service ID |[Error (Resp.) Negative
7Fh SID Code Response

Data
Seq. ID Data Transfer
Byte 1 Byte 2 Byte 3 Byte 4

Figure 4.8: Structure of modified UDS frames (CAN data frame).

I also added some commands, including the OBD command to get the VIN, to better
fit the automotive environment, where the system will be used. Table 4.1 shows all valid
commands for the bootloader. The ID of the CAN commands is always 0x120 with the
configured ECU ID added to it. The only exception is the OBD command to get the VIN
where the CAN ID is defined by the OBD protocol, and has to be 0x7DF. The “Get Vehicle
Information Number” command is inherited from the OBD protocol. It is used to get the
Vehicle Information Number (VIN) which is a unique number identifying the exact make
and model of the car including a country code, the type of the vehicle, a model year, a
plant code and a unique production number. To determine which update is needed I need

CHAPTER 4. DESIGN AND IMPLEMENTATION 48

to get this unique identifier. The mentioned command provides a mapping from the ECU
ID to the VIN. The following six commands are used to configure and read the ECU ID,
the VIN as well as the currently installed SW version. “Request Programming Session”
is used to change the state of the ECU to the UDS programming session. Without this
command programming of the ECU is disabled. To prevent that anyone can access this
session, the following two commands are used. “Request Seed” is sent from the diagnostic
test device to the ECU and returns the seed, which is used to calculate a key. The key is
sent to the ECU with the “Key from Seed” command.

For the case of a parallel update, where multiple ECUs are connected to one WVI,
the WVI has to select the relevant ECUs by sending the “Activate parallel Programming”
command, which sets an internal flag and adds a CAN listener to messages with a specific
ID only used for parallel updates. The ECU still acknowledges the messages with their own
ECU ID. The “Deactivate parallel Programming” command resets the flag and removes
the CAN listener for messages with the “parallel ID”. “Request Download” initiates the
actual update process by sending the four byte start address of the following block. The
offset byte is used to determine the starting point for the execution. The start block byte
identifies the type of the following block. 0x01 is used for the block where the execution
should start. 0x02 is used for all other blocks.

Now that the address is set, the “Transfer” command uses a one byte sequence number
that starts with 0x01 ranging to OxFE. The remaining seven bytes are used for the program
data. When the data block is transferred completely, the “Transfer Exit” command ends
the block and sends the length of the transferred data. The ECU then calculates the
CRC value over the transferred block and sends it in the response. After the last block
is transferred, the “Reboot ECU” command triggers a reset and after that, the ECU
automatically starts the previously uploaded SW.

The “Backup SW” and “Restore SW” command are described in detail in the corre-
sponding section 4.10.

CHAPTER 4. DESIGN AND IMPLEMENTATION 49

Table 4.1: List of commands for the bootloader.

Command Description | Byte 0 Byte 1 Byte 2 Byte 3

Get Vehicle Identifica- 0x7A 0x60 0x18 0xC2

tion Nr. (OBD)

Set ECU ID OxFF 0xFF 0x01 ECU ID

Get ECU ID OxFF OxFF 0x21

Set VIN 0xFF 0xFF 0x02 VIN (4 Byte)

Get VIN OxFF OxFF 0x22

Set SW Version 0xFF 0xFF 0x03 SW Ver (4 Byte)

Get SW Version 0xFF OxFF 0x23

Request Programming OxFF 0x10 0x02

Session

Request Seed 0xFF 0x27 0x01

Key from Seed 0xFF 0x27 0x02 Key (3 Byte)

Activate parallel Pro- OxFF OxFF 0x10

gramming

Deactivate parallel Pro- OxFF OxFF Ox1F

gramming

Request Download OxFF 0x34 Start Offset Start
Block Byte Addr
Byte (4 Byte)

Transfer Seq. Nr Data (7 Byte)

Transfer Exit OxFF 0x37 Block Length (4 Byte)

Reboot ECU O0xFF 0x11 0x81

Backup SW OxFF OxFF 0x0A

Restore SW O0xFF 0xFF 0x0B

4.7 Parallel Update

The parallel update has two different types as seen in Figure 4.9. The first covers the
scenario of one vehicle with two or more ECUs, that have the same SW version and need
to have the same update. This scenario is applied if for example, the ECU responsible to
control the window movement is only in charge of one the driver side, therefore the same
ECU is present on the passenger side. Both ECUs most likely run the same SW version
and can therefore be updated like illustrated in scenario one. In this case the WVI connects
to the two ECUs individually, initiates a programming session, and performs the seed and
key authentication. After that, the WVI sends the “Activate parallel Programming” to
the two ECUs, activating that they listen to messages with the ID specifically for parallel

CHAPTER 4. DESIGN AND IMPLEMENTATION 50

iVehicIe 1

Vehicle

it
| |
|
|
|

((())) Vehicle ECU
Interface

Diagnostic ((())) i (D) Vehicle ECU 3 Diagnostic ((t))) :
Test Device j i [L Interface i Test Device AQ }Vehide 2

ECU

((t))) Vehicle ECU
Interface

Scenario 1 Scenario 2

One vehicle, multiple ECUs Multiple vehicles, one ECU each

Figure 4.9: Types of parallel updates.

updates. Now both ECUs can be updated as they listen to the same ID, only the WVI
has to wait for as many acknowledgments as ECUs are being updated. The ECU itself
does not need to know about the other ECUs, or that a parallel update is performed
(Except the differnt ID of the messages). To still handle transmission errors, the only one
that needs to know how many ECUs are updated, is the WVI. It counts the number of
acknowledgment messages for every packet before transmitting the next. As the ECUs
acknowledge the messages with their own ID, the WVTI is also able to detect if and which
one of the ECUs suddenly gets unresponsive. This reduces the speed of the update as it is
slowed down to the speed of the slowest ECU and increases the number of acknowledgment
messages on the bus, but the data is only sent once.

The second type covers the “workshop scenario” mentioned in Section 1.1 where mul-
tiple vehicles with the same ECU running the same SW version need to be updated. After
the VW emission scandal with around 11 million affected vehicles, a great portion of those
vehicles only required a SW update. With standard update procedures today, every vehi-
cle can only be updated one after the other. With the wireless parallel update, the cars
only need to be parked outside the workshop and all identical cars, that require the same
SW version, can be updated at once. In this case the management of the parallel update
is done by the diagnostic test device. The DT connects to the selected WVIs one after
the other. When all relevant WVIs are connected, the DT starts to initiate the seed and
key authentication for every connected WVI. When the authentication between the WVIs
and the ECUs is completed, the DT sequentially downloads the SW to the connected
WVIs over the fast wireless connection. When that step is completed, the DT directs all
connected WVIs to upload the SW to the concerning ECUs. This means, that the upload
of the SW to the ECU is the only parallel step during a parallel update with multiple
WVIs. As the CAN connection is the slowest part of the update system, it has the biggest
impact on the overall update time. The WVI as well as the ECU to be updated do not
need to know that a parallel update is performed, as for them nothing changes compared
to a standard wireless update described in Section 4.2.4.

The code overhead for the parallel update is kept to a minimum with just seven lines
of code specifically for the parallel update. This code is only needed for a parallel update
as illustrated in Scenario 1 in Figure 4.9. If only parallel updates like in Scenario 2 are
needed, those lines can be deleted.

CHAPTER 4. DESIGN AND IMPLEMENTATION o1

4.8 Partial Update

To handle partial updates, I had to consider the memory structure of the ECU. When a
block is going to be transferred, it starts with the “Request Download” command which
also includes the Start Block Byte that identifies the type of the following block. 0x01 is
used for the block that contains the startup procedure. When such a block is transferred,
the value of the Offset Byte is added to the start address and stored to the data flash
block (Section 4.2.2) containing all the information about the uploaded SW. If the Start
Block Byte is 0x02, the start address in the data flash block is unaffected. The part of the
code handling the partial update on the ECU is illustrated in the Appendix, Listing B.2.

