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ABSTRACT 
Calibration makes it possible to reduce uncertainties 
in simulations. While a number of techniques have 
been proposed to achieve this in the context of 
building and system simulation, they have mostly 
been applied to static building or system parameters, 
rather than parameters related to occupant-driven 
loads. This paper investigates calibration in the 
presence of stochastic behavioral models for 
domestic hot water demand. With such stochastic 
models, simulation outputs and measurements 
should be aggregated to facilitate comparison. The 
paper shows in which measure parameters used in 
stochastic behaviour models can be calibrated in a 
Bayesian setting using such aggregation. 

INTRODUCTION 

Occupant behaviour models 

From the point of view of building performance 
simulation, energy consumption in buildings can be 
considered to be a function of weather and static 
parameters (e.g. related to building physics) but also 
parameters related to occupant behaviour. The 
representation of occupant behaviour in building 
simulation tools ranges from simple static schedules 
to a variety of sophisticated models (Yan et al., 
2015). Stochastic methods have been proposed to 
account for randomness and dynamic interactions in 
occupant behaviour, for instance for the modelling 
of occupancy or plug loads in buildings. Stochastic 
occupant models are not effective in all cases 
(Tahmasebi, 2016), and the purpose of simulation 
should be taken into account when selecting an 
occupant behavior model (Gaetani et al., 2016). In 
the context of building performance optimization, a 
recent contribution showed that the use of stochastic 
occupant behaviour models could yield different, 
more robust results (Ouf et al., 2020). The simulation 
of system controls performance is arguably a use 
case in which stochastic models could be useful, by 
allowing the robustness of controls to be assessed 
better than with static profiles. What is more, hot 
water demand is a particularly variable aspect of 
occupant behavior, with discrete and mostly short 
events which may hardly be represented with static 
profiles. 

Calibration methods 

Calibration, which we define as the adjustment of 
input parameters for a better agreement of simulation 
with empirical data, is an important step to ensure or 
improve the quality of simulations when 
measurements are available. A distinction can be 
made between manual calibration methods, which 
mostly rely on user experience or intuition, and 
automated calibration methods (Coakley et al., 
2014). Automated calibration methods may for 
instance use mathematical optimization to minimize 
a function corresponding to discrepancy between 
measurements and simulation (Sun & Reddy, 2006). 
An alternative to optimization-based calibration is 
Bayesian calibration, which makes it possible to 
quantify uncertainties in calibration parameters, as 
well as discrepancies between model predictions and 
observed values and observation errors (Kennedy & 
O’Hagan, 2001). This calibration method has 
increasingly been applied  to building simulation in 
the last years (Chong et al., 2017; Heo et al., 2012). 
The measured values 𝑦 are assumed to follow 
Equation (1), where ϛ is the true function of (known) 
input parameters 𝑥, 𝜖 is measurement error, 𝜃 is the 
true value of the calibration parameters 𝑡, 𝜂 is the 
model function of 𝑥 and 𝑡, and 𝛿 represents  model 
discrepancy. 
 

𝑦ሺ𝑥ሻ ൌ ϛሺ𝑥ሻ  𝜖 ൌ 𝜂ሺ𝑥, 𝜃ሻ  𝛿ሺ𝑥ሻ   𝜖 (1) 

When calibrating building simulation against hourly 
measurements in such as Bayesian setting, 
consideration should be given to the choice of which 
values 𝑦 to use, especially as using all available 
hourly values may result in massive computational 
costs (Chong et al., 2017; Remmen et al., 2019). 

Although a wide range of calibration techniques are 
available, their application as reported in the 
literature generally is mostly limited to the 
calibration of static parameters only. 

 

Metrics, aggregation and uncertainty 

Building performance simulation typically yields 
large amounts of results, mostly in the form of 
temporally (time steps) and spatially (zones) 
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differentiated physical variables. The analysis of 
simulation results usually involves the aggregation 
of such results into meaningful indicators. In the 
context of calibration, the goodness of fit can be 
quantified with metrics such as the normalized mean 
bias error or the coefficient of variation of the root 
mean squared error defined in Equation (2), where 𝑠 
and 𝑦 represent the simulated and measured 
quantities at different time steps, respectively. 

 

𝐶𝑉𝑅𝑀𝑆𝐸 ൌ
ට1

𝑛 ∑ ሺ𝑠 െ 𝑦ሻଶ
ୀଵ

1
𝑛 ∑ 𝑦


ୀଵ

 (2) 

It is generally acknowledged that the difficulty of 
calibration increases with shorter time scales. This is 
reflected in the acceptance criteria defined in 
ASHRAE Guideline 14 (ASHRAE, 2002), which 
require calibrated models to have CVRMSE under 
15% for monthly values or 30% for hourly values. 
Similarly, uncertainty of building performance with 
behaviour models has been shown to depend 
strongly on the spatio-temporal scale at which results 
are compared (Yao, 2020). 

