




Abstract

The aim of this thesis is the design, realisation and control of electrical circuits for
laboratory purposes at the Institute of Automation and Control at Graz University
of Technology.

The work presents a hardware section and a software section. The hardware part is
about designing and implementing the electrical test circuits with the corresponding
measurement set-up and the actuation electronics. By keeping the design modular,
the laboratory set-up can be easily extended by implementing new test circuits.
The software part integrates the test circuits in MATLAB Simulink. By abstracting
the real-world systems in Simulink blocks that take input signals and output the
measured system states, the blocks can be handled in the simulation similarly to
state-space blocks.

Finally, several standard control and observer concepts are applied to the test cir-
cuits. They are evaluated in di�erent experiments using the developed MATLAB
Simulink interface.
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1 Introduction

1.1 Introduction and Motivation

The main aim of this work is to provide a laboratory set-up where selected control
and observer algorithms are designed, realised and tested on a real electronic system.
The set-up should then be used at the Institute of Automation and Control at Graz
University of Technology.

Within theory classes proposed methods are commonly demonstrated in simulation
only. However, in real-world systems additional problems and restrictions occur.
Such problems are

� model uncertainty respectively parameter uncertainty,

� measurement noise,

� input disturbances or perturbations and

� actuator restrictions limiting the control signal.

In laboratory classes, the knowledge from the theory is applied and tested on real
systems in order to demonstrate the behaviour of the designed feedback loops. Nev-
ertheless, these systems, although visualising the control task, are often bulky and
hence not easy to transport. Therefore, the idea is to implement a small labora-
tory set-up that can easily be transported. Hence, being able to showcase discussed
methods on real systems and demonstrating the impact due to problems that appear
in real systems also in theory classes.

However, the laboratory set-up is also aimed to serve as a basis for future labora-
tory classes. Thus, it is favourable to replicate di�erent control and observer tasks
within the set-up to be able to apply a large variety of di�erent control and observer
algorithms. Furthermore, the set-up should be easy to operate.

The �nal goal of this work is to design, realise and apply di�erent controller and
observer methods on the designed hardware.

1



1.2. REQUIREMENTS

This thesis is structured as follows: Based on the de�ned requirements in the next
section, Chapter 2 elaborates the design and implementation of the hardware part.
Then a general overview and theoretical background of the implemented controller
and observer concepts is given in Chapter 3. Subsequently Chapter 4 presents the
actual design steps and calculations of these methods when applied to the realised
test circuits. The results of the experiments that were carried out are discussed in
Chapter 5. Finally, Chapter 6 gives concluding remarks and outlines possibilities
for further work.

1.2 Requirements

From the previous section several requirements are deduced for the hardware part
of the laboratory set-up. For a better overview these requirements are listed �rst
and then explained in more detail. The hardware requirements for the laboratory
set-up are:

� interfacing with MATLAB Simulink,

� di�erent control tasks / systems,

� electrical systems only,

� an expandable structure,

� measurement of four di�erent state variables and

� two actuator signals.

Starting with the MATLAB Simulink interfacing, this is speci�ed as it is a common
environment for control engineering and often used in classes. By aiming a wide
spectrum of controller and observer algorithms it is necessary to provide di�erent
control tasks to compare the algorithms. Furthermore, specially designed systems
also allow to test and highlight certain features like disturbance attenuation or un-
certainty estimation.

Implementing the test systems as solely electrical circuits allows to obtain a small
design but at the expense of loosing the real-world visualization of the control task
e.g. balancing a rod with a cart. However, requiring an expandable structure
allows to link the laboratory set-up to other hardware where mechanical action
may happen.

By requiring four measurement channels, systems up to fourth order can be moni-
tored and with the two actuator channels it is possible to handle systems with two
inputs.

2



2 Hardware Design and Realisation

2.1 General Design

Based on the requirements given in the previous chapter, the hardware of the labo-
ratory set-up was divided into three sections

� a sensor and actuator board,

� a connector board for signal ampli�cation and transformation and

� the test circuits.

The main task of the sensor and actuator board is to provide measured data from
the experimental hardware set-up to MATLAB Simulink. Furthermore, the board
sets the actuator signals and applies changes made in MATLAB Simulink to the test
circuit. Hence, the sensor and actuator board requires a measurement module with
Analogue-to-Digital Converter (ADC), a Digital-to-Analogue Converter (DAC) or
Pulse-Width-Modulation (PWM) for actuation and some form of communication
module to interface with MATLAB Simulink on the computer.

The connector board takes the di�erentially measured state variables from the test
circuit, ampli�es them and outputs the signals ground referenced to the sensor and
actuator board. Moreover, the connector board provides the supply voltage for the
test circuits and decouples the actuator signals from the sensor and actuator board
via an impedance transformer and forwards them to the test circuits. By using
de�ned plugging interfaces test circuits can be exchanged easily.

Last part of the hardware set-up are the test circuits. The test circuits represent
the actual plant. For this thesis two simple circuits with di�erent characteristics are
designed.

3



2.2. EVALUATION BOARD

Figure 2.1: Texas Instruments LAUNCHXL-F28069M.

2.2 Evaluation Board

Most modern microcontrollers are equipped with ADC, DAC and PWM modules.
There is also hardware support through MATLAB Simulink for various di�erent
microcontrollers1. Therefore, the decision was made to use a microcontroller (µC)
as sensor and actuator board. More precisely an evaluation board which features
a µC. The choice to use an evaluation board is due to usability reasons since the
evaluation board already supplies the µC as well as making access to the pins of the
µC much more convenient.

For the laboratory set-up the Texas Instruments LAUNCHXL-F28069M 2 (Figure
2.1) evaluation board is used. The evaluation board features a Texas Instruments
TMS320F28069M microcontroller3 from the C2000 piccolo product family. Some
key features of the TMS320F28069M are

� 90 MHz clock frequency,

� 32-bit architecture,

� native �oat operations,

� 16 ADC channels (12-bit),

1https://www.mathworks.com/hardware-support/home.html
2http://www.ti.com/tool/LAUNCHXL-F28069M
3http://www.ti.com/product/tms320f28069m
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2.2. EVALUATION BOARD

� 16 PWM channels (up to 2MHz) and an

� Universal Asynchronous Receiver-Transmitter (UART) module.

In the laboratory set-up, the evaluation board is connected via USB to the host
computer that runs MATLAB Simulink. The board is supplied through the USB
interface. Also the communication between the host computer and target µC is
handled using the built in USB to UART adapter of the evaluation board.

2.2.1 MATLAB Simulink Compatibility

The µC can be used with MATLAB Simulink by installing the TI C2000 Piccolo Sup-
port from Embedded Coder hardware support package4, requiring MATLAB Coder,
Simulink Coder and Embedded Coder toolboxes for code generation.

The hardware support package o�ers pre-de�ned hardware con�gurations for the
Simulink models and a toolchain to build and deploy the generated code on the µC.
The di�erent functionalities and modules of the µC can be accessed via Simulink-
blocks, e.g. ADC-block, PWM-block or GPIO-block.

Figure 2.2: Schematic overview of the MATLAB Simulink simulation in External
Mode with host and target µC.

Figure 2.2 illustrates the set-up when the MATLAB Simulink model is executed in
External Mode. Firstly, an executable is generated and deployed on the TMS320F28069M
target µC. While running, the target application on the µC communicates with the
model on the Simulink host allowing to update parameter changes from the model
to the target in real-time. Vice versa, signal data from the target application can be
retrieved and monitored in the model. However, limitations arise in terms of data
exchange between computer and µC, where the µC is fully capable of performing
the given task but the actions are too fast to monitor on the computer. This was
unfortunately not noticed until the �rst hardware implementation was fully tested
and then tried together with the evaluation board. The upper limit obtained to
get correct data are sample rates of about 1kHz − 2kHz. Furthermore, the data

4https://www.mathworks.com/hardware-support/ti-c2000-piccolo.html
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export from MATLAB Simulink is tedious with the currently used method, however,
possible improvements are shown in the appendix.

2.3 Connector Board

The connector board is the linking part between the evaluation board and the test
circuit. Figure 2.3 shows the board, splitting and highlighting its functionality in
three parts

� a power supply (red),

� a signal driver (green) and

� a measuring ampli�er (blue).

The extra power supply provides power to the connector board and test circuits in-
dependently from the evaluation board and reduces the load for the latter. Incoming
actuator signals from the evaluation board are ampli�ed, decoupled and forwarded
by the signal driver. The measuring ampli�er takes the di�erentially measured sig-
nals from the test circuits and scales them for the evaluation board.

The next sections will explain the three di�erent modules in more detail.

2.3.1 Power Supply

As mentioned in Section 2.2, the evaluation board supplies the µC. Furthermore,
the board also o�ers a 5V supply with a maximum current of 0.5A. These ratings
are su�cient for the purposes of this laboratory set-up, however, supply via the
evaluation board was discarded to keep the load for the board minimal. Thus, a
simple power supply is integrated on the connector board.

Figure 2.4 shows the circuit diagram of the designed power supply. To get a constant
output voltage V+ = 5V , a positive voltage regulator IC L7805CV 5 from STMicro-
electronics is used. The circuit design is taken from the application information
in the datasheet. The input voltage Vin is provided through a 12V , 1.5A power
adapter.

Having a constant voltage of 5V not only allows to supply the operational ampli�ers
(OPAMPs) on the connector board and test circuits, but also use this voltage as a
reference voltage e.g. used in the measuring ampli�er section.

5https://www.st.com/resource/en/datasheet/l78.pdf
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Figure 2.3: The connector board with its three di�erent modules: power supply
(red), signal driver (green) and measuring ampli�er (blue). The left side is connected
to the evaluation board, the right side to the test circuits. The black dots on the
right side indicate where the black wire must be located.

7



2.3. CONNECTOR BOARD

L7805CV

0.33 µF 0.1 µF

V+ = 5V

Vin

Figure 2.4: Circuit diagram of the power supply.

To have a common ground between the boards, the ground levels of the evaluation
board, connector board and test circuits are connected.

2.3.2 Signal Driver

The task of the signal driver is to take the actuator signals from the evaluation
board and forward them to the test circuits. The �rst stage of the design was to
de�ne the actuator signals, which will be applied to the "plant" electronics. As
"fast switching" sliding-mode controllers are designed and tested in the laboratory
set-up, DAC-signals from the LAUNCHXL-F28069M evaluation board are discarded
and the much faster PWM-signals are used. However, using PWM-signals requires
an additional low-pass �lter (LPF) on the connector board.

2.3.2.1 Low-Pass Filter Design for Digital-Analogue Conversion

The PWM-signal of the LAUNCHXL-F28069M can be operated with up to 2MHz.
Nevertheless, accuracy decreases with very high frequencies. Thus, the PWM at the
evaluation board is operated between 100kHz and 500kHz. The cuto� frequency
of the LPF is designed to be at 8kHz - 10kHz, to have enough bandwidth for
discontinuous control signals up to 1kHz, but still suppressing the PWM frequencies.

To minimize errors from the digital-analogue conversion of the PWM-signal, a
second-order LPF as shown in Figure 2.5 is designed. The input-output relation
of the second-order LPF reads as

VLPF
VPWM

= GLPF (s) =
1

s2LC + 1
.
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VLPF

L

VPWM

C

Figure 2.5: Circuit diagram of a simple second-order LC low-pass �lter.

The cuto� frequency

fc =
1

2π
√
LC

,

further leads to the time constant τ = LC,

τ = LC =
1

(2πfc)
2 ,

τ = LC =
1

(2π · 9000Hz)2
,

τ = LC = 31.3ns.

Thus, the component values are selected as C = 33nF and L = 10mH, which results
in a cuto� frequency of 8761Hz.
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Figure 2.6: Magnitude plot of the second-order LC-LPF.

However, as Figure 2.6 shows, the circuit has a very high ampli�cation at the reso-
nance frequency which is not desired. Thus, a resistor of 1kΩ is added to the LPF
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circuit. The resistor reduces the current through the LPF and ensures a minimum
resistance especially at the cuto� frequency, therefore, suppressing the previously
given ampli�cation. Figure 2.7 shows the �nal circuit diagram of the designed
second-order LPF.

VLPF

10 mH1 kΩ

VPWM

33 nF

Figure 2.7: Circuit diagram of the second-order RLC low-pass �lter used for digital-
analogue conversion of the PWM-signal from the evaluation board.

The magnitude plot of the designed second-order LPF is shown in Figure 2.8. As
can be seen, frequencies up to the cuto� frequency (8761Hz) pass the LPF without
any damping. Signals with a frequency above the cuto� frequency are suppressed
by an attenuation of −40dB per decade.
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Figure 2.8: Magnitude plot of the designed second-order RLC low-pass �lter for the
signal driver.

A second-order LPF is used, since the PWM-signal with its steps contains high fre-
quencies that should not appear in the �ltered output signal and the requirement
of at least 8kHz cuto� frequency. Figure 2.9 highlights the need of a second-order
LPF, since a �rst-order LPF with similar cuto� frequency does not suppress the
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higher frequencies of the PWM-signal strong enough.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

(a) First-order LPF.
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(b) Second-order LPF.

Figure 2.9: Simulation of the digital-analogue conversion using �rst- and second-
order LPF with a PWM input signal. PWM: 50% duty cycle, amplitude 1 and
200kHz frequency.

2.3.2.2 Ampli�er Design

The low-pass �ltered PWM-signal is then ampli�ed using a non-inverting ampli�er as
shown in Figure 2.10. The ampli�er guarantees that there is no load on the second-
order LPF, ensuring correct functionality of the LPF. Additionally, the operational
ampli�er has a low output resistance. By using extra resistors at the output, a
de�ned low output resistance is archived. In case of the connector board a 25Ω
resistor is used.

The ampli�er also should be able to provide enough current even if there is a short
circuit in the "plant" electronics. With a given maximum output voltage of 5V
and an output resistance of 25Ω, neglecting the output resistance of the operational
ampli�er, the maximum current of the operational ampli�er can be calculated as

Imax =
Umax
Rout

=
5V

25Ω
= 200mA.

Thus, the Analog Devices AD85326 operational ampli�er is used, with the ampli�er
having a maximum output current of 250mA.

6https://www.analog.com/media/en/technical-documentation/data-sheets/AD8531_

8532_8534.pdf
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−

+
Vin

RF

RG

Vout

Figure 2.10: Circuit diagram of a non-inverting ampli�er.

The ampli�cation of the low-pass �ltered signal is done by operating the operational
ampli�er as non-inverting ampli�er. The PWM of the LAUNCHXL-F28069M has
an amplitude of 3.3V and hence the maximum of the low-pass �ltered signal is also
3.3V . The output of the signal-driver should have a maximum of 5V . Thus, the
gain g of the non-inverting ampli�er can be calculated as

g =
Vout
Vin

=
5V

3.3V
= 1.52.

The gain of the non-inverting ampli�er is given by

g = 1 +
RF

RG

,

with RF being the feedback resistor and RG the ground resistor.

By selecting the ground resistor RG of the non-inverting ampli�er as 100kΩ, the
feedback resistor RF results as

RF = (g − 1)RG = (1.52− 1)100kΩ = 52kΩ.

2.3.2.3 Final Design and Test Measurements

Figure 2.7 shows the circuit diagram for one channel of the signal driver. On the
left side of the circuit diagram there is the designed second-order LPF that performs
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digital-analogue conversion of the PWM-signal. Ampli�cation is done with the non-
inverting ampli�er being on the right side of the circuit diagram. As de�ned in the
requirements Section 1.2, there are two actuator signals, and thus two signal driver
channels.

−

+

10 mH1 kΩ

VPWM

33 nF

52 kΩ

100 kΩ

25 Ω

Vo

Figure 2.11: Circuit diagram of one channel of the signal driver. The positive input
of the non-inverting ampli�er is connected to the second-order LPF.

To compensate tolerances of the resistors, the feedback resistor RF of the non-
inverting ampli�er is realised as a potentiometer. Figure 2.12 shows the test mea-
surements of the two signal driver channels. The measurements were performed
using the PWM of the evaluation board as input and an oscilloscope for measure-
ment. As it is illustrated in Figure 2.12, after adjustment of the potentiometer both
channels perform as expected, i.e. almost no deviation from the desired behaviour.

The output resistance of the signal driver was also measured. This was done by
using a �xed voltage output at the signal driver and a known resistor to measure
the current. Table 2.1 shows the measured results. As seen, the measured resistance
di�ers from the used 25Ω resistor, however, output resistance of the operational
ampli�er, line resistance and resistance from the plugging interface also add up to
the measured values.

channel resistance
1 31.7Ω
2 31.6Ω

Table 2.1: Measured output resistance of the two signal driver channels.
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(a) Signal driver channel 1.
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(b) Signal driver channel 2.

Figure 2.12: Test measurement of the two signal driver channels.

2.3.3 Measuring Ampli�er

The third functional module of the connector board is the measuring ampli�er. The
di�erentially measured input signals from the test circuits are scaled according to
the channel speci�cation. The output are ground referenced signals that are within
the ADC range of the evaluation board. To prevent faulty signals reconstruction due
to discretisation and consequently re�ections from frequencies above the Nyquist-
frequency, the measuring ampli�er also implements an anti-aliasing �lter. Figure
2.13 shows the general circuit design of the four ampli�er channels.

At the start of the ampli�er design the input voltage is assumed to be constant, thus
allowing to neglect the capacitors. The given di�erential ampli�er with bias shift
can be split in three parts that can be discussed separately using the superposition
principle.

The �rst part is the negative input V−. The input is ampli�ed with an inverting
ampli�er

Vout− = −R4

R3

V−. (2.1)

The second part is the positive input V+. At �rst, the input voltage is split via a
voltage divider and then ampli�ed with a non-inverting ampli�er

Vout+ =
R2||RREF

R1 +R2||RREF

(
1 +

R4

R3

)
V+. (2.2)

The third and last part is a bias shift using a reference voltage. The ampli�cation
is similar to the previous part of the positive input and given by

VoutREF
=

R1||R2

RREF +R1||R2

(
1 +

R4

R3

)
VREF . (2.3)
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−

+

R1

V+

RREF

VREF

R2 C1

R4

C2

R3

V−
Vout

Figure 2.13: Circuit diagram of a di�erential ampli�er with bias shift and anti-
aliasing �lter.

Thus, the output voltage of the di�erential ampli�er adds up according to super-
position principle as the sum of the di�erent parts (2.1), (2.2) and (2.3), resulting
in

Vout =Vout+ + Vout− + VoutREF
,

Vout =
R2||RREF

R1 +R2||RREF

(
1 +

R4

R3

)
V+ +

(
−R4

R3

)
V−

+
R1||R2

RREF +R1||R2

(
1 +

R4

R3

)
VREF . (2.4)

The ampli�cation of the given di�erential ampli�er with bias shift should equal a
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linear equation of the form

Vout =gVin + b, (2.5)

Vout =g (V+ − V−) + b, (2.6)

with a desired gain g and bias b.