Logical Phys. Sub- Size Offset

Sector Sector Address
S0 PSO 16 KB 00°0000,,
S1 (512 KB) 16 KB 00'4000},
S2 16 KB 00'8000,,
S3 16 KB 00'C000,,
s4 16 KB 01°0000,,
S5 16 KB 01°4000,,
S6 16 KB 01’8000,
s7 16 KB 01'C000},
S8 32 KB 02'0000,,
S9 32KB 02'8000,,
S10 32KB 03'0000,,
S11 32 KB 038000,
s12 32KB 040000,
S13 32 KB 048000,
S14 32 KB 05'0000,,
s15 32KB 05’8000},
S16 64 KB 06'0000,,
S17 64 KB 070000,
S18 PS1 64 KB 080000,
S19 (512 KB) 64 KB 09°0000},
S20 128 KB 0A’0000,,
s21 128 KB 0C’0000,,
S22 128 KB 0E’0000,,
S23 PS2 256 KB 10°0000,,
S24 (512 KB) 256 KB 14’0000,
S25 PS3 256 KB 18’0000,
S26 (512 KB) 256 KB 1C’0000,

Figure 4.10: Sector structure of Program Flash.

CHAPTER 4. DESIGN AND IMPLEMENTATION 52

For partial updates the diagnostic tester has to know the memory structure, and the
borders of the different memory sections of the ECU as seen in Figure 4.10. This is
necessary, because it is possible that multiple blocks are located in the same sector. In
that case, even if only one of the blocks has changed, all blocks in the same section still
would need to be transferred. To prevent this, it would be necessary to save the whole
sector before the update and copy everything back, except the updated block, when the
update is done. This would result in an undesired overhead to manage the update on the
ECU.

To optimize the system to prevent the influence of big memory sections, I split up the
SW in two sections according to the layout and different size of the sections. Basically the
SW can be divided into two different parts. First is the part of the SW that most likely
does not need any updates. It does not need to be split up further and can be placed in
one of the larger sections of the memory. The second is the part of the SW that most
likely needs to be updated and should be placed in the smaller memory sections. It is
also possible to further split up this part into multiple sections, which further reduces the
data that needs to be transferred and improves update time. In Figure 4.10 the “Offset
Address” is added to the base address of the regarding program flash bank, 0x80000000
for Bank 0 and 0x80200000 for Bank 1. Looking at the different sizes of the sections, it can
be seen that the size is increasing from the beginning to the end. So ideally the smaller
sections at the beginning should be used for blocks that need frequent updates. It has to
be considered that the blocks should not be filled completely, so that a change in one of
the blocks, does not affect the following block.

4.9 Diagnose Function

To identify problems during initialization of the uploaded SW, I introduced a diagnose
functionality to the uploaded SW. It is done by adding a new method to the uploaded SW
that is called after the initialization sequence of the uploaded SW and sends a status to
the WVI. The content of this method depends on the functionality of the uploaded SW
and should check if the used ECU modules are initialized correctly and maybe check their
functionality if possible. If the WVI does not receive any status or an error status, the
WVI is able to restore the previously backed up SW version. This provides assurance, to
some extent, that the SW works correctly and automatically starts a restore procedure
if the SW does not initialize correctly and a backup is available. In the test setup, the
diagnose function read the temperature value from a previously initialized sensor on the
TC277 application kit. If there is an error in the start up procedure, the initialization
phase, or the diagnose function itself, the temperature sensor would return an error, or
the diagnose function would not return an acknowledgment at all.

4.10 Backup and Restore

The last major contribution is the introduction of a backup and restore functionality. To
provide a fallback, a running SW can be backed up before an update. It is done by copying
the SW from the program flash bank 0 (0x80000000 - 0x803FFFFF) to bank 1 (0x80400000
- 0x807FFFFF). If more than the first program flash bank is needed, the backup could

CHAPTER 4. DESIGN AND IMPLEMENTATION 53

also be stored on the SD card, providing more space for data in the program flash. For
that the bootloader would also have to include a driver for the SD card interface. To be
able to restore the SW it is also necessary that the block in the data flash, described in
section 4.2.2, is saved. During the backup, the data flash block is copied from its original
address at OxAF05E000 to the backup address at OxAF05F000. If the SW and the data
flash block are stored, the backup is completed and signaled by writing the start address
to the “Backup Program Address” field in the data flash block. The backup starts by
reading the start address of the first block and the corresponding end address. Now the
data of the first block is stored to the backup address. In the implemented system, the
backup is stored in the second program flash bank “PFlash1”. The process is repeated
until all data blocks are copied. Now the data flash block is copied to its backup address.

To restore a previously backed up SW, the backup data flash block is analyzed and
the SW in program flash bank 1 is copied back to bank 0 block by block. The bootloader
deletes the used memory sections before restoring the backup blocks and keeps track of
the deleted sectors, so no sector is deleted after data has been restored to it. When all
blocks are restored, the backup data flash block is restored to its original address. After
the next reset, the restored SW automatically starts.

Chapter 5

Evaluation

In this chapter, the evaluation of the implemented wireless system is presented.

The following sections describe the tests and results for the different contributions
separated into the four overall goals presented in Section 1.1. Section 5.2 shows the benefit
of the modifications to the UDS protocol as well as the speed up from the optimizations of
the flash driver. It further describes the efficiency evaluation of the wireless update system
by comparing the time needed for a standard, a parallel, and a partial update compared
to a reference wireless update system. Section 5.3 evaluates the implemented seed and
key algorithm, before Section 5.4 evaluates the CRC algorithm by injecting faulty data.
Finaly, Section 5.5 analyzes the time needed for the different steps of the backup and
restore mechanism.

5.1 Evaluation Setup

Figure 5.1 shows the testbed that was used for the evaluation of the different parts.

Figure 5.1: HW testbed used for evaluation.

It comsists of the diagnostic test device on the left, which is directly connected to the
PC through a USB connection. The diagnostic test device is a Beagle Bone Black, running

o4

CHAPTER 5. EVALUATION 55

the SW described in [SBK*16]. It communicates with the WVT in the middle using the
TP-LINK TL-WN722N WLAN-USB-Adapter. The WVI is also a Beagle Bone Black
equipped with a custom made CAN Cape (Section 2.3.1). The CAN Cape enables a CAN
connection from the WVI to the ECU. It hosts two CAN transceivers that are connected
to a 9-pin DSub connector each. Right to the WVTI is the AURIX ECU, connected through
the CAN bus (orange/white twisted wires). On the right side is a power pack that provides
the power for the WVI as well as the ECU. All evaluations of the standard, parallel, and
partial update were performed on the illustrated testbed. The evaluation of the flash driver
and the Seed and Key algorithm, which were executed directly on the AURIX ECU.

5.2 Efficiency

This section evaluates the different contributions to improve the efficiency of the update
system. It includes the evaluation of the modified UDS protocol and the optimized flash
driver in Sections 5.2.1 and 5.2.2. Afterwards it evaluates the implemented wireless update
system by comparing it to a Volvo FlexECU provided by DEWI project partner Volvo
Trucks. Section 5.2.3 illustrates the improvements of the AURIX update system compared
to the Volvo ECU. Sections 5.2.4 and 5.2.5 illustrate the benefit of the parallel and partial
update.

5.2.1 UDS Evaluation

To evaluate the benefit of the modified UDS protocol, described in Section 4.6, I performed
a standard wireless update with three different file sizes, 45, 386 and 445 kB. The update
was performed 20 times for each file size, and the UDS protocol was used in the modified
version, as well as the original version (only for the transfer command) resulting in 120
update runs. The used metric is the time needed for the transmission of the data to the
ECU, which should be significantly lower when using the modified protocol. There should
be no effect on the other parts of the update process, as the number of commands necessary
for the update, is unchanged compared to the original protocol. Table 5.1 shows the results
of the evaluation, highlighting that, for all file sizes the download time decreased. The
resulting benefit of the modified UDS protocol is between 38.7% and 38.9% for file sizes
of more than 45kB. As the modified protocol only benefits the download to the ECU, the
benefit for the overall wireless update process depends on the file size of the update. For
an update with 1 Mb, the time improvement can be as high as 38.9%, because the other
steps of the update process take an insignificant amount of time. Contrary, with an update
size of a few bytes, where the benefit for the overall update can be up to 0%, because the
data download takes just an insignificant amount of time compared to the other parts of
the update process (as seen in Table 5.3).

CHAPTER 5. EVALUATION 56

Table 5.1: Modified UDS protocol is 38% faster than standard (ISO 14229-3) UDS proto-
col.