Research question 

Using calibration techniques in the context of 
stochastic occupant models raises some questions 
which this paper proposes to address. Directly 
comparing time series of stochastically determined 
quantities appears questionable, if not hopeless, 
because of the high uncertainty of results at the 
temporal scale of a sub-hourly simulation time step, 
even for known parameters. In this context, how can 
simulation outputs and measurements be aggregated 
in order to make comparison and calibration 
possible, and in which measure can non-static 
parameters used in stochastic behaviour models be 
calibrated? 

METHOD 

Approach 

Given the difficulty to compare time series directly, 
the approach taken here is to transform the measured 
or simulated time series in such a way as to reduce 
the randomness and then perform the comparison 
and calibration based on the transformed data.  

Simulation model 

The approach is applied to simulations combining a 
physical model of hot water storage and stochastic 
models for domestic hot water demand in single-
family houses served by district heating. Reliable 
data about both the demand and the physical system 
are required when trying to optimize system 
behavior (for instance to limit return temperatures). 
The storage tank and its hysteresis control make it

impossible to observe hot water demand directly, 
and consequently to validate demand profiles 
without considering the storage system.  
 

 
Figure 1: High-level diagram of the simulated 

system, with primary side on the left and secondary 
side on the right 

 
The system is modelled with the general-purpose 
language Modelica, using the Modelica IBPSA 
library (Modelica IBPSA library, 2020) and the 
Modelica DisHeatLib library (Modelica DisHeatLib 
library, 2019). Central to this system is the hot water 
storage tank, which is modelled as a stratified tank 
with 4 volume segments. Simulations are carried out 
with the Dymola software, calling the simulation 
engine from Python using the BuildingsPy package 
(Wetter & USDOE, 2019). Both physical parameters 
(related for instance to the tank and its stratification) 
and stochastic demand parameters are subjected to 
uncertainties. 

Stochastic hot water demand 

While space heating loads to a large extent depend 
on weather conditions and building physics, loads 
from hot water consumption are much more 
dependent on occupant behavior, and characterized 
by a high time variability. They are accordingly 
difficult to predict and model. In addition to system-
related information, inputs required for the 
modelling of loads from hot water consumption 
include mains water temperature, hot water 
temperature and the volume flow rates of hot water 
consumption. These can be specified at different 
time resolutions and following different methods, 
from fixed schedules to stochastically varying 
profiles. It has been argued that more realistic load 
profiles could be obtained with stochastic methods. 
Fischer et al. (Fischer et al., 2016) proposed a 
stochastic bottom-up model in which the number, 
times and durations of tappings are sampled from 
probability distributions for each activity requiring 
hot water.  
In order to account for the high variability of hot 
water heating loads, stochastic profiles are generated 
following a method roughly similar to that proposed 
in the previously cited article, but with 
simplifications so as to use a minimum number of 
parameters. In particular, distinctions in activity 
types and in day type are not made. The number of  
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tapping starts for each day is modelled as a Poisson 
distribution. Hot water temperature is assumed to be 
constant at 50 °C. The flow rate during each tapping 
is assumed to follow a normal distribution. 

Calibration method 

Since uncertainties cannot be ruled out from the 
system and even less from the hot water demand, it 
seems promising to use a Bayesian approach to 
calibration. A Bayesian approach inspired the 
reference work of Kennedy and O’Hagan (Kennedy 
& O’Hagan, 2001) is implemented. Uniform prior 
distributions are chosen for all the parameters 
summarized in Table 1. The calibration model is 
implemented in Python using PyMC3 (Salvatier et 
al., 2016). The state-of-the-art No-U-Turn Sampler 
(NUTS) is used to sample from the posterior 
distribution. 

Calibration experiment 

A calibration experiment is carried out with 
synthetic data in order to investigate the research 
question. The calibration parameters summarized in 
Table 1 are assumed to vary in the specified ranges. 
Latin hypercube sampling (McKay et al., 1979) is 
used to sample the corresponding parameter space 
effectively, for a number 𝑛௦ ൌ 200  of 
simulations. 
 

Table 1: Calibration parameters 

PARAMETER MIN MAX UNIT 

Tank volume 0.15 0.25 m³ 

Tank height 1.0 2.0 m 

Temperature of tank 
room 

10 20 °C 

Length of pipe to tank 0.5 4.5 m 

Recirculation rate as a 
percentage of nominal 
flow rate 

1.0 3.0 % 

Mean number of taps 
per person day 

2.0 4.0  

Mean volume flow 
rate of taps 

0.01 0.02 l/s 

Mean daily profile 
shift 

-2.0 2.0 h 

 
The simulation parameters summarized in Table 2 
are assumed for all simulations.  
 