Therefore, by expanding equation (2.4) and equate it with equation (2.6), the com-
parison of coe�cients results the following three relations

V− : g =
R4

R3

, (2.7)

V+ : g =
R2RREF

R1R2 +R1RREF +R2RREF

(
1 +

R4

R3

)
, (2.8)

VREF : b =
R1R2

R1R2 +R1RREF +R2RREF

(
1 +

R4

R3

)
VREF . (2.9)

Equations (2.8) and (2.9) can be further simpli�ed by rearranging to their common
denominator and equating the results to get resistor relations for RREF depending
on R1

RREFR2

g

(
1 +

R4

R3

)
=
R1R2

b

(
1 +

R4

R3

)
VREF ,

RREF��R2

g ���
���

(
1 +

R4

R3

)
=
R1��R2

b ���
���

(
1 +

R4

R3

)
VREF ,

RREF

g
=
R1

b
VREF ,

�nally resulting in

RREF =
gVREF
b

R1. (2.10)

Also the relation for R2 can be expressed as a function of R1, by rearranging equation
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(2.9) and substituting the result from equation (2.7) and (2.10)

R1R2 +R1RREF +R2RREF =
R1R2

b

(
1 +

R4

R3

)
VREF ,

R1R2 +R1
gVREF
b

R1 +R2
gVREF
b

R1 =
R1R2

b
(1 + g)VREF ,

��R1R2 +R1
gVREF
b ��R1 +R2

gVREF
b ��R1 = ��R1R2

b
(1 + g)VREF ,

R2 +R1
gVREF
b

+
���

���
R2
gVREF
b

= R2
VREF
b

+
���

���
R2
gVREF
b

,

R1
gVREF
b

= R2

(
VREF
b
− 1

)
,

R2 =
gVREF

b
VREF

b
− 1

R1,

�nally leading to

R2 =
g

1− b
VREF

R1. (2.11)

As de�ned in the requirements, the laboratory set-up should be able to measure up
to four di�erent state variables, thus leading to four measurement channels. Three
channels of the measuring ampli�er ("type 1" ampli�er), scale a di�erential input
voltage of 0V - 5V to a ground referenced output voltage of 0V - 3.3V leading to a
desired gain g = 0.66 and a bias b = 0V . As no bias shift is needed, the reference
voltage VREF is not connected. Hence there is no resistor RREF and equation (2.8)
simpli�es to

g =
R2

R1 +R2

(
1 +

R4

R3

)
.

The remaining channel of the measuring ampli�er ("type 2" ampli�er), scales from
−0.4V - 0.4V to 0V - 3.3V leading to a desired gain g = 4.125 and a bias b = 1.65V .
Table 2.2 lists the component values for the two di�erent types of ampli�ers. The
resistor values are calculated based on the derived relations, with the input resistors
R1 and R3 chosen high enough, i.e. having no e�ect on the test circuits - also if high
impedances are used. The values of the capacitors are identi�ed based on simulation
in order to obtain the desired anti-aliasing e�ect of the measuring ampli�er. A
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detailed step-by-step calculation of the resistor values is omitted here, as it is done
similarly as in Section 2.4.1.3.

Since there are no special requirements for the operational ampli�er, the Microchip
MCP6004 7 is used. The ampli�er is a standard four-channel rail-to-rail general-
purpose ampli�er which allows single supply.

ampli�er R1 R2 R3 R4 RREF VREF C1 C2

type 1 1.5MΩ 1MΩ 1.5MΩ 1MΩ - - 100pF 100pF
type 2 100kΩ 620kΩ 100kΩ 410kΩ 1.22MΩ 5V 150pF 150pF

Table 2.2: Component values of the two di�erential ampli�er types used in the
measuring ampli�er.

2.3.3.1 Ampli�er parameters and Test Measurements

With the 12-bit ADC on the evaluation board and a designed measuring range of
5V for the type 1 di�erential ampli�er the least signi�cant bit (LSB) of the ADC
corresponds to 1.22mV , meaning a resolution of 1.22mV for the whole measurement
channel. Equally, this applies for the type 2 di�erential ampli�er with a measuring
range of 0.8V and consequently a resolution of 0.195mV .

Figure 2.14 shows the test measurements of the measuring ampli�er. As depicted
therein, all ampli�ers show the expected linear behaviour, although especially the
type 1 ampli�er have a slightly too high gain which leads to a slightly better res-
olution but smaller input range. The red lines show the �tted models according
equation (2.5) using linear regression, whereas the ideal designed measuring am-
pli�ers would exactly span the diagonal of the plots. The model parameters are
summarised in Table 2.3.

channel gain bias
1 - type 1 703.82 mV/V 2.68 mV
2 - type 2 4074.09 mV/V 1696.27 mV
3 - type 1 680.25 mV/V −0.05 mV
4 - type 1 682.46 mV/V 2.38 mV

Table 2.3: Fitted model parameters of the four di�erent measurement ampli�er
channels.

7http://ww1.microchip.com/downloads/en/DeviceDoc/21733j.pdf
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(a) Measuring ampli�er channel 1 - type 1,

0V -5V input voltage.
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(b) Measuring ampli�er channel 2 - type 2,

−0.4V -0.4V input voltage.
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(c) Measuring ampli�er channel 3 - type 1,

0V -5V input voltage.
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(d) Measuring ampli�er channel 4 - type 1,

0V -5V input voltage.

Figure 2.14: Test measurement of the four measuring ampli�er channels.

2.3.4 Plugging Interface

The segmentation in three distinct components is an important feature of the labo-
ratory set-up, as it provides a certain level of modularity. The task of the plugging
interface is to easily connect respectively disconnect the three di�erent parts, evalu-
ation board, connector board and test circuits. Furthermore, the segmentation with
a de�ned interface enables the design and implementation of further test circuits
that simply need to be plugged in to work from a hardware perspective.

Since the connector board is "in the middle" of the laboratory set-up between the
evaluation board and the test circuits, it has to connect the signal paths between
them. As there are also two signal directions, the actuator signals from the evalu-
ation board to the test circuits and the measurement signals from the test circuits
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Figure 2.15: The four di�erent sections of the plugging interface. The black dots
above the plugs in section 2 and 3 indicate where the black signal must be located.

to the evaluation board, the plugging interface is divided into four sections

1. ground and actuator signals from evaluation board to connector board,

2. supply, ground and actuator signals from connector board to test circuits,

3. di�erential measurements from test circuits to connector board,

4. ground reference measurements from connector board to evaluation board.

There are corresponding counterparts of the interface on the test circuits. However,
for the evaluation board the single wire-ends must be plugged in according to the
used modules. The prede�ned pinout of the LAUNCHXL-F28069M is described in
its user guide8.

Figure 2.15 shows the four connectors of the plugging interface as described above.
The pinout of each of the interface sections is seen in Table 2.4, the used abbrevia-
tions are

� supply voltage V+,

8http://www.ti.com/lit/ug/sprui11b/sprui11b.pdf
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� common signal ground GND,

� PWM outputs and signal driver inputs VPWM,i,

� signal driver outputs and test circuit inputs VS,i,

� di�erential measurements and measuring ampli�er inputs VD,ix and �nally

� ground referenced outputs of the measuring ampli�er and ADC inputs VM,i.

section pin 1 pin 2 pin 3 pin 4 pin 5 pin 6 pin 7 pin 8
1 VPWM,1 GND VPWM,2 - - - - -
2 V+ GND VS,1 VS,2 - - - -
3 VD,1+ VD,1− VD,2+ VD,2− VD,3+ VD,3− VD,4+ VD,4−
4 VM,1 VM,2 VM,3 VM,4 - - - -

Table 2.4: Pinout of the four sections of the plugging interface. The numbering of
the pins for each section is done top to bottom, with top being considered according
to Figure 2.15.

Each section of the plugging interface has an associated wire. The wires linking the
evaluation board to the connector board have single jacks at side of the evaluation
board and form-�tting jacks at the other side. The other two wires linking the
connector board to the test circuits have form-�tting jacks at both ends. As seen
in Figure 2.15, all plugging interface sections on the connector board have corre-
sponding form-�tting plugs, ensuring that the wires can only be connected in one
direction. However, for the wire linking to the test circuits, it is possible to plug
in the wires incorrectly as not all jacks on the test circuits are form-�tting jacks.
Hence, to reduce the risk of wrongly plugged connections there are black dots on the
test circuits and on the connector board. These dots indicate the desired position
of the black signal wire.

Figure 2.16 shows the fully connected laboratory set-up. As can be seen on the right
side of the connector board in the middle, the black signal wires are located on the
side of the black dots.
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Figure 2.16: Fully wired laboratory set-up with the evaluation board on the left,
the connector board in the middle and the series resonance circuit on the right side
of the photo. The evaluation board is additionally connected to the host computer
running Matlab Simulink, whereas the connector board is connected to an external
power adapter.

2.4 Test Circuits

The test circuits represent the actual electronic circuits which are regarded as the
plant. To demonstrate di�erent controller and observer techniques, two simple test
circuits are designed

� a RLC series resonance circuit and

� an integrator circuit.

Both circuits highlight di�erent control problems and are easy to understand. The
next subsections will explain the two di�erent circuits in more detail.

2.4.1 Series Resonance Circuit

The series resonance circuit is a standard circuit in electrical engineering. Figure
2.17 shows the simpli�ed structure of the RLC circuit. To retrieve information
about the circuit's state there are two measurement points within the circuit. First,
the voltage across the capacitor and second the voltage across the shunt resistor.
The shunt voltage is used to indirectly measure the inductor current which equals
the current through the circuit. To obtain an interesting control task, the circuit
must be designed that the voltage across the capacitor naturally overshoots when
applying an input step.
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Vin

Rout

L

Cvc

RshuntvShunt

i

connector board

Figure 2.17: Simpli�ed circuit diagram of the RLC series resonance circuit.

2.4.1.1 State-Space Modelling

The state space model of the circuit is derived using Kirchho�'s voltage law and the
voltage-current relations of the inductor and capacitor

Vin = i (Rout +Rshunt) + vL + vC , (2.12)

vL = L
d

dt
iL, (2.13)

i = iL = iC = C
d

dt
vc.

Inserting equation (2.13) in (2.12) results

Vin = iL (Rout +Rshunt) + L
d

dt
iL + vC . (2.14)
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Rearranging equation (2.13) and (2.14) and setting R = Rout + Rshunt results �rst-
order di�erential equations of the form

d

dt
vC =

1

C
iL, (2.15)

d

dt
iL = − 1

L
vC −

R

L
iL +

1

L
Vin. (2.16)

With the given system equations (2.15) and (2.16), the circuit can be represented
as linear time-invariant system (LTI system) of the form

d

dt
x = Ax + bu,

y = cTx,

with the system matrix A, the input vector b corresponding to the input u and
the system state x. The system output y is obtained using the state x and the
associated output vector cT .

The �nal model for the RLC series resonance circuit is given by

x =

[
vC
iL

]
, u = Vin,

d

dt
x =

[
0 1

C

− 1
L
−R
L

]
x +

[
0
1
L

]
u,

y =
[
1 0

]
x,

(2.17)

hence it is assumed that y = vC .

2.4.1.2 Component Dimensioning

With the state space model (2.17) it is however hard to design the circuit to meet
the requirements. Therefore, a structured approach is taken using the input output
relations in the frequency domain where Vin is the input and vC the output.

First Kirchho�'s voltage law is used again, this time however the frequency depen-
dent resistance of the components is used

Vin(s) = RiL(s) + sLiL(s) +
1

sC
iL(s),

Vin(s) = iL(s)

[
R + sL+

1

sC

]
. (2.18)

24



2.4. TEST CIRCUITS

The current voltage relation of the capacitor in the frequency domain given as

iL(s) = CsvC .

Thus, equation (2.18) can further be expanded

Vin(s) = CsvC

[
R + sL+

1

sC

]
,

Vin(s) = uC
[
sRC + s2LC + 1

]
,

uC
Vin

=
1

s2LC + sRC + 1
,

leading to

uC
Vin

=
1

LC

1

s2 + sR
L

+ 1
LC

. (2.19)

This transfer function can also be obtained using the state-space model (2.17)

G(s) = cT (sE−A)−1 b.

Equation (2.19) equals a second-order system with complex conjugate pole pair

P (s) =
1

s2 + 2dωns+ ω2
n

. (2.20)

These types of systems are well studied and it is known that for a damping factor
d < 1 the system response due to a step input shows an overshoot. A comparison
of the coe�cients in equations (2.19) and (2.20) shows that

R

L
= 2dωn (2.21)

and

ωn = 2πfn =
1√
LC

. (2.22)

The frequency fn and the damping factor d are chosen as 80Hz and 0.1. With these
two values and equation (2.21) it is possible to calculate the inductance

L =
R

2dωn
.
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With a measured output resistance of 31.7Ω (Table 2.1) and a chosen 5Ω shunt
resistor the value of the inductance is calculated as

R

L
= 2dωn

L =
R

2dωn
=

31.7Ω + 5Ω

2 · 0.1 · 2π · 80Hz

L = 0.3651H.

Thus a 0.4H inductance is used. The capacitor value is then derived using equation
(2.22)

ωn =
1√
LC

,

C =
1

Lω2
n

=
1

0.4H · (2 · π · 80Hz)2
,

C = 9.89µF.

The capacitor is since chosen as 10µF , which leads to a frequency fn = 79.58Hz.

To double check if the chosen parameters lead to a damping factor d < 1, equation
(2.22) is inserted into (2.21) and solved for d

R

L
= 2d

1√
LC

,

d =
R
√
LC

2L
=
R
√
C

2
√
L
,

d =
36.7Ω ·

√
10µF

2 ·
√

0.4H
,

d = 0.0918.

In order to change the circuit characteristics in a straight forward way, two additional
capacitors are wired in parallel to the given capacitor as seen in Figure 2.18. The
extra capacitors can be added to the circuit independently via switches. By wiring
the capacitors parallel the values of the capacitors add up and it can be seen as one
bigger capacitor in the model.

L Rshunt C C2 C3

0.4H 5Ω 10µF 22µF 47µF

Table 2.5: Component values of the series resonance circuit.

Table 2.5 shows the component values for the RLC series resonance circuit. With
both capacitors added to the circuit, the maximum capacitance Cmax = 79µF .
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Vin

Rout

L

C1

Rshunt

C2 C3

connector board

Figure 2.18: Circuit diagram of the RLC series resonance circuit with switchable
capacitors.

Again calculating the damping factor d using equations (2.21) and (2.22) results

d =
R
√
Cmax

2
√
L

,

d =
36.7Ω ·

√
79µF

2 ·
√

0.4H
,

d = 0.257,

which still allows an overshoot in the system's step response. The resonance fre-
quency fn for the maximum capacitance is

fn,Cmax =
1

2π
√
LCmax

,

fn,Cmax =
1

2 · π ·
√

79µF · 0.4H
,

fn,Cmax = 28.3Hz.

The addition of the two capacitors allows to test the di�erent controllers with a
"faster" or "slower" circuit. Furthermore, there is no need to change parts, but only
to toggle a switch and the system dynamics change.
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2.4.1.3 Shunt Voltage Ampli�cation

With the series resonance circuit design from the previous section, the �nal circuit
was simulated using MATLAB Simscape. Figures 2.19 and 2.20 show the simula-
tion set-up and results for the shunt voltage for 4V steps at the input. Since the
system is designed to overshoot, an input step of 4V is considered as maximum
admissible amplitude in order to stay within, or just above the 5V voltage range.
From the measuring ampli�er parameter (Section 2.3.3.1) the resolution of the type
1 channels is known to be 1.22mV . Especially Figure 2.20a shows that this may
lead to problems when controlling the circuit, since the signal is only exploiting a
very small region of the measuring range. Although the type 2 channel has a much
better resolution, the signal only spans half of the measuring range, thus, loosing
accuracy of the measurements.

Figure 2.19: MATLAB Simscape simulation set-up for the series resonance circuit.

Hence, the shunt voltage is ampli�ed to exploit most of the measuring range. An in-
crease of the shunt resistor is not feasible since this would damp the series resonance
circuit.

The di�erential ampli�er design as shown in Figure 2.21 is similar to the one of the
measuring ampli�er, there are just no capacitors as no low-pass �lter functionality
is needed for this task.

Figure 2.20b shows that the maximum amplitude is slightly over 0.2V , this leads to
an input range of −0.25V - 0.25V . The signal should exploit most of the measure-
ment range of 5V for the type 1 measuring channels. From the test measurements
(Figure 2.14 it can be seen that these channels work approximately up to 4.9V .
Thus, the designed ampli�er should span the output range from 0.1V - 4.9V . This
results in a gain of

g =
4.8V

0.5V
= 9.6.
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(a) C = 10µF .
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(b) C = 79µF .

Figure 2.20: Series resonance circuit shunt voltage simulation results with ±4V
input steps.

−

+

R1

Vshunt+

RREF

VREF

R2

R4

R3

Vshunt−
Vout

Figure 2.21: Circuit diagram of the di�erential ampli�er used for ampli�cation of
the shunt voltage.

The ampli�er also needs to shift the shunt voltage solely to be positive, hence, a
bias of 2.5V is applied.

For the circuit design equations (2.7), (2.10) and (2.11) are utilised. To choose the
input resistors of the ampli�er su�ciently high, the resistance of the capacitor is
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calculated �rst. For the minimum capacitance this results

XC =
1

ωnC1

,

XC =
1

2π · 79.58 · 10µF
,

XC = 200Ω

and consequently

XCmax =
1

ωn,CmaxCmax
,

XCmax =
1

2π · 28.3 · 79µF
,

XCmax = 71.19Ω

for the maximum capacitance.

Thus, by choosing the resistors R1 = R3 = 10kΩ the ampli�er will not infer the
actual serial resonance circuit and the calculation of the remaining resistors can be
done.

The feedback resistor R4 of the inverting ampli�er hence calculates according to
equation (2.7) as

R4 = gR3 = 9.6 · 10kΩ,

R4 = 96kΩ,

and is �nally chosen as R4 = 100kΩ.

The ground resistor R2 of the non-inverting ampli�er utilises equation (2.11), i.e.

R2 =
g

1− b
VREF

R1,

R2 =
9.6

1− 2.5V
5V

10kΩ,

R2 = 192kΩ,

which leads to a ground resistance R2 = 200kΩ.

Finally, resistor RREF for the reference voltage is calculated using equation (2.10)

RREF =
gVREF
b

R1,

RREF =
9.6 · 5V

2.5V
10kΩ,

RREF = 192kΩ,
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therefore choosing RREF = 200kΩ.

Table 2.6 summarises the used resistor values, with the resulting gain g = 10 and
bias b = 2.5V . As operational ampli�er the Microchip MCP6002 9 is used. It is a
general-purpose rail-to-rail ampli�er from the same product family as the previously
used Microchip MCP6004 in the measuring ampli�er. As only one channel of the
operational ampli�er is used, the second channel is wired as unity gain bu�er, with
the input coupled to the positive input of the �rst channel. This prevents any
drawbacks on the used channel.

R1 R2 R3 R4 RREF

10kΩ 200kΩ 10kΩ 100kΩ 200kΩ

Table 2.6: Resistor values of the shunt voltage ampli�er.

2.4.1.4 Simulink Integration and Signal Flow

Figure 2.22: Abstracted MATLAB Simulink integration block of the serial resonance
circuit. The block has one input and outputs the two state variables.

The given serial resonance circuit also needs to be integrated into MATLAB Simulink.
Figure 2.22 shows the Simulink series resonance circuit integration block (SRCI-
block). As in the state-space model (2.17), the SRCI-block has one input. The
outputs are the two measured state variables, i.e. the voltage across the capacitor
and the current through the circuit, with the system output y = x1 being the �rst
variable. The block abstraction allows to easily exchange the integrated real-world
model with a simulated state-space block without the need to change the outer
model structure.

9http://ww1.microchip.com/downloads/en/DeviceDoc/21733j.pdf
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As indicated in Section 2.2.1 about the MATLAB Simulink compatibility of the
evaluation board, when using the TI hardware support package, the model needs to
be run in external mode to exchange data between the evaluation board and the
host computer.

In Figure 2.23 the inner structure of the SRCI-block is shown in detail. The Simulink
block diagram can be divided into an upper actuation section and a lower measuring
section.

Since the voltage range of the signal driver is between 0V and 5V it is not possible
to output a negative voltage. With the type 1 channels of the measuring ampli�er
having the same range of 0V - 5V as input, it is also not possible to measure a
negative capacitor voltage. Hence, an input and state transformation is performed
within the SRCI-block, as the input voltage and capacitor voltage virtually consid-
ered 0V at an actual voltage of 2.5V . Equations (2.23) and (2.24) illustrate this
transformation.

