
 

 
  

 

 Marco Morawec, BSc 

A simulation-based approach to detect and prevent 

deadlock situations in flexible production systems 

MASTER’S THESIS 

to achieve the university degree of 

Master of Science 

Master's degree programme: 

Production Science and Management 

submitted to 

Graz University of Technology 

Supervisor: Ass.Prof. Dipl.-Ing. Dr.techn. Nikolaus Furian 

 

 

Institute of Engineering and Business Informatics 

 

Head of Institute: Univ.-Prof. Dipl.-Ing. Dr.techn. Siegfried Vössner 

Graz, May 2020  



 

 
i 

 

AFFIDAVIT 
I declare that I have authored this thesis independently, that I have not used 

other than the declared sources/resources, and that I have explicitly indicated all 

material which has been quoted either literally or by content from the sources 

used. The text document uploaded to TUGRAZonline is identical to the 

present masterʼs thesis.  

Date, Signature 

  



 

 
ii 

Abstract 
In the last few decades, changes have taken place in the production sector. Increasing desire 

for personalization and uncertainty in demand of customers led to a perspective change and 

the use of Flexible Manufacturing Systems. These systems offer a wide range of flexibility that 

can cope with the demand but also increase complexity.  

An often-occurring problem that has gained significant interest are deadlocks. A deadlock is 

defined as a production system or a section that is blocking itself, so that no parts can move 

anymore without intervention. Most of the time workers are used to re-establish the flow of 

products again by moving products out of the deadlocked section and returning them later. 

The unpredictability and the decreased efficiency of the system as well as the increased cost 

make deadlocks something to be avoided. 

This master thesis presents a new flexible solution of handling deadlocks with the additional 

goal to keep the productivity decrease low. This is done with the use of a simulation and an 

encapsulated prediction simulation. Both are built on a Hierarchical Control Conceptual Model 

and are the basis for deadlock control methods. Through this subdivision of deadlock 

prediction and deadlock control method a high flexibility is achieved. For these methods 

already existing strategies can be used or completely new ones that are highly adjusted to the 

production system on hand can be developed. Also, combinations of methods are possible. 

This is tested in a case study that compares a simple deadlock strategy with three strategies 

that are built on top of the presented solution. The results show that the new method delivers 

better deadlock handling results while maintaining efficiency to a large extend. They also 

indicate that even better results can be achieved if more complex and better to the production 

system adjusted methods are developed. 

  



 

 
iii 

Kurzfassung 
In den letzten Jahrzehnten gab es Veränderung im Produktionssektor. Der zunehmende 

Wunsch nach Personalisierung und Unsicherheiten in der Nachfrage von Kunden führte zu 

einem Perspektivenwechsel und dem Einsatz von flexiblen Fertigungssystemen. Diese 

Systeme bieten ein breites Spektrum an Flexibilität die Anforderungen gerecht werden, aber 

auch die Komplexität erhöht.  

Ein oft auftretendes Problem, dem besondere Aufmerksamkeit gegeben wurde sind 

Deadlocks. Ein Deadlock ist definiert als ein Fertigungssystem oder ein Abschnitt davon, der 

sich selbst blockiert, sodass sich keine Teile mehr ohne Eingriff bewegen können. Meistens 

werden Arbeiter eingesetzt um den Produktfluss durch herausnehmen von Produkten und 

späterem wieder einführen wiederherzustellen. Die Unvorhersehbarkeit und der Verlust der 

Effizienz des Systems, sowie die erhöhten Kosten machen Deadlocks zu etwas, das vermieden 

werden sollte. 

Diese Masterarbeit präsentiert eine neue flexible Lösung für den Umgang mit Deadlocks, mit 

dem zusätzlichen Ziel, den Abfall an Produktivität gering zu halten. Dies wird mit einer 

Simulation und mit einer verschachtelten Prognosesimulation gemacht. Beide basieren auf 

dem Hierarchical Control Conceptual Model und sind die Basis für Dreadlocks-

Steuerungsmethoden. Durch diese Unterteilung der Deadlock-Vorhersage und der Deadlock-

Steuerungsmethode wird eine hohe Flexibilität erreicht. Für diese Methoden können bereits 

bestehende verwendet werden oder völlig neue, die stark an das jeweilige Fertigungssystem 

angepasst sind, entwickelt werden. Auch das kombinieren von Methoden ist möglich. 

Dies wird in einer Fallstudie getestet, die eine einfache Deadlock-Strategie mit drei Deadlock-

Strategien, die auf der präsentierten Lösung aufbauen vergleicht. Die Ergebnisse zeigen, dass 

durch die neue Methode besser Deadlock Handhabungsresultate erreicht werden können, 

während die Effizienz zum weitgehend beibehalten wird. Sie deuten auch an, dass noch besser 

Ergebnisse erreicht werden können, wenn komplexere und besser and Fertigungssystem 

angepasste Methoden entwickelt werden. 

 

 

  



 

 
iv 

Contents 

AFFIDAVIT ................................................................................................................................ i 

Abstract .................................................................................................................................. ii 

Kurzfassung ........................................................................................................................... iii 

Contents ................................................................................................................................ iv 

List of Abbreviations .............................................................................................................. vi 

1  Introduction ....................................................................................................................... 1 

2  Theory ............................................................................................................................... 2 

2.1  FMS Definition .................................................................................................................................... 2 
2.1.1  Flexibility ........................................................................................................................... 2 
2.1.2  Measurement of Flexibility ............................................................................................... 3 
2.1.3  Elements of Flexible Manufacturing Systems ................................................................... 3 
2.1.4  Dedicated vs. Reconfigurable vs. Flexible Manufacturing Systems .................................. 5 
2.1.5  Recap ................................................................................................................................. 6 

2.2  Deadlock Definition ............................................................................................................................ 6 
2.2.1  Deadlock examples ........................................................................................................... 7 

2.3  Methods for Deadlock control/handling ............................................................................................. 8 
2.3.1  Modeling tools for Deadlocks ........................................................................................... 9 
2.3.2 Prevention .................................................................................................................... 10 
2.3.3  Detection and recovery ................................................................................................... 11 
2.3.4  Avoidance ........................................................................................................................ 12 
2.3.5 Current Research ............................................................................................................. 14 

2.4  Discrete Event Simulation (DES) ....................................................................................................... 15 
2.4.1  Modeling definition ......................................................................................................... 15 
2.4.2  Simulation definition ....................................................................................................... 15 
2.4.3  Discrete-Event Simulation ............................................................................................... 16 
2.4.4  Three-Phase Approach .................................................................................................... 17 

2.5  Hierarchical Control Conceptual Modeling (HCCM) ......................................................................... 18 
2.5.1  Extended Activity Classification ...................................................................................... 18 
2.5.2  Hierarchical Simulation Control ...................................................................................... 19 
2.5.3  Time Advancement ......................................................................................................... 20 
2.5.4  Structure of the HCCM framework ................................................................................. 21 

3  A Simulation Approach to Deadlock Control ...................................................................... 23 

3.1  System Definition ............................................................................................................................. 23 

3.2  General Idea ..................................................................................................................................... 24 

3.3  Simulation Procedure ....................................................................................................................... 25 

3.4  Deadlock Detection .......................................................................................................................... 25 

3.5  Deadlock Controls ............................................................................................................................. 26 
3.5.1  Locked Buffer .................................................................................................................. 26 



 

 
v 

3.5.2  Deadlock Prediction ........................................................................................................ 27 
3.5.3  Combinations with the Deadlock Prediction Strategy .................................................... 28 
3.5.4  Deadlock Recovery Combination .................................................................................... 29 
3.5.5  Policy Change Combination ............................................................................................ 29 

4  Case Study ........................................................................................................................ 32 

4.1  Output values ................................................................................................................................... 32 

4.2  Entities .............................................................................................................................................. 33 
4.2.1  Products and Routes ....................................................................................................... 33 
4.2.2 Machines ...................................................................................................................... 35 
4.2.3  Buffer .............................................................................................................................. 35 

4.3  Definition of the System ................................................................................................................... 35 
4.3.1 Influence of Variables and System Behaviour .............................................................. 36 
4.3.2  Possible Deadlocks .......................................................................................................... 36 

4.4  Hierarchical Control Structure .......................................................................................................... 37 

4.5  Procedure of the Simulation ............................................................................................................. 37 
4.5.1  Requests and Activities ................................................................................................... 37 
4.5.2  Initialization and Start ..................................................................................................... 39 
4.5.3  Basic Overview of the Main Control................................................................................ 39 
4.5.4  Handling Machine Requests ............................................................................................ 41 
4.5.5  Handling Buffering Requests ........................................................................................... 42 
4.5.6  Deadlock Detection ......................................................................................................... 42 

4.6  Deadlock Control Methods ............................................................................................................... 42 
4.6.1  Locked Buffer .................................................................................................................. 43 
4.6.2  Prediction Simulation ...................................................................................................... 44 
4.6.3  Deadlock Prediction Combination with Locked Buffer Method ..................................... 46 
4.6.4  Deadlock Prediction Combination with Policy Change ................................................... 46 

5  Results .............................................................................................................................. 47 

5.1  Scenario 1 / Layout 1 ........................................................................................................................ 48 

5.2  Scenario 1 / Layout 2 ........................................................................................................................ 51 

5.3  Scenario 2 / Layout 1 ........................................................................................................................ 54 

5.4  Scenario 2 / Layout 2 ........................................................................................................................ 58 

5.5  Summary of the Results .................................................................................................................... 61 

5.6  Control Method vs. No Method ........................................................................................................ 62 

6  Outlook ............................................................................................................................. 64 

List of Figures ........................................................................................................................ 65 

List of Tables ......................................................................................................................... 67 

Bibliography .......................................................................................................................... 68 

 

 



 

 
vi 

List of Abbreviations 
 

AGV Automated Guided Vehicle 

DES Discrete Event Simulation 

DML Dedicated Manufacturing Lines 

FMS Flexible Manufacturing Systems 

HCCM Hierarchical Control Conceptual Model 

NC Numerical Control 

RAEL Requested Activities and Events Lists 

RMS Reconfigurable Manufacturing Systems 

SEL Scheduled Event List 

 

 



 

 
1 

1  Introduction 
Looking into industries, changes have taken place over the last few decades. Demand for 
personalization of customers, uncertainty through customer demand and the competitive 
factor of offering customization has brought high variation with low batch sizes into 
companies’ product mixes. Another change that can be observed is that technological steps 
are getting bigger and therefore market changes are faster. This leads to shorter product life 
cycles. To keep up with these demands, production systems must be able to respond quickly 
to the variable market requirements (Li 2011: 1). 
These challenging times for companies are leading to a perspective change on manufacturing 

planning and the emergence of flexible manufacturing systems (FMS). FMS have a strong focus 

on flexibility which generates new possibilities. There are many degrees for flexibility, for 

example variable product routing, where products have many possibilities to move through 

the system until they are finished or multipurpose machines that can process different 

products in various ways. 

FMS are not considered as a new evolution of manufacturing system. They are rather an 

extension to the existing ones. They can be compared to the likes of dedicated manufacturing 

systems which, in this case, excel in opposite characteristic (ElMaraghy 2005: 262). 

The main advantage FMS are known for, is the high degree of customization enabled by their 

flexibility. The drawbacks to this are less efficiency and an increase in complexity. This is the 

result of more degrees of freedom leading to more effort in production planning and control.  

A commonly known problem are deadlocks, where a production system or a section of it is 

blocking itself, so that no parts can move anymore without intervention. Such deadlocks need 

intervention from outside, most of the time workers who re-established the flow of products 

again by moving products out of the deadlocked section and return them later. The 

unpredictability and the decreased efficiency of the system as well as the increased cost make 

deadlocks something to be avoided. This has led to the works of deadlock control strategies, 

which focus on methods to handle such situations. These deadlock control strategies can be 

assigned to three categories. Deadlock detection and recovery, which are algorithms that try 

to find where a deadlock has occurred with the intention to re-established to flow in the most 

efficient way. Deadlock avoidance algorithms try to detect deadlocks before they appear and 

consequently change the systems behaviour so that the deadlock can be avoided. The last 

category, deadlock prevention, which focuses on a system design and planning so that 

deadlock can never occur. 

In this thesis a deadlock control strategy is presented that predicts deadlocks in the future to 

allow pre-emptive actions to avoid the occurrence of these. An advantage of this method is 

that the parts of deadlock prediction and avoidance policies are separated. This makes the 

strategy a general solution which can be adapted and optimized for specific systems. 

In the end a case study is presented that compares an existing strategy with three variations 

of the predictive method. The results will then be discussed. It is also shown how these 

strategies can be implemented into a simulation to enable future work.



 

 
2 

2  Theory 
At first, an overview and definitions of FMS, Deadlocks and Simulations will be given. This 

includes the discussion of the current state of the art and problems that occur.  

2.1  FMS Definition 
It is well over 30 years ago since the discussions about flexibility in manufacturing started. 

Upton wrote 1995 that ten or 15 years before the same happened with the term quality. It 

was vague and difficult to improve but everyone knew of its competitive value. The same 

phenomenon is happening with the term flexibility. It is only at the beginning of being 

explored and it still has different meanings to different people (Upton 1995: 3).  

2.1.1  Flexibility 
Taking a closer look at the concept of flexibility, literature still shows that it is complex and 
hard to describe. There are more than 50 different types of flexibility, not all of which are in 
agreement with each other and are often vague defined (Sethi and Sethi 1990: 289). 
For example, it can be seen from an adaptive or from a proactive point of view. While the 

adaptive view sees the ability to change, the proactive view uses it as a tool to increase 

customer expectations and therefore increase uncertainty for competition. (Jain 2013: 5947) 

One of the earliest definitions is from Ropohl (1967: 644) where he defines manufacturing 

flexibility as property of linked system elements with the ability to adapt to various production 

tasks. A later definition by (Cox Jr 1989: 68) includes the aspect of the market as he defines 

manufacturing flexibility as “the quickness and ease with which plants can respond to changes 

in market condition”. Upton (1994) has a more comprehensive definition in “the ability to 

change or react with little penalty in time effort, cost or performance”. Another definition is 

from Garrett (1986) in which he sees manufacturing flexibility as the ability to handle 

environmental uncertainties which can be divided into internal uncertainties and external 

forces. While internal uncertainties or disturbances can be breakdowns, rejects, rework or 

queueing delays, external forces include demand, price, product mix or availability of 

resources. 

Trying to find a standardized understanding of the topic, a few authors used taxonomies to 

categorise various types of flexibility. The following list of 11 types of flexibility by Sethi and 

Sethi (1990: 296-313) is a good comprehensive basis and commonly used and referred to. 

 



2  Theory 

 
3 

 

Figure 1: Flexibility Dimensions (Sethi and Sethi 1990: 297) 

Not all of the types have to be present to define an FMS, they rather give an overview on how 

many dimensions of flexibility there are, while each dimension can be implemented to a 

different degree. 

2.1.2  Measurement of Flexibility 
There are two approaches with the goal to describe the degree of flexibility. The qualitative 

approach uses linguistic assessment while the quantitative approach tries to use 

mathematical models to define numerical values. 

Due to the different perspectives and the vague definitions of flexibility the measurement of 

flexibility is still a subject that has to be worked on. Narain (2000: 205) identifies the following 

problems: 

• Flexibility measures potential rather than performance 

• Flexibility is multidimensional 

• There is no coherent classification of flexibility 

• It is difficult to determine the domain of flexibility 

• It is hard to define universal measures since flexibility is strongly situation dependent 

2.1.3  Elements of Flexible Manufacturing Systems 
As the meaning of flexibility and flexibility of manufacturing systems has been discussed, the 

question arises what elements have to be present to be classified as an FMS. Stecker (1983: 

273) defines FMS as a system consisting of an integrated, computer-controlled complex of 

automated material handling devices and numerically controlled (NC) machine tools that can 

simultaneously process medium-sized volumes of a variety of part types. In many cases, 

buffers are added at various places. 



2  Theory 

 
4 

While these systems, which have automation as their key conceptual requirements, can be 

found often, a system with the right components does not have to be flexible as long as the 

system is not designed with one or more elements of any types of flexibility to a certain 

degree.  

 

Browne (1984: 116) gives a classification of four types of FMS. 

• Flexible Machining Cell: It is the simplest FMS since it consists only of one general 

purpose CNC machine. Semi-finished parts that were stored in an input buffer are 

brought to the machine by an automated material handling device and afterwards 

taken away to an output buffer. It has exactly all the components needed to classify as 

an FMS. 

• Flexible Machining System: Consists out of multiple flexible machining cells with 

different general purposes, real-time part production control and multi routing, 

specialized on a small volume production. The flexible machining system can already 

fulfil a lot of flexibility dimensions. The dimension of flexibility can be extended 

depending on which material handling concept is implemented. 

• Flexible Transfer Line: In this system there is always only one process step assigned to 

only one machine for every part. This is called fixed routing. The layout is ordered and 

most of the time the material handling system is arranged in a circle with buffers in 

between the machines. This set up is less flexible and rerouting has to be done 

manually, in addition breakdowns cannot be handled easily but once set up it is 

producing efficiently. 

• Flexible Transfer Multi-Line: This type is an interconnection of one or more flexible 

transfer lines. This system I still very similar to the flexible transfer line but has more 

possibilities and therefore advantages in breakdown handling trying to combine the 

best of type 2 and 3. 

 

Figure 2 Part of a Flexible Machining System (Unisig 2018) 



2  Theory 

 
5 

2.1.4  Dedicated vs. Reconfigurable vs. Flexible Manufacturing Systems 
In search for a production system that fulfils all requirements other approaches can be 

mentioned. The most know and traditional might be the dedicated manufacturing lines 

(DMLs). Its focus does not lie on being flexible but rather being optimized and pre-planned for 

one specific part type at high volume. Characterized through cost-efficiency makes it a good 

fit for mass production. The goal of mass production is to offer a high number of standardized 

products at a low price. As the name of DML suggests the route of products is often strictly in 

one line, whereas the other systems are able to change routes to increase resource efficiency 

(ElMaraghy 2005: 265). 

The FMS on the other hand specializes in exactly the opposite, focusing on being able to 

process several types of products, with minimal or none changeover cost on the same system. 

In return the output level of products is lower. These properties make FMS ideal for a high 

degree of customization. Customization offers customers adjustments of products to their 

personal needs in exchange for a higher price. (ElMaraghy 2005: 265).  

The reconfigurable manufacturing systems (RMS) lies somewhere in between the DML and 

FMS. It attempts to combine both advantages, depending on the market requirements, 

through the ability to change its manufacturing system in order to adjust production capacity 

and functionality within a given range of parts. The objective is to have an optimized 

production system which can be changed in certain time intervals. The output level of 

products lies in between the DML and the RMS. RMS enables mass customization which offers 

little customization options for only a small increase in price. (ElMaraghy 2005: 265). 

Figure 3 shows a graphical explanation. FMS can produce a high variety of parts with a 

limitation of volume leading to a customization strategy. Dedicated Manufacturing Systems 

have a very low scope of variety but excel the others in output volume, ideal for mass 

production. In between these two options are RMS balancing variety and volume properties, 

customization, and mass production to mass customization. 

 

Figure 3: Categorization of Manufacturing Systems (Hu 2005)  



2  Theory 

 
6 

2.1.5  Recap 
FMSs are not always the best way, since “more flexibility does not always mean a more 

economical solution” (Lenz 1992: 22). High investment costs and the inability to take 

advantage of “economies of scale” limit the cause for FMS. Also, not all branches may profit 

from customization. Without a clear reason and strategy, the change to or the implementation 

of an FMS is a risk (Lenz 1992: 22).  

If a decision for an FMS is made, a concept can be developed. Especially during the concept 

phase, the high degree of flexibility and degrees of freedom of FMS have to be carefully 

considered. They generate a lot of new chances but increase complexity. Multi routing of 

products, multiple different products, the ability to choose between machines while the 

system should still be kept expandable, are only a few examples what must be considered. 

The number of variables and their relation to each other makes this not an easy task, especially 

since some variables can have a dramatic impact on the systems. For all these options 

decisions have to be made, some in advance during the planning phase and some decisions 

even live during production. This increases the effort for production planning and to control 

such a system. A lot of work has been done about FMS design for pre-production planning to 

find principles on which elements and what arrangements are most useful (some have already 

been mentioned in chapter “Elements of Flexible Manufacturing Systems“). There has also 

been worked on how to find ways to optimize such complex systems to make them more 

efficient. A peculiar characteristic that arises from the degrees of freedom of such systems are 

deadlocks. Deadlocks a whole system or a section of it, that is blocking itself so that no parts 

can move anymore without intervention. The works trying to solve this problem can be found 

under the topic of deadlock control. 

2.2  Deadlock Definition 
Work on deadlocks had first been done in general computing, where problems with resource 

sharing happened more often and before the first ones occurred in manufacturing. Later, 

when flexibility in manufacturing rose, the existing knowledge about deadlocks could be 

applied on manufacturing, as can be seen by the Coffman conditions, which if true verify a 

deadlock and will be explained later on. While computing system resources are elements like 

processor and disks, manufacturing system resources are machines, buffers, transport units 

and more. 

There are various definitions what a deadlock in an FMS is, or how a deadlock state occurs.  

Zajac (2004: 367) describes: “Deadlocks occur through the arbitrary routing of various parts 

which intersect with each other and the limitation of buffering”. 

Li explains the cause and state of deadlock as follows:  

The existence of resource sharing may lead to circular wait conditions, which is the real 

cause of deadlocks in which each of two or more jobs in a set keeps waiting indefinitely 

for the other jobs in the set to relinquish resources that they hold. In such a system, 

once deadlocks occur, they persist and would not be resolved without the intervention 

from human beings or other external agency[sic]. (Li 2011: 437) 



2  Theory 

 
7 

And a mathematical definition which is in agreement with the definition before from Seidl and 

Günther states:  

An FMS state is called a deadlock, if a set of finite resources RDL is completely allocated 

by a set of jobs WDL, where no r ∈ RDL can be released without allocation of at least 

another r' ∈ RDL. (Seidl and Günther 2000: 149) 

In such a system, four conditions by Coffman et al. (1971: 70) can be mentioned that lead to 

deadlocks. 

• Mutual exclusion: process require the exclusive use of resources. 

• Hold and wait: a process is holding a resource while waiting to acquire additional 

resources.  

• No pre-emption: processes holding resources cannot be forcibly removed 

• Circular wait: a closed chain of processes exists in which each process is waiting for a 

resource held by the next process in the chain. 

The first three are present in nearly all FMS. Closed chains are often needed to get the full 

potential out of the FMS. Nevertheless, an FMS without circular routing would prevent 

deadlocks from happening. 

2.2.1  Deadlock examples 
A simple deadlock example can occur in traffic management at a roundabout or like layouts 

as shown in Figure 4. There are 4 crossings with green arrows showing the entries and red 

arrows showing the exits. Each rectangle represents a car with the arrow pointing in its moving 

direction which is also pointing in its desired exiting location. It can be observed that the 

system is filled and no capacity is left, so no car can enter the system, since all exits are also 

blocked, the system is in a deadlock state and unresolvable until a car is forcefully removed 

from the system (Coffman et al. 1971: 69). 

 

Figure 4: Crossroad Deadlock Example (Coffman et al. 1971: 69) 



2  Theory 

 
8 

Another two examples are shown in Figure 5 Circles represent Machines which can be 

occupied by a product, represented by dots. Products then again have desired directions they 

want to move along indicated by arrows. For the purpose of simplification, no transport units 

are needed, and no buffers are given. 

Example a) is the smallest possible circle and therefore the smallest possible deadlock. A 

Product from machine A wants to go to machine B and vice versa. Since there are no buffers 

or transport units, the machines are blocking each other, making it impossible to move 

products. 

In example b) four machines A, B, C and I, which can be seen as input, are given. The desired 

rout of product 1 is I → A → B → C → A→ B→ and then leaving the system. The rout of 

product 2 is I → A → B → and then leaving the system. The upper state is critical. There are 

two possible movements. Either product 1 moves from machine C to machine A and therefore 

resolving the critical state by not getting into a deadlock state, or product 2 moves from Input 

to machine A which creates a deadlock. 

 

Figure 5: Simple Deadlock Scenarios 

 

2.3  Methods for Deadlock control/handling 
There are different easy strategies to solve deadlock scenarios with guarantee, so that even if 

the production system is completely blocked, steps can be followed to resolve the deadlock 

and re-established the flow of products. But they are most of the time to conservative, 

meaning that performance suffers too much because resources are used inefficiently, or 

additional costs arise. A simple method would be to remove a product from the wait circle 

and put it back in after the flow of products has been re-established. Methods like this often 

need employees to intervene, are time consuming and lower performance. It also creates the 

question where and when to reinsert the product. There are also solutions which do not lower 

the performance but have the disadvantage to not guarantee a resolution of the deadlock 



2  Theory 

 
9 

situation. The decision has to be made according to the concept and the needs for 

manufacturing. 

2.3.1  Modeling tools for Deadlocks 
To make deadlocks easier to understand or help communicating graphical tools are of good 

use. They are not only used for showing a static state but can also help understanding dynamic 

steps of the system. Currently three graphical tools are commonly used. Diagraphs, automata 

and petri nets. 

Diagraph or graph theory is part of discrete mathematics and an easy and intuitive tool to 

show, communicate and analyse interactions between resources and their relationships. As 

seen in Figure 5 deadlock situations can be presented easily, and control policies can be 

derived (Li 2011: 438). 

Automata is a graphical tool that represents transitions of system states. It is often used in 

computer science with the intend of running through predefined states the system can get 

into. At each state a string is received, and a transition function determines the next steps. 

Figure 6 shows two states. The first one is the initial state. If the string “a” is received it 

transitions to the next state, state 2. State 2 is an ending state, indicated by the double circles, 

in which it will stay as long as it receives “b” as input. If the string “c” is sent it will transition 

back into the initial state 1. (Wainer 2009: 17) 

 

 

Figure 6:  Automata Example 

More commonly used are petri nets. They consist of places, tokens, transitions and arcs. An 

example, shown in Figure 7, would be, a token/product is currently placed in a place/machine 

(p1) where it wants to transition (t) along the arc/rout to another place/machine (p2). A 

Transition is a logical controller that only lets tokens move if the logic is fulfilled, if that 

happens the token “gets fired”, disappears in place 1 and appears in place 2.  Between two 

arcs there is always a transition and no place is connected with another through an arc without 

transition. Petri nets do have, in comparison to digraphs, more information about the 

transition of parts. As can be seen in, they also carry information about the path and how 

many tokens will be fired. Petri nets are also well suited for deadlock detection due to the 

formulation of liveness. A transition is live if it is able to fire. If the transition is unable to fire 

it is called dead. Therefore, a circle of dead transitions is a deadlock (Cardoso and Heloisa 

1998: 14). 



2  Theory 

 
10 

 

Figure 7: Petri-Net Example 

There are currently three major approaches for deadlock handing called, deadlock detection 

and recovery, avoidance and prevention (Li 2011: 438). In some cases, methods can be 

combined. 

2.3.2 Prevention 
This method is off-line, meaning that the deadlock handling is done in advance before the 

system starts running. The idea behind it is to design a control policy and the system in a way 

that it is not possible that deadlocks happen. This could be done for example, by creating a 

product schedule, which defines which product enters at which time. In other words, it must 

be assured, that at no point in time all four of the Coffman conditions hold true. Stochastic 

events like machine breakdowns are typically not considered and can still lead to deadlocks 

(Li 2011: 439). 

An advantage of deadlock prevention is, that since the policies are developed off-line and in 

advance, no runtime is needed. The biggest disadvantage is that most of the policies are too 

conservative. 

Two examples will be given. The first one is called block an recirculate (Figure 8), where a 

conveyer runs in a circle and connects all machines. If the machine, that is required from the 

product, is blocked the product stays on the conveyer until the machine is ready to process. 

This approach is wildly accepted but the drawbacks are clear. Waiting time for products to 

rotate, limited space on the conveyer and restrictions in layout limit the flexibility and have to 

be accepted. The second example uses the same principle of offering enough space by haven 

a high buffer space in front of each machine. With this method products never have to wait in 

a machine and can always move forward (Kim 1997: 1549).  



2  Theory 

 
11 

 

Figure 8: Loop-Conveyor System (Kim 1997: 1548) 

 

2.3.3  Detection and recovery 
The detection and recovery methods allow deadlocks to occur. The task of detecting is to 

locate where the deadlock happened, and report back the right information that is needed to 

identify if the system is in a deadlock state. This means that this approach operates on-line 

and therefore is working while the system is running. Such algorithms are usually executed 

over certain time intervals. If a deadlock is found, the system then recovers by aborting one 

or more tasks which are involved in the deadlock by removing all resources currently needed 

by the task and through this, bypassing the pre-emption condition. This condition is one of the 

four Coffman that needs to be true so that a deadlock can occur. Another job of the recovery 

process is to find an efficient way to re-insert the aborted task. The recovery process often 

requests human operators and thus, can be very expensive depending on how often deadlocks 

occur in the system (Li 2011: 439). 

Wysk, et al. (1991: 855-857) presented a deadlock detection based on a string multiplication 

algorithm to identify circuits. A symbol matrix S is defined that shows all connections between 

machines. For example, if a wait relation between machine 1 and 2 exists, it is signalled by 

writing 12 into the matrix, symbolising the machines and not numerical values. If no wait 

relation exists 0 is written. Two arc circuits are in S², three arc circuits are in S³ and so on. After 

the string multiplication all circuits are defined. Furthermore, circuits have to be validated and 

intersecting circuits have to be investigated.  

Fanti et al. (1996: 237-239) detects deadlock with the help of a depth search in a diagraph and 

the definition of a Maximal-weight, Zero outdegree Strong Component (MZSC). All blocked 

jobs are written into a list. Starting from the first blocked job, if all vertices reachable from 

there are busy, the diagraph contains a MZSC. Furthermore, if the resource of the blocked job 

is element of the MZSC a deadlock is detected, the recovery procedure starts.  

This procedure solves the deadlock in four steps by first selecting a deadlocked cycle. After 

the selection it removes a job into a buffer. The system is now running again and while this 

happens a restriction policy is set that inhibits new resources to get into the system that would 

reach the circle and also inhibits jobs that would transition corresponding to edges that would 

lead into the circle. At a certain point the restriction is removed. The last step is to move the 

job from the buffer back to the resource (Fanti et al. 1996). 



2  Theory 

 
12 

2.3.4  Avoidance 
Deadlock avoidance is also an on-line method, looking one or multiple steps ahead in time to 

check if the resources are safe to be released from their current location or can be used by 

other resources, without causing a deadlock. For this method to work a good communication 

in the system has to be installed to provide the data needed for policy change algorithms. This 

method is the least conservative but with the drawback of not always guaranteeing deadlock 

freeness (Li 2011: 439). 

For example, there is the possibility that a one-step look-ahead is not enough, and a deadlock 

cannot be avoided because all scenarios in the next step lead to an unavoidable deadlock. 

Therefore, multi-step look-ahead deadlock avoidance policies have been developed in recent 

years. Since these algorithms have to calculate all possible outcomes with respect to the next 

system change and in the case of multi-step look-ahead also all possibilities in the next few 

steps, especially big manufacturing systems take a multiple of runtime and processing effort 

in comparison to other policies. Even though, computational performance has increased over 

the years and it is expected to further increase, the efficiency of these algorithms is key. If the 

on-line policies cannot be calculated in time, the calculation would lag behind the real 

manufacturing system and therefore be without use (Li 2011: 439). 

The most common method is the use of the Bankers Algorithm. At the entry of a 

product/process its demand for each resource is written down in a 2-dimensional array. And 

next the number of resources of each type that is currently allocated to each product/process. 

The two arrays will be subtracted to get the need-array. The safest option now is to allocate 

the free resources to the product/process with the lowest need value. If there are enough 

resources to allocate, the product/process for this step is done and its resources are set free 

for the other products/processes. This step of finding the next lowest need value, allocating 

free resources to it and setting them free again is repeated until there are no more 

products/processes. This way, every step the safest way to allocate resources for products is 

found. Problems with this algorithm are for example no robustness to resource failure or that 

the principle only works at certain points in time where many resources have to be considered 

at once. There are many principles building on this algorithm to extend the algorithm in 

different directions (Lawley and Sulistyono 2002: 351). 

One of the early works on deadlock avoidance with petri-nets was done by Viswanadham et 

al. (1990: 718-720). Using a one-step look-ahead and a reachability graph to find out if the 

next transition is safe or if it would lead to a deadlock. This is done to find a decision what 

transition to fire. A simple example shown in Figure 9, consisting of an input station, an 

automated guided vehicle (AGV) and a NC machine. In Figure 10 the petri-net to the example 

and the transition graph can be seen. Starting from marking P1 two transition t1 to Place P3 and 

t2 to place P4 are possible. P3 represents the AGV carrying raw material and P4 carrying a 

finished part. If t2 gets fired and the AGV carries a finished part but there is also already a raw 

material in the station a deadlock would happen, therefore t1 has to be fired before t2. 



2  Theory 

 
13 

 

Figure 9: Simple Manufacturing System, AGV and NC Machine (Viswanadham et al. 1990: 713) 

 

Figure 10: Petri-Net Model and Reachability Graph of Simple Manufacturing System (Viswanadham et al. 1990: 718) 

 

  



2  Theory 

 
14 

Places : 

1 : AGV available 

2 : Raw parts available 

3 : AGV available to carry a raw part 

4 : AGV available to carry a finished part 

5 : AGV carrying a raw part to the NC machine 

6 : AGV, with raw part, waiting for the NC machine 

7 : NC machine available 

8 : NC machine processing part; AGV released 

9 : NC machine waiting for AGV, after finishing processing 

10 : AGV unloading the finished part 

11 : NC machine processing a part; AGV not released 

12 : AGV, not released during processing by machine, unloading a finished part 

 

Immediate Transition: 

1 : AGV assigned to raw part 

2 : AGV assigned to finished part 

3 : AGV starts transporting a raw part 

5 : AGV released after finding a machine free 

6 : AGV not released after finding a machine free 

8 : AGV starts unloading a finished part 

 

Timed Transition: 

4 : AGV carrying a raw part to the NC machine 

7 : Machine processing a part; AGV released 

9 : AGV carrying a finished part to L/U station 

10 : Machine processing a part; AGV not released  

11 : AGV, not released during processing by machine, carrying a finished part to L/U 

  station 
Table 1: Description of Petri-Net Model 

 

2.3.5 Current Research 
Current deadlock control researches focus on specific cases like railway systems by Fanti et al. 

(2006: 1231) or semiconductor fabrication by Zhu  (2014: 117). Others need to change or 

manipulate the model in order to apply the deadlock control (Xing et al. 2011: 608). Due to 

the complexity of the systems and the inability to find the perfect solution in a practical time 



2  Theory 

 
15 

heuristic searches are used.  The extension of petri nets to time colored petri nets makes 

deadlock control concepts easier to formulate, where color is used to differentiate between 

different tokens and the concept of a global time is added. (Baruwa et al. 2014: 833). Current 

deadlock avoidance strategies using multi-step look-ahead are relying on strictly defined 

models and model analysis to find the right avoidance policy. Part of the avoidance strategy is 

reducing and parameterizing (Gu et al. 2018). 

Even though not all works on deadlock control have been analyzed, they seem to be focusing 

on specific problems and are therefore standalone solutions that are not easily combinable. 

The practically and applicability to real manufacturing systems that can have a high variability 

in their set up and workflow still has to be proven. 

2.4  Discrete Event Simulation (DES) 
In this section a brief introduction on simulation is given. At first, definitions about modeling 

and simulations are stated and classified. Based on this, DES and the three-phase-approach 

can be explained. Finally, a new view of DES in the form of the Hierarchical Control Conceptual 

Modeling (HCCM) is explained which will be used later on. 

2.4.1  Modeling definition 
When confronted with problems it can be observe in life that it is difficult to find exact 

solutions. The complexity of problems is high due to the high degree of detail. It is difficult to 

describe and consider every element, influence and dynamic that can observe in reality. A way 

of dealing with this is to find an abstraction of the system by using a model. Assumptions and 

simplification can be applied to a model in order to make the system more predictable or to 

reduce its complexity if only a part of the system is of interest for in the problem. It has to be 

taken care of not simplifying the model so much, that the results are not comparable with the 

real system anymore. The implementation of a model for this use is called simulation (Wainer 

2009: 4).  

2.4.2  Simulation definition 
A definition for simulation by Robinson considers the four aspects of operations systems, 

purpose, simplification and experimentation.  

Experimentation with a simplified imitation (on a computer) of an operations system 

as it progresses through time, for the purpose of better understanding and/or 

improving that system. (Robinson 2004: 4) 

Or in other words. A simulation is an abstraction of a real system used for experiments with 

the intention to get information about its behaviour and how it can be influenced with a 

concept of how it progresses to solve a problem.  

Simulations can be done physically through experiments but at present time most of the 

simulations are done only virtually with computers. This is because experimentation is often 

not a feasible solution due to ethics, risks or cost. Another advantage of virtual simulations is 

the repeatability and the ease to change parameters to observe their influence quickly 

(Wainer 2009: 3).  



2  Theory 

 
16 

Simulations can be classified on how variables change over 

time.  In discrete simulations the state variables will only 

change at countable points in time for example a traffic 

light. Continuous simulations have their state variables 

changed constantly over time like the temperature in 

a room (Robinson 2004: 24-25). 

Another differentiation is if a Simulation is 

deterministic or stochastic. If deterministic, all 

variables are know with certainty. In stochastic 

simulations at least one variable is probability 

distributed (Robinson 2004: 138-139). 

2.4.3  Discrete-Event Simulation 
Discret-event simulations are a special kind of simulation that evolve around a series of events, 

which are state changes that happen at certain instants called event time. The series of events 

is also called event calender and is orderd descending by the event time. Other points in time 

are not relevent to the system and can be skipped. In a state change at least one element in 

the system has to change. Examples of events can be seen in Table 2 where a customer arrives, 

a operator starts service, completes service. All these events occur in an discrete instant 

(Robinson 2004: 15-18). 

 

Table 2: Simple Telephone Call Centre Simulation (Robinson 2004: 16) 

Other important parts of DES besides events and the eventcalender are, a simulation clock 

that represents the time during the simulation and activities that last for a specific time and 

are started and ended by an event. An activiety could be getting served at a counter, which 

starts with the event “start service”, lasting for a specific time, while getting served, that 

Figure 11: Classifications of Simulation 



2  Theory 

 
17 

afterwards ends with the end event “service finished”. Futhermore  entities have to be 

mentioned. Entities are the moving or interacting parts in the system that are adressed during 

state changes. Entities have characteristics called attributes which define what they are. For 

example a customer has as an attribute the time of arrival and a reason for coming into the 

system, maybe an injury. While different classes of entities can have different attributes, 

entities of the same kind can have differen values of their attributes. Entities compete for 

entities and use them, like a counter or an operator.  If an entitie is used by another it can be 

called resourece. A resource has a capacity for how many entities can use them. If the limit is 

reached no entity can access the resource anymore. In this case the entities have to wait in 

queues, which are places where the entities wait. Also queues can have a capacity limit 

(Robinson 2004: 2,11,18).  

To enable a DES, policies have to be defined which set guidelines on how entities have to be 

treated. If a counter is free again and a customer from the queue can be served the policies 

have to define which customer is the next one in line (Robinson 2004: 7). 

2.4.4  Three-Phase Approach 
In the three phase approach events are divided into two categories: 

• Bound or Booked events are state changes at a given point in time. A customer arrives 

every 5 minutes, for example. 

• Conditional events are dependent on changes in the system, and therefore the state 

changes happen. An operator can only start a service if the customer has already 

arrived. 

At first the simulation is initialized. All key elements are set up to the initial state and the first 

events are scheduled. In phase A the time of the first event is picked up and the simulation 

advances to that time. In-between this time no state changes happen. Now all booked events 

that are scheduled at this time are executed. Some of these booked events might create 

conditional events that will be executed right after the booked ones in phase C or at a later 

point in time. Since the execution of a conditional event can also create another conditional 

event or even a chain of events, which are called sequential events, that have to be executed 

all at the current time, a loop has to be carried out to check if there are any new conditional 

events that have to be triggered. After all events at that certain time have been carried out, a 

logical question decides if the simulation has to run further, searching for the next time in the 

event calendar or if the simulation is stopped. This could be for example if the simulation has 

reached a specific time or if there are no more events in the event calendar (Robinson 2004: 

17-19).  



2  Theory 

 
18 

 

Figure 12: The Three-Phase Simulation Approach (Robinson 2004: 19) 

 

2.5  Hierarchical Control Conceptual Modeling (HCCM) 
The trigger of conditional activities in the three-phase approach can be summarized as: if a 

condition evaluates to true an entity is chosen from the queue and with it an activity is 

triggered. This approach needs a rather rigid connection of resources to queues and the 

autonomy of queues to each other. With rising complexity this approach reaches its limits 

soon and customized workarounds are often designed in practice (Furian et al. 2014: 207). 

2.5.1  Extended Activity Classification 
While researching DES in health care systems, which are often very flexible, Furian et al. (2014: 

208) found other problems with the standard approach. It could also be seen that that the 

conditional activities trigger could be classified into two groups and therefore needed some 

extension. In some scenarios, health care personal had to move through the triggered 

condition of patients. Patients requested personal. Hence, these activities are called 

requested activities and are not much different as in the standard approach. 

On the other hand, other motivations for activities could be seen that were not conditional to 

other elements in the system but rather conditional to the system. An example would be the 

anticipation of future requests or in general optimization. Since these activities are 



2  Theory 

 
19 

determined and triggered by the control policies of the system they are referred to as 

controlled activities (2014: 208). 

2.5.2  Hierarchical Simulation Control 
Another problem occurred that in some scenarios an element could be a resource or an entity 

depending on the perspective. The following hierarchical world-view by Furian et a. (2014: 

209), replaces entity queues through activity requests combined with control units and makes 

the differentiation between entity and resource unnecessary. The control units are 

hierarchical structured to a tree of control units. 

The whole system is divided into, by its task distinguishable sub systems or organizational 

areas. In some cases, it is useful to implement further sub systems into an existing sub system. 

Each of them, has its own control unit that is responsible for the control policies. In addition 

to the control policies they are also controlling a list of pooled requested activities and events. 

These lists are called Requested Activities and Events Lists (RAELs) and replace the standard 

mechanism of separating activities into different types and corresponding queues. The RAEL 

only hold requests that could be performed in the current state of the system (Furian et al. 

2014: 209). 

Through this, by organizational areas classified, hierarchical structure and the use of assigned 

RAELs, an organized structure is built that establishes a clear overview even in complex 

system. Provided, the depth and design of the tree is modeled with care.  

A core element of control units are rules. The five categories for rules that can be distinguished 

are assessment, dispatching, control, replace and custom rules. Assessment rules check which 

activities could be carried out, depending if entities are available, and adds these activities 

requests to the RAEL. Dispatch rules decide which request of the RAEL is next in line. Control 

rules are responsible for triggering the behaviour that is the result of the dispatch rules or 

behaviour to influence the performance of the system. Activity replacement decides when 

and which requests are removed from the RAEL. In the end custom rules are for any control 

functionality not covered in the categories above (Furian et al. 2014: 209). 

In some cases, actions happen that a control unit is not responsible and designed for. In this 

case delegates, which are responsible for communication between control units transport the 

information either up-, down- or sideways in the tree.  



2  Theory 

 
20 

 

Figure 13: Concept of Hierarchical Control World View (Furian et al. 2014: 210) 

 

2.5.3  Time Advancement 
As in the three-phase model time advancement happens through scheduled behavior. The 

event calendar or Scheduled Event List (SEL) hold all events, sorted by time. At the start and 

after each finished execution of an event, the simulation searches for the next time in the SEL 

and advances to that point. All events at that time are started. This happens from the top of 

the control tree downwards. All rules are executed in the following sequence: assessment, 

dispatch, control replacement. As soon as a request or an event is triggered the simulation 

jumps back to the first rule, the assessment rule. If no further action were launched, the 

delegates are sent. This procedure will be repeated until to actions are executed and no 

changes are happening at this specific time anymore. After that the next time of the SEL is 

looked up and things repeat until either there are no more events in the SEL or another stop-

condition is met (Furian et al. 2014: 210). 

The exact algorithm of execution can be seen in Figure 14. It starts at “Select Next Item from 

SEL” and selects the time of the next item. It continuous by updating the time. Afterwards the 

stop-conditions are checked, for which examples were already mentioned. Next, the 

scheduled items are executed, and rules are performed. It is checked afterwards if any new 

behaviors are triggered and a conditional loop is started. In this conditional loop another stop-

condition is implemented, checking each round if the simulation has to be stopped. If no 

additional behavior is found the simulation advances in the hierarchical tree by sending 

delegates if needed. Should the sending of delegates be necessary, the conditional loop is 

executed again until no new behavior occurs. If there are no more delegates left, all actions at 

that time are executed and the simulation can select the next point in time. This again, is 

repeated until the stop-condition is met (Furian et al. 2014: 210). 



2  Theory 

 
21 

 

Figure 14: Time Management Algorithm (Furian et al. 2014: 210) 

 

2.5.4  Structure of the HCCM framework 
Figure 15 shows the underlaying structure trough four phases, that if followed can help to set 

up the model step by step. Phase one is about understanding the problem with the intended 

result of an informal, textual description of the problem situation. Assumption made during 

this phase should be documented and also included in the problem description (Furian et al. 

2015: 89).  

In the “Identifying the Goals” phase two categories of objectives have to be defined. General 

objectives are requirements needed to be fulfilled by the simulation model. For example, 

calculation time, visualization or changeability for other cases. Modeling objectives define 

what can be achieved from the development and us of the model (Furian et al. 2015: 89).  

Phase three defines input and output factors. Input or also called experimental factors are 

values that can changed over different experiments to achieve a different outcome. Output 

factors represent the outcome of a model and should have some relation to the problem 

situation (Furian et al. 2015: 89). 

In the last phase the model structure, individual behavior and system behavior is defined. The 

model structure is set by the entity structure and the relation of them to each other. It is 

recommended to capture the system in an informal graphical way. This way it is easy to 

determine the flow and interaction of entities. The individual behavior of each entity is 

identified in the next step. Using the queueing example before, a customer arrives, he will 

than wait in a queue until a server is ready, receives serves and after that leaves. The server 

for example will wait until a customer comes to it, starts the service and after finishing will 

wait again. Also, other behavioral information needs to be defined. Attributes of entities like 

the arrival time or how many customers a server can accept at the same time, participating 

entities, state changes and information about the requests made. The last step is the system 



2  Theory 

 
22 

behavior that defines the tree structure of the control units and their rules, which were both 

explained before (Furian et al. 2015: 90-92).  

 

Figure 15: Structure of the HCCM Framework (Furian et al. 2015: 89) 

 

 



 

 
23 

3  A Simulation Approach to Deadlock Control 
Deadlock control is currently an important topic in industries. But as already mentioned, 

literature delivers either a very theoretical approach or case studies with a detailed system 

and a specific solution, both of them not easy to use as general solution. 

In this chapter a solution approach is presented, with the intend to be general applicable or 

easy customizable. Its advantage lies in splitting the detection from the recovery or avoidance 

part. This happens through a deadlock prediction by simulating into future time steps, by 

which information about the later system state is generated. This could be for example, 

knowledge about the predicted deadlock like deadlock time or involved entities. But also, 

information about the system not directly connected to the deadlock could be used, like a 

possible drop off in throughput before the deadlock or number of products in the system 

compared to maximum capacity of the system. Through this, more information than the 

current state and the layout, that most existing methods use, can be utilized to build 

avoidance or recovery policies on it and to adjust them precisely to either influence the flow 

of the system beforehand or to set the right measures for an imminent deadlock.  

The principle is applicable to many different scenarios where entities need resources and are 

routed through a system that is able to fulfil the deadlock conditions. If the model gets more 

complex and additional information is added, more sophisticated polices can be made. 

Because of this the method can be easily adjusted to any complexity of a model. 

3.1  System Definition 
Key elements in the system are products, machines and buffers. Products need a specific set 

of process steps in a defined order called process route or routing. After the product has 

received all processings, it is finished and can move out of the system. Machines are able to 

perform a specific process step or a set of process steps and can treat one product at a time. 

In front of each machine is a buffer that can hold one product.  If the machine is done 

processing the product, but the product cannot move onward because the next machine is 

currently processing and its buffer is also currently occupied, the product waits in the 

machine. If the next machine is empty the product will be sent. The system operates in a push 

principle, since the information flow is in the same direction as the product flow (Bonney et 

al. 1999: 55). 

Products arrive in certain small deviating time intervals. This implies that the arrival flow of 

products is not dependent on the current state of the system or specific, how many products 

there are already in the system. That’s why there is an overflow buffer at the input of the 

system, storing all products until the system is able to take in another product.  

Due to simplification reasons no transport units are included, meaning that products move by 

changing the location where they are currently at to where they will be in an instant. This does 

not change the outcome significantly since transport units influence the system mainly in two 

points. First, they can be seen as additional buffer while holding a product during 

transportation. And second, as bottleneck, making products stay in the machine while waiting 

for transportation. Both raise complexity of the system but do not add a new 

mechanism/dynamic to it. 



3  A Simulation Approach to Deadlock Control 

 
24 

 

Figure 16: Elements of the Production System 

3.2  General Idea 
An overview on how the new method, that will be presented, has already been given before. 

Furthermore, a basic deadlock recovery method that will be called “Locked Buffer” and 

functions by disabling a buffer temporarily to artificially reduce the maximum system capacity 

until a deadlock occurs, will be tested. Next, the prediction method will be explained in detail 

and after that, combined with the locked buffer strategy. An additional combination of the 

prediction method with an early policy change to avoid predicted deadlock in early stages is 

also tested to show the versatility of the method. During both combinations other extension 

possibilities are given to give an overview of the full potential. 

  



3  A Simulation Approach to Deadlock Control 

 
25 

 

3.3  Simulation Procedure 
The procedure is centered around products and starts with the arrival of a product that gets 

placed into the input buffer. As soon as a product arrives, a new product arrival is scheduled, 

providing a continuous operation of the simulation. The arriving product request to get 

machined according to its process route. If the desired machine is not idle the product 

requests to get placed into the buffer in front of the machine. If the buffer is occupied the 

product waits in the current machine and blocks it. Otherwise the product is placed in the 

buffer and requests to get into the machine until the machine is idle. As soon as the product 

gets placed into the desired machine it gets processed. The process time is predefined and 

depending on which machine it is. Upon completion of processing the product is either 

finished and moves out of the system or requests for the next machine until it is finished. 

 

Figure 17: Flowchart Simulation Procedure 

 

3.4  Deadlock Detection 
This approach focuses mainly on machines as resources since they will be the limiting factor 

for deadlocks to occur. Two important states of machines can be distinguished for deadlocks, 

blocked machines mblocked and blocking machines mblocking. Blocked machines are occupied by 

a product that cannot advance to the next step and is therefore waiting. In front of every 

blocked machine is a blocking machine that is either currently processing or itself blocked by 

another machine. In the first case the machine is only blocking, in the second case it is blocked 

and blocking.  



3  A Simulation Approach to Deadlock Control 

 
26 

Defining: 

If Mblocking ⊆ Mblocked, the circular wait condition is met, and a set of machines is in deadlock.  

 

Figure 18: Blocked and Blocking Machines in a Production System 

Figure 18 shows three time steps. The first state represents three machines in which two 

machines (B, C) and their stocks are occupied. Machine B is blocked and therefore finished 

processing. Because there is currently no product in machine A that wants to move over to 

machine B, machine B is not blocking. Machine C is currently processing and therefore 

blocking Machine B. At t=1 and t =2, two products get into the system, filling machine A and 

its stock. Also, machine C finished processing and cannot move forward to machine A, leading 

to being blocked and blocking because machine A is blocking. At this point the deadlock can 

already be seen but is not detected until machine A is done processing and tries to move the 

product at t=3. As soon as this happens also machine A is blocked and the deadlock condition, 

that has been defined before, is true. 

3.5  Deadlock Controls 
The following methods are a combination of deadlock recovery and avoidance, which can be 

seen as the basis for more complex strategies. This thesis will focus on more simple solutions 

to make the principles clear and more generally applicable. 

3.5.1  Locked Buffer 
The following deadlock recovery method is a simplistic approach and therefore easy to apply 

generally.  Since all places in a circle have to be occupied by products for a deadlock to happen, 

a solution is to guarantee that there is always one product less than the maximal possible 

number of products in a circle. This can be achieved by locking one buffer in front of a machine 

(in the case of no buffers, a machine could be locked instead). A locked buffer or machine is 



3  A Simulation Approach to Deadlock Control 

 
27 

temporarily disabled and cannot be used. As soon as a deadlock is detected the locked buffer 

is set free. This guarantees at least another step with the chance of lowering the critical state 

in the system and re-establishing the flow of products. As soon as the product leaves the 

buffer it is locked again until the next deadlock occurs. It has to be noted that a locked buffer 

has to be in every independent circle. The drawback of locking buffers for most of the time is 

a lowering in performance (Xing et al. 2011). 

Depending on how many products there are in the system the likelihood rises that right after 

the buffer is set free another deadlock emerges with no ability to intervene. To add more 

security more buffers could be locked with the drawback of lowering performance even more. 

3.5.2  Deadlock Prediction 
The previously explained method is conservative due to the fact that it is not able to get any 

information about the system state until a deadlock happens and therefore has always to be 

in an alert state by blocking a buffer. This could be changed by analysing the system state and 

getting information about how critical it is. Depending on the information the system can 

change into an alert state and can be prepared for possible deadlocks. 

There might be a lot of possibilities for variables or combination of variables that return 

information about the critically of the systems state or how imminent a deadlock is. But these 

variables and the evaluation can change with how the system is designed, making it hard to 

find a general approach. 

This method tries to evaluate the chance of a deadlock occurrence directly by reporting if a 

deadlock is happening in any future steps. It can be categorized as a pre-emptive deadlock 

detection strategy, with the advantage that different strategies for the recovery/avoidance 

part can be applied. Only the deadlock definition and the algorithm to detect the deadlock has 

to be defined. 

The procedure is as follows: at every time step in the main simulation, a different simulation 

with the exact same state is started and runs for a specified time. How long it is run, mainly 

depends on what is needed for further policies and the computational limitation, since a 

longer calculation means more processing effort. This simulation is called “prediction 

simulation”. If the prediction simulation ever runs into a deadlock it reports back at which 

time it occurred. Since there are stochastic elements involved, a single simulation is most likely 

not representative and wrong, therefore this step is done multiple times to get a deadlock 

probability distribution. This distribution returns how likely a deadlock will occur within a 

specific time window. How often the predictive simulation has to be carried out depends who 

detailed and preceise the distribution hast to be which is also influenced by the stochstic 

elements, and again on the computational limitations. 



3  A Simulation Approach to Deadlock Control 

 
28 

 

Figure 19: Deadlock Prediction Heatmap 

The heatmap in Figure19 shows a possible output of this method. The y-axis represents the 

time of the simulation, starting at the top. Every point in time of the main simulation is a 

starting point for the prediction simulation which calculates into the future shown on the x-

axis. At the start the deadlock probability is still close to 0 for the next 80 minutes. But the 

next step in the main simulation already changes the system in a way that the deadlock 

probability raises to around 10% in the next 28 minutes and about 30% in the next 44 minutes. 

The deadlock probability mainly rises constantly as the main simulation progresses in time. In 

some cases, also a probability decrease can be seen. This may be caused by random events 

that make deadlock less likely. But this can also happen the other way around where the 

deadlock probability suddenly increases a lot until the deadlock is very likely and only a matter 

of time since all prediction simulations run into a deadlock. It as to be noted that even though 

the deadlock probability can change and vary, the predicted time for the deadlock progresses 

constantly which makes the system still useful. To guarantee this behaviour the main 

simulation time progression intervals should be small to get constantly information about the 

evolution of the prediction. This example shows the prediction of a system with many 

different possibilities for a deadlock to occur. If the system is more complex it would be also 

possible to make different prediction graphs for distinct section in the system.   

With this information the real simulation can be influenced to behave in a different way or 

switch into an alert state. 

3.5.3  Combinations with the Deadlock Prediction Strategy 
As already mentioned, this method is only a pre-emptive detection that needs to be paired 

with other methods to either recovery or avoid deadlocks. Two important values have to be 

defined. First, how high the predicted probabilities are for a deadlock to occur and second, at 

which point in time the probability reaches this limit. This depends on how fast the system 

can get into a critical state. In some systems it might be easier to predict deadlocks a long time 

in advance and in other systems deadlock occurrence is volatile and its occurrence cannot be 

predicted a long time in advance. 



3  A Simulation Approach to Deadlock Control 

 
29 

3.5.4  Deadlock Recovery Combination 
An example would be to pair the deadlock prediction strategy with the “locked-buffer 

strategy”, explained before. This way, performance could be improved by only blocking a 

buffer if a deadlock is imminent. In general, it is recommended to set the system in an alert 

state if the possibility of a deadlock is high and the deadlock is upcoming in the near future. 

By this, performance will not be worsened until shortly before the deadlock. 

 

Figure 20: Deadlock Prediction Heatmap, Combined with Locked-Buffer Strategy 

In Figure 20 the effect of this method is shown. This example starts at 2:15 h into the main 

simulation. At first, nearly no deadlocks are predicted. This changes in the next few minutes 

and at 2:16:23 all prediction simulations report back a deadlock. When the main simulation 

reached 2:20:38 not only the occurrence of a deadlock is very likely but also the time of its 

occurrence.  The locked buffer policy is activated by locking a buffer as soon as the probability 

is above 50 percent in 16 minutes into the future, marked by the black line. Policies have to 

be adjusted depending on what the prediction simulation reports back. In this case this could 

be the deadlock location. It can be seen that the system state does not change until the 

deadlock occurs but is than recovering from it. In some cases, a new deadlock state is 

imminent only a few minutes after the recovery but also a full recovery is possible as seen at 

the bottom of the heatmap. It has to be noted that the prediction simulations have no 

recovery policies implemented and are therefore reporting back what the outcome of the 

main simulation would be without recovery policy. 

3.5.5  Policy Change Combination 
Another, more expandable combination is to change the system behaviour through policies 

and rules in advance, to resolve possible imminent critical states and deadlocks early. This 

would allow a smoother deadlock control. 

A possible intervention could be to change the dispatching of products through prioritisation. 

Since the prediction simulations do not only get information about when, but also how and 

where, deadlocks are likely to occur, the prioritisation can be applied to the right products. In 

general, it is wise to change policies much more in advance compared to the “locked-buffer” 



3  A Simulation Approach to Deadlock Control 

 
30 

strategy, since the interventions effects should have less impact but require time to influence 

the system. 

 

Figure 21: Deadlock Prediction Heatmap, Combined with Policy Change Strategy 

In Figure 21 the deadlock probability is raising and therefore a policy change is applied. In this 

example the products which happen to be most often in a deadlock are prioritised. The intent 

is to get products that are causing critical states out of the system as fast as possible. In some 

cases, the effect can be seen by a delay of an imminent deadlock. But also, nearly full 

resolutions of critical states are possible. Even though policy changes are active, the influence 

can sometimes only be seen after a while, since the changes influence the system not always 

instantly. It can also happen, that multiple changes are applied shortly after another, changing 

the prediction multiple times. This deadlock prediction again, shows only the development of 

the system without policy changes, which means that changes are only shown if already 

happened in the main simulation. 

Other possible policy changes could be to block the input of new products into the system or 

into different sections and therefore keep the used capacity low. A less intervening policy 

would be to change the performance of a machine or multiple machines to relive critical 

sections. Or to change the routing of products so that they take less critical paths if variation 

is possible. Another option is to change the incoming products in a way that critical sections 

will be used less until the deadlock probability is low again. 

For most of these policies it is easy to find out which values are needed to be changed to 

achieve a certain improvement. In some cases, it would also be possible to take an analytical 

approach and start a set of prediction simulations with different policy changes to than choose 

the most beneficial one. In the end also the buzzword machine learning should be mentioned 

which could be used to find an optimized set of variables and their values. 

Since the predicted simulations possesses the same variables as the real simulation a lot more 

of information could be extracted and more complex policies and rules can be applied. The 

system state could be divided into different alert states depending on when and how likely a 

deadlock is to occur (Figure 22). Depending on in which state the system is, more intervening 



3  A Simulation Approach to Deadlock Control 

 
31 

policies could be applied. There are many possibilities, and all have to be adjusted to a specific 

system for the full potential. 

 

Figure 22: Deadlock Prediction Heatmap, Alert States 

 

 

Policy Change  1 Policy Change  2 
Alert 

State 



 

 
32 

4  Case Study 
The following case study analyses two layouts of a production system in two different 

scenarios and the effect of the proposed deadlock control methods with the use of a 

simulation, seen in Figure 23. Deadlock control methods that will be used are: 

• Method 1: locked buffer – deadlock recovery strategy 

• Method 2: deadlock prediction combined with the locked buffer strategy 

• Method 3: deadlock prediction combined with a policy change 

• Method 4: method 2 and method 3 together 

 

 

Figure 23: Case Study Scenarios 

The effect of the methods on the production system will be tested on two different scenarios. 

The first one will focus on the ability to handle deadlocks. The design of the system is chosen 

in such a way that deadlock occur relatively frequently. The simulation is carried out until a 

deadlock occurs. This scenario will give information on how good the methods can handle 

many, repeatedly occurring deadlocks. The second scenario focuses on the performance of 

the deadlock control methods with respect to a more stable system design, where deadlocks 

will occur less frequent and the simulation only runs for a certain time. 

4.1  Output values 
Key measures for comparison are the deadlock time, parts per deadlock and average 

throughput time of the system. The deadlock time represents how long the system is running 

until it is in a deadlock state which cannot be recovered anymore. Parts per deadlock, giving 

information about how many parts got finished until the unrecoverable deadlock occurred. 

Through the combination of these two values the average throughput time of the system can 

Case Study

Scenario 1

Layout 1

M1 M2

M3 M4

Layout 2

Scenario 2

Layout1 Layout2

… … … 



4  Case Study 

 
33 

be calculated. To get a significant comparison, each combination of test setups will be done 

200 times. This is also needed because of the stochastic behaviour of the system. 

For scenario 2 an additional measure is added, which will be named no deadlock percentage. 

Since the simulation in scenario 2 only runs for a certain amount of time, every test run that 

reaches this time is marked as “no deadlock”. 

4.2  Entities 
The systems entities are products, routes, machines and buffers. In the following part the most 

important attributes and their functions are described. Figure 24 shows all used attributes in 

this case study. It as to be noted that the product is connected with the route through the 

product type and the machine has an attribute for buffer referencing. 

 

Figure 24: Entities and their Attributes 

4.2.1  Products and Routes 
In this case study there are three different product types, determining what stages the product 

must proceed along the route. Each route is a list of processes or required skills that can be 

fulfilled by the machines. The three process routes shown in Figure 25 for layout 1 are: 

• Route A: In → A → B → D → Out 

• Route B: In → A → F → B → C → A → Out 

• Route C: In → A → B → D → E → C → B → D → Out 

Route A is characterized as a line and therefore no circles, getting processed by three 

machines. Route B forms a circle and needs to use machine A two times. On Route C, products 

get processed by seven machines of which 2 machines, B and D are used twice and forms a 

circle too like route B. 



4  Case Study 

 
34 

 

Figure 25: Route of the Products for Layout 1 

For layout 2, machine G is added to extend the route of product type A, leading to another 

circuit for deadlocks to occur. This will be discussed in more detail in the deadlock section. 

• Route A: In → A → B → D → E → G → D → Out 

 

 

 

Figure 26: Route of Product A for Layout 2 

For each scenario four different product mixes are used. The change of the product frequency 

distribution influences the likelihood of deadlock occurrence and the affected machines – 

where the deadlocks occur. Products of type A with route A in layout 1 have the shortest route 

and are therefore the shortest amount of time in the system. They also move in a line and 

therefore without a circuit, through the system. This makes product type A the safest product 

and the least critical for deadlock causing. For this reason, the frequency of product A is getting 



4  Case Study 

 
35 

progressively lowered and the frequency of product B and C are increased for each product 

mix, to increase the probability for the system to run into a deadlock state. In layout 2, 

products of type A with route A increase the possibility for a new deadlock at an additional 

place. The product mixes used are: 

• 50% A, 25% B, 25% C 

• 40% A, 30% B, 30% C 

• 33% A, 33% B, 33% C 

• 24% A, 38% B, 38% C 

Besides the product type and the route, products carry information about their priority. All 

products are by default prioritized equally. The priority of products can be changed to 

influence the system flow. This will only be done in deadlock control method 3 and 4.  

4.2.2 Machines 
Each machine is defined by a skill or a set of skills that determines which process step can be 

carried out on it. As can be seen by the routing, in this case study, each machine has only a 

single skill to offer. This can be checked when products search for routes to find the next 

machine. Depending on what skill a machine has, different processing times are set. For this 

case study, either ten minutes for machine C and G or five minutes for all other machines are 

used. 

Machines also have information about by which product they are currently occupied. If there 

are currently no products in the machine it is set to idle and awaits a product to process. As 

long as there is a product occupying the machine, it is not idle even if it is not processing. In 

this case the product cannot move forward because it is blocked, as already explained before, 

setting the machine also to blocked. These two properties define all possible states of a 

machine. The idle property for the product flow, the blocked property for deadlock detection. 

Machines also have a buffer assigned, so that, if a product cannot get into the machine, it can 

be send to this buffer that is in front of the machine. 

4.2.3  Buffer 
Each buffer has a capacity to define how many products can be stored in it. For simplification 

reasons, in this case study the capacity of all buffers is assumed to be one. One exception is 

the overflow buffer that is located at the start of the system which has no capacity limit. It is 

used to store the arriving products before they move to the first station. Buffers also have 

information about which product is currently stored in it. To enable Method 1 and 2 there is 

also a property that sets the buffer temporarily to being not available. 

4.3  Definition of the System 
Now that the entities are described, the use of the system and the underlying assumptions 

will be explained. Again, no transportation device like automated guided vehicles are included. 

If products change their location, they will immediately. This simplification is based on the 

assumption that transport does not have any major effects on the system or especially for 

what is tested and reduces the complexity that makes focusing on the problem easier. 



4  Case Study 

 
36 

This case study does also not consider random breakdowns of any resource, even though it 

could be implemented easily the effects of breakdowns will not be analysed here. 

4.3.1 Influence of Variables and System Behaviour 
In this section thoughts are made on how the system behaviour changes if certain variables 

are changed. This is only done to see how this systems dynamic could be changed in during 

the definition phase, since these variables stay constant afterwards. Some variables were 

already mentioned before since they are attributes of entities.  

Another variable that is defined by the system and not by an entity is the inter arrival time of 

products. It is the time between two product arrivals. The inter arrival time is an exponential 

distribution ( 𝑥 = 𝑡𝐴𝑟 ∗ 𝑙𝑜𝑔𝑒(1 − 𝑦) ) with the centre tAr at 10 minutes for first scenario and 

15 minutes for the second. The inter arrival time influences the system in a way that, if all 

other variables are constant and the inter arrival time is decreased, more products will fill the 

system. Therefore, blocking of machines will happen more often and since more products are 

in the system, the state of the system is more critical. This is because the maximum capacity 

is more likely to be reached.  

The same behaviour can be seen in combination with the performance or the utilization of 

machines and if the processing time of machines gets longer. The system gets more frequently 

into a deadlock state if the throughput is lower, since there are more products in the system. 

On the other hand, if the performance is higher and hence the throughput is higher, it is less 

likely that the system gets into a deadlock state.  

Another attribute of the buffer that influences the systems behaviour is the maximum 

capacity. Increasing the buffer capacity can help making deadlock prediction easier because 

the systems state is more differentiated and can be categorized in safe, alert and other states.  

The only stochastic variables are the inter arrival time and the product mix, hence the type of 

products arriving. All other variables, particularly mentioned the processing time of machines, 

are discrete and deterministic. 

4.3.2  Possible Deadlocks 
If the route of the products is investigated, see Figure 25, three possible circles can be 

identified. The first circle can occur with 3 machines involved or with 4 machines involved. 

Since the circle is the same and only the numbers of involved machines change this can be 

seen as one circle. The circles are: 

• A → (F) → B → C → A 

• B ↔ C 

• B → D → E → C → B 

In layout 2 an additional circle can be found: 

• D → G → E → D  

Special notice should be given to the circle where only two machines are involved. In this case 

the maximum capacity of the circle can be reached quickly, and the deadlock prediction gets 

difficult. Also, there is a lot of traffic for the machines A and B, making the circles where these 



4  Case Study 

 
37 

machines are involved easier to get into a deadlock, since they are most of the time occupied 

and the capacity is therefore often closer to being reached. 

4.4  Hierarchical Control Structure 
The structure of the model is rather simple, since the functionality and 

complexity are kept low. The root control unit is responsible for the 

whole production control, for handling requests, moving products and 

therefore the state changes through a rule set but also the control 

methods are executed by it. The detailed procedure of the production 

control will be explained later. The products move through the system by 

requesting the next resource. By implementing the prediction simulation, 

the production control unit takes responsibility for the prediction control 

unit, which is mainly a copy of the production control. 

4.5  Procedure of the Simulation 
The Simulation uses the HCCM concept described in chapter “Hierarchical Control Conceptual 

Model”. Since the time advancement has already been explained there, this section will focus 

on the main control rules, the requests and activities which are specific for this case study. 

First, only the regular flow of products through the system will be explained and after that, 

the deadlock control methods will be added.  

4.5.1  Requests and Activities 
The simulation consists of two different requests and 2 different activities. The activities are 

“get machined” and “wait in machine”. In the get machined activity the product is processed 

by the machine with the required skill, according to the route of the product. As soon as the 

activity starts the machines is set to not idle and stores the information by which product it is 

occupied. The product stores its current processing step and an end event is scheduled that 

determines the end of the activity, depending on the processing time of the machine. When 

the end event is triggered the product searches for the next required skill by going through its 

route. If there are no more needed steps and the product is finished, it moves out of the 

system and the machine is set to idle again. If there are still steps to be performed, the “wait 

in machine” activity is carried out. This behaviour can later also be used to identify states of 

the system where a product is waiting in a machine and to distinguished blocked machines 

from others. If the product can get moved out of the machine in the same timestep, which as 

explained before happens after the events are triggered, the practical waiting time is zero. 

This happens in the machine request handling procedure if an idle machine is found and the 

product is currently in a machine. Nevertheless, the machine is first set to blocked and is still 

not idle. A request for the next machine with the needed skill is filed and the activity is carried 

out until the product is moved. At the end of the waiting activity, when the product gets 

moved, the machine is set to idle. Further, the machine is no more blocked and the occupied 

by product property is cleared. 

The requests are to get placed into a machine and to get placed into a buffer. There is a special 

case for each of them during the arrival of a product. In this starting phase, both requests are 

predetermined and always request the same. Required information to file a request are the 

needed skill, the product filing it and the time of the request. 

Figure 27: Hierarchical 
Control Structure 



4  Case Study 

 
38 

For better understanding of this behaviour, Figure 28 shows a simplified flowchart from a 

product perspective with the focus on activities and requests. Requests are marked in blue, 

while activities are marked in green. It has to be mentioned that a product stays in the waiting 

activity as long as it gets placed somewhere else. 

 

Figure 28: Flowchart of Requests and Activities 

  



4  Case Study 

 
39 

4.5.2  Initialization and Start 
At first, the simulation, all its entities and the starting state are initialized. The starting state 

establishes the flow of products by creating the first product and scheduling the first product 

arrival event. After the time advances to that point the product arrival event is triggered, and 

the main control rules are executed (Figure 29). Each time a product arrives a new product is 

generated, and its arrival is scheduled, this way the simulation keeps on running until a stop 

condition is satisfied. The needed information to generate a product is the probability 

distribution of products from the product mix. To generate the next product arrival event the 

time of arrival is needed. The time is the current time plus the before mentioned exponential 

distribution of the simulation’s inter arrival time. After scheduling the new product arrival, the 

currently arriving product is handled by making a request. The first Request of an arriving 

product is always to get placed in a buffer with no machine in front, which is used as an 

overflow buffer if products cannot be placed into the system.  

 

Figure 29: Initialization and Start Procedure 

 

4.5.3  Basic Overview of the Main Control 
The next procedure that will be explained are the main control rules of the system, seen in 

the flowchart (Figure 30), where products are moved through the system. This will be 

executed after every triggered event. The intention is to give a basic overview and focus on 

details later. 

The main control starts by searching the request list for the requests where products want to 

get placed in the overflow buffer. The first one is picked and will be placed into the overflow 

buffer. The request is fulfilled and can be removed. To conclude the overflow buffer request 

handling, the next request for the next process is filed. The details to this will be explained 

later. This part will be repeated until there are no more requests for placing a product into the 

overflow buffer. 

The procedure is continued by sorting the request list. The first sorting is done by product 

priority. As mentioned before the product priority is by default the same for every product 



4  Case Study 

 
40 

and gets only changed by deadlock control algorithms. Then the products are sorted by 

request time to pick the ones which waited the longest for their request to get accepted. The 

last attribute by which is sorted is the product arrival time, to move products that where for 

a longer time than others in the system. After the sorting of requests, the machining requests 

are handled. Here, products are assigned to machines. This will be explained in detail later. 

The next step is then, to again sort the request list. This time, the buffering requests and with 

the same policies as described before. The buffer requests will then be handled, and products 

are assigned to the buffers of the machines to which they would have requested to move but 

could not. The last step is to check if any change as happened, which means that any products 

were moved. If so, the procedure starts again from sorting the machine requests. This is done, 

since if a product moves into a buffer, the possibility exists that a machine is again idle, and a 

product could move again. If the steps are done and no change has happened it is certain that 

all possible assignments have been done.  

 

Figure 30: Main Control Procedure 



4  Case Study 

 
41 

4.5.4  Handling Machine Requests 
This concludes the basic procedure of the main control. More detailed things are happening 

during the request handling of machining and buffering requests, which will be explained here. 

The steps performed can be seen in the flowchart in Figure 31. The first request from the 

sorted request list is picked and a machine that can fulfil the needed skill is searched. The 

machine is checked for being idle. If not, this request is skipped and the next one from the 

request list is taken. If the machine is idle, the product can be placed in it. For this to happen 

it needs to be checked where the product is currently located. If it is in a buffer, the product 

is removed from it. Should the product be currently in a machine it is in a waiting activity until 

it is moved. In this case the end event of the activity is triggered. The product is now located 

in the next machine and the start event of the machining activity is triggered. Finally, the 

request can be removed. It is important to start picking requests of the request list from the 

first position again, also the skipped ones. This is because, since a product has changed 

location the possibility exists that a machine, that was occupied before is now free. Products 

with higher priority, the ones who are first in the request list should be preferred. These steps 

are done until no requests are left in the list or every request in the list has been skipped. If 

there are skipped request in the list, they are changed into buffering request, since products 

that cannot get into machines try to get into the buffers in front of the needed machine. 

 

Figure 31: Handling of Machining and Buffering Requests 



4  Case Study 

 
42 

4.5.5  Handling Buffering Requests 
The handling of the buffering requests is nearly the same as the handling of machining 

requests, as can be seen in Figure 31. A difference is the checking for resource availability. 

While the machine is checked for the status idle, the buffer is checked for available capacity 

and if the buffer is allowed to be used (depending on later used deadlock control policies). In 

the last step the buffering requests are again converted back into machining requests, since 

this procedure is most likely to be repeated. It has to be noted that, even though the requests 

are changed from requesting to get machined to requesting to get buffered the time of when 

the request was filed stays the same, which is the time when first filed. This applies also to for 

the next time steps until one of these requests gets accepted. Otherwise the prioritisation 

would be mixed up. In other words, the requested time of a buffering request is the same as 

for the machining request when converted and vice versa. 

4.5.6  Deadlock Detection 
The deadlock detection follows after the main control rules and executed right afterwards. 

After the system state has changed and all products were moved, it is checked if there are any 

sections in deadlock. The deadlock condition before explained is used, where if a set of 

blocking machines is a subset of all blocked machines, a deadlock is guaranteed. Since the 

machines already have information about if they are blocked through the waiting state, only 

the blocking machines have to be identified. Since the blocked machine is blocked because 

the product cannot move, the route of the product can be checked to see where the product 

would like to go and therefore find the blocking machine. This is done for all blocked machines 

to find all blocking machines.  If the deadlock condition is true a deadlock is identified. 

4.6  Deadlock Control Methods 
The procedure until now concludes the basic function of the system and how the production 

model is simulated. It shows how products enter, how they are moved while fulfilling their 

processing routes and, in the end can exit the production as finished products. Deadlocks can 

be detected but no deadlock handling has been included yet. In this next section, the 

procedures of deadlock handling will be added. The locked buffed strategy will be explained 

first and after that the prediction strategy. This second one will then be extended with a 

combination with the locked buffer strategy and then a combination with a policy change. 

  



4  Case Study 

 
43 

4.6.1  Locked Buffer 
As mentioned before the locked buffer strategy works by locking at least one resource and set 

it free in the case of a deadlock. In this case study two buffer are locked in layout 1, which are 

buffer BA and BB. This decision has been made, since machine B is involved in all circles and 

machine A has second most products to process. For layout 2, buffer BD is additionality locked 

because the other machines are not involved in this second location for deadlock occurrence. 

The example in Figure 32 shows on the left side a deadlock. As soon as the deadlock is detected 

Buffer BB is set free and the Product marked in blue can move. Now a next step is possible by 

moving product from machine C and therefore the deadlock is recovered.   

 

Figure 32: Locking of Buffers 

The procedure can be seen in Figure 33 and is as follows. At every execution of the main 

control rules the mentioned buffers are locked by setting them to not usable. This is also 

important for relocking buffers that were set free in the step before, after a recovery where 

the flow of products got re-established. Next, the main control rules and deadlock detection 

is executed like explained before, but with the difference that requests for buffers can 

sometime be not fulfilled, since there may be capacity left but the buffers are set to be not 

usable. If a deadlock is detected this procedure starts from again from the start. This 

repetition is done since two buffers can be set free. In the first loop buffer BB is unlocked and