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Abstract

This thesis proposes a method for rendering Gaussian-Product subdivision
surfaces in real-time. It is achieved using an existing algorithm for perform-
ing an approximation to subdivision surfaces on the GPU. The algorithm
was adapted to handle covariance meshes and the larger per-vertex data.
The approximation is done using Bézier patches, which are organized in
a quad tree data-structure to ease the handling on the GPU. The OpenGL
tessellation shaders are used to compute the control points for the Bézier
patches and to evaluate the surface, described by these patches. The ge-
ometric properties of the method are analyzed and performance of the
system is evaluated using difference images, timing analysis and normal
comparisons.
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1 Introduction

Figure 1.1: Rendering of a Gaussian Product Subdivision surface. The slightly gray lines
represent the base mesh, the blue ellipsoids illustrate the covariance matrices of
the vertices. The anisotropic extend represents a probabilistic indicator for the
surface alignment around a vertex

Subdivision Surfaces are a widely used concept in computer graphics and
Computer Aided Design (CAD) that was introduced in the late 1970. The
principle is simple but very powerful: Take all faces of a base mesh and
divide them into smaller faces, while introducing new vertices as linear
combinations of the surrounding old ones and updating the old ones as a
linear combination of the old vertex to update and the newly introduced
surrounding ones. With this rather simple technique a low resolution base
mesh, which is easy to construct and keep in memory, can be transformed
into a well defined and smooth limit mesh. Further, this limit mesh has
good continuity (C2) everywhere, except at extraordinary vertices, where it
is C1 [1].

Although a quite simple and elegant scheme, the topology of the base mesh
needs to conform to the scheme. There are different schemes proposed by
different research groups for different purposes and topologies. Some are
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1 Introduction

made especially for triangle meshes [13], some for quadrilateral meshes [3],
and others for polygons with any number of sides [5]. Moreover, we can
differentiate between approximating schemes [3, 13, 5], and interpolating
schemes [8, 11]. All these schemes work on the same principle, but use
different weights for the linear combination of the surrounding vertices.

One perk of this method is also one of its weaknesses: it always generates
smooth surfaces. There is no simple way of generating a sharp edge or a
pointy peak with these schemes. There has been work on including the
possibility to generate such features with extensions to the way the mesh
is subdivided [4] that work well and are widely used, especially in the
cinematic setting. Another way of introducing sharper edges and pointier
peaks to these methods is to increase the granularity of the base mesh at such
edges/vertices. However, this leads to a more complex shape information
and requires more memory. A general solution to this problem does not
exist since the limit surface will always be smooth by definition.

This calls for a whole different approach to generate subdivision surfaces.
Preiner et al. [17] introduced such a new probabilistic surface definition
that extends the vertices of the base mesh by Gaussian covariance matrices
and applies a new nonlinear subdivision called Gaussian-Product Subdivision
(GPS). Each subdivision step now takes into account not only the position
of a vertex but also a covariance matrix information defining the Gaussian
probability distribution of possible surface locations appearing around
it. This makes the computation of the subdivision step non-linear and
more involved. However, the authors show that the input vertices can be
transformed into a higher-dimensional space where the subdivision scheme
becomes linear, achieving the same result. This makes the implementation
almost as computationally expensive as the linear schemes above, except it
requires the transformation step before and after the subdivision and more
memory for storing the covariance information for each vertex. With such a
scheme the sharp edges or pointy peaks can be better modeled, by changing
a few covariance matrices. Furthermore, the method also allows for much
more freedom in designing more complex surfaces without increasing base
mesh complexity.

In this thesis another problem of subdivision surfaces is tackled for this
exciting new method: The real-time computation of the limit surface.
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With the decrease in cost for high GPU computing power came a new
desire to compute the limit surface of a subdivision scheme in real-time
on the GPU. This is not a trivial computation, since the subdivision is a
inherently recursive process, which can not be computed in parallel out
of the box. However, Jos Stam developed a direct evaluation technique for
subdivision, first for quadrilateral meshes [20], then for triangular meshes
[19]. First advances in the field of real-time subdivision where done by Shiue,
Jones and Peters [18] and Patney and Owens [16], which used particular
optimizations on the GPU using a special texture memory layout for the data
or prefix sums and reduce operations, respectively. Some mayor advances
were done in recent years by Nießner et al. [15] and Brainerd et al. [2]. The
authors managed to achieve a real-time evaluation of the limit surface by
using the full OpenGL pipeline and powerful hardware. The performance
and visual effects behind the proposal of Brainerd et al. [2] can be seen in
the video game Call of Duty Ghosts. Nießner et al. and Brainerd et al. both
heavily relied on the direct evaluation developed by Jos Stam [20].

This thesis proposes a method for rendering a Gaussian-Product Subdivi-
sion surface in real-time on the GPU, building from the basic principles
mentioned above. The papers from Nießner et al. [15] and Brainerd et al. [2]
do not discuss the full details of their approach and are thus difficult to
reproduce. This thesis addresses this problem by providing documentation
on how to implement these methods on the GPU correctly. Moreover, an
exact performance evaluation of the render times and memory consumption
is given.
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2 Background and Related Work

In this chapter the related work and theoretical background of this thesis is
laid out. It covers the bases of the implemented rendering pipeline and the
method for real-time subdivision. The techniques utilized in this thesis are
discussed and put into the context of subdivision surfaces.

2.1 Subdivision Surfaces

Subdivision surfaces for general mesh topologies were first introduced in
1978 by two independent researcher teams Catmull and Clark [3] and Doo
and Sabin [6] based on the PHD thesis of Doo [5]. Both papers introduced a
similar method for subdividing mesh faces into smaller mesh faces, only for
different face types: Doo for arbitrary polygons and Catmull and Clark for
quadrilateral polygons.

Figure 2.1: The first subdivision steps (left to right: control mesh, 1 step, 2 steps) and the
limit mesh.

The principle of subdivision surfaces, as it was proposed by Catmull and
Clark is as follows: starting with a low resolution control mesh, consisting of
quadrilaterals, the mesh is iteratively refined, until the desired smoothness is
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2 Background and Related Work

Classification Primal Dual
Approximating Catmull-Clark[3],

Loop[13]
Doo-Sabin[6],√

3[11]
Interpolating Butterfly[7],

Mod. Butterfly[21]
Doo-Sabin for Quads[12]

Table 2.1: Classification of subdivision schemes.

obtained. This can be seen in Figure 2.1. These subdivisions are usually done
in a preprocessing step, before displaying such a surface, since the algorithm
is by definition recursive and the calculation time grows exponentially as
the recursion depth increases.