Protocol 45 kB 386 kB 445 kB
Standard UDS protocol 1793 ms + 22 16296 ms + 243 18905 ms + 271
Modified UDS protocol 1292 ms + 20 11728 ms £ 215 13626 ms + 223
Speedup 38.7% 38.9% 38.8%

5.2.2 Flash driver evaluation

To evaluate the performance of the optimized flash driver, I copied 250 KByte from the
data flash to the program flash. The first run was performed with the standard flash
driver, only using the “Write Page” command. The second one used the optimized flash
driver, that automatically decides which method it uses for storing the data to maximize
the performance. Table 5.2 shows the benefit of the optimized driver, by decreasing the
time needed for the copy process by 61.1%, so the optimized flash driver takes only 38.9%
of the time to write the same amount of data than the standard driver with the “Write
Page” command, to write the same amount of data. The tests were performed using 5V
programming and all used sectors were deleted before each test to eliminate the influence
of the time needed for deleting.

Table 5.2: Optimized flash driver is 61% faster than standard flash driver.

Driver 250 KByte
Standard flash driver 748 ms = 5
Optimized flash driver 291 ms £ 2
Benefit 61.1%

When all acknowledgments, sequence numbers and inter frame spaces are taken into
account, the theoretical limit of the effective data rate is 33.7% of the data rate of the
CAN bus. Equations 5.1 and 5.2 show the calculation of the maximum effective data rate
from the flash performance and the effective data rate from the actual data rate of the
bus. Due to the slow data transmission, the flash driver has no influence on the update
time. If the transmission between the WVI and the ECU would have an effective data rate
of more than 2.67 Mbit/s, only using the “Write Page” command would slow down the
update process. With the optimized flash driver, effective data rates of up to 6.87 Mbit/s
are possible without slowing down the update process. That means, if the only availaible
bus is CAN, the driver optimizations have no benefit. Instead, if used with FlexRay or
Ethernet, the benefit is a speed up of up to 257%.

8
StoringTime for1M Bytels]

= max.E f fectiveDataRate[M Bit/ s] (5.1)

max.E f fectiveDataRate[M Bit/s| = DataRate[M Bit/s] * 33, 7% (5.2)

CHAPTER 5. EVALUATION o7

5.2.3 Volvo FlexECU and AURIX ECU wireless update comparison

To evaluate the implemented wireless update system, the duration of the different wireless
update steps was measured performing 20 wireless SW updates for every mode. The
same tests were performed with the Volvo FlexECU to gain a reference value. For the
evaluation, the update is split into four parts:

e Connection-related: Connecting the WVI to the DT (SecUp);
e ECU-related: Authenticating the WVI to the ECU (Seed and Key);
e Upload: Uploading the parsed hex file to the WVI;
e Download: Download the SW to the ECU.
Table 5.3 shows that the standard wireless SW update on the AURIX ECU can be per-

formed more than two times faster. This increased update speed has several reasons.
First, the increased CPU power of the AURIX ECU and the simpler protocol allow for
92% faster initialization of the update process. Second, the size of the parsed file is about
30% smaller than the original file, speeding up the upload to the WVI and at last, the
update sequence on the Volvo ECU is more complex, needing more time. On the Volvo
ECU, the first part of the update is the bootloader, which has to be stored and executed,
before the rest of the update is performed. This benefits the AURIX ECU making it 63%
faster during the download phase. Overall the complete update process of the AURIX
ECU is 57% faster compared to the Volvo FlexECU.

Table 5.3: Standard wireless update for AURIX ECU only takes 43% of the time, compared
to the Volvo Flex ECU.

ECU/Mode Connection- ECU-related Upload Download Total
related

Volvo/std 2369.7 ms 2410.6 ms 6585.4 ms | 37315.3 ms | 48681.0 ms

AURIX/std 2340.2 ms 205.4 ms 4597.0 ms | 13626.3 ms | 20768.9 ms

Benefit 2% 92% 31% 64% 57%

5.2.4 Parallel SW update evaluation

To evaluate the performance of the parallel update, the duration of the update is compared
to a standard wireless update on the AURIX ECU and I computed the time a sequential
update of two ECUs would take to compare it to the parallel update. For the evaluation
the testbed was extended, such that one DT was connected to two WVIs, each connected
to one AURIX ECU. This reflects the “workshop scenario” and can also be applied at the
assembly line for the initial SW upload. Executing a parallel update, the SW is installed
on both ECUs simultaneously instead of sequentially. Table 5.4 shows the results of the
evaluation and reveals, that the parallel update takes about 25% more time compared to
the standard wireless update. The increased update time is, because some of the update
steps can not be completely parallelized and therefore increase the update time. If the

CHAPTER 5. EVALUATION 58

update protocols are designed specifically for parallel SW updates, they would be able
to reduce the overhead for the parallel update. Despite the increased update time and
considering that in 25% more time, two ECUs instead of one where updated, the parallel
update is way faster compared to a standard wireless update. In the tested scenario,
the parallel update was 38% faster than updating two ECUs one after the other. The
duration of the connection related part of the update increases by 65% as the DT has to
connect to two WVIs. The upload of the SW to the WVT is still sequentially and therefore
the upload takes 60% more time than at a standard update of a single ECU. The major
improvement is during the download phase from the WVI to the ECU. As this part of
the update process is completely parallel, the download to two ECUs only takes 5.5%
longer compared to a single download. If the update system would utilize IEEE 802.11s
multicast, the connection related, the ECU-related, as well as the upload part of parallel
updates could be improved significantly.

Table 5.4: Parallel update only takes 62% of the time compared to sequential update
(computed values), and only 25% slower than update of single ECU.

ECU/Mode Connection- | ECU-related Upload Download Total
related
AURIX/std 2340.2 ms 205.4 ms 4597.0 ms | 13626.3 ms | 20768.9 ms

AURIX/sequential | 4680.4 ms 410.8 ms 9194.0 ms | 27252.6 ms | 41537.8 ms

AURIX/parallel 3868.3 ms 262.9 ms 7378.5 ms | 14372.2 ms | 25881.9 ms

5.2.5 Partial SW update evaluation

The partial update is also compared to the standard wireless update on the AURIX ECU.
Often a SW update only contains minor bug fixes or small changes to parameters that are
used by the ECU. Such updates are very similar to the previous SW version, with most
of the SW unchanged, and only a few bytes changed. A partial update only transmits
the changed parts of the SW, reducing the transferred data. To evaluate this scenario,
I developed two applications, both utilizing a 1024 byte parameter field, and both .hex
files with 445 kB. The parameter field, which was the only difference between the two
applications, was placed in a small section of the AURIX ECU as described in Section
4.2.3. Using the partial update, only the block containing the changed parameter field
had to be transferred, drastically reducing the upload time to the WVI by 92.5%, as well
as the download time to the ECU by 95%. Table 5.5 illustrates the impact of the partial
update, being 83% faster than the standard wireless update. Biggest improvements are
the 92.5% time cut transferring the data from the DT to the WVI. The results of this
evaluation are only valid for the specific application and vary depending on the difference
of two SW versions, the applications memory layout and the memory architecture of the
used ECU. The implemented system uses a very basic partial update concept, that if not
considered by the application developer can have no benefit at all. In the worst case, the
partial update takes as long as a standard update of the whole SW. This is the case when
the SW is located in adjoining memory blocks, which means that a simple change of one
line of code at the beginning could shift the rest of the data. A shift is not recognized by

CHAPTER 5. EVALUATION 59
the implemented system and would therefore result in an update of all data blocks.
Table 5.5: Partial update takes 83% less time than standard wireless update.
ECU/Mode Connection- ECU-related Upload Download Total
related
AURIX/std 2340.2 ms 205.4 ms 4597.0 ms | 13626.3 ms | 20768.9 ms
AURIX /partial 2351.7 ms 216.7 ms 347.1 ms 655.2 ms 3570.7 ms
Benefit -0.5% -5.5% 92.5% 95% 83%

5.3 Security

The security of the system is provided by the trust between the ECU and the DT, because
only a trusted DT is allowed to perform an update. The trust between the DT and
the ECU is based on a common knowledge of the seed and key algorithm. If the DT
knows the algorithm to calculate the correct key from the seed, the ECU assumes it is
communicating with a trusted DT. To evaluate this algorithm, I used randomized keys for
brute force attacks to get access to the ECU. As I use a 24 bit key, there are 16.777.215
different solutions. In a real world scenario, the ECU randomly generates the seed for every
request and therefore, brute force attacks fail to penetrate the system. In the testbed, a
fixed seed was used, which allows an attacker to perform a brute force attack, trying all
16.777.215 combinations. If we would assume, that sending the request and sending the
key would take 1 ms, and that the key is found after trying 50% of th combinations, a
brute force attack would take at least 8.388.607 ms, which equals about 2 hours and 20
minutes. With a random seed for every request, the chance of guessing the correct key is
5,96 %*1079% for every single attempt.