Vin,virtual = Vin − 2.5V (2.23)

x1,virtual = x1 − 2.5V (2.24)

However, as the transformation is linear and the system is linear time-invariant, the
transformation has no impact on the system behaviour. From "outside" the SRCI-
block it looks as if the system operates in a range between −2.5V - 2.5V , whereas
in real it operates between 0V - 5V . There is no meaningful technical background
for this transformation, it is just taken to handle with zero based signals.

The SRCI-block also hides the shifts between the 3.3V domain of the evaluation
board and the 5V domain of the connector board and test circuits, which will also
be explained in the next paragraphs.

Looking at Figure 2.23, the light blue actuator section takes the given input voltage
and scales it into a percentage of the 5V actuation range. Then the shift of the
input voltage is performed. By adding 50% the addition of 2.5V to convert from the
virtual input voltage to the real input voltage is realised. The resulting percentage
is then passed to a saturation function, where plant limitations for the input signal
are considered. Finally, the percentage reaches the ePWM block of the TI C2000
Piccolo Support from Embedded Coder hardware support package highlighted in red.
The ePWM block o�ers various di�erent setting options for counter modes, period,
etc. The settings of a PWM frequency of 200kHz and up-counting mode are selected.
The pin of the PWM can be chosen according the pinout of the µC. Eventually the
ePWM block sets the ePWM output pin of the evaluation board with a duty cycle
according to the given percentage. To further illustrate the signal path, the PWM
signal is then processed by the signal driver of the connector board where the signal
is digital-analogue converted, scaled and �nally forwarded to the test circuit.

The whole signal �ow is demonstrated by the following example. For instance a
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Figure 2.23: Block diagram of the MATLAB Simulink model for the serial resonance
circuit integration. The structure of the test circuit integration block is divided into
two sections, the upper actuator section in light blue and the lower measurement
section in yellow. The ADC and ePWM blocks as parts of the TI C2000 Piccolo
Support from Embedded Coder hardware support package are highlighted in red.

control algorithm sets 1V input voltage at the input of the SRCI-block. In the
block the signal is scaled to a percentage

1V/5V · 100% = 20%.

Then the 50% input voltage shift is performed, i.e.

20% + 50% = 70%,

followed by a possible action of the saturation function. After that, a 3.3V PWM
signal with 70% duty cycle is forwarded from the evaluation board to the LPF of
the connector boards signal driver. The LPF performs a digital-analogue conversion
of the signal

70% · 3.3V = 2.31V.

The resulting voltage is then ampli�ed by the non-inverting ampli�er of the signal
driver with a factor of 1.52

2.31V · 1.52 = 3.5V.

The �nal voltage of 3.5V is then forwarded to the test circuit and equals exactly 1V
above the virtual zero of 2.5V and 70% of the 5V domain.
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The �ow of the two measurement signals, seen in the lower, yellow measurement
section of Figure 2.23 is in opposite direction. The signals are taken from the test
circuit, low-pass �ltered and scaled via the measurement ampli�er channels on the
connector board and forwarded to the ADC pin on the evaluation board where the
hardware path of the signals ends. Highlighted in red, the two ADC blocks of the TI
C2000 Piccolo Support from Embedded Coder hardware support package convert the
real-world signals to 12-bit integer values, with the ADC block set to 1kHz sampling
rate in continuous mode with internal reference voltage. The pin can again be chosen
according the pinout of the µC. The resulting integer values are then translated to
quantised voltage levels. Next is the backwards translation from the measuring
ampli�er, where the bias is subtracted and the results are divided by the ampli�er
gains - each signal according to its channel's parameters given in Table 2.3. Then
the state transformation is done for the capacitor voltage and similarly the shunt
voltage is converted to the circuits current, also considering the ampli�cation and
bias shift of the shunt voltage ampli�cation.

Giving also an example for this case, the 4V capacitor voltage is measured and
scaled with channel 1 of the measuring ampli�er on the connector board, i.e.

4V · 0.70382 + 0.00268V = 2.818V.

The signal is measured with the ADC of the evaluation board and quantised

2.818V =̂ 3498.

Then the inverting procedure starts in Simulink, where �rst the ADC integer value
is translated to a quantised voltage based on the ADC reference voltage of 3.3V ,

3498

4096
· 3.3V = 2.818V.

The bias of the measuring ampli�er channel 1 is subtracted from the voltage followed
by a division of the channels gain

2.818V − 0.00268V

0.70382
= 4V.

Finally, the state transformation is performed resulting a virtual output voltage of

4V − 2.5V = 1.5V.

2.4.1.5 Final Series Resonance Circuit and Model Veri�cation

Figure 2.24 shows the soldered series resonance circuit with wiring interfaces and
shunt voltage ampli�cation. The 2.54mm pin strips allow easy and fast connection
and disconnection of the test circuits, with the black dots indicating where the black
signal wire must be located.
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Figure 2.24: Implementation of the designed series resonance circuit with shunt
voltage ampli�cation. On the bottom are the wiring interfaces to the connector
board with input & supply left and measurements on the right. Above from left to
right are the inductor, the capacitors, the switches and the shunt resistor (turquoise)
with the shunt voltage ampli�er above.

Most left in blue is the inductor. As from the calculations in the previous sections,
the coil should have 0.4H. Since its given availability in the laboratory, the TDK
B82733V2701B00110 was used. The part features two 0.1H inductors with 200
windings each and a ferrite core. By cross-connecting both inductors in series, the
number of windings doubles. Thus, with the number of windings quadratically
entering the inductance equation, the inductance quadruples to the desired 0.4H.

Next to the inductor are the three capacitors C1 = 10µF , C2 = 22µF and C3 = 47µF
(from bottom to top). The latter two capacitors can easily switched on and o� using
the switch next right.

On the right side of the circuit board is the shunt resistor in light turquoise with
the ampli�cation circuit above. The measured voltage across the capacitor is di-
rected to the �rst measurement channel and the ampli�ed shunt voltage to the third
measurement channel.

A full circuit diagram of the series resonance circuit can be found in appendix.

To verify the behaviour of the soldered series resonance circuits test measurements
were performed. Figures 2.25 and 2.26 show the results of the model veri�cation
with a capacitance C = Cmax = 79µF . For the veri�cation, the simulated model
and the test circuit are run simultaneously as open-loop. Both blocks are fed with
the same rectangular input signal of 1V amplitude. The simulated and measured
outputs are then visualised in the above mentioned �gures. As can be seen, the
test-circuit does not di�er much from the simulated model. Especially when looking
at the resonance frequency that can be seen in the overshooting, the model and test
circuit match pretty well. Only the amplitude of overshooting deviates slightly from

10https://www.tdk-electronics.tdk.com/inf/30/db/ind_2008/b82733f.pdf
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the model, however, this can be explained with deviations in the circuits resistance
and the non-modelled hysteresis of the inductor as it utilises a ferrite core.

It is also worth noting, that the measurement noise of the laboratory set-up is quite
low, therefore, not a�ecting any of the later performed control and observation tasks.
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Figure 2.25: Comparison of the simulated model (orange) and the measured test
circuit values (blue). Top, the capacitor voltage VC and bottom the inductor current
IL for a rectangular input signal of 1V amplitude.
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(a) Zoomed capacitor voltage VC .
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Figure 2.26: Detailed comparison of the simulated model (red) and the measured
test circuit values (blue).
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2.4.2 Integrator

The second implemented test circuit is a simple inverting integrator using an oper-
ational ampli�er. Figure 2.27 shows the simpli�ed circuit diagram of the integrator.
To validate robustness and disturbance attenuation, it should also be possible to
apply perturbations to the test circuit. Therefore, the integrator has two inputs,
where one is considered as regular input and the other one as unknown disturbance.

−

+

R2
i2

-∆(t)

R1
i1

-u

C

VC

ic

Vo

Figure 2.27: Simpli�ed circuit diagram of the integrator. As the integrator inverts
the signals, they are inverted as well. The lower input is considered as unknown
perturbation.

2.4.2.1 State-Space Modelling

The modelling of the given integrator circuit is straight forward using the circuits
current relations. The positive input of the operational ampli�er is connected to
ground. With the negative feedback path driving the di�erential voltage between
the ampli�ers inputs to zero, the negative input is hold at ground level. In literature
this point is often referred as virtual ground. Using the superstition principle, the
input −u is excited, whereas the input −∆(t) set to ground. As both sides of the
resistor R2 are grounded, no current will �ow and infer the remaining circuit.

By exiting input −u, a current i1 will be driven to the virtual ground. As no current
�ows into the operational ampli�er and through the resistor R2, the same current
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must �ow through the capacitor. This leads to

i1 = iC,1,

−u
R1

= C
d

dt
VC,1,

d

dt
VC,1 = − 1

R1C
u,

d

dt
VO,1 =

1

R1C
u.

The relations for the second input −∆(t) can be derived in the same way resulting
in

d

dt
VO,2 =

1

R2C
∆(t).

This leads to a combined output voltage of

d

dt
VO =

d

dt
VO,1 +

d

dt
VO,2,

d

dt
VO =

1

R1C
u+

1

R2C
∆(t).

(2.25)

By using the same resistor values R1 = R2 = R equation (2.25) simpli�es to

d

dt
VO =

1

RC

[
u+ ∆(t)

]
. (2.26)

Integrating equation (2.26) leads to

VO = VO(0) +
1

RC

∫ t

0

[
u+ ∆(τ)

]
dτ,

clearly highlighting the circuit's integrating behaviour.

The state-space model can easily be derived using equation (2.26) leading to

x = VO, u = u,

d

dt
x =

1

RC
u+

1

RC
∆(t),

y = x.

(2.27)

This equals a LTI system of the form

d

dt
x = Ax + bu+ bw,

y = cTx,

with A = 0, b = 1
RC

, cT = 1 and input disturbance w = ∆(t).
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2.4.2.2 Component Dimensioning

For the dimensioning of the integrator there are no special restrictions to be consid-
ered. However, it is practicable that the integrator does not drive the supply range
of 5V too fast. Therefore, a time of 0.5s− 1s is targeted for an input u = 1V .

When considering the frequency domain, the frequency response of the integrator
reads as

VO =
1

jωRC
u.

As commonly known, the magnitude plot of an integrator decreases constantly with
−20dB/decade, with the frequency at a gain of 1 is called gain crossover frequency.
To keep things easy, a gain crossover frequency fC = 1Hz is aimed.

The time constant τ of the integrator is given by

τ = RC.

The gain crossover frequency fC is linked to the time constant τ as follows

fC =
1

2πτ
.

This leads to a time constant τ

fC =
1

2πτ
,

τ =
1

2πfC
=

1

2π · 1Hz
,

τ = 0.159s.

Using a capacitor C = 1µF and a resistor R = 150kW �nally results a time constant
τ = 0.15s and consequently a crossover frequency of

fC =
1

2πτ
=

1

2π · 0.15s
,

fC = 1.06Hz.

The resulting integrator satis�es the previously de�ned target of 0.5s - 1s to drive
the full supply range with a slew rate of 6.67V/s and hence 0.75s for a change of
5V .

Figure 2.28 shows the magnitude plot of the integrator. As can be seen, the gain
crossover frequency fC is approximately at 1Hz.
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Figure 2.28: Magnitude plot of the designed integrator with a gain crossover fre-
quency fC = 1.06Hz.

As for the series resonance circuit there is an input and state transformation. How-
ever, for the integrator circuit this can not only handled within the MATLAB
Simulink environment, but also needs to be considered within the hardware design.

The signal driver channels of the connector board are only able to output a positive
voltage (0V - 5V ). Since the positive input of the operational ampli�er is connected
to ground, any positive input signal at the integrator leads to a negative output.
However, as the operational ampli�er is only supplied with positive voltage, it is not
able to drive a negative output voltage. Hence, the output will always remain 0V .

To avoid this problem, the positive input is set to half of the supply voltage (2.5V )
by using a simple voltage divider (RDiv = 150kW). Therefore, any input signal above
2.5V will lead to a decreasing integrator value and vice versa any signal below will
lead to an increasing integrator output. Nevertheless, this leads to the next section,
where input and state shift must also be considered in Simulink.

2.4.2.3 Simulink Integration

As for the series resonance circuit (Section 2.4.1.4), a MATLAB Simulink integration
block was also implemented for the integrator. The abstracted integrator circuit
integration block (ICI-block) is shown in Figure 2.29.

Both inputs are fed from the Simulink simulation, however, ∆(t) is considered as
unknown disturbance. The simulated perturbation ∆(t) can be any given function,
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Figure 2.29: Abstracted MATLAB Simulink integration block of the integrator cir-
cuit. As the state-space model, the block has two inputs and one output. The
second input ∆(t) is considered as unknown perturbation.

as long as it stays within the input margins.

Figure 2.30 shows the inner structure of the ICI-block. Highlighted in red are the
blocks of the TI C2000 Piccolo Support from Embedded Coder hardware support
package. As for the SRCI-block, the structure of the integration block can be divided
into an actuation section (light blue) and a measurement section (yellow).

Starting with the actuation section, the signal �ow of both inputs is identical. First
the input signal is inverted and scaled as percentage of the 5V actuation range. The
inversion is performed to mimic a "normal" integrator behaviour, although using an
inverting integrator circuit. Then the previously mentioned input shift is performed
in the same way as for the series resonance circuit

Vin,virtual = Vin − 2.5V.

The shift requires adding 50% in the integration block to obtain the real input value.
Finally, the signal is passed through a saturation function where restrictions can be
modelled. Eventually the Simulink based signal path ends at the ePWM block that
outputs the corresponding PWM signal at the evaluation board. The PWM signal
is then routed via the connector board, which does digital-analogue conversion and
ampli�cation, to the integrator test circuit. The settings for the ePWM block are
200kHz frequency with up-counting mode and a pin chosen according pinout of the
µC.

As also seen from Figure 2.30, the yellow measuring section takes two signals. The
lower path is only to monitor and determine the voltage of the voltage divider.
However, as this voltage de�nes the zero-point of the integrator circuit, any given
deviation will lead to an error due to the input and state transformation. Neverthe-
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Figure 2.30: Block diagram of the MATLAB Simulink model for the integrator
circuit integration. The structure of the test circuit integration block is divided into
two sections, the upper actuator section in light blue and the lower measurement
section in yellow. The ADC and ePWM blocks of the TI C2000 Piccolo Support
from Embedded Coder hardware support package are highlighted in red.

less, the given voltage is not set as an output of the ICI-block, but can be checked
in the block.

The second measured signal is the test circuits integrator output. The signal is
scaled and anti-aliasing �ltered via the connector board and then forwarded to an
ADC on the evaluation board. The ADC block, is con�gured to 1kHz sample rate in
continuous mode with internal reference voltage, with the pin chosen according the
pinout of the µC. The converted 12-bit integer value is transformed to a quantised
voltage level and then translated to the real measured value using the parameters
of the employed measurement ampli�er channel given in Table 2.3. The last step is
the state transformation as follows

xvirtual = x− 2.5V.

Again to clarify and as for the SRCI-block: Outside the block only the virtual input
and state values appear. The actual values are only handled inside the ICI-block.

2.4.2.4 Simulation and Final Integrator Circuit

Figure 2.31 shows the soldered integrator circuit. Starting left is the �rst wiring
connection to the connector board, which includes supply, ground and the two input
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Figure 2.31: Implementation of the designed integrator circuit. Furthest left and
right are the wiring interfaces. From left the two input signals are driven via the
two resistors to the operational ampli�er. On top in blue is the feedback capacitor.
Right of the ampli�er are a capacitor (yellow) to smooth supply drops and a voltage
divider to set the positive input of the operational ampli�er to half of the supply.

signals. Next are the two resistors at the integrator inputs, with the capacitor (blue)
on top. Right of the operational ampli�er are the capacitor (yellow) that smooths
the ampli�ers supply and the voltage divider that is used to set the positive input
of the integrator to a half of the supply voltage. The second wiring connection takes
the di�erential measurements, with the integrator output set to the �rst channel
and the voltage of the voltage divider to the third channel.

As operational ampli�er the Microchip MCP6002 11 is used again, with the second
channel wired as unity gain bu�er and the input set to half of the supply voltage.
The detailed circuit diagram can be found in the appendix.

Figure 2.32 shows the integrator behaviour with di�erent input signals. With an
input of 1.06Hz, corresponding to the gain crossover frequency, the signal is neither
ampli�ed, nor suppressed (�gure 2.32a) whereas a 10Hz input as seen in Figure
2.32b is strongly suppressed. As higher frequencies are suppressed even further,
too high frequencies should not be used as input for this circuit since the relative
measurement error is higher for smaller signals. Furthermore, as the 5V supply is
virtually split half around 0V , the integrator circuit saturates at ±2.5V .

Finally Figure 2.33 shows the model veri�cation of the integrator test circuit. There-
fore, the integrator test circuit and a state space model of the integrator are run
simultaneously in Simulink as open-loop with sine input of 1.06Hz and 1V ampli-
tude. The measured output of the test circuit shows an o�set which "slowly" drifts

11http://ww1.microchip.com/downloads/en/DeviceDoc/21733j.pdf
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Figure 2.32: Simulation of designed the integrator with di�erent input signals.

since the real integrator has a slight o�set from zero.
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Figure 2.33: Comparison of the simulated model (orange) and the measured test
circuit values (blue) for a sine input with 1.06Hz and 1V .
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3 Controller and Observer Designs

In this chapter, various di�erent controllers and observes are presented. The design
process for each controller respectively observer is explained step-by-step. Further-
more, this chapter links to the corresponding literature providing more information.

The next section discusses several di�erent controllers that are later designed for
the test circuits. Subsequently, three di�erent observer concepts will be presented.
Finally, this chapter shows how controllers and observers can be combined.

3.1 Controller Designs

The selected controllers that are presented within this work have di�erent design
requirements. Some controllers need a linearised model of the plant (e.g. state con-
troller). Therefore, an exact modelling of the plant is required which can be chal-
lenging especially for complex systems or systems with uncertainties. By contrast,
other controllers only rely on the frequency response of the plant ("LS" controller)
or simply have to be adjusted following certain rules (PID controller).

Within this section, the following controller concepts will be presented:

� PID control (proportional-integral-derivative),

� loop-shaping (LS), where the open-loop characteristics of the system are al-
tered

� state feedback,

- using eigenvalue assignment,

- using linear quadratic regulators,

� PI-state control,

� �rst-order sliding mode control,

� second-order sliding mode control with the super-twisting algorithm and �nally

� feedforward control.
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3.1.1 Controllability

The �rst thing before starting with controller designs is to check whether the given
system is controllable at all. The common de�nition for controllability is

A system is completely controllable if there exists an unconstrained con-
trol u(t) that can transfer any initial state x(t0) to any other desired
location x(t) in a �nite time, t0 ≤ t ≤ T . [1]

and similarly in [2�6].

To proof the controllability various di�erent methods exist. In this work, the
Kalman's controllability criteria [7], utilising the so-called controllability matrix

Cu =
[
b, Ab, A2b, . . . , An−1b

]
.

is used. A LTI system is considered fully controllable if the controllability matrix
Cu has full rank

rank(Cu) = n (3.1)

[1�6]. Therefore, if condition (3.1) is satis�ed, the pair (A,b) is controllable and a
controller design for the system is feasible.

3.1.2 PID Controller

The �rst discussed control method is the proportional-integral-derivative (PID) con-
troller. The PID control approach is by far the most used feedback control approach
applied to "simple devices" as well as large factories. As written in [8], PID con-
trollers are used in over 97% of controllers within re�ning, chemicals and pulp and
paper industries. Furthermore, the functionality of PID controllers can be extended
by approaches like automatic tuning, gain scheduling and anti-windup [4] or the PID
approach can be coupled with other control algorithms the obtain mixed control ar-
chitectures like PI-state controllers (Section 3.1.5).