After these initial papers, a whole “zoo” of subdivision schemes was intro-
duced for many purposes and mesh topologies. The general classification
of a subdivision algorithm is done in two major ways. First it can be either
approximating or interpolating and second it can use either a primal or
dual vertex generating method. An approximating scheme asymptotically
approximates a Bézier surface with each iteration. Interpolating schemes
interpolate the control mesh with each iteration into a smooth surface. A
primal vertex generating scheme splits the faces of the mesh into smaller
faces. In contrast, dual vertex generating schemes use corner cutting to
subdivide the mesh, meaning they introduce new faces at the vertices of
the base mesh. Table 2.1 illustrates the classification of some subdivision
schemes.

The subdivision scheme introduced by Loop [13] uses a triangle mesh as a
control mesh and then recursively subdivides each triangle face into four
smaller triangles. During the subdivision new vertices are introduced, by
computing a linear combination of surrounding old vertices. Moreover, old
vertices are also updated using a linear combination of their surrounding
vertices. Because of the change in the old vertices it is considered a approx-
imating subdivision scheme. On the contrary, e.g. the modified butterfly
subdivision scheme, introduced by Zorin et al. [21] does not update existing
vertices and is therefore an interpolating subdivision scheme. The modified
Butterfly subdivision scheme also works on triangle control meshes, but the
neighborhood used to compute the new vertices is larger than the original
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2.2 Gaussian-Product Subdivision

Butterfly subdivision scheme proposed by Dyn, Levin and Gregory [7].

The
√

3 subdivision scheme, introduced by Kobbelt [11] also uses triangle
meshes as control meshes, but it’s splitting method is different. While Loop
subdivision splits one triangle into four,

√
3 subdivision splits one triangle

into three, by introducing just one new face vertex.

Doo-Sabin [6] is a totally different subdivision scheme. It does not split faces
and introduce new vertices, but splits vertices and introduces new faces. In
other words, one subdivision step replaces every vertex by a face and its
new vertices are computed using linear combinations of the surrounding
vertices. This introduces different kinds of polygons, depending only on the
valence of the vertex they replace.

The Catmull-Clark algorithm was later picked up by Pixar Animation
Studios in 1997 with the short film Geri’s Game. The animation showed
the potential of the method and from this point onward all Pixar movies
used subdivision surfaces for character modeling. The Pixar movie “A Bug’s
Life”, which was released in 1998, was the first full length movie to feature
this new technique.

The resulting surface of these different algorithms is a smooth approxi-
mation of the control mesh. This is advantageous when a smooth surface
should be the result, but is not optimal when the resulting mesh should
include some sharp creases and corners. A solution to this was proposed
by DeRose et al. [4]. They introduced special subdivision rules that take
into account a sharpness value, defined for each edge of the mesh. This
is a widespread approach to defining sharp or semi-sharp creases in a
subdivision control mesh. Another approach will be introduced next.

2.2 Gaussian-Product Subdivision

The idea behind Gaussian Product Subdivision (GPS) surfaces was intro-
duced by Preiner et al. [17], while also developing a compact and efficient
way to calculate the limit surface of the scheme. The researches designed
a non-linear subdivision scheme, which uses information about the proba-
bility distribution of the location of new vertices around existing vertices,
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2 Background and Related Work

Figure 2.2: The product of the two black Gaussians Θi and Θj is the red Gaussian Θij. The
height lines denote lines of equal probability density. The blue lines, running
along the Gaussians is the probability ridge. Image taken from [17].

stored in a covariance matrix of a Gaussian distribution. This method yields
a non-linear subdivision algorithm, which is rather expensive to compute in
3D. Therefore, they proposed a method of mapping the problem to a higher-
dimensional space, where the subdivision scheme becomes linear, and then
mapping the limit surface back to 3D. This makes the computation easier
and more intuitive. Further, the researchers proofed that using this transfor-
mation, the limit surface computed inherits the smoothness properties of
the underlying linear subdivision scheme used in the higher-dimensional
space.

The input to a Gaussian-Product subdivision is a covariance mesh, which
is defined as a manifold Mesh Π = (V , E ,F ) that encodes the parameters
of a Gaussian distribution Θi = (µi, Σi) in each vertex V = {Θi} and their
topology in edges E and faces F . The subdivision step is similar to other
existing subdivision schemes, but defines newly inserted vertex Gaussians
as the product of given or old vertex Gaussians. The continuous limit surface
closely follows the probability ridges of the vertex Gaussians. This can be
seen in Figure 2.2 in the 2-dimensional case.

The Probability Density Function (PDF) of a Gaussian is defined as fol-
lows:

f (x|Θ) =
1√
|2πΣ|

e−
1
2 (x−µ)TΣ−1(x−µ) (2.1)
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2.2 Gaussian-Product Subdivision

In order to define a smooth contour between two vertices along their con-
necting probability ridge, the combined PDF of Gaussians is used:

f (x|Θij) = ω−1 f (x|Θi)
αi f (x|Θj)

αj (2.2)

where ω is the normalization factor ω =
∫

Rd f (x|Θi)
αi f (x|Θj)

αj . The equa-
tion shows that the weights are encoded in the power of the PDF functions
of the Gaussians. Reformulating this to calculate the position µij and covari-
ance Σij of the new vertex gives:

µij =
(

αiΣ−1
i + αjΣ−1

j

)−1 (
αiΣ−1

i µi + αjΣ−1
j µj

)
(2.3)

Σij =
(

αiΣ−1
i + αjΣ−1

j

)−1
(2.4)

which describes a curve resembling the ridge of the combined PDFs of the
two Gaussians using the parameter t = αi

αi+αj
. This parameter reduction is

valid since the weights are independent of any scaling of the Gaussians.
Extending the product of the two PDFs to n PDFs gives:

f (x|Θij) = ω−1 ∏
i∈J

f (x|Θi)
αi (2.5)

This extension gives us the formula to calculate the combination of multiple
vertices, which is used by all subdivision schemes. This equation leads to
different subdivision operations. What remains is the choice of the weights
of the vertices. These need to produce the desired subdivision properties,
like smoothness and continuity.
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2 Background and Related Work

2.2.1 Weights of the Gaussian-Product Subdivision

For a linear subdivision scheme the determination of the weights is typically
done by analyzing the subdivision matrices. In a non-linear subdivision
scheme, like the one introduced above, it is non-trivial to derive weights
that also fulfill requirements such as smoothness and continuity. To derive
such weights, a mapping of the Gaussians to a higher-dimensional space
is discussed. As a Gaussian distribution has nine parameters in 3D space,
three for the position and six for the symmetric covariance matrix, a transfor-
mation to 9D space is aimed for. In this 9D space the non-linear subdivision
will be reduced to a linear subdivision.