Therefore, the seed and key algorithms security contribution to the wireless update
system relies solely on the secrecy of the used algorithm and a random seed to prevent
brute force attacks.

Table 5.6: Evaluation of Seed and Key algorithm with fixed and random seed. (Results
calculated)

Time/Probability

2 hours 20 minutes
until key is found

Brute forcing a fixed seed
1 ms per attempt, key found
after 50% tested

5,96 *107%%
probability that the key is
guessed

Brute forcing a random seed

CHAPTER 5. EVALUATION 60

5.4 Integrity

To check the integrity of the transferred data, I compare the CRC-32 value calculated
at the DT with the one calculated at the ECU. If they differ, at least one bit has been
stored wrong. Evaluating a CRC to the bones, would require a separate master thesis, and
therefore I just tested the algorithm with just a few cases of manipulated data. I changed
respectively 1, 2, 3 and 32 Bit in a row, and every single attempt was recognized by a
modified CRC value. After that, I modified 2 and 3 Bit as well as 32 Bit, independent of
each other and again the corrupted data was recognized by the CRC mechanism.

Table 5.7: CRC32 succeeded for all tested manipulations.

Manipulation Result

Flipping 1 Bit v

Flipping 2 Bits in a row

Flipping 3 Bits in a row

Flipping 32 Bits in a row

Flipping 2 Bits independent

Flipping 3 Bits independent

NIENEN ENENIEN

Flipping 32 Bits independent

According to [SGPH98]| the following errors are detected by a CRC-32:

e All errors that span less than 32 contiguous bits;
e All 2-bit errors less than 2048 bits apart;

e All cases where there are an odd number of errors.

They also write, that the chance of not detecting an error in uniformly distributed data
is 1 in 232. Hence, I believe that a CRC32 is sufficient enough to handle the possible
corruption of single bits inside the data. Recovering data after detecting an error was not
part of the thesis. If an error is detected, the concerning memory section is retransmitted.
Of course there are error cases that are not detected by the CRC32 [SGPH98], but those
cases are highly unlikely to happen by accident.

5.4.1 Diagnose function evaluation

To evaluate the diagnose function, I checked its behavior if an error should not be detected
by the CRC-32. If undetected errors lead to a corrupt SW, the diagnose function will
probably not return any acknowledgment. If the corrupted data is not part of the start
up procedure, the initialization phase, or the diagnose function, a corrupt SW could be
undetected until faulty behavior signals the error. During the evaluation, I toggled various
bits in different locations of the code to corrupt the SW. Table 5.8 illustrates the results of
the evaluation. In the first scenario, I corrupted the start up procedure, which lead the SW

CHAPTER 5. EVALUATION 61

to being stuck during start up and therefore no response like described in Section 4.9. In
a second scenario, I corrupted the initialization of the CAN module, the interrupt system,
and the system (base frequency,...) each. With every of the three mentioned modifications,
the SW did not give any response. A faulty response could only be accomplished when
the initialization of the temperature sensor was corrupted. In that case, when reading the
temperature value, the sensor returns an error value. If a variable, constants or data that
is not necessary for a correct execution of the CAN module or the contents of the diagnose
function, is corrupted, the response of the diagnose function is correct. In such a case, the
corruption will probably be recognized through unexpected behavior of the SW or not at
all.

Table 5.8: Diagnose function works correctly or not at all.

Modification No False Response
Response Response OK

Corrupt Start Up Procedure v

Corrupt Initialization v

(CAN, Interrupt, System)

Corrupt Initialization Ve

(Temperature Sensor)

Corrupt Data v

(Variables, Constants)

5.5 Safety

To evaluate the performance of the backup and restore feature, the same application
previously used for evaluating the standard wireless update as well as the partial and
parallel update, was used. The original .hex file with a size of 445 kB resulted in an
application size of 316 kB. The application was uploaded to the ECU using the standard
wireless update. To figure out, if the uploaded application initialized correctly, a diagnose
function is included in the application, that can be activated through a predefined CAN
message. After the diagnose function of the application returned valid information, the
application was backed up, measuring the time between the instruction to back up the
application and the acknowledgment. This process was repeated 20 times, and the same
was done for the restore procedure. Table 5.9 shows the results of the evaluation.

Table 5.9: Duration of the backup/restore process in ms.

As expected the difference between the backup and restore procedure is minimal. A

Application 316 KByte
Backup 5685 ms
Restore 5677 ms

CHAPTER 5. EVALUATION 62

reason for the restore procedure being slightly faster is, that when performing a backup,
the information about the backup is also stored in the current data flash block (Section
4.2.2). The slowest part of the whole process is the erase procedure for every used block.
This also implicates that the performance of the backup and restore feature strongly
depends on the number of used memory sectors and of course the size of the application.
The impact of the erase time increases when the used sectors are not filled completely.

Chapter 6

Related Work

In the last decade, several concepts and systems for wireless automotive SW updates have
been introduced. Most of the concepts focused on the security aspect of an automotive
wireless update system and the introduced security risks.

Security and integrity in automotive update systems Liu et al. [LLF*14] have
introduced an authentication protocol to connect electric vehicles to the smart grid, which
ensures the authenticity of the connected vehicle. Mahmud et al. [MSHO5] introduced an
architecture for secure SW updates, that ensures data integrity in a wireless update system
by transferring multiple copies of the SW binary. The system ensures data integrity, but
does not cover vehicle authentication and key management. Dennis et al. [NLO8] proposed
a protocol for a secure wireless software upload in intelligent vehicles, which provides
data integrity, authentication, confidentiality and freshness. They use trusted sources to
authenticate the whole update chain. Steger et al. [SKH'16] propose a generic framework
to enable secure and efficient wireless automotive SW updates. They use a dedicated
cross-layer security concept that applies strong authentication as well as encryption. This
framework was implemented and enhanced in their SecUp security concept [SBK'16],
where they tried to cover all security and safety requirements of a wireless automotive
SW update system. They use, among others, symmetric and asymmetric keys stored on
devices in the network to prove the identity of those nodes and to ensure data integrity
and confidentiality. The implemented system in this thesis enables the use of the SecUp
framework for the AURIX ECU. With the help of SecUp’s authors, the framework was
also extended to provide the new mechanisms needed for the partial and parallel update.

IEEE 802.11s - Multicast Steger et al. [SKH"15] also performed measurements on
IEEE 802.11s networks to prove their applicability for automotive wireless SW updates.
They performed several tests indoors as well as inside two different vehicles and concluded
that IEEE 802.11s is able to fulfill the system requirements of a wireless SW update system
for automotive. V2X! has become an important research topic in recent years. Tuan et
al. [TSK12] introduce a priority and admission control mechanism for applications in a
vehicular communication network. Their network architecture implements vehicular ad-
hoc networks, based on the wireless automotive standard IEEE 802.11p and wireless LAN

¢

LGeneral term for “vehicle to vehicle” and “vehicle to infrastructure” communication.

63

CHAPTER 6. RELATED WORK 64

mesh networks based on IEEE 802.11s. Their main goal is to ensure a seamless deployment
of infrastructure to vehicle emergency services. To minimize the end-to-end delay as well
as the probability of congestion, they transfer emergency messages using both unicast and
multicast messages. Chakraborty and Nandi [CN13] propose an efficient channel access
mechanism based on IEEE 802.11s. They adapt the standard mesh controlled channel
access (MCCA), which provides equal time fair channel access, to fit the automotive
environment by providing a proportional fair channel access. Those changes enable the
different nodes to get more channel share depending on their traffic load. Utilizing multi
cast groups in WSNs without the use of IEEE 802.11s, Nirmala and Manjunath [NM15]
introduce SCUMG, a secure code update for multicast groups in WSNs. They divided the
network in different multicast groups based on their location and each multicast group
receives a different update. Their main focus is the secure and confidential transmission
of the update to each group by using a key agreement protocol implemented in TinyOS
(an operating system for WSN nodes).