Obvious reasons for the use of PID controllers are their structure and the small
amount of plant knowledge required.
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Figure 3.1: Block diagram of a closed-loop system with PID controller.

The control law of a standard PID controller is given as

u(t) = kpe(t) + ki

∫ t

0

e(τ)dτ + kd
de(t)

dt
(3.2)

or

u(t) = kp

(
e(t) +

1

Ti

∫ t

0

e(τ)dτ + Td
de(t)

dt

)
,

with

Ti =
kp
ki

and Td =
kd
kp
.

The control error is de�ned as e = r − y, where r is the reference signal and y the
plant output. As can be seen in equation (3.2), the control law is a sum of three
terms, a proportional error feedback, the integrated error and error derivative. The
parameters of the controller are the gain of each term, kp, ki and kd. Figure 3.1
shows the block diagram of a closed-loop system with PID controller.

The structure of the controller can easily be changed by setting the parameters of
the di�erent parts to 0 obtaining e.g. a P, PD or PI controller. The di�erent control
actions of the single controller parts are highlighted by applying an unit step as
reference input seen in Figure 3.2.

The proportional action depicted in Figure 3.2a, always counteracts the control
error. By increasing the gain, the remaining stationary error decreases, however,
the system tends to oscillate more.

Figure 3.2b shows the results when also considering the integral part. As can be
seen, the integrator guarantees that any steady state error vanishes for step inputs.
Higher gains ensure "faster" actions, but again lead to a more oscillating system.
Nevertheless, if the plant is of integrating behaviour, no integral part is needed in
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Figure 3.2: Closed-loop response with an unit step as reference input for a P con-
trolled (a), a PI controlled (b) and a PID controlled (c) system. The transfer function
of the plant is given as P (s) = 1/(s+ 0.5)3. The proportional parameter for the PI
controller is kp = 0.4. For the PID the parameters kp = 0.4 and ki = 0.03 are �xed.

the controller as any steady state error will vanish due to the plant behaviour.

Finally, the impact of the derivative control action can be seen in Figure 3.2c.
Higher derivative gains damp the oscillating system behaviour. The derivative part
is especially good for step changes of the reference signal, since the resulting fast
change of the control error triggers a strong control action impulse.

The e�ects of increased controller gains using a step reference signal as in [1] are
summarised in Table 3.1.

There are many heuristic approaches to get an initial setting for the PID parameters
like the Ziegler-Nichols step response method where the experimentally obtained
plant response to unit-step is used [1, 2, 4, 9, 10] or the T-sum method [11]. However,
both methods require a 'S'-shaped step response which does not apply since the
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gain overshooting / oscillation settling time steady-state error

kp increases minimal e�ect decreases

ki increases increases no steady-state error

kd decreases decreases no impact

Table 3.1: Increased PID gains e�ect.

circuit is designed to overshoot.

Various other parameter tuning methods as well as "little modi�cations" to the PID
structure exist [2, 4]. However, this work concentrates on the traditional PID control
structure as in (3.2), with the parameter obtained using Ziegler Nichols ultimate gain
method [1, 2, 4, 9, 10].

3.1.2.1 Ziegler-Nichols Ultimate Gain Method

Ziegler Nichols ultimate gain method (or closed-loop method) is a well-known tuning
method for PID controller gains and exists since the early 1940s [12]. For this
method it is necessary that experiments can be performed with the given circuit, or
the transfer function of the circuit is known and the experiments can be done using
simulation.

The method considers the closed-loop system response to a step input, while only
using proportional feedback. Figure 3.3 shows the block diagram of the experiment.

Figure 3.3: Block diagram of a closed-loop system with proportional controller to
obtain the systems ultimate gain ku and ultimate period Tu of the resulting oscilla-
tion.

To identify the system parameters for this method, the gain of the proportional feed-
back is increased until the closed-loop exhibits a limit cycle. The �nal proportional
gain is called ultimate gain (or critical gain) ku, with the period of the sustained
oscillation called ultimate period (or critical period) Tu.

Table 3.2 lists the suggested gain settings based on the obtained parameters ku and
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Tu. However, the resulting gain parameters of the PID controller should not be
considered as �xed, but more as a starting point for further manual tuning.

controller type kp ki kd

P 0.5ku - -

PI 0.45ku
0.54ku
Tu

-

PID 0.6ku
1.2ku
Tu

0.6kuTu
8

Table 3.2: Ziegler-Nichols suggested gain setting using the ultimate gain (closed-
loop) method.

3.1.3 Loop-Shaping Design

As second method, a frequency-response design approach as in [1�4, 10, 13] is pre-
sented for the controller design. Therefore, the open-loop characteristics of the plant
are analysed and shaped using bode plots. Hence this method is often referred as
loop-shaping (LS).

As previously for the PID controller, also the LS controller relies solely on the control
error e. For the design of the controller, the frequency-response of the plant must
be known. This can either be done by experiments to determine the magnitude
and phase characteristics of the plant or by having a linear mathematical model
describing the plant dynamics.

Figure 3.4: Block diagram of a standard control system with input disturbance and
measurement noise.

Figure 3.4 shows the block diagram of an unity feedback loop control system. The
modelled structure also includes input disturbance d and measurement noise w that
occur in real-world systems.
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3.1.3.1 Design considerations

The open-loop frequency response C(jω)P (jω) can roughly be divided into three
sections as shown in Figure 3.5. A low-frequency region well below the crossover
frequency, the section around the crossover frequency and �nally the high-frequency
region well above the crossover frequency.

Figure 3.5: Bode plot of the given series resonance circuit. The magnitude plot is
roughly divided into three sections, one section well below the crossover frequency
(left), one region around the crossover frequency (middle) and one section well above
(right). The design rules for the loop-shaping are based on requirements for these
sections to obtain the desired behaviour.

There are �ve design points to be considered

1. the open-loop should have a high gain for the low-frequency section,

2. the slope around the unity gain crossover should be −20dB/decade,

3. a good open-loop attenuation for the high-frequency section,

4. a desired cuto� frequency ωc and

5. a desired phase margin φm.

Design speci�cation 1. follows from the complementary sensitivity function T (s)
(from r → y and e → y) and the input sensitivity function Sd(s) (from u → y and
d→ y). From Figure 3.4 it can be seen, that the open-loop is given as

L(s) = C(s)P (s).
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the input sensitivity function given as

Sd(s) =
P (s)

1 + L(s)
,

and the complementary sensitivity function given as

T (s) =
L(s)

1 + L(s)
.

Input disturbances d are typically low frequency signals. Considering the sensitivity
function, a high open-loop gain for low frequencies assures that the input distur-
bances are attenuated (|L(s)| � 1→ |Sd(s)| � 1). Furthermore, when considering
the complementary sensitivity function, the high gain dominates the denominator,
hence guaranteeing good reference tracking (|L(s)| � 1→ |T (s)| ≈ 1).

Design point 2 coheres with the stability respectively the robustness of the system
as a slope of −20dB/decade guarantees a certain robustness of the system, coupled
to the systems sensitivity function

S(s) =
1

1 + L(s)
.

Design speci�cation 3 tries to minimise the e�ect of measurement noise. The two
remaining design points are closely related to the response of the closed-loop system
to an input step.

The bandwidth of the open-loop coheres with the "speed" of the system. A higher
bandwidth and thus a higher cuto� frequency ωc of the open-loop leads to a faster
rise time tr of the closed-loop step response. The overshoot percentage of the closed-
loop unit step response is given as

op = (Mp − 1)100%,

where Mp is the maximum response peak. The overshooting of the closed-loop step
response is associated with the phase margin φm of the open-loop. A smaller phase
margin implies an increased overshoot since the system is "closer to the instability".

From the correlations above two rules of thumb are de�ned in [10] leading to the
last two design points

ωctr ≈ 1.5,

φm + op ≈ 70.

The rise time within [10] is de�ned as

tr =
1

ẏ(t0.5)
where y(t0.5) = 0.5.
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Although given well de�ned speci�cations for the controller design, loop-shaping is
a trial and error process where the designed controller may not fully satisfy the
desired closed-loop behaviour.

3.1.3.2 Design Approach and Compensators

To modify the open-loop characteristics mainly three di�erent types of compensators
are used in the controller

a. proportional compensators,

b. integral compensators and

c. lead/lag compensators.

Since the bode plot is a double-logarithmic plot, the multiplicative addition of com-
pensators to the open-loop L(s) = C(s)P (s) leads to an addition of single frequency
characteristics.

The proportional compensator

C(s) = K, K > 0,

shifts the magnitude of the open-loop by |K|db. If K > 1 the magnitude is lifted,
for K < 1 the magnitude is lowered. There is no phase shift for the proportional
compensator.

The integral compensator is given as

C(s) =
1

sm
, m ≥ 1.

The phase is therefore reduced by m · 90° and the magnitude has a gain crossover
frequency at ω = 1rad/s and slope of m · (−20dB/decade).

To shift the phase but keeping the impact on the magnitude small so-called lead/lag
compensators are used. A lead compensator increases the phase within a certain
area whereas a lag compensator reduces the phase.

The form of such compensators is given as

1 + s
ωn

1 + s
ωd

,

with ωn < ωd for the lead compensator and ωd < ωn for the lag compensator. The
maximum phase shift can be at the middle frequency

ωm =
√
ωnωd.
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By setting

m =
ωd
ωn
,

this further leads to

m =
1 + sin(∆φ)

1− sin(∆φ)

and

ωn =
ωm√
m
, ωd = ωm

√
m,

where ∆φ denotes the required phase shift.

The actual design processes can be described with an algorithm

I. analyse frequency characteristics of the open-loop L(s)

II. modify the open-loop by adding a compensator L′(s) = L(s)Ci(s)

III. analyse the changed frequency characteristics L(s) = L′(s)
- if design speci�cation ful�lled continue, else go to II

IV. simulate closed-loop circuit T (s)
- if the resulting output response satis�es the speci�cations the design process
is �nished, else go to I.

The �nal controller

C(s) =

p∏
i=1

Ci(s),

is the product of the p compensators.

3.1.4 State Feedback

State controller alter the system dynamics by using state feedback [1�6, 9, 10, 14].
Therefore, a precise state-space model of the plant is needed.

The design of state controller is mainly driven by two objectives

1. the system output should match the reference signal for steady-state conditions

lim
t→∞

y(t) = lim
t→∞

r(t),

2. the system dynamics can be altered to satisfy certain speci�cations.
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Figure 3.6: Block diagram of a closed-loop system with state controller. The input
gain V ensures correct output scaling whereas the state feedback kT changes the
system dynamics.

Figure 3.6 shows the structure of a closed-loop system using a linear state controller.
The control law of a state controller is given by

u(t) = −kTx(t) + V r(t).

Hence, this leads to the closed-loop system dynamics

d

dt
x =

(
A− bkT

)
x + bV r.

Two common ways to de�ne the systems dynamics are eigenvalue assignment and
the linear quadratic regulator (LQR) approach. Both approaches demonstrated and
discussed subsequently.

3.1.4.1 Eigenvalue Assignment

With eigenvalue assignment, the state feedback is calculated so that the eigenvalues
of the closed-loop dynamic matrix equal speci�ed eigenvalues s1, . . . , sn. This is
done using Ackermann's formula [15]. By placing the eigenvalues in the left open
half space of the complex pane (R{si} < 0), it can be ensured that the system is
asymptotically stable.

At �rst a system in controllable canonical form is considered

d

dt
x =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−α0 −α1 −α2 . . . −αn−1

x +


0
0
...
0
1

u,
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with the associated characteristic equation given as

∆(s) = det (sE−A) = sn + (αn−1)s
n−1 + · · ·+ α1s+ α0 = 0.

By using state feedback

u = −kTc x, kTc =
[
kc,1 kc,2 . . . kc,n

]
,

the system dynamics are changed to

d

dt
x =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
(−α0 − kc,1) (−α1 − kc,2) (−α2 − kc,3) . . . (−αn−1 − kc,n)

x,

leading to a characteristic equation that can be altered to match the speci�ed eigen-
values si and its corresponding characteristic equation w(s) as follows

det
(
sE−

(
A− bkTc

))
=sn + (αn−1 + kc,n)sn−1 + · · ·+ (α1 + kc,2)s+ (α0 + kc,1),

det
(
sE−

(
A− bkTc

)) !
=

n∏
i=1

(s− si),

det
(
sE−

(
A− bkTc

)) !
=sn + (wn−1)s

n−1 + · · ·+ w1s+ w0 = w(s) = 0.

Hence, the controller parameters can easily be obtained by equating the coe�cients.
This resulting in

kTc =
[
w0 − α0 w1 − α1 . . . wn−1 − αn−1

]
. (3.3)

However, usually systems are not in controllable canonical form. Thus, a system
transformation

z = Tx, T =


tT1

tT1 A
tT1 A2

...
tT1 An−1


as explained in [2, 3, 5, 6, 9, 10] is used. Thereby tT1 is the last row of the inverse
controllability matrix Cu.

The transformed system reads as

d

dt
z = TAT−1z−Tbu,
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where TAT−1 is in companion form and Tb is the n-th unity vector. The feedback
for the canonical form kTc can be calculated as in equation (3.3).

Using x = T−1z in order to transform back to the original states yields the controller
equations

kT = kTc T,

kT =
[
w0 − α0 w1 − α1 . . . wn−1 − αn−1

]


tT1
tT1 A
tT1 A2

...
tT1 An−1

 .

By expanding, this reads as

kT = tT1
(
w0I + w1A + · · ·+ wn−1A

n−1)
− tT1

(
α0I + α1A + · · ·+ αn−1A

n−1) . (3.4)

The Cayley-Hamilton theorem states that every quadratic matrix satis�es its own
characteristic equation

∆(A) = α0I + α1A + · · ·+ αn−1A
n−1 + An = 0,

An = −
(
α0I + α1A + · · ·+ αn−1A

n−1) ,
which exactly matches the bracket expression of the second term in equation (3.4).
Therefore, leading to

kT = tT1
(
w0I + w1A + · · ·+ wn−1An−1)+ tT1 An,

kT = tT1
(
w0I + w1A + · · ·+ wn−1An−1 + An

)
,

and �nally Ackermann's formula

kT = tT1w(A).

Hence, the controller parameters are calculated using tT1 , the last row of the in-
verse controllability matrix and w(A), the desired characteristic equation with s
substituted by A. The calculation of the transformation matrix T is actually never
required.

The system has now the desired dynamics, however it does not track the input
correctly. Hence, the reference variable is added to the control law

u(t) = −kTx(t) + V r(t).
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To accomplish no steady-state error for constant input signals r, the reference signal
must be scaled by the inverse of the system gain

V =
1

T (s)

∣∣∣∣
s=0

,

V =
1

cT (sE− (A− bkT ))−1b

∣∣∣∣
s=0

,

V = − 1

cT (A− bkT )−1b
. (3.5)

For eigenvalue assignment it may be regarded as ideal if the eigenvalues are located
far left in the complex plane to obtain a fast closed-loop system. However, this speed
increase of the original system requires "big" control signals and is more sensitive
to measurement noise and other imperfections. Thus, the next discussed approach
leads to a more intuitive way by specifying weights for state variables and the control
signal.

3.1.4.2 LQR

The second common speci�cation for the system dynamics with state feedback is
done using the LQR with a quadratic cost function [1, 2, 4�6, 9].

Consider a dynamic system of the form

d

dt
x = Ax + Bu.

The cost function is often given as

J =
1

2

∫ ∞
0

[
xTQx + uTRu

]
dt, (3.6)

where Q = QT � 0 and R = RT � 0. Q and R determine the "importance" of
the system state (distance from the origin) relative to the expenditure of the control
signal, therefore obtaining an optimal control in the sense of the given cost function.
Thus, also referred as optimal control. Often Q is chosen as diagonal matrix only
de�ning the importance of the single state variables. Cross products of the state
variables can be weighted using elements o� the diagonal.

Using the control law

u(t) = −Kx(t),
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equation (3.6) changes to

J =
1

2

∫ ∞
0

[
xTQx + (−xTKT )R(−Kx)

]
dt,

J =
1

2

∫ ∞
0

[
xT
(
Q + KTRK

)
x
]
dt.

The optimal controller for the above cost function is given as

K = R−1BTPx, (3.7)

where P is the unique positive-de�nite solution of the algebraic-Riccati-equation
(ARE)

PA + ATP−PBR−1BTP + Q = 0, (3.8)

that can be solved using numerical methods. Due the use of the ARE, the controller
is also referred as riccati controller. An exact derivation of the solution can be found
in [2, 5, 6].

3.1.5 PI-State Controller

The PI-state controller is a combination of a state controller and a PI controller
[1�3, 5, 10]. The resulting controller inherits the good control characteristics of the
state controller but additionally obtains asymptotic tracking of the reference signal
due to the integrating part even if constant disturbances exist.

Figure 3.7: Block diagram of a closed-loop system with PI state controller.

Figure 3.7 shows the block diagram of the PI-state controller. The control law is
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given as

u(t) = −kpe(t)− ki
∫ t

0

e(τ)dt− kTx(t),

u(t) = −kp(r(t)− cTx(t))− kiε− kTx(t),

u(t) = −kpr(t)− kiε− (kT − kpcT )x(t).

Therefore, the system can be extended with the integrator state ε leading to a
closed-loop system of the form

d

dt

[
x
ε

]
=

[
A− b(kT − kpcT ) −bki

−cT 0

] [
x
ε

]
+

[
−bkp

1

]
r,

y =
[
cT 0

] [x
ε

]
.

By de�ning

Ã =

[
A 0
−cT 0

]
, b̃ =

[
b
0

]
and k̃T =

[
kT − kpcT ki

]
, (3.9)

the controller parameters can be obtained using the previously discussed methods
eigenvalue assignment or LQR. However, it must be noted that due to the state ex-
tension the new system order is (n+1). Furthermore, to allow arbitrary eigenvalues
of the closed-loop (Ã− b̃k̃T ), the series of integrator and plant must be controllable.
This requirement is satis�ed if the controllable plant has no zeros at s = 0 which is
given by

cT (−A)−1 b 6= 0. (3.10)

As from equation (3.9) the integrator gain can be directly obtained from the param-
eter vector k̃T , i.e.

ki = k̃n+1.

This is not true for kp and kT as those are related. Therefore, kp is chosen allowing
to calculate kT as

kT =
[
k̃1 . . . k̃n

]
+ kpc

T .

A possible choice for kp is

kp =
1

cTA−1b
. (3.11)

Due to the previous assumption in equation (3.10) kp always exists.
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3.1.6 1-Sliding Controller

The sliding mode controllers discussed within this thesis are based on sliding mode
approaches as presented in [16, 17]. Sliding mode approaches are robust controller
design methods. Compared to other concepts, the main di�erence is the use of a
discontinuous control signal with the control law relying on a switching function,
a function of the current system state that may be regarded as an output of the
system (sliding variable σ(x)). Typically, a sliding mode controlled system may
be characterised by two phases, a reaching phase (σ 6= 0), in which the system
reaches σ = 0 in �nite time. Whenever σ = 0 is maintained, the system state is
in the so-called sliding mode (or sliding phase) where the control law ensures that
the trajectories "slide" along the sliding-manifold until the origin is reached. While
sliding, there is a reduction of the system order since the sliding variable vanishes
and the system dynamics are governed by parameters enforced through the control
law only.

In theory, the system is able to maintain σ = 0. The solutions of such systems
at σ = 0 are understood in the sense of Filippov [18]. However, in terms of real
systems, fast switching of the control signal is required to keep the sliding variable
in a vicinity around zero. This is a major drawback for sliding mode control as
actuator dynamics might cause problems or the actuator simply cannot execute the
fast switches of the control signal.

