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ABSTRACT 
Scientific literature predicts a significant rise in 
energy demand over the next decades. Optimizing 
energy systems is a key step toward reducing energy-
related greenhouse gas emissions. Recent studies 
show that active consumer participation and the 
integration of modern information and 
communications technologies are key techniques for 
successfully streamlining energy systems. The main 
objective in the GameOpSys research project is to 
develop a means to accurately predict the energy 
consumption of buildings based on patterns in smart 
meter data and user-generated input. To do so we 
propose a user-centered software system for 
communication between building occupants and 
energy system operators.  

INTRODUCTION 
Scientific literature predicts a significant rise in 
energy demand in the next decades (Abas et al., 
2015; Allouhi et al., 2015, Clarke et al., 2009). Over 
the last decades, socioeconomic development has 
driven a demand for larger homes, a wide variety of 
energy-consuming entertainment services and a 
significant growth in commercial building stock. 
This has led the building sector to become the largest 
contributor to global energy demand and greenhouse 
gas emissions (Allouhi et al., 2015) accounting for 
32% of the world’s total energy consumption and for 
19% of all energy-related greenhouse gas emissions 
(Lucon et al., 2014).  
 
In the European Union (EU) buildings account for 
40% of the total energy demand (European 
Commission, 2019).  Energy consumption in 
residential buildings, with a share of 27% of the total 
demand in the EU, is the second largest contributor 
after transportation (Uihlein and Eder, 2009; Allouhi 
et al., 2015). Besides socioeconomic changes, 
inefficient energy systems, especially inefficient 
energy services are major contributors to the surge in 
energy consumption (van Vuuren et al., 2012). The 
EMF-22 study (Clarke et al., 2009) on long-time 
climate stabilization policies highlights energy 
efficiency improvement as a crucial means towards 
reducing greenhouse gas emissions. 
 

It becomes apparent that research and development 
should improve efficiency in future energy systems 
and help include clean sources of energy, such as 
renewables. Building simulation provides the 
necessary framework to optimize energy efficiency 
within the constraints imposed by the volatile nature 
of renewable energy sources. It is a key research 
interest to accurately simulate and predict occupancy 
and energy demand patterns in buildings. Recent 
studies show that active consumer participation and 
the integration of modern information and 
communications technologies (ICTs) support the 
development of data-driven occupancy  and demand 
models (Vazquez-Canteli et al., 2019; Verbong et 
al., 2013). 
 
We propose a user-centered software system that 
facilitates bidirectional communication between 
building occupants and energy system operators. 
The system comprises data persistence, standardized 
interfaces for data retrieval (e.g. for data analysis 
services) and an intuitive user interface (UI), in the 
form of an Android application. The application 
connects occupants with the energy system and 
allows them to access usage statistics and 
visualizations. 

User-Centered Data Analysis 

The main objective in the GameOpSys 
(Gamification for optimizing the energy 
consumption of buildings and higher-level systems) 
research project is to develop a means to accurately 
predict the energy consumption of buildings based 
on patterns in smart meter data and user-generated 
input. Accurate forecasts provide the basis for 
numerous energy services such as flexibility 
identification, demand response, model predictive 
control or peer-to-peer trading. Broad availability of 
these services, social changes, such as increased 
awareness of climate change, and shifts in energy 
production stimulate active consumer involvement. 
It is an open research question as to find the level of 
user engagement, i.e. frequency, intensity and means 
of  interaction to harness these societal developments 
in data-driven simulation approaches. 
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SIMULATION AND EXPERIMENT 

Residential load profiles vary substantially 
depending on consumer usage of appliances. 
Gobmaier showed that data-driven, bottom-up load 
modeling, based on the use of appliances, can 
explain up to 96.9% of variance in  load profiles 
(Grobmainer, 2014) and Gram-Hanssen found that 
electricity consumption in households correlates 
strongly with the use of appliances (Gram-Hanssen, 
2011). According to Hayn et al., knowing consumer 
demographics, lifestyle and behavior is likely to help 
predict household electricity load (Hayn et al., 
2014). It is an open research question, however, 
whether including socio-demographic 
characteristics and behavioral data can increase 
prediction accuracy beyond the accuracy of 
predictions based on historic smart meter data.  
 