Parallel update systems With respect to parallel updates and the use of multicast,
there is also very little related work in the automotive domain. Most of the existing
work has been produced by the WSN research community. Yi et al. [YFYC13] propose
a testbed for WSNs with parallel reprogramming capabilities. Their testbed is able to
reprogram all the nodes simultaneously which significantly reduces the time needed for
WSN application update. They also used the CAN bus to connect the different nodes and
connected a server that is responsible for the reprogramming. The parallel reprogramming
is done by broadcasting the update to all nodes. Only nodes that encounter an error use
a dedicated reply period to signal the error; therefore, the reprogramming time does not
grow with the number of connected nodes. Wang et al. [WZCO06] discussed different
approaches for reprogramming WSNs. They looked at the different challenges of node
reprogramming in WSNs, mainly scalability, energy efficiency, and hardware limitations.
They also discussed several reprogramming approaches including the Firecracker protocol
[LCO4] and the MNP service [KWO05]. The Firecracker protocol proposed by Levis and
Culler [LC04], uses a combination of routing and broadcasts to deliver data to every node
in a network. The data source sends the data to very distant points in the WSN. Once the
data reaches those points it is broadcasted to all neighbors. This protocol is tailored for
large homogeneous WSN and provides all nodes with the same data. When that protocol
is used for a wireless update, it would only allow to update any connected node with
the same SW. The same goal is achieved by Kulkarni and Wang with their MNP service
[KWO05], a multihop network reprogramming service. It is designed specifically for the
Mica-2/XSM motes and uses a sender selection algorithm that tries to find the sender
mote in a neighborhood that has the biggest impact broadcasting the data. To avoid
collisions, their service guarantees that in a neighborhood there is at most one sender. An
example in the automotive sector is provided by Lee et al. [LKHJ15]. They propose a
parallel re-programming method to reduce the SW update time of ECUs. Their system is
integrated in the vehicle gateways that connect the different vehicular networks. Therefore,
they simply send the SW on all desired networks, involving the limitation that only one
ECU per network can be updated at a time.

CHAPTER 6. RELATED WORK 65

Partial update systems Although there is very little related literature on automotive
partial or incremental updates, there is a lot of literature produced by the wireless sen-
sor networks (WSN) research community. The basic idea of wireless updates for WSN
is the same as for automotive wireless updates, but the general system requirements are
completely different. Jeong and Culler [JCO04] present an incremental network program-
ming mechanism for wireless sensor networks that transmits SW updates by transferring
the incremental changes. They use the Rsync algorithm to generate the difference of two
SW versions. In their evaluation they reach a speed up, compared to a non-incremental
update, of up to 9 times faster when changing a constant and up to 2.5 times faster for
changing a few lines of the code. Marrén et al. [MGL106] introduced FlexCup, a flexible
and efficient code update mechanism for sensor networks. Their system is involved in
the compiling and linking process and generates meta-data that describes the compiled
components. This meta-data is later used when performing an update to place the new
code inside the running application and relink function calls to the correct locations.

[MSHO05], [NLO8], and [SBK*16] mainly focus on security without considering parallel
and partial updates to improve efficiency. As mentioned, [SBK™16] is already part of this
thesis, as it is responsible for the secure wireless communication. As the concept of this
thesis can also be applied to WSNs. [YFYC13], [KWO05], and [LCO04] could be extended
to also provide partial update capabilities, further improving their efficiency for updates.
[LKHJ15] could be modified with parts of this thesis to enable the parallel programming
of multiple ECUs in the same network, drastically reducing the update time for multiple
ECUs. As most of the times, power efficiency is the biggest limitation for WSNs, reducing
the transferred data is a main goal. As the wireless radio normally uses more power than
the CPU, it is more expensive in terms of power efficiency to send data than to run some
CPU cycles. Therefore, partial update concepts for WSNs are mostly more complex than
the one used in this thesis. Concepts like [JC04] and [MGL"06] could be implemented
in the system proposed in this thesis, to further reduce the transferred data for partial
updates.

Chapter 7

Conclusion and Future Work

In this master thesis, an efficient and secure wireless update system for the Infineon AURIX
ECU is proposed. The system is designed with a revised version of the UDS protocol to
maximize the data transfer capabilities which increased the CAN data transfer speed by
38%. Compared to a reference wireless update system (Volvo FlexECU), the implemented
system, when performing an update, is 57% faster . I also implemented parallel updates,
which proved to be 38% faster than a sequential update of two ECUs. Implementing
partial updates enabled a speed up of 83% in the tested scenario. This speed up of course
heavily depends on the structure of the SW to be uploaded and the difference between
the two SW version. The wireless communication and security framework was already
present as part of the SecUp framework [SBKT16] and was only adapted to fit the new
protocol and update sequence. To ensure the integrity during the data transmissions,
multiple CRCs are used, which proved sufficient during the development of the system.
An efficient backup and restore feature was added to provide a fallback solution for failed
SW updates.

The evaluation section illustrates the benefits of the implemented wireless update sys-
tem and the advanced features for partial and parallel updates, as well as the improved
data throughput of the modified UDS protocol. It also evaluates the robustness of the
used “CRC” and “Seed and Key” algorithm, and shows the improvements of the optimized
flash driver. The evaluation clearly shows the improvements of the implemented system
and its advanced features.

With more time and resources, I would have implemented a more advanced partial
update system to further reduce the transferred data and minimize the dependencies to
the applications memory layout. It should also be capable of detecting shifts in the data
blocks. To achieve that, a more complex diff-based update (like [JC04]) has to be used,
implicating a higher management overhead on the ECU. I would have also liked to utilize
802.11s multicast to distribute the SW to multiple WVIs at the same time, further speeding
up the parallel update.

From the beginning, security was not a priority, but could improve the overall system
greatly. At the moment, there are many vulnerabilities, that could be exploited especially
in the communication between the WVI and the ECU. The implemented system is designed
for a CAN connection between the WVI and the ECU: this connection is the bottleneck
in the whole update system. Using a faster bus system (FlexRay, Ethernet) would benefit
the update speed. Another way to extend the functionality of the update system would

66

CHAPTER 7. CONCLUSION AND FUTURE WORK 67

be, to connect the DT and the WVTI over the Internet. This would enable a remote update
infrastructure and save OEMs a lot of time for vehicle maintenance.

Starting the development all over, I would change the data handling at the ECU to be
independent of the seven data bytes per message. I would also use an SD memory card
for the backups, to provide more storage for the uploaded SW.

Apart from that, I am very satisfied with the implemented system, the parallel and
partial update, and the achieved evaluation results. When the system is further improved
in terms of security and error robustness, as well as conforming with the Automotive
SPICE ! safety requirements and the European Commission General Safety Regulation
(EC) No 661/2009, it would be very well suited to be used at the assembly line and in
workshops.

! Automotive SPICE is a process assessment model (PAM) and is intended for use when performing
conformant assessments of the process capability on the development of embedded automotive systems. It
was developed in accordance with the requirements of ISO/TEC 33004.

Appendix A

Definitions

Diagnostic Test Device (DT) Computing platform with wireless interface responsible
to provide a link to the vehicle from the outside.

Wireless Vehicle Interface (WVI) Computing platform with wireless interface and a
connection to the vehicle bus system that provides a wireless bridge to the vehicle
bus.

ECU Electronic control unit used to control vehicle functions. It is connected to the
vehicle bus system, and hosts the bootloader SW.

Boot Code - Start up procedure Code that is executed before the programmed ap-
plication starts.

Uploaded SW SW that was uploaded to the ECU through the wireless update system

SW to be uploaded SW that is going to be uploaded to the ECU through the wireless
update system

Bootloader SW running on the ECU, managing the wireless update on the ECU
Parser SW that transforms one file into another file.
Interpreter SW that reads and extracts data from a file.