For 1-sliding controller, the discontinuity is directly obtained in the �rst derivative
of the sliding variable σ. The design of sliding mode controllers is pretty much
straight forward using three steps. Assume a system of the form

d

dt
x1 = f1(x1, x2),

d

dt
x2 = f2(x1, x2) +B2(x1, x2)u.

At �rst x2 is considered as virtual control of x1. Therefore

x2 = −d(x1)

is designed to produce a desired dynamic

d

dt
x1 = f1,d(x1).

The sliding manifold is then chosen as

σ = x2 + d(x1) = 0.

Hence, when the system reaches the sliding manifold, x2 = −d(x1) and x1 follows
the previously designed dynamics

d

dt
x1 = f1(x1,−d(x1)) = f1,d(x1).
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The last step for the design process is the calculation of the control law. The control
law has to ensure that the sliding manifold is reached. This is satis�ed by choosing

d

dt
σ

!
= −k sgn(σ),

where sgn denotes the sign function.

3.1.7 Super-Twisting Controller

At the previously discussed 1-sliding controller, the discontinuous sgn function pro-
duces a discontinuous control law. The super-twisting algorithm as discussed in [16,
17], tackles this problem to generate continuous control signals. The super-twisting
algorithm reads as

v = −k1
√
|σ| sgn(σ) + w,

d

dt
w = −k2 sgn(σ),

(3.12)

and

d

dt
σ

!
= v.

Due to the square root function the discontinuity is eliminated. However, the in-
tegrand of the state w is discontinuous. Hence, the discontinuity appears in the
second derivative of the sliding variable and the super-twisting algorithm represents
a second-order sliding mode algorithm. Furthermore, w also allows to estimate
parameter uncertainties or disturbances.

3.1.8 Feedforward control

All the previously designed controllers are based on feedback in order to obtain
the desired system behaviour. Another control design approach additionally uses
feedforward control [4, 13, 19]. Feedforward control cannot replace feedback control
but complements it. By using additional feedforward control, the tracking behaviour
of the system can be improved without a�ecting the system's stability. Hence, the
design of the two controllers can be done independently.

Figure 3.8 shows the structure of a two degrees of freedom design approach using
feedforward and feedback control. The transfer function from the reference signal
to the output (rp → y) is given as

Gff+fb(s) =
C(s)P (s) + F (s)P (s)

1 + C(s)P (s)
.
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Figure 3.8: Block diagram of a closed-loop system with a two degrees of freedom
control design. On one hand there is a conventional feedback control C(s) which
compensates for tracking errors, on the other hand the feedforward control F (s) is
used to "steer" the trajectories.

In [4, 13] it is proposed to choose the feedforward controller as inverse of the plant,
i.e.

F (s) = P−1(s).

Therefore, the system output exactly follows the reference input. However, the
inverse of the plant must be stable, i.e. the numerator polynomial of the plant must
be Hurwitz to ensure a bounded feedforward control signal uf . Although this applies
for some systems, a �atness based method as suggested in [19] is used in this thesis
to present a more universal approach.

Figure 3.9a shows the slightly modi�ed block diagram with the auxiliary variable z.

By choosing F (s) = ν(s) and E(s) = µ(s), the auxiliary variable can be calculated
as

z̃ =
1

ν(s)
ũf =

1

µ(s)
ỹ(s), (3.13)

where

P (s) =
µ(s)

ν(s)
=
µ0 + µ1s+ µ2s

2 + · · ·+ µms
m

ν0 + ν1s+ ν2s2 + · · ·+ νnsn
, m < n

and µ(s), ν(s) are coprime.

Using equation (3.13), the time-domain relations are

ν0 + ν1
d

dt
z + ν2

d2

dt2
z + · · ·+ νn

dn

dtn
z = uf ,

µ0 + µ1
d

dt
z + µ2

d2

dt2
z + · · ·+ µm

dm

dtm
z = y. (3.14)

Hence z must be at least n times di�erentiable which leads to the trajectory planning
of z. Although the �lters F (s) = ν(s) and E(s) = µ(s) are not proper, they must be
seen in context with the planned trajectory z∗ which is constructed to be su�ciently
often di�erentiable.
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(a) Modi�ed block diagram of a closed-loop system with a two degrees of freedom control

design. The auxiliary variable z is calculated to obtain the desired output y.

(b) Reshape of the blue section in (a) to interpret the auxiliary variable z as intermediate

variable.

Figure 3.9: Closed-loop system with a �atness based two degrees of freedom control
design (a). By reshaping, the auxiliary variable z can be considered as intermediate
variable between the feedforward control signal uf and the reference signal r = y to
cause no feedback control action (b).

3.1.8.1 Trajectory planning

The task of trajectory planning is to obtain a desired trajectory z = z∗ that transfers
the system from a given state into another state.

For the change of the operation point, the trajectory z∗ has to ful�l conditions
concerning the start and end point of the transition according equation (3.14)

z∗(t = 0) = z∗s =
ys
µ0

, z∗(t = Tt) = z∗e =
ye
µ0

, (3.15)

where Tt is the transition time, ys the system output at the start and ye the system
output at the end of the transition. Furthermore, it is required that the system has
a su�cient �at trajectory at these points

di

dti
z∗
∣∣∣∣
t=0

=
di

dti
z∗
∣∣∣∣
t=Tt

= 0 for i = 1, . . . , n. (3.16)

One possible solution is to use a polynomial of order p = 2n+ 1

z∗(t) = γ0 + γ1t+ γ2t
2 + · · ·+ γpt

p.

The polynomial allows to ful�l all previously de�ned requirements for start and end
point respectively �atness. Furthermore, z∗ is more than n times di�erentiable,
hence, able to be processed by the �lters F (s) and E(s).
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With equations (3.15) and (3.16) a general form for the desired trajectory can be
derived as

z∗(t) = z∗s + (z∗e − z∗s)
2n+1∑
i=n+1

γ̃i
ti

T it
. (3.17)

The coe�cients γ̃i up to system order n = 5 are given in Table 3.3.

n γ̃n+1 γ̃n+2 γ̃n+3 γ̃n+4 γ̃n+5 γ̃n+5

1 3 -2
2 10 -15 6
3 35 -84 70 -20
4 126 -420 540 -315 70
5 462 -1980 3465 -3080 1386 -252

Table 3.3: Auxiliary coe�cients for the design of the planned trajectory.
(Excerpt from Regelungstechnik lecture notes version 5.10.2018 )

3.2 Observer Designs

The previous Section 3.1 about controller design showed that a lot of control laws
rely on the system state. However, the state variables are not always available via
measurement. Therefore, it is necessary to reconstruct the system states using so
called state observers or state estimators. To emulate the state, the observer uses a
copy of the plant and a correction term to reduce the observation error.

In this section three di�erent observers are discussed

� a Luenberger observer,

� a reduced observer and

� a super-twisting observer.

3.2.1 Observability

As for the controllability (Section 3.1.1), there are also conditions to examine the
observability of a system. The common de�nition of the observability is:

A system is completely observable if and only if there exists a �nite time
T such that the initial state x(0) can be determined from the observation
history y(t) given the control u(t), 0 ≤ t ≤ T . [1]
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and similarly in [2�6].

Analogous to the proof of controllability, the proof of the observability is carried out
using Kalman's observability criteria, this time, however, utilising the observability
matrix

Oy =


cT

cTA
cTA2

...
cTAn−1

 .

The pair (A, cT ) is therefore considered fully observable if

rank(Oy) = n.

3.2.2 Luenberger Observer

The Luenberger observer as in [1�6, 9, 10, 14] is kind of the standard approach for
state estimation.

The Luenberger estimator is formulated as

d

dt
x̂ = Ax̂ + bu+ l(y − ŷ).

Hence, the resulting observer error x̃ = x− x̂ is given as

d

dt
x̃ = Ax + bu−Ax̂− bu− l(y − ŷ),

d

dt
x̃ = A (x− x̂)− lcT (x− x̂) ,

d

dt
x̃ =

(
A− lcT

)
x̃

.

Therefore, the error dynamics
(
A− lcT

)
are chosen to be Hurwitz, ensuring that

the estimation error vanishes asymptotically. The problem is similar to the design
problem of the state controller where the vector kT is calculated for the dynam-
ics
(
A− bkT

)
. The eigenvalues and the characteristic polynomial do not change

when transposing a quadratic matrix. Hence, by transposing the given dynamics(
AT − clT

)
, the calculation of the observer gains can be done using the methods

from the state controller design in Section 3.1.4. Therefore, this is often considered
as the dual design problem.
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The poles should be chosen "far" left in the complex plane. Nevertheless, with too
high gains the measurement noise has an impact the observation error. In the case
of a noisy output

y = Cx + η,

d

dt
x̃ =

(
A− lcT

)
x̃− lη,

where η is the measurement noise. Therefore, a trade-o� between a fast decay of
the observation error and the in�uence due to measurement noise must be made.

3.2.3 Reduced Observer

The reduced observer, as explained in [2, 5, 6, 9, 14], follows the approach of the
Luenberger observer, however q state variables are considered measurable. There-
fore, the observer only has to estimate n− q state variables, thus having a reduced
order of n− q.

To derive the reduced observer, consider a LTI system of the form

d

dt

[
xm
xo

]
=

[
A11 A12

A21 A22

] [
xm
xo

]
+

[
Bm

Bo

]
u,

y =
[
I 0

] [xm
xo

]
= xm,

(3.18)

where xm denotes the q measurable state variables and xo the n− q state variables
to observe.

The dynamics of the observed state is given as

d

dt
xo︸︷︷︸
z

= A22xo︸ ︷︷ ︸
Azz

+
[
A21 Bo

]︸ ︷︷ ︸
Bz

[
xm
u

]
︸ ︷︷ ︸

uz

and the output relations using the measured state dynamics as

d

dt
xm −A11xm −Bmu︸ ︷︷ ︸

yz

= A12︸︷︷︸
Cz

xo︸︷︷︸
z

.

Formulating the Luenberger observer for the virtual state z reads

d

dt
ẑ = Azẑ + Bzuz + L (yz − ŷz) .
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Substituting

xo → z,

A22 → Az,[
A21 Bo

]
→ Bz,[

xm
u

]
→ uz,

d

dt
xm −A11xm −Bmu→ yz,

A12 → Cz,

leads to

d

dt
x̂o = A22x̂o +

[
A21 Bo

] [xm
u

]
+ L

(
d

dt
xm −A11xm −Bmu−A12x̂o

)
,

d

dt
x̂o = (A22 − LA12) x̂o + (Bo − LBm) u + (A21 − LA11) y + L

d

dt
y,

with the derivative of y still "troublesome". Therefore, a new state

x̄o = x̂o − Ly

is de�ned, with the �nal reduced observer given as

d

dt
x̄o = (A22 − LA12) x̄o + (Bo − LBm) u

+ (A21 − LA11 + A22L− LA12L) y,

x̂o = x̄o + Ly.

(3.19)

The matrix L is then to be chosen that (A22 − LA12) is Hurwitz and hence the
estimation error x̃o = xo − x̂o vanishes asymptotically.

3.2.4 Super-Twisting Observer

Sliding mode approaches can also be used for state estimation [16, 17]. The super-
twisting algorithm, as subsequently discussed, can not only be used to estimate the
states but also to estimate system parameters or uncertainties but also perturba-
tions.

Therefore, a LTI system of the form

d

dt

[
x1

x2

]
︸︷︷︸

x

=

[
A11 A12

A21 A22

]
︸ ︷︷ ︸

A

x +
[
B1 B2

]︸ ︷︷ ︸
B

u,

y =
[
0 I

]︸ ︷︷ ︸
C

x = x2,
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is considered that has q measurable state variables x2 as output.

The observer errors are de�ned as x̃1 = x1 − x̂1, while the last q errors denoted as
x̃2 = x2 − x̂2

The proposed observer in [17] is given as

d

dt
x̂ = Ax̂ + Bu−Gnv, Gn =

[
L
I

]
, v =

v1...
vq

 ,
where vi are the inserted discontinuous injection terms. Here, the super-twisting
algorithm is used as injection term and component wise given as

vi = −k1,i
√
|x̃2,i| sgn (x̃2,i) + wi,

d

dt
wi = −k2,i sgn (x̃2,i) ,

i = 1, . . . , q. (3.20)

The error equations yield

d

dt
x̃1 = A11x̃1 + A12x̃2 + Lv, (3.21)

d

dt
x̃2 = A21x̃1 + A22x̃2 + v,

and for a single component of x̃2 the error reads as

d

dt
x̃2,i = A21,ix̃1 + A22,ix̃2 − k1,i

√
|x̃2,i| sgn (x̃2,i) + wi, i = 1, . . . , q.

The associated dynamics of wi are further not listed explicitly as they are already
given in equation (3.20).

By choosing the parameters Mi and therefore the gains

k1,i = 1.5
√
Mi, k2,i = 1.1Mi,

high enough that the error dynamics are always governed by the injection term, the
errors x̃2,i will vanish in �nite time. After each observer error x̃2,i = 0, the sliding
mode is reached. Thus, the observer dynamics change and yield

x̃2 =
d

dt
x̃2 = 0,

0 = A21x̃1 + w,

w = −A21x̃1,

where

w =

w1
...
wp

 , i = 1, . . . , q.
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Therefore, the error dynamics from equations (3.21) change to

d

dt
x̃1 = A11x̃1 − LA21x̃1,

d

dt
x̃1 = (A11 − LA21) x̃1.

(3.22)

To obtain an asymptotically decay of the observer error x̃1, the matrix L must be
chosen that (A11 − LA21) is Hurwitz.

3.3 Observer-Based control

In the previous two sections di�erent controller and observer approaches were pre-
sented. This section shows how these concepts can be combined and what needs to
be considered in doing so.

3.3.1 Separation Theorem

The separation theorem (or separation principle) states that controller and observer
can be designed individually although the observed state vector x̂ is used for control
[1, 4�6, 10, 14]. This can be easily shown by considering a standard LTI system of
the form

d

dt
x = Ax + Bu,

y = Cx.

Furthermore, there is a state feedback gain K and an observer gain L that (A−BK)
and (A− LC) are Hurwitz.

With the control law

u = −Kx̂ + Vr = −K(x− x̃) + Vr,

the extended system dynamics read

d

dt

[
x
x̃

]
=

[
A−BK BK

0 A− LC

] [
x
x̃

]
+

[
BV
0

]
r

The resulting characteristic polynomial follows as

∆(s) = (sE− (A−BK))(sE− (A− LC)) = 0.
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Thus, the poles of the controller and observer do no impact each other and both can
be designed independently. However, by using the estimated state in the control law
the transient behaviour of the circuit is usually impaired.

[6] suggests to choose the observer poles so,i to have a 2− 6 times higher magnitude
than the controller poles. Thus, the error dynamics of the observer decay 2 − 6
times faster than the error dynamics of the controller, with the eigenvalues of the
controller therefore governing the systems behaviour.

3.3.2 Observer-Based Disturbance Attenuating Controller

So far, there were only systems without disturbances considered for state control.
Now an input disturbance is assumed similarly to [5, 13]. Figure 3.10 shows the
structure of closed-loop system with conventional observer-based state control and
input disturbance. Subsequently this concept is extended to obtain an observer-
based disturbance attenuation controller (OBDA controller) as similarly presented
in [20, 21].

Figure 3.10: Block diagram of a closed-loop system with observer-based state feed-
back and input disturbance w.

Consider the plant as a LTI system of the form

d

dt
x = Ax + bu+ bw,

y = cTx,

and the observer is given as

d

dt
x̂ = Ax̂ + bu+ l(y − ŷ),

ŷ = cT x̂.

The state feedback gain kT and observer gain l are chosen such that
(
A− bkT

)
and(

A− lcT
)
are Hurwitz.
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Assuming a constant input disturbance w. The disturbance yields a constant esti-
mation error for the equilibrium point given as

d

dt
x̃ = 0 =

(
A− lcT

)
x̃e + bw,

x̃e = −
(
A− lcT

)−1
bw

A corrected estimation state x̄ can therefore be calculated as

x̄ = x̂−
(
A− lcT

)−1
bŵ,

where ŵ is an estimate of the unknown disturbance. With the corrected output
estimate given as

ȳ = cT x̄,

the disturbance estimate is obtained by

d

dt
ŵ = Lw(y − ȳ),

d

dt
ŵ = LwcT (x− x̄),

d

dt
ŵ = LwcT [x− x̂ +

(
A− lcT

)−1
bŵ],

d

dt
ŵ = LwcT

(
A− lcT

)−1
bŵ + LwcT x̃.

(3.23)

To get an asymptotic exact estimate of the disturbance w, Lw is chosen as

Lw =
−α

cT
(
A− lcT

)−1
b
, α > 0

and equation (3.23) reads

d

dt
ŵ = −αŵ − −α

cT
(
A− lcT

)−1
b

(y − ŷ) .

Hence, the corrected control law is given as

u = −kT x̄− ŵ + V r,

u = −kT x̂ +
[
kT
(
A− lcT

)−1
b− 1

]
ŵ + V r.

Figure 3.11 shows the corresponding block diagram of the OBDA controller. As
indicated in the �gure, the compensation of the disturbance can be summarised in
the transfer function Q(s). In order to systematically design an OBDA controller
which suppresses sinusoidal disturbances of the form w = A sin(ωwt + φw) a design
relying on transfer functions is used. Therefore, the transfer function Gyw(s) is
obtained next.
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3.3. OBSERVER-BASED CONTROL

Figure 3.11: Block diagram of a closed-loop system with observer-based state feed-
back and disturbance rejection.

The estimation errors in the frequency domain are given as

x̃ =
(
sE−A + lcT

)−1
bw(s),

ỹ = cT x̃,

with the transfer function Gyw(s) therefore derived as

sx(s) =
(
A− bkT

)
x(s) + b

(
kT x̃(s) +Q(s)ỹ(s) + w(s)

)
,

x(s) =
(
sE−A + bkT

)−1
b
(
kT x̃(s) +Q(s)cT x̃(s) + w(s)

)
,

x(s) =
(
sE−A + bkT

)−1
b
[(

kT +Q(s)cT
) (
sE−A + lcT

)−1
bw(s) + w(s)

]
,

x(s) =
(
sE−A + bkT

)−1
b
[
kT
(
sE−A + lcT

)−1
b

+ Q(s)cT
(
sE−A + lcT

)−1
b + 1

]
w(s),

�nally yielding

Gyw(s) =
cTx(s)

w(s)
,

Gyw(s) = cT
(
sE−A + bkT

)−1
b︸ ︷︷ ︸

Gyw1(s)

·
[
kT
(
sE−A + lcT

)−1
b +Q(s)cT

(
sE−A + lcT

)−1
b + 1

]
︸ ︷︷ ︸

Gyw2(s)

.

To suppress a disturbance with frequency ωw, Gyw(jωw)
!

= 0. Since the zeros of

Gyw,1(s) are the plant's zeros and cannot be changed Gyw2(jωw)
!

= 0. Therefore,
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3.3. OBSERVER-BASED CONTROL

leading to

0 = kT
(
sE−A + lcT

)−1
b +Q(s)cT

(
sE−A + lcT

)−1
b + 1.

This �nally yields the ideal transfer function

Q(s) = −
1 + kT

(
sE−A + lcT

)−1
b

cT
(
sE−A + lcT

)−1
b

(3.24)

Considering the structure of the ideal transfer function

Q(s) =
1 + γ(s)

ŵo(s)

µ(s)
ŵo(s)

=
ŵo(s) + γ(s)

µ(s)
.

µ(s) is the numerator of the plant, ŵo(s) the desired characteristic equation of the
observer and γ(s) a new obtained polynomial of maximum degree deg(γ) ≤ n. As
previously mentioned, Q(s) must be stable, hence, µ(s) must be stable. Furthermore,

deg(ŵ + γ) = n ≥ deg(µ),

and the transfer function is not proper if deg(µ) < n.