In 2018, smart meter deployment rate reached 21% 
in Austria (Energie-Control Austria, 2019) and 44% 
in Europe (Kochanski et al., 2020). If consumers 
consent to provide their smart meter data to energy 
management systems, past energy consumption can 
be a valuable input for electricity forecasts. 
However, energy consumption in individual 
households is a dynamic, highly volatile process, 
which is why the accuracy of predictions based on 
smart meter data alone is limited (Gajowniczek and 
Ząbkowski, 2014). Besides, consumer 
empowerment through active participation goes 
beyond merely accepting smart meter technology. 

User-Centered Monitoring Software 

The user-centered energy monitoring software 
developed in the GameOpSys project encourages 
active consumer participation. It acts as a 
communication channel where researchers can 
collect behavior data and simultaneously deliver 
system status reports or behavior change 
interventions to users. Integrating user feedback into 
data analysis allows researchers to improve 
consumption models and prediction accuracy. At the 
same time, the software system supports various 
intervention mechanisms to successfully induce 
changes in the consumer’s knowledge, attitudes and 
beliefs about the energy system and changes in 
consumption behavior. 
 
Through the UI, consumers are asked to provide two 
types of information: i) household characteristics 
and ii) dynamic information about planned behavior 
for the next day. Household characteristics include 
number, age and gender of household members, 
number and type of appliances, heating system and 
psychological characteristics such as personal norms 
and ascripton of responsibility.The selection of these 
characteristics was guided by studies identifying 
determinants of household energy consumption (e.g. 
Hayn et al., 2014, Jones, Fuertes, and Loomas, 2015) 
 
 

and were extended by psychological variables that 
are predictive for energy saving behavior (e.g., 
Wang et al., 2018) and for changes in energy 
consumption (Abrahamse & Steg, 2009). This 
information is used to improve prediction models for 
overall energy consumption and, in case the 
household employs electrical heating or cooling 
systems, adjust for seasonal changes. However, due 
to the stable nature of these variables, it is likely that 
their influence is already captured within smart 
meter data. The dynamic information consists of 
consumption schedules, predicting occupancy and 
indicating when the washing machine or other 
appliances will be used. This data helps to improve 
the accuracy of the projected load profile for the next 
day. Conversely, asking consumers to predict their 
own behavior increases the likelihood that they 
indeed act out this behavior in order to remain self-
consistent (Spangenberg and Greenwald, 1999). It is 
a key objective to develop a more thorough 
understanding of the consumption patterns, to 
identify the best predictors for these consumption 
patterns, and to examine the potential user 
interaction and user engagement have in building 
simulation and modelling. 
 
Communication is designed to be bidirectional. 
While collecting data, the system simultaneously 
supplies users with detailed information about their 
energy consumption, highlighting the consequences 
of their behavior. Providing feedback is a prominent 
and common behavior change technique in 
sustainable consumption interventions (Lehner et al., 
2016; Fischer, 2008). Awareness of behavioral 
consequences can motivate people to act according 
to their values (Stern, 2000) and increase behavioral 
intention by incrementing perceived self-efficacy 
(Ajzen, 1985). Besides, feedback highlights 
differences between current and ideal outcomes, 
thereby motivating goal directed behavior (Carver 
and Scheier, 1998). Because the GameOpSys project 
plans to optimize energy prediction, it does not only 
inform users about energy consumption, but about 
prediction accuracy as well. Consumers can observe 
the extent to which accuracy depends on their active 
participation. 

 
Given the opportunity, active consumer participation 
is only possible, if people are motivated to do so 
(Michie et al., 2014). To encourage regular 
interaction with the energy system, gamification 
elements are integrated. Gamification uses principles 
and elements of game-design, like achieving, 
exploring, competing, or connecting with other 
people. Implementing such elements in an 
intervention-tool stimulates users and increases 
engagement and motivation (Bartle, 1996). In the UI, 
consumers learn about their achievements through 
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feedback, points and badges depending on the 
prediction accuracy. This includes information about 
achievements of other users, which encourages 
social comparison and competition. Finally, we plan 
to provide an option to explore the relationship 
between behavior, energy consumption and energy 
prediction even further. Specifically, the UI will 
indicate time-frames where the prediction 
significantly diverges from the actual consumption 
and prompt users to re-check their behaviour during 
this time.  
 
In the subsequent sections we describe the 
technological aspects of the system, outline the 
architecture and describe its components. 