First the PDF is reformulated, to express its exponent as a quadratic basis
b(x) and a coefficient vector qi:

f (x|Θi) = c · e− 1
2 b(x)Tqi (2.6)

where c collects all non exponential factors. This way, every Gaussian is
encoded as qi using a bijective map F : Θi 7→ qi into a space of quadratic
functions Q. Substituting this with the Equation 2.5:

f (x|ΘJ) = c · exp−
1
2 b(x)T ∑i αiqi = c · exp−

1
2 b(x)TqJ (2.7)

where qJ = ∑i∈J αiqi. This shows that there is a bijective map F that trans-
forms the vertices of a covariance mesh into a dual space where the non-
linear product of Gaussians is a linear combination. Using the weights
of a linear subdivision scheme on that hypermesh results in a non-linear
subdivision of the control mesh in 3D space. Furthermore, we can apply the
weights of any suited linear subdivision scheme to the subdivision of the
hypermesh.

2.2.2 Transformation of the Input

In order to obtain the desired properties of the subdivided mesh, the
mapping function that is used to transform the Gaussians into higher-
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2.2 Gaussian-Product Subdivision

dimensional space has to fulfill certain conditions. First, the mapping needs
to be bijective and smooth over its input domain. Only then the 3D limit
surface can inherit the smoothness properties of the underling linear subdi-
vision scheme operating in 9D space. This will be proven in the Evaluation
Chapter 5, along with the continuity of the whole pipeline. Further, the
mapping has to satisfy the equation:

b(x)Tqi + cqi = (x− µi)
T Σ−1 (x− µi) (2.8)

For convenience the polynomial basis is defined as:

b(x)T = (vech(2xxT − diag(x)2)T,−2xT) (2.9)

where the parts are the bases for the quadratic and linear coefficients
respectively. The vech(·) function describes the half vectorization operator
of the matrix, linearizing the lower triangular part of the matrix and the
diag(·) operator transforms the vector into a matrix, with the elements of
the vector in the diagonal of the matrix.

Using this quadratic basis function, the map F(µ, Σ) is given by the vector
q = (q̂, q), the quadratic and linear coefficients respectively. The coefficients
are calculated as follows:

q̂ = vech(Σ−1) q = Σ−1µ (2.10)

For the inverse transformation, the covariance matrix is restored first and
using the restored matrix the mean is restored lastly:

Σ = F−1
Σ (q) = [q̂]−1 µ = F−1

µ (q) = Σq (2.11)

where [·] restores the matrix linearized by the vech(·) operator. The authors
[17] show that using this transformation any linear approximating sub-
division scheme can be applied to such covariance meshes, guaranteeing
that the resulting limit mesh is well-defined and adopts the smoothness
characteristics of the underling linear subdivision scheme.
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2 Background and Related Work

2.3 Real-Time Rendering of Subdivision Surfaces

Many attempts were made to directly evaluate subdivision surfaces. The
main problem with the direct evaluation is that in the limit, subdivision sur-
faces do not behave exactly like a Bézier patch at extraordinary vertices. This
can be tackled in may different ways. REYES style subdivision proposed by
Patney and Owens [16] introduces a different style of rendering, compared
to the standard way a GPU rasterizes a model. It subdivides all meshes to
micro-polygons of the size of one pixel and then calculates the shading and
occlusions for them. Another method uses optimized memory layout and
GPU kernels achieving almost real time performance [18]. Furthermore, a
solution was proposed by Nießner et al. [15] and later refined by Brainerd
et al. [2]. They proposed a solution that stores the topology of the control
mesh in a quad tree on the CPU. Then the control mesh gets subdivided on
the GPU and transformed to Bézier patches. These are then evaluated using
the tessellation shaders and tessellator in the OpenGL pipeline.

In the following section a closer description of the method of Brainerd
et al. is given, as it is the basis for the rendering pipeline in this thesis.

2.3.1 Algorithm overview

Figure 2.3: Visualization of the steps in the rendering pipeline.

The naive way of performing subdivision on the GPU would be to parallelize
the individual face, edge and vertex subdivisions and then executing them
as many times as subdivision steps are needed. Using this approach we
would need to render the resulting mesh in a second pass. This method
is very costly, since it has to be executed many consecutive times and the
required memory bandwidth on the GPU and to the GPU is high, since
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2.3 Real-Time Rendering of Subdivision Surfaces

mesh data needs to be streamed from global memory on the GPU to the
GPU multiprocessors.

Hardware tessellation methods like the one described in the following can
bypass these limitations by doing less iterative subdivision steps and con-
suming the data directly from the GPU without a second render pass. The
challenge of this method is splitting the input faces into convenient surface
portions that can be directly evaluated. Jos Stam [20] showed that subdivi-
sion surfaces can be directly evaluated. He described an implementation
for the CPU, whose extension to the GPU is straightforward, but requires
many expensive floating point calculations. The method below combines
GPU tessellation with the evaluation techniques of Jos Stam, circumventing
most expensive floating point operations.

Figure 2.3 shows the steps of the rendering pipeline. These steps are dis-
cussed in the following subsections.

2.3.2 Mesh Preprocessing

The preprocessing is performed once on the CPU. It is an important step in
the pipeline, since it not only prepares the topology of the mesh for later
use on the GPU but it also is the main step in the pipeline responsible for
the performance gains later on. This step calculates the control point stencils
and structures them in a quad tree data structure to be later sent to the GPU
for the evaluation. The quad tree data structure is composed of three types
of nodes: internal nodes, regular nodes and terminal nodes. The internal
and terminal node can be seen in Figure 2.4. The internal node does not
contain any control point stencil, but references to four child nodes. The
regular node represents a regular Bézier patch composed of four regular
vertices. It contains the control point stencils for this patch. The terminal
node is used when the Bézier patch is composed of three regular vertices
and one irregular one. It simplifies the calculation of the control points,
because it combines 3 regular patches and an irregular patch. This is done
because it is an often recurring constellation of patches. Note that, since
at least one subdivision step is always executed and thus always produces
regular vertices, no more than one irregular vertex can be contained in
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Figure 2.4: Node types example. Left an internal node, with 4 extraordinary vertices. An
internal node divides a face into the four smaller faces of the next subdivision
step. Right a terminal node, with one extraordinary vertex (bottom right).
Terminal nodes store the information to evaluate the surface patch increasing
the resolution of Bézier patches bordered by extraordinary vertices.

a single node. A terminal node references the four corner points of the
patch and their one-ring neighborhoods in a 5 by 5 array. Based on this
array, the control points of the Bézier patch defining the surface patch are
calculated.

In order to calculate these quad trees, the input mesh gets subdivided step
by step and for each face a quad tree is built up, starting from the original
face as root node, and adding its subdivided faces as child nodes. This is
done up to a certain user-chosen depth. Increasing the depth gives a closer
approximation, but also a more demanding calculation in real time.

Since apart from the quad tree generation the preprocessing step includes
subdivision steps, those steps have to be done on the GPU in real-time, for
the algorithm to be truly real-time. As shown later in Chapter 4, in our
testing we found that a good approximation could already be achieved
with two subdivision steps computed on the GPU. The implementation of
the subdivision was done straightforward with the subdivision formulas
introduced by Catmull and Clark [3].