To circumvent this Q(s) can be approximated as

Q̃(s) =
Q(s)(

1 + s
β

)ρ , ρ = n− deg(µ), β � ωw.

This ensures that |Q(s) − Q̃(s)| < ε for ωw � β. However, the actual goal is
Gyw(jωw) = 0 or at least very small. The approximation therefore yields

|Gyw(jω)| = |Gyw1(jω)||{Gyw21(jω) +Q(jω)Gyw22(jω)︸ ︷︷ ︸
0, by design

−[Q(jω)− Q̃(jω)]Gyw22(jω)}|,

|Gyw(jω)| = |Gyw1(jω)||Gyw22(jω)}|ε.

Hence, when considering more disturbance frequencies, it is generally advisable to
evaluate and replicate Q(jω) for the given frequencies ωw,i

Q(jωw,i) = Q̄(jωw,i), i = 0, . . . , κ,

where κ is the numbers of frequencies to suppress, not counting the constant distur-
bance for ωw,0 = 0. The �nal approximation can be formulated as

Q̄(s) =
b2κs

2κ + b2κ−1s
2κ−1 + · · ·+ b1s+ b0

(s+ λ)2κ
, λ > 0. (3.25)

The �nal system is shown in Figure 3.12, where Q(s) is approximated by the just
derived Q̄(s).
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3.3. OBSERVER-BASED CONTROL

Figure 3.12: Block diagram of a closed-loop system with observer-based state feed-
back and disturbance rejection of the OBDA controller. Q(s) is designed to strongly
attenuate constant disturbances and disturbances with speci�ed frequencies at the
system output.
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4 Controller and Observer Designs

for the test circuits

In this chapter, the di�erent controller and observer approaches from the previous
chapter are applied to the two test circuits discussed in Section 2.4.

Firstly, the designs for the series resonance circuit focus on conventional reference
tracking and the capabilities of the presented observers. The controller designs for
the integrator concentrate on disturbance attenuation.

Calculations and evaluations necessary for the subsequent design of the controllers
and observers are mainly carried out with MATLAB as it provides a lot of useful
tools and functions.

4.1 Series Resonance Test Circuit

As known from Section 2.4.1, the series resonance circuit is designed such that the
output shows an overshoot when applying an input step. The circuit itself represents
a stable plant. When the voltage across the capacitor �nally matches the input
voltage, the current through the circuit vanishes.

The state-space model already given in equation (2.17) reads as

x =

[
vC
iL

]
, u = Vin,

d

dt
x =

[
0 1

C

− 1
L
−R
L

]
x +

[
0
1
L

]
u,

y =
[
1 0

]
x,

with the component values given in Table 2.5.
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4.1. SERIES RESONANCE TEST CIRCUIT

For the controller designs, the circuit is supposed to have the maximum capacitance
Cmax = 79µF . This leads to the following numerical dynamics of the LTI system

d

dt
x =

 0 1
0.000079

− 1
0.4

−36.7
0.4

x +

 0

1
0,4

u,
d

dt
x =

[
0 12658.2
−2.5 −91.75

]
︸ ︷︷ ︸

A

x +

[
0

2.5

]
︸ ︷︷ ︸

b

u.

(4.1)

The associated eigenvalues of the system matrix A are s1 = −45.88 + 171.88i and
s2 = −45.88 − 171.88i. As seen, the eigenvalues of the system matrix are complex
conjugate which complies with the model referred as a system with complex conju-
gate poles in the modelling section. Furthermore, the real part of the eigenvalues is
negative, con�rming that the system is stable.

4.1.1 Controller Designs

With the numeric system for the series resonance system given (4.1), the controlla-
bility is checked �rst using Kalman's controllability method as in 3.1.1.

For the series resonance circuit, the system order n = 2. The resulting controllability
matrix is

Cu =
[
b, Ab

]
,

Cu =

[[
0

2.5

]
,

[
0 12658.2
−2.5 −91.75

] [
0

2.5

]]
,

Cu =

[
0 31645.57

2.5 −229.38

]
.

As can be seen, the matrix Cu has two linearly independent column vectors and
hence

rank(Cu) = 2 = n.

Therefore, the pair (A,b) is considered controllable and a controller design for the
system is feasible.

4.1.1.1 PID Controller

The PID controller is designed using Ziegler-Nichols Ultimate Gain Method. The
previously described experiment from Section 3.1.2.1 was carried out on the labo-
ratory set-up with the series resonance test circuit. Within the MATLAB Simulink
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4.1. SERIES RESONANCE TEST CIRCUIT

simulation, the proportional gain was slowly increased until the instability boarder
was reached with an ultimate gain ku = 1.5. Figure 4.1 shows the resulting oscilla-
tion with an ultimate period Tu = 22ms.

761 761.05 761.1 761.15 761.2
0.45

0.5

0.55

0.6

0.65

0.7

0.75

y
meas

Figure 4.1: Resulting oscillation of the series resonance test circuit experiment with
ultimate gain ku = 1.5. The measured ultimate period is Tu = 22ms.

Figure 4.2 shows the bode plot of the series resonance with the phase margin. As
can be seen, the gain margin is listed as in�nite, since the phase plot does not reach
−180°. Hence, there should not be an ultimate gain, or at least a really high one.
However, in the experimental set-up, the proportional gain of 1.5 lead to a nearly
constant oscillation with a very small amplitude decay. Higher gains resulted in
an immediate saturation of the test circuit probably due to the limitations of the
actuation range. Nevertheless, the resulting parameters were taken as initial values
for further tuning of the PID parameters.

Using the obtained experimental parameters and the Ziegler-Nichols tuning rules
from Table 3.2 leads to the suggested PID parameter setting shown in Table 4.1.

kp ki kd
0.9 81.8 0.0025

Table 4.1: Experimentally obtain PID gains using Ziegler-Nichols ultimate gain
method.

4.1.1.2 LS Controller

The second controller is designed via loop-shaping as discussed in Section 3.1.3.
As the mathematical model of the series resonance test circuit is already given in
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4.1. SERIES RESONANCE TEST CIRCUIT

-80

-60

-40

-20

0

20

M
a

g
n

it
u
d

e
 (

d
B

)

101 102 103 104
-180

-135

-90

-45

0

P
h
a

s
e
 (

d
e

g
)

Bode Diagram

Gm = Inf dB (at Inf rad/s) ,  Pm = 42.8 deg (at 234 rad/s)

Frequency  (rad/s)

Figure 4.2: Bode plot of the given series resonance circuit. As can be seen, the phase
margin is 42.8° at 234rad/s. However, since the circuit does not reach −180° phase,
there is no �nite gain margin listed.

(4.1), no further experiments need to be performed to obtain the frequency-domain
characteristics. However, since the mathematical model is a state-space model, at
�rst the transfer function of the plant must be obtained. The equation therefore is
given as

P (s) = cT (sE−A)−1 b + d,

where E represents the identity matrix of size n × n, and d the direct feedthrough
of the plant input to its output.

For the given series resonance circuit, this leads to

P (s) = cT (sE−A)−1 b + d,

P (s) =
[
1 0

](
s

[
1 0
0 1

]
−
[

0 12658.2
−2.5 −91.75

])−1 [
0

2.5

]
+ 0,

P (s) =
31645.57

s2 + 91, 65s+ 31645.57
.

(4.2)

The corresponding bode plot is shown already in Figure 4.2. As can be seen, the
maximum magnitude spike is at about 175rad/s which corresponds to calculated
resonance frequency of the series resonance circuit of about 28Hz.

The actual design process is started by de�ning the desired response of the closed-
loop system. Hence, a rise time tr = 0.05s and an overshooting percentage op = 10%
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4.1. SERIES RESONANCE TEST CIRCUIT

are speci�ed. This leads to a cuto� frequency

ωc ≈
1.5

tr
=

1.5

0.05
,

ωc ≈ 30rad/s,

and a phase margin

φm ≈ 70− op = 70− 10,

φm ≈ 60°.

As seen in Figure 4.2, the plant has no integrating behaviour as it does not amplify
low frequencies. Hence, the �rst controller term is an integrator

C1(s) =
1

s
.

The integrator has a constant slope of −20dB/decade with gain crossover frequency
of 1rad/s and a phase shift of −90°. Figure 4.3 shows resulting open-loop L1(s)
after adding the integrator. Although the magnitude at the cuto� frequency is now
well below the unity gain, frequencies below the cuto� frequency are attenuated
less. By adding a constant gain to the controller later on, the whole magnitude can
be shifted upward leading to an ampli�cation for lower frequencies which satis�es
design point 1 from Section 3.1.3.1.
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Figure 4.3: Bode plot of the open-loop L1(s) = C1(s)P (s). The dashed red line
highlights the desired cuto� frequency. The magnitude di�erence gc to the unity
gain is emphasised in cyan and the green line highlights the phase margin φm.
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Next design step is to determine the phase margin. From the speci�cation a phase
margin of 60° is desired. As seen in Figure 4.3, the actual phase margin is about
85°, hence overachieving the speci�cation. Therefore, two actions can be taken

A a conservative approach where no further phase shaping is done or

B a more aggressive approach following the rule of thumb that pushes the phase
down at the desired cuto� frequency to satisfy 60° phase margin.

For demonstration purposes both approaches are carried out. At �rst, approach A
is considered:

With su�cient phase margin, the open-loop is subsequently checked if the slope at
the desired cuto� frequency is about −20dB/decade. Again looking at Figure 4.3,
it can be seen that the magnitude slope around the dashed red line satis�es this
criteria and hence design point 2.

Also design point 3 is ful�lled since high frequencies are attenuated strongly.

The �nal design step is to shift the magnitude upwards that the magnitude at the
desired cuto� frequency is 1 or 0dB in the bode plot. Hence, the magnitude gc at
the desired cuto� frequency is evaluated. For the controller this consequently yields

C2(s) =
1

gc
=

1

0.0342
,

C2(s) = 29.26.

Since the controller C2(s) is only proportional, there is no phase shift. The �nal LS
controller is given by

CA(s) = C1(s)C2(s),

CA(s) =
29.26

s
.

Figure 4.4 shows the �nal open-loop circuit using the conservative approach A.

With approach A �nished, design approach B is carried out next continuing from
L1(s) = C1(s)P (s). The phase margin at the desired cuto� was 25° to high. To shift
the phase downwards but keeping the impact on magnitude small, a lag compensator,
as discussed in Section 3.1.3.2, is used.

For a desired phase shift ∆φ = −25°, this leads to

m =
1 + sin(∆φ)

1− sin(∆φ)
=

1 + sin(−25°)

1− sin(−25°)
,

m = 0.4059.
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Figure 4.4: Bode plot of the �nal open-loop LA(s) = C1(s)C2(s)P (s) using the
conservative design approach A. The dashed red line highlights the desired cuto�
frequency and the green line the phase margin φm. Frequencies far below the cuto�
frequency are ampli�ed yielding good reference tracking, whereas high frequencies
are strongly attenuated. The magnitude cuts the unity gain approximately with the
desired −20dB/decade.

and further to

ωn =
ωm√
m

=
30rad/s√

0.4059
,

ωn = 47.09rad/s,

and

ωd = ωm
√
m = 30rad/s

√
0.4059,

ωd = 19.11rad/s.

The resulting compensator reads as

C3(s) =
1 + s

ωn

1 + s
ωd

,

C3(s) =
1 + s

47.09

1 + s
19.11

,

with the bode plot of this lag compensator shown in Figure 4.5.

The updated open-loop L3(s) is seen in Figure 4.6. As desired, the phase margin at
the cuto� frequency now equals 60°.
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Figure 4.5: Bode plot of the lag compensator. The maximum phase shift is at the
desired cuto� frequency (dashed red line).
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Figure 4.6: Bode plot of the open-loop L3(s) = C1(s)C3(s)P (s). The dashed red line
highlights the desired cuto� frequency and due to the introduced lag compensator
the phase margin φm now equals 60° (green). The magnitude di�erence gc to the
unity gain is indicated in cyan.
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4.1. SERIES RESONANCE TEST CIRCUIT

As for the design approach A, the last step of the loop-shaping is to shift the mag-
nitude up to obtain unity gain at the desired cuto� frequency. This is again done
using the current gain at the desired cuto� frequency yielding

C4(s) =
1

gc
=

1

0.0218
,

C4(s) = 45.93.

Therefore, the �nal controller using design approach B is given as

CB(s) = C1(s)C3(s)C4(s),

CB(s) =
1

s
·

1 + s
47.09

1 + s
19.11

· 45.93,

CB(s) =
18.64s+ 877.9

s2 + 19.11s
.

Figure 4.7 shows the two resulting closed-loop step responses of the system. As can
be seen, the conservative design approach A (Figure 4.7a) yields a much slower rise
time compared to design approach B which satis�es the rules of thumb. As speci�ed,
the design approach B approximately meets the speci�cation of 10% overshooting
and a 0.05s rise time. However, both designs lead to a similar settling time. Never-
theless, as already stated in Section 3.1.3, controller design via loop-shaping is trial
and error, with the obtained controllers not necessarily working exactly as expected
like in this case.
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(a) Design approach A.
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(b) Design approach B.

Figure 4.7: Step responses of the closed-loop system with the two designed LS
controllers using (a) the conservative design approach A and (b) the design approach
B following the rules of thumb as de�ned in [10].
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4.1.1.3 State Controller

As third controller for the series resonance circuit, a state controller is designed
as shown in Section 3.1.4. Actually, there are two controllers designed, one using
eigenvalue assignment via Ackermann's formula, the other one utilising a quadratic
cost function (LQR).

Eigenvalue Assignment

At �rst, the desired poles of the system are speci�ed. Since the order of the given
series resonance circuit n = 2, two poles are required. To obtain a stable system the
poles need to be located in the left open complex plane, hence chosen at s1 = s2 =
−100. This leads to a desired characteristic equation

w(s) = (s+ 100)2 = s2 + 200s+ 10000.

The controllability matrix of the series resonance circuit as given in 4.1.1 and its
inverse read

Cu =

[
0 31645.57

2.5 −229.38

]
, C−1u =

[
0.0029 0.4

3.16 · 10−5 0

]
,

leading to

tT1 = [3.16 · 10−5 0].

The system matrix and squared system matrix are given as

A =

[
0 12658.2
−2.5 −91.75

]
, A2 =

[
−31645.57 −1161392

229.375 −23227.51

]
.

Using Ackermann's formula, the �nal controller parameters are given as

kT = tT1w(A),

kT = tT1
[
10000I + 200A + A2

]
,

kT = [3.16 · 10−5 0]

(
10000

[
1 0
0 1

]
+ 200

[
0 12658.2
−2.5 −91.75

]
+

[
−31645.57 −1161392

229.375 −23227.51

])
,

kT = [−0.684 43.3].
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The last step of the controller design is to obtain the scaling factor for reference
variable as in equation 3.5. For the given series resonance circuit this leads to

V = − 1

cT (A− bkT )−1b
,

V = − 1

[1 0]

([
0 12658.2
−2.5 −91.75

]
−
[

0
2.5

]
[−0.684 43.3]

)−1 [
0

2.5

] ,
V = 0.316.

Hence, the �nal control law for the designed state controller using eigenvalue assign-
ment reads

u = −[−0.684 43.3]x + 0.316r.

LQR

The second design of the state controller, the linear-quadratic-regulator is the opti-
mal solution regarding the cost function

J =
1

2

∫ ∞
0

[
xTQx + uTRu

]
dt.

from Section 3.1.4.2.

Since the given series resonance circuit has only one input, the matrix R becomes
a scalar and Q is a 2 × 2 matrix corresponding with the two state variables of the
system. For the design of the controller, the cost matrix Q and scalar R are speci�ed
as

Q =

[
5 0
0 1

]
, R = 10.

With one input, matrices B and K become column respectively row vectors and the
ARE from equation (3.8) reads

PA + ATP−PbR−1bTP + Q = 0,

The ARE can be solved in MATLAB using the care command. For the given setting
this results

P =

[
0.0292 0.8990
0.8990 93.9617

]
.
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4.1. SERIES RESONANCE TEST CIRCUIT

The optimal feedback gains for this problem using equation (3.7) are hence

kT =
1

R
bTP,

kT =
1

10

[
0 2.5

] [0.0292 0.8990
0.8990 93.9617

]
,

kT = [0.2247 23.49].

Again the scaling factor for the reference variable is calculated as in equation (3.5)

V = − 1

cT (A− bkT )−1b
,

V = − 1

[1 0]

([
0 12658.2
−2.5 −91.75

]
−
[

0
2.5

]
[0.2247 23.49]

)−1 [
0

2.5

] ,
V = 1.2247.

The �nal control law read as

u = −[0.2247 23.49]x + 1.2247r.

4.1.1.4 PI-State Controller

The PI-state controller is designed next according to Section 3.1.5. There it is shown
that the PI-state controller extends the system order by one state (the integrator
value of the controller) and the controller parameters can be obtained using the
same methods as for the state controller. Furthermore, it is required that the plant
has no zeros at s = 0.

From the transfer function previously given in equation (4.2) as

P (s) =
31645.57

s2 + 91, 65s+ 31645.57
,

it can be seen that the system ful�ls this requirement.

The poles of the closed-loop system are speci�ed at s1 = s2 = s3 = −200, with the
calculation using Ackerman's formula yielding

k̃T =
[
2.792 203.3 −252.8

]
.

The integral gain can be obtained by the last element of the vector k̃T , i.e.

ki = k̃n+1 = −252.8.
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The proportional error gain is chosen according equation (3.11) as

kp =
1

cTA−1b
,

kp =
1[

1 0
] [ 0 12658.2
−2.5 −91.75

]−1 [
0

2.5

] ,
kp = −1.

Hence, resulting the state feedback parameters are

kT =
[
k̃1 . . . k̃n

]
+ kpc

T

kT =
[
2.792 203.3

]
+ (−1)

[
1 0

]
,

kT =
[
1.792 203.3

]
.

4.1.1.5 1-Sliding Controller

The 1-sliding controller is designed as shown in Section 3.1.6. For the given series
resonance circuit, the control error e = r− y = r− x1 should decay with a rate of λ

e = r − x1,
d

dt
e =

d

dt
r − d

dt
x1,

d

dt
e =

d

dt
r − 1

C
x2

!
= −λ(r − x1) = −λe

and therefore

x2 = −d(x1),

x2 = λC(r − x1) + C
d

dt
r.

The sliding manifold is subsequently chosen as

σ = x2 + d(x1) = 0,

σ = x2 − λC(r − x1)− C
d

dt
r.

Next the calculation of the control law leads to
d

dt
σ

!
= −k sgn(σ),

d

dt
x2 − λC

(
d

dt
r − d

dt
x1

)
− C d2

dt2
r = −k sgn(σ),

− 1

L
x1 −

R

L
x2 +

1

L
u− λC

(
d

dt
r − 1

C
x2

)
− C d2

dt2
r = −k sgn(σ),

x1 + (R− λL)x2 + λLC
d

dt
r + LC

d2

dt2
r + L[−k sgn(σ)] = u.

(4.3)
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4.1. SERIES RESONANCE TEST CIRCUIT

A state transformation yields[
x1
x2

]
→
[
e
σ

]
,

d

dt

[
e
σ

]
=

[
−λe− 1

C
σ

−k sgn(σ)

]
. (4.4)

As can be seen from equation (4.4), the sliding variable is driven to the sliding
manifold σ = 0. At the sliding manifold the order of the system is reduced and
the system is solely governed by the design parameter λ. However, as seen from
equation (4.3) the control law requires the �rst and second time-derivative of the
reference variable which may cause problems. Furthermore, also the sliding variable
contains the time-derivative of the reference variable.

One possibility to avoid this problem is to neglect these two terms in the control law
and assume them as uncertainty or perturbation as well as neglecting the derivative
in the sliding variable. Nonetheless this approach requires to increase the gain k and
hence chattering may be ampli�ed. Additionally the sliding variable is actually not
really zero, thus the system is not only driven by the speci�ed dynamics. Therefore,
neglecting the derivatives is only feasible if the reference signal consists mainly of
steps. Another way to tackle this problem is to use robust exact di�erentiators as
proposed in [22], which easily allow to obtain these derivatives.

The control law of the 1-sliding controller is already given in equation (4.3). The
only parameters for the controller are the decay parameter λ and the controller gain
k, where k must be chosen that it always compensates any given uncertainty.

Hence, λ = 250 is chosen to give the control error more weight in the sliding function.
Furthermore, as no big deviations were shown at the model veri�cation (Figure 2.33),
k = 0.4 is chosen to cope with any uncertainties.

4.1.1.6 Super-Twisting Controller

The design steps of the super-twisting controller are carried out as previously for the
1-sliding controller. However, this time the function of the super-twisting algorithm
from Section 3.1.7 is utilised. The control law can therefore directly be written as

u = x1 + (R− λL)x2 + λLC
d

dt
r + LC

d2

dt2
r + L

(
−k1

√
|σ| sgn(σ) + w

)
,

d

dt
w = −k2 sgn(σ).

As for the 1-sliding controller, the problem with derivatives of the reference variable
is still present and can be handled as discussed previously. With the super-twisting
algorithm the discontinuity occurs in the second time-derivative of the sliding vari-
able and hence the �rst derivative of the control law. Therefore, the generated
control function is continuous.
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4.1. SERIES RESONANCE TEST CIRCUIT

The choice of controller parameters as proposed in [16] is

k1 = 1.5
√
M,

k2 = 1.1M,

where M is the Lipschitz constant of the maxim perturbation respectively uncer-
tainty.

Since there are no "big" uncertainties, even when neglecting the second derivative
of the control variable, M = 10 and λ = 250 are speci�ed for the controller design.

4.1.1.7 Feedforward Control

The feedforward control is designed according to Section 3.1.8. The transfer func-
tions of the feedforward control can directly be read from the plant transfer function.
Hence,

F (s) = s2 + 91, 65s+ 31645.57, and E(s) = 31645.57.

The only remaining task is to obtain the trajectory to perform a switch of operation
points. For the series resonance circuit it is speci�ed that the operation point should
be shifted from y = 0 to y = 1 with a transition time Tt = 0.05s. Thus, the start
and end conditions are

z∗s(t) = 0, z∗e(t) =
1

µ0

= 3.16 · 10−5.

The trajectory function can be obtained using equation (3.17) and Table 3.3. Finally
this yields

z∗(t) = z∗s + (z∗e − z∗s)
5∑
i=3

γ̃i
ti

T it
,

z∗(t) = 0 + (3.16 · 10−5 − 0)

(
γ̃3

t3

0.053
+ γ̃4

t4

0.054
+ γ̃5

t5

0.055

)
,

z∗(t) = 3.16 · 10−5
(

10
t3

0.053
− 15

t4

0.054
+ 6

t5

0.055

)
,

z∗(t) = 2.5280t3 − 75.84t4 + 606.72t5.

Figure 4.8 shows the behaviour of the planned trajectory z∗ for the change of the
operation point.
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Figure 4.8: Simulation of the planned trajectory during the change of operation
points.

4.1.2 Controller Designs for Current Controlled Circuit

In this section the controlled output of the series resonance circuit is changed form
the capacitor voltage to the inductor current. Therefore, the only change for the
system (2.17) is the output vector which changes to

cT =
[
0 1

]
.

4.1.2.1 State Controller

The state controller design can be executed as in Section 4.1.1.3. Therefore, the
poles are speci�ed as s1 = s2 = −100.

Using Ackermann's formula for the eigenvalue assignment, this again leads to the
same feedback gain as in Section 4.1.1.3

kT =
[
−0.684 43.3

]
,

since cT has no in�uence on the internal dynamics.

However, the current controlled circuit has di�erentiating behaviour i.e. P (s = 0) =
T (s = 0) = 0. Hence, the input scaling requires an in�nite gain and therefore
making state control not possible for steady state control. However, it is possible to
control the circuit for given frequencies and match the output amplitude.
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4.1. SERIES RESONANCE TEST CIRCUIT

Therefore, a frequency ωs = 2π·2Hz = 12.57rad/s is speci�ed. The transfer function
from the reference input to the output is given as

T (s) =
2.5s

s2 + 200 + 10000
,

and evaluated for the given frequency T (jωs). This leads to an amplitude and phase
of

|T (jωs)| = 0.0031, ∠T (jωs) = 75.67°.

By setting the scaling of the reference input to

V =
1

|T (s)|

∣∣∣∣
s=jωs

=
1

0.0031
= 323.34,

the output amplitude matches the input amplitude at the speci�ed frequency (ωs =
12.57rad/s). However, there is a phase shift of 75.67°.

Another possibility which is not shown is to choose the poles such that the phase of
the numerator and denominator of T (s) match at the given frequency. Furthermore,
by scaling the reference variable correctly the input and output can be matched
exactly for the speci�ed frequency.

4.1.2.2 Super-Twisting Controller

For the super-twisting controller, the approach for this problem di�ers from sections
4.1.1.6 since the control signal directly occurs in the dynamics of the output

d

dt
y =

d

dt
x2 = − 1

L
x1 −

R

L
x2 +

1

L
u.

Hence, the sliding variable can be directly chosen as

σ = r − y = r − x2.

The super-twisting controller then ensures that the output follows the input.

Therefore, the control law can be calculated as

d

dt
σ = −k1

√
|σ| sgn(σ) + w,

ṙ +
1

L
x1 +

R

L
x2 −

1

L
u = −k1

√
|σ| sgn(σ) + w

Lṙ + x1 +Rx2 + L
(
k1
√
|σ| sgn(σ)− w

)
= u,

with

d

dt
w = −k2 sgn(σ).
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4.1. SERIES RESONANCE TEST CIRCUIT

The factor M is chosen as 2, aligned with the amplitude of the reference input of
the performed test measurements. The �nal controller parameters are given as

k1 = 1.5
√
M = 1.5 ·

√
2 = 2.12,

k2 = 1.1M = 1.1 · 2 = 2.2.

4.1.3 Observer Designs

All of the presented observer designs in Section 3.2 are designed and applied to the
series resonance circuit. However, at �rst the observability of the system must be
validated. For the given circuit the observability matrix reads

Oy =

[
cT

cTA

]
,

Oy =


[
1 0

]
[
1 0

] [ 0 12658.2
−2.5 −91.75

]
 ,

Oy =

[
1 0
0 12658.2

]
.

As can be seen, the matrix Oy has full rank and according Kalman's observability
criteria from Section 3.2.1 the pair (A, cT ) is fully observable.

4.1.3.1 Luenberger Observer

The Luenberger estimator is designed as shown in 3.2.2, with observer error and the
dynamics of the observer formulated accordingly as

x̃ = x− x̂,

respectively

d

dt
x̂ = Ax̂ + bu+ l(y − ŷ).

The resulting error dynamics given as

d

dt
x̃ =

(
A− lcT

)
x̃.

The calculation of the observer gains is done using LQR as cost function, hence
needing to solve the ARE. Without much thought, the parameters are speci�ed as
Q = E and R = 1. Using the care command yields

P =

[
23.553 0.022
0.022 0.005

]
.
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4.1. SERIES RESONANCE TEST CIRCUIT

The optimal observer for the given speci�cation is hence given as

L =
(
R−1cP

)T
= PcTR−1,

L =

[
23.553 0.022
0.022 0.005

] [
1 0

] 1

1
,

L =

[
23.553
0.022

]
.

4.1.3.2 Reduced Observer

For the series resonance circuit the output y = x1, hence x1 is measurable and a
reduced observer for x2 is designed according Section 3.2.3. The pole for the observer
is speci�ed as s1 = −200.

The model of the series resonance circuit is already in the shape of (3.18). Since the
system order n = 2, the reduced observer has order n− q = 1 and the matrix L and
sub-matrices Aij are scalars. Therefore, the observer gain calculates as

(a22 − la12)
!

= s1,

l =
a22 − s1
a12

=
−91.75− (−200)

12658.2
,

l = 0.0086,

(4.5)

and the observer design is done. To retrieve the �nal observer, the individual com-
ponents then simply need to be arranged as in (3.19).

4.1.3.3 Super-Twisting Observer

The last designed observer is the super-twisting observer as described Section 3.2.4.
The dynamics of the estimator for the series resonance circuit are given as

d

dt

[
x̂1
x̂2

]
= Ax̂ + bu−

[
1
l

] [
−k1

√
|x̃1| sgn (x̃1) + w

]
,

d

dt
w = −k2 sgn (x̃1) .

In contrast to the general description, the state variable which is seen as system
output is here in the upper row.

Hence, according to equation (3.22) and considering the change of rows, l must be
chosen that (a22 − la12) is Hurwitz.

The pole of the reduced system is speci�ed as s = −200, thus resulting

a22 − la12
!

= −200,
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4.1. SERIES RESONANCE TEST CIRCUIT

which equals the problem of the reduced observer in equation (4.5) and l = 0.0086.

The factor M is chosen as 5 to govern the observer error dynamics and therefore
the remaining observer gains are given as

k1 = 1.5
√
M = 1.5

√
5 = 3.35,

k2 = 1.1M = 1.1 · 5 = 5.5.
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4.2 Integrator Test Circuit

In this section di�erent controllers are designed for the integrator test circuit from
Section 2.4.2. The state-space model for the integrator, equation (2.27) reads as

x = VO, u = u,

d

dt
x =

1

RC
u+

1

RC
∆(t),

y = x.

Since there is only one system state, which is also measurable at the output, no ob-
server is designed for this circuit. Furthermore, ∆(t) is considered as unknown input
disturbance, hence, it is neglected for the normal controller design. Nevertheless it
is considered to obtain a disturbance estimation using the 1-slide and super-twisting
controller as well as assumptions about the disturbance are needed for the design of
the controller with observer-based disturbance attenuation.

With the selected component values of R = 150kW and C = 1µF from Section
2.4.2.2, the numerical dynamics of the integrator test circuit reads as

d

dt
x =

1

0.15
u = 6.67u.

Obviously, as there is only one state which can be altered by the control signal, the
circuit is controllable.

4.2.1 State Controller

The design of a state controller for the integrator is a rather simple problem. Since
the integrator dynamics is solely driven by external inputs, the design task changes
for the scalar case from (a−bk) = s1 to −bk = s1. The pole is speci�ed at s1 = −100,
thus, leading to a feedback gain

k = −s1
b

= −−100

6.67
,

k = 15.

The resulting scaling factor of the reference variable is therefore

V = − 1

c(0− bk)−1b
=
cbk

b
= ck,

V = 15.

Hence, the control law is given as

u = −kx+ V r = −15x+ 15r.
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4.2.2 1-sliding Controller

The design of the 1-sliding controller is straight forward as the control signal directly
enters the state dynamics. Therefore, the sliding variable is chosen as

σ = e = (r − x),

and the control law follows as

d

dt
σ

!
= −k sgn(σ),

d

dt
r − bu = −k sgn(σ),

u =
1

b

(
d

dt
r + k sgn(σ)

)
.

(4.6)

Considering the disturbance and using the derived control law the dynamics of σ is

d

dt
σ =

d

dt
r − b

[
1

b

(
d

dt
r + k sgn(σ)

)
+ ∆(t)

]
,

d

dt
σ = −k sgn(σ)− b∆(t).

To drive the sliding variable and hence the control error to zero (σ = e = 0), the
gain must be chosen as

k > b∆max, ∆max = max
t

(|∆(t)|).

By assuming ∆max < 1 a choice of k = 6.67 ensures this. Therefore, when reaching
the sliding mode (σ = d

dt
σ = 0) the dynamics change to

0 = −k sgn(0)− b∆(t),

∆(t) = − k

6.67
sgn(0).

In theory this requires in�nite fast switching of the control signal to maintain the
sliding mode. However, in real systems the sliding mode is maintained by fast
switching actions that keep the sliding variable in a vicinity around zero |σ| < ε.
Moreover, the disturbance can be estimated in the sliding mode by using a low-pass
�lter

∆̂(t) = LPF

[
− k

6.67
sgn(σ)

]
.

However, the estimate is in�uenced by the LPF characteristics, i.e. the time constant
of the implemented LPF.
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4.2.3 Super-Twisting Controller

The sliding variable for the super-twisting controller is chosen as for the previous
1-sliding controller

σ = e = (r − x).

Using the super-twisting algorithm from (3.12) and the previously obtained control
law from the 1-sliding controller (4.6), the control law of the super-twisting controller
can directly be formulated as

u =
1

b

(
d

dt
r + k1

√
|σ| sgn(σ)− w

)
,

d

dt
w = −k2 sgn(σ).

By choosing

k1 = 1.5
√
Mb,

k2 = 1.1Mb,

where M is the Lipschitz constant of the perturbation

M = max
t

(∣∣∣∣ ddt∆(t)

∣∣∣∣) ,
the sliding mode is obtained in �nite time. For the test measurements M = 2.5 is
chosen to govern the dynamics. With the disturbance considered, the error dynamics
change to

d

dt
σ =

d

dt
r − b

[
1

b

(
d

dt
r + k1

√
|σ| sgn(σ)− w

)
+ ∆(t)

]
,

d

dt
σ = −k1

√
|σ| sgn(σ) + w − b∆(t).

When the system is in the sliding mode (σ = d
dt
σ = 0), the disturbance can be

estimated as

0 = −k1
√
|0| sgn(0) + w − b∆(t),

∆̂(t) =
w

b
=

w

6.67
.

In contrast to the previously obtained disturbance estimate of the 1-sliding con-
troller, there is no impairment of the estimate due to the LPF. Therefore, the super-
twisting controller yields a better disturbance estimate.
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4.2.4 OBDA Controller

The design of this controller with observer-based disturbance attenuation is done as
described in Section 3.3.2. At �rst the state controller and observer are designed
independently according to the separation theorem in Section 3.3.1.

Therefore, the controller can be obtained exactly as previously in Section 4.2.1. The
pole for the controller is speci�ed as sc = −30 hence resulting k = V = 4.5. The
resulting control law reads

u = −4.5x+ 4.5r.

Next, the Luenberger observed is designed, with the observer pole speci�ed as so =
−30. Since the dynamics are independent of the state the design problem for the
scalar case changes from (a − lc) = so to −lc = so. Since c = 1, the observer gain
matches the speci�ed pole with reversed sign l = −so = 30. Hence, the resulting
Luenberger observer is given as

x̂ = 6.67u+ 30(x− x̂).

The ideal Q-function can be obtained using equation (3.24) as follows

Q(s) = −1 + k (s+ lc)−1 b

c (s+ lc)−1 b

Q(s) = −1 + 4.5 · (s+ 30 · 1)−1 · 6.67

1 · (s+ 30 · 1)−1 · 6.67

Q(s) = −(s+ 30) + 4.5 · 6.67

6.67
Q(s) = −9− 0.15s

As can be seen, the function is not proper. However, the goal is to approximate this
function for speci�ed frequencies. Therefore, the disturbance is assumed to consist
of a frequency-dependent part and a constant part

w = A sin(ωw,1t+ φw) +B,

with speci�ed frequency ωw,1 = 2π · 0.6rad/s = 3.77rad/s.

Hence, there is only one frequency not equal to ωw,0 = 0, thus κ = 1. According to
equation (3.25) Q(s) can therefore be approximated by

Q̄(s) =
b2s

2 + b1s+ b0
(s+ λ)2

,

with λ = 1 chosen.
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The ideal Q-function Q(s) is then evaluated at given frequencies ωw,0 = 0rad/s and
ωw,1 = 3.77rad/s

Q(j · 0) = M0 = −9,

Q(j · 3.77) = M1,R + jM1,I = −9 + j(−0.5655).

The results are then equated with the approximated Q-function Q̄(s)

Q̄(j · 0)
!

= Q(j · 0) = M0

Q̄(j · 3.77)
!

= Q(j · 3.77) = M1,R + jM1,I .

A comparison of coe�cients leads to the following numerator coe�cients of the
approximation

b0 = λ2M0,

b1 =
M1,I

ωw,1

(
λ2 − ω2

w,1

)
+ 2λM1,R

b2 =
λ2

ω2
w,1

M0 −
M1,R

ω2
w,1

(
λ2 − ω2

w,1

)
+ 2λ

M1,I

ωw,1
.

With the coe�cients calculated, the approximated Q-function is given as

Q̄(s) =
−9.3s2 − 16.02s− 9

s2 + 2s+ 1
.

Figure 4.9 shows a comparison of bode plots for the transfer function Gyw from the
disturbance w to the output y. On the top, Figure 4.9a shows the transfer function
Gyw,Q for the OBDA controller with disturbance attenuation using the control law
u = −kx̂+V r+Q̄(s)ỹ(s). Figure 4.9b below shows the transfer function Gyw,noQ for
a normal observer-based state controller with the control law u = −kx̂+V r. As can
be seen, the designed OBDA controller utilising the Q-function strongly attenuates
the speci�ed frequencies, especially seen for ωw,1 = 3.77rad/s. Furthermore, also
the general disturbance rejection is much better.

The evaluation of the transfer function of the designed OBDA controller at the
speci�ed frequencies yields

Gyw,Q(j · 0) = 0 and Gyw,Q(j · 3.77) = −6.798e-17− j9.826e-18.

The disadvantage of this approach is that the degree of Q̄(s) increases by 2 for each
speci�ed frequency not equal to zero, hence obtaining high order controller when
specifying several frequencies.
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(a) Control approach with disturbance attenuation u = −kx̂+ V r + Q̄(s)ỹ(s).
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(b) Conventional controller approach without disturbance attenuation u = −kx̂+ V r.

Figure 4.9: Bode plot of the transfer functions Gyw from the disturbance w to the
system output y. Plot (a) shows the just designed OBDA controller that strongly
attenuates the disturbances at the speci�ed frequencies utilising Q̄(s). Plot (b) shows
a conventional observer-based state controller without disturbance attenuation.
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5 Experimental Results

The designed controllers and observers from the previous chapter are tested with the
laboratory set-up where di�erent control scenarios are considered. First, the exper-
iments with the series resonance circuit are presented covering reference tracking,
state estimation and observer-based control. Subsequently the experiments with
the integrator circuit take care of circuits with input disturbance and show how the
designed controllers perform.

Although exact modelling of the circuits was done, there are uncertainties due to
the tolerance of the used components and simpli�cations. Moreover, measurement
noise and signal distortions within the measurement process of the hardware set-up
further in�uence the results.

For the di�erentiation of the reference signals during the experiments, the robust ex-
act di�erentiators toolbox from [22] is used in MATLAB Simulink. The parameter
setting for the toolbox was order n = 1, tuning parameter c = 100 and the dis-
cretisation time td = 0.001s inherited from the ADC sampling of the measurements.
Furthermore, despite working with discrete measurements the plants are considered
continuous in the simulation.

5.1 Series Resonance Circuit

With the series resonance test circuit �ve di�erent test were carried out the labora-
tory set-up

1. reference tracking with the di�erent controllers

a. tracking a rectangular signal with 1V amplitude and 0.5s width and

b. tracking a sine input r = 2 sin(2π · 5Hz · t),

2. using the observers for state estimation,

3. control based on the observed state,

4. change of system parameters and �nally
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5.1. SERIES RESONANCE CIRCUIT

5. reference tracking when considering the current as system output.

