
Alex Maestrini, BSc

Flexible Automation
of an

Industrial Assembly Task

Master’s Thesis

to achieve the university degree of

Master of Science

Master’s degree programme: Information and Computer Engineering

submitted to

Graz University of Technology

Supervisor

Steinbauer, Gerald, Assoc.Prof. Dipl.-Ing. Dr.techn.

Institute for Softwaretechnology
Head: Wotawa, Franz, Univ.-Prof. Dipl.-Ing. Dr.techn.

Graz, June 2020

Affidavit

I declare that I have authored this thesis independently, that I have not
used other than the declared sources/resources, and that I have explicitly
indicated all material which has been quoted either literally or by content
from the sources used. The text document uploaded to tugrazonline is
identical to the present master‘s thesis.

Date Signature

ii

Acknowledgments

I would first like to thank my thesis advisor Prof. Gerald Steinbauer of
the Institute of Software Technology at Graz University of Technology. The
door to Prof. Steinbauer’s office was always open whenever I ran into a
trouble spot or had a question about my research or writing. He consistently
allowed this work to be my own, but steered me in the right direction
whenever he thought I needed it. I would like to thank the Institute of
Production Engineering for their support and guidance, whenever it was
needed.

I would also like to express my very profound gratitude to my family and
my girlfriend for providing me with unfailing support and continuous
encouragement throughout my years of study and through the process of
researching and writing this thesis. This accomplishment would not have
been possible without them.

Thank you.

iii

Abstract

Due to the increasing demand of highly customizable, mass produced parts
offered for a relatively low price, the concept of fully automated but still
flexible production is becoming more important. In order to address this
usually orthogonal objectives, robot systems that are equipped with intelli-
gent planning and plan execution systems can be used.
In this thesis, a proof of concept for a system is presented, that is able to
generate a full assembly plan from an appropriate initial representation of
the to be assembled product with the least amount of user involvement.
Moreover, the system is capable to execute the plan using a given production
setting with for instance two robot arms without manual tuning. This would
lead to a higher degree of automation, the reduction of preparation time
and mainly a shift of freedom and responsibility from the machine operator
to the product developer. Being able to reuse knowledge such as assembly
related skills by sharing and collecting them, would also lead to a decrease
of the workload and an increase of the flexibility of the automation engineer.
The work presented in this focuses mainly on geometrical and semantical un-
derstanding of the assembly task and the involved components, derivation
of an assembly plan using inferred knowledge as well as autonomous and
robust execution of the planned actions based on the actual configuration in
the real environment. In order to achieve this goal, a set of guidelines for
the computer-aided design (CAD) model have been developed, that allow
automated understanding of the underlying assembly process. Specially
designed algorithms allow the extraction of a graph-like structure from
that model, used to generate a sequential list of actions representing the
full assembly plan. The entire pipeline for this automated assembly was
designed, the necessary representations were defined and prototypes of
tools for processing of the data were implemented. The proposed approach
was applied to different types of assemblies and the resulting plans were
evaluated for their feasibility and robustness. The evaluation showed that

v

the proposed process for obtaining a feasible assembly plan from a CAD
drawing of the product works. Future developments may include further
reduction of the user involvement as well as finalization and improvements
on stability of the developed simulation.

vi

Contents

Acknowledgments iii

Abstract v

1 Introduction 1
1.1 Motivation . 3

1.2 Goals and Challenges . 6

1.3 Contribution . 7

1.4 Outline . 8

2 Prerequisites 9
2.1 ROS . 9

2.2 Gazebo . 10

2.3 MoveIt! . 12

2.4 rViz . 14

2.5 SkiROS . 14

2.6 RQt . 17

2.7 UR5 . 17

2.8 RG6 . 18

2.9 AutoDesk Inventor . 19

2.9.1 Inventor API . 20

2.9.2 Inventor iLogic . 20

2.9.3 Parts, Joints and Constrains in Inventor 21

3 Related Research 25
3.1 Human Robot Collaboration . 25

3.2 Visual Perception . 26

3.3 Knowledge Base . 28

3.4 Dynamic Movement Primitives 29

vii

Contents

3.5 Planning and Reasoning . 30

3.6 Dual-Arm Kinematics . 33

3.7 Flexible Assembly . 35

4 Problem Formulation 37
4.1 Geometrical and Semantic Understanding 37

4.2 Plan derivation . 38

4.3 Robust execution . 38

4.4 Assembly Task . 39

5 Concept 43
5.1 Assembly . 45

5.1.1 Set of rules . 45

5.1.1.1 Prepare parts for assembly 45

5.1.1.2 Component place order 48

5.1.1.3 Identifying related parts 49

5.1.1.4 Assembly rules 49

5.1.1.5 Subassembly rules 54

5.1.2 CAD model creation . 57

5.1.2.1 Preparation of relations for snapshots 57

5.1.2.2 Creation of snapshots 59

5.1.3 Model analysis . 61

5.1.3.1 Data representation 61

5.1.3.2 Data structure 62

5.1.3.3 Data calculation 63

5.1.4 Plan generation . 65

5.1.4.1 Generate plan 66

5.1.4.2 Get execution order 67

5.1.4.3 Group connections by collision 69

5.1.4.4 Sort connections within groups 70

5.1.4.5 Get parents and children list 71

5.1.4.6 Should wait for dependent connections . . . 72

5.1.4.7 Handle parents 72

5.1.4.8 Handle children 74

5.1.4.9 Find differences between snapshots 75

5.1.4.10 Identify affected connections 76

5.1.4.11 Add affected connections 78

viii

Contents

5.1.5 Plan interpretation . 78

5.1.5.1 Assemble . 80

5.1.5.2 Execute plan 80

5.1.5.3 Execute action 82

5.1.5.4 Handle grounded part 84

5.1.5.5 Get parent and child components 85

5.1.5.6 Check if arms should release because of pre-
vious action 87

5.1.5.7 Identify acting and supporting arm 88

5.1.5.8 Execute skill 89

5.1.5.9 Check if arms should release because of cur-
rent action . 90

5.1.6 Skill execution . 91

5.1.6.1 Skills . 91

5.1.6.2 Primitives . 94

5.2 Initial scene . 95

5.2.1 Set of rules . 96

5.2.2 Scene analysis . 97

5.2.3 Model exportation . 97

6 Implementation Details 99
6.1 Plan derivation . 99

6.1.1 Setup . 99

6.1.2 Inventor Plugin . 100

6.2 Simulation . 103

6.2.1 Setup . 103

6.2.2 ROS packages . 104

6.2.3 Inventor plugin for initial scene export 105

6.2.4 Dual-Arm Robot . 108

6.2.5 Initial Scene . 109

6.2.6 SkiROS . 109

6.2.7 Perception system and Gazebo 110

6.3 Implementation summary . 112

6.3.1 Plan and simulation-input generation 112

6.3.2 Implementation of plan interpretation 115

6.3.3 Implementation of skill execution 115

6.3.4 Perfect vision Gazebo plugin 117

ix

Contents

7 Evaluation 119
7.1 Plan evaluation . 119

7.1.1 Simple assembly . 120

7.1.2 Simple subassembly . 120

7.1.3 Nested assembly . 123

7.1.4 Block world . 128

7.1.5 Belt Drive Unit . 128

7.2 Plan interpretation evaluation 134

7.2.1 Simple assembly interpretation 135

7.2.2 Simple subassembly interpretation 135

7.2.3 Nested assembly interpretation 136

7.2.4 Block world interpretation 139

7.2.5 Belt Drive Unit interpretation 139

7.3 Transformation evaluation . 143

8 Conclusion and Future Work 149

Bibliography 157

x

List of Figures

1.1 Fixed assembly . 2

1.2 Programmable assembly . 3

1.3 Programmable assembly . 4

1.4 Flexible Assembly . 5

1.5 Quantity to variety ratio for flexible assembly 6

2.1 Gazebo simulation example . 11

2.2 MoveIt! setup assistant . 12

2.3 MoveIt! plugin for rViz . 13

2.4 General structure of SkiROS system 15

2.5 General concept of SkiROS skill 16

2.6 UR5 robotic arm . 18

2.7 RG6 robotic gripper . 18

2.8 AutoDesk Inventor . 19

4.1 Belt Drive Unit from WRS - Assembly Challenge 39

4.2 Exploded view of Belt Drive Unit from WRS - Assembly
Challenge . 40

5.1 Main concept . 44

5.2 Preparation and plan extraction workflow 45

5.3 Grasp points . 46

5.4 Grounded parts . 47

5.5 Rubber band constraints . 50

5.6 Intended connections . 51

5.7 Parent-child order for grounded parts 53

5.8 Valid and non-valid relation surfaces 54

5.9 Valid and non-valid relation surfaces 56

5.10 Correct reference side of parents 58

xi

List of Figures

5.11 Class diagram of data structure 62

5.12 Primitive structure of grasp skill 92

5.13 Primitive structure of insert skill 92

5.14 Primitive structure of screw skill 93

5.15 Primitive structure of unscrew skill 93

5.16 Primitive structure of shift skill 94

5.17 Primitive structure of release skill 94

5.18 Initial scene setup example . 96

6.1 Implementation details . 100

6.2 Inventor plugin usage . 101

6.3 Inventor plugin usage for initial scene 106

6.4 Lateral cut of RG6 gripper . 107

6.5 MoveIt! planning scene including spawned components . . . 111

7.1 Simple assembly representations 121

7.2 Simple subassembly representations 122

7.3 Nested assembly representations 124

7.4 Nested assembly representations 125

7.5 Block world images . 127

7.6 BDU step-by-step solution . 129

7.7 BDU graphs - Snapshots 1 and 2 130

7.8 BDU graphs - Snapshots 3 and 4 131

7.9 BDU actions . 133

7.10 Simple assembly skills . 135

7.11 Simple subassembly skills . 136

7.12 Nested outer assembly skills 137

7.13 Nested inner assembly skills 138

7.14 BDU assembly’s skills - Snapshot 1 and 2 140

7.15 BDU assembly’s skills - Snapshot 3 141

7.16 BDU assembly’s skills - Snapshot 4 142

7.17 Geometrical representation of transformation chain 144

7.18 Geometrical representation of distant pose calculation 145

7.19 Action execution inside the simulation 147

xii

List of Algorithms and Code

5.1 How to place components in a correct order 48

5.2 Get the plan for the full assembly 66

5.3 Get execution order of snapshot actions 67

5.4 Group connections by collision 69

5.5 Sort connections within groups 70

5.6 Split children and their parents into separate lists 71

5.7 Should wait for related connections 72

5.8 Handle parents for correct execution order 73

5.9 Handle children for correct execution order 74

5.10 Find differences between snapshots 75

5.11 Identify affected connections 76

5.12 Add affected connections to plan 78

5.13 Assemble full sequence plan 80

5.14 Execute full plan . 81

5.15 Execute individual action . 83

5.16 Handle grounded component during assembly interpretation 85

5.17 Get parent and child component from action 86

5.18 Check if any arm should release from previous action 87

5.19 Identify acting and supporting arm 88

5.20 Execute individual skill or set of skills 90

5.21 Check if any arm should release from current action 91

xiii

1 Introduction

Smart factories are being built all over the world as an important outcome
of the latest industrial revolution. Whether it is computerizing assembly
lines with cyber-physical systems or interconnecting independent entities
and structures with others as well as with Big Data to create the Internet
of Things or Internet of Systems, Industry 4.0 is affecting many different
aspects of everyday life.

Led by the increasing demand of highly customizable, mass produced parts
offered for a relatively low price, the concept of fully automated but still
flexile assemblies is becoming more important. There are four increasing
degrees of adaptability for assembly automation: fixed, programmable, lean
and flexible.

Fixed assembly lines were one of the major resulting technologies of Industry
2.0, which allowed the degree of mass production that we are used to today.
Aside a high initial investment cost in custom engineered, special-purpose
equipment, this type of part construction is made for long product life
cycles and lead to a high production rate. The downside is a low variety in
production, since the production steps are fixed sequences of operations.
An example of a fixed assembly line can be seen in Figure 1.1.

Programmable assembly starts with a high investment in general purpose
equipment designed to accommodate a specific class of production changes.
An example of such a production cell can be seen in Figure 1.2. With phys-
ical changes to the setup and changes to the executed program, different
products can be assembled batchwise, which only allows a medium produc-
tion volume. This leads to an inverse-proportional relation between variety
and quantity.

Lean automation is a human-robot collaboration (HRC) focused method of
assembly with a singular modular cell or a conjunction of modular cells

1

1 Introduction

Figure 1.1: Fixed assembly line of Volkswagen Beetle. Source: https://w.wiki/PXi

with robots solving parts of the task while being aided, refilled or surveyed
by humans. This is generally seen as an efficiency increase [1], since there
are some tasks that the robot and the human individually are better at then
the other. Since the assembly cells can either be fixed or programmable,
most downsides persist. Figure 1.3 shows an exemplary HRC workspace.

In comparison, flexible assemblies have the same sort of high investment
level as programmable assemblies but allow a continuous production flow
of a mixed product variety. This can lead to slightly lower production rates
on a per product basis but taking into consideration the time and effort it
takes to switch batches and change the program on the machines, the overall
production rates are higher, as represented in Figure 1.5. An illustration of
a possible flexible assembly setup is depicted in Figure 1.4.

Regarding the variety-quantity-ratio, flexible automation has the right bal-
ance between fixed and programmable automation. It would be possible
to detect product changes or even completely novel products and react to
them as fast as possible with no or minimal effort regarding adaptations in
from of manual labor.

2

https://w.wiki/PXi

1.1 Motivation

Figure 1.2: Programmable assembly line. Source: https://w.wiki/PXj

1.1 Motivation

State of the art robot assembly knows four different methods of teaching the
robot the task it needs to solve: preprogramming of the task, learning from
demonstration, human-robot collaboration and declarative programming.

The first includes knowledge about offsets, distances, angles and velocities
of both robot and product in combination with a perception system that
can identify individual components and their pose. Most components in an
industrial assembly are tiny and made of glossy, reflective metals. Object
recognition providing the required level of robustness needed for such tasks,
is topic of current research. Commonly, fixture arrangements of known
dimensions are used to position components in a manner which facilitates
the assembly. Such assembly lines do not need highly developed perception
systems to identify location and orientation of parts. Instead, methods such
as inductive sensors, simple RGB cameras or photoelectric barriers are used
to identify when a picking slot is filled. The components are brought to the

3

https://w.wiki/PXj

1 Introduction

Figure 1.3: Human-robot collaboration. Source: [1]

needed locations using mechanical contraptions that constantly ensure a
correct orientation for upcoming steps of the assembly task.

A second method is robots learning from demonstration. Here an instructor
grabs the end effector of the robot and performs the action manually. The
robot then imitates recorded joint angles and velocities to achieve the same
result as previously shown. This is called kinesthetic teaching. Alternatively,
teleoperation is also a possible interaction method with the robot to teach an
action. The learned trajectories can be generalize with the help of machine
learning methods to apply them to different kinds of object constellations.

The third possibility is human-robot collaboration. This can range from
simple, repetitive patterns of action to a complex collaboration between
robot and human in the same space. If the task is simple enough, safety
zones and closing mechanisms are secure enough, but for an interaction in
the same space, the robot needs additionally a perception system that is
able to successfully detect humans.

4

1.1 Motivation

Figure 1.4: Exemplary flexible assembly setup. Source: https://w.wiki/PXt

Lastly, a method of assignment description called declarative programming
can be used do describe instructions. The characterization of individual task
does not specify implementation details, rather it expresses what should be
done instead of how. The solutions to each step are gathered automatically
in form of robot skills using reasoning. Each skill needs to be implemented
beforehand by the developer.

The work presented in this thesis contributes to the field of smart factories
by developing a methodology and system that can extract an assembly
action plan from some initial representation of the task, without the system
being specifically tuned or set up for it.

This would lead to a higher degree of automation, the reduction of prepa-
ration time and mainly the shift of workload from the machine operator
to the developer. Being able to reuse knowledge such as assembly related
skills by sharing and collecting them, would also lead to a decrease of the
workload for the developer.

5

https://w.wiki/PXt

1 Introduction

Figure 1.5: Quantity to variety ratio for flexible assembly.

1.2 Goals and Challenges

The overall goal of this thesis is to develop a proof of concept for a system
that is able to generate a full assembly plan out of an initial representation of
the task with the least amount of user involvement using a general dual-arm
robot setup. This work focuses mainly on the following three aspects:

1. Geometrical and semantical understanding of the assembly task and
the involved components. This includes knowledge and reasoning
about shape, properties, function and relation of items.

2. Derive an assembly plan using inferred knowledge and subdivide it
into sequences of actions in combination with the planning of concrete
motions of tools and parts while minimizing manual interference and
prior information about the final product or any assembly sequences.

3. Autonomous and robust execution of the planned actions based on
the actual configuration in the real environment utilizing a perception
system with visual sensors being able to identify and precisely localize
the involved components.

Since it is intended to have as few as possible additional prior information
about the task, such as knowledge about individual subtasks or additional
properties of components, the utmost amount of information should be
taken from the initial representation.

6

1.3 Contribution

1.3 Contribution

In this work a methodology for the extraction of action sequences for
automated assembly tasks is presented. The developed algorithms and set
of rules are useful for different assembly use cases and can be integrated in
Industry 4.0 applications to achieve a higher degree of automation.

The entire workflow, ranging from the set of rules guiding the computer-
aided design (CAD) model creation to the execution of the individual actions
in a simulated environment is developed and implemented as a proof of
concept.

Using said guidelines, a CAD model with the needed information can be
created, from which a directed graph-like structure of components as nodes
and connections as edges is deduced. This reduces the workload of the user
to creating or modifying CAD files. While prototyping an assembly, CAD
models are created in every case. The imposed guidelines and rules are easy
to get used to and do not imply more effort than normally once accustomed
to.

This hierarchical information is then processed to obtain a sequential plan of
actions. Each action is represented by a connection between two individual
components of the assembly. These directed connections contain additional
information about the related parts in their final position, such as a relative
transformation between parent and child or the actual distance between
the related surfaces. Furthermore, special constraints are added to enforce
a specific sequence of action inside the plan, which can be applied using
a plugin that was developed during this thesis. This can be used by the
CAD modeler to enforce a wanted assembling order or to denote the need
of moving specific components after a certain point in time during the
assembly. Examples for such situations include shifting already inserted
objects inside a slot to create pressure on other parts or tightening or losing
a screw to be able to move already fixated objects.

As an evaluation environment, a scene with the initial state of the assembly
and two UR5 arms with RG6 grippers, inspired by the Assembly Challenge
from the World Robot Summit 2018, is set up in a virtual environment sim-
ulated in Gazebo. The arm and gripper motions are planned and executed

7

1 Introduction

using the MoveIt! framework. Due to time constrictions some final issues
could not be overcome, which prevented the whole assembly in its final
form from being built inside of the simulation. Even so, individual aspects
can be visualized and used for evaluation purposes.

The main evaluation of this work was done by applying the proposed ap-
proach to different types of assemblies and by discussing the resulting plan,
looking for shortcomings and further improvements. The plan extraction is
developed in form of an AutoDesk Inventor 2020 plugin written in C# on
Windows 10. The plan execution is developed and tested in Ubuntu 16.04

and Robot Operating System (ROS) [2] Kinetic Kame.

1.4 Outline

The remainder of the thesis is organized as follows. In Chapter 2 prereq-
uisites are presented. This includes the robotic framework ROS [2], the
simulation framework Gazebo, the motion planning and execution software
MoveIt! and the used visualization tool rViz, the skill execution framework
SkiROS [3] and the used visualization tool RQt, the UR5 robot arm model,
the RG6 gripper model and the Inventor application programming interface
(API). In Chapter 3 related research is discussed. This includes human-robot
collaboration, visual perception systems, knowledge representations, plan-
ning, reasoning, dynamic motion primitives and dual arm kinematics. At
the end flexible assembly and its state of the art is discussed. The problem
formulation is presented in Chapter 4, including the main aspects geometri-
cal and semantic understanding, plan derivation and robust plan execution.
Moreover, the assembly task used for this work, a Belt Drive Unit (BDU), is
described in more detail. In Chapter 5 the overall concept is presented in
detail, as well as a set of rules and guidelines for the CAD modeler and all
algorithms developed to extract and execute the plan. Chapter 6 describes
in detail the implementation of the system and the resulting challenges.
The evaluation of the work is presented in Chapter 7. This includes the
evaluation of the plan derivation, but also of the simulation. The end of
this thesis is formed by discussion about conclusions and potential future
expansions in Chapter 8.

8

2 Prerequisites

This chapter describes concepts and software modules used for realizing
the approach presented in this thesis.

2.1 ROS

The Robot Operating System is an open source robotic framework described
in [2] and can be viewed as the standard for frameworks in robotics. It
provides a structured communication layer mainly above Linux-based plat-
forms. This layer is composed of a collection of master nodes and many
modularly separated nodes. ROScore1, a base group of nodes and programs
necessary for running a ROS-based system, must be started before any other
node and represents the core of the system. It contains a ROS master, a
parameter server and a logging node called rosout. The master provides a
yellow page service for managing all active partners in a ROS system.

The area of responsibility of individual nodes usually includes smaller tasks
and calculations, while communicating with other components using mes-
sages. These messages are transmitted using a publish-subscribe protocol
and represent a clearly defined data structure. The publisher notifies the
master node about the existence of a topic, which is a named reference to
the advertised communication channel. Other nodes can subscribe to this
topic by requesting it from the master node. Every subscriber to such a topic
will receive the published messages. This is a way of system-wide message
transmission without sending all messages to every existing node. Since
multiple nodes can publish messages on the same topic, this can be used as
a method of synchronization between many nodes using services.

1http://wiki.ros.org/roscore

9

http://wiki.ros.org/roscore

2 Prerequisites

A node can provide a service and advertise it under a unique name. If a node
sends a request to such a service, it waits for the reply of the service before
continuing with the execution. Opposed to such blocking calls, non-blocking
calls are implemented via a small API, which is presented in form of an
additional ROS package called action lib2. It provides a preemptible task,
where a node can implement an action server with many different nodes
implementing an action client. The client can call accessible actions that are
provided server-side via messages. Last, a parameter server is accessible
system-wide, providing access to stored static values like configuration
parameters.

To run a specific configuration of nodes and a master node at once, so called
launch file can be created. A launch file consists of the Extensible Markup
Language (XML) format3.

More detailed information can be found in [2] and the latest documentation
is available at the ROS Wiki4.

2.2 Gazebo

Gazebo is a open-source simulator used for 3D rigid body simulations of
robots in a virtual environment with support for different physics engines.
To be able to work with stand-alone Gazebo, a set of ROS packages named
gazebo ros pkgs is presented by Gazebo5.

These packages provide wrappers to access core functionalities of the simu-
lator such as accessing data of the scene or spawning models using Unified
Robot Description Format (URDF) for robots or Simulation Description For-
mat (SDF) for other components of the simulation. These file types represent
the full model with all the needed meshes for visual and collision masks,
joints with offsets and rotations between links, inertial parameters, mass,

2https://wiki.ros.org/actionlib
3https://wiki.ros.org/roslaunch
4https://wiki.ros.org/
5http://gazebosim.org/tutorials?tut=ros_overview

10

https://wiki.ros.org/actionlib
https://wiki.ros.org/roslaunch
https://wiki.ros.org/
http://gazebosim.org/tutorials?tut=ros_overview

2.3 MoveIt!

Figure 2.1: An example of a Gazebo simulation representing a possible two-arm setup for
the assembly tasks.

center of mass and many more. The documentation of the URDFormat6 and
the SDFormat7 can be found online.

Gazebo integrates with ROS using ROS messages and services. Many mes-
sages and plugins are included to provide access to data of simulated
devices such as depth cameras, bumpers or laser scanners. Also, a set of
predefined worlds and scenes are included in the package.

Figure 2.1 shows a possible two-arm setup for the assembly task. It contains
two UR5 arms on pillars with RG6 grippers mounted on each arm, with a
table in between.

11

2 Prerequisites

Figure 2.2: Screenshot of the MoveIt! setup assistant.

2.3 MoveIt!

MoveIt! is a motion planning and execution framework for manipulation of
robotic arms presented in [4]. It was implemented on the arm navigation
packages in ROS. It contains a Planning Scene Monitor, which provides
an environmental representation, including libraries for motion planning
as well as the ability to monitor motion execution. It is representing the
environment in two formats: a voxel grid representing most of the obstacles,
and geometric primitives as well as mesh models for objects recognized and
registered by object detection routines.

Motion planning takes the needed information from the planning scene.
A planning scene is a kinematic and semantic description of the robot.
These are presented to the framework in form of URDF (for the kinematic

6https://wiki.ros.org/urdf
7http://sdformat.org/spec

12

https://wiki.ros.org/urdf
http://sdformat.org/spec

2.3 MoveIt!

Figure 2.3: Screenshot of the MoveIt! rViz plugin.

representation) and Semantic Robot Description Format (SRDF), both repre-
sented in XML. The SRDF complement the URDF by specifying joint groups,
default robot configurations, additional collision checking information and
transforms that might be necessary to fully specify a robot’s pose. In combi-
nation a ROS package called xacro8, which can be used to simplify, shorten
or modularly connect XML formatted files.

Using these representations of the robot, the motion planning module in
conjunction with prior information about the collision objects computes into
a collision-free motion plan. By default the Open Motion Planning Library
(OMPL) is used, but other libraries can be included instead. After smoothing
it, the generated trajectory is sent to a specific controller. Each separate
controller in the system gets its own move group assigned. The controller
executes and monitors the trajectory and reports aborted executions.

8https://wiki.ros.org/xacro

13

https://wiki.ros.org/xacro

2 Prerequisites

Using the MoveIt! setup assistant any robot can be configured for use with
MoveIt! by generating a SRDF file and other configuration files used in the
planning pipeline. This step also validates the URDF file. A screenshot of
this application can be found in Figure 2.2.

MoveIt! provides a Graphical User Interface (GUI) implemented as a rViz
plugin. Most MoveIt! features are accessible and can be activated manually.
This includes planning and executing of a trajectory for the given robot by
either using a predefined pose or moving the end effector marker freely. A
screenshot of this plugin is visible in Figure 2.3.

2.4 rViz

rViz is a 3D visualizer for the ROS framework. It can visualize most of the
common ROS message types, such as point clouds or future positions of
planning actions. The main use case for rViz in this project is the visual-
ization of the MoveIt! planning scene using the MoveIt! rViz plugin. This
includes the planned path before execution and the objects spawned in
Gazebo in form of green colored collision objects. Additionally, it allows the
general control of MoveIt! move groups through drag and drop of a marker,
including planning and execution of end effector positions or predefined
poses from the SRDF, which can be seen in Figure 2.3.

2.5 SkiROS

SkiROS was presented in [3] as a skill-based ROS platform for autonomous
mission execution based on autonomous, goal directed task planning and
knowledge integration.

The SkiROS architecture is represented in Figure 2.4, where squares repre-
sent ROS nodes and rectangles represent plugins. The nodes are provided
by the framework, but the plugins need to be implemented by the developer.
The task goals or information about the scene can be specified using a
GUI tools or by directly accessing the ROS topics. The direct access and

14

2.5 SkiROS

Figure 2.4: General structure of the SkiROS system. Source: [3]

all related ROS topics are described in [3] . The three major ROS node
types regarding a robot in the SkiROS system are the task manager, the
world model and one skill manager per robot subsystem. The task manager
dispatches generated plans based on the world model knowledge to the
skill mangers of the robot. The skill managers each coordinate a subset
of capabilities while keeping the world model updated. The world model
is the center point of the system. All knowledge is collected and shared
through it.

The internal representation of a skill in the SkiROS system can be seen
in Figure 2.5. The input of such a skill is defined by some skill-specific
parameters and the initial state of the sub-module, which is controlled the
skill manager. Each skill starts with a precondition check. If it is valid,
the skill will be executed and simultaneously a prediction of the outcome
defined by the input parameters is calculated. After the execution the final
state of the robot subsystem is compared to the prediction and, if valid,
returned to the world model.

15

2 Prerequisites

Figure 2.5: General concept of a SkiROS skill. Source: [3]

The robots knowledge is represented in the W3C Web Ontology Language
(OWL)9 standard, defined in Description Logic (DL), a specialization of first-
order logic, which is designed to simplify the description of definitions and
properties of categories. The three major aspects contained in this knowledge
are the objects in the world, the robot hardware and the capabilities available
to the robot, which are skills and primitives. In addition to the ontology, the
following software pieces have to be created or added by the programmer
during the development phase: skills, primitives, conditions, a discrete
reasoner and a task planner.

Skills are actions with pre- and post-conditions that can be concatenated
to form a complete plan for a task. Primitives are simple actions without
pre- and post-conditions that support hierarchical composition. They are
concatenated manually from the programmer inside a skill. The task planner
has to support Planning Domain Definition Language (PDDL), which is
further described in Section 3.5 and originally presented in [5].

This initial version of SkiROS was implemented on top of the C++ version of
ROS. During the development of the work presented in this thesis, a second
version of SkiROS got published10, which is only at its demo state. The newer
version is implemented on top of the python version of ROS and includes the
concept of behavior trees, expanding the non-reactive, deliberative system
purely based on PDDL. In conjunction with the extended behavior tree
model presented in [6] a reactive behavior tree can be generated using
planning. This leads to a reactive-deliberative hybrid system. The new
version of SkiROS also fixes issues related to the execution monitoring of

9https://www.w3.org/TR/owl-features/
10https://github.com/Bjarne-AAU/skiros-demo

16

https://www.w3.org/TR/owl-features/
https://github.com/Bjarne-AAU/skiros-demo

2.6 RQt

action servers, which prevented the original version from working correctly
in conjunction with MoveIt!. Additionally, the skills and primitives no longer
need to be represented in the ontology, only the robot knowledge and the
system knowledge.

2.6 RQt

The GUI implemented in SkiROS is built in RQt11, which is a Qt-based
framework for GUI development in ROS. This software implements vari-
ous GUI tools for ROS in form of plugins and is a useful cross-platform
alternative to creating a graphical interface by hand.

2.7 UR5

Universal Robots launched the UR512 collaborative robot arm for industrial
environments. This is a lightweight, adaptable collaborative robot that
tackles medium-duty applications. It can reach 850 mm and carry 5 kg
while having a footprint of 149 mm diameter and weighs 20.6 kg. This robot
is especially useful in human-robot collaboration environments, since it
automatically detects any type of unwanted collisions and stops execution
immediately. An image of such a robotic arm can be seen at Figure 2.6.

An implementation of many Universal Robots device configurations for the
control of the robotic arms via MoveIt! can be found at on the ROS-Industrial
GitHub page13, including the configuration for the UR5 robotic arm.

11https://wiki.ros.org/rqt
12https://www.universal-robots.com/products/ur5-robot
13https://github.com/ros-industrial/universal_robot

17

https://wiki.ros.org/rqt
https://www.universal-robots.com/products/ur5-robot
https://github.com/ros-industrial/universal_robot

2 Prerequisites

Figure 2.6: UR5 robotic arm by Universal
Robots. Source: https:

//www.universal-robots.

com/3d/ur5.html

Figure 2.7: RG6 robotic gripper
by OnRobot. Source:
https://onrobot.com/en/

products/rg6-gripper

2.8 RG6

There are many different types of grippers on the market. Given the initial
intention of a future expansion of this system on real robots, a commonly
used gripper was selected. It was released by OnRobot and is called RG614.
An image of such an gripper can be seen at Figure 2.7. It is a 6 kg pay-
load robot arm gripper with up to 150 mm stroke. The fingertips can be
customized and replaced, maximizing the robot utilization. A kinematic
version of this gripper does not exist online, only a 3D drawing can be
found on the OnRobot web page15. Therefore a kinematic version had to
be created during this project. More information in regard to the process of
creating the kinematic model can be found in Section 6.2.4.

14https://onrobot.com/en/products/rg6-gripper
15https://onrobot.com/en/downloads

18

https://www.universal-robots.com/3d/ur5.html
https://www.universal-robots.com/3d/ur5.html
https://www.universal-robots.com/3d/ur5.html
https://onrobot.com/en/products/rg6-gripper
https://onrobot.com/en/products/rg6-gripper
https://onrobot.com/en/products/rg6-gripper
https://onrobot.com/en/downloads

2.9 AutoDesk Inventor

Figure 2.8: Screenshot of AutoDesk Inventor with an example assembly. Source: Inventor
sample files16

2.9 AutoDesk Inventor

Inventor is a mechanical design and 3D CAD model software for Windows.
This software was selected because of its free availability for educational
purposes and because it provides an API to access almost any internal
information about the assembly model and its components. Figure 2.8
shows a screenshot of AutoDesk Inventor Professional 2020.

Inventor allows access to most information over internal API calls to Compo-
nent Object Model (COM) objects of the application. The documentation of
the API can be found locally only after installing the application. Online, a
help portal with guides, tutorials and additional information on Inventor in

16https://knowledge.autodesk.com/support/inventor/downloads/caas/

downloads/content/inventor-sample-files.html

19

https://knowledge.autodesk.com/support/inventor/downloads/caas/downloads/content/inventor-sample-files.html
https://knowledge.autodesk.com/support/inventor/downloads/caas/downloads/content/inventor-sample-files.html

2 Prerequisites

general and regarding the API can be found on the AutoDesk Help page17.
COM is a platform-independent, object-oriented interface standard for cre-
ating binary software components that can interact. These components are
programming language independent and can be accessed system wide.

2.9.1 Inventor API

The API allows direct access to the internal document classes. There are
four document class types, where the first two are relevant to this project:
AssemblyDocument, PartDocument, DrawingDocument and PresentationDocu-
ment, which are explained in detail in the locally installed documentation
or summarized in form of a AutoDesk Inventor API Object Model18.

The main access point to the assembly is possible via instances of the As-
semblyDocument class. From there, all information regarding the file can be
accessed. This includes the document name, a unique internal identification
number, ComponentDefinitions, references to included documents such as
subassemblies or the individual part files and more.
A AssemblyComponentDefinition contains all occurrences of joints, constraints
and components of the assembly, which will be referenced in upcoming
chapters of the thesis. Inventor specific information regarding each part,
like name, internal id, type and more, can be accessed using the refer-
enced PartDocument class, which again contains a PartComponentDefinition
housing boundary representation and geometric feature constraints, inertial
parameters, mass properties or the bounding box of each individual part.

2.9.2 Inventor iLogic

An alternative to creating a full plugin would be the use of a tool called
Inventor iLogic. This is a concept of allowing access to most API functionality
directly inside Inventor via Virtual Basic (VB.NET) programming.

17https://help.autodesk.com/view/INVNTOR/2020/ENU/
18https://knowledge.autodesk.com/search-result/caas/simplecontent/

content/autodesk-C2-AE-inventor-C2-AE-api-object-model-reference-document-pdfs.

html

20

https://help.autodesk.com/view/INVNTOR/2020/ENU/
https://knowledge.autodesk.com/search-result/caas/simplecontent/content/autodesk-C2-AE-inventor-C2-AE-api-object-model-reference-document-pdfs.html
https://knowledge.autodesk.com/search-result/caas/simplecontent/content/autodesk-C2-AE-inventor-C2-AE-api-object-model-reference-document-pdfs.html
https://knowledge.autodesk.com/search-result/caas/simplecontent/content/autodesk-C2-AE-inventor-C2-AE-api-object-model-reference-document-pdfs.html

2.9 AutoDesk Inventor

There are major downsides in using the iLogic for this project. Debugging
and IntelliSense do not work for iLogic. In comparison, Microsoft Visual
Studio allows both to some extend. Some specific API functionality like
exporting components into stereolithography files (STL), which are needed
for spawning objects in ROS, is not accessible this way. Lastly the plan
needs to be generated and exported, which might be possible using iLogic
and VB.NET, but the API and C# are preferred for easier handling and
the possibility of expanding the plugin with useful functionality like graph
visualization tools.

2.9.3 Parts, Joints and Constrains in Inventor

In an Inventor assembly, parts or other assemblies are connected using
joints or constraints, which create relationships that determine component
placement and allowable movement. They are used to position components
in order to gradually eliminate degrees of freedom (DOFs). Inventor rec-
ommends the use of joints to position a component and fully define its
motion, because it reduces the complexity of component relationships. It
is generally possible to produce the same outcome with either joints or
constraints, but fewer connections are required using joints. It is possible to
add limits for both types of relationships, defining the allowable range of
motion for components that move or rotate.

Each component in an assembly has six DOFs, three translational and three
rotational DOFs. These include being able to move in X, Y and Z and to
rotate around the X, Y and Z axes. When placing a constraint between two
pieces of geometry, a position is established and one or more DOFs are
removed. When placing a joint between two piece of geometry, the DOFs
and the location are explicitly defined, thus requiring fewer relationships
than constrains and reducing the complexity of the assembly.
Since each joint type fully defines the location and motion of components, it
can be used to uniquely identify the relation between parts. For this reason
joints are preferred over constraints in this project.

The first component selected in Inventor, when placing a relation, is moved
towards the second component. In this relationship, the first part is the child

21

2 Prerequisites

and the second part is the parent. The notation for such a relation during
this work is (a, b) where a is the parent and b the child.
Additionally, in this thesis two different methods of stacking components
on top of each other will be used. Assuming an example setup with bolt
a, spacer b and nut c, the fist possibility of connecting all parts is placing
the relations face-to-face. The resulting relationships would be (a, b) and
(b, c). Alternatively, it is possible to define relations, that have the same
reference point, such as (a, b) and (a, c). Connecting components face-to-
face is the more common approach for CAD modelling. In the upcoming
chapters situation will be described, where the presented methodology
requires either one or the other type of relation placement between multiple
components.

Inventor poses two different approaches on eliminating all degrees of free-
dom of a component, by locking or grounding it. Locking a component allows
it to change location when related parts move. Grounding, on the other
hand, fixes the component position in space, making it unmovable.

Six different types of joints are supported by Inventor:

1. rigid - where all DOFs are removed;
2. rotational - where one rotational DOF can be specified;
3. slider - where one translational DOF can be specified;
4. cylindrical - where one rotational and one translational DOF can be

specified;
5. planar - where two translational DOF can be specified and one rota-

tional DOF results open;
6. ball - where three rotational DOF can be specified.

This project does not need to allow ball joints or free translational DOFs,
since all assembly actions are based on pick and place actions. Therefore, it
is recommended to only use rigid and rotational constraints. It is possible
to use joints with specifiable translational DOFs for a more kinematic CAD
model, but then it is important to make sure the default position along said
DOF is where the components should be at the end of the assembly.

When a relation is placed between components, Inventor tries to place the
the two parts in question next to each other by aligning them. To do so, it
finds two similar surfaces, preferably circles, one for each component. These

22

2.9 AutoDesk Inventor

surfaces are then used to define the orientation of the child component in
relation to the parent. The normals of the geometries, used to align the
parts, are either parallel or inverse to each other. The distance of a joint is
therefore clearly defined as the distance between the two starting points of
the aligned normals.
To align two components connected by a constraint, Inventor uses the exact
selected geometries and aligns them using the positioning method dictated
by the constraint type. The distance of a constraint is not as clearly defined,
since Inventor displays the minimum distance, which can be selected out of
the minimum distances calculated between vertices, edges or faces.

In regard to constraints, Inventor allows six different types:

1. mate - which positions selected faces normal to each other, with
coinciding center points;

2. flush - which positions selected faces next to each other with surface
normals pointing in the same direction;

3. insert - which places either a mate or a flush constraint between
the components planar faces and a mate between the axes with one
rotational DOF remaining open;

4. angle - which positions edges or planar faces at a specified angle;
5. tangent - which causes faces, planes, cylinders, spheres and cones to

contact at the point of tangency;
6. symmetry - which positions two objects symmetrically according to a

plane or planar face.

If it is needed to use constraints to place components, only mate, flush and
both types of insert are allowed, since they align using the selected geome-
tries, similar to joints, and have a defined interpretation. The presented
system is not intended to have different aligning surfaces for relations
between the same two components, since the interpretation of multiple
constraints is not implemented.

Additional information can be attached to a relation via suffix to its name,
such as whether a relation is pre-satisfied - meaning the referenced com-
ponents come pre-assembled, it is supposed to be handled as a screwing
motion on insertion or is part of a group referencing the same multi-contact
component.
For pre-satisfied relations the suffix PRESAT must be added to the their

23

2 Prerequisites

name. All rigid joints are interpreted to be screws. If that is not supposed
to be the case for a specific rigid, this can be noted by adding the suffix
NS to the relation name. If relations are referencing the same multi-contact

component, they need to be identified as related by adding the same suffix
to their names, for example G1. This suffix can be chosen arbitrarily, as
long as it does not contain one of the other suffixes in the naming scheme.
It is possible to have all three suffix types for a single relation. Additionally,
the presented plugin, used to generate and export the plan, allows the pos-
sibility of selecting and deselecting screws from a list of all rigid relations.
These design decisions are described in more detail in Section 6.1.2.

24

3 Related Research

3.1 Human Robot Collaboration

The interest in robots cooperating with humans for domestic and indus-
trial use has increased in recent years. The combination of the cognitive
capacity of humans with the dexterity and physical strength of robots can
lead to many applications in various fields. But enabling robotic systems
to collaborate with humans is challenging on different levels of abstraction.
Human robot collaboration (HRC) is a complex field that combines robotics,
artificial intelligence, cognitive science, computer science, engineering, hu-
man computer interaction, psychology and social science [7]. In addition,
there are four different degrees of human robot interaction, referenced in
increasing complexity: (1) coexistence – where both agents (human and
robot) work on different tasks in the same workspace; (2) assistance – where
the robots passively aids the human in a task; (3) cooperation – where both
agents work simultaneously on different tasks on the same work piece; and
(4) collaboration – where both agents perform coordinated actions on the
same task. [8]

Using perception, planning and reasoning, such systems need to understand
the context under which they operate. Akkaladevi et al [8] proposed a mental
model for perspective taking capabilities, that considers human preferences,
the knowledge of the task and the capabilities of both human and robot.
This model forms the basis of their cognitive architecture to perceive, reason
and plan in the human-robot collaborative scenario. Possible actions that
can be performed, based on decisions of this architecture, are ‘picking’,
‘showing’, ‘placing’ and ‘handover’ actions on real world objects. To be
able to seamlessly interact with humans, the robot should know about
object properties, but also about capabilities, beliefs, goals and desires of

25

3 Related Research

humans. It is also important to correctly recognize human actions and track
components over time.

Sadrfaridpour et al. [9] consider a computational model of a human worker’s
trust in the robot partner. The intention was to design a system that is able
to keep pace with the human worker while maintaining a level of security
and embeddedness in design such that robot actions become acceptable and
comfortable for humans. They use the trust evaluation as a constraint in an
optimal control problem, where the robot speed needs to be controlled in a
way that enables the robot path progress to follow that of the human.
Mizanoor Rahman et al. [10] presented a computational model for trust
including a method to measure and display the trust in real-time inside a
handover motion planning strategy. They conclude that the consideration
of robot trust in humans and an adaptation of the tasks based on the
level of trust significantly improve human-robot interaction and assembly
performance through increasing safety, human trust in robot, handover
success rate and the overall assembly efficiency.

Ajoudani et al. [11] found that, despite the inclusion of several technologies,
e.g. force feedback, augmented reality, etc., the amount of information the
robot should communicate to the human is still an open research topic. Con-
cepts like impedance, force, admittance or hybrid approaches still appear
to be in a premature state. When developed they will most likely not only
enhance the robot adaptivity to the human and the environment but may
also lead to reduction of task-related pre-programming.

3.2 Visual Perception

Around fifteen years ago, most of the open questions regarding visual ob-
ject recognition where: viewpoint variation, illumination, occlusion, scale,
deformation, background clutter and intra-class variation [12]. Bigger and
cleaner datasets allowed a more detailed data extraction in regard to spe-
cific problems or features, which, in combination with deep learning and
convolutional neural networks (CNN), proved the data driven models to be
more effective in comparison to previous explicit model-driven concepts
[13]. With this new era of deep CNNs most of the previously mentioned

26

3.2 Visual Perception

problems can be seen as at least partially solved [13], leaving occlusion and
deformation as the two major open questions.

Current research is also trying to exploit multiple viewing angles [14] or
fusing cameras with depth or Light Detection and Ranging (LIDAR) sensors
for better object recognition, resulting in new image datasets [15]. For exam-
ple, in [16] Skotheim et al. presented a system containing a complementary
robot solely for vision purposes that acquires 3D point clouds by performing
sweeps with a laser triangulation sensor. Because the sensor is mounted on
a robot, an optimal viewpoint can be chosen.

Occlusions can be identified to a certain degree if they are part of the image
dataset and appear frequent enough, but it is increasingly unlikely to be able
to cover all occlusion configurations in all datasets. Attempts are made to
detect multiple objects from a single image and then reason about occlusions
between objects in a projected 3D space [17].
Similarly to deformable objects, if humans or animals would not have rigid
shapes, CNNs would have difficulties identifying them. In [18] a method
to identify flexural rigidity and the initial curvature of a deformable belt
object from its static images was proposed.

More related to object recognition than object detection, reasoning about
the 3D structure of objects [19] is the topic of current research, since the
level of geometric detail is limited to qualitative representations or rough
boxes because object recognizers are tuned towards robust 2D bounding box
matching rather than accurate 3D geometry [20, 21]. Similarly, how objects
are laid out in a scene and therefore understanding the scene as a whole
with all its components and their poses [17, 22, 23] is also state-of-the-art
computer vision research.

A geometric surface primitive patch segmentation approach based on Hough
transforms to get accurate surface normal estimations from 3D point clouds
is presented in [24], which is focusing on the application of bin picking in
automotive subassembly automation while taking advantage of preexisting
CAD data. These primitive surface patches are extracted from automotive
CAD models, which are simplified to entities such as planar polygons,
vertices and lines. The final matching of such primitives seems to be highly
accurate regarding pose and object class estimation.

27

3 Related Research

3.3 Knowledge Base

The enrichment of CAD models with semantic information has been ap-
proached in different research projects. OntoCAD [25] is an ontological
annotation approach that is based on labeling geometry elements of CAD
models using concepts from a CAD ontology. In [26] an ontology for de-
scribing CAD models in the Drawing Exchange Format (DXF) is presented.
Tessier et al. [27] created an ontology-based approach of semantically de-
scribing CAD data and features using a rule system to automatically classify
CAD features. This is in order to provide compatible mapping between
different CAD systems.

OntoBrep [28] introduces an approach for leveraging CAD descriptions to a
semantic level, in order to link additional knowledge to CAD models. To do
so, a description language, based on OWL, is designed to define boundary
representations of objects. This involves describing geometrical components
in a semantically meaningful way, usually corresponding with the minimal
mathematical description of a shape. As an example, a circle would be
represented by a center point and a radius instead of a set of polygons. This
covers not only shapes and objects, but also geometric constraints between
components. Constraints can be specified down to single edges or faces in
CAD files. This is especially useful for shape-based object recognition or
constraint-based task descriptions.

Opposed to geometrical representations of CAD models, within the Eu-
ropean FP7, the Seventh Framework Programme of the European Union
research and development funding program, project ARUM Adaptive Pro-
duction Management1 presented a task description ontology design, which
tries to increase effectiveness of production of highly complex and individu-
alized products. It is aimed at the optimization of production ramp-up and
the general workflow description of full processes.

1https://cordis.europa.eu/project/id/314056/de

28

https://cordis.europa.eu/project/id/314056/de

3.4 Dynamic Movement Primitives

3.4 Dynamic Movement Primitives

Imitation learning has been a big part of humanoid robotics for a long
time [29] and are widely used [30]. In search of a method for representing
modular actions for later reuse and abstraction to similar situations, motion
primitives were developed.

Calinon et al. [31] presented a programming by demonstration framework
for generically extracting relevant features of a task and generalizing learned
concepts to different contexts. They conclude, that their imitation metric is
an optimization of object-hands relationships, hands paths and joint angle
trajectories, where the importance of the variables is dependent on the task.
The different degrees of importance are extracted by observation of the
task executed by a human expert. In a goal-directed framework, these three
variables have also different levels of relevance [31]. While manipulating an
object, the first variable gains relevance. Depending on the scene, whether
it is full or empty, the second variable is more prominent. And if the
reproduction of a gesture is relevant, for example for motions like waving a
hand or knocking on a door.
Bekkering et al. showed in [32] that imitation is goal-directed. They also
suggest different levels of importance for object-hands relationships and
hands paths depending on the age of the subject. Infants focus on a single
level, while adults use multiple levels and simultaneously assign preferences
to different levels hierarchically. This was shown in a previous work of
Calinon et al. presented in [33] regarding how the prioritization of these
variables can speed up the extraction of task constraint.
The system presented by Calinon et al. can generalize over variations of joint
angles, hands paths, hands-object relationships and the opening and closing
of hands, by projecting the data onto a latent space and encoding the results
into Gaussian and Bernoulli Mixture Models. The variation and correlation
information can be used to find a solution to the inverse kinematics, so the
system is able to generalize over multiple contexts.

Ijspeert et al. developed a framework of Dynamic Movement Primitives
(DMP) for robust motion generation [34, 35] which can represent a demon-
strated movement in form of a set of differential equations [36, 37]. This
system of equations allows the addition of a disturbing force without loosing

29

3 Related Research

stability of the movement, since perturbations can be automatically corrected
by the dynamics of the system. In [38] this framework was extended by
Park et al. such that arbitrary movements in the end-effector space can be
represented. They also added online obstacle avoidance by including pre-
viously established potential field algorithms [39, 40], where obstacles are
represented as repellent forces centered around the obstacle. This way the
robot was able to avoid obstacles while still being attracted to the original
demonstrated movement. Also, the use of a dynamic potential field, depen-
dent on the relative velocity between obstacle and end-effector, proved to
produce more smooth movements, especially when the end-effector directly
approached the obstacle.

Movement primitives as a modular and reusable system of actions are
well-established [30] and there are many different variations that are being
created. Paraschos et al. presented in [41] a probabilistic approach, allowing
for the derivation of new operations essential for blending between motions,
adapting to altered task variables and activating multiple motion primitives
at the same time.
In [42] Deniša et al. address the problem of simultaneously achieving low
trajectory tracking errors while maintaining compliant control without the
necessity of explicit mathematical models. They propose a new movement
representation, which encodes position trajectory and the corresponding
torque and can learn from a single demonstration. Their presented control
framework allows the robot to remain compliant and therefore safe for HRI
even if high trajectory tracking accuracy is needed.
Zhang et al. [43] developed a movement primitive for force interaction skills
that can be programmed with kinesthetic teaching and combines machine
learning for adaptability and reusability by estimating the probability of
success.

3.5 Planning and Reasoning

Classical planning revolves around finding sequences of actions that turn the
initial state into a state, in which it satisfies the given goal. Commonly such
problems are defined by an initial state, a set of possible actions and a goal.

30

3.5 Planning and Reasoning

Today, such problems are usually described in PDDL and specific planners
are used to solve these problems. One of the first automatic planners that
up until today is describing the basis for most problem domains is called
Stanford Research Institute Problem Solver (STRIPS) and was presented by
Fikes et al in [44]. It is designed to work with large numbers of rules and
represents the world model as an arbitrary collection of first-order predicate
calculus formulas. Later on, the term STRIPS was changed to reference the
description language needed to input information for the planner.
Action Description Language (ADL) [45] is considered an advancement of
STRIPS by allowing the effects of an operator to be conditional. Contrary to
STRIPS, which assumed unknown events to be false, known as the closed-
world assumption, everything not occurring in the conditions is assumed to
be unknown, which is called the open-world assumption. ADL also allows
the use of negative literals and disjunctions, whereas STRIPS only allowed
for positive literals and conjunctions.
A partial order planner named UCPOP is described in [46] and handles
a subset of ADL actions. It operates with actions that have conditional
effects and universally quantified preconditions, effects and goals. Based
on STRIPS, ADL and especially UCPOP, among others, a new closed-world
assumption based concept called PDDL was introduced.

PDDL is a predictive language for the description of planning problems and
was presented in [5]. It unifies basic STRIPS-style actions with conditional
effects, domain axioms and universal quantification. Including the specifica-
tion of safety constraints and actions composed of sub-actions and sub-goals,
allows for a management of many problems in multiple domains using
different subsets of language features. This enables the sharing of domains
across different planners that handle different levels of expressiveness. On
the other hand, most planners are not expected to contain the full PDDL
language. This means a planner can skip over all definitions connected with
subsets of features that are not handled.

In [47] a framework to construct complex robotics application called Task
Compiler was presented, that automatically generates state-machine based
behavior executives from a high-level symbolic description of a robotic task.
To achieve this, they pursued to develop a compiler that translates task
descriptions in PDDL to SMACH, a state machine based execution and coor-

31

3 Related Research

dination system. Behavior state machines provide a robust behavior control
with failure recovery features for interactions in a human environment.

Various methods for intuitive task level programming have been proposed
over the years and have become a fundamental point of interest for industrial
applications. Many of these implementations are PDDL-based systems.

Cashmore et al. presented the ROSPlan framework in [48], which allows to
link existing ROS components to a planning tool. It provides a collection of
tools for AI Planning in a ROS system, such as planning, problem generation
and plan execution. Their architecture is intended as a standard method
to embedding a PDDL-based task planner into a robotic system, while
focusing on providing a standardized access to modern heuristic search
planners through ROS. Through knowledge discovery initial and goal state
descriptions are autonomously reconstructed after each replanning cycle,
since the planner is in constant communication with the knowledge base.
Additionally, the integration in ROS allows the application designer to focus
on the definition of the PDDL domain description.

During the European FP7 project TAPAS2, short for Tools for Assessment
and Planning of Aquaculture Sustainability, the skill paradigm was intro-
duced. It facilitates task-level programming of mobile manipulators by
providing the robot with a set of movement primitives, skills and tasks.
This allows a four tiered architecture separation into the layers of hardware
abstraction, multi-sensory control, object-level abstraction and planning,
related respectively to proxy, primitive, skill and task descriptions. This
allows the implementation of a flexible, highly modular system for the
development of cognitive robot tasks and is used in other FP7 projects
like Sustainable and Reliable Robotics for Part Handling in Manufacturing
Automation, short STAMINA, or CooperAtive Robot for Large Spaces man-
ufacturing, short CARLOS.
Based on investigation on multi-tiered robotic architectures, a major research
effort was made to form a generalized robot middleware, ROS. Two exam-
ples of such multi-leveled architectures are MoveIt! [4], which was explained
in Section 2.3, and ROS commander (ROSco) [49]. The latter is focused on
home environment robots where expert users build a behavior in form of

2https://cordis.europa.eu/project/id/678396

32

https://cordis.europa.eu/project/id/678396

3.6 Dual-Arm Kinematics

a Hierarchical Finite State Machine (HFSM) out of generic, parameterized
building blocks.

Rovida et al. presented in [50] a Skill-based Robot Operating System
(SkiROS), which aims to extend the capabilities of MoveIt! with high level
instructions similar to ROSco. SkiROS is explained in more detail in Section
2.5. The initial version was based entirely on PDDL planning, a non-reactive,
deliberative system, whereas the second version includes the concept of
behavior trees. In conjunction with the extended behavior tree model pre-
sented in [6] a reactive behavior tree can be generated. At run-time, the
robot can use the more abstract skills to plan a sequence using a PDDL
planner, expand the sequence into a hierarchical tree and re-organize it to
optimize the time of execution and the use of resources. This leads to a
reactive-deliberative system hybrid.

3.6 Dual-Arm Kinematics

Due to a more widespread availability of commercial single-arm robots,
the popularity of industrial dual-arm robotic systems increased. They are
considered as promising tools for industrial automation, because of their
range of characteristics discussed in a survey by Weng et al. in [51]. They
conclude, that the anthropomorphic manipulators provide operators with
a more intuitive way to manipulate. The nature of their kinematics make
stiffness adjustable when both arms are contacting a common object. High
redundancy improves the flexibility and versatility in task manipulation
and synchronized manipulation shortens the cycle time of task execution.
All these characteristics make dual-arm robotics the a promising concept
regarding the next generation of industrial robots.
Depending on not only the features of the robot kinematics but also the
demands of the assigned task, dual-arm manipulation definitions can vary.
Multiple single-arm robots organized together can handle tasks that exceed
the difficulty and complexity of general single-arm robot capabilities.

The work presented in [52] classifies dual-arm manipulation into uncoordi-
nated and coordinated manipulation. Uncoordinated manipulation indicates

33

3 Related Research

that individual motion is assigned to each arm. Coordinated manipula-
tion can again be subclassified into goal-coordinated manipulation and
bi-manual manipulation. Goal-coordinated manipulation has both arms
assigned to the same task, where each arm has an independent motion
assigned to it. Bi-manual manipulation refers to the situation, in which both
arms are acting on the same object simultaneously in either symmetric or
asymmetric or else congruent or non-congruent form. Goal-coordinated
manipulation is seen as the most difficult and complex category which may
require long-term practice for a human, while bi-manual manipulation is
intuitive for humans. In combination with clear and precise taxonomies
and representations of robotic assembly skills, an assembly task can be
divided into a series of actions. Perception and compliance, which have
been successfully implemented on assembly task for single-arm robots, can
be used to realize dual-arm manipulation on assembly tasks.

Suomalainen et al. show how different choices regarding compliance affect
a dual-arm assembly task. Compliant motions are helpful to mitigate errors
in pose estimation and can be learned from human demonstration. They
present analytical background and experimental results on how to enhance
the convergence region of alignment tasks. In [53] Tarbouriec et al. propose
a sparse kinematic control strategy, that minimizes the number of joints
actuated for a coordinated task between two arms, while avoiding joint
limits. An alternative approach to developing industrial dual-arm robots
for flexible assembly is presented in [54] by Chen et al. They started by
introducing a kinematic feature and reachability map of a seven DOF
industrial robots. By adjusting the distance and angle of two identical robot
arm, the bi-manual workspace of the dual-arm setup is analyzed. The
concluding cooperative reachability map is meant to visually evaluate all
possible models of the dual-arm robots by uniting and intersecting the
reachability index of the two separate arms and was used as a criterion to
evaluate the design of the dual-arm robot for an assembly task. In doing so,
they designed the PMC 14-axis dual arm robot.

34

3.7 Flexible Assembly

3.7 Flexible Assembly

In [55] Thomas et al. presented an assembly sequence planner able to
generate feasible sequences for building a desired assembly. While taking
geometrical, physical and mechanical constraints into account, the planner
considers the feasibility of grasps during the planning process and considers
work-cell specific constraints. For the planning AND/OR-graphs are used,
which are generated by using a specialized graph cut algorithm. AND/OR-
graphs represent the reduction of problems to conjunctions and disjunctions
of subproblems.
AND/OR-graphs or Liaison-graphs are often used as inputs for assembly
sequencing systems. Liaison-graphs describe the precedence relationships
between parts but are very time consuming if inferred with the aid of hu-
mans. In [56, 57] Thomas et al. present their own method of automatically
obtaining such a graph from geometric computations. It is applied to effi-
ciently analyze the geometric feasibility of an assembly path. Pairwise, parts
are mapped for their possible assembly directions into 21

2D distance maps.
The generated graphs are further evaluated by considering the feasibility of
grasping subassemblies and individual parts. Since the sequence and grasp
planner are generic, their proposed solution can be applied to arbitrary
assemblies of rigid parts. Tolerances for parts’ shapes are allowed, as well
as pose uncertainties [56]. Since the grasp planner is integrated during
evaluation of the graph, verification of existence of feasible and robust grasp
poses for subassemblies is possible.

The FlexRoP project [58] tries to overcome current limitations by developing
a flexible skill-based robot programming middleware and improved GUI
technologies for robot assistance. The system is equipped with a seven DOF
robotic arm and was intended to have universal grippers and force closure
for handling and manipulation of objects. Tests disproved the applicability
of several universal grippers for accuracy and process stability reasons. The
diversity of requirements resulted in a complex tool design with force torque
sensors, RGBD and 2D cameras, two electric grippers and an automatic
tool changer for spanning additional, ordinary hand tools articulated by
pneumatic actuators.
The robot assistant is required to be programmable without special training.
For this reason, XRob [59] is introduced as an layer of abstraction for all

35

3 Related Research

hardware, such as cameras, sensors or robots, and software components, like
object pose recognition or path planning. Additionally, a real time interface
for kinesthetic skill learning and the force torque sensor is required.
A motion assessment primitive is responsible for providing an evaluation
of kinesthetically taught DMP based skills. While recording both the joints’
states and the exerted forces and torques on the end-effector, the trajectory
recorded through kinesthetic teaching is exploited. Machine learning tech-
niques make it possible to map joint states to exerted forces and torques
and can therefore predict which forces and torques to expect at specific joint
states.
The resulting conclusions by Ikeda et al. [58] contain the assessment, that
programming in the worker’s domain without kinesthetic manipulation
of the robot itself remains desirable. Compared to kinesthetic teaching,
the so-called embodiment problem needs to be solved, since the robot has
different reach and multiple kinematic configurations that can be used to
position a tool.
The second major issue is the low success rate, which could be caused
by DMPs, since they create a single model for each DOF, which means
the correlation between joints’ states and the exerted forces and torques
may be lost. This can be dealt with using all the sensory inputs to create a
single model. Moreover, motion assessment would need to be done during
execution to minimize security issues and component or robot damage.

36

4 Problem Formulation

An Industrial Assembly Task can have different degrees of automation,
depending on a variety of factors, including production lifetime, volume
and flexibility. This thesis will focus on flexible automation, the higher
degree of automation. The idea is that the automated assembly system
becomes an autonomous intelligent system able to derive an assembly plan
from a description of the product automatically and to execute this assembly
plan autonomously without human intervention such as teaching. Flexible
automation, in comparison to fully pre-programmable automation, has the
advantage of being able to detect a wide range of changes in products, up
to even completely novel products, on its own and can subsequently react
with no or a minimum of delay time, adaptations or manual intervention.

Generally, the input should be some kind of representation which fully
describes the assembly and should lead to a plan of actions that can be
successfully executed on a failsafe dual-arm robotic setup.

In order to enable the system to perform this autonomous assembly it has
to master three central challenges: geometrical and semantic understanding
of the given representation, derivation of a plan and robust execution of a
set of skills leading to a successful assembly.

4.1 Geometrical and Semantic Understanding

First, the system needs to be able to geometrically and semantically under-
stand a representation of the assembly task and the involved components
and tools provided by the engineers (e.g. CAD models). This involves knowl-
edge and reasoning about the shape, the properties, the function, and the

37

4 Problem Formulation

relation of items (e.g. component models, ontologies, dynamical description
of process steps).

4.2 Plan derivation

Second, the system needs to be able to derive an assembly plan from the
descriptions and knowledge received. This plan represents a sequence of
predefined and modular actions available in form of combinations of skills.
Here the system needs to plan on an abstract as well as task and motion
planning on a continuous level. The reasoning about the actions needed to
assemble a given product requires to be combined with the planning of the
concrete motions of the tools and parts. The assembly task itself should be
divided into subtasks automatically, where every subtask can either be a
basic skill or again subdivided into moderately complex subtasks. At the
end, every action should be based on combinations of already pre-acquired
skills. In state-of-the-art flexible automation robotics these skills are usually
acquired through kinesthetic teaching or machine learning. An important
aspect here is, that in order to reuse and combine these skills flexibly instead
of using fixed teached-in posed the skills need to refer to the component
models and their attached coordinate frames and anchor (e.g. boreholes).
The idea is to minimize manual interference by using inferred knowledge
of the single components used in the assembly task with as little as possible
prior information about the final product, intermediate product or assembly
sequences.

4.3 Robust execution

Third, the system needs to be able to execute the assembly plan in a real
environment autonomously and robustly. This requires that the system is
able to identify and precisely localize the involved components and tools
using some kind of perception system. Moreover, the system needs to
ground (e.g. link abstract object positions in the planning level to concrete
object positions in the motion level) and execute the planned skills based

38

4.4 Assembly Task

Figure 4.1: Belt Drive Unit from World Robot Summit - Assembly Challenge. Source: [60]

on the actual physical configuration in the environment. In order to gain
robustness, the system needs monitoring capabilities in order to track the
progress of skills and assembly steps and be able to re-plan assembly steps
on the fly if a previously obtained plan does not work anymore in the
environment.

4.4 Assembly Task

As a running example and a test setup the Assembly Challenge from the
Industrial Robotics Category, presented at the World Robot Summit 2018, is
used, in which a Belt Drive Unit needs to be assembled. Figure 4.1 shows
the front view of the assembly, while Figure 4.2 shows the same assembly
in an exploded view. A summary of the competition in 2018 can be found
at [61].

39

4 Problem Formulation

Figure 4.2: Exploded view of Belt Drive Unit from World Robot Summit - Assembly
Challenge. Source: [60]

All components of the assembly are listed in [60] and the 3D models needed
for the simulation were found online at the respective reseller, except the 3

mounting plates. These needed to be manually created.

Most relations between parts in this assembly can be executed using bin-
picking and peg-in-the-hole actions, which makes the knowledge repre-
sentation for most objects limited to abstract relations like has peg and has
hole. Most of the concrete data-properties are geometrical information like
translation, orientation, offset, diameter or length. These descriptions are
called static. They need to be represented in form of knowledge and must
be available prior to planning or execution.

Dynamic descriptions used inside such a task would be is attached or is
inserted, where sensing in conjunction with a constantly updated world
model needs to be used to get knowledge about the current environment.

40

4.4 Assembly Task

This version of a Belt Drive has many different parts. Some need to be
combined before some specific other actions can be executed. Others need
to be assembled inside of a slot at a specific position, then other components
need to be placed, only for the previously placed components needing to be
moved within their slot afterwards.

41

5 Concept

The general concept behind the work presented in this thesis is shown in
Figure 5.1. The input to the system is a high level task representation in the
from of a CAD model, sensor data and the state of the robot. The sensory
information and the robot state are only relevant to the task execution.
The three-dimensional depiction of the assembly in form of a CAD file is
used to generate an alternative representation of the task. Via a set of rules,
described in more detail in Section 5.1.1, it is possible to generate a CAD
file, from which a given set of algorithms can extract a sequence of actions.
These algorithms are discussed in more detail in Section 5.1.4.

The extracted information is expressed using two separate ontologies. The
main class structure of the system is designed as part of this project in
form of a base ontology. A detailed representation of the full class namespace
can be found in the shape of a class diagram in Figure 5.11 and is further
discussed in Section 5.1.3. Summarized, a plan is a list of ordered actions.
Actions reference to a specific connection between two parent and child
components, that is described by its relations. A relation can either be a joint
or a constraint between two parts and contains the transformation between
the two objects.

The extracted plan contains instantiations of all named individuals, including
their data and object properties, relevant to the task. This information is
modeled based on the previously mentioned, defined class structure and is
exported purely from the CAD file with no sensing needed. This ontology
file is automatically generated using a plugin created within the scope of
this thesis.

The next step of the workflow is to interpret the plan, which generally
depends on the environment configuration. Depending on the number of
available robot arms, the types of grippers and the available skills of the

43

5 Concept

Figure 5.1: Main concept of the system. Green marks the input, red marks components
presented in during this work and yellow marks outputs or intermediate steps
generated by the algorithms.

system, specific tasks can be executed differently. A possible plan interpreta-
tion algorithm for the chosen dual-arm robot setup is presented in Section
5.1.5.

Lastly it is important to ensure a safe and robust execution of each individual
action. Section 5.1.6 discusses a possible hierarchical setup of modular skills
and primitives needed to solve general assemblies. This includes generic
bin-picking operations, screwing components into place and moving parts
after loosening others. The BDU is used as a running example for the
construction of an assembly with moving parts and a deformable belt.

Since the execution of the assembly is handled inside of a simulation, there
are two separate aspects to the data extraction from the CAD model. So
far only the main purpose of export tool was described, namely the plan
extraction. A more detailed description can be found in the following Section
5.1. The second functionality, which was implemented in the Inventor plugin,
is the ability to extract an initial scene for the simulation based on an
additional CAD model. More information about the initial scene generation
can be found at Section 5.2.

44

5.1 Assembly

Set of
rules

CAD
model

creation

Model
analysis

Plan
generation

Plan inter-
pretation

Skill
execution

Figure 5.2: General workflow for preparation and plan extraction.

5.1 Assembly

The general workflow for the system, no matter whether within a simulated
or real environment, can be subdivided into the six segments, which are
represented in Figure 5.2 and described in detail in this section. No matter
what environment, throughout this work two main coordinate systems are
referenced: (1) the world coordinate system with a user defined origin and
all assembly components, the robot and the rest of the scene refer to it; (2) the
component coordinate system, which has its origin at the component’s center
of mass. The relative transformations of each part, such as the location of
each grasp pose or the transformation between related components, are
using each component’s center of mass as reference point.

5.1.1 Set of rules

The guidelines are split up into preparation of parts used for the assembly
and into rules for constructing said assembly and its relations correctly. The
regulations are separated into three paragraphs: assembly rules, subassem-
bly rules and a method for distinguishing between these mutually exclusive
situations. This set of rules must be followed to create the CAD model that
can be built by the presented system.

5.1.1.1 Prepare parts for assembly

Since the initial scene is arbitrary and predefined, for each component of
the assembly, the ideal grasp point needs to be identified. This means, that
the location needs to be found, where the part should be grasped ideally.

45

5 Concept

Figure 5.3: Grasp points of different components from the Drive Belt Unit. The two most
right parts are presented from two different viewing angles.

Additionally, it is important to identify the direction from which the gripper
should approach each part.

The grasp pose is defined inside the coordinate system of individual com-
ponents. This means that the internal origin and the rotation compared to
the Z axis of the components coordinate system define the grasp point.
The position is identified by taking the center of the two ideal gripper
contact points. The center of mass of the object needs to be shifted, so that
the origin of its coordinate system represents the chosen grasp position.
The orientation of the grasp point is defined as the positive direction of the
Z axis of the object. This means that the direction, from which the gripper
will approach the part, is coming from Z → ∞ and is going towards Z → 0
inside of the part’s local coordinate system. The component needs to be
rotated in its own coordinate system for this previously identified grasp
direction to overlap with the Z axis of the simulation. Examples of possible
grasp poses can be found in Figure 5.3. Please note that a parallel gripper is
intended to open along the X axis of the grasp pose.

46

5.1 Assembly

Figure 5.4: Grounded parts of examples from Chapter 7 highlighted in red color.

Furthermore, the grounded part of the whole assembly needs to be identi-
fied. Generally there must be exactly one grounded component, since all
other parts can be placed referencing this single starting point or compo-
nents connected to it. A grounded part will not be moved by the robot arms
and thus is the starting point of the assembly. If a component in an assembly
is marked as grounded, the model has all it’s degrees of freedom removed
and therefore can no longer be moved inside many CAD environments,
including Inventor.

In general this object is the most intuitive starting point of the assembly.
Most of the time the assembly is built on top of said component, which
makes it the object with the lowest minimal Z coordinate. The grounded
part can also be the component that is most covered by adding all other
assembly components. Examples of grounded parts for all assemblies used
in Chapter 7 are highlighted in Figure 5.4 and more detailed step-by-step
solutions are visualized in Chapter 7. The final pose of the grounded piece
is dependent on the rest of the assembly.

47

5 Concept

5.1.1.2 Component place order

The first object to be placed in a new and empty scene is the grounded
part g. The floor of the simulation is assumed to be the X−Y plane of the
simulation and only the positive quadrant of the 3D scene is allowed to
contain any components. This is necessary for the transformations to work
as expected. g must therefore be placed inside and parallel to the positive
quadrant of the assembly’s X−Y plane, so that the rest of the assembly is
built towards the positive Z direction of the simulation without components
entering any other quadrant.

inputs : c . . . last placed component

1 HandlePart (c)
2 Ic ← find all insertion locations on c;
3 Pc ← find all not placed parts that need to be attached to Ic;
4 foreach insertion i ∈ Ic do
5 p ← part ∈ Pc with smallest offset to i;
6 if p can be placed on c without any collision then
7 Assembly rules apply on p;

8 else
9 Subassembly rules apply on p;

10 if ∃ part that has not been placed yet then
11 foreach part p ∈ Pc do
12 HandlePart(p);

Algorithm 5.1: How to place components in a correct order

Initially the grounded part g must be placed in the scene. Algorithm 5.1
describes how to handle a component that was placed, so the following
workflow starts by calling Algorithm 5.1 with g as parameter c.
Next, all parts Pc related to c need to be found and placed in the correct
order. Each component of P is inserted along an axis towards a center point
of a surface of g, which is called an insertion location. To find all insertion
locations Ic and all parts Pc that need to be attached to I, see Section 5.1.1.3.
For each insertion i in Ic, the part p out of Pc with the smallest offset to

48

5.1 Assembly

i needs to be determined. The offset is defined by the distance between
the two center points of the related surfaces and was already discussed in
Section 2.9.3.
The general assembly rules described in Section 5.1.1.4 apply, if p can be
placed on c without any collision. That means the component is not allowed
to intersect with any other already placed part during any point of the
insertion trajectory. A simple example of a pure assembly without such
collisions can be found in Section 7.1.1.
Else, a subassembly is formed by p and any other component that is con-
nected to p, including already placed parts. In this case the in Section 5.1.1.5
described subassembly rules apply. A simple example of a subassembly, an
assembly with colliding insertions, can be found in Section 7.1.2.
This concludes with all components in Pc attached to g. Then each object p
in Pc is handled as a new reference part c and all steps so far are repeated
for it. This procedure stops when all components are placed.

5.1.1.3 Identifying related parts

To identify all related parts Pc of a component c, all insertion locations Ic
need to be determined. All components Pc connected to c are referencing
a specific surface of c with the relation placed between them. Insertion
locations Ic are defined as an axis facing towards a center point of such a
surface.

Components, that have already been placed inside the assembly are ex-
cluded from Pc. If Pc is empty, c does not have any parts that need to be
attached to it anymore.

5.1.1.4 Assembly rules

The following paragraphs describe rules that apply for the general CAD
model creation.

49

5 Concept

Figure 5.5: Rubber band R from Drive Belt Unit is connected to parts A, B and
C, highlighted in green color. The resulting connections are between
(R, A), (R, B), (R, C).

Constraining two parts using as few relations as possible To connect two
components via relation in the assembly it is encouraged to use the least
amount of constrains or joints possible, preferably one per connection.
Joints should be preferred over constraints in an assembling context, since
they combine multiple constraints into a single, more high level constraint
type. The only joints allowed in this work are rigid and rotational. A rigid
generally represents a screw, unless defined otherwise.

Constraining a single part with many To connect a component with mul-
tiple parts it is recommended to use constraints instead of joints, since
high-level joints might over-constraint the scene if the parts are not placed
perfectly. As an example the rubber band from the BDU can be seen in
Figure 5.5. In the image the constraints to three other parts are highlighted.
In this case three circular geometries define the three contact points of
the rubber band. This method is used to model shape-adapting or elastic
components.

50

5.1 Assembly

Figure 5.6: Examples for intended non-face-to-face (left), non-intended face-to-face (center)
and intended face-to-face (right) connections between two parts. The letters are
relevant to the description inside the running text.

Choosing the correct parts to connect Relations should be placed be-
tween parts that are intended to be connected. What intended means in this
context can be best explained using examples. If a component is inserted
into another part, the relation is intended. But if a object C is inserted through
another component b into a third part A, where A is grounded, both C and
B are related to A. Figure 5.6 shows examples of such intended connections,
with a screw A, a spacer B and a nut C on the left side, where A is the
grounded part. The resulting relations are (A, B), (A, C). Adding a relation
(B, C) instead of (A, C) would mean the nut is being connected to the spacer
using a face-to-face relation. But the nut is meant to be connected with the
screw to fixate objects, that where previously loosely inserted on the screw.
This is valid as long as more than two parts insert on the same axis towards
the same point, which can be seen on the right half of 5.6. Else, a standard
face-to-face combination between the two components can be applied.

51

5 Concept

Grounded parts are parents Grounded parts are always parents in their
relations to other assembly objects. Thus everything that is being attached
to grounded components must be the child in the joint or constraint placed
between them. Following the approach described above, all children of
grounded parts become the parents for new relations added to the next
set of inserted assembly objects. This is repeated until either the assembly
runs out of components needing to be attached and is successfully assem-
bled, or a subassembly is identified. More information on the identification
of subassemblies can be found in Section 5.1.1.5. When interpreting the
represented data inside the CAD model as a tree-like representation, this
rule enforces a directed graph structure, meaning all edges have a specific
direction they point to. If multiple grounded parts would be allowed, this
individual graph would become a forest, which might improve usability
for use cases such as the example described in Section 7.1.4. Because each
following component can be placed referencing a single grounded part, this
is not necessary. The graph can be traversed as long as there is a singular
starting point, meaning there can only be one grounded component per
assembly.

Please note that in regard to Inventor, the child is always selected first when
adding a new joint or constraint. An example for the selection method of
Inventor can be seen in the left image of Figure 5.4. The child is already
selected and highlighted in blue.
The right image shows all three components of an electrical switch, an
evaluation example discussed in more detail in Section 7.1.1. The parts A,
B, and C referenced in the image are related to each other, such that A is
parent to B and B is parent to C.

Choosing the correct constraint surfaces Joints or constraints should al-
ways be placed between surfaces with a defined center point. The current
interpretation of the geometry is able to identify the insertion direction
of components using the normal of each surfaces’ center point. Examples
of a valid and a invalid relation surfaces are depicted in Figure 5.8. The
surface’s inverse of the normal is interpreted as the insertion direction of
the components, which implicitly restricts all components of the assembly

52

5.1 Assembly

Figure 5.7: Examples for the parent-child order in regard to grounded parts. Left and
Center: Inventor interface for adding joints. Right: A three-component parent-
child hierarchy of a simple electrical switch from Section 7.1.1 consisting of a
case A, a buton B and a pin C.

to have a straight insertion trajectory, meaning components like bolts, shafts,
slots and holes are only allowed to have the shape of cylinders.

Pre-assembled components Some components come pre-assembled in the
initial scene, but they need to be handled separately inside the assembly.
Possibly some parts need to be moved or tightened after being inserted
into the assembly. The joints or constraints between these objects need to be
marked as pre-satisfied relations.

53

5 Concept

Figure 5.8: Examples of valid and invalid relation surfaces. Left: Valid relation surfaces of a
screw (top) and nut (bottom). Right: Invalid relation surface of a spring (top)
and a sphere (bottom).

5.1.1.5 Subassembly rules

In the following paragraphs a second set of rules is discussed, used to
model subassemblies. A subassembly is formed by a parent and multiple
child components, including already placed parts. All child parts must
reference the same insertion location of the parent. A simple example of a
subassembly can be found in Section 7.1.2.

When to create a subassembly As previously mentioned, a subassembly
needs to be applied if the insertion of components in the order presented in
Section 5.1.1.4 leads to objects colliding with already placed components
and passing through them when being inserted into the assembly. If the
subassembly still leads to collisions, either the wrong parent component was
selected or not the right group of components are part of the subassembly.

54

5.1 Assembly

Parent and child are switched around Following the normal assembly
rules, new components are always added as children. But this is not the
case within subassemblies. During a subassembly the parent-child hierarchy
model is switched around. This means that the newly inserted component P,
that would have been the child of an already inserted part c, now becomes
an additional parent of C. P is now the parent of the subassembly. All
components that need to be stacked on top of P, including C, must be
children of P when inserted.

Choosing the correct constraint surfaces Inside a subassembly, children
must always refer to the same reference surface of the parent. The insertion
order of children within a subassembly is defined by the offset from the
child-surface to said parent-surface. Therefore it is important to make sure
that all referenced child-surfaces are chosen so that the offset to each child
is increasing. In doing so, it represents the correct placing sequence of all
subassembly components. Figure 5.9 shows examples for both a correct and
incorrect selection of child-surfaces between a bolt A, a spacer B, a wheel
C and a nut D. The same component C is shown twice on the right side of
the image. The one on the bottom presents the correct execution sequence
(A, B), (A, C), (A, D), whereas the top image leads to an incorrect handling
order (A, C), (A, B), (A, D), because the selected surface of C is closer to
the A then the one from B.

When not to create a subassembly A situation might occur, in which a
subassembly does not stack on a single shaft, but rather on multiple. This
is for example the case for a series of components stacked on top of each
other, held together by attaching multiple screws and nuts between the two
outermost objects. The only difference to a subassembly is the amount of
shafts on which the components stack. During a normal subassembly there
is one single central insertion location for all components. But in this case, if
seen as a subassembly, multiple components would stack on many insertion
locations. This problem arose during the evaluation phase in Section 7.1.3
and more information about it can be found there. Generally, there are two
different types of solutions applicable to this scenario, but neither of them is
a subassembly. Applying the subassembly rules would imply that all screws

55

5 Concept

Figure 5.9: Left: Subassembly between a bolt A, a spacer B, a wheel C and a nut D. Right:
Examples of invalid (top) and valid (bottom) child surface selections for the
subassembly.

fixating the individual parts together should be parents to all components
of the subassembly. This either needs a separate robotic arm for each parent,
a single gripper being able to hold many tiny objects far apart or the ability
of the system to stack components on a non-centered shaft without causing
any components to rotate because of gravity and the holding orientation.
The first solution is using the Inventor plugin to enforce a specific execu-
tion order by creating an assembly with different steps in time, which is
discussed in more detail in Section 5.1.2.2. This can be useful, if the closure
of the previously mentioned example fails because one of the two sides
of the fixating screws is no longer accessible. This can happen, since the
subsection of the assembly is built by placing the first component at its final
location and therefore blocking access to bolts or nuts.

Secondly, it is theoretically possible to create nested assemblies. This solution
is not currently necessary, since a functional workaround is to assemble this
pseudo-subassembly beforehand and interpreting it as a single part. The

56

5.1 Assembly

inclusion of an assembly inside an assembly, also called nested assemblies,
is part of future expansions and will be further discussed in Chapter 8.

Choosing the correct reference surface of parents A cylinder has two
directions from which components can be inserted onto it. One of them is
in close proximity to the grasp pose and is thus generally blocked by the
gripper. This is obvious for a subassembly parent that is a screw, because
one of two sides is blocked by its head. Also, the head of the screw is where
the grasp position is located. Therefore, the surface of the subassembly
parent, that is referenced by all relations of subassembly children, is found
at the same end of the insertion axis where the grasp pose usually is. This
can be seen in the examples presented in Figure 5.10.

Please note that the child, that is a screw and closes this subassembly chain,
should have the largest offset to the parent, in comparison to all other
children of the same subassembly. Looking again at a screw as an example,
the thread on the screw most commonly resides at the opposing end of the
components head.

5.1.2 CAD model creation

Every component needs to be placed in the assembly following the guide-
lines presented in Section 5.1.1 to comply with the norms defined during
this work. Once each part is inserted correctly and the assembly is con-
structed, the creation of snapshots needs to be taken into consideration. A
snapshot represents the current state of the assembly in time, including
the necessary information about all involved relations and components.
A sequence of snapshots can therefore be used to model specific order of
actions inside an assembly.

5.1.2.1 Preparation of relations for snapshots

A single snapshot of the final assembly needs to be added using the Inventor
plugin, if changes to the model in form of shifting or tightening relations

57

5 Concept

Figure 5.10: Examples of the correct reference side for a bolt (left) and a shaft (right) in a
subassembly. Grasp positions are shown as small markers on the left side of
each component.

are not needed. Also one snapshot is enough if no specific execution order
of actions during the assembly needs to be enforced. More detail regarding
the creation of snapshots can be found in Section 5.1.2.2.

Depending on the task and the skills involved, intermediate snapshots might
be necessary to enforce a specific order of execution between individual
steps of the assembly. There are mainly two different reasons for the creation
of intermediate snapshots, which both need different preparations.

Changes of relations between the same parts Sometimes a joint or con-
straint needs to be changed during the assembly. A possible scenario is the
tightening of pre-satisfied screws after the insertion of a different compo-
nent. This situation appears during the belt drive assembly and is further
expanded upon in Section 7.1.
Also, some components might be moved during the assembly after the
insertion of additional components. Such a case can again be found during
the composition of the World Robot Summit assembly challenge, where the

58

5.1 Assembly

middle wheel needs to be pushed down to create tension on the rubber
band, and is also described in Section 7.1.

For both examples additional relations need to be added to the CAD model
instead of changing the existing ones, since most CAD environments do not
allow temporal changes to their joints or constraints. After hiding the already
existing relations representing the initial state, new relations representing
the end state should be placed between the same components with the
final offset. The old connection will be replaced by the new relation using
a snapshot. See Section 5.1.2.2 for the creation of the individual snapshots
using the Inventor plugin.

Adding new parts after specific changes Some components should not
be placed by the robots until a specific relation was changed to its final
position. An example for such a case can be found during the execution of
the BDU, where a pre-satisfied screw needs to be fixated before the rubber
band covers the access to the screw’s head. More information is available
in Section 7.1. In this case no additional joint or constraint needs to be
added, only a correct snapshot creation is necessary, as discussed in Section
5.1.2.2.

5.1.2.2 Creation of snapshots

To create a snapshot, all to this snapshot not relevant parts and all their
relations must be suppressed, meaning made hidden inside the CAD file.
Parts might be irrelevant because they are added during a later snapshot.
Relations might be irrelevant because they are also added later on or because
they either have changed or will change. All the needed components and
their connections to other needed parts should be unsuppressed, visible
inside the three-dimensional representation. Then, using the Inventor plugin,
a new snapshot can be created using the UI interface described in Section
6.1.2.

59

5 Concept

Every assembly needs at least one snapshot If there is no part that needs
to be moved and no relation that needs to be changed after the insertion
of an additional component to the assembly or after being connected with
another object, the assembly does not need any further manipulation. Only
a single snapshot of the full assembly, with all relevant components and
connections unsuppressed, needs to be created using the Inventor plugin.

Changes of relations between the same parts There are many examples
of relations that need to be changed during the BDU assembly, evaluated in
Section 7.1. Most of them are pre-satisfied relations from parts that come
pre-assembled, where for example a screw meant for fixing a wheel on
a rod is already inserted in the wheel by the manufacturer or a previous
assembly process. The only thing for the assembly left to do with said screw,
is screwing it in further once the wheel is inserted onto the shaft.

One of the connections that need to be changed along the assembly process
of the BDU is a subassembly in form of a spinning wheel on a bolt. This
subassembly needs to be pushed down along a oblong slot after the rubber
band is inserted around the other two wheels. This way, external pressure
using this third wheel being pushed down can create tension on the belt. A
more detailed explanation of this scenario can be found in Section 7.1.

Depending on the assembly all changes can be put in place using a two
snapshots. Alternatively, an individual snapshot for each change can be
created. Assuming an example with only one moving part, the first snapshot
would contain the connection restricting the moving component to its
initial insertion point. The second snapshot would no longer contain the
first relation of the movable component, but rather the second connection,
constraining it to its final position in the assembly.

Adding new parts after specific changes It is possible for a component,
once inserted, to block the access to another part. For example in the BDU
a screw inside one of the three wheels can only be accessed as long as the
rubber band is not placed. Assuming the screw was not pre-assembled but
has to be inserted, the assembly would be defined by only two snapshots.
The first one would contain the insertion of the screw, the second one the

60

5.1 Assembly

placement of the rubber band. A further expansion on this example can be
found in Section 7.1.
If a placed component blocks the access to parts that need to be changed
because they move or they need to be tightened, the change must happen
in the snapshot before adding the new component.

Blocked access to parents or to new children As mentioned in Section
5.1.1.5, when talking about when not to create a subassembly, the example from
Section 7.1 is mentioned. In that case, a specific segment of the assembly
contains stacked components fixated together through many radially ar-
ranged equidistant screws between the two most outer components a and
b. While building the assembly the time arrives, where part a needs to be
placed. Since b would be placed later than a, the screws would point from a
to b or vice versa. This means that either the access to the head of the screw
or the access to the nut closing the other side of the screw is blocked. One
solution to this problem would be to add a snapshot containing only a, b,
all parts in between and the screws used to fixate the components before
any other snapshot. An alternative solution presented in form of a future
expansion in Chapter 8 is the addition of nested assemblies.

5.1.3 Model analysis

The following section revolves around model analysis and data representa-
tion after extraction from Inventor. The presented class structure is used for
the plan generation while also including the generated plan itself.

5.1.3.1 Data representation

The definition of the data model for the knowledge base resides in a base
file, assembly base.owl, and was developed as part of this work. A second
knowledge file regarding the plan is automatically generated by instantiating
the classes and properties defined in the base to individuals with attributes
using the presented Inventor plugin. A graphical representation of the base

61

5 Concept

Pose

- position: Position
- orientation: Orientation

Box

- min: Position
- max: Position

Position

- x: double
- y: double
- z: double

Orientation

- x: double
- y: double
- z: double
- w: double

Relation

- screw: bool
- presatisfied: bool
- distance: double
- childPose: Pose
- parentPose: Pose

Part

- grounded: bool
- grabPose: Pose
- boundingBox: Box

Action

- index: int
- undo: bool
- connection: Connection

Plan

- actions: Action[]

CollisionMatrix

- rows: CollisionRow[]

CollisionRow

- collisionFrom: Part
- collision: Collision[]

Collision

- colliding: bool
- collidesWith: Part

Assembly

- snapshots: Snapshot[]
Snapshot

- index: int
- collisionMatrix: CollisionMatrix
- connections: Connection[]
- groundedPart: Part

Connection

- changed: bool
- inside: bool
- child: Part
- parent: Part
- relations: Relation[]
- relatedConnections: Connection[]

1 1..* 1

1 0..*

1

0..*

1
1..*

2

1

1

1

1

2

1

1

2

1

1..*

11

1

1

1
1..*

2

Figure 5.11: Class diagram representation of the data structure of the concept.

classes is presented in Figure 5.11 in form of a Unified Modeling Language
(UML) class diagram.

5.1.3.2 Data structure

The data structure represented in Figure 5.11 can be categorized into the
following two aspects, where some information is used in both data models.
The class names used in the upcoming paragraphs also reference to the
names used in Figure 5.11.

Analysis of CAD model data The topmost class representing the full as-
sembly is named Assembly, which contains one or more so called Snapshots.
Guidance on how to create snapshots can be found in Section 5.1.2.2. Each

62

5.1 Assembly

snapshot includes one or more Connections and a grounded part as a start-
ing point for the assembly. A snapshot also contains a collision matrix A
denoting in a binary manner the existence of collisions between all parts,
such as

A =

a00 · · · a0j
...

ai0 · · · aij

 | aij =

{
1, if part i is in collision with part j
0, otherwise.

Parts are the components of the assembly and contain information like a
grasp pose, a bounding box and the binary information on whether they
are grounded or not. There can only be exactly one connection between the
same two components, so connections also contain references to the parent
and child components and a list of one or more relations between the same
parent and child. Relations are the joints or constrains placed between two
components, have a distance, also called offset, contain the transformation
between parent and child, can be of a screwing type and / or pre-satisfied.
A Pose contains both Orientation and Position. Boxes are simplified to be
the bounding box inside the local coordinate system of the component
consisting of six values, referencing positive and negative distances on all
three axes from the center of mass of the object.

Generation of plan data In regard to plan generation, some data needs
to be extracted from the CAD model to enrich the graph-like structure
presented by the combination of parts using connections. The full extracted
information is then converted to a sequential plan of actions with a fixed
order. A detailed explanation on plan generation can be found at Section
5.1.4.

5.1.3.3 Data calculation

To extract the necessary information about the model, the Inventor API,
described in Section 2.9.1, is used. The following four sections contain
explanations about what information is kept how and where by Inventor.

63

5 Concept

Parts For each existing component inside the assembly, a individual part
instance is initialized. The component in the CAD file, that is marked in
Inventor grounded, is the only part with that property set to true. All
others are initialized as not grounded. The grasp pose is either defined by
the user or using a heuristic approach as the center of each component’s
local coordinate system, as explained in Section 5.1.1.1. The position of
the component’s actual grasp pose is calculated as the three-dimensional
distance from the center of mass to the user defined or heuristicly reached
grasp position. The actual grasp orientation is given by the rotation of
the parts local coordinate system, which is also defined by the user grasp
pose. The API property RangeBox inside an occurrence is defined in absolute
coordinates. Therefore, the bounding box is calculated by subtracting the
center of mass from the minimum value of the RangeBox or vice versa by
subtracting the maximum value from the center of mass.

Connections For each pair of parts connected by one or more joints or
constraints, a connection is added to the current snapshot. Who of the two
involved components is the parent and who is the child, is defined by the
correct placement of the joint or constraint, as described in Section 5.1.1.
Changes from one snapshot to the next are denoted by the property named
changed. It is identified using the algorithm IdentifyAffected described in
Section 5.1.4.10.

Only partially implemented is the use of the list relatedConnections. If a
connection is referenced as related to other connections, it means that
all related connections need to be satisfied before the connection to their
common child can be satisfied. The property inside is an example for a
possible future expansion of handling multi-contact components using
related connections and is further expanded upon in Section 7.1.5 and in
Chapter 8 as a future expansion. Multi-contact connections make only sense
if some sort of deformable object is present, like a belt. In that case the
property denotes whether the parent is on the inside or the outside of such
a component, which can be used to automate the insertion sequence of
deformable components.

64

5.1 Assembly

Relations All joints or constraints with the corresponding parent and child
are added as relations to each connection. Whether a relation is pre-satisfied
or representing a screw is determined by the user. The transformation be-
tween parent and child after being placed inside the assembly is encoded
using the child’s pose and the parent’s pose. The distance property refer-
ences the Euclidean distance between the related surface’s center points and
is presented by Inventor separately from the transformation.

Collisions To find collisions inside a Inventor assembly file, the analyze
tool described in Section 2.9.1 is used via the API. The resulting collisions
are not the expected outcome since Inventor only identifies overlapping
components as collisions. Therefore the only results are delivered for threads
in nuts and on bolts and for mistakes in the assembly, since no components
surface should intersect with any other surface. To get the needed type
of collision, meaning which component is in contact with which component, a
heuristic is chosen, where intersecting bounding boxes are considered as
collisions.

5.1.4 Plan generation

Based on the information, rules and conditions presented until now, a fully
automatic action sequence generation can be applied to a collection of
snapshots representing an assembly, which results in a plan. As previously
mentioned in more detail, this plan represents of a sequential list of actions
leading to a successful assembly. The plan extraction is presented in form
of a set of algorithms followed by detailed descriptions.
The generated action plan is then interpreted for a specific scene, which
consists of the previously mentioned dual-arm robotic setup and a table
for the assembly components. Depending on the scenario and the given
robot skills, interpretations with as many arms as given by the system can
be implemented. More on this topic can be found in Section 5.1.5.

For readability reasons, compactness and better understanding, the main
algorithms are split up into different smaller algorithms, which are denoted
as function calls inside other algorithms.

65

5 Concept

5.1.4.1 Generate plan

inputs : S . . . ordered list of all snapshots of the assembly
output : π . . . sequential plan of actions of the assembly

1 GetPlan (S)
2 initialize z as null;
3 foreach snapshot s ∈ S do
4 initialize A, T as ∅;
5 g ← s.groundedPart;
6 A ← GetExecutionOrder(g, A, s, T, null);
7 if s = first snapshot then
8 append execution order A to π;
9 else
10 s ← FindDifferences(s, z);
11 U,R ← IdentifyAffected(A, s, z);
12 π ← AddAffected(U, R, π);

13 z ← s;

14 return π;

Algorithm 5.2: Get the plan for the full assembly

The general workflow of extracting a full plan is represented in Algorithm
5.2. The expected input consists of a list of all snapshots S representing the
whole assembly sorted by their creation order. The output is the final plan,
an ordered list of actions π needed to successfully finish the assembly.

After the initialization of needed local variables, an empty list of actions A
and an empty list of already traversed parts T, each snapshot is analyzed.
For each snapshot s, the grounded component g is identified. Then the
correct execution order of actions A is extracted by stepping through the
assembly connection graph, starting from the grounded component (see
Section 5.1.4.2).

If s is the first snapshot in S, then all actions in A should be appended to
the output π.
Otherwise, differences between the current snapshot s and the previous

66

5.1 Assembly

snapshot, given by changes in relations or components, need to be identified
(see Section 5.1.4.9). Actions inside the current execution order A, that are
affected by the differences, have to be found (see Section 5.1.4.10) and added
to the plan π (see Section 5.1.4.11). The affected differences are two lists of
lists of affected connections separated in actions to undo U and actions to
redo R. Each list in U and R corresponds to a group of actions arising from
an individual change between snapshots.

5.1.4.2 Get execution order

inputs : p . . . root part of the search,
s . . . current snapshot,
T . . . already traversed parts,
A . . . list of actions representing the plan,
h . . . halting part for recursive parent handling

output : A . . . modified list of actions representing the plan

1 GetExecutionOrder (p, s, T, A, h)
2 if h 6= null and p = h then return A;
3 R ← get all connections of p ∈ s;
4 G ← Group(R, s);
5 C ← Sort(G);
6 P̂, Ĉ ← GetParentsAndChildren(p, C, A);
7 append p to T;
8 A ← handleParents(P̂, s, T, A, p);
9 foreach child c ∈ C do
10 if ¬ ShouldWait(c, A) and c.parent = p then
11 append new action pointing at c to A;

12 A ← handleChildren(Ĉ, s, T, A, h);
13 return A;

Algorithm 5.3: Get execution order of snapshot actions

Algorithm 5.3 describes the extraction of the execution order of an individual
snapshot. It is the most relevant step of the plan extraction for single-

67

5 Concept

snapshot assemblies, since in that case the output represents to the full plan.
The inputs for this sub-algorithm are a root part p, which is the starting
point of the graph search, the current snapshot s and a list of root parts T
already traversed in previous recursive calls of this algorithm. The output
is a list of actions sorted by the correct execution order inside the current
snapshot.

The component h represents a halting point for some of the recursive
expansions of this algorithm. When h exists and is equal to p, the halting
point is reached for the current branch and this recursive execution is
interrupted.

All connections R of the initial root part p inside the s need to be found. This
includes connections with both p as parent and as child. The connections
in R are grouped by collisions (see Section 5.1.4.3). The resulting groups G
are a list of lists of connections. Each list in G corresponds to components
that are in collision with each other. Within these groups the connections
are then sorted by their largest relation offset and finally all groups are
concatenated to a single list of connections C (see Section 5.1.4.4).

For the recursive expansion of the algorithm to all nodes, it is important to
split child parts of p and their parent parts into separate lists (see Section
5.1.4.5), since they must be handled differently, where P̂ contains parents
and Ĉ contains child components. At this point the root component p can
be viewed as traversed and should be added to T. Before adding the list
of sorted connections C to the output, all parents of p need to be handled
(see Section 5.1.4.7). Handling parents means traversing the graph from a
different root point until it reaches the original component connecting the
parent subgraph with the main branch. This is defined in the halting point h,
which is null, until a parent component needs to be handled. Algorithm 5.8
identifies the connecting component between the sub and the main branch
and passes it to the recursive call of Algorithm 5.3 as h.

After handling the parent components, for each connection c in C, it is
important to check if c should not wait for related connections (see Section
5.7) and if the parent component of c is equal to p. If both are true, a new
action pointing to c is added to the output A. Finally, all children of p need
to be handled (see Section 5.1.4.8).

68

5.1 Assembly

5.1.4.3 Group connections by collision

inputs : C . . . connections that need to be grouped by collisions,
s . . . current snapshot

output : G . . . groups of colliding connections

1 Group (C, s)
2 add all connections ∈ C to pool;
3 add first element e of pool to a new group Ḡ;
4 remove e from pool;
5 while length of pool > 0 do
6 e ← get next pool element;
7 if ∃ collision ∈ s between e and any element of Ḡ then
8 add e to Ḡ and remove from pool;

9 if all elements of pool are checked once then
10 if no changes in pool after all elements checked once then
11 add Ḡ to G and clear Ḡ;
12 add first element of pool to Ḡ;
13 else if no changes in pool after all elements checked twice then
14 add pool to Ḡ and clear pool;
15 add Ḡ to G and clear Ḡ;

16 return G;

Algorithm 5.4: Group connections by collision

Algorithm 5.4 describes how to group connections based on collisions of
their parent or child components. The inputs are connections C that need
to be grouped by collisions and the current snapshot s. The output for this
sub-algorithm are groups G of connections that are in collision with each
other.

All connections C, that should be grouped by collisions, are added to the
pool during initialization. Additionally, an empty list of groups G needs to
be set up. The first element of the pool is added to a new group Ḡ.

As long as pool contains elements, the following algorithm loop will not
stop. If the next element e in the pool is in collision with any element of Ḡ,

69

5 Concept

then e is added to Ḡ. As a side node, the element after the last one in pool
is the first one again.

If e is the last element in pool, then the following subroutine is entered. If
pool did not change after each element was checked once, Ḡ is added to G,
Ḡ is cleared and the first element of pool is added to the new Ḡ. Else, if pool
did not change after each element was checked twice, all elements in pool
are added to Ḡ, Ḡ is added to G and both Ḡ and pool are cleared.

5.1.4.4 Sort connections within groups

inputs : G . . . groups of connections in collision
output : S . . . list of sorted connections

1 Sort (G)
2 foreach group g ∈ G do
3 initialize ∅ list of D connection-distance tuples;
4 foreach connection c ∈ g do
5 d ← get largest distance of relations of C;
6 append tuple of c and d to D;

7 sort D by smallest distance from each tuple;
8 append connection of each tuple ∈ D to S;

9 return S;

Algorithm 5.5: Sort connections within groups

For Algorithm 5.5 the inputs are the groups of connections G that are in
collision. These connections are sorted by the distance of their most far away
relation and then concatenated into a single list of sorted connections S,
which is the output of the algorithm.

Each connection contains references to relations, which themselves contain
distances between parent and child. These longest distance of all relations
inside a connection is used. Then the connections are sorted in-place by this
distance and afterwards added to the output S.

70

5.1 Assembly

5.1.4.5 Get parents and children list

inputs : p . . . root part not to append,
C . . . sorted connections,
A . . . list of already handled actions

output : P̂ . . . parents list,
Ĉ . . . children list

1 GetParentsAndChildren (p, C, A)
2 initialize Ĉ, P̂ as ∅;
3 foreach connection c ∈ C do
4 if ¬ ShouldWait(c, A) then
5 if c.child /∈ Ĉ then
6 append c.child to Ĉ;

7 B ← connections where child = c;
8 foreach connection d ∈ B do
9 if d.parent 6= p and d.parent /∈ P̂) then
10 append d.parent to P̂;

11 return P̂, Ĉ;

Algorithm 5.6: Split children and their parents into separate lists

Algorithm 5.6 describes the procedure of separating children components
and their parent parts of the sorted connections into separate lists. The
inputs are the root part p that should not be appended to any of the
lists, a list of sorted connections C and a list of already handled actions
A representing the plan. The outputs are a list of parents P̂ and a list of
children Ĉ connected to p.

Separate and empty lists for children Ĉ and their parents P̂ must be initial-
ized. For each connection c in C, it needs to be checked if c should wait for
related connections (see Section 5.7). If that is not the case, the part of the
connection that is not p needs to be added to one of the lists Ĉ or P̂. If the
part in regard is the child of C, it must be added to Ĉ. If the component
is the parent, it must be added to P̂. For each connection d where c is the

71

5 Concept

connections child component, if the parent component of d is not p and also
not already in P̂, then it is added to P̂. On the other hand, if the child object
of c is not already in Ĉ, it is added to Ĉ.

5.1.4.6 Should wait for dependent connections

inputs : c . . . connection that is checked for dependencies,
A . . . already handled actions

output : true or f alse

1 ShouldWait (c, A)
2 foreach connection r ∈ c.relatedConnections do
3 initialize h as f alse;
4 foreach connection a ∈ A do
5 if r ∈ a.connection.relatedConnections then
6 h ← true;

7 if h = f alse then return true;

8 return f alse;

Algorithm 5.7: Should wait for related connections

The check, if all combined relations are already handled, is described in
Algorithm 5.7. The inputs are the connection c that needs to be checked and
a list of already handled actions A. The output is either true or f alse.

Each connection contains at least one relation, which can reference to a set
of combined relations. These need to be handled, before their common child
can be traversed. A connection counts as already handled if it is part of A.

5.1.4.7 Handle parents

Algorithm 5.8 represents the process of finding the correct execution order
for parent components. The inputs are the current parents P which need
to be handled, the list of connections C from which P was extracted, the
current snapshot S, a list of already traversed parts T, the list of actions

72

5.1 Assembly

inputs : P . . . parents that will be used to find top-most parents,
S . . . current snapshot,
T . . . already traversed parts,
A . . . list of actions representing the plan,
r . . . root part of current iteration step

output : A . . . modified list of actions representing the plan

1 HandleParents (P, S, T, A, r)
2 foreach parent p ∈ P do
3 p̂ ← find top-most parent of p that /∈ T;
4 C ← connections where parent = p;
5 foreach connection c ∈ C do
6 ĉ ← c.child;
7 D ← connections where child = ĉ;
8 foreach connection d ∈ D do
9 if d.parent = r then
10 A ← GetExecutionOrder(p̂, S, T, A, ĉ);

11 return A;

Algorithm 5.8: Handle parents for correct execution order

A representing the full plan and the current root part r for which the
connections are currently being handled in Algorithm 5.3. The output is the
expanded list of actions A.

The main idea of handling a parent connection is to find the top-most parent
and then to recursively run the execution order algorithm for the top-most
parent’s sub-tree until it reaches the halting point. The two inner loops are
used to find this halting point, defined as the meeting point of the main
graph and the sub-branch.

For each parent p in P, the top-most parent p̂ that is not in T is found. This
will be the new root part for the next recursive call of GetExecutionOrder,
defined in Algorithm 5.3). Next, all connections C where p is the parent
component need to be found. Each child ĉ of connection c in C needs to be
identified and with it all connections D where ĉ is the child component. For

73

5 Concept

each connection d in D, if d is equal to the root component r, the correct
halting point is found as ĉ and the recursive execution can continue, starting
a sub-branch search.

5.1.4.8 Handle children

inputs : C . . . children that will be root parts for recursive calls,
s . . . current snapshot,
T . . . already traversed parts,
A . . . list of actions representing the plan,
h . . . halting part for recursive parent handling

output : A . . . actions sorted by execution order

1 HandleChildren (C, s, T, A, h)
2 foreach child c ∈ C do
3 if c /∈ T then
4 A ← GetExecutionOrder(c, s, T, A, h);

5 return A;

Algorithm 5.9: Handle children for correct execution order

Algorithm 5.9 describes how to continue the recursive execution order
extraction for child parts of the root component of Algorithm 5.3. The inputs
are the current children C which need to be handled, the current snapshot
s, a list of already traversed parts T, the list of actions A representing the
full plan and the current halting part h. The output is the expanded list of
actions A.

For each child c in C, if c is not in T, the recursive call of GetExecutionOrder,
defined in Algorithm 5.3), is run with c as the new root part.

If the current search is on the main branch with the assembly’s grounded
part as root component, h is null. Otherwise, h is the connecting component
between the main and the sub-branch, where the sub-branch search is based
on a different root component than the assembly’s grounded part. The latter
situation means, that Algorithm 5.8 was called and currently a subassembly
is being handled.

74

5.1 Assembly

5.1.4.9 Find differences between snapshots

inputs : s . . . current snapshot,
z . . . previous snapshot

output : s . . . current snapshot with changes

1 FindDifferences (s, z)
2 foreach part p ∈ s do
3 if p /∈ z then
4 foreach connection c regarding p do
5 c.changed ← true;

6 foreach connection c ∈ s do
7 if c has different relations compared to equivalent ∈ z then
8 c.changed ← true;

9 return s;

Algorithm 5.10: Find differences between snapshots

To find the differences between two snapshots, Algorithm 5.10 can be used.
The inputs are the current snapshot s and the previous snapshot z. The
output is the current snapshot s with changes marked inside the connections
themselves. This algorithm manipulates the current snapshot by setting the
property changed for each modified connection to true.

Two situations result in a connection being marked as changed. Some com-
ponents might appear, while some connections might have changes in their
relations.

For each part p in s, if p is new, meaning not in z, the property changed
needs to be set to true for all connections of s that reference p as either
parent or child.
For each connection c in s, if c references different relations than the corre-
sponding connection in the previous snapshot z, changed should be set to
true for c.

75

5 Concept

5.1.4.10 Identify affected connections

inputs : E . . . sorted execution order,
s . . . current snapshot,
z . . . previous snapshot

output : U . . . affected connections in form of undos,
R . . . affected connections in form of redos

1 IdentifyAffected (E, s, z)
2 initialize Û, R̂ lists of connections as ∅;
3 initialize U, R lists of lists of connections as ∅;
4 foreach connection c ∈ s do
5 d ← counterpart of c ∈ z;
6 if c.changed then
7 if length of R̂ > 0 then
8 append R̂ to R, append Û to U and clear Û and R̂;

9 append c to R̂;
10 if ∃ d then append d to Û;
11 else append ∅ to Û;

12 else if length of R̂ > 0 then
13 if ∃ d then
14 if max offset of c > max offset of d and (c.parent =

d.parent or c.child = d.child or c.parent = d.child or
c.child = d.parent) then

15 append c to R̂;
16 append d to Û;

17 else append R̂ to R, append Û to U and clear Û and R̂;

18 else append c to R̂, append ∅ to Û;

19 return U,R;

Algorithm 5.11: Identify affected connections

After having identified all differences between snapshots and marked them
as changed connections inside each snapshot, it is important to identify all

76

5.1 Assembly

connections that are affected by these changes. These connections represent
all actions necessary in order to satisfy the changes. Algorithm 5.11 describes
this procedure. The inputs are the sorted execution order E of connections,
the current snapshot s and the previous snapshot z. The outputs are two
lists of lists of connections separated in actions to be undone U and actions
to be redone R.

The nesting of lists in a list is used to distinguish between related sequences
of affected connections. Each element in U and R is a list of affected connec-
tions Û and R̂ respectively, which together symbolize all actions necessary
to satisfy a individual change in s.
It is important to keep separate lists for undos Û and redos R̂, since actions
that need to be undone are from the previous snapshot and redos are from
the current snapshot. This means that the relations could be different and
must be handled separately.
Empty lists of connections for undos Û and redos R̂ and need to be initial-
ized, as well as empty lists of lists U and R.

For each connection c in s the property changed of c can either be true or
f alse, which leads to the following two separations.

If c did change, meaning the property changed is set to true, the following
part of the algorithm is entered. If R̂ contains any elements, then both R̂
and Û need to be appended to U and R respectively and R̂ and Û need to
be cleared.
With now in any case empty lists R̂ and Û, c is added to R̂ and the cor-
responding counterpart in z is appended to Û, if it exists. Else, an empty
element is added to Û. Without it, the lists of undos and redos have different
lengths, which would need to be taken into consideration in this algorithm
and in Algorithm 5.12.

Else, if c did not change but R̂ contains any elements, a different part of the
algorithm is entered.
If the counterpart of c does not exist in z, then c is appended to R̂ and an
empty element is added to Û. If it does exist, the following considerations
are taken into account. If the maximal offset of the relations in c is greater
then the maximal offset of the relations in d and either parent or child of c is
equal to either parent or child of d, then c and d should be added to R̂ and

77

5 Concept

Û respectively. Else the current lists R̂ and Û are finished and need to be
added to R and U respectively. Afterwards R̂ and Û need to be cleared.

5.1.4.11 Add affected connections

inputs : U . . . affected undos,
R . . . affected redos,
π . . . list of actions representing the plan until this point

output : π . . . list of actions representing the plan including changes

1 AddAffected (U, R, π)
2 for i← 0; i < length of R; i← i + 1 do
3 Û ← ith element of U;
4 R̂ ← ith element of R;
5 append each connection ∈ Û to π in inverse order if ¬ ∅;
6 append each connection ∈ R̂ to π;

7 return π;

Algorithm 5.12: Add affected connections to plan

Algorithm 5.12 presents how to append the affected connections to the
current plan. The inputs are the affected undos U, the affected redos R and
a list of actions A representing the plan until the previous snapshot. The
output is the modified list of actions A extended by the affected changes of
the current snapshot.

For each list of list of connections U and R, each list of connections Û and
R̂ is handled. First, all elements of Û are added to A in inverse order. Then
R̂ is appended to A.

5.1.5 Plan interpretation

The resulting sequence of actions can then be executed by all different
kinds of bin-picking-esque robotic setups, as long as the given skill sets of
each robot allow it to pick up and place down all involved components.

78

5.1 Assembly

The following interpretation is formulated around the assumption, that the
system has two arms with generic two-finger grippers.

One of the major challenges for such an assembly cell is gravity. It forces
some components to move after they are released by the robot, if they are
not held in place by other components or do not fit seamlessly into their
inserted slot. Also orientation is important and might need to be changed
for parts at some point during the assembly. A more detailed description
of a possible future expansion, in regard to building a system capable of
understanding gravity and its effects, can be found in Chapter 8.

Within this project, the plan interpretation aims to mitigate this problem by
having additional rules describing when to keep components held by an
arm and when to release the part that is currently being held. During the
general assembly, components needed to be held until there is a subsequent
component being pressed against it or a screwing relation holding every-
thing together.
That is not possible for subassembly steps, because one arm is holding the
shaft, on which the other components stack. This means that in a subassem-
bly every part is released immediately after it is placed at its final location,
since the other arm is holding the subassembly parent while the current arm
is needed for the next component. Placing a component at its final location
limits the situations in which gravity affects the assembling process, but
it does not prevent it. To prevent any movement of the placed component
after releasing it, the system would need to understand how a specific set
of components interact with each other while under the effect of gravity,
which is part of future expansions in Chapter 8.

After screwing a component into place, both the screw and all fixed compo-
nents can always be released.

Please note, that bold and italic commands in the following algorithms, in-
cluding grasp, insert, screw, unscrew, shift and release, represent elementary
skills. They are known to the robot and known to SkiROS. These skills are
discussed in more detail in Section 5.1.6.1.

79

5 Concept

inputs : O . . . ontology containing the plan

1 Assemble (O)
2 decide on main arm r1 and secondary arm r2;
3 π ← read plan of actions from O;
4 z ← read user defined assembly location from O;
5 ExecutePlan(π, r1, r2, z);

Algorithm 5.13: Assemble full sequence plan

5.1.5.1 Assemble

The interpretation of the plan is presented in Algorithm 5.13 and has only
the Ontology O as input.

The workflow starts with the general decision about which is the main arm
r1 and which is the secondary arm r2. If all arms are equal, the choice of
main and secondary arm can be random, otherwise it might be important
to choose the more skilled robot arm as the main one. Next, the plan π,
given in form of a series of actions, is read from the ontology. SkiROS loads
the ontology files when starting the system makes the knowledge available
through the world model. The full plan can be found by looking for the
object with the class type plan using predefined functions of the SkiROS
framework to access the world model. Additionally, the pre-defined position
of grounded component is requested from the world model. This position
is defined by the developer in a specific ontology, together with the scene
setup including the robots, and is further described in Section 6.2.6.
And finally, the plan gets executed (see Section 5.1.5.2).

5.1.5.2 Execute plan

The method of extraction of the entire plan can be seen in Algorithm 5.14.
The inputs of the system are the plan of actions π, the main robotic arm r1,
the secondary robotic arm r2 and the pre-defined position for the grounded
component. It is important to keep track of three issues: which arm is

80

5.1 Assembly

inputs : π . . . plan of actions to execute,
r1 . . . main robot arm,
r2 . . . secondary robot arm,
z . . . pre-defined assembly location

1 ExecutePlan (π, r1, r2)
2 initialize r2,l as null, xl as null, l as null;
3 Keep track of which arm holds what part in H;
4 Keep track of the grounded parts G;
5 Keep track of subassembly parts S;
6 foreach action a ∈ π do
7 if ¬ l.undo and a 6= last ∈ π then
8 n ← action after a ∈ π;
9 if a.undo and ¬ n.undo and a.connection.parent =

n.connection.parent and a.connection.child =
n.connection.child then

10 S, G, r2,l, xl ← ExecuteAction(a, l, S, G, r1, r2, r2,l, xl,
H, true)

11 if a.undo or ∀ a.connection.relations @ relation.presatis f ied
then

12 q ← a.parent;
13 if q.grounded and q /∈ G then
14 G ← HandleGrounded(a, G, r1, z)

15 S, G, r2,l, xl ← ExecuteAction(a, l, S, G, r1, r2, r2,l, xl, H,
f alse);

16 else
17 S, G, r2,l, xl ← ExecuteAction(a, l, S, G, r1, r2, r2,l, xl, H,

true)
18 l ← a;

19 go to home position with both arms r1 and r2;

Algorithm 5.14: Execute full plan

holding what part, all parts G connected to grounded components and all
subassembly parts S.

81

5 Concept

For each action a in π the following aspects need to be considered. If a
previous action l and a next action n exist for a, l and n are not an undo,
but a is, and the parent and child of a and n are equal, this means that the
current step is an undo which gets redone in the next action. In that specific
case a is skipped and n is interpreted as a shift skill (see Section 5.1.5.3). For
more information about each skill refer to Section 5.1.6.1.
If a is either undo or its connection does not contain any relation that
is presatis f ied, the action a gets executed (see Section 5.1.5.3), since also
presatis f ied relations might need to be undone. Otherwise, the action gets
skipped, since presatis f ied connections do not need to be executed (see
Section 5.1.5.3). If the parent of a is the grounded component and is not
in G, an action placing the grounded component needs to be run before
executing a (see Section 5.1.5.4).

After all actions in π are executed, the assembly is finished. Both robot arms
release the parts they are still holding and return to their home position.

5.1.5.3 Execute action

Algorithm 5.15 presents how to handle an action, which includes releasing
components if necessary, identifying main and secondary arm for the current
action and deciding whether to execute or to skip a skill. The inputs are the
action a that is being executed, the action l previous to a, a list of current
subassembly parts S, a list of grounded parts G, the main robot arm r1
and the secondary robot arm r2, a reference to a non-acting arm r2,l of the
previous action, the component xl grasped in the previous step and a binary
value whether to skip action a or not. The outputs of the algorithm are the
list of grounded parts G expanded by the placed part, the list of current
subassembly parts S, the non-acting robot arm r2,a of the current action
execution and the component x that was grasped during this iteration.

A list M is used to keep track of skipped components with unsupported
multi-contact and must be initialized as empty. First, the part x that needs
to be grasped and the part y that needs to be held are found (see Section
5.1.5.5). Then the previous action execution is checked on whether some
components can be released (see Section 5.1.5.6). It is important to then
identify the acting and the non-acting arm. The acting arm will be in contact

82

5.1 Assembly

inputs : a . . . action to execute,
l . . . previous action,
S . . . list of current subassembly parts,
G . . . List of grounded parts,
r1 . . . main robot arm,
r2 . . . secondary robot arm,
r2,l . . . previous non-acting arm,
xl . . . previous component to grasp,
H . . . which arm is holding what part,
skip . . . whether to skip action a or not

output : S . . . modified list current of subassembly parts,
G . . . modified list of grounded parts,
r2,a . . . current non-acting robot arm,
x . . . component to grasp

1 ExecuteAction (a, l, S, G, r1, r2, r2,l, xl, H, skip)
2 initialize M list of components as ∅;
3 x, y, G, S ← GetParentAndChild(a, G, S);
4 CheckReleasePrevious(a, l, S, r1, r2, xl);
5 r1,a, r2,a ← IdentifyArms(x, y, r1, r2, H);
6 if ¬ skip then
7 c ← a.connection;
8 C ← c.relatedConnections;
9 if C = ∅ and c.parent /∈ M and c.child /∈ M then
10 ExecuteSkill(a, l, G, x, y, r1,a, r2,a, H);

11 else
12 m ← find common child of C;
13 if m /∈ M then append m to M;

14 CheckReleaseCurrent(a, l, S, r2,l);

15 return S, G, r2,a, x;

Algorithm 5.15: Execute individual action

with x and the non-acting arm will be holding y.
If a should not be skipped, then the necessary skills for the execution of
a are started consecutively (see Section 5.1.5.8). If the connection of a has

83

5 Concept

related connections, then the execution is also skipped, since multi-contact
relations are not handled yet and are part of future improvements (see
Chapter 8). Following actions could depend on such a skipped component,
which could lead to failure during the rest of the assembly. The implemented
workaround for this issue consists of finding the common child of all related
connections of a and adding them to a list M. This adds the condition, that
neither parent nor child of any connection in an action can be in M, for
the action to be executed. Additional workarounds for this issue, except
for adding skills to support multi-contact actions, include removing multi-
contact relations from the CAD model or stopping the assembly process
after the first appearance of a multi-contact action.

The final step is checking if the execution of a allows letting go with any
arm (see Section 5.1.5.6).

Please note that the BDU example uses the rubber band only as a child
component, meaning that there are no following actions adding components
that dependent on the rubber band. The only following action is shifting the
position of a subassembly in order to create pressure on the rubber band. If
there is no rubber band, this action can still be executed, but the assembled
BDU will not function properly without the rubber band in place.

5.1.5.4 Handle grounded part

Handling the grounded component of the assembly means executing a series
of skills to place the component on a pre-defined location, as described in
Algorithm 5.16. The inputs consist of the action a that is being executed, a
list of grounded components G, a robot arm R and the pre-defined position
for the grounded component. It can be any robotic arm of the system that
is empty. The output of the algorithm is the expanded list of grounded
components G.

Initially, parent P of the connection in a is added to G. If placing the
grounded component is needed, P must be grasped by arm R and then
inserted onto the pre-defined assembly location. Afterwards, R should
release of part P.

84

5.1 Assembly

inputs : a . . . action to execute,
G . . . list of grounded parts,
r . . . robot arm,
z . . . pre-defined assembly location

output : G . . . modified list of grounded parts

1 HandleGrounded (a, G, r, z)
2 p ← a.connection.parent;
3 append p to G;
4 if placing grounded component is needed then
5 Grasp p with r;
6 Insert p onto z using r;
7 Release with r;

8 return G;

Algorithm 5.16: Handle grounded component during assembly interpretation

Placing the grounded component is not necessary for this work, since the
simulation starts with the grounded component already at the pre-defined
assembly location.

5.1.5.5 Get parent and child components

Algorithm 5.17 describes how to identify whether the parent or the child of
an action is the part that needs to be grasped and actively moved towards
the other component. The inputs are the Action a that is being executed, a
list of grounded parts G and a list of the current subassembly parts S. The
outputs of the algorithm are the component x that needs to be grasped, the
component y to which x should be attach to, the extended list of grounded
parts G and the modified list of current subassembly parts S.

To identify which part needs to be actively moved and which part needs to
be held in place or is already grounded, the indices pI and pI in G for both
the parent p and the child c of the connection in a need to be found.
If p can be identified in G and either c can not be located or cI is greater
than pI , the child c of a must be actively moved towards the parent. That

85

5 Concept

inputs : a . . . action to execute,
G . . . list of grounded parts,
S . . . list of current subassembly parts

output : x . . . component to grasp,
y . . . component to attach to,
G . . . modified list of grounded parts,
S . . . modified list of current subassembly parts

1 GetParentAndChild (a, G, S)
2 p ← a.connection.parent, c ← a.connection.child;
3 pI ← index of p ∈ G, cI ← index of c ∈ G;
4 if ∃ pI and (@ cI or pI < cI) then
5 x ← c, y ← p;

6 else if ∃ cI and (@ pI or cI < pI) then
7 x ← p, y ← c;

8 else
9 if p /∈ S then append p to S;
10 if c /∈ S then append c to S;
11 return c, p, G, S

12 append x to G;
13 if S 6= ∅ then append S to G and clear S;
14 return x, y, G, S;

Algorithm 5.17: Get parent and child component from action

means x is assigned to be c and y is assigned to be p.
Else, if vice versa c can be found in G and either p can not be found or pI is
greater than cI , x becomes p and y becomes c.
Else, if neither p nor c can be found in G, the current component is part of
a subassembly. In that case, both p and c, if they are not found in G, are
respectively appended to S. Then the algorithm returns with x equal to c
and y equal to p.

In the case that p or c are in G, the component assigned to x is appended to
G. If S is not empty, which means there was an subassembly that ended up

86

5.1 Assembly

connecting to a grounded part, all components in S are appended to G and
S is cleared.

5.1.5.6 Check if arms should release because of previous action

inputs : a . . . action to execute,
l . . . previous action,
S . . . list of current subassembly parts,
r1 . . . main robot arm,
r2 . . . secondary robot arm,
xl . . . previous component to grasp

1 CheckReleasePrevious (a, l, S, r1, r2, xl)
2 if ∀ l.connection.relations ∃ relation.screw then
3 if ∀ a.connection.relations @ relation.screw or (a.undo and S 6=

∅) then
4 Release with both arms r1 and r2;

5 else if S 6= ∅ and ∃ xl and a.parent 6= xl then
6 if r1 contains xl then Release with arm r1;
7 else if r2 contains xl then Release with arm r2;

Algorithm 5.18: Check if any arm should release from previous action

The procedure to check if there is any component from a previous action,
that can be released, is presented in Algorithm 5.18. There are no outputs
and the inputs are an action a that is being executed, the action l previous
to a, a list of current subassembly parts S, the main robot arm r1, the
secondary robot arm r2 and the component xl that was grasped in the
previous action.

If the connection of the previous action l contains any relation that is screw
and if the connection of the current action a does not contain any relation
that is screw, or a is undo and S is not empty, then both arms r1 and r2
can release what they are holding. This means a independent group of
actions is started since in an assembly all series of actions finish with screws.

87

5 Concept

Consecutive screw actions do not allow to release parts, the only exception
is during a subassembly, which is when S is not empty.
Else, if l does not contain any relation that is screw, then the following part
of the algorithm is entered. If S is not empty, meaning the current actions
are part of a subassembly, and xl exists and is not the parent of a, then the
arm that contains xl should release it, since the part is not needed for a.

5.1.5.7 Identify acting and supporting arm

inputs : x . . . component to grasp,
y . . . component to attach to,
r1 . . . main robot arm,
r2 . . . secondary robot arm,
H . . . which arm is holding what part

output : r1,a . . . acting robot arm,
r2,a . . . non-acting robot arm

1 IdentifyArms (x, y r1, r2)
2 if any arm is holding x then
3 r1,a ← arm that is holding x;

4 else
5 if any arm is empty then
6 r1,a ← arm that is empty;

7 else
8 if any arm is holding a part that is not in collision with x then
9 r1,a ← arm that is holding the with x colliding part;

10 if any arm is holding y then r2,a ← arm that is holding y;
11 else r2,a ← arm 6= r1,a;
12 return r1,a, r2,a;

Algorithm 5.19: Identify acting and supporting arm

Depending on which arm is already holding what component, a acting arm
and a non-acting arm are identified using Algorithm 5.19. The inputs are

88

5.1 Assembly

the component x that needs to be grasped, the component y to which x
should be attach to, the main robot arm r1 and the secondary robot arm
r2. The outputs of the algorithm are the acting robot arm r1,a and the non-
acting robot arm r2,a. r1,a is executing the action, whereas r2,a is supporting
the action by holding components that need to be held in place during
execution.

If any arm is holding x, is empty or is holding a part that is not in collision
with x, that arm is assigned to be r1,a. If no arm is holding y, r2,a is an empty
arm that is not r1,a. Else, r2,a is the arm that is holding y.

5.1.5.8 Execute skill

Algorithm 5.20 presents the execution of individual skills of the system. The
inputs are the action a that is being executed, the action l previous to a, a
list of grounded parts G, the component x that needs to be grasped, the
component y to which x should be attach to, the acting robot arm r1,a and
the non-acting robot arm r2,a. There is no output, since an elementary skill
is repeated until success or else the execution of the whole assembly fails.

The major differentiation is initially done by investigating if a needs to be
undone.

On one hand, if a is undo but its connection does not contain any relation
that is screw, the action is skipped, since only screws need to be undone.
On the other hand, if a is undo and its connection contains any relation that
is screw, then x should be grasped by r1,a, if the arm does not already hold
the part. Also, y should be grasped by r2,a, if the arm does not already hold
the part and if y is not already in the set of grounded parts G. Afterwards,
x should be unscrewed from y using r1,a.

Else, if a is not undo, then both x and y need to be grasped, depending on
the same conditions as previously mentioned. x should be grasped by r1,a,
if the arm does not already hold the part. Also, y should be grasped by r2,a,
if the arm does not already hold the part and if y is not already in the set of
grounded parts G. If a contains any relation that is screw, then x should be
screwed into y using r1,a. Else, if l is undo, then x should be shifted within y
using r1,a. Else, x should be inserted into y using r1,a.

89

5 Concept

inputs : a . . . action to execute,
l . . . previous action,
G . . . list of grounded parts,
x . . . component to grasp,
y . . . component to attach to,
r1,a . . . acting robot arm,
r2,a . . . non-acting robot arm,
H . . . which arm is holding what part

1 ExecuteSkill (a, l, G, x, y, r1,a, r2,a, H)
2 if a.undo then
3 if ∀ a.connection.relations ∃ relation.screw then
4 if r1,a does not hold x then
5 Grasp x with r1,a;

6 if r2,a does not hold y and y /∈ G then
7 Grasp y with r2,a;

8 Unscrew x from y with r1,a;

9 else skip, since disassembly is not needed;

10 else
11 if r1,a does not hold x then
12 Grasp x with r1,a;

13 if r2,a does not hold y and y /∈ G then
14 Grasp y with r2,a;

15 if ∀ a.connection.relations ∃ relation.screw then
16 Screw x into y using r1,a;

17 else if l.undo then Shi f t x within y using r1,a;
18 else Insert x into y using r1,a;

Algorithm 5.20: Execute individual skill or set of skills

5.1.5.9 Check if arms should release because of current action

Algorithm 5.21 presents a method of checking if there is any component
to release. The inputs are an action a that was just executed, the action l

90

5.1 Assembly

inputs : a . . . action to execute,
l . . . previous action,
S . . . list of current subassembly parts,
r2,l . . . previous non-acting arm

1 CheckReleaseCurrent (a, l, S, r2,l)
2 if no arm is empty and S = ∅ and ¬ a.undo and ¬ l.undo and ∀

l.connection.relations @ relation.screw then
3 Release with r2,l;

Algorithm 5.21: Check if any arm should release from current action

previous to a, a list of current subassembly parts S and the non-acting arm
r2,l of the previous action l. This algorithm does not have outputs, since the
executed skill is repeated until success or else the execution of the whole
assembly fails.

The next action execution needs an empty arm. So if no arm is currently
empty, but S is empty, the connection of l does not contain any relation that
is screw and neither a nor l are undo, then the previous non-acting arm r2,l
should release the component it is holding, since the previous action was
not part of a subassembly and was only stacking components consecutively
face-to-face.

5.1.6 Skill execution

5.1.6.1 Skills

Skills are modular, hierarchical combinations or sequences of primitives.
The following skills are implemented in Python building upon the basic
structure presented in [3], as mentioned in Section 2.5 describing SkiROS.

The grasp skill is essential to most other skills, since components need to be
grasped before for example inserting them or screwing them into place. This
dependency is depicted in the following graphs by the first step being in a

91

5 Concept

less dark color then the other steps. It is important to note, that sometimes a
component is already grasped, because a previous action needed it to be.

Grasp This skill is is supposed to grasp a part. It can either be a component,
that was not yet grasped and is still in the kitting box, or an already
placed object. It is possible, that the performing arm is already holding
something, which is no longer needed. Because of that, every grasp action
starts with opening the gripper first. This is always safe, since the system
has determined that the arm should grab a component and for that it needs
to be empty. The second step is to move to a pose, which is assumed to
be not in collision with the object and in line with the grasp axis. The
calculation of this pose is described alongside the primitives in Section
5.1.6.2. From here on, the gripper can reach the final grasp pose with the
correct orientation by keeping its current orientation constant. Lastly, the
gripper closes after reaching the final destination. See Figure 5.12 for a
representational graph.

Open
gripper

Move to
distant
pose

Move to
exact pose

Close
gripper

Figure 5.12: Primitive structure of the grasp skill.

Insert The insertion of a component into another along a specific axis
is similar to the grasp skill, with the only difference, that the gripper
should neither be opened nor closed, since it is assumed that the correct
component is already grasped. This leaves reaching the distant pose outside
the bounding box and then moving towards the final location as the two
needed steps for the insert skill (see Figure 5.13).

Grasp
Move to
distant
pose

Move to
exact pose

Figure 5.13: Primitive structure of the insert skill with a prior grasp skill call.

92

5.1 Assembly

Screw Screwing some component into place is similar to inserting it into
another component under the assumption that the gripper is holding the
screw, with the major difference, that while reaching the exact pose, the
gripper is rotating clockwise around its own axis (see Figure 5.14).

Grasp
Move to
distant
pose

Rotate to
exact pose

Figure 5.14: Primitive structure of the screw skill with a prior grasp skill call.

Unscrew Unscrewing a component means loosening a screw, so that for
example a previously fixed component can be moved inside a slot. To achieve
this, the component needs to be grasped and then rotated counterclockwise
for a single turn (see Figure 5.15), while its screw-counterpart is also being
held. Since no components can be removed from the assembly, as dictated
by the presented guidelines, it is safe to loosen the screw by a single rotation,
which should make components loose enough for example to be shifted
inside slots. Without the inclusion of the information about the depth of the
nut’s hole or the length of the screw’s shaft, it is unsafe to unscrew further,
since that could completely undo the screw.

Grasp Undo one
rotation

Figure 5.15: Primitive structure of the unscrew skill with a prior grasp skill call.

Shift To shift a component after its counterpart was unscrewed, means
that the component is already being held by a gripper and is now loose.
The grasped component is then moved to the new exact location (see Figure
5.16). The previously unscrewed component would be screwed in place
again afterwards.

93

5 Concept

Grasp
Move to

exact new
position

Figure 5.16: Primitive structure of the shift skill with a prior grasp skill call.

Release Sometimes it is important to release components at a specific point
in time during the assembly, as described in the introduction of Section
5.1.5. Using this skill will make an arm open its gripper and then navigate
to a predefined home position (see Figure 5.17). A unused, empty arm can
block access to target locations of other arms, therefore navigating to the
home position is added, so that the empty arm moves out of the way.

Open
gripper

Move to
home

position

Figure 5.17: Primitive structure of the release skill.

5.1.6.2 Primitives

Move arm This primitive is responsible for the arm movement and repre-
sents the bridge between SkiROS and the motion planning and execution
in MoveIt!. There are two different methods of moving an arm to a tar-
get: (1) exact and (2) distant. The used method is decided by a parameter
when calling the primitive. An additional parameter allows constraining
the gripper’s pointing-direction to the current one, making it possible to
approach the current goal while keeping the same orientation as reached by
a previous move call.
The exact pose is given by the plan, whereas the distant pose is calculated.
The exact pose’s orientation is also used as distant orientation and the
distant position is calculated by intersecting the grasp pose direction vector
with a marginally bigger bounding box as the one described in Section 5.1.3,
since it is important to assure being outside the component. The distant
position of the final pose is given by this intersection, but the orientation

94

5.2 Initial scene

to reach is the inverse of the grasp direction used for the intersection cal-
culation. A formal definition and a visual representation can be found in
Section 7.3.
Lastly, a differentiation between a call started from a grasp skill or a insert
skill must be given. When grasping a part, only the component’s transforma-
tion is relevant. For an insertion of one component into another, both actual
component’s transformations and the requested transformation between the
two parts, denoted in current action that is being executed, are relevant for
the final pose of the gripper and therefore of the component being inserted.
A possible expansion for the heuristic of finding the distant pose could be
the consideration of the bounding boxes of components that are attached
to the part that is already grasped and currently being inserted. This is not
necessary, since the component’s shapes are known to the MoveIt! planning
scene and taken into consideration when trying to find a collision free
trajectory.

Inside the simulation an additional differentiation between grasp and insert
is relevant for linking or unlinking all assembly components with a collision
with the grasped part. More on this topic can be found in Section 6.2.7.

Move gripper This primitive controls the grippers MoveIt! move group,
allowing the system to theoretically move the arm and open the gripper
concurrently. This primitive has only one parameter, which is to open
or close the gripper. Furthermore, for the simulation it is important to
distinguishing between grasping and inserting. Initially all components are
attached to the empty space of Gazebo, the so called world frame. When
grasping a component, it needs to be detached from the world and attached
to the grippers frame. In contrast, when a component is inserted, it needs to
be detached from the gripper and attached to the world frame.

5.2 Initial scene

Since this project is implemented in the context of a simulation, it is impor-
tant to be able to model the initial state of the scene in Inventor and export
it, so that it does not need to be set up manually for ROS and Gazebo. For

95

5 Concept

Figure 5.18: Example setup of a possible initial scene, in this case for the BDU. The left
image is from Inventor, the right one is from Gazebo after spawning the
components.

this, an additional mode in the Inventor plugin is implemented, which is
further described in Section 6.2.3.

5.2.1 Set of rules

Generally, constraints or joints between components in the initial scene in
the CAD file are interpreted as pre-satisfied relations. All grounded parts of
the initial scene are assumed to be kitting trays, fixtures or generally starting
containers for components. All relations between assembly components
and grounded parts will be ignored. This way it is possible to use joints
or constraints to place each individual assembly part in the kitting tray,
without those relations being interpreted as pre-satisfied. The final poses
will be used to later spawn the initial scene.

Same as in the assembly CAD model, the three axes X, Y and Z correspond
to the simulation with the Z axis pointing along the inverse direction of
gravity. A screenshot of an example setup inside Inventor can be found in
Figure 5.18.

96

5.2 Initial scene

5.2.2 Scene analysis

An Inventor Assembly (IAS) file contains references to all used components
in form of existing Inventor Part (IPT) files. The global pose of each compo-
nent inside the IAS file is used for the placement parameters defined in the
ROS launch file containing all parametrized spawning commands for each
part for Gazebo and ROS. In addition, inertial parameters, mass and the
center of mass in regard to the user defined grasp pose are exported from
the individual IPT file and become relevant to the upcoming file generation,
described in the next section.

Lastly, previously identified pre-satisfied relations are used to generate links
between already combined components via ROS and the fake perception
system for Gazebo described in Section 6.2.7.

5.2.3 Model exportation

IPT files can be exported to STL files, standing for stereolithography, using
the Inventor API. This file type encodes geometrical information about the
raw surface of a model in form of detailed triangle meshes. It is commonly
used for 3D printing and is, together with the Collaborative Design Activity
(COLLADA) file format, one of the only two possible file types compatible
with Gazebo and ROS Kinetic Kame. COLLADA files have the additional
capability of describing the material which is used. That is not possible
for STL files, but the conversion to COLLADA files is not supported by
Inventor and visual textures are not relevant to a successful execution of the
simulation.

To complete preparations for spawning individual components in Gazebo,
the exported model files need to be aggregated into a SDF file each, contain-
ing all needed information about each model as mentioned in Section 2.2.
Each SDF model can be spawned multiple times to create many instances
of the same model at different locations or with different orientations.

Finally, all generated SDF files must be referenced inside a ROS launch
file to be loaded and instantiated into individual parts. Additionally, all
pre-satisfied relations lead to linking of components, which needs to be

97

5 Concept

called after everything has spawned. For this, two launch files are generated,
which need to be placed, together with the STL and the SDF files, in the
corresponding folders of the ROS package implemented during this project.
More information about the general setup of the actual simulation can be
found in Section 6.2.1.

98

6 Implementation Details

The following chapter summarizes implementation details of the approach
presented in this thesis and is split into two main parts. The first part deals
with deriving a plan while the second part describes executing it inside a
simulation. Figure 6.1 shows an overview of all involved and developed
components, that are necessary for the presented workflow.

6.1 Plan derivation

The first part of this chapter is is focusing on the plan extraction aspect of
the proposed approach. This involves all preparations and steps needed to
successfully export a sequence of actions representing the assembly in form
of an ontology. Not only are ontologies the necessary file format for defining
the inputs for SkiROS, they will also allow for reasoning to be applied in
future expansions to further automate the skill execution.

6.1.1 Setup

To derive a plan from a CAD model, previously prepared by using the
guidelines presented in in Section 5.1.2, AutoDesk Inventor and Microsoft
DotNet (.NET) Framework are used to create a plugin that is able to export
the ontology.

99

6 Implementation Details

Figure 6.1: Implementation details of this work including all created ROS packages in blue,
all developed plugins in red, the created services as parallelogram, generated
components in form of gray boxes and the two input files in form of assembly
CAD file and initial scene CAD file.

6.1.2 Inventor Plugin

The plugin was created in C# and accesses the necessary information using
the Inventor API as described in Section 2.9.1 and Section 5.1.3. To create
a visual representation of an individual assembly snapshot as a graph,
the Microsoft Automatic Graph Layout1 (MSAGL) library was used. All
exported files are generated by the plugin itself, except for the STL files,
which are generated using the Inventor API. The internal data structure is
almost identical to the class diagram in Figure 5.11, it is only missing the
plan and the actions, but contains all snapshots, relations, components and
collisions. The algorithms in use when generating and exporting the plan
with the plugin are described in Section 5.1.4. Figure 6.2 shows the Inventor
plugin analyzing the BDU example. It contains a screenshot of the plugin

1https://www.microsoft.com/en-us/research/project/

microsoft-automatic-graph-layout/

100

https://www.microsoft.com/en-us/research/project/microsoft-automatic-graph-layout/
https://www.microsoft.com/en-us/research/project/microsoft-automatic-graph-layout/

6.1 Plan derivation

(a) Screenshot of the Inventor plugin with highlighted GUI representing the BDU example.

(b) Screenshot of the Inventor window of the BDU example.

Figure 6.2: Screenshots of the Inventor plugin with highlighted GUI elements and the
corresponding Inventor window representing the BDU example.

101

6 Implementation Details

itself in Figure 6.2a and a screenshot of the corresponding Inventor window
in Figure 6.2b.

After starting the plugin, any of the currently opened documents of the
latest Inventor instance can be selected or a model can be opened via the
plugin itself (see 1 in Figure 6.2a). If the plugin is run without Inventor
already opened in the background, a new instance of the CAD program is
run. This Inventor window can be hidden by setting the according checkbox
(see 2 in Figure 6.2a).

For each snapshot that is added using the plugin (see 3 in Figure 6.2a),
the entire assembly is analyzed, including all parts, joints and conditions.
Then grasp poses, bounding boxes and collisions are extracted for each
component using the Inventor API as described in Section 5.1.3. Relations
are created from the resulting data and combined into connections, for
which the relative parent-child transformation is calculated. Lastly, the
plugin creates a directed graph from the given data and visualizes it (see 4

in Figure 6.2a).

After adding a snapshot, changes can be made to the CAD file if needed,
like making components of future steps visible or replacing relations of
moving parts. Then the next snapshot can be added. This cycle can be
repeated as often as needed. When finished, the plan can be generated
by exporting it (see 5 in Figure 6.2a). The only supported export format
currently is OWL. The ontology file creation is done without any additional
library by iterating over all aspects that need to be exported and writing
predefined structures filled with the corresponding values of each individual.
The encoded structure in the ontology file is represented by Figure 5.11.
Alternatively, each individual graph can be exported (see 6 in Figure 6.2a).

It is possible to save or load the created snapshots using the plugin (see 7 in
Figure 6.2a), which is implemented by serialization and deserialization of
the full data structure. The editing capability of such an assembly file and
its snapshot is limited to the necessary functionality of deleting selected
snapshots and adding new ones. A possible future expansion could be the
capability of editing individual aspects of single snapshots or changing the
order of snapshots. A live preview of the assembly graph is also available
(see 8 in Figure 6.2a).

102

6.2 Simulation

Before exporting, all relations that represent screws inside the assembly
need to be set accordingly. This was either already done inside the CAD file
by adding the suffix NS to a relation or can be done before exporting the
plan using the plugin. The button indicated with the number 9 in Figure
6.2a opens up the dialog also shown in the same image, which allows to
select or deselect all rigid joints as screws.

6.2 Simulation

The second part of this chapter describes all the necessary steps to be
able to execute the plan inside the given simulation with the presented
interpreter.

6.2.1 Setup

A GitHub project2 contains all components for the plan execution setup
in form of a united catkinised ROS package and some installation scripts.
To prepare Ubuntu 16.04 for the use with the simulation, a single instal-
lation script is presented inside the root folder of the project. It installs
all dependencies, such as general ROS packages, a python libraries for
quaternions, the Gazebo simulator including all necessary ROS packages
and files for the UR5, SkiROS and MoveIt!. It also sets up the environment
variables, so that the current catkin3 workspace can be found. To compile a
catkin workspace, the command catkin make must be executed inside folder
catkin ws. This makes the in Section 6.2.2 presented ROS packages available
to the system.

After a successful setup and compilation of the workspace, additional
information, such as initial pose, mass and inertial parameters, for the
simulation regarding the initial scene must be extracted as described in
Section 6.2.3.

2https://github.com/maestrini/Thesis
3http://wiki.ros.org/catkin

103

https://github.com/maestrini/Thesis
http://wiki.ros.org/catkin

6 Implementation Details

The simulation can be executed by launching the simulation.launch file found
inside the assembly sim ROS package.

6.2.2 ROS packages

The following packages have been developed to individually cover the robot
control, the simulation process, the necessary additions for SkiROS and the
general robot description for ROS.

assembly control This metapackage4 contains the ROS packages necessary
to control the dual-arm robotic setup, presented in Section 6.2.4. The main
package inside is ur5 rg6 double moveit config, which describes the configu-
ration of the dual-arm robot. Additionally, packages for UR5

5 control inside
the simulation and drivers for non-simulated UR5 arms6 are collected. Fi-
nally, to solve an issue with closed loop joint chains in URDF files described
in Section 6.2.4, a package for correct joint handling7 is included.

assembly sim This ROS package contains the simulation and all its com-
ponents, including the Gazebo world, the 3D mesh and model files, the
perception system described in Section 6.2.7, ROS service definitions and
launch files. The launch file that connects all presented packages is called
simulation and is the only file that needs to be launched to start the simula-
tion.

assembly skiros This metapackage contains two ROS packages. One is the
implementation of the second version of SkiROS. The other is also named
assembly skiros and contains the pre-developed skills, ontologies and launch
files to run SkiROS with the correct parameters and inputs together with
the ontology file exported using the plugin.

4http://wiki.ros.org/Metapackages
5https://github.com/ros-industrial/universal_robot
6https://github.com/ros-industrial/ur_modern_driver
7https://github.com/roboticsgroup/roboticsgroup_gazebo_plugins

104

http://wiki.ros.org/Metapackages
https://github.com/ros-industrial/universal_robot
https://github.com/ros-industrial/ur_modern_driver
https://github.com/roboticsgroup/roboticsgroup_gazebo_plugins

6.2 Simulation

robot descriptions This package contains the information necessary for
the individual components of the dual-arm robot, such as configurations,
controllers, descriptions, models and launch files.

6.2.3 Inventor plugin for initial scene export

During execution it is possible to switch the plugin into initial scene mode.
This mode no longer enables to create snapshots, but was developed to
allow the exportation of the assemblies initial situation from a CAD file, as
described in Section 5.2. Guidelines for the preparation of this model are
presented in Section 5.2.1. Figure 6.3 shows the Inventor plugin analyzing
the initial scene of the BDU example. It contains a screenshot of the plugin
itself in Figure 6.3a and a screenshot of the corresponding Inventor window
in Figure 6.3b.

During the secondary mode of the plugin, a Inventor document can be se-
lected (see 1 in Figure 6.3a). The plugin immediately analyzes the scene and
presents the corresponding graph (see 2 in Figure 6.3a). Only components
with pre-satisfied relations should have connections in the graph, every
other part should be unconnected. Grounded components are ignored, since
they are assumed to be part of the kitting scene. The kitting scene is part of
the initial scene and contains all components from the initial scene that are
not part of the final product that is to be assembled.

As described in Section 5.2.3, the accumulated information can be exported
to ROS launch files containing all spawn commands for each component
(see 3 in Figure 6.3a). This includes the importation of each component
type using its SDF file, the spawning of each instance and the linking of
pre-satisfied parts. The two files parts.launch and link parts.launch need to be
placed inside the launch folder of the assembly sim package.

The necessary SDF files and the corresponding STL files can also be ex-
ported using the plugin by changing the file type (see 3 in Figure 6.3a). As
mentioned in Section 5.2.3, the STL files can be converted from the initial IPT
files using the Inventor API. The SDF files can not be extracted automatically
and are therefore written to a file without any additional library by having
a basic template filled with each components values for each file separately.

105

6 Implementation Details

(a) Screenshot of the Inventor plugin in initial scene mode with highlighted GUI representing the BDU example.

(b) Screenshot of the Inventor window of the BDU example’s initial scene.

Figure 6.3: Screenshots of the Inventor plugin in initial scene mode with highlighted GUI
elements and the corresponding Inventor window representing the BDU exam-
ple.

106

6.2 Simulation

Figure 6.4: Screenshot of the lateral cut of a RG6 gripper.

The STL files need to be placed inside the parts folder, which resides inside
the meshes folder of the assembly sim package. The SDF files belong inside
the description folder of the assembly sim package.

It is possible to apply an offset to the initial scene using the button number
4 in Figure 6.3a. This opens a dialog, that allows entering an X, Y and Z
offsets to the center point of the assembly. If the CAD file, represented by
the initial state, is created without the initial scene of the actual robotic
setup in mind, this functionality enables to translate the assembly location
and therefore the initial scene to a different position, allowing for example
the usage of a table with a different height.

107

6 Implementation Details

6.2.4 Dual-Arm Robot

Originally the idea was to spawn individual robots separately using the
pre-existing UR5 configuration. This solution proved to be infeasible, since
it meant that separate MoveIt! instances with different planning scenes had
to be initialized. This caused the individual robots to not know about each
others position during planning, leading to arms colliding with each other.
This was solved by creating a single dual-arm controller that contained both
arms as separate MoveIt! move groups with each a RG6 gripper as their
end-effector.

The RG6 gripper was chosen because of its out-of-the-box compatibility
with UR5 arms. Due to technical issues in the available real robot system,
the decision was made to switch to a simulation. Since OnRobot does only
provide a triangle mesh in form of a STL files for all sub-components of its
gripper, the gripper model had to be manually combined into a kinematic
model, which is understood by Gazebo and ROS. This includes finding
out which joints need to be added to the gripper, exporting the individual
links as STL files and then creating a URDF or xacro file that combines
all these links via joints. Unfortunately, URDF faces a major hurdle with
graph-like intersections in joint models, because it only allows robots to be
designed in tree-like hierarchies. As can be seen in Figure 6.4, non-parallel
grippers, such as the RG6, have two joints, which connect from and to the
same parent and child link. In this specific case four joints form a closed
loop cycle, where only one of them is actively driven, while the other three
are passive and dependent on the active joint.
To solve this issue, a plugin for Gazebo called MimicJointPlugin8 is used.
The idea is to remove one of the passive joints in each finger, making the
URDF valid again, while at the same time actively controlling each passive
joint of the closed loop depending on the only active joint. Essentially, the
plugin allows to set varying degrees of dependability between joints.
The only driven joint of each finger is controlled using a GripperActionCon-
troller9, which connects to a transmission of a PositionJointInterface10.

8https://github.com/roboticsgroup/roboticsgroup_gazebo_plugins
9http://wiki.ros.org/gripper_action_controller

10https://github.com/ros-controls/ros_control/wiki/hardware_interface

108

https://github.com/roboticsgroup/roboticsgroup_gazebo_plugins
http://wiki.ros.org/gripper_action_controller
https://github.com/ros-controls/ros_control/wiki/hardware_interface

6.2 Simulation

6.2.5 Initial Scene

As spawning scene, a simple table was created using two boxes linked
together, one as a surface and one as table leg. The components that are
exported using the plugin, are spawned on the table. There is an issue with
just spawning components into the scene, since Gazebo does not handle
freely moving components and their inertia well enough for parts to be
intertwining without being connected by joints. This works well enough
for flat surfaces or simple primitive geometrical shapes, but round surfaces
never completely stand still. This end in components colliding, intersecting
and then finally getting launched far away from each other. To counter-
act this issue, individual components that are supposed to be intersecting,
connected or fixed to each other are spawned or placed by linking them
together. Spawning components must therefore be done with the simula-
tion on pause until all parts are added and linked successfully. Since this
procedure can take an arbitrary amount of time, the parameter delay for the
simulation.launch file must be set depending on the system performance. It
denotes the duration of delay for linking pre-satisfied components before
un-pausing the simulation.
The process of detaching components from the Gazebo world and attaching
them to a gripper and vice versa is presented as ROS services, which are
called attach and detach. Linking and unlinking components is also available
as a ROS service and are called link and unlink. These four services have
been developed during this work are further described in Section 6.2.7

6.2.6 SkiROS

On top of to the previously described basic ontology file (base.owl) file
needed for the assembly representation inside SkiROS, an ontology file
defining the robot had to be added for SkiROS to function properly. This file
includes the default position on which the grounded part of the assembly
should be placed, which can be used to place the grounded component if
the assembling process does not start with the grounded component already
in place. The ontology file generated by the Inventor plugin needs to be

109

6 Implementation Details

placed inside the owl folder of the assembly skiros package, together with the
just described, pre-defined ontology files.

SkiROS also needs all skills and primitives, that should be available to the
system, implemented and configured by the developer. All necessary skills
and primitives for this work are presented in Section 5.1.6.1. They have been
implemented based on the template classes presented by the documentation
of the second version of SkiROS11. Such a SkiROS skill or primitive base
class gives access to all input parameters and the world model. Based on this
information, the correct parametrization of MoveIt! is found and executed
inside the skill. The initial version of SkiROS had issues with the interaction
with MoveIt!. To prevent the SkiROS skill manager from crashing because of
that, an action server that connects to the MoveIt! services was implemented.
This was only possible with the newer version of SkiROS.

The skill that can be executed to start the assembly process, is called assemble.
The execution of that skill contains the entire plan interpretation process
described in Section 5.1.5. The information, given in form of ontologies,
is requested by the skill from the world model of SkiROS. The extracted
information is then used to initiate a sequence of pre-implemented skills
leading to a successful assembly.

6.2.7 Perception system and Gazebo

The existing simulation implementation of the UR5 contains a Kinect. The
resulting data can be accessed in form of a point cloud. Using this data to
identify all components and their orientations goes beyond the scope of this
thesis.

Alternatively, a perfect vision system is added in form of a Gazebo plu-
gin. It intercepts when new components are spawned and publishes the
resulting information as collision objects to MoveIt!’s planning scene. These
components are colored in green in Figure 6.5. The resulting poses are
also converted into and published as static transforms, to allow for an easy

11https://github.com/Bjarne-AAU/skiros-demo/tree/master/skiros2.wiki

110

https://github.com/Bjarne-AAU/skiros-demo/tree/master/skiros2.wiki

6.2 Simulation

Figure 6.5: Screenshot of the MoveIt! planning scene including spawned components,
represented in green color.

access to the component’s poses during the execution of different skills and
primitives.

When a component is grasped or placed inside the simulation, it is important
to link or unlink it to or from the component it is related to. This can be done
using the ROS services link and unlink developed during this work. The
service link is used at the time of spawning the components to combine parts
with pre-satisfied relations before unpausing Gazebo. The joints created
between the components are rotational joints with a minimum limit equal to
the maximum, which makes it a rigid connection. The services are located
inside the perfect vision system, since they take advantage from the fact,
that the vision system knows about each joint and link of all components,
because are specified when spawning the SDF files using ROS.

111

6 Implementation Details

Two additional, similar ROS services, attach and detach, have been developed
during this work and describe the process of detaching components from
the Gazebo world and attaching them to a gripper or vice versa. These
services are located inside the perfect vision system, since that is the system
that intercepts the spawning of components and creates collision objects
for the MoveIt! planning scene. These collision objects need to be converted
into attached collision objects for MoveIt! to recognize that a component is
attached to a gripper.
A correct handling of planning scene components in MoveIt!, allowing
consecutive changes to the assembly scene, goes beyond the scope of this
thesis because of an unidentified problem and is part of future expansions
elaborated in Chapter 8.

6.3 Implementation summary

The practical aspect of this work consist of four major implementations:

1. the plan and simulation input generation, implemented in C# and run
on Windows, that connects to Inventor using the Inventor API;

2. the plan interpretation, implemented in Python and run on Ubuntu
16.04, that interacts with SkiROS;

3. the skill execution, implemented in Python and run on Ubuntu 16.04,
that uses MoveIt! to interact with ROS;

4. the perfect vision system, implemented in C++ and run on Ubuntu
16.04, that closes the gap between Gazebo, MoveIt! and the skill execu-
tion.

The following sections describe each individual aspect, the generated output
and the correlation to other implementations.

6.3.1 Plan and simulation-input generation

To export all necessary data from Inventor and make it available to the
simulation, a Inventor plugin was developed. This program was written in
C# using the .NET Framework. The GUI and the events, that are triggered

112

6.3 Implementation summary

on different buttons being pushed, have been created using the integrated
development environment (IDE) Visual Studio, allowing to focus the im-
plementation on four different facets: (1) the extraction of geometrical and
semantical information from the assembly CAD model using the Inventor
API; (2) the handling of multiple snapshots and general usability of the
plugin; (3) the plan generation and (4) the file export from the plugin.

The Inventor API allows access to the internal representation of an assembly
or a component using COM objects, which was already described in more
detail in Section 2.9. The needed geometrical information of individual
parts and semantical correlations between components can be found using
this API is specified in Section 5.1.3.3. The internal representation of this
accumulated data is similar to the class diagram shown in Figure 5.11. The
only missing component from that figure is the plan itself, which consists
of a sequential list of actions.

The discussed data extracted from the CAD model symbolizes an individual
snapshot of the assembly in time. Such a snapshot is visualized as a graph
using the .NET library MSAGL from Microsoft. It allows to define nodes and
edges between nodes and then automatically generates the graph layout.
In addition, the API was used to create usability features, such as setting
the assembly to the state of a created snapshot by double-clicking it or
highlighting screws inside Inventor that are selected in the plugin. The main
usability aspect of the plugin is the creation of multiple snapshots. Each
time a snapshot is created, the entire assembly is analyzed at its current
state and saved in a list of snapshots.

This list of snapshots is used to generate the sequential plan of actions. The
algorithms from Section 5.1.4 have also been implemented in C# to find the
individual actions of each snapshot dependent on changes in regard to the
previous snapshot. This results in a full plan of actions representing the
assembly.

After this plan is generated, it is exported to an ontology file, which also in-
cludes the previously mentioned geometrical and semantical data extracted
from the CAD model. The class structure of the ontology file is defined in
Figure 5.11. The XML-like structure of the ontology output file is created
without any additional library. The plugin uses hardcoded templates of all
different data and property types needed for the presented class structure

113

6 Implementation Details

and fills them with each object’s individual values. This information is then
exported using C#’s native ability of writing text to files. This ontology file
needs to be added to the assembly skiros package, allowing SkiROS to load it.
To ensure a correct format of the generated ontology files, the generated files
were successfully opened using the ontology file editor Protégé12, which
validates ontologies on load.

To recreate a initial scene for the simulation that contains all needed com-
ponents, an additional mode is implemented within the plugin. This mode
allows the user to analyze a separately created CAD file representing the
initial state of the assembly and export it to data formats, that can be used
by the simulation. Since no snapshots are necessary for the creation of this
representation, the CAD file is analyzed once, as described in Section 5.2.
The Inventor API allows to export the IPT file of each component to STL
files. Neither ROS nor Gazebo allow the direct usage of STL files to spawn
components. These files are used to define links inside a SDF model file.
The same direct strategy for creating the ontology output files is used to
created the SDF files, since their file structure is also based on XML. Two
additional files regarding the initial scene can be exported. The first file,
called parts.launch, contains the commands used to import the SDF object
models into ROS and to subsequently spawn them in Gazebo. The second
file, called link parts.launch, contains commands for pre-satisfied components
to be linked together before Gazebo is unpaused.

The ontology file generated by the Inventor plugin needs to be placed
inside the owl folder of the assembly skiros package, where other pre-defined
ontology files are located. The STL files need to be placed inside the parts
folder, which resides inside the meshes folder of the assembly sim package.
The SDF files belong inside the description folder of the assembly sim package.
The launch files need to be placed inside the launch folder of the assembly sim
package.

12https://protege.stanford.edu/

114

https://protege.stanford.edu/

6.3 Implementation summary

6.3.2 Implementation of plan interpretation

The interpretation of the plan is implemented in Python using the SkiROS
framework as a basis. It allows the implementation of modular skills and
primitives that can easily be concatenated or hierarchically combined to
create more complex behavior. The entry point for starting the interpretation
of the plan inside the ontology is given by the assemble skill. This skill
requests the plan from the world model using the skill manager and executes
the algorithms presented in Section 5.1.5, which have also been implemented
in Python. These algorithms then execute other skills, which are described in
detail in Section 5.1.6.1. SkiROS handles the passing of parameters between
skills and primitives and allows to define pre- and post-conditions. These
conditions are yet to be implemented in a meaningful way inside SkiROS,
since post-conditions are not used at all and pre-conditions only allow
for checks regarding whether a skill or a primitive should be executed or
skipped. SkiROS is yet to present a functional addition to their system, that
derives the use and order of skills and primitives depending on their pre-
and post-conditions.

6.3.3 Implementation of skill execution

As mentioned, there are two different type of primitives, that each skill
can use: (1) moving an arm towards a target, which behaves differently
depending on whether the robot arm is already holding a component and
therefore inserting a part rather than grasping it; (2) opening or closing
a gripper. Each skill and primitive is implemented in Python using the
base classes for skills and primitives presented by the SkiROS framework.
Since each skill consists of multiple primitives concatenated together and
primitives represent atomic actions, the executed series of skills leads to a
sequence of primitives interacting with the scene. Section 5.1.6.2 describes
the two types of primitives available to the system: (1) moving an arm
(2) and opening or closing the gripper.

Moving an arm requires a target component. If the executing skill is not
grasping a new component but rather inserting an already grabbed one,
the part held by the gripper is passed as a separate parameter. The global

115

6 Implementation Details

transformations of these two components, in regard to the simulated world,
are published by the perfect vision system. These transformations, together
with each components grasp poses and the relative transformation between
the parts themselves, are used inside the arm motion primitive in order
to compute a transformation chain that describes the end-effectors final
pose when trying to grasp or insert a component. This pose is also used
to calculate a more distant location, to which the arm will move first, in
order to ensure a constant orientation while approaching a component,
explained in more detail in Section 7.3. This procedure is implemented
by calling the same arm motion primitive twice in a row and distinguish
each call with the use of an additional parameter. This parameter tells the
skill to either approach the distant pose with an unconstrained gripper
orientation during the movement or to move towards the exact location with
a fixed orientation. This way there is no need to implement two separate
arm motion primitives for such similar behavior. The pose that should be
reached and the constraints posed on the arm during the robot motion are
defined by using the MoveIt! move group commander. This allows to set
the final pose, orientational constraints for specific joints of the arm and
constraints limiting each joint’s reach.

Opening or closing the gripper also makes use of the MoveIt! move group
commander to send gripper-specific commands. These commands contain a
single value, which represents the current angle of the only active joints of
a gripper.

An additional ROS packages and a metapackage have been developed and
reused during this work. The package, robot descriptions, contains the con-
trollers, descriptions, models and launch files in regard to the dual-arm
robot to work properly with ROS and Gazebo. The metapackage, assem-
bly control, contains necessary communication packages for the UR5 arm13

for simulated and real environments, the MimicJointPlugin14 for closed loop
joints in URDF files and the dual-arm MoveIt! configuration. The setup for
MoveIt! is based on the official implementation15 of a MoveIt! configura-

13https://github.com/ros-industrial/universal_robot
14https://github.com/roboticsgroup/roboticsgroup_gazebo_plugins
15https://github.com/ros-industrial/universal_robot/tree/kinetic-devel/

ur5_moveit_config

116

https://github.com/ros-industrial/universal_robot
https://github.com/roboticsgroup/roboticsgroup_gazebo_plugins
https://github.com/ros-industrial/universal_robot/tree/kinetic-devel/ur5_moveit_config
https://github.com/ros-industrial/universal_robot/tree/kinetic-devel/ur5_moveit_config

6.3 Implementation summary

tion for a single UR5 arm and was modified to contain two individually
controllable UR5 robot arms with each a RG6 gripper as end-effector.

6.3.4 Perfect vision Gazebo plugin

In order to close the gap between Gazebo and MoveIt!, a Gazebo plugin was
developed. It is based on an existing implementation16 of a Gazebo plugin.
When loaded, this plugin binds a function to the Gazebo ConnectWorldUp-
dateBegin event. During the Gazebo world update event, this function looks
for components inside the Gazebo world. Each component is registered as
a CollisionObject and published to the MoveIt! planning scene when first
recognized. On every following update, the pose of each CollisionObject17

is updated, based on the current pose of the component inside the Gazebo
world. The CollisionObject requires the triangle mesh for each component’s
link, in order to represent the part correctly. The component’s model in
Gazebo can be accessed, allowing to identify all joints and their meshes.

In addition, the plugin also contains four ROS services:

1. attach, used to detach a CollisionObject from the simulated world and
attach it as an AttachedCollisionObject18 the gripper in action;

2. detach, used to detach an AttachedCollisionObject from the gripper in
action and attach it as a CollisionObject to the simulated world;

3. link, used to create a rigid joint between two components, and
4. unlink, used to remove a connection, previously created with the link

service.

Rigid joints are technically not supported by the Gazebo physics engine,
thus rotational ones are used. These joints have a minimum limit equal to
the maximum, which makes it a rigid connection.

16http://docs.ros.org/hydro/api/gazebo_plugins/html/gazebo__ros__moveit_

_planning__scene_8cpp_source.html
17http://docs.ros.org/melodic/api/moveit_msgs/html/msg/CollisionObject.

html
18http://docs.ros.org/melodic/api/moveit_msgs/html/msg/

AttachedCollisionObject.html

117

http://docs.ros.org/hydro/api/gazebo_plugins/html/gazebo__ros__moveit__planning__scene_8cpp_source.html
http://docs.ros.org/hydro/api/gazebo_plugins/html/gazebo__ros__moveit__planning__scene_8cpp_source.html
http://docs.ros.org/melodic/api/moveit_msgs/html/msg/CollisionObject.html
http://docs.ros.org/melodic/api/moveit_msgs/html/msg/CollisionObject.html
http://docs.ros.org/melodic/api/moveit_msgs/html/msg/AttachedCollisionObject.html
http://docs.ros.org/melodic/api/moveit_msgs/html/msg/AttachedCollisionObject.html

7 Evaluation

The main focus of this chapter is on the evaluation of the proposed au-
tomation of the assembly task. Multiple assembly plans from different
example assemblies of varying complexity will be exported with the pre-
sented methodology and the resulting sequence of actions will be evaluated.
This includes the evaluation of the plan resulting from the BDU assembly.
The interpretation of each plan is also evaluated in regard to the feasibility
of each skill. Moreover, the transformations, poses and skills used to exe-
cute the plan inside the simulation are evaluated by partial execution of
individual assembly actions in simulation.

7.1 Plan evaluation

In the following section, different assemblies with varying levels of com-
plexity are evaluated for the feasibility of the generated sequence of actions.
The generated sequence is presented alongside the graph of each involved
snapshot and a visual representation of the full assembly in either step-by-
step solutions, exploded views or a mixture of both. The feasibility of each
plan is evaluated by discussing each individual action, groups of actions or
important actions regarding the type of scenario. The different evaluated
examples include: (1) a simple assembly of a toggle switch, consisting of
three components, to evaluate a general assembly; (2) a simple subassembly
of a perfume bottle, consisting of four components, to evaluate a general
subassembly; (3) a more complex assembly of a clutch, containing a nested
assembly and the need for a snapshot, to evaluate snapshots and the general
assembly approach for many components; (4) a block world example, where
the component order needs to be changed, to evaluate changes inside an
assembly and to evaluate the applicability of the presented methodology to

119

7 Evaluation

a simple dis- and re-assembly; (5) the running example of a BDU, to evaluate
the full methodology presented throughout this work. This includes general
assemblies and subassemblies, moving components, some parts blocking
the access to others and deformable multi-contact components.

7.1.1 Simple assembly

The first example is a simple assembly of a toggle switch based on three
components, a case, a baton and a pin. The case of the switch is assumed to
be pre-assembled in a separate step and is the grounded component of the
assembly.
Figure 7.1 contains all representations regarding the simple assembly ex-
ample. Figure 7.1a shows a step-by-step solution of the assembly using the
CAD models of all parts. Figure 7.1b shows the connection graph between
the involved components generated by the Inventor plugin when creating a
snapshot based on the CAD file in Figure 7.1a. The plan, that is exported
using the Inventor plugin after all snapshots are created, leads to a plan
with two separate actions, which are represented in the list in Figure 7.1c.

The first action is inserting the baton into the top slot of the case. Secondly,
this baton needs to be fixed to the case. In order to do so, a small pin is
inserted into the baton through a side slot in the case.

This example is used to visualize the general concept of a linear assembly
process, in which component are connected face-to-face with the next.

7.1.2 Simple subassembly

The second example is a simple subassembly of a perfume bottle based on
five components, a bottle, a straw, a spring, the top part used as a pushable
element and a brace closing up the assembly. The bottle is the grounded
component.
Figure 7.2 contains all representations regarding the simple assembly ex-
ample. Figure 7.2a shows a step-by-step solution of the assembly using the
CAD models of all parts. Figure 7.2b shows the connection graph between

120

7.1 Plan evaluation

(a) Step-by-step solution of the simple assembly example (left to right).

(b) Connection graph of the sim-
ple assembly example.

Parent Child undo presat screw

1 Case:1 Baton:1 no no no
2 Baton:1 Pin:1 no no no

(c) List of actions of the simple assembly example.

Figure 7.1: Representations of a simple assembly example, including step-by-step instruc-
tions, the graph and the list of actions resulting from the generated plan.

121

7 Evaluation

(a) Step-by-step solution of the simple subassembly example (left to right).

(b) Connection graph of the sim-
ple subassembly example.

Parent Child undo presat screw

1 Straw:1 Spring:1 no no no
2 Bottle:1 Spring:1 no no no
3 Spring:1 Top:1 no no no
4 Top:1 Brace:1 no no yes

(c) List of actions of the simple subassembly example.

Figure 7.2: Representations of a simple subassembly example, including step-by-step in-
structions, the graph and the list of actions resulting from the generated plan.
Screws where selected using the Inventor plugin.

122

7.1 Plan evaluation

the involved components. The resulting plan leads to four separate actions,
which are represented in the list in Figure 7.2c.

The first action is the actual subassembly part of the assembly, which is
inserting the the straw into the spring. This spring is then inserted into the
opening of the bottle.
The importance of applying subassembly rules can be shown by assuming
the opposite scenario. If normal assembly rules are used to assemble the
perfume bottle, the resulting plan would have the order of the first and the
second action flipped, since the assembly process would start by placing
the component related to the grounded part, which is the spring. When
the straw would need to be inserted into the opening on the bottom of the
spring, the spring would already be inside the bottle and the opening for
the straw would already be fully enclosed by said bottle. This means there
would be no possible way for the robot to place the straw without colliding
with the bottle.

The third and fourth actions are attaching the top part onto the spring and
then fixating all components with a brace, which is stacked onto the top part.
The last action is marked as being of the screw type.

This example is used to visualize the general concept of a subassembly
process. During creation of the CAD model it became obvious that some
components needed to be assembled before being attached to already placed
components.

7.1.3 Nested assembly

The third example is a more complex assembly of a clutch. It consists of
many different components that mostly stack on top of each other and is
split into an outer assembly (represented by Figure 7.3a) and an inner assembly
(A in Figure 7.3a). Figure 7.3 contains all representations regarding the
outer assembly, whereas Figure 7.4 contains all representations in of the inner
assembly. The grounded parts of the two assemblies are the base plate (B in
Figure 7.3a) and the spring hub (G in Figure 7.4a) respectively.

123

7 Evaluation

(a) Exploded view of the outer assembly of the nested assembly example. The letters are relevant to the description
inside the running text.

(b) Connection graph of the outer assembly of the nested assembly example’s second snapshot, including the end
piece and all M5 Allen Bolts.

Parent Child undo presat screw snapshot

1 Base Plate:1 Friction Facing:1 no no no 1

2 Friction Facing:1 Inner assembly:1 no no no 1

3-4 Inner assembly:1 Ring Plate:1-2 no no no 1

5 Inner assembly:1 Pressure Ring:1 no no no 1

6 Inner assembly:1 Splined Hub:1 no no no 1

7 Pressure Ring:1 Diaphragm Spring:1 no no no 1

8 Base Plate:1 End Piece:1 no no no 2

9-14 Base Plate:1 M5 Allen Bolt:1-6 no no yes 2

(c) List of actions of the outer assembly of nested assembly example.

Figure 7.3: Representation of the outer assembly of the nested assembly example, including
the graph and the list of actions resulting from the generated plan.

124

7.1 Plan evaluation

(a) Exploded view of the inner assembly of the nested assembly example. The letters are relevant to the description
inside the running text.

(b) Connection graph of the inner assembly inside the nested assembly example.

Parent Child undo presat screw

1 Spring Hub:1 Plate Washer:1 no no no
2 Plate Washer:1 Cushion Spring:1 no no no
3 Cushion Spring:1 Hub Flange:1 no no no
4 Hub Flange:1 Cushion Spring:2 no no no

5-8 Hub Flange:1 Big spring:1-4 no no no
9 Cushion Spring:2 Plate Washer:2 no no no

10 Plate Washer:2 Spring Hub:2 no no no
11-14 Spring Hub:2 ISO 4762 M6 x 20:1-4 no no no
15-18 ISO 4762 M6 x 20:1-4 ISO 4034 M6:1-4 no no yes

(c) List of actions of the inner assembly inside the nested assembly example.

Figure 7.4: Representation of the inner assembly of the nested assembly example, including
the graph and the list of actions resulting from the generated plan.

125

7 Evaluation

Figure 7.3a shows an exploded view of the outer assembly’s CAD model.
Starting with the grounded part, all following components, including the
inner assembly, should be stacked on top of each other, until no parts other
than the end piece(C in Figure 7.3a) and all six MS Allen Bolts (D in Figure
7.3a) are left. Then the end piece needs to be placed on top of the base plate
and all components are fixated together using the left-over bolts that need
to be inserted through the end piece into the base plate. To achieve this, two
separate snapshots need to be added to the assembly, first without, then
with the end piece and the MS Allen Bolts. If only one snapshot is used,
the end piece and the MS Allen Bolts would be added immediately after
or possibly even before the friction facing (E in Figure 7.3a) is placed, thus
blocking the access for all following components. Figure 7.3b shows the full
connection graph between the involved components, represented by the
second snapshot. The graph of the first snapshot would not contain any
connections from or to the base plate, except to the friction facing part. The
resulting plan leads to the list of actions represented in Figure 7.3c.

Figure 7.4a shows an exploded view of the inner assembly’s CAD model,
which shows the importance of assembly nesting for this example. As can
be seen in Figure 7.4a, the access to the ISO 4034 M6 (F in Figure 7.3a) nuts
in the inner assembly is blocked, if the grounded component is not elevated
by a specifically designed holding fixture. Therefore, if this segment would
not be handled as a separate assembly, the placement of the spring hub onto
the friction facing part would prevent the placement of the ISO 4034 M6
nuts. Figure 7.4b shows the linear connection graph of the inner assembly
between the involved components. The resulting plan leads to the list of
actions represented in Figure 7.4c.

This example is used to visualize the two major concepts of snapshot creation
and nested assembly processes. The snapshots were used to place enclosing
components last and the necessity of nesting became obvious during the
creation of the CAD model to ensure full access to all components during
insertion.

126

7.1 Plan evaluation

(a) Screenshot of the initial block world example.

(b) Connection graph of the initial block world ex-
ample.

(c) Screenshot of the changed block world exam-
ple.

(d) Connection graph of the changed block world
example.

Parent Child undo presat snapshot

1 A C no no 1

2 A B no no 1

3 C D no no 1

4 C E no no 1

5 F G no no 1

6 F H no no 1

7 G I no no 1

8 G I yes no 2

9 F H yes no 2

10 F G yes no 2

11 C E yes no 2

12 C D yes no 2

13 A C yes no 2

14 A G no no 2

15 G D no no 2

16 B H no no 2

17 H E no no 2

18 F C no no 2

19 C I no no 2

(e) List of actions of the full block world example.

Figure 7.5: Step-by-step representation of a block world example, including the graph and
the list of actions resulting from the generated plan.

127

7 Evaluation

7.1.4 Block world

As a fourth example a block world example is presented. The main focus
for this scenario lies in presenting adaptations regarding the plan extraction
algorithms. The previously presented methodology is not able to fully undo
or extract already placed components and does not handle changes between
snapshots in a manner, that allows undoing all actions of the previous
snapshot necessary to successfully assemble the next one. Screws do not
exist in this context and multiple grounded components are used during
this example to show that it is possible, but unnecessary.

The block world example is represented by Figure 7.5 and is divided into two
separate constellation of components using snapshots. The first snapshot,
representing the initial scene, is shown in Figure 7.5a as a CAD model. The
second snapshot, representing the changed scene, can be seen in the CAD
model in Figure 7.5c. The corresponding connection graphs between the
involved components can be found in Figure 7.5b for the first and in Figure
7.5d for the second snapshot respectively. The resulting plan leads to the
list of actions represented in Figure 7.5e.

Algorithms 5.10, 5.11 and 5.12 are not necessary for the block world scenario.
Being able to ignore most corner cases of an assembly, a simple solution to
finding changes in the block world example is to look for the earliest action,
that contains changes, within the list of the previous snapshot’s actions.
All actions after this point need to be undone in an inverted order than
previously executed, since blocks are placed loosely on top of each other.
Then, all actions from the new snapshot need to be added, ignoring the
same, unchanged actions common to both snapshots.

This example is used to visualize the necessary changes to the presented
methodology in order to enable the system to dis- and re-assemble an
assembly in a different manner.

7.1.5 Belt Drive Unit

The BDU assembly was chosen as a running example for this thesis, because
of its higher level of complexity. It contains multiple subassemblies, a

128

7.1 Plan evaluation

Figure 7.6: Step-by-step solution of the BDU example (left to right and top to bottom). The
letters are relevant to the description inside the running text.

moving part, a deformable belt and components with blocked access after
specific parts are placed. The base plate (A in Figure 7.6) is the grounded
component of the assembly. The final result of the assembly can be seen in
Figure 4.1. An exploded view can be found in Figure 4.2. Figure 7.6 shows
a step-by-step solution of the assembly using exploded views of the main
assembly steps inside the CAD model. Figure 7.8 shows the connection
graph between the involved components of each snapshot separately. The
resulting plan leads to the list of actions represented in Figure 7.9.

The first snapshot is represented in 7.7a and contains an assembly without
subassemblies. Each component is either inserted into or placed onto an

129

7 Evaluation

(a
)

G
ra

ph
of

th
e

BD
U

ex
am

pl
e’

s
fir

st
sn

ap
sh

ot
.

(b
)

G
ra

ph
of

th
e

BD
U

ex
am

pl
e’

s
se

co
nd

sn
ap

sh
ot

.

Fi
gu

re
7
.7

:G
ra

ph
s

of
th

e
BD

U
ex

am
pl

e
re

pr
es

en
ti

ng
th

e
fir

st
tw

o
sn

ap
sh

ot
s.

130

7.1 Plan evaluation

(a
)

G
ra

ph
of

th
e

BD
U

ex
am

pl
e’

s
th

ir
d

sn
ap

sh
ot

.

(b
)

G
ra

ph
of

th
e

BD
U

ex
am

pl
e’

s
fo

ur
th

sn
ap

sh
ot

.

Fi
gu

re
7
.8

:G
ra

ph
s

of
th

e
BD

U
ex

am
pl

e
re

pr
es

en
ti

ng
th

e
la

st
tw

o
sn

ap
sh

ot
s.

131

7 Evaluation

already previously placed part. These actions are visualized by the two
images at the top of Figure 7.6.

The only difference to the second snapshot is, that a pre-satisfied relation is
screwed further into the opening to fixate the disk MBRFA30-2P6 35 (B in
Figure 7.6) onto the gearmotor shaft (C in Figure 7.6). The second snapshot
can be seen in Figure 7.7b. The action of this snapshot is part of the top
right image of Figure 7.6.

That the third snapshot contains all the other components, including the
subassemblies, has two reasons. Firstly, the access to the pre-satisfied re-
lation, which changed in the previous snapshot, would be blocked by the
rubber band MBT4-400 (D in Figure 7.6) once inserted. Secondly, to simplify
the scenario, the simulation is not intended to build subassemblies and put
them aside until one of the subassembly components needs to be attached to
the assembly. For this reason, the subassemblies are added using a snapshot
after one of its components is already attached to the assembly. This is the
case after the first two snapshots. The connection graph of snapshot three is
shown in Figure 7.8a. The actions of this snapshot are visualized by the two
middle images and the bottom left image of Figure 7.6.

The last snapshot contains the changes regarding the component BGPSL6-9-
L30-F7 (E in Figure 7.6). This shaft needs to be moved along an oblong slot
inside 03-PLATE-02 (F in Figure 7.6), which means the relation between the
shaft and the plate has changed. Also the pre-satisfied screws M4x10p3 (G
in Figure 7.6) are tightened, in order to fixate the disk MBRAC60-2-10 p1:1
(H in Figure 7.6) to the rod SSFHRT10-75-M4-FC55-G20 s (I in Figure 7.6).
The actions of this snapshot are visualized by the bottom right image of
Figure 7.6.

Snapshot one only adds new components, just as every first snapshot does,
and generates the first 21 actions in the final list of actions shown in Figure
7.9. The differences between snapshot one and two result in actions 22 and
23. The interpreter is able to identify such a pair of actions as a changed
connection, since parent and child are the same components and the first
action of the two is an undo. Undoing a component and then placing it
again on the same part is interpreted as a shift of a component. For this
reason action 22, an undo action with a screw relation, can be skipped and

132

7.1 Plan evaluation

Parent Child undo presat screw snapshot

1 01-BASE:1 02-PLATE-01:1 no no no 1

2-3 01-BASE:1 SCB4-10:3-4 no no yes 1

4 01-BASE:1 03-PLATE-02:1 no no no 1

5-6 01-BASE:1 SCB4-10:1-2 no no yes 1

7 02-PLATE-01:1 37d-gearmotor-50-70:1 no no no 1

8 37d-gearmotor-50-70:1 37d-gearmotor-50-70Shaft:1 no yes no 1

9-14 37d-gearmotor-50-70:1 SCB3-10:1-6 no no yes 1

15 37d-gearmotor-50-70Shaft:1 MBRFA30-2-P6 35:1 no no no 1

16 MBRFA30-2-P6 35:1 MSSFS3-6:1 no yes yes 1

17 03-PLATE-02:1 SBARB6200ZZ-30:1 no no no 1

18-21 03-PLATE-02:1 SCB4-10:5-8 no no yes 1

22 MBRFA30-2-P6 35:1 MSSFS3-6:1 yes yes yes 2

23 MBRFA30-2-P6 35:1 MSSFS3-6:1 no no yes 2

24 BGPSL6-9-L30-F7:1 MBGA30-2:1 no no no 3

25 BGPSL6-9-L30-F7:1 CLBUS6-9-9 5:1 no no no 3

26 BGPSL6-9-L30-F7:1 SPWF6:2 no no no 3

27 BGPSL6-9-L30-F7:1 03-PLATE-02:1 no no no 3

28 BGPSL6-9-L30-F7:1 SPWF6:1 no no no 3

29 BGPSL6-9-L30-F7:1 SLBNR6:1 no no yes 3

30 SSFHRT10-75-M4-FC55-G20 s:1 MBRAC60-2-10 p1:1 no no no 3

31 SSFHRT10-75-M4-FC55-G20 s:1 CLBPS10-17-4:1 no no no 3

32 SSFHRT10-75-M4-FC55-G20 s:1 SBARB6200ZZ-30:1 no no no 3

33 SSFHRT10-75-M4-FC55-G20 s:1 EDCS10:1 no no no 3

34 SSFHRT10-75-M4-FC55-G20 s:1 SCB4-10:9 no no yes 3

35 MBRAC60-2-10 p1:1 MBT4-400:1 no no no 3

36 MBRAC60-2-10 p1:1 MBRAC60-2-10 p2:1 no yes no 3

37-38 MBRAC60-2-10 p1:1 M4x10p3:1-2 no yes yes 3

39 BGPSL6-9-L30-F7:1 SLBNR6:1 yes no yes 4

40 BGPSL6-9-L30-F7:1 03-PLATE-02:1 yes no no 4

41 BGPSL6-9-L30-F7:1 03-PLATE-02:1 no no no 4

42 BGPSL6-9-L30-F7:1 SLBNR6:1 no no yes 4

43 MBRAC60-2-10 p1:1 M4x10p3:2 yes yes yes 4

44 MBRAC60-2-10 p1:1 M4x10p3:2 no no yes 4

45 MBRAC60-2-10 p1:1 M4x10p3:1 yes yes yes 4

46 MBRAC60-2-10 p1:1 M4x10p3:1 no no yes 4

Figure 7.9: List of actions of the BDU example.

133

7 Evaluation

the following action, that also has a screw relation, is going to be interpreted
as tightening the screw.

Snapshot three, just as the first one, only adds new components to the
assembly, represented by actions 24 to 38.
All actions after 38 are part of the fourth snapshot. Action 39 is the loosening
of the screw SLBNR6 (J in Figure 7.6) in order to move the shaft BGPSL6-
9-L30-F7, whereas action 42 is fastening the screw again. In between these
two, actions 40 and 41 are again an example of two consecutive actions
that are undone and redone between the same components, which instead
results in skipping the first action and interpreting the second as some sort
of change in an already existing relation. Since these actions do not contain
a screw relation, action 41 is interpreted as shifting a component inside a
slot, instead of fastening a screw. The same as for actions 22 and 23 is valid
for the actions 43 and 44 and the last two actions 45 and 46.

This example is used to visualize all concepts presented in thesis used
to automatize a complex assembly process, where some components are
stacked on top of each other, others are part of a subassembly, some have to
be moved and others block access to parts after they are placed.

7.2 Plan interpretation evaluation

In the following section, the plans resulting from each of the previously
evaluated assemblies are interpreted for the presented dual-arm robotic
setup and evaluated for the feasibility of the generated sequence of skills.
The process of evaluation is of a quantitative nature and is executed by
domain experts. The considered aspects are, whether arms are always empty
before they are used to grasp a component, whether an arm blocks the access
to the grasp or insert location of the next arm or whether any skills will be
executed in the wrong order. The arms of the dual-arm robotic setup are
named left and right for the following sections.

134

7.2 Plan interpretation evaluation

Skill Arm Target Other target Action

1 Grasp left Baton:1 - 1

2 Insert left Case:1 Baton:1 1

3 Grasp right Pin:1 - 2

4 Insert right Baton:1 Pin:1 2

5 Release left Baton:1 - 2

6 Release right Pin:1 - 2

Figure 7.10: List of skills of the simple assembly example.

7.2.1 Simple assembly interpretation

The plan for the simple assembly example from Section 7.1.1 is interpreted
for a dual-arm robotic system and the resulting list of skills is presented
in Figure 7.10. The list shows the name of the executed skill, the arm that
executes it, the target component to approach, the other target component
if a component is already grasped and the action it was generated from.

The first two skills represent grasping the baton with the left arm and
inserting it into the case. The next two skills represent grasping the pin
with the right arm and inserting it into the baton, which is still being held,
else it could fall to the side. The last two skills are releasing both grasped
components because the assembly is finished.

All components are grasped when they need to be and the execution order
is correct. If the grasp poses are chosen accordingly, no arm is blocking the
other.

7.2.2 Simple subassembly interpretation

The plan for the simple subassembly example from Section 7.1.2 is in-
terpreted for a dual-arm robotic system and the resulting list of skills is
presented in Figure 7.11. Please note that the screw skill releases components
after its execution. This release is not executed as a separate skill, but is part
of the screw skill and thus not part of the list.

The first action contains two grasping skills, since none of the components
have been placed yet. The reason for this is, that the assembly process starts

135

7 Evaluation

Skill Arm Target Other target Action

1 Grasp left Spring:1 - 1

2 Grasp right Straw:1 - 1

3 Screw left Spring:1 Straw:1 1

4 Screw left Bottle:1 Spring:1 2

5 Grasp left Top:1 - 3

6 Screw left Spring:1 Top:1 3

7 Grasp left Brace:1 - 4

8 Screw left Top:1 Brace:1 4

Figure 7.11: List of skills of the simple subassembly example.

with a subassembly between two parts, where none of the two components
are grounded. Skill 3 represents the straw being screwed into place and
therefore the right arm is free again. The left arm still contains the spring,
which is screwed into the bottle during execution of skill 4. Skills 5 and 6

represent grasping the top part and screwing it onto the spring. Similarly,
skills 7 and 8 indicate the grasping of the brace and the screwing of it onto
the top part. The left arm is free after each screwing skill, which results in
almost all skills being executed by the left arm, except for the very first
action, where two components need to be grasped.

All components are grasped when they need to be and the execution order
is correct. No arm can be blocking the other, since they collaborate initially
and then only one is in use.

7.2.3 Nested assembly interpretation

The plans for the nested assembly example’s outer assembly and inner assembly
from Section 7.1.3 are interpreted for a dual-arm robotic system and the
resulting lists of skills are presented in Figure 7.12 for the outer assembly and
in Figure 7.13 for the inner assembly. Figure 7.12 also includes the snapshot
number the action was generated from.

The first twenty skill executions of the outer assembly follow the same pattern:
(1) grasp b; (2) insert b into a; (3) release a; (4) grasp c; (5) insert c into a or b;
(6) release b and so on. The only deviation is, that initially a is the grounded
component, which is already in place and therefore does not need to be
released. Skill 21 represents releasing the second arm, because a component

136

7.2 Plan interpretation evaluation

Skill Arm Target Other target Action Snapshot

1 Grasp left Friction Facing:1 - 1 1

2 Insert left Base Plate:1 Friction Facing:1 1 1

3 Grasp right Inner assembly:1 - 2 1

4 Insert right Friction Facing:1 Inner assembly:1 2 1

5 Release left Friction Facing:1 - 2 1

6 Grasp left Ring Plate:1 - 3 1

7 Insert left Inner assembly:1 Ring Plate:1 3 1

8 Release right Inner assembly:1 - 3 1

9 Grasp right Ring Plate:2 - 4 1

10 Insert right Inner assembly:1 Ring Plate:2 4 1

11 Release left Ring Plate:1 - 4 1

12 Grasp left Pressure Ring:1 - 5 1

13 Insert left Inner assembly:1 Pressure Ring:1 5 1

14 Release right Ring Plate:2 - 5 1

15 Grasp right Splined Hub:1 - 6 1

16 Insert right Inner assembly:1 Splined Hub:1 6 1

17 Release left Pressure Ring:1 - 6 1

18 Grasp left Diaphragm Spring:1 - 7 1

19 Insert left Pressure Ring:1 Diaphragm Spring:1 7 1

20 Release right Splined Hub:1 - 7 1

21 Release left Diaphragm Spring:1 - 7 1

22 Grasp left End Piece:1 - 8 2

23 Insert left Base Plate:1 End Piece:1 8 2

24 Release left End Piece:1 - 8 2

25,27,. . . ,35 Grasp left M5 Allen Bolt:1-6 - 9-14 2

26,28,. . . ,36 Screw left Base Plate:1 M5 Allen Bolt:1-6 9-14 2

Figure 7.12: List of skills of the nested example’s outer assembly.

was inserted, that does not have any connections to parts that have not been
placed yet. The remaining skills, skill 22 to skill 36, also repeat the same
pattern, where the component in regard is grasped, inserted and released.

The execution of the first 41 skills of the inner assembly is repeating the same
pattern as the outer assembly. The last eight skills represent screwing the ISO
4034 M6 nuts onto their respective screw, while also releasing the the last
components, that is being held from the previous skills, after the first ISO
4034 M6 nut is inserted.

All components are grasped when they need to be and the execution order
is correct. The last three ISO 4034 M6 nuts can be grasped and inserted with
any arm, since both are free. If the grasp poses are chosen accordingly, no
arm is blocking the other.

137

7 Evaluation

Skill Arm Target Other target Action

1 Grasp left Plate Washer:1 - 1

2 Insert left Spring Hub:1 Plate Washer:1 1

3 Grasp right Cushion Spring:1 - 2

4 Insert right Plate Washer:1 Cushion Spring:1 2

5 Release left Plate Washer:1 - 2

6 Grasp left Hub Flange:1 - 3

7 Insert left Cushion Spring:1 Hub Flange:1 3

8 Release right Cushion Spring:1 - 3

9 Grasp right Cushion Spring:2 - 2

10 Insert right Hub Flange:1 Cushion Spring:2 4

11 Release left Hub Flange:1 - 4

12 Grasp left Big Spring:1 - 5

13 Insert left Hub Flange:1 Big Spring:1 5

14 Release right Cushion Spring:2 - 5

15 Grasp right Big Spring:2 - 6

16 Insert right Hub Flange:1 Big Spring:2 6

17 Release left Big Spring:1 - 6

18 Grasp left Big Spring:3 - 7

19 Insert left Hub Flange:1 Big Spring:3 7

20 Release right Big Spring:2 - 7

21 Grasp right Big Spring:4 - 8

22 Insert right Hub Flange:1 Big Spring:4 8

23 Release left Big Spring:3 - 8

24 Grasp left Plate Washer:1 - 9

25 Insert left Cushion Spring:1 Plate Washer:1 9

26 Release right Big Spring:4 - 9

27 Grasp right Spring Hub:2 - 10

28 Insert right Plate Washer:1 Spring Hub:2 10

29 Release left Plate Washer:1 - 10

30,33,36,39 Grasp left,right,. . . ISO 4762 M6 x 20:1-4 - 11-14

31,34,37,40 Insert left,right,. . . Spring Hub:2 ISO 4762 M6 x 20:1-4 11-14

32,35,38,41 Release left,right,. . . Spring Hub:2,ISO 4762 M6 x 20:1-3 - 11-14

42,45,47,49 Grasp right ISO 4034 M6:1-4 - 15-18

43,46,48,50 Screw right ISO 4762 M6 x 20:1-4 ISO 4034 M6:1-4 15-18

44 Release left ISO 4762 M6 x 20:4 - 15

Figure 7.13: List of skills of the nested example’s inner assembly.

138

7.2 Plan interpretation evaluation

7.2.4 Block world interpretation

The plan for the block world example from Section 7.1.4 is interpreted for
a dual-arm robotic system. Because of the presented changes to the plan
generation for this simplified scenario of an assembly that is dis- and then
re-assembled differently, the resulting list of skills can be categorized by
two different cases: (1) adding a component, which means grasping, inserting
and releasing it or (2) removing a component, which means grasping it and
releasing it back on the ground.

The first snapshot only consists of components being added. The second
snapshot initially removes all components, that have changed or depend on
a changed part and need to be moved for the re-assembly, and adds them
again in a different order.

Because of the modular, independent nature of the possible cases, the dual-
arm robotic system always uses the same arm for this example, since only
one arm is needed.

All components are grasped and held for only one action at a time and the
execution order is correct. If the grasp poses are chosen accordingly, each
component can be placed correctly.

7.2.5 Belt Drive Unit interpretation

The plan for the BDU assembly example from Section 7.1.5 is interpreted for
a dual-arm robotic system. The resulting list of skills in regard to the first
two snapshots is presented in Figure 7.14, for the third snapshot in Figure
7.15 and for the fourth in Figure 7.16. The skill numbering is continuous
from one table to the next.

The first eight skills of the first snapshot are related to each other, where a
plate is grasped and inserted on the grounded component and is then screwed
in place by two screws. The plate is held with the left arm while the each
screw is grasped with the right arm, which is free after the first screw is in
place. The inserted plate is released after the second screw is added, which
means both grippers are empty an thus both arms are available. The same

139

7 Evaluation

Skill Arm Target Other target Action Snapshot

1 Grasp left 02-PLATE-01:1 - 1 1

2 Insert left 01-BASE:1 02-PLATE-01:1 1 1

3,5 Grasp right SCB4-10:3-4 - 2-3 1

4,6 Screw right 01-BASE:1 SCB4-10:3-4 2-3 1

7 Release left 02-PLATE-01:1 - 3 1

8 Grasp left 03-PLATE-02:1 - 4 1

9 Insert left 01-BASE:1 03-PLATE-02:1 4 1

10,12 Grasp right SCB4-10:1-2 - 5-6 1

11,13 Screw right 01-BASE:1 SCB4-10:1-2 5-6 1

14 Release left 03-PLATE-02:1 - 6 1

15 Grasp left 37d-gearmotor-50-70:1 - 7 1

16 Insert left 02-PLATE-01:1 37d-gearmotor-50-70:1 7 1

17,19,. . . ,27 Grasp right SCB3-10:1-6 - 9-14 1

18,20,. . . ,28 Screw right 37d-gearmotor-50-70:1 SCB3-10:1-6 9-14 1

29 Release left 37d-gearmotor-50-70:1 - 14 1

30 Grasp left MBRFA30-2-P6 35:1 - 15 1

31 Insert left 37d-gearmotor-50-70Shaft:1 MBRFA30-2-P6 35:1 15 1

32 Release left MBRFA30-2-P6 35:1 - 16 1

33 Grasp left SBARB6200ZZ-30:1 - 17 1

34 Insert left 03-PLATE-02:1 SBARB6200ZZ-30:1 17 1

35,37,39,41 Grasp right SCB4-10:5-8 - 18-21 1

36,38,40,42 Screw right 03-PLATE-02:1 SCB4-10:5-8 18-21 1

43 Release left SBARB6200ZZ-30:1 - 21 1

44 Grasp left MSSFS3-6:1 - 22+23 2

45 Screw left MBRFA30-2-P6 35:1 MSSFS3-6:1 22+23 2

Figure 7.14: List of skills of the BDU example’s first two snapshots.

applies for the next eight skills, skills 8 to 14, with the only difference,
that a different plate is being attached. Skills 15 to 29 are similar, because
the gearmotor is inserted into one of the previously added plates and then
screwed to it using six screws. The gearmotor is held by the left arm, while
each screw is handled by the right arm. After the last screw is added, the
gearmotor is released with skill 29. The disk MBRFA30-2P6 35, that is being
attached to the gearmotor shaft, is grasped with skill 30 and inserted with
skill 31. The only remaining relation of MBRFA30-2P6 35, that has not been
handled yet, is a multi-contact relation with the rubber band. The multi-
contact relation is skipped, because it contains relatedConnections that have
not been reached yet. If a component does not have any following parts that
need to be inserted, all currently held components can be released. Thus,
disk MBRFA30-2P6 35 is released with skill 32. Skills 33 to 43 represent an
almost identical scenario as skills 15 to 29, where a component is inserted
into one of the plates by one arm and screwed to it using four screws. All

140

7.2 Plan interpretation evaluation

Skill Arm Target Other target Action Snapshot

46 Grasp left MBGA30-2:1 - 24 3

47 Grasp right BGPSL6-9-L30-F7:1 - 24 3

48 Insert left BGPSL6-9-L30-F7:1 MBGA30-2:1 24 3

49 Release left MBGA30-2:1 - 24 3

50 Grasp left CLBUS6-9-9 5:1 - 25 3

51 Insert left BGPSL6-9-L30-F7:1 CLBUS6-9-9 5:1 25 3

52 Release left CLBUS6-9-9 5:1 - 25 3

53 Grasp left SPWF6:2 - 26 3

54 Insert left BGPSL6-9-L30-F7:1 SPWF6:2 26 3

55 Release left SPWF6:2 - 26 3

56 Insert right 03-PLATE-02:1 BGPSL6-9-L30-F7:1 27 3

57 Grasp left SPWF6:1 - 28 3

58 Insert left BGPSL6-9-L30-F7 SPWF6:1 28 3

59 Release left SPWF6:1 - 28 3

60 Grasp left SLBNR6:1 - 29 3

61 Screw left BGPSL6-9-L30-F7:1 SLBNR6:1 29 3

62 Release right BGPSL6-9-L30-F7:1 - 29 3

63 Grasp left MBRAC60-2-10 p1:1 - 30 3

64 Grasp right SSFHRT10-75-M4-FC55-G20 s:1 - 30 3

65 Insert left SSFHRT10-75-M4-FC55-G20 s:1 MBRAC60-2-10 p1:1 30 3

66 Release left MBRAC60-2-10 p1:1 - 30 3

67 Grasp left CLBPS10-17-4:1 - 31 3

68 Insert left SSFHRT10-75-M4-FC55-G20 s:1 CLBPS10-17-4:1 31 3

69 Release left CLBPS10-17-4:1 - 31 3

70 Insert right SBARB6200ZZ-30:1 SSFHRT10-75-M4-FC55-G20 s:1 32 3

71 Grasp left EDCS10:1 - 33 3

72 Insert left SSFHRT10-75-M4-FC55-G20 s:1 EDCS10:1 33 3

73 Release left EDCS10:1 - 33 3

74 Grasp left SCB4-10:9 - 34 3

75 Screw left SSFHRT10-75-M4-FC55-G20 s:1 SCB4-10:9 34 3

76 Release right SSFHRT10-75-M4-FC55-G20 s:1 - 34 3

77 Multi - MBT4-400:1 MBRAC60-2-10 p1:1 35 3

Figure 7.15: List of skills of the BDU example’s third snapshot.

screws are handled by the other arm. The component is then released after
the last screw was added.
The second snapshot contains two actions, an undo and a redo of the same
two parts. If such a combination of actions appears consecutively, they
are interpreted as a single action which describes a change of an already
satisfied connection. If the two actions represent a screw, the new action is
still executed using the screw skill. Otherwise, two consecutive insert actions,
where the first represents an undo, are executed using the shift skill. This
results in two skills for snapshot two, skills 44 and 45.

141

7 Evaluation

Skill Arm Target Other target Action Snapshot

78 Grasp left SLBNR6:1 - 39 4

79 Grasp right BGPSL6-9-L30-F7:1 - 39 4

80 Unscrew left BGPSL6-9-L30-F7:1 SLBNR6:1 39 4

81 Release left SLBNR6:1 - 39 4

82 Shift right 03-PLATE-02:1 BGPSL6-9-L30-F7:1 40+41 4

83 Grasp left SLBNR6:1 - 42 4

84 Screw left BGPSL6-9-L30-F7:1 SLBNR6:1 42 4

85 Release right BGPSL6-9-L30-F7:1 - 42 4

86 Grasp left M4x10p3:2 - 43+44 4

87 Screw left MBRAC60-2-10 p1:1 M4x10p3:2 43+44 4

88 Grasp left M4x10p3:1 - 45+46 4

89 Screw left MBRAC60-2-10 p1:1 M4x10p3:1 45+46 4

Figure 7.16: List of skills of the BDU example’s fourth snapshot.

Snapshot three contains two subassemblies and a multi-contact component
in form of a rubber band. The first subassembly contains skills 46 to 62 and the
second reaches from skill 63 to 76. In both cases, the sequence is similar. The
first two components of the subassembly are grasped by different arms, the
child is inserted into the parent using the left arm and then released, because
the arm is needed for the next skill. The next child of the subassembly is
grasped by the left arm again, inserted onto the parent and released. This is
repeated until the parent, currently in the right hand, needs to be connected
to a component, that is already placed inside the assembly. This is the case
for skill 56 for the first subassembly and skill 70 for the second. In these
two cases, the parent is inserted into the already placed component, but not
released yet. Then the subassemblies are continued as before, until the last
screwing action of each subassembly is executed. After the screw or the nut
is screwed to the parent, which is skill 61 for the first subassembly and 75 for
the second, all components can be released by the arms, executed by skill 62

and 75 respectively, and the subassemblies are finished. The multi-contact
component of action 35 has skill 77 dedicated to it as proof of concept, but
is not actually executed, since the system does not support multi-contact
relations yet.

The fourth and final snapshot contains three changes to the assembly. The
first moving component is BGPSL6-9-L30-F7, which is a bolt that needs to be
shifted along the oblong slot in 03-PLATE-02 to create tension on the rubber
band. The rubber band has not been placed into the assembly, but the bolt

142

7.3 Transformation evaluation

can be shifted anyway. Skills 78 and 79 execute the grasping of the bolt, that
needs to be moved, and the nut SLBNR6, that is holding it in place. The nut
is unscrewed by skill 80, which means it has been loosened enough for the
bolt to be moved. After SLBNR6 is released in skill 81, the two consecutive
actions 40 and 41 are interpreted as a single shifting of BGPSL6-9-L30-F7
along 03-PLATE-02 in skill 82. Skill 83 executes grasping of the SLBNR6 nut
again and skill 84 screws the nut fully to the BGPSL6-9-L30-F7 again, which
can now be released, as represented in skill 85. Currently, both grippers are
empty. The skill pair 86 and 87 an the next pair, 88 and 89, both represent
a M4x10p3 screw that needs to be fastened onto MBRAC60-2-10 p1. Each
screw is grasped and screwed further into the same parent component. The
grippers are empty again at the end and no explicit release skill is needed.

All components are grasped when they need to be and the execution order
is correct. The grasp poses have been chosen accordingly and thus, no arm
is blocking the other.

7.3 Transformation evaluation

The valid execution of an individual action depends on the transformation
chain used to calculate grasp and insert locations of components in the
actual scene. This chain consists of the absolute locations of parent and
child of the action’s connection, each components transformation from its
center of mass to the grasp pose and the relative transformation between
both components. For each action this data is used to calculate specifically
the final position and orientation of each robotic arm’s end-effector. This
spatial information, which represents the gripper’s pose when finished
grasping or inserting into the target of the current action, is used as the goal
description for MoveIt!. There are two separate methods of calculating the
final position and orientation of the end-effector: (1) grasping components
and (2) inserting or screwing components into other parts.

Equation 7.1 describes the calculations for the final end-effector pose E
inside the world coordinate system. The transformations in use are visu-
alized in Figure 7.17. The transformation T describes the location of the
target component inside the simulation space. The target’s grasping pose is

143

7 Evaluation

Figure 7.17: Geometrical representation of the transformation chain described in Equation
7.2.

defined by the transformation TG, which is relative to T. The transformation
O describes the location of the other target component inside the simulation
space.
If the current skill involves two components, like insert or screw, then the
other components grasping pose is relevant. It is described by the trans-
formation OG, which is relative to O. The relative transformation between
the two components needs also to be included, which is defined by R. This
scenario is described by Equation 7.2.
In both cases, an additional fixed rotation F needs to be applied, which
represents the assumption posed during the guidelines, that the default
insertion direction is along the negative Z axis of the world coordinate sys-
tem. A quaternion representing such a transformation is shown in Equation
7.3.

E = TG · T · F (7.1)
E = OG · R · TG · T · F (7.2)

144

7.3 Transformation evaluation

Figure 7.18: Geometrical representation of the distant pose calculation for approaching a
component with the gripper oriented correctly.

F =


w
x
y
z

 =


0.70710678118654746

0
0.70710678118654746

0

 (7.3)

Most skills, such as grasp, insert or screw, demand that the involved gripper
approaches the final location with a constant orientation along a specific
axis. To achieve this, a pre-contact location must be determined, from which
the final pose can be accessed while keeping a constant orientation. Figure
7.18 shows the calculation of such a distant pose. First, the end-effector
approaches a location outside of the component’s bounding box, that is
also along the insertion axis of the action. This position can be reached
without constraining the gripper orientation during the movement of the
arm, as long as the gripper’s final orientation at the pre-contact location is
defined as facing towards the exact destination. Equation 7.4 shows how the
distant position PD outside of the bounding box is calculated. The position
PE and orientation OE come from the transformation E shown in either
Equation 7.1 or Equation 7.2. mB describes the largest distance from the

145

7 Evaluation

center of the bounding box to one of the corners. The calculation for the
normalized direction vector D̂ is shown in Equation 7.5. The direction vector
D is calculated using Equation 7.6, which describes the rotation of OE by
Q. Q is a pure quaternion, which represents a rotation in 3D space, since
the w component is always zero. Since D represents the inverted direction
vector of OE, the value chosen for Q is constant and can be seen in Equation
7.8. The function k in Equation 7.7 is used to remove the unwanted first
dimension of a quaternion to convert it to a three-dimensional vector.

PD = PE + mB · D̂ (7.4)

D̂ =
D
‖D‖ (7.5)

D = k(Q∗ ·OE ·Q) (7.6)

k :


R4 → R3
w
x
y
z

 7→
x

y
z

 (7.7)

Q =


w !
= 0
x
y
z

 !
=


0
−1
0
0

 (7.8)

After the pre-contact destination is reached successfully, the second motion
primitive is activated, which is constraint by the gripper’s current orienta-
tion. During this movement, the gripper travels along the insertion axis to
the final, exact location while always facing the same direction.

Additional constraints for some arm joints are needed to prevent the robot
from planning a trajectory for the distant position, that would lead to
a collision between the elbow of the robotic arm and the ground when
trying to reach the exact destination. For this, constraints for the first joint,
the shoulder, and third joint, the elbow, are introduced. They only allow
movement in half of the available joint range. It is not enough to only

146

7.3 Transformation evaluation

Figure 7.19: Screenshot of the execution of a single action inside the simulation, containing
a component being grasped and placed. The red pillars are big arrows facing
the ground representing grasping poses. The green component in such a red
arrow is at the original position in the kitting box and the violet part with the
gripper above is at the final location of the component placement.

constrain the elbow, because, if the shoulder joint rotates by 180
◦, the elbow

joint constraints would need to be flipped around.

Figure 7.19 shows a screenshot of the simulation, where the first compo-
nent of the assembly is being grasped and placed on top of the grounded
component. The red pillars are big arrows facing the ground and represent
the initial and final grasping poses of the gripper, published to rViz. The
green component in such a red arrow is at the original position in the kitting
box and the violet part, with the gripper above, is at the final location of
the component placement. The pose of the violet component represents
the correct final pose of the part in regard to the grounded component,
which shows the correct calculation of transformation and position for the
action.

147

8 Conclusion and Future Work

The overall goal of this thesis was to develop a proof of concept for a system
that is able to generate a full assembly plan out of an initial representation
of the assembly task with the least amount of user involvement using a
general dual-arm robot setup. The work mainly focused on geometrical and
semantical understanding of the assembly task and the involved compo-
nents, deriving an assembly plan using inferred knowledge, subdividing
it into sequences of actions and autonomously and robustly executing the
planned actions based on the actual configuration in the real environment.
The utilized perception system, comprised of visual sensors, was intended
to be able to identify and precisely localize the involved components. Since
it was intended to need as few as possible additional prior information
about the task, the utmost amount of information was taken from the initial
representation.
A methodology for the extraction of action sequences for automated assem-
bly tasks was presented. It contains a set of guidelines and rules to prepare
and combine individual components in order to build a CAD representation
of the assembly task. The imposed guidelines and rules are easy to be used
by enginners and do not imply more effort than normally once accustomed
to. A directed graph-like structure of components as nodes and connections
as edges is deduced from the CAD model. Using the developed set of algo-
rithms described in this thesis, the hierarchical information in from of said
graph is then processed to obtain a sequential plan of actions. Each action
is represented by a connection between two individual components of the
assembly. These directed connections contain additional information about
the related parts in their final position, such as a relative transformation
between parent and child or the actual distance between the related surfaces.
Furthermore, special constraints in form of snapshots are added to enforce
a specific sequence of action inside the plan. This can be used by the CAD
modeler to enforce a wanted assembling order or to denote the need of

149

8 Conclusion and Future Work

moving specific already mounted components after a certain point in time
during the assembly. An additional group of algorithms is presented in
this thesis, which represents a possible interpretation of such a plan for a
dual-arm robotic setup. This setup consists of two combined UR5 robotic
arms with general-purpose parallel two-finger RG6 grippers as end-effector
of each arm. The presented scenario is executed inside a Gazebo simulation
using ROS Kinetic as a robot software framework. The MoveIt! framework
was used for motion planning and execution for the arms and grippers.
The plan interpretation leads to a series of modular and predefined skills
and primitives, developed during this thesis. The skills and primitives are
implemented using a skill-based ROS platform called SkiROS. It enables
autonomous mission execution based on autonomous, goal directed task
planning and knowledge integration.
The CAD environment of choice, in order to model an assembly for this
work, is Inventor. The presented algorithms for the extraction of a sequential
list of actions were implemented in form of an Inventor plugin. This plugin
allows the user to create snapshots of the current state of the assembly.
Multiple snapshots allow the user to enforce a specific temporal order, if
necessary. The only external input for the algorithms consists of such a
collection of snapshots. The exported representation of the sequential list of
actions is added as input in form of an ontology to SkiROS, enabling the
skills and primitives implemented based on SkiROS to access the plan and
all its collected information. For this reason, the second set of algorithms
were implemented in form of such skills interacting with the simulated
environment.
The initial state of the assembly needed to be spawned inside the simulation.
For this purpose, the functionality of the Inventor plugin was expanded to
include the ability of analyzing such an initial representation of the assembly.
This allows identifying all components’ physical properties, such as mass,
center of mass or inertial parameters, and exporting them together with
the triangle mesh of each part as a ROS and Gazebo conform model. Two
additional files can be exported, which contain the commands to spawn
the correct amount of instances for each part model and the commands for
linking components spawned with pre-satisfied connections.

150

The evaluation process of this thesis was focused on the correct interpre-
tation of each plan and the feasibility of each skill. The main evaluation
example was inspired by the Assembly Challenge from the World Robot
Summit 2018 and consists of a Belt Drive Unit (BDU) with many compo-
nents, two subassemblies, some moving parts and a deformable objects.
The evaluation of the presented proof of concept was also comprised of
less complex examples to facilitate the understanding and the evaluation of
the BDU example. The ROS services attach and detach, developed to move
simulated components inside the simulation using a robot arm, contain an
unidentified issue that went beyond the scope of this work and prevented
the full sequence of actions to be executed inside the simulation. Thus,
the process of evaluation is of a quantitative nature and was executed by
domain experts. The considered aspects are, whether arms are always empty
before they are reused, whether an arm blocks the access for the next arm
or whether any skills happen in the wrong order. The evaluation shows,
that if all guidelines and rules are followed as described in this thesis, the
assembly process does not contain problems. The three major aspects of
the presented methodology, that entail a heavy workload and represent the
most common source of mistakes in following the guidelines, are finding
suitable grasp poses, combining components using the proper connection
type, surface and hierarchical order and combining the right components
with each other. During a future expansion, ideally, these decisions would
be automated, to further eliminate user workload and possible sources of
errors.

During development a few specific limitations were encountered. The first
issue was found in the URDF format in form of unsupported closed loop
chains of joints. This problem is known and as such, solutions in form of ROS
packages and Gazebo plugins exist. This project used the MimicJointPlugin1

to circumvent this problem. An alternative solution, released more recently,
is a ROS package called closed loop plugin2. Both solutions change the robot
model after it is converted to the SDF format, which is generated from
the URDF model. The remaining issue is, that the URDF model is used by
rViz to display the robot. This leads to a discrepancy of the passive gripper
joints between Gazebo and rViz. That difference can cause issues, since the

1https://github.com/roboticsgroup/roboticsgroup_gazebo_plugins
2https://wiki.ros.org/Angel_jj/closed_loop_plugin

151

https://github.com/roboticsgroup/roboticsgroup_gazebo_plugins
https://wiki.ros.org/Angel_jj/closed_loop_plugin

8 Conclusion and Future Work

trajectory planning of MoveIt! gets its information from the planning scene,
which also uses the URDF model of the robot. During the creation of the
movement primitives in SkiROS, major flaws in the connection to MoveIt!
became apparent. This led to research concluding that the initial version of
SkiROS presented in [3] was deprecated and a newer version, SkiROS23, was
published. To prevent the SkiROS skill manager from crashing, an action
server that connects to the MoveIt! services was implemented. This was only
possible with the newer version of SkiROS.

Additionally, there are general problems with the simulation, such as han-
dling small, detailed or circular components with Gazebo. On collision,
components accelerate drastically and fly out of the scene. This is a preva-
lent issue, since most components are made to fit tightly into each other.
It can be overcome by creating un-movable links between two connected
components and all its colliding parts.
Because of an unidentified reason the execution of the simulation takes a ran-
dom amount of attempts until it is able to connect to the execution trajectory
of MoveIt!. This sometimes prevents the system from connecting to the
move group, which causes the execution to either fail or jump to the next
action while still executing a previous one. More research needs to be done
to identify the cause of this problem.

The major issue preventing the simulation to function successfully, which
was not yet overcome, is transporting components by attaching them to the
gripper. This problem can and will be overcome with some additional work,
but was put aside, because it went beyond the scope of this project.
Gazebo does not support deformable objects, so no method for multi-
contact components, such as the rubber band from the BDU example, was
introduced yet and will be part of future expansions for real environments.
The concept of nested assemblies, which came up during the evaluation
phase of this work and is currently handled by separating the workflow into
two different assemblies, will also be further expanded upon to increase the
usability of the system.
The handling of screws was simplified during this work and needs either
future improvements of the skills or even a new, different tool than the
universal two finger grippers.

3https://github.com/Bjarne-AAU/skiros-demo

152

https://github.com/Bjarne-AAU/skiros-demo

Future expansions may also include an automatized identification of con-
nections between components without needing to rely on the joints and
constraints of the CAD file. This would eliminate user guidelines for the
model creation and further automate the plan extraction, including the
necessity for consideration of gravity for arm actions. The addition of grasp
evaluation could eliminate the need for user defined grasping poses, allow-
ing for further user workload reduction.
Currently, a set of presented algorithms is used to deduce the individual
group of skills needed for each action, depending on previous and future
actions. This plan interpretation is only valid for dual-arm systems. A fu-
ture development goal of SkiROS in form of a more sophisticated pre- and
post-condition evaluation, could automate this process for different kinds
of robots and setups.

The stability of the simulation could also be further improved by addition
of concurrent and continuous state estimation of scene components. The
integration in a execution monitoring would increase the reactiveness and
safety of such a system for real life environments.

Community wide sharing of motion primitives for standardized architec-
tures, adaptable to different kinds of hardware, would decrease future
development workload even further and allow for standardized research
and uniform refinement of standards in robotics.

153

Appendix

155

Bibliography

[1] Johannes Kurth. “Human-Robot Collaboration makes companies more
profitable.” In: LinkedIn (Aug. 2019). url: https://www.linkedin.
com/pulse/human-robot-collaboration-makes-companies-more-

profitable-kurth (cit. on pp. 2, 4).

[2] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, and Andrew Ng. “ROS: an open-source
Robot Operating System.” In: ICRA Workshop on Open Source Software.
Vol. 3. Jan. 2009 (cit. on pp. 8–10).

[3] Francesco Rovida, Matthew Crosby, Dirk Holz, Athanasios S. Poly-
doros, Bjarne Großmann, Ronald P. A. Petrick, and Volker Krüger.
“SkiROS—A Skill-Based Robot Control Platform on Top of ROS.” In:
Robot Operating System (ROS): The Complete Reference (Volume 2). Ed. by
Anis Koubaa. Cham: Springer International Publishing, 2017, pp. 121–
160. isbn: 978-3-319-54927-9. doi: 10.1007/978-3-319-54927-9_4.
url: https://doi.org/10.1007/978-3-319-54927-9_4 (cit. on pp. 8,
14–16, 91, 152).

[4] Sachin Chitta, Ioan Sucan, and Steve B. Cousins. “MoveIt! [ROS Top-
ics].” In: IEEE Robotics Automation Magazine 19.1 (Mar. 2012), pp. 18–19.
issn: 1558-223X. doi: 10.1109/MRA.2011.2181749 (cit. on pp. 12, 32).

[5] Malik Ghallab, Craig Knoblock, David Wilkins, Anthony Barrett, Dave
Christianson, Marc Friedman, Chung Kwok, Keith Golden, Scott Pen-
berthy, David Smith, Ying Sun, and Daniel Weld. “PDDL - The Plan-
ning Domain Definition Language.” In: Technical Report CVC TR-98-
003/DCS TR-1165, Yale Center for Computational Vision and Control (Aug.
1998) (cit. on pp. 16, 31).

157

https://www.linkedin.com/pulse/human-robot-collaboration-makes-companies-more-profitable-kurth
https://www.linkedin.com/pulse/human-robot-collaboration-makes-companies-more-profitable-kurth
https://www.linkedin.com/pulse/human-robot-collaboration-makes-companies-more-profitable-kurth
https://doi.org/10.1007/978-3-319-54927-9_4
https://doi.org/10.1007/978-3-319-54927-9_4
https://doi.org/10.1109/MRA.2011.2181749

Bibliography

[6] Francesco Rovida, Bjarne Grossmann, and Volker Kruger. “Extended
behavior trees for quick definition of flexible robotic tasks.” In: 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
Sept. 2017, pp. 6793–6800. doi: 10.1109/IROS.2017.8206598 (cit. on
pp. 16, 33).

[7] Kerstin Dautenhahn. “Methodology & Themes of Human-Robot Inter-
action: A Growing Research Field.” In: International Journal of Advanced
Robotic Systems 4 (Mar. 2007). doi: 10.5772/5702 (cit. on p. 25).

[8] Sharath Akkaladevi, Matthias Plasch, Andreas Pichler, and Bernhard
Rinner. “Human Robot Collaboration to Reach a Common Goal in
an Assembly Process.” In: STAIRS. July 2016. doi: 10.3233/978-1-
61499-682-8-3 (cit. on p. 25).

[9] Behzad Sadrfaridpour, Hamed Saeidi, and Yue Wang. “An integrated
framework for human-robot collaborative assembly in hybrid man-
ufacturing cells.” In: 2016 IEEE International Conference on Automa-
tion Science and Engineering (CASE). Aug. 2016, pp. 462–467. doi:
10.1109/COASE.2016.7743441 (cit. on p. 26).

[10] S. M. M. Rahman, Y. Wang, I. D. Walker, L. Mears, R. Pak, and S.
Remy. “Trust-based compliant robot-human handovers of payloads
in collaborative assembly in flexible manufacturing.” In: 2016 IEEE
International Conference on Automation Science and Engineering (CASE).
Aug. 2016, pp. 355–360. doi: 10.1109/COASE.2016.7743428 (cit. on
p. 26).

[11] Arash Ajoudani, Andrea Maria Zanchettin, Serena Ivaldi, Alin Albu-
SchÃ¤ffer, Kazuhiro Kosuge, and Oussama Khatib. “Progress and
Prospects of the Human-Robot Collaboration.” In: Autonomous Robots
(Oct. 2017). doi: 10.1007/s10514-017-9677-2 (cit. on p. 26).

[12] Li Fei-Fei. “Generative Models for Visual Objects and Object Recogni-
tion via Bayesian Inference.” In: Autumn School 2006: Machine Learning
over Text and Images - Pittsburgh (Sept. 2006). url: http://videolectures.
net/mlas06_li_gmvoo/?q=fei-fei (cit. on p. 26).

[13] Derek Hoiem and Silvio Savarese. “Representations and Techniques
for 3D Object Recognition and Scene Interpretation.” In: Synthesis
Lectures on Artificial Intelligence and Machine Learning 5.5 (2011), pp. 1–

158

https://doi.org/10.1109/IROS.2017.8206598
https://doi.org/10.5772/5702
https://doi.org/10.3233/978-1-61499-682-8-3
https://doi.org/10.3233/978-1-61499-682-8-3
https://doi.org/10.1109/COASE.2016.7743441
https://doi.org/10.1109/COASE.2016.7743428
https://doi.org/10.1007/s10514-017-9677-2
http://videolectures.net/mlas06_li_gmvoo/?q=fei-fei
http://videolectures.net/mlas06_li_gmvoo/?q=fei-fei

Bibliography

169. doi: https://doi.org/10.2200/S00370ED1V01Y201107AIM015
(cit. on pp. 26, 27).

[14] Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia. “Multi-view 3D
Object Detection Network for Autonomous Driving.” In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. July
2017, pp. 6526–6534. doi: 10.1109/CVPR.2017.691 (cit. on p. 27).

[15] Pushmeet Kohli Nathan Silberman Derek Hoiem and Rob Fergus.
“Indoor Segmentation and Support Inference from RGBD Images.” In:
ECCV. 2012 (cit. on p. 27).

[16] Øystein Skotheim, Morten Lind, Pål Ystgaard, and Sigurd Aksnes
Fjerdingen. “A flexible 3D object localization system for industrial
part handling.” In: 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems. Oct. 2012, pp. 3326–3333. doi: 10.1109/IROS.2012.
6385508 (cit. on p. 27).

[17] Yu Xiang and Silvio Savarese. “Object Detection by 3D Aspectlets
and Occlusion Reasoning.” In: Proceedings of the IEEE International
Conference on Computer Vision Workshops. Dec. 2013, pp. 530–537. doi:
10.1109/ICCVW.2013.75 (cit. on p. 27).

[18] Hidefumi Wakamatsu, Masayuki Aoki, Eiji Morinaga, Eiji Arai, and
Shinichi Hirai. “Property identification of a deformable belt object
from its static images toward its manipulation.” In: 2012 IEEE Interna-
tional Conference on Automation Science and Engineering (CASE). Aug.
2012, pp. 448–453. doi: 10.1109/CoASE.2012.6386360 (cit. on p. 27).

[19] Zeeshan Zia, Michael Stark, and Bernt Schiele. “Detailed 3D Repre-
sentations for Object Recognition and Modeling.” In: IEEE transactions
on pattern analysis and machine intelligence 35 (Nov. 2013), pp. 2608–23.
doi: 10.1109/TPAMI.2013.87 (cit. on p. 27).

[20] Mohsen Hejrati and Deva Ramanan. “Analyzing 3D Objects in Clut-
tered Images.” In: Advances in Neural Information Processing Systems
25. Ed. by F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger.
Curran Associates, Inc., 2012, pp. 593–601. url: http://papers.nips.
cc/paper/4680-analyzing-3d-objects-in-cluttered-images.pdf

(cit. on p. 27).

159

https://doi.org/https://doi.org/10.2200/S00370ED1V01Y201107AIM015
https://doi.org/10.1109/CVPR.2017.691
https://doi.org/10.1109/IROS.2012.6385508
https://doi.org/10.1109/IROS.2012.6385508
https://doi.org/10.1109/ICCVW.2013.75
https://doi.org/10.1109/CoASE.2012.6386360
https://doi.org/10.1109/TPAMI.2013.87
http://papers.nips.cc/paper/4680-analyzing-3d-objects-in-cluttered-images.pdf
http://papers.nips.cc/paper/4680-analyzing-3d-objects-in-cluttered-images.pdf

Bibliography

[21] Yu Xiang and Silvio Savarese. “Estimating the aspect layout of object
categories.” In: 2012 IEEE Conference on Computer Vision and Pattern
Recognition. 2012, pp. 3410–3417 (cit. on p. 27).

[22] Zeeshan Zia and Michael Stark. “Towards Scene Understanding with
Detailed 3D Object Representations.” In: International Journal of Com-
puter Vision 112 (Nov. 2014). doi: 10.1007/s11263-014-0780-y (cit. on
p. 27).

[23] Luca Del Pero, Joshua Bowdish, Bonnie Kermgard, Emily Hartley, and
Kobus Barnard. “Understanding Bayesian Rooms Using Composite
3D Object Models.” In: Proceedings / CVPR, IEEE Computer Society
Conference on Computer Vision and Pattern Recognition. IEEE Computer
Society Conference on Computer Vision and Pattern Recognition. June 2013,
pp. 153–160. doi: 10.1109/CVPR.2013.27 (cit. on p. 27).

[24] Sukhan Lee, Jaewoong Kim, Moonju Lee, Kyeongdae Yoo, Leandro
G. Barajas, and Roland Menassa. “3D visual perception system for
bin picking in automotive sub-assembly automation.” In: 2012 IEEE
International Conference on Automation Science and Engineering (CASE).
Aug. 2012, pp. 706–713. doi: 10.1109/CoASE.2012.6386359 (cit. on
p. 27).

[25] Chunlei Li, Chris McMahon, and Linda Newnes. “Progress with
OntoCAD: A Standardised Ontological Annotation Approach to CAD
Systems.” In: International Conference on Product Lifecycle Management
(PLM), Eindhoven, Netherlands. 2011 (cit. on p. 28).

[26] Ramos Luis Enrique Garcı́a. “Ontological CAD Data Interoperability
Framework.” In: SEMAPRO 2010 (Mar. 2020) (cit. on p. 28).

[27] Sean Tessier and Yan Wang. “Ontology-based feature mapping and
verification between CAD systems.” In: Advanced Engineering Informat-
ics 27 (Jan. 2013), 76â€“92. doi: 10.1016/j.aei.2012.11.008 (cit. on
p. 28).

[28] Alexander Perzylo, Nikhil Somani, Markus Rickert, and Alois Knoll.
“An Ontology for CAD Data and Geometric Constraints as a Link
Between Product Models and Semantic Robot Task Descriptions.” In:
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). Sept. 2015, pp. 4197–4203. doi: 10.1109/IROS.2015.7353971
(cit. on p. 28).

160

https://doi.org/10.1007/s11263-014-0780-y
https://doi.org/10.1109/CVPR.2013.27
https://doi.org/10.1109/CoASE.2012.6386359
https://doi.org/10.1016/j.aei.2012.11.008
https://doi.org/10.1109/IROS.2015.7353971

Bibliography

[29] Stefan Schaal. “Is imitation learning the route to humanoid robots?”
In: Trends in Cognitive Sciences 3 (1999), pp. 233–242 (cit. on p. 29).

[30] Brenna Argall, Sonia Chernova, Manuela Veloso, and Brett Browning.
“A survey of robot learning from demonstration.” In: Robotics and
Autonomous Systems 57 (May 2009), pp. 469–483. doi: 10.1016/j.
robot.2008.10.024 (cit. on pp. 29, 30).

[31] S. Calinon, F. Guenter, and A. Billard. “On Learning, Representing
and Generalizing a Task in a Humanoid Robot.” In: IEEE Transactions
on Systems, Man, and Cybernetics, Part B (Cybernetics) 37.2 (Apr. 2007),
pp. 286–298. issn: 1941-0492. doi: 10.1109/TSMCB.2006.886952 (cit.
on p. 29).

[32] Harold Bekkering, Andreas Wohlschläger, and Merideth Gattis. “Im-
itation of Gestures in Children is Goal-directed.” In: The Quarterly
Journal of Experimental Psychology: Section A 53 (Mar. 2000), pp. 153–64.
doi: 10.1080/713755872 (cit. on p. 29).

[33] Sylvain Calinon, Florent Guenter, and Aude Billard. “Goal-Directed
Imitation in a Humanoid Robot.” In: Proceedings - IEEE International
Conference on Robotics and Automation. Vol. 2005. Jan. 2005, pp. 299–304.
doi: 10.1109/ROBOT.2005.1570135 (cit. on p. 29).

[34] Stefan Schaal, Jan Peters, Jun Nakanishi, and Auke Ijspeert. “Control,
planning, learning, and imitation with dynamic movement primi-
tives.” In: Workshop on Bilateral Paradigms on Humans and Humanoids:
IEEE International Conference on Intelligent Robots and Systems (IROS
2003). Jan. 2003, pp. 1–21 (cit. on p. 29).

[35] Stefan Schaal. “Dynamic Movement Primitives: Framework for Motor
Control in Humans and Humanoid Robotics.” In: Adaptive Motion of
Animals and Machines (Jan. 2006). doi: 10.1007/4-431-31381-8_23
(cit. on p. 29).

[36] A.J. Ijspeert, Jun Nakanishi, and Stefan Schaal. “Movement imitation
with nonlinear dynamical systems in humanoid robots.” In: Proceed-
ings - IEEE International Conference on Robotics and Automation. Vol. 2.
Feb. 2002, pp. 1398–1403. isbn: 0-7803-7272-7. doi: 10.1109/ROBOT.
2002.1014739 (cit. on p. 29).

161

https://doi.org/10.1016/j.robot.2008.10.024
https://doi.org/10.1016/j.robot.2008.10.024
https://doi.org/10.1109/TSMCB.2006.886952
https://doi.org/10.1080/713755872
https://doi.org/10.1109/ROBOT.2005.1570135
https://doi.org/10.1007/4-431-31381-8_23
https://doi.org/10.1109/ROBOT.2002.1014739
https://doi.org/10.1109/ROBOT.2002.1014739

Bibliography

[37] A.J. Ijspeert, Jun Nakanishi, and Stefan Schaal. “Learning Attractor
Landscapes for Learning Motor Primitives.” In: Advances in Neural
Information Processing Systems. Vol. 15. Jan. 2002, pp. 1523–1530 (cit. on
p. 29).

[38] Dae-Hyung Park, Heiko Hoffmann, Peter Pastor, and Stefan Schaal.
“Movement reproduction and obstacle avoidance with dynamic move-
ment primitives and potential fields.” In: Humanoids 2008 - 8th IEEE-
RAS International Conference on Humanoid Robots. Dec. 2008, pp. 91–98.
doi: 10.1109/ICHR.2008.4755937 (cit. on p. 30).

[39] Bruce Krogh. “A Generalized Potential Field Approach to Obstacle
Avoidance Control.” In: Proc. SME Conf. on Robotics Research: The Next
Five Years and Beyond, Bethlehem, PA, 1984. 1984, pp. 11–22 (cit. on
p. 30).

[40] Johann Borenstein and Yoram Koren. “Real-Time Obstacle Avoidance
for Fast Mobile Robots.” In: Systems, Man and Cybernetics, IEEE Transac-
tions on 19 (Oct. 1989), pp. 1179–1187. doi: 10.1109/21.44033 (cit. on
p. 30).

[41] Alexandros Paraschos, Christian Daniel, Jan R Peters, and Gerhard
Neumann. “Probabilistic Movement Primitives.” In: Advances in Neural
Information Processing Systems 26. Ed. by C. J. C. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K. Q. Weinberger. Curran Associates,
Inc., 2013, pp. 2616–2624. url: http://papers.nips.cc/paper/5177-
probabilistic-movement-primitives.pdf (cit. on p. 30).

[42] Miha Deniša, Andrej Gams, Aleš Ude, and Tadej Petrič. “Learning
Compliant Movement Primitives Through Demonstration and Statisti-
cal Generalization.” In: IEEE/ASME Transactions on Mechatronics 21.5
(Oct. 2016), pp. 2581–2594. issn: 1083-4435. doi: 10.1109/TMECH.2015.
2510165 (cit. on p. 30).

[43] Xiang Zhang, Athanasios S. Polydoros, and Justus H. Piater. “Learning
Movement Assessment Primitives for Force Interaction Skills.” In:
CoRR abs/1805.04354 (2018). arXiv: 1805.04354. url: http://arxiv.
org/abs/1805.04354 (cit. on p. 30).

162

https://doi.org/10.1109/ICHR.2008.4755937
https://doi.org/10.1109/21.44033
http://papers.nips.cc/paper/5177-probabilistic-movement-primitives.pdf
http://papers.nips.cc/paper/5177-probabilistic-movement-primitives.pdf
https://doi.org/10.1109/TMECH.2015.2510165
https://doi.org/10.1109/TMECH.2015.2510165
https://arxiv.org/abs/1805.04354
http://arxiv.org/abs/1805.04354
http://arxiv.org/abs/1805.04354

Bibliography

[44] Richard E. Fikes and Nils J. Nilsson. “STRIPS: A New Approach to the
Application of Theorem Proving to Problem Solving.” In: Proceedings
of the 2nd International Joint Conference on Artificial Intelligence. IJCAI’71.
London, England: Morgan Kaufmann Publishers Inc., 1971, pp. 608–
620 (cit. on p. 31).

[45] Edwin P. D. Pednault. “ADL: Exploring the Middle Ground between
STRIPS and the Situation Calculus.” In: Proceedings of the First Interna-
tional Conference on Principles of Knowledge Representation and Reasoning.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1989,
pp. 324–332. isbn: 1558600329 (cit. on p. 31).

[46] J. Scott Penberthy and Daniel S. Weld. “UCPOP: A Sound, Complete,
Partial Order Planner for ADL.” In: KR. 1992 (cit. on p. 31).

[47] Kei Okada, Yohei Kakiuchi, Haseru Azuma, Hiroyuki Mikita, Kazuto
Murase, and Masayuki Inaba. “Task compiler : Transferring high-level
task description to behavior state machine with failure recovery mech-
anism.” In: In IEEE International Conference on Robotic and Automation.
May 2013 (cit. on p. 31).

[48] Michael Cashmore, Maria Fox, Derek Long, Daniele Magazzeni, Bram
Ridder, Arnau Carrera, Narcı́s Palomeras, Natàlia Hurtós, and Marc
Carreras. “Rosplan: Planning in the robot operating system.” In: Pro-
ceedings International Conference on Automated Planning and Scheduling,
ICAPS 2015 (Jan. 2015), pp. 333–341 (cit. on p. 32).

[49] Hai Nguyen, Matei Ciocarlie, Kaijen Hsiao, and Charles Kemp. “ROS
commander (ROSCo): Behavior creation for home robots.” In: Proceed-
ings - IEEE International Conference on Robotics and Automation. May
2013, pp. 467–474. isbn: 978-1-4673-5641-1. doi: 10.1109/ICRA.2013.
6630616 (cit. on p. 32).

[50] Francesco Rodiva, Casper Schou, Rasmus Andersen, Jens Damgaard,
Dimitrios Chrysostomou, Simon Bøgh, Mikkel Pedersen, Bjarne Gross-
mann, Ole Madsen, and Volker Krüger. “SkiROS: A four tiered ar-
chitecture for task-level programming of industrial mobile manipula-
tors.” In: International Workshop on ROS-Industrial in European Research
Projects. July 2014 (cit. on p. 33).

163

https://doi.org/10.1109/ICRA.2013.6630616
https://doi.org/10.1109/ICRA.2013.6630616

Bibliography

[51] Ching-Yen Weng, Wei Tan, and I-Ming Chen. “A Survey of Dual-Arm
Robotic Issues on Assembly Tasks.” In: CISM International Centre for
Mechanical Sciences, Courses and Lectures (Jan. 2019), pp. 474–480. doi:
10.1007/978-3-319-78963-7_59 (cit. on p. 33).

[52] Dragoljub Surdilovic, Y. Yakut, T.-M Nguyen, X.B. Pham, Axel Vick,
and Roberto Martin-Martin. “Compliance control with dual-arm hu-
manoid robots: Design, planning and programming.” In: Jan. 2011,
pp. 275–281. doi: 10.1109/ICHR.2010.5686273 (cit. on p. 33).

[53] Sonny Tarbouriech, Benjamin Navarro, Philippe Fraisse, André Cros-
nier, Andrea Cherubini, and Damien Salle. “Dual-arm relative tasks
performance using sparse kinematic control.” In: IROS 2018. Oct. 2018.
doi: 10.1109/IROS.2018.8594320 (cit. on p. 34).

[54] Chien-Pin Chen. “Developing Industrial Dual Arm Robot for Flexible
Assembly Through Reachability Map.” In: Precision Machinery Research
and Development Center (June 2015). doi: 10.13140/RG.2.2.16688.
56321 (cit. on p. 34).

[55] Ulrike Thomas, Theodoros Stouraitis, and M. A. Roa. “Flexible as-
sembly through integrated assembly sequence planning and grasp
planning.” In: 2015 IEEE International Conference on Automation Science
and Engineering (CASE). Aug. 2015, pp. 586–592. doi: 10.1109/CoASE.
2015.7294142 (cit. on p. 35).

[56] Ulrike Thomas and Friedrich M. Wahl. “Assembly Planning and Task
Planning - Two Prerequisites for Automated Robot Programming.” In:
vol. 67. Nov. 2010. isbn: 978-3-642-16784-3. doi: 10.1007/978-3-642-
16785-0_19 (cit. on p. 35).

[57] Ulrike Thomas, Mark Barrenscheen, and Friedrich M. Wahl. “Efficient
assembly sequence planning using stereographical projections of C-
Space obstacles.” In: vol. 2003. Aug. 2003, pp. 96–102. isbn: 0-7803-
7770-2. doi: 10.1109/ISATP.2003.1217194 (cit. on p. 35).

[58] Markus Ikeda, Srinivas Maddukuri, Michael Hofmann, Andreas Pich-
ler, Xiang Zhang, Athanasios Polydoros, Justus Piater, Klemens Win-
kler, Klaus Brenner, Ioan Harton, and Uwe Neugebauer. “FlexRoP
- flexible, assistive robots for customized production.” In: Austrian
Robotics Workshop 2018. July 2018, pp. 53–58. doi: 10.15203/3187-22-
1-11 (cit. on pp. 35, 36).

164

https://doi.org/10.1007/978-3-319-78963-7_59
https://doi.org/10.1109/ICHR.2010.5686273
https://doi.org/10.1109/IROS.2018.8594320ï¿¿
https://doi.org/10.13140/RG.2.2.16688.56321
https://doi.org/10.13140/RG.2.2.16688.56321
https://doi.org/10.1109/CoASE.2015.7294142
https://doi.org/10.1109/CoASE.2015.7294142
https://doi.org/10.1007/978-3-642-16785-0_19
https://doi.org/10.1007/978-3-642-16785-0_19
https://doi.org/10.1109/ISATP.2003.1217194
https://doi.org/10.15203/3187-22-1-11
https://doi.org/10.15203/3187-22-1-11

Bibliography

[59] Sharath Akkaladevi, Matthias Plasch, and Andreas Pichler. “Skill-
based learning of an assembly process.” In: e & i Elektrotechnik und
Informationstechnik 134 (Sept. 2017). doi: 10.1007/s00502-017-0514-2
(cit. on p. 35).

[60] The Industrial Robotics Competition Committee. “Industrial Robotics
Category - Assembly Challenge.” In: Rules and Regulations 2018. World
Robot Summit, 2018. url: https://worldrobotsummit.org/download/
rulebook-en/rulebook-Assembly_Challenge.pdf (cit. on pp. 39, 40).

[61] Yasuyoshi Yokokohji, Yoshihiro Kawai, Mizuho Shibata, Yasumichi
Aiyama, Shinya Kotosaka, Wataru Uemura, Akio Noda, Hiroki Dobashi,
Takeshi Sakaguchi, and Kazuhito Yokoi. “Assembly Challenge: a robot
competition of the Industrial Robotics Category, World Robot Sum-
mit - summary of the pre-competition in 2018.” In: Advanced Robotics
33.17 (2019), pp. 876–899. doi: 10.1080/01691864.2019.1663609.
eprint: https://doi.org/10.1080/01691864.2019.1663609. url:
https://doi.org/10.1080/01691864.2019.1663609 (cit. on p. 39).

165

https://doi.org/10.1007/s00502-017-0514-2
https://worldrobotsummit.org/download/rulebook-en/rulebook-Assembly_Challenge.pdf
https://worldrobotsummit.org/download/rulebook-en/rulebook-Assembly_Challenge.pdf
https://doi.org/10.1080/01691864.2019.1663609
https://doi.org/10.1080/01691864.2019.1663609
https://doi.org/10.1080/01691864.2019.1663609

	Acknowledgments
	Abstract
	Introduction
	Motivation
	Goals and Challenges
	Contribution
	Outline

	Prerequisites
	ROS
	Gazebo
	MoveIt!
	rViz
	SkiROS
	RQt
	UR5
	RG6
	AutoDesk Inventor
	Inventor API
	Inventor iLogic
	Parts, Joints and Constrains in Inventor

	Related Research
	Human Robot Collaboration
	Visual Perception
	Knowledge Base
	Dynamic Movement Primitives
	Planning and Reasoning
	Dual-Arm Kinematics
	Flexible Assembly

	Problem Formulation
	Geometrical and Semantic Understanding
	Plan derivation
	Robust execution
	Assembly Task

	Concept
	Assembly
	Set of rules
	Prepare parts for assembly
	Component place order
	Identifying related parts
	Assembly rules
	Subassembly rules

	CAD model creation
	Preparation of relations for snapshots
	Creation of snapshots

	Model analysis
	Data representation
	Data structure
	Data calculation

	Plan generation
	Generate plan
	Get execution order
	Group connections by collision
	Sort connections within groups
	Get parents and children list
	Should wait for dependent connections
	Handle parents
	Handle children
	Find differences between snapshots
	Identify affected connections
	Add affected connections

	Plan interpretation
	Assemble
	Execute plan
	Execute action
	Handle grounded part
	Get parent and child components
	Check if arms should release because of previous action
	Identify acting and supporting arm
	Execute skill
	Check if arms should release because of current action

	Skill execution
	Skills
	Primitives

	Initial scene
	Set of rules
	Scene analysis
	Model exportation

	Implementation Details
	Plan derivation
	Setup
	Inventor Plugin

	Simulation
	Setup
	ROS packages
	Inventor plugin for initial scene export
	Dual-Arm Robot
	Initial Scene
	SkiROS
	Perception system and Gazebo

	Implementation summary
	Plan and simulation-input generation
	Implementation of plan interpretation
	Implementation of skill execution
	Perfect vision Gazebo plugin

	Evaluation
	Plan evaluation
	Simple assembly
	Simple subassembly
	Nested assembly
	Block world
	Belt Drive Unit

	Plan interpretation evaluation
	Simple assembly interpretation
	Simple subassembly interpretation
	Nested assembly interpretation
	Block world interpretation
	Belt Drive Unit interpretation

	Transformation evaluation

	Conclusion and Future Work
	Bibliography