Table 2: Simulation parameters 

PARAMETER VALUE 
Simulation period 28 days 
Output time step 10 minutes 
Primary supply 
temperature 

70 °C 

Hot water demand 
temperature 

55 °C 

 

Result aggregation 

The main result variable considered here is the heat 
power delivered to the system, as it would be 
measured by a district heating provider. 
The raw results would be the time series formed by 
this variable at the output time steps  
ሺ𝑞ሶሻଵஸஸ, which can be seen as a long vector (of 
length 𝑛 ൌ 4032 for 28 days simulation at a 10-
minute time step). These results can be aggregated 
into shorter vectors or in scalar indicators. A simple 
example of indicator is the total supplied energy 

𝑄 ൌ
ଵ

ଵ
∑ 𝑞ሶ

ଵ ∆𝑡 in kWh with ∆𝑡 the output time 

step duration in h. Table 3 summarizes the 
aggregated values investigated in this paper. 
 

Table 3: Processed outputs 

NAME SYMBOL UNIT LENGTH 
Supplied 
energy 

𝑄 kWh 1 

Number of 
starts 

𝑛௦௧ 1 1 

Autocorrelation 
of supplied 
power 

𝑅𝑞ሶ 𝑞ሶ ሺ𝜏ሻ 1 6 

Time-of-day 
hourly 
averages of 
supplied power 

𝑞ሶௗ௬, W 24 

 
Autocorrelation at a given time lag 𝜏 provides a 
representation of the dynamics and of the typical 
duration of supply events. Time lags from one to 6 
time steps are considered, as autocorrelation 
becomes almost null at time lags over one hour. The 
calibration experiments are repeated with different 
sets of processed outputs summarized in Table 4. 
 

Table 4: Sets of processed outputs 

NAME A B C 
Supplied energy    
Number of starts    
Autocorrelation 
of supplied power 

   

Time-of-day 
hourly averages 
of supplied power 

   

 

Surrogate models 

The number of model evaluations necessary for 
sampling from the posterior makes it necessary to 
resort to surrogate models emulating the results of 
building simulation at much lower computational 
costs. Based on the 𝑛௦ simulations, fast surrogate 
models are trained to approximate processed outputs 
of the simulations. 
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Gaussian processes are used as surrogate models, 
taking advantage of their ability to learn nonlinear 
relations with high accuracy and to give an estimate 
of uncertainty at each point (Lim & Zhai, 2017; 
Rasmussen, 2003). The implementation of Gaussian 
processes in the scikit-learn library (Pedregosa et al., 
2011) is used. One surrogate model is trained for 
each dimension of each one of the processed outputs 
described in the previous section. 
Feature selection is carried out before training the 
surrogate models, using univariate linear regression 
tests to keep only significant calibration parameters 
for each surrogate model. 
 

RESULTS AND DISCUSSION 

Simulation results 

 
Figure 2: Day/time raster plots of demand and 

supply in a typical simulation run 

 

Simulation results for a typical run are illustrated in 
Figure 2. These figures reveal the stochastic aspect 
of the results, with short spikes of heat supply 
occurring concentrated near times of higher hot 
water demand in the morning and evening, but rather 
randomly. Among the remarkable differences 
between thermal powers on the demand and supply 
side, one may note regular supply starts during the 
night and early afternoon at times of no or low 
demand, which may be ascribed to thermal losses in 
the storage. 

Calibration results 

Figure 3 shows a juxtaposition of the prior and 
posterior distributions of the calibration parameters, 
together with their true values for case. Starting from 
a uniform prior distribution, some calibration 
parameters keep a flat posterior distribution, 
meaning that these parameters cannot be calibrated 
based on the available data. For other parameters, 
such as tank volume, a much sharper posterior 
distribution can be obtained. 

 

 
Figure 3: Prior distribution in grey, posterior 

distribution in blue, true value in red 
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The expected mean squared error from the true value 
of each parameter is used to quantify the distance 
from the prior and posterior distributions to the true 
value. The results summarized in Table 5 show the 
reduction in uncertainty made possible with the 
addition of additional output indicators from A to C. 
However, this only applies to some parameters, 
while for others the mean squared error from the true 
value remains almost constant, meaning that they 
remain “uncalibrated”. 