System Architecture 
The system is designed as a data hub, routing 
communication between the users and data analysis 
services. Figure 1 shows the traversal of data through 
the system. It is collected in the Android application, 
forwarded to the server where it is processed by the 
data analysis services and then returned to the user 
as visualizations and forecasts. 
 

 
Figure 1. Schematic view of the system. 

 
Subsequently, we describe the Android application 
(UI), its connection to the data storage (server) and 
the interfaces for the analysis and visualization 
services. 
 
 
 
 

Front-End: Mobile Application  

A substantial number of users as well as advances in 
mobile hardware, both in terms of computational 
power and sensing technology, confirm the 
smartphone as a suitable platform for data-
collection, research and interventions (Lathia et al., 
2013). Consequently, we chose to develop the UI as 
a mobile application. Prototypic development was 
confined to the Android framework. However, single 
components such as the server infrastructure, the 
API-definitions and the database are framework-
agnostic. Thus, they can be reused if development is 
extended to iOS and/or a HTML5-based cross-
platform version. The Android application was built 
from scratch in an agile software development 
process (Beck et al. 2001). The minimum API level 
requirement was set to 21 (Android 5.0 Lollipop), 
which allows us to target more than 89% of all active 
Android devices worldwide (Google, 2020). To 
ensure backward compatibility, uniform look and 
consistent behavior on different devices and API 
levels the app was built with components from the 
Jetpack suite in the AndroidX-namespace. 
 
Data-visualizations are based around two groups of 
metrics: i) overall energy consumption in the 
household, and ii) projected usage of appliances. 
Actual consumption values, based on smart meter 
readings, are supplied by the grid operators. 
Consumers collect smart meter data from their grid 
operator’s web portal and upload it through the app. 
The consumption data is selected, preprocessed and 
transformed on the server. It serves as a basis for 
visual usage statistics and future energy 
consumption estimates. Projected usage of 
appliances and occupancy is supplied by the users. 
Analysis services build data models based on 
historic smart meter data and user-generated 
schedules. 
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Figure 2 shows a bar-chart visualization where users 
can see their actual energy consumption compared to 
the energy consumption predicted by the data 
models. The prediction matrix shown in Figure 3 
allows users to schedule their energy consumption. 
The screen displays various consumers (occupants 
and appliances) and users can mark the timeframes 
where they expect these consumers to be active.  
 

 
Figure 2. A window visualizing predicted and 

actual energy consumption. 
 

 
Figure 3. A prediction matrix, where users can 
schedule energy consumers in their households. 

 
The graphical UI (GUI) is separated from the data 
access layer using the model–view–viewmodel 
(MVVM) pattern (Gossman, 2015). This prevents 
changes in the way data is retrieved from causing the 
need for changes in the GUI and vice-versa. Even 
when synchronization with the server is necessary 
the GUI has to be responsive and the data consistent. 
Thus, data-supply to the viewmodel is realized 
through observable, Android-lifecycle-aware, 
LiveData objects. This allows communication to be 
asynchronous and keeps the GUI up-to-date during 
Android-lifecycle events such as configuration 
changes (e.g. switching from portrait mode to 
landscape mode) or when the app is put into the 
background. 

Data exchange between the app and the server is 
specified in an OpenAPI/2.0 document. The 
RESTful API definition provides a language-
agnostic description and clearly defines the available 
endpoints (paths) on the server. The client SDK is 
auto-generated using Swagger’s open-source code 
generator Codegen and integrated into the Android 
application as a module. Requests to the server are 
generated with Retrofit. Retrofit wraps the paths 
from the OpenAPI definition and ensures type safety 
for all API calls and responses. The need to 
synchronize data with the server, inverts control flow 
(Bainomugisha et al., 2013). Thus, it is necessary to 
apply a programming paradigm that allows the 
application to react to external events. The RxJava 
and RxAndroid extensions from the ReactiveX-
library provide the necessary operators for the 
asynchronous, event-based calls between the 
Android application and the server. 

Back-End: Server 

To support independent deployment of components, 
the server is running an array of microservices 
(Fowler and Lewis, 2014). The software services 
bundle their own dependencies and configurations in 
virtual packages called containers. These containers 
are deployed, managed and updated through the 
Docker container engine.  

Database 

The core component is a document-based, 
distributed mongoDB database. It stores all data in 
JSON-like objects, which allows for flexible, 
dynamic schemas with nested structures. 
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Figure 4. Data schema for consumers (appliances 

and occupants) 
 

The data structure for the consumer schedules, i.e. 
the predictions about the expected consumption, and 
their relationship to user and consumer data can be 
seen in Figure 4.  
 