2.3.3 Computation of the Control Polygon

In order to evaluate a Bézier patch at an arbitrary point, a control polygon of
4 x 4 vertices is needed. This is calculated using the quad tree, mentioned in
the section before. Once the two parameters, describing the position of the
new vertex inside the face of the mesh are calculated by the tessellation unit,
the quad-tree is traversed to find the correct Bézier patch corresponding to
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Figure 2.5: Rules for calculating the control polygon for a new point inside the patch 2.5a,
on an edge 2.5b and on a vertex 2.5c. The numbers at the vertices represent the
weights and the variable v represents the valency of the vertex.

the location on the surface. The three node types are handled differently
when encountered during the traversal. When an internal node is encoun-
tered, the traversal continues with the respective child node referenced by
the internal node corresponding to the two position parameters inside the
control mesh face. If a regular node is encountered, the control polygon is
computed using the referenced stencils, as shown in Figure 2.5. Finally if a
terminal node is encountered, the control polygon is calculated using the
rules in Figure 2.5 and Equation 2.12.

In order to calculate a control point inside the patch (2.5a), a weighted sum
of the vertices defining the patch is used. The calculations for a control point
on an edge (2.5b) uses the vertices of the patch and the two vertices of the
opposing edge outside the patch. Finally, the computation of a control point
on a vertex (2.5c) uses the whole one-ring neighborhood. The numbers in
Figure 2.5 are the weights for the vertices, the v parameter stands for the
valency of the vertex. The calculation of the control point c is then defined
by

c =
1

∑i wi
∑

i
wivi (2.12)

where wi are the weights of the vertices vi. In order to calculate the whole
control polygon these basic rules are rotated and mirrored.
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2 Background and Related Work

2.3.4 Evaluation of the Control Polygon

After the computation of the control polygon follows the evaluation of it’s
Bézier patch. The input of the evaluation are the normalized coordinates of
the point inside the patch as well as the control polygon, consisting of 16

points in a 4 by 4 arrangement. The evaluation algorithm is straightforward:
it computes the weighted sum of the vertices cij in u-direction and then the
weighted sum of four results in the v-direction. This is done using the basis
functions of a Bézier patch as the weights of the vertices:

Bi(u) =
6

i!(3− i)!
ui(1− u)3−i (2.13)

Bj(v) =
6

j!(3− j)!
vj(1− v)3−j (2.14)

These are the i-th and j-th Bernstein polynomials in u and v direction. The
coefficients 3 and 6 in the formula result from the fact that cubic Bézier
patches are used. The calculation of a point on the Bézier patch is then given
by:

p(u, v) =
3

∑
i=0

3

∑
j=0

Bi(u)Bj(v)cij (2.15)

where cij is the control point at position (i, j) in the 4 by 4 grid.
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3 Gaussian-Product Subdivision
on the GPU

In this chapter the implementation of the GPS algorithm on the GPU will
be discussed. Information on the OpenGL pipeline will be given first, then
the utilization of this pipeline for the realization of Gaussian-product subdi-
vision will be focused on. Lastly the computation of the normal vectors in
this setting is explained.

3.1 OpenGL Tessellation

In Figure 3.1 the full OpenGL pipeline is displayed with its optional steps.
Reducing it to the required steps, the vertex shader, rasterization and frag-
ment shader are left. The vertex shader is used to project the vertices to the
image plane, the rasterization then transforms the continuous primitives into
discrete fragments the size of pixels. Finally, the fragment shader performs
the shading on those fragments. Each pixel gets the color of the fragment
closest to the screen. The geometry shader is an optional step which gets a
primitive as input and can output a different number of primitives, even of
different types. The tessellation stage of the OpenGL Pipeline is an optional
step, which subdivides input patches into smaller primitives. It consists
of two programmable shaders, the tessellation control shader (TCS) and
the tessellation evaluation shader (TES) and a fixed function part, which
performs the actual subdivision. The two shaders are explained in more
detail in the following sections.
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3 Gaussian-Product Subdivision on the GPU

Figure 3.1: The full OpenGL pipeline with all optional stages in light blue

3.1.1 Tessellation Control Shader

The tessellation control shader (TCS) determines in how many primitives
the patch gets subdivided. It is also responsible for patch continuity and
applying transformations to input vertices if needed. The definition of the
tessellation granularity is defined in two arrays in the GLSL language:

f l o a t gl TessLevelOuter [ 4 ]
f l o a t g l Tes sLeve l Inner [ 2 ]

Here the gl TessLevelOuter array defines the number of divisions of the outer
edges of a primitive and the gl TessLevelInner defines the number of divisions
on the inside. Figure 3.2 illustrates this concept for a quad and a triangle
mesh. In this example the outer tessellation levels are set as follows: 2, 3,
4, 5, beginning at index 0 (in this case the left side) and then going around
counter-clockwise. The numbers indicate the number of line segments after
the tessellation on the outer quad. The inner tessellation levels are: 5, 4. The
inner levels define the number of line segments on the inside of the quad.
The first value indicates the number of line segments defined across the
quad horizontally, and the second value the number of segments defined
across the quad vertically. For triangle meshes, the outer subdivision levels
are defined similarly, only with three subdivision numbers provided. The
first level is used for the side starting at vertex index 0 (here the left side) of
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3.1 OpenGL Tessellation

Figure 3.2: Tessellation example of a quad and triangle patch

the outer triangle, the second level is used for the bottom side and the last
level is used for the right side. There is just one inner level for the triangle
and it defines the number of patch segments going along the sides of the
inner triangle. In the figure there are five such segments.

When using the tessellation stage, specifying a custom TCS is optional.
There is a standard TCS, that can be used, which just sets the tessellation
granularity, as defined by the program and then terminates. When using
the standard TCS, the inner and outer tessellation levels can be defined by
the GL API function:

void glPatchParameterfv (GLenum pname ,
const GLfloat ∗values ) ;

where pname is GL PATCH DEFAULT OUTER LEVEL and values points to
an array of length 4 for the outer levels, or pname is GL PATCH DEFAULT
INNER LEVEL and values specifies an array of length 2 to define the inner

levels.
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3 Gaussian-Product Subdivision on the GPU

3.1.2 GPU Tessellator

The tessellator is the fixed function part of the tessellation stage. It creates
new vertices with the given input information from the tessellation control
shader and the input vertices. The main parameters defining the tessellation
are the tessellation levels defined by the CPU code or the tessellation control
shader, and the tessellation spacing defined by the TES and the output
primitive. The TES also defines the winding order of the output primitives
as clockwise or counter-clockwise.