Intel Hex File (Hex File) File created by the development toolchain containing the
data of the SW to be uploaded

Parsed File File created by the parser by extracting the data from the Hex File

68

Appendix B

Code Samples

B.1 Bootloader

void my_can_rx_handler (unsigned int id, unsigned char len,

{

data, unsigned char mbidx)

if (id !'= 0x120+ECU.ID && id != O0x7DF)

return; //should not be reached

int i = 0;

// Send message back with ID (oldID | 0x40)
unsigned int idack=id;

idack|=0x40;

if (id = 0x7DF) //OBD command
//Map from ECU ID to VIN
uint32 VIN = 0;
get VIN (&VIN) ;

if (x(data)==0x02 && *(data+1)==0x09 && x*(data+2)==0x02)
{

unsigned char xAckdata = malloc(6 * sizeof (unsigned char));
tidx = CAN_AddMessageTX (0, 6, Ox7E7+ECUID, 0);

x(Ackdata) = 0x05;

*(Ackdata+1) = 0x49;

+(Ackdata+2) = (VIN & 0xFF000000) >> 24;

+(Ackdata+5) = (VIN & 0x000000FF)
CAN_UpdateMessage (tidx , Ackdata);
free (Ackdata) ;

}

return ;

}
if (id = (unsigned int)(0x120+ECU.ID)) //New UDS commands
if (x(data)==0xFF && x*(data+1)==0xFF)

if (x(data+2)==0x01) //set ECU ID

69

unsigned char x

APPENDIX B. CODE SAMPLES 70

{
ECUID = x(data+2);

updateECUID = 1;
telse if (x(data+2)==0x02) //setVIN
{
VIN |= (x(data+3) << 24) & 0xFF000000;

VIN |= (*(data-+6)) & 0x000000FF ;
updateVIN = 1;
telse if (x(data+2)==0x03) //setSWVer

{
SW_Ver |= (*(data+3) << 24) & 0xFF000000;

SW_Ver |= (*(data+6)) & 0x000000FF ;
updateSWVer = 1;

}
if (x(data+2)==0x0A) //Backup SW

backupSWflag = 1;
}telse if (x(data+2)==0x0B) //Restore SW

{
restoreSWflag = 1;
}
if (x(data+2)==0x01 || =*(data+2)==0x02 || =x(data+2)==0x03 || =(data+2)

==0x0A || =*(data+2)==0x0B) //send response with command code |0x40

tidx = CAN_AddMessageTX (0, 3, idack, 0);
x(data + 2) = x(data + 2) | 0x40;
CAN_UpdateMessage (tidx , data);

return ;

}

if (x(data)==0xFF && x(data+1)==0x10 && =*(data+2)==0x02) //Request
Programming Session
{

curr_session = SESSION_PROGRAMMING;

tidx = CAN_AddMessageTX (0, 3, idack, 0);

x(data+1) = x(data+1) | 0x40;

CAN_UpdateMessage (tidx , data);

memset (MemoryDeletionMap, 0, sizeof MemoryDeletionMap); //Set all
Sections to not deleted as a new programming session starts

return ;

telse if(curr_session == SESSION_.PROGRAMMING)

{
if (x(data)==0xFF) //We have a command

if (x(data+1)==0x27 && =x(data+2)==0x01) //Request Seed (Calculates
Key for Seed and sends Seed)

{

telse if (x(data+1)==0x27 && *(data+2)==0x02) //Key from Seed
{

Listing B.1: Part of CAN rx handler.

APPENDIX B. CODE SAMPLES

if (curr_session = SESSION.PROGRAMMING)

if (x(data)==0xFF) //We have a command

}telse if (x(data+1)==0x34) //Request download
{
if (x(data+2) = 0x01 || x(data+2) =— 0x02)
{
START BLOCK_ADDRESS = 0x0;

START BLOCK_ADDRESS |= (*(data+4) << 24);
START BLOCK_ADDRESS |= (*(data+5) << 16);
START BLOCK ADDRESS |= (#(data+6) << 8);
START BLOCK_ADDRESS |= (*(data-+7))

Flash_Set_Address (START BLOCK_ADDRESS) ;
firstPackage = 1;

if (x(data+2) = 0x01) //This is the download request for the
first Block, which means the program address in the DFlash Block has to
be changed

{
START_BLOCK_OFFSET = *(data+3);

START_OF PROG = START BLOCK_OFFSET+START BLOCK_ADDRESS;
}

tidx = CAN_AddMessageTX (0, 2, idack, 0);
deleteFlash = 1;

_disable () ;
return ;

}

return;

}
Listing B.2: Handling for partial update.
if (id = (unsigned int)(0x120+ECUID)) //
unsigned charx seq = (unsigned charx) malloc (1% sizeof(unsigned char));

memcpy (seq ,data , sizeof (char));

if (¥seq = 0x00 || xseq ==0xFF) //should not be reached
return;

//We have a data package with seq Nr between 0x01 and OxFE
if (firstPackage!=0)

last Acked=x*seq;
firstPackage=0;
telse if(xseq=—lastAcked)

//we already received this package =—> Skip this
free(seq);
return;

telse{

//check if this is the next package —> seqNr incremented by one

APPENDIX B. CODE SAMPLES

if (xseq = (lastAcked+1) || ((xseq==1) && lastAcked = OxFE))

//This is the next id so we are ok
last Acked=xseq;
telse if(xseq>(lastAcked+1)||(*xseq==1) || xseq<(lastAcked-+1))

{
if (lastAcked = OxFE && xseq != 0x01)

{
missed +=(x¥seq—1);
telse if(xseq>(lastAcked+1))

{

missed += *xseq—lastAcked —1;
telse if(xseq<(lastAcked+1))
{

}

last Acked=x*seq;
xdata = 0x00;

missed += (0xFF—lastAcked)+ *seq;

telse
{
free(seq); //should not be reached
return;
}
}
tidx = CAN_AddMessageTX (0, 1, idack, 0);
free(seq);

CAN_UpdateMessage (tidx , data); // send Acknowledge (Ack is simply the
sequence number or 0x00 for an error)

Listing B.3: Handling of sequence of data packets.

B.2 Flash Driver

Flash_Address_Allignment Flash_Set_Address(unsigned int pageAddr) {
IfxFlash_clearStatus () ;
if (mConfigFlash. _assemblyBufferCount != 0)
//Checking Page Mode shouldn’t be necessary because if load page was
called we are in page mode

//and otherwise assemblyBufferCount should be 0
Flash_WriteBuffer () ;

}

if ((pageAddr & 0xf0000000) = 0x80000000)
pageAddr&=0x0fffffff;
pageAddr|=0xa0000000; //Always write to cached memory

if ((pageAddr & 0xff000000) = 0xa0000000) // program flash

if (pageAddr <= IFXFLASH PFLASH END)

72

APPENDIX B. CODE SAMPLES 73

if ((pageAddr — IFXFLASH PFLASH START)
% IFXFLASH PFLASH BURST LENGTH =— 0)

{
mConfigFlash. _addr_allignment = PFlash_alligned;
} else if ((pageAddr — IFXFLASH PFLASH START)

% IFXFLASH PFLASH PAGE LENGTH — 0)
{
}

mConfigFlash. _addr_allignment = PFlash_single;
else
mConfigFlash. _addr_allignment = PFlash_unalligned;

}
} else if ((pageAddr & 0xff000000) = 0xaf000000) // data flash

{
if (pageAddr <= IFXFLASH DFLASH END)

if ((pageAddr — IFXFLASH DFLASH START)
% IFXFLASH DFLASH BURST LENGTH = 0)

{
mConfigFlash. _addr_allignment = DFlash_alligned ;
} else if ((pageAddr — IFXFLASH DFLASH START)

% IFXFLASH DFLASH PAGELENGTH — 0)
{
}

mConfigFlash. _addr_allignment = DFlash_single;
else
mConfigFlash. _addr_allignment = DFlash_unalligned;

}
} else
{
mConfigFlash. _addr_allignment = Flash_Area_Invalid;
}
if (mConfigFlash._addr_allignment != Flash_Area_Invalid) //Only set

address if address valid
mConfigFlash. _actprogaddr = pageAddr;

return mConfigFlash. _addr_allignment;

Listing B.4: Flash Set Address automatically detects address alignment.

mConfigFlash. _assemblyBufferCount += 8; //increment assemblyBufferCount
(64 bit = 8byte)

//Automatically execute Write Burst if possible otherwise write page until
aligned with burst
switch (mConfigFlash. _addr_allignment)

case PFlash_alligned:
if (mConfigFlash. _assemblyBufferCount = IFXFLASH PFLASH BURST LENGTH)
return 1; //Flash_WriteBuffer () ;
break ;
case PFlash_single:
if (mConfigFlash._assemblyBufferCount — IFXFLASH PFLASH PAGE_LENGTH)
return 1; //Flash_WriteBuffer () ;
break ;
case DFlash_alligned :