 
Table 5: Average mean squared distance from true 
value of normalized input parameters in prior and 

posterior distributions 
 

PARAMETER PRIOR POSTERIOR 
A B C 

Tank volume 0.40 0.38 0.15 0.15 
Tank height 0.49 0.41 0.32 0.30 
Temperature of tank 
room 

0.52 0.51 0.52 0.52 

Length of pipe to 
tank 

0.29 0.29 0.28 0.08 

Recirculation rate 0.33 0.33 0.26 0.26 
Mean number of 
taps per person per 
day 

0.56 0.32 0.33 0.35 

Mean volume flow 
rate of taps 

0.33 0.41 0.37 0.35 

Normalized 
standard deviation 
of tap flow rate 

0.57 0.58 0.57 0.58 

Mean daily profile 
shift 

0.37 0.37 0.36 0.31 

 
 
These results are confirmed when repeating the 
experiment with different choices of the ground 
truth, as illustrated in Figure 4. In these scatter plots, 
points on the diagonal mean that the distance from 
the truth remains equal for posterior and prior, 
meaning that calibration does not happen for the 
corresponding parameter. On the other hand, points 
below the diagonal point to an improvement in the 
parameter estimate and thus to successful 
calibration. For a parameter with limited impact like 
the temperature of the tank room, calibration fails in 
all the experiments. For the tank volume, calibration 
seems to succeed in cases B and C. For the mean 
daily profile shift, calibration fails in cases A and B, 
but succeeds with the additional output indicators in 
C. 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
Figure 4: Mean distance from true value 
in prior versus posterior distributions for 

different “truths” and different sets of 
output indicators A, B and C 

 

Discussion 

Calibration and stochastic behavior models are two 
relevant components in the application of building 
performance simulation to support decisions in 
energy systems. Combining these two components 
raises the question adressed in this paper: if outputs 
at a given time step are stochastic, how can 
simulation and measurements be compared? We 
argue that simulation outputs should be processed 
adequately for such calibration, and carry out a 
calibration experiment with synthetic data to prove 
the approach. 

The results show that processed outputs resulting 
from different ways of aggregating the raw 
simulation results make it possible to reduce the 
uncertainties in different input parameters. Different 
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input parameters affect simulation results 
differently, and thus have different impacts on 
different output indicators. For instance, parameters 
such as the profile shift have an influence on the 
temporal distribution of heating loads but not on 
their sum. Consequently, calibrating such 
parameters cannot be done using only the latter 
value, but becomes possible with output indicators 
reflecting temporal distribution, such as time-of-day 
hourly averages. 

When selecting processed outputs for calibration, 
one should take into account their predictability, but 
also their “informativeness” for input parameters of 
interest. The predictability of processed outputs 
depends on the stochastic models involved and on 
the level of aggregation.  

The exclusive use of synthetic data is arguably a 
limitation of the present study, as it neglects many of 
the complexities of real calibration problems. 
However, it is this use of synthetic data that makes it 
possible to investigate the ability of a calibration 
method to get closer to a ground truth otherwise not 
accessible. Therefore, further investigations with 
synthetic data may yield additional insight. For 
instance, the impact of the duration of a calibration 
period (here four weeks) on the quality of results 
would be of interest. It may be expected that longer 
calibration periods should lead to higher 
predictability for some aggregated results and thus 
more accurate calibration.  

The possibly high number of uncertain parameters in 
typical occupant models is an issue which may 
deserve attention and has been avoided in the present 
paper by choosing a simple model with a limited 
number of parameters. The issue may be addressed 
with sensitivity analysis. 
Several practical applications of the Bayesian 
calibration methodology may be considered, 
including fault detection and diagnosis, as well as 
improved controls. Probabilistic fault detection and 
diagnosis may be carried out with the present method 
by introducing uncertain parameters corresponding 
to faulty behaviour. For instance, an excessive 
recirculation rate may be diagnosed with the model 
described here. Calibrated simulation with stochastic 
profiles may also be used for the improvement of 
system controls. In this context, the consideration of 
uncertainties may be expected to result in more 
robust choices, as observed in published work on 
stochastic model predictive control.  

CONCLUSION 
This paper investigated calibration in the context of 
simulation models including physical components 
and stochastic behavioral models for domestic hot 
water consumption. In this context, simulation 
outputs and measurements should be aggregated in 
order to make comparison and calibration possible. 
 

The paper shows that, aggregating simulation results 
in various ways, parameters used in stochastic 
behaviour models can be calibrated in a Bayesian 
setting. A proof-of-concept of the approach is 
presented with synthetic data, using simulation with 
known input parameters as a ground truth. The 
degree of uncertainty reduction strongly depends on 
the parameters and on the output indicators used. For 
some parameters, calibration is impossible when 
looking only at aggregate energy consumption but 
becomes possible when looking at other output 
indicators. There is potential in investigating further 
output indicators and their combinations, 
considering the tradeoff between computation effort 
and quality of calibration results. 
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