The experiments were performed with the test circuit set to C = Cmax. The con-
troller and observer parameters for the experiments are the same as from Section
4.1. As state controller the LQR design is used and for the LS controller design
approach B. Only the parameters for the PID controller were changed from the
obtained starting values using Ziegler-Nichols ultimate gain method to the used pa-
rameter kp = 0.8, ki = 36.36 and kd = 0.0021. If other parameters were used, they
are stated explicitly.

5.1.1 Experiment 1

First, Figure 5.1 shows the results for experiment 1a, reference tracking of a rect-
angular input signal. As can be seen, the uncontrolled system has the highest
overshooting whereas the PID controlled system slowly approaches the step change.
In contrast to the 1-sliding system where chattering can be seen, the super-twisting
controlled system has a smoother output. This can also be seen in the control signal
as shown in Figure 5.2a.
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Figure 5.1: Results experiment 1a: Reference tracking of a rectangular signal.
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(a) Control signals for reference tracking.
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(b) Control signal composition of the feedforward and LS controlled system.

Figure 5.2: Results experiment 1a: Control signals.

From the control signals it can also be seen, that control signals of all controllers
except the PID controller stay within the hardware boundary of approximately
±2.5V . However, the PID controller violates this only very short when the derivative
term is high.

The system with feedforward and LS control, bottom right, generates a very smooth
transit between the two operation points. Figure 5.2b shows how the control signal
is composed. As can be seen, the major part is the feedforward control uFF based
on the planned trajectory. Ideally, the control signal uLS of the LS controller is zero,
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5.1. SERIES RESONANCE CIRCUIT

however, as there are model uncertainties and measurement noise the controller acts
to compensate them.

Figure 5.3 shows the results for experiment 1b with the changed controller pa-
rameters for this experiment stated in Table 5.1. As can be seen in Figure 5.3,
all controllers with integrating behaviour (PID, PI state, LS) increase the phase lag
compared to the uncontrolled system. The state controller yields slightly better per-
formance than the uncontrolled system whereas the 1-sliding and the super-twisting
controller are practically able to replicate the reference variable.
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Figure 5.3: Results experiment 1b: Reference tracking of a sine signal.

controller parameter
state R = 1

PI state s1 = s2 = s3 = −200

Table 5.1: Changed controller parameters series resonance circuit experiment 1b
and 3.
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5.1. SERIES RESONANCE CIRCUIT

5.1.2 Experiment 2

Experiment 2 examines the di�erent implemented observers on the uncontrolled
system. As Figure 5.4 shows, all three observers are generally able to replicate the
system state. A more detailed view is given in Figure 5.5.
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Figure 5.4: Results experiment 2: State estimation with observers.

As can be seen, the Luenberger and the super-twisting observer yield for the given
setting similar results. For the reduced observer the system output is not observed,
hence x̂1 = x1 = y. Although the state observers contain an exact copy of the
system model, the dynamics initiated by the step input di�er slightly. However,
the estimation error for all observers vanishes asymptotically and the di�erence in
dynamics can be explained by model uncertainties respectively component tolerances
of the series resonance circuit.
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Figure 5.5: Results experiment 2: State estimation with observers in detail.

5.1.3 Experiment 3

With a Luenberger observer used to estimate the state, experiment 3 examines
reference tracking with observer-based control. As the PID and LS controller do not
rely on the system state, they are not considered within this experiment. The state
controller and PI state controller are again used with the parameter setting of Table
5.1.

Figure 5.6 shows the results for the remaining four controllers. As can be seen, the
reference tracking of the rectangular input signal works. Nevertheless, the output
of all systems contains a slight oscillation which might be introduced due to the
observation error.
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Figure 5.6: Results experiment 3: Reference tracking with observer-based control.

5.1.4 Experiment 4

Experiment 4 highlights the impact of changed system dynamics that are not consid-
ered in the model and thus can be seen as uncertainty. Therefore, the capacitance of
the system is changed by switching o� the biggest capacitor. Hence, the capacitance
is changed from C = Cmax = 79µF to C = 32µF .

For this experiment the state controller is using the measured system state again.
Figure 5.7 shows the results when using the state controller, with parameter R = 1
shown top and R = 10 in the middle (Q as before). The uncontrolled system shown
at the bottom has a higher overshooting due to the changed system dynamics.

The previously controller with R = 1 now acts too strong as the smaller capacitance
needs less current to charge. Therefore, the control signal is weighted stronger in the
LQR cost function by setting R = 10. Figure 5.8 shows the corresponding control
signals. As can be seen the control signal for the LQR with R = 1 is much higher
as for the LQR with R = 10.
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Figure 5.7: Results experiment 4: Reference tracking with changed system dynam-
ics.
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Figure 5.8: Results experiment 4: Control signal for reference tracking with changed
system dynamics.
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5.1. SERIES RESONANCE CIRCUIT

5.1.5 Experiment 5

For experiment 5, the current is considered as system output of the series reference
circuit. Figure 5.9 shows the results for an input r = 0.001 sin(2π · 2Hz). The
super-twisting controller is able to replicate the reference input, whereas the state
controlled system is only able to match the amplitude but not the phase.

However, during the test it was only possible to drive the super-twisting system
correctly for a few seconds. This was due to the fact that the controlled signals are
very small (0.001A · 5W = 0.005V ) and a slight error in the measurement, probably
a zero o�set, caused the super-twisting controller to saturate. Figure 5.10 show the
associated control signals with the super-twisting control signal showing a drift that
leads to saturation.
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Figure 5.9: Results experiment 5: Reference tracking considering the current as
output.
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Figure 5.10: Results experiment 5: Control signals for reference tracking considering
the current as output.

5.2 Integrator

In the previous section the test with the series resonance test circuit showed reference
tracking and state estimation. This section now shows how the designed controllers
for the integrator test circuit tackle input disturbances. Therefore, three di�erent
experiments were performed with the laboratory set-up

6. disturbance attenuation with r = 0 and constant input disturbance ∆ = 0.3,

7. disturbance attenuation with r = 0 and sinusoidal input disturbance

a. ∆ = 0.6 sin(2π · 0.6Hz · t) and
b. ∆ = 0.6 sin(2π · 2Hz · t),

8. reference tracking r = 0.2 sin(2π · 1Hz · t) and sinusoidal input disturbance
∆ = 0.6 sin(2π · 0.6Hz · t).

For the �rst two experiments (6 and 7) the same parameters as from the controller
design Section 4.2 are used. For the additional reference tracking in experiment 8
the controllers are made "faster", with the altered parameters shown in Table 5.2.

controller parameter
state s = −300
OBDA sc = so = −150

super-twisting M = 6

Table 5.2: Changed controller parameters for experiment 8.
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5.2.1 Experiment 6

For this experiment a constant input of ∆ = 0.3 is assumed. Figure 5.11 shows
the integrator outputs. The OBDA controller is able to attenuate the disturbance
whereas the state controller is not. The 1-sliding and super-twisting controller are
also able to suppress the perturbation, however, the chattering for the 1-sliding con-
troller is clearly seen. By reducing the gain of the 1-sliding controller the chattering
can be reduced, however the gain must still dominate the disturbance.
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Figure 5.11: Results experiment 6: Attenuation of a constant disturbance.

The control signals are shown in Figure 5.12a, with the 1-sliding controller constantly
changing between −1 and 1. The two sliding mode controllers furthermore allow to
estimate of the disturbance as shown in Figure 5.12b, with both methods yielding
a viable estimate. For the 1-sliding controller an extra LPF is needed with the used
transfer function given as

LPF (s) =
1

0.1s+ 1
.
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(a) Control signal for attenuation of a con-

stant disturbance.
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(b) Estimation of a constant disturbance.

Figure 5.12: Results experiment 6, control signal and disturbance estimation.

5.2.2 Experiment 7

The second experiment exploits the attenuation of a sinusoidal disturbance. At �rst
in experiment 7a, the frequency is exactly the one used for the design of the OBDA
controller ∆ = 0.6 sin(2π · 0.6Hz · t). For the second experiment 7b, the frequency
is changed to ∆ = 0.6 sin(2π · 2Hz · t).

Figure 5.13 shows the results for the attenuation of experiment 7a. Although the
pole of the OBDA controller is about 3 times "slower" than the state controller, the
OBDA controller yields the better performance.

When looking at the Figure 5.14a it can be seen that the form of the control signals
from the OBDA controller and state controller are similar, however, there is a phase
shift introduced by the Q-function of the OBDA controller.

Both sliding mode approaches are able to keep the control error within a vicinity
around zero and hence again allow to estimate the disturbance as shown in Figure
5.14b. This time however, the super-twisting controller yields a much better estimate
as the required LPF a�ects the estimation of the 1-sliding controller.

Figure 5.15 shows the results of the state controller and OBDA controller for ex-
periment 7b. As the frequency of the disturbance is not the speci�ed frequency for
the OBDA design, the performance decreases to the level of the state controller.
However, it needs to be mentioned again that the pole of the OBDA controller is
much "slower" compared to the state controller (−30 to −100).
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Figure 5.13: Results experiment 7a: Attenuation of a sinusoidal disturbance ∆ =
0.6 sin(2π · 0.6Hz · t).
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soidal disturbance.
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(b) Estimation of a sinusoidal disturbance.

Figure 5.14: Results experiment 7a, control signal and disturbance estimation.
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Figure 5.15: Results experiment 7b: Attenuation of a sinusoidal disturbance ∆ =
0.6 sin(2π · 2Hz · t).

5.2.3 Experiment 8

For the last experiment the system should also track a given reference input r =
0.2 sin(2π · 1Hz · t) while having a sinusoidal disturbance ∆ = 0.6 sin(2π · 0.6Hz · t).
Therefore, the controller parameters are altered according to Table 5.2. Figure 5.16
show the results. As can be seen all controllers are more or less able track the
reference with the biggest deviations seen for the state controller.

The resulting control signals are shown in Figure 5.17a. With the higher gain,
the measurements noise also has a bigger in�uence on the control signal of the
state controller although there is much less chattering compared to the sliding mode
approaches. The OBDA controller has by far the smoothest control signal.

Finally, Figure 5.17b shows the estimation of the disturbance. As both controller
inherit the reference variable respectively the derivative of it in their control laws,
the in�uence of the reference is cancelled and both yield good estimation results.
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Figure 5.16: Results experiment 8: reference tracking with sinusoidal input distur-
bance.
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(a) Control signal for reference tracking with

sinusoidal input disturbance.
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(b) Estimation of a sinusoidal disturbance.

Figure 5.17: Results experiment 8, control signal and disturbance estimation.
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6 Conclusion and Further Work

In this thesis, a laboratory set-up is designed, realised and tested to verify di�erent
control and observer algorithms using MATLAB Simulink. At �rst, based on the
requirements, a modular hardware was developed for the laboratory set-up. The
hardware was split into three parts, a measuring and actuator board, a connector
board and test circuits. The three parts are connected using a de�ned plugging
interface.

The measuring and actuator board is a LAUNCHXL-F28069M evaluation board
from Texas Instruments. The board is equipped with a microcontroller (µC) and
ensures interfacing with MATLAB Simulink via a hardware support package. Fur-
thermore, measurements are done using the analogue-to-digital converter of the µC
and the actuation signals are output via the pulse-width-modulation module of the
µC.

The connector board forwards the signals between the evaluation board and the test
circuits. The actuator signals from the evaluation board are output digital-analogue
converted and scaled to the test circuits. The di�erential measurements from the
test circuits are anti-aliasing �ltered, scaled and output ground referenced to the
evaluation board.

As control respectively observer tasks a series resonance circuit and an integrator
circuit were implemented as test circuits. The validation of the circuits showed that
their dynamics approximately match the derived mathematical models.

The process of designing di�erent controllers and observers for the two test circuits
is presented step-by-step, with the designs then implemented in MATLAB Simulink.
Finally, various experiments were carried out on the laboratory set-up. The experi-
ments on the series resonance circuit handle reference tracking and state estimation
whereas the integrator experiments solely deal with input disturbances. The exper-
imental results also proof the applicability of the presented laboratory set-up.

Further work can be carried out in various di�erent ways. At �st however the
data export from MATLAB Simulink should be improved as the current method is
tedious. However, possible improvements are shown in the appendix A.1.3.
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One possibility to extend the work is to design and implement additional controllers
and observers for the given test circuits or to discretise the given models and execute
the designs in the discrete time-domain. Another possibility is to design and imple-
ment new test circuits or connect the electric set-up with mechanical set-ups as test
circuits, hence leading to various possible options. However, when considering new
circuits the overall time constant of the designed circuits should be slower, as the
current circuits with 1kHz sample rate are already at the speed limit of the labora-
tory set-up in terms of data transfer between the evaluation board and MATLAB
Simulink.
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A Appendix

A.1 Notes on MATLAB Simulink

As the laboratory set-up is run in MATLAB Simulink this sections shortly discusses
the installation process for the hardware support package, how simulations are set-
up and run and �nally how the data is currently exported from the simulation and
how this can be improved.

A good overview with examples of the integration of the Texas Instruments C2000
µC into MATLAB Simulink is given in the MATLAB documentation1,2.

A.1.1 Installations for Hardware Support

The installation of the hardware support package in MATLAB is straight forward.
Via the Add-on section the TI C2000 Piccolo Support from Embedded Coder 3 can be
searched and installed. Then just follows the installation steps, selecting the right
processor family. During the installation process also install the third-party software
TI controlSUITE and the TI Code Composer Studio (CCS). The controlSUITE is
used from MATLAB as toolchain to build new applications with the CCS allowing
to deploy the application on the µC. When setting up the CCS, select processor
support for C2000 real-time MCU's as well as TI XDS Debug Probe Support for
debug probes.

The process is also described in the MATLAB documentation4.

1https://www.mathworks.com/help/supportpkg/texasinstrumentsc2000/
2https://www.mathworks.com/help/supportpkg/texasinstrumentsc2000/examples.html
3TI C2000 Support from Embedded Coder also can be used as it allows to select the TI Piccolo

F2806x processor family
4https://www.mathworks.com/help/supportpkg/texasinstrumentsc2000/ug/install-s

upport-for-c2000-processors.html
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A.2. PINOUT EVALUATION BOARD

A.1.2 Setting up and Running a Simulation

As from Section 2.2.1, simulations in MATLAB Simulink are run in external mode
to communicate with the µC on the evaluation board.

The set-up of a simulation can be done according the MATLAB documentation sec-
tion Con�gure the Hardware and Model for External mode5. Although following the
steps of the documentation it is possible that the connection between the simulation
and µC could not be established. Ensure that the setting of the debug probes is
correct, with the Load VCP option for the auxiliary port checked6.

Building and deploying the target application on the µC can take up several minutes.
When playing around with di�erent parameters e.g. controller gains this would
require to stop the simulation and build and deploy again if the parameters are
inherited from the workspace. Another way is to change the parameters manually.
However, both ways are tedious. By using the command

set_param('insertModelNameHere','SimulationCommand','update'),

where insertModelNameHere needs to be replaced with the actual model name,
inherited parameters from the workspace are updated during the simulation without
the need to build again.

A.1.3 Data Export

According to the MATLAB documentation section Data Logging5, the export of
the date from the simulation can be done using the External Mode Control Panel.
However, after it did not work out after numerous tries an inconvenient and ugly
workaround was taken to export the data.

Therefore, the scope data was saved as �gure, with the data then extracted from the
�gure using a custom function. As the �gure only saves limited data points, sections
need to be zoomed before saving as �gure to get detailed data. Nevertheless, this
approach is just a workaround and should de�nitely be improved in future.

A.2 Pinout Evaluation Board

Figure A.1 shows a visualisation of the pinout from the evaluation board. A num-
bered pinout can be found in the user guide7.

5https://www.mathworks.com/help/supportpkg/texasinstrumentsc2000/examples/par

ameter-tuning-and-signal-logging-with-serial-external-mode.html
6http://processors.wiki.ti.com/index.php/Using_the_serial_adapter_of_XDS100
7http://www.ti.com/lit/ug/sprui11b/sprui11b.pdf
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A.2. PINOUT EVALUATION BOARD

Figure A.1: LAUNCHXL-F28069M pinout.
Snipped extracted from the Quick Guide http://www.ti.com/lit/ml/sprui02/sp
rui02.pdf.
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A.3. CONNECTOR BOARD

A.3 Connector Board

The circuit diagram of the implemented connector board is given in Figure A.2 with
the corresponding component values listed in Table A.1.
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Figure A.2: Implemented circuit diagram of the connector board. The four dashed
sections at the top and bottom indicate the plugging interface.
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A.4. SERIES RESONANCE TEST CIRCUIT

L1 L2 C1 C2 C3 C4 C5 C6 C7 C8

10mH 10mH 0.33µF 0.1µF 0.1µF 33nF 33nF 100pF 100pF 100pF

C9 C10 C11 C12 C13 C14 R1 R2 R3 R4

0.1µF 150pF 150pF 100pF 100pF 100pF 470Ω 50Ω 50Ω 50Ω

R5 R6 R7 R8 R9 R10 R11 R12 R13 R14

50Ω 1kΩ 1kΩ 100kΩ 33kΩ 25kΩ poti 100kΩ 33kΩ 25kΩ poti 1.5MΩ

R15 R16 R17 R18 R19 R20 R21 R22 R23 R24

1.5MΩ 1MΩ 1MΩ 1MΩ 1.5MΩ 1.5MΩ 1MΩ 250kΩ 470kΩ 150kΩ

R25 R26 R27 R28 R29 R30 R31 R32 R33 R34

100kΩ 100kΩ 10kΩ 200kΩ 200kΩ 1MΩ 1.5MΩ 1.5MΩ 1MΩ 1.5MΩ

Table A.1: Component values connector board.

A.4 Series Resonance Test Circuit

A.4.1 Circuit Diagram

Figure A.3 shows the circuit diagram of the implemented series resonance test circuit.
The corresponding component values are listed in Table A.2.

L1 C1 C2 C3 C4 R1 R2 R3 R4 R5 R6

0.4H 10µF 22µF 47µF 0.1µF 5Ω 10kΩ 100kΩ 10kΩ 200kΩ 200kΩ

Table A.2: Component values series resonance test circuit.

A.4.2 Adjustment Instruction

For adjusting the series resonance test circuit run the circuit in the simulation as
open-loop. By setting the reference signal to zero (r = 0), both state variables should
also yield zero (x1 = x2 = 0). Any di�erence can be corrected within the Simulink
integration block. Figure A.4 shows inner SRCI-block with the two variables to tune
highlighted in green.
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Figure A.3: Implemented circuit diagram of the series resonance test circuit. The
two dashed sections at the left indicate the plugging interface. The two inductors at
the top highlight the two single elements of the used component that are connected
in series.

Figure A.4: Serial resonance circuit Simulink integration. The variables highlighted
in green can be tuned during the adjustment.
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A.5. INTEGRATOR TEST CIRCUIT

A.5 Integrator Test Circuit

A.5.1 Circuit Diagram

The circuit diagram of the implemented integrator circuit is shown in Figure A.5
with the corresponding component values listed in Table A.3.
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Figure A.5: Implemented circuit diagram of the integrator test circuit. The two
dashed sections left and right indicate the plugging interface.

R1 R2 R3 R4 C1 C2

150kΩ 150kΩ 150kΩ 150kΩ 1µF 0.1µF

Table A.3: Component values integrator test circuit.

A.5.2 Adjustment Instruction

For adjusting the integrator circuit run the circuit in the simulation as open-loop.
By setting the reference signal and disturbance to zero (r = ∆ = 0), the integrator
should remain at the initial state. Figure A.6 shows inner ICI-block with the tunable
variable highlighted in green. As the circuit integrates every little error it is hard
to obtain ideal behaviour with no drift. Hence, it is acceptable if the circuit shows
a slow drift after adjustment.
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A.5. INTEGRATOR TEST CIRCUIT

Figure A.6: Integrator circuit Simulink integration. The variable highlighted in
green can be tuned during adjustment.
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