APPENDIX B. CODE SAMPLES 74

if (mConfigFlash. _assemblyBufferCount = IFXFLASH DFLASH BURST_LENGTH)
return 1; //Flash_WriteBuffer () ;
break ;
case DFlash_single:
if (mConfigFlash. _assemblyBufferCount = IFXFLASH DFLASH PAGE LENGTH)
return 1; //Flash_WriteBuffer () ;

break ;
default :
break ;
}
return O0;
}
Listing B.5: Part of Flash_Load_Page, that signals when to write the buffer.
if (mConfigFlash. _addr_allignment = PFlash_alligned || mConfigFlash.
_addr_allignment = PFlash_single)
{
if (mConfigFlash._assemblyBufferCount <= (IFXFLASH PFLASH BURST_LENGTH)
&& mConfigFlash. _assemblyBufferCount > IFXFLASH PFLASH PAGE LENGTH
&& mConfigFlash. _addr_allignment = PFlash_alligned)

{

//use writeBurst to PFlash
IfxFlash_writeBurstPFlash (mConfigFlash. _actprogaddr);
while (FLASHO_FSR.U & 0x1E);

} else

//use writePage to PFlash

int i = 0;

for (i=0; i<mConfigFlash. _assemblyBufferCount; i+=
IFXFLASH PFLASH PAGE LENGTH)

{
if (!FLASHO_FSR.B.PFPAGE)

IfxFlash_clearStatus () ;
IfxFlash_enterPageModePFlash (IFXFLASH PFLASH START) ;
while (FLASHO_FSR.B.SQER) ;
}
i+=1;
IfxFlash_writePagePFlash (mConfigFlash. _actprogaddr+(i —1)*0x10) ;
while (FLASHOFSR.U & 0x1E) ;

Listing B.6: Part of Flash_WriteBuffer, that automatically uses best way to write data.

)
24
2

O N NN
[N |

[}

30

31

Appendix C

Modifying SW to be used with
wireless SW update

The following pages briefly describe the changes that have to be performed at an existing
project, so it can be used with the wireless update system. The first part describes the
necessary changes so the bootloader of the wireless update system is not overwritten. It
also illustrates how to introduce new memory sections at specific addresses which can be
beneficial for the partial update. The second part describes the code changes, that allow
the wireless update system to interrupt a running SW and start the bootloader.

C.1 Mandatory

There are two changes to be made in the linker File, to move the code so it does not
overwrite the bootloader. The lowest address where the SW to be uploaded is allowed to
start is 0x80008000. If the SW should start somewhere else, the size has to be adapted
accordingly.

The following changes have to be made at the beginning of the linker file (Line numbers
refer to an unmodified linker file of the Free Tricore Entry Toolchain for the AURIX
Tc277c):

* Global
*/

23 /+*Program Flash Memory (PFLASHO)x/

_PMU_PFLASHO_.BEGIN = 0x80008000; /«Change it from 0x80000000:x*/
__PMU_PFLASHO_SIZE = 2016K; /*xChange it from 2Mx/

/*Program Flash Memory (PFLASH1)x/

_PMU_PFLASH1 BEGIN = 0x80200000 ;

__PMU_PFLASH1_SIZE = 2M;

/*Data Flash Memory (DFLASHO)x/

__PMU_DFLASHO_BEGIN = 0xAF000000;

__PMU_DFLASHO_SIZE = 1M;

Listing C.1: Change global definition of PMU PFLASHO in linker file.

75

60

61

62

63

65

66

68

APPENDIX C. MODIFYING SW TO BE USED WITH WIRELESS SW UPDATE 76

/%
* internal flash configuration
*/
MEMORY
{
PMUPFLASHO (rx!p): org = 0x80008000,
(PFLASHO) %/
PMUPFLASH1 (rx!p): org = 0x80200000,
PFLASH1) */
PMUDFLASHO (r!xp): org = 0xAF000000,

DFLASHO) % /

Listing C.2: Change size of PMU PFLASHO in

len

len

len

= 2016K /xProgram Flash Memory

2M /*Program Flash Memory (

M /xData Flash Memory (

memory configuration in linker file.

C.1.1 Optional - for partial update optimization

It is also possible to introduce more sections at different addresses. An example of that

can be seen below:

/%

* Global

*/
_PMU_PFLASHX BEGIN = 0x80008000 ;
_-PMU_PFLASHX SIZE = 16K;
/*Program Flash Memory (PFLASHO)x/
_PMU_PFLASHO_-BEGIN = 0x80100000 ;
__PMU_PFLASHO_SIZE = 1M,;
/*Program Flash Memory (PFLASH1)x/
_PMU_PFLASH1 BEGIN = 0x80200000 ;

/%
* internal flash configuration
*/
MEMORY
{
PMUPFLASHX (rx!p): org = 0x80008000,
PFLASHO) */
PMUPFLASHO (rx!p): org = 0x80100000,
PFLASHO) */
PMUPFLASH1 (rx!p): org = 0x80200000,

PFLASHI) %/

len

len

len

= 16K /*Program Flash Memory (

M /+«Program Flash Memory (

= 2M /#Program Flash Memory (

Listing C.3: Adding global definition for 16K memory PMU PFLASHX and adding it to

the memory configuration in the linker file.

At last a new section has to be added which is placed in the new memory section, this

can be added at the end of the linker file:

.newSec

{

PROVIDE(__newSec_start = .);

/*PROTECTED REGION ID(Protection: iROM .

newSec. begin) ENABLED STARTx/

/*Protection—Area for your own LDF—Codex/

APPENDIX C. MODIFYING SW TO BE USED WITH WIRELESS SW UPDATE 77

/+*PROTECTED REGION ENDx /

*(. newSec) /+*Code sectionx/
*(. newSec)
*x(.gnu.linkonce .t .x)

/*PROTECTED REGION ID(Protection: iROM . newSec) ENABLED STARTx/
/*xProtection—Area for your own LDF-Codex/
/*PROTECTED REGION ENDx /

PROVIDE(-_newSec _end = .);
. = ALIGN(8) ;
} > PMUPFLASHX /+ PMUPFLASHX: Program Flash Memory (PFLASHX) x/

Listing C.4: Introduce a new section .newSec in linker file that is placed in PMU
PFLASHX.

In the code itself, functions or variables can be placed in the newly created section as
seen below. Everything between the two “pragma” keywords is put in the section. It can
also contain the whole function implementation.

#pragma section .newSec
int VariableInSectionNewSec;
int Flash_WriteBuffer () ;

#pragma section

Listing C.5: Place a variable and a function in section .newSec.

C.2 Optional

To also provide the possibility to switch back to the bootloader once the program is
uploaded, the uploaded SW has to contain a few more functions described in the next
three sections.

C.2.1 Add CAN and Flash driver

First the SW has to implement a flash and a CAN driver. To do this the two files (flash.c
and can.c) as well as the corresponding header files and their dependencies have to be
added to the project. Then the two drivers have to be initialized before the main loop of
the SW starts as seen in the following code:

// Setup interrupt handlers
InterruptInit ();

// Initialize systen timer
TimerInit (SYSTIME.CLOCK) ;
TimerSetHandler (my_-timer_handler) ;

//Initialize CAN module
CAN_init (500000, 1);
CAN _Install_Callbacks (my_can_rx_handler, my_can_tx_handler);

APPENDIX C. MODIFYING SW TO BE USED WITH WIRELESS SW UPDATE 78

Flash_Init () ;
// Enable interrupts globally
_enable () ;

ECUID = getECU_ID () ; //function from stats.c providing the stored ECU
ID

unsigned char ridx = CAN_AddMessageRX (0, 4, 0x120+ECU.ID, 0, 0x7FF); //0
x100...0x107

while (1)
{

Listing C.6: Initialization of interrupt handlers, system timer, CAN driver, and flash
driver.

C.2.2 Add stats.c/.h file

The stats.c/.h file implement all functions to get the ECU ID and to delete the program
address stored in the DFlash without losing other data (VIN, SW Ver). To execute the
bootloader after a reset, the SW has to delete the program address stored in the DFlash.
After that a reset leads to the execution of the bootloader. Among others, stats.c defines
the following two functions:

e deleteProgramAddress();
o getECU_ID().

C.2.3 Add delete and reset command to can handler

The last step is to add the CAN commands to trigger the deleteProgramAddress() and
the SYSTEM Reset(). Those commands can also be combined and triggered by one CAN
command. Using two separate commands an example can be seen in the following code.
A CAN message wit ID 0x120 + ECU_ID and the data “OxOF0F” triggers the delete
program address command. 0x120 + ECU_ID and the data “0x0505” triggers the system
reset. Those commands can be adapted to fit the developed SW.

APPENDIX C. MODIFYING SW TO BE USED WITH WIRELESS SW UPDATE 79

void my_can_rx_handler (unsigned int id, unsigned char len, unsigned char x
data, unsigned char mbidx)
{

unsigned char tidx;

// Send message back with ID (oldID | 0x40)
unsigned int idack=id;

idack |=0x40;

if(id = (0x120+ECUID))

tidx = CAN_AddMessageTX (0, 8, idack, 0);
CAN_UpdateMessage (tidx , data);

if (x(data)==0x0F && x*(data+1)==0x0F)

deleteProgramAddress () ;

}
if (x(data)==0x05 && =(data+1)==0x05)

{
SYSTEM _Reset () ;

}

tidx = CAN_AddMessageTX (0, 8, id, 0);
CAN_UpdateMessage (tidx , data);

return;

}
Listing C.7: Add a handler for the CAN commands to delete the program address and to
execute a system reset.

Bibliography

[80206]

[80210]

[And15]

[CN13]

[CWK11]

[Gab16]

[JCO4]

[KWO05]

[LCO4]

[LKHJ15]

IEEE Standard Association Working Group IEEE 802.11. HWMP Protocol
specification, November 2006.

IEEE Standard Association Working Group IEEE 802.11. IEEE Wireless
LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications-
Amendment 6: Wireless Access in VehicularEnvironments, June 2010.

Greenberg Andy. Hackers Remotely Kill a Jeep on the Highway - With Me in
It. WIRED, Jul 2015.

S. Chakraborty and S. Nandi. IEEE 802.11s Mesh Backbone for Vehicular
Communication: Fairness and Throughput. IEEE Transactions on Vehicular
Technology, 62(5):2193-2203, Jun 2013.

Ting-Yun Chi, Wei-Cheng Wang, and Sy-Yen Kuo. uFlow: Dynamic Soft-
ware Updating in Wireless Sensor Networks, pages 405—419. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2011.

Nelson Gabe. Over-the-air updates on varied paths. Automotive News, Jan
2016.

Jaein Jeong and D. Culler. Incremental network programming for wireless sen-
sors. In 2004 First Annual IEEE Communications Society Conference on Sen-
sor and Ad Hoc Communications and Networks, 2004. IEEE SECON 200.,
pages 25-33, Oct 2004.

S. S. Kulkarni and Limin Wang. MNP: Multihop Network Reprogramming
Service for Sensor Networks. In 25th IEEE International Conference on Dis-
tributed Computing Systems (ICDCS’05), pages 7-16, June 2005.

Philip Levis and David Culler. The Firecracker Protocol. In Proceedings of
the 11th Workshop on ACM SIGOPS European Workshop, EW 11, New York,
NY, USA, 2004. ACM.

Y. S. Lee, J. H. Kim, H. V. Hung, and J. W. Jeon. A parallel re-programming
method for in-vehicle gateway to save software update time. In 2015 IFEFE
International Conference on Information and Automation, pages 1497-1502,
Aug 2015.

80

BIBLIOGRAPHY 81

[LLF*14]

[MGL™06]

[MKKJ09)

[MSHO5]

[NASZ05]

[New15]

[NLOS]

[NM15]

[NXP13)]
[Opel7]

[SBK*16]

[SGPHIS]

H. Liu, X. Liang, L. Fang, B. Zhang, and J. W. Zhao. A Secure and Effi-
cient Authentication Protocol Based on Identity Based Aggregate Signature
for Electric Vehicle. In 2014 International Conference on Wireless Communi-
cation and Sensor Network, pages 353—-357, Dec 2014.

Pedro José Marron, Matthias Gauger, Andreas Lachenmann, Daniel Minder,
Olga Saukh, and Kurt Rothermel. FlexCup: A Flexible and Efficient Code
Update Mechanism for Sensor Networks, pages 212-227. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2006.

H. Mukhtar, B. W. Kim, B. S. Kim, and S. S. Joo. An efficient remote code
update mechanism for Wireless Sensor Networks. In MILCOM 2009 - 2009
IEEE Military Communications Conference, pages 1-7, Oct 2009.

S. M. Mahmud, S. Shanker, and I. Hossain. Secure software upload in an
intelligent vehicle via wireless communication links. In IEEE Proceedings.
Intelligent Vehicles Symposium, 2005., pages 588-593, June 2005.

V. Naik, A. Arora, P. Sinha, and Hongwei Zhang. Sprinkler: a reliable and
energy efficient data dissemination service for wireless embedded devices. In
26th IEEE International Real-Time Systems Symposium (RTSS’05), pages 10
pp.—286, Dec 2005.

BBC News. Volkswagen says 800,000 cars may have false co2 levels - bbc
news. http://www.bbc.com/news/business-34712435, Nov 2015. (Accessed on
08/07/2017).

D. K. Nilsson and U. E. Larson. Secure Firmware Updates over the Air in
Intelligent Vehicles. In ICC Workshops - 2008 IEEE International Conference
on Communications Workshops, pages 380-384, May 2008.

M. B. Nirmala and A. S. Manjunath. SCUMG: Secure Code Update for Multi-
cast Group in Wireless Sensor Networks. In 2015 12th International Conference
on Information Technology - New Generations, pages 249-254, April 2015.

NXP Semiconductors. High-speed CAN transceiver, 4 2013. Rev. 3.

Opel. Opel onstar online- und service-assistent.
http://www.opel.at/onstar/onstar.html, Aug 2017. (Accessed on 21/08/2017).

M. Steger, C. Boano, M. Karner, J. Hillebrand, W. Rom, and K. Romer.
SecUp: Secure and Efficient Wireless Software Updates for Vehicles. In 2016
Euromicro Conference on Digital System Design (DSD), pages 628-636, Aug
2016.

J. Stone, M. Greenwald, C. Partridge, and J. Hughes. Performance of check-
sums and CRCs over real data. IEEE/ACM Transactions on Networking,
6(5):529-543, Oct 1998.

BIBLIOGRAPHY 82

[SKH*15]

[SKH*16]

[TSK12]

[Vol17]

[WLfLOO]

[WZC06]

[YFYC13]

M. Steger, M. Karner, J. Hillebrand, W. Rom, E. Armengaud, M. Hansson,
C. A. Boano, and K. Rémer. Applicability of IEEE 802.11s for automotive
wireless software updates. In 2015 13th International Conference on Telecom-
munications (ConTEL), pages 1-8, July 2015.

M. Steger, M. Karner, J. Hillebrand, W. Rom, C. Boano, and K. Romer.
Generic framework enabling secure and efficient automotive wireless SW up-
dates. In 2016 IEEE 21st International Conference on Emerging Technologies
and Factory Automation (ETFA), pages 1-8, Sept 2016.

D. T. Tuan, S. Sakata, and N. Komuro. Priority and admission control for as-
suring quality of 12V emergency services in VANETS integrated with Wireless
LAN Mesh Networks. In 2012 Fourth International Conference on Communi-
cations and Electronics (ICCE), pages 91-96, Aug 2012.

Volkswagen. Volkswagen car-net description. http://volkswagen-
carnet.com/int/en/start/app-overview.html, Aug 2017. (Accessed on
21/08/2017).

T. Wen, Z. Li, and Q. f. Li. An Efficient Code Distribution Protocol for OTAP
in WSNs. In 2009 5th International Conference on Wireless Communications,
Networking and Mobile Computing, pages 1-4, Sept 2009.

Qiang Wang, Yaoyao Zhu, and Liang Cheng. Reprogramming wireless sensor
networks: challenges and approaches. IEEE Network, 20(3):48-55, May 2006.

Kefu Yi, Renjian Feng, Ning Yu, and Peng Chen. PARED: A testbed with
parallel reprogramming and multi-channel debugging for WSNs. In 2013 IEEFE
Wireless Communications and Networking Conference (WCNC), pages 4630—
4635, April 2013.