A user designates a household, thus users can have 
any number of consumers, including occupants and 
appliances. Predictions about when each consumer is 
going to be active on a given day are modelled as 
consumer schedule objects which contain their date, 
a reference to the consumer they are a schedule for 
and a boolean array containing a 24-hour-grid. The 
overall household consumption is modelled through 
two objects: the predicted consumption, generated 
by the data models and the actual consumption based 
on the smart meter readings. Both objects contain a 
date and a 24-hour-grid with float values, 
representing the energy consumption for each hour 
of the day. Opposed to the consumption schedules, 
overall consumption is directly associated with a 
user. 
 

 
Figure 5. Data schema for overall household 

consumption. 
 

Authentication 

Because of the sensitive nature of the prediction and 
consumption data, it is a key objective to protect it 
from unauthorized access. To do so, the system 
supports two-factor authentication (2FA) which 
binds each user to a Telegram account. The mapping 
between Telegram id and user object is added 
manually whenever a new user is created. When 
users want to access their data through the app for 
the first time the app initiates the authentication 
process by sending the user’s Telegram id to the 
server. If the id exists in the database, i.e. there is a 
valid mapping between this id and a user object, the 
server sends a one-time password to the user’s 
Telegram account. The user is then given five 
minutes to access their account, obtain the one-time 
password and enter it into the app. The code is sent 
to the server and if it is valid, the server responds 
with a JSON-based web token (JSON web token) 
that the client can use for authentication during 
future communication. This authentication approach 
has two advantages over username-password 
authentication: i) users cannot forget their 
passwords, thus it is not necessary to implement a 
workflow to reset passwords and ii) users cannot 
choose weak passwords. 



Building operation and user behaviour          286 

BauSIM 2020 September 23-25, Online Conference               DOI: 10.3217/978-3-85125-786-1-33 © Creative Commons BY-NC-ND 

Web-Connection 

The server runs a flask microservice that provides 
the endpoints specified through the API. The flask 
service is a compact web framework implemented in 
Python. It consists of a highly customizable, 
lightweight core and supports the integration of 
extensions. Flask does not have a built-in database 
abstraction layer, which separates the database 
implementation from the API. To keep the binding 
between the flask service and the database loose, i.e. 
to allow the database to be changed without having 
to change the flask service, we implemented a 
database abstraction layer. This class wraps data 
operations and provides a facade for the create, read, 
update and delete (CRUD) calls used by API-
endpoints. The connexion framework validates  
requests and endpoint parameters and maps the API-
endpoints to their respective Python 
implementations. Figure 6 contains a diagram 
visualizing the interaction. 

Data Analysis 

Developing data models and tools is an ongoing 
process. However, first analysis scripts and data 
models were implemented in Python using the 
visualization library seaborn and the statsmodels 
package for statistical computations. Data analysis 
components can be integrated into the server 
infrastructure as separate services in the form of 
docker containers. The docker engine supports 
deployment of isolated bundles. However, it allows 
services to communicate through well-defined 
channels. The mongoDB listens to all linked services 
within the docker environment on the default port. 
Thus, data analysis components can access 
household information directly through the database. 
However, it is possible to extend the API provided 
by the flask web service for remote database access. 
 
 

 
Figure 6. Schematic view of the server. 

 

CONCLUSION 
Active consumer participation is valuable to the 
operation of smart energy systems. Accurate 
predictions of load profiles provide the basis for 
numerous energy services such as flexibility 
identification, demand response, model predictive 
control or peer-to-peer trading. Active participation 
allows researchers to improve the accuracy of energy 
consumption models beyond the accuracy of 
standard load profiles, models based on socio-
demographic characteristics or historic consumption 
data alone. 
  
The user-centered energy management system 
(EMS) developed within the GameOpSys project 
collects behavior data which can be used in 
prediction models and energy services. 
Consecutively, prediction models and usage 
statistics are used to provide consumers with detailed 
information about their energy system. 
Simultaneously, the EMS can act as a means to 
deliver behavior change interventions. Identifying 
and highlighting behavioral consequences, 
providing feedback and highlighting the differences 
between actual and ideal outcomes can support 
consumers in adapting more sustainable habits. 
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