3.1.3 Tessellation Evaluation Shader

The tessellation evaluation shader determines the actual position of the
tessellated vertices in 3D space. As inputs it gets the boundary vertices of
the face and the 2-dimensional parameter-space coordinates of the vertex
inside the patch. In the default case, the actual position of the vertex is
then a linear combination of the input vertices, using the 2-dimensional
coordinates as factors. Moreover, it defines the type of input primitive it gets
and the winding order of the input vertices. Lastly, it defines the spacing of
the tessellated vertices. All this is defined by the layout specification in the
GLSL shader:

layout ( quads , equal spacing , ccw ) in ;

This sets the input primitive type as quadrilaterals, the spacing as equal
spacing and the winding order as counter-clockwise. There are three dif-
ferent kinds of vertex spacing: equal spacing, odd fractional spacing and
even fractional spacing. The effect of even and odd fractional spacing is
shown in Figure 3.3. When even fractional spacing is set, if the tessellation
level is divisible by 2 the spacing corresponds to the equal spacing (e.g.,
see subdivision level 2), if not the vertices are a linear combination of the
previous equal spacing and the next one. This is the same for odd fractional
spacing, with the difference that the spacing is the same as equal spacing
when the tessellation level is not divisible by 2 (e.g., see subdivision level
3).
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3.2 Implementation of Real-Time Subdivision in the OpenGL Pipeline

2

2.5

3

3.5

Figure 3.3: The differences between even (left) and odd (right) fractional spacing with
different subdivision levels (middle)

3.2 Implementation of Real-Time Subdivision in
the OpenGL Pipeline

In Figure 3.4 the interaction of each tessellation shader stage with the
GPU Memory can be seen. The steps proposed by Brainerd et al. [2] are
mainly implemented in the tessellation control shader and the tessellation
evaluation shader. The GPU memory is divided in two parts (per patch
memory and global memory) in order to illustrate the different kinds of
memory on the GPU, which have not only different sizes but also different
data throughputs. The global memory is much slower than the per-patch
memory, which lies in the shared memory.

3.2.1 Tessellation Control Shader

The tessellation control shader is used, apart from its usual function of
defining how the tessellator divides up the patch, to perform the necessary
subdivision steps on the GPU. This needs to be done a fixed number of
times and thus is implemented using the usual subdivision formulas. This
shader stage uses the µ and Σ buffers, holding the mean and covariance data
of the vertices and performs the transformation into the 9-dimensional space
when reading this input data. The high-dimensional data is then stored
efficiently in a 4x3 matrix. Note that, although the 9 floats should fit into a
3x3 matrix, the OpenGL pipeline has trouble processing datatypes whose
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3 Gaussian-Product Subdivision on the GPU

Figure 3.4: Interactions between the tessellation shader stages and the GPU memory.

size is not a multiple of four, which is usually addressed by an appropriate
buffer alignment of the data.

The shader further uses the Neighbors buffer and the Linked Faces buffer to
find the necessary vertices for the subdivision calculation of each face. Since
the tessellation control shader is executed once per vertex but is needed
only once per face, three threads get discarded and one is used for the
subdivision calculation. The three discarded threads just pass on the input
positions and the valence vertex attribute. The subdivided data gets written
to the Transformed Vertex buffer. In order to write them to the correct index
(the one used in the CPU subdivision), the Neighbors buffer gets consulted.
The order of the neighbors is equal to the order of the edge vertices in the
global buffer holding all vertex positions after the subdivision step. The
required vertex data used by each face was buffered into local arrays in
each per-face thread. This slightly improved performance and eliminated a
potential bottleneck of this step.

Since the tessellator is a fixed function, it is used just to compute the correct

22



3.3 Buffer Setup

per patch coordinates for the resulting tessellated point. This is set up in
the tessellation control shader. The coordinates are then being used in the
tessellation evaluation shader stage.

3.2.2 Tessellation Evaluation Shader

In the tessellation evaluation shader the exact evaluation of the vertex
positions is done. The input data is set to be an equally spaced quad
mesh using counter-clockwise orientation of the faces. This is done because
as a result uniformly tessellated quad is needed. The shader then takes
the generated coordinates and performs the lookup into the quad-tree
datastructure in order to find the corresponding child node, where the 3D
position of the output vertex is evaluated. Once this node is found, the
information about what kind of node it is and its stencil reference is used to
calculate the control polygon of the Bézier patch. For regular nodes, this is
only done using the stencil reference, since all the required data resides in
the Stencil buffer containing indices and weights of the vertices. These get
read from the Transformed Vertex buffer and the linear combination shown
in Equation 2.12 is computed. For a terminal node, the vertex information
resides in the Stencil buffer as well, but there are no weights stored. The
vertices lie in a linearized 5x5 array to get an easier access and to simplify the
computation of the control points in a later step. The indices are read from
the Stencil buffer and the vertex values are read from the Transformed Vertex
buffer. After the calculation of the control point polygon of the Bézier patch,
the evaluation follows next. The calculation is again a linear combination
of the control points using the basis functions of the Bézier patch and the
coordinates of the vertex inside the patch. The computed 9D vertex position
is then transformed back to 3D space and passed on down the OpenGL
pipeline.

3.3 Buffer Setup

The setup of the buffers used in the calculations above is important, since
it determines the complexity of the calculation and the effectiveness and
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3 Gaussian-Product Subdivision on the GPU

Figure 3.5: Visualization of the structure of the Neighbors and Linked Faces buffer. i0, i1 being
the indices in this buffer of the 0th and 1st vertex. Framed in red is the vertex
information, starting with the size of the slice (e.g. 3), followed by 3 vertex/face
indices. The green frame contains the information of the next vertex.

speed of the access into these buffers.

Neighbors and Linked Faces buffer The Neighbors and Linked Faces buffer
have a very similar structure and are therefore stored using the same layout.
In Figure 3.5 the structure of these buffers is visualized. The first part of the
buffer contains the indices of the individual arrays of neighbors contained
in the second part of the buffer. The indices are placed corresponding to the
vertex indices. Therefore, when accessing the neighbors or linked faces of
a vertex, first the offset needs to be read, which is located at the index of
the vertex. Then the number of neighbors/linked faces needs to be read at
the offset position. Then the indices of the vertices/faces (i0, i1, i2,...) can
be read starting at the position after the size (red array starting with size 3,
followed by three indices). This is illustrated more precisely in listing 3.1.

Listing 3.1: Example of access to the Neighbors and Linked Faces Buffes

i n t o f f s e t = b u f f e r [ ver tex index ] ;
i n t s i z e = b u f f e r [ o f f s e t ] ;
for ( i n t j = 1 ; j <= s i z e ; j ++){

/ / a c c e s s j−th n e i g h b o r o f v e r t e x i n d e x
i n t neigh index = b u f f e r [ o f f s e t + j ] ;

. . .
}

Vertex data input buffers The vertex data consists of a position µ and
a 3x3 covariance matrix Σ for each vertex. Since the covariance matrix is
symmetric it can be stored more efficiently as two vec4 containing the upper
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3.3 Buffer Setup

triangular part of the matrix. This tuple of vec4s are stored in the covariance
(Σ) buffer and sorted by the vertex index. The position µ is also stored
in a position buffer, sorted by the vertex index. In order to get the full
information of the vertex, the position buffer needs to be read at the vertex
index and the covariance buffer needs to be read at the vertex position
times 2 and at the subsequent position. Listing 3.2 contains the code used
for getting the vertex position, transforming it into 9D space and storing it
in a mat4x3 for the use in the shaders. Since this code is executed in the
tessellation control shader, the matrices are defined and indexed column
first, so a mat3x4 in an OpenGL shader corresponds to a matrix with three
columns and four rows.

Listing 3.2: Code for getting the vertex information

vec4 cov0 = covmat array [ idx ∗ 2 ] ;
vec4 cov1 = covmat array [ idx ∗2 + 1 ] ;
vec4 muw = p o s i t i o n a r r a y [ idx ] ;
mat3 cov = mat3 ( cov0 . x , cov0 . y , cov0 . z , cov0 . y , cov0 .w,
cov1 . x , cov0 . z , cov1 . x , cov1 . y ) ;
mat3 inv cov = inverse ( cov ) ;
vec3 trans mu = inv cov ∗ muw. xyz ;
mat3x4 g = mat3x4 ( inv cov [ 0 ] . x , 0 , 0 , trans mu . x ,
inv cov [ 1 ] . x , inv cov [ 1 ] . y , 0 , trans mu . y ,
inv cov [ 2 ] . x , inv cov [ 2 ] . y , inv cov [ 2 ] . z , trans mu . z ) ;

Transformed Vertex buffer The Transformed Vertex buffer is filled at run-
time by the GPU, so it just needs to be initialized by the CPU to the correct
size and filled with zeros. The buffer consists of one mat4x3 element per
vertex. It is initialized by a vector on the CPU, whose values are then passed
to the GPU.
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3 Gaussian-Product Subdivision on the GPU

3.4 Normal Vector Computation

For shading the rendered subdivision surfaces, there are different ways of
calculating the required normals on the GPU. The first and most common
one is storing vertex normals with the position and then letting the GPU
rasterizer interpolate between them, obtaining a normal information for
each pixel. The second one is performed using the geometry shader of the
OpenGL pipeline. The geometry shader is executed after the tessellation
stage and can read information of the whole face and all its vertices. With
this information it is easy to compute the face normal for each face, given
the formula:

n = (v2 − v0)× (v1 − v0) (3.1)

where v0, v1, v2 are the vertices of the triangle and the × operator denotes
the cross product of two vectors. Since it computes only one normal across
the face the individual faces need to be rather small in order for the render
to look smooth and not pixelated.

The method used in our real-time rendering pipeline for covariance meshes
computes the tangent vectors, based on Bézier spline information. In order
to do this the derivative of the basis functions of the patch needs to be
calculated. The basis functions for the parametric u direction, according to
Equation 2.13, are as follows:

B0 = (1− u)3 (3.2)

B1 = 3 (1− u)2 u (3.3)

B2 = (1− u) 3 u2 (3.4)

B3 = u3 (3.5)

The basis functions for the v parameter are analogous to these. The deriva-
tives of these in u-direction are:
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3.4 Normal Vector Computation

δB0

δu
= −3 (1− u)2 (3.6)

δB1

δu
= 9 u2 − 12 u + 3 (3.7)

δB2

δu
= 3 (2− 3 u) u (3.8)

δB3

δu
= 3 u2 (3.9)

The derivatives in the v direction are analogous to these, since u and v are
independent. The tangent Tu in u-direction is then defined as:

Tu = B0(v)Tu,0(u) + B1(v)Tu,1(u) + B2(v)Tu,2(u) + B3(v)Tu,3(u) (3.10)

where

Tu,i(u) =
δB0

δu
(u)pi,0 +

δB1

δu
(u)pi,1 +

δB2

δu
(u)pi,2 +

δB3

δu
(u)pi,3 (3.11)

and pi,j are the control points of the Bézier patch. Using the derivatives in
u and v direction, the two tangent vectors are calculated in the tessellation
evaluation shader. Their cross product finally defines the normal vector at
this parametric position. This method has the advantage that the normal
vectors also get interpolated by the GPU rasterizer and appear generally
smoother since every pixel is shaded using a interpolated normal vector
instead of a constant normal per face.

The extension of this algorithm to the GPS is not trivial, since the basis
function is defined in 9D space and needs to be transformed back. This
transformation back to 3D space is not the same as transforming back a 9D
vertex. Since the definition of the tangent vector is the derivative and the
result should be the derivative of the transformed vector, the transformation
needs to be adjusted. This is discussed in the appendix of the paper [17] by
Preiner et al. Taking the 9D vector q = (q̂, q), the 3D tangent vector µu in
u-direction is given by:
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3 Gaussian-Product Subdivision on the GPU

µu = Σ(qu − [q̂u]µ) (3.12)

where qu and q̂u denote the partial derivatives of the respective components
of q.

3.5 Implementation Details

In this section some interesting details are discussed, which came up during
the implementation of the rendering pipeline. They range from hardware
limitations to quirks of the OpenGL pipeline.

First, using Shader Storage Buffer Objects (SSBOs) one should avoid any
datatype whose size is not divisible by four. The GPU is designed to most
efficiently process vec4 data, the usual datatype used for position data.
Providing buffers containing other datatypes like vec3 or mat3, without
proper data alignment to 32 bit chunks will therefore lead to problems when
reading data.

The next thing could be a hardware limitation of Nvidia-branded GPUs.
No AMD GPUs were tested. As with the version used at the time of this
work (OpenGL 4.6), there is a limit on how large inline arrays of floats can
be in an GLSL shader. This limit just applies to float arrays and limits any
array to contain not more than 124 floats. There is a compiler error if a
shader contains a larger array anywhere in the code. This limit just applies
to arrays directly declared in the shader and not SSBOs or Vertex Buffer
Objects (VBOs).

Another important implementation aspect is the way GLSL shaders pass
parameters to functions. Every parameter is passed by value, so every array
that is passed to a function is copied in memory and then passed. When
many function calls are made with many parameters and further many of
them being arrays, this introduces a lot of allocated memory. In order to
circumvent this memory allocation, many functions were redefined as a
define macro. This prevents an actual function call and with that the memory
allocation.
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4 Results

In this chapter the results of the implemented rendering pipeline are pre-
sented, interpreted and analyzed. First performance tests are executed for
different models and tessellation levels, then comparisons with a CPU
reference implementation of GPS are done.

4.1 Material Capture Shading

All renderings in this section use a shading technique called Material Cap-
ture Shading (MatCap) in order to shade the resulting surfaces. Using the
normal of the surface, it computes the reflecting vector in view space and
projects it onto the xy plane. These 2-dimensional coordinates are used to
look up the color of the shaded pixel in a reflective texture map. This texture
contains a rendered sphere, centered in the middle and filling out the whole
image. An example can be seen in Figure 4.1.

This is used to get a realistic shading with less computational effort than
methods that produce similarly realistic results (e.g. Raytracing). To generate
these textures, a sphere needs to be rendered having the desired properties.
Another method of obtaining such a texture is to actually capture a real life
spherical object placed in a desired environment.

4.2 Visual Comparision

First, in order to show that all valences are supported and are calculated
correctly, test meshes were made. The renders of these test meshes can be
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4 Results

Figure 4.1: The 3 MatCap texture used in the results section.

Figure 4.2: Preprocessing times (blue) and render times (orange) for the valence test meshes.

seen in Figure 4.3 along with their CPU subdivision equivalent. Preprocess-
ing and render times are displayed in Figure 4.2. As the tessellation level
was set to 6 in the rendering process of these images, these times are to be
expected.

A detailed comparison to a CPU reference subdivision can be seen in Figure
4.4. Apart from the GPU and CPU renderings, a difference image can be
seen to the right. This image was calculated using the per-pixel world-space
position data, read from an additional renderbuffer. Then the difference
was calculated based on the Euclidean norm of the difference between the
image pixel vectors. This was then divided by the diagonal of the bounding
box of the mesh and finally multiplied with a factor (200 in this case) and
written to a gray-scale image. Another interesting render can be seen in
Figure 4.5.

30



4.2 Visual Comparision

valence 3 valence 4 valence 5 valence 6

valence 7 valence 8 valence 9 valence 10

Figure 4.3: All valency test meshes, from valency 3 to valency 10 rendered with real time
covariance rendering (top) and their base mesh and covariances (bottom).
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4 Results

Figure 4.4: The anvil mesh rendered by our GPU subdivision (left), by the reference CPU
subdivision (middle) and the difference image between the two (right), equal
pixels are black and pixel that differ are colored. The difference image was
enhanced by factor 200.

Figure 4.5: The wirecube mesh subdivided and rendered by the GPU.
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4.3 Performance Tests

name #vertices #faces preprocessing time
cube 8 6 68.77 ms

wirecube 40 48 209.14 ms
cylinder 30 28 114.46 ms

anvil 246 244 1346 ms

Table 4.1: List of meshes used in the performance analysis, showing their number of
vertices, faces and their preprocessing time.

4.3 Performance Tests

The evaluation of the performance of the system was done in different
ways. They were all done on a desktop PC with a Ryzen 1800X CPU and a
Nvidia GeForce GTX 1080 GPU with Nvidia Driver version 445.75. Firstly,
the performance of each stage (preprocessing, rendering) was captured and
then plotted in a time stack diagram. This was done for different meshes
and all supported tessellation levels in order to compare not only different
mesh topologies, but also different tessellation levels against each other. The
meshes used in the performance analysis are listed in Table 4.1.

Figure 4.6 shows the time stacks for the cube, wirecube, cylinder and
anvil mesh respectively, along with the renders for each mesh. The colors
represent each OpenGL pipeline stage, from bottom to top: vertex shader,
tessellation control shader, tessellation evaluation shader. Because we were
not able to directly measure the time spent on each shader stage, we have
read out the number of shader executions per stage using Nvidia Nsight. The
height of each color represents the relative number of executions of each
shader stage, in order to approximate the execution time of each shader
stage.

The time stack figures exhibit a roughly exponential growth of render time
with increasing tessellation level, which is expected since the number of
faces, and with it the number of shader executions, also grows exponentially.
Moreover, it can be seen that depending of the number of vertices in the
base mesh, the relative amount of tessellation evaluation shader executions
(red) is different. When there are many vertices in the base mesh (anvil
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4 Results

(a) cube mesh

(b) wirecube mesh

(c) cylinder mesh

(d) anvil mesh

Figure 4.6: Render time analysis for different meshes34



4.3 Performance Tests

mesh), the relative amount is greater. When there are less vertices in the
base mesh (cube mesh) the relative amount is smaller.

Another interesting aspect to look at is the GPU memory consumption of
the rendering pipeline. In Figure 4.7 the global GPU memory was estimated
and plotted against the render time of each mesh and each tessellation level.
Each mesh is shown in a separate plot and also in one common diagram to
compare them to each other.

As seen before, the render time behaves like an exponential function when
increasing the tessellation level, and so does the memory consumption, but
not as extreme as the render time. So in the plots the render time vs memory
consumption can be roughly described as a linear function. Depending on
how fast the memory consumption increases, the slope of the function
is steeper (anvil) or flatter (cube). This means that when increasing the
tessellation level, the memory consumption increases faster when rendering
the cube mesh, than it does when rendering the anvil mesh. The slopes of
the wirecube and cylinder meshes are in between the two, the wirecube
mesh exhibits a flatter slope than the cylinder mesh. This phenomenon is
based on the number of vertices in the base mesh. For a base mesh with a
larger number of vertices like the anvil mesh, the memory increases faster
than the render time and therefor the slope is steeper. For meshes like
the cube mesh with very few vertices in the base mesh, the render time
increases faster and the slope is flatter. How fast the render time or memory
consumption increases mainly depends on how many vertices there are in
the base mesh. The difference is that the render time is just proportional
to the number of vertices and the memory consumption can be directly
computed using the number of vertices and topology information. This is
due to the fact that just the number of shader executions increases with
the number of vertices. The scheduler on the GPU takes care to execute the
shader programs in parallel as efficiently as possible, and therefore creates
this difference in growth.

35



4 Results

(a) cube, 8 vertices (b) wirecube, 40 vertices

(c) cylinder, 30 vertices (d) anvil, 246 vertices

(e) all combined

Figure 4.7: Plots of memory consumption over render time for all performance evaluation
meshes. The markers highlight the measurement points at the tessellation levels
(1-6).
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4.4 Normals Comparison

Figure 4.8: The normal vectors of the distorted cube mesh encoded in the colors of the mesh,
for the GPU render (left), the CPU subdivision (middle) and their difference
image (right), equal pixels are black and pixel that differ are colored. The
difference image was enhanced by factor of 5000.

4.4 Normals Comparison

Another important result to check and evaluate is the correctness of the
resulting normals of the limit surface. This not only is important for the
completeness of the system, but also essential for many different shading
techniques. In Figure 4.8 a comparison of the normals can be seen. The
shader used in these renderings encodes the normal vector as a color on
the mesh, so that these values can be compared. The image was computed
taking the normals directly from an additional renderbuffer and writing
them to the disk. Then we have calculated the component-wise difference
between the rendered GPU and the reference CPU images for each of the
three components, multiplied it with a factor (in this case 5000) and wrote
them out to an image file where the xyz components of the difference
vector were encoded in the rgb channels of each pixel. It can again be seen
that the difference image is mostly black, meaning almost identical images.
Furthermore, the computation of the normals does not result in a significant
increase of render time since it just requires the computation of the tangent
vectors given in Equation 3.10, the transformation back given in Equation
3.12 and the cross product of the vectors.
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4.5 Conclusion

In conclusion the developed GPU subdivision algorithm works as well as the
CPU subdivision, as can be seen in the figures above. The difference images
between the rendered results indicate only a low measurable difference, by
pure visual inspection the renders are indistinguishable. There are slight
differences, resulting from the tessellation of the patches, especially near
the extraordinary vertices, due to the continuity there being just C1.

For the 3D models analyzed in this thesis, the real-time performance require-
ment is fulfilled up to a tessellation level of about 5, where the subdivision
computation time exceeds 16.67 ms (60 Hz). For most meshes, real-time
performance is achieved when the tessellation level is set to medium val-
ues (3-4). The actual maximum tessellation level that just allows real-time
performance depends on the number of vertices in the base mesh and the
computing power of the GPU.
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5 Geometric Discussion

In this chapter the resulting geometry of the application is analyzed and the
continuity of the limit surface is derived and discussed. This is important,
since a robust method should produce a continuous surface without faults
or discontinuities. Furthermore, another important aspect of a subdivision
scheme is analyzed, the calculations of the surface normals.

5.1 Continuity of Gaussian-Product Subdivision

The continuity and smoothness of the covariance mesh subdivision are
important properties for real world applications. The analysis of Preiner
et al. [17] is recapitulated in the following paragraphs. The covariance mesh’s
vertices are defined as follows:

Θi = (µi, Σi) (5.1)

where µi is the mean of a Gaussian distribution and Σi is its covariance
matrix. The map F(µ, Σ) 7→ q, where q = (q̂, q), transforming the covariance
vertices into the higher-dimensional space, is defined in Equation 2.10.

Moreover, the covariance matrices Σi are positive-definite matrices and so
are their inverses Σ−1

i . Therefore, their images q̂i all lie within a conical
region Qpd ⊂ Q of the 6-dimensional subspace spanned by the coefficients
of the first part of the basis b(x) in Equation 2.9 [10]. The boundary δQpd of
this cone includes just singular, non-invertible symmetric matrices, where
the map F(µi, Σi) and its inverse F−1(µi, Σi) are not defined. So disconti-
nuities occur when the corresponding hypersurface S∗ of the covariance
mesh intersect that boundary. These intersections can be avoided if the
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hypersurface S∗ at all times stays withing the convex hull of the input mesh,
which is true, when using set of convex weights αi. This implies the use of
the non-negative weights αi ≥ 0, as given in a linear subdivision scheme
like Catmull-Clark. In conclusion, when performing probabilistic Gaussian-
Product subdivision, using the weights αi of such an approximative scheme
L, the resulting limit surface S = {F−1

µ (q) : q ∈ S∗} is continuous, since the
inverse map F−1

µ is well defined and C∞ differentiable over the cone Qpd.
The limit surface further adopts the smoothness properties of the hypersur-
face, that is the continuity orders at the extraordinary vertices are the same
as defined in the linear subdivision scheme L.

5.2 Continuity Properties in our Real-Time
Pipeline

After in the last section it was shown that Gaussian-Product subdivision
inherits the properties of the underlying linear subdivision model, it is
important to show this continuity property for the real-time subdivision
pipeline as well.

The surface is constructed using Bézier patches. The continuity within the
patches is given, since its basis functions (defined in Equation 2.13) are
continuous. The patch borders are of a greater interest. The border edges
of the patches are C0 continuous if the control polygons of the bordering
patches have equal edge curves, meaning the four control points at the
border have to be equal. Looking at the way the control polygons are
calculated, information about the edge points of the control polygons are
shared between edges. This means that both calculations are using the same
data and therefore produce the same result.

For C1 continuity, the analysis has to go further. Ball and Storry [1] did a
fundamental geometric analysis of the approximation of subdivision sur-
faces looking at their subdivision matrices in an average case with a general
choice of weights. They achieved this by doing a discrete Fourier transfor-
mation on the vertices and then reformulated the subdivision matrix in this
Fourier-space. Computing the eigenvalues and eigenvectors of this matrix,
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the researchers showed that the approximation of the subdivision is C2

smooth everywhere except it has C1 continuity at extraordinary vertices, if
and only if the dominant eigenvalue is greater than the eigenvalue involving
α, the weight of the original vertex when computing the vertex update.

Ball and Storry showed this on iterative subdivision algorithms, but since a
Catmull-Clark subdivision scheme converges to a Bézier patch and the first
steps in our real-time subdivision pipeline involve actual Catmull-Clark sub-
division, the proof is also valid in our pipeline. Therefore, our subdivision
pipeline provides C2 continuity everywhere except extraordinary vertices
where it has C1 continuity.

Combining both proofs above we can conclude that, since the Gaussian-
Product subdivision inherits the properties from the underling linear subdi-
vision scheme and the approximation of the subdivision surface by Bézier
patches was shown and proven by Ball and Storry [1], the resulting limit sur-
faces of our pipeline are C2 continuous everywhere except at extraordinary
vertices, where it has C1 continuity.

41





6 Outlook

The most important task for future work is to introduce triangle meshes to
the application. There are a few things that need to be implemented in order
to achieve this: The preprocessing step needs to be altered to be able to
handle triangles and some data-structures need to be updated and adjusted.
Further down the pipeline, the tessellation control shader needs to be able
to handle Loop triangle subdivision and the tessellation evaluation shader
has to handle the input as a triangle and not a quadrilateral. Moreover, the
representation of a patch as a Bicubic Bézier surface needs to be extended
to be able to handle triangles. This could either be done using triangular
Bézier patches, or by switching to Gregory patches [9].

Another interesting aspect of the covariance mesh subdivision algorithm
is the higher-dimensional cone, containing all valid symmetric covariance
matrices. The analysis of what happens with the corresponding 3D vertex if
one higher-dimensional vertex lies outside this cone or on the boundary is a
very interesting research topic. Although the inverse is not defined for these
matrices outside of this cone, some numerical replacement for the inverse
operation could be used instead.

In order achieve further performance gains, the GPU subdivision algorithm
can be updated. There has been some interesting research in this topic,
since, when set up just right, it can be sped up quite much on the GPU, in
comparison with a traditional CPU subdivision. Mlakar et al. [14] showed
some promising results and a rather interesting setup, using a sparse mesh
matrix, an edge matrix and a face matrix. Using sparse matrix-vector multi-
plication and sparse matrix-matrix multiplication, they subdivided the mesh
on the GPU. Since sparse matrix-vector and matrix-matrix multiplication
can be implemented very efficiently on the GPU, they achieved real-time
performance.

43



6 Outlook

Further changes in some internal data structures could yield more prepro-
cessing performance increase. This could also increase performance further
down the pipeline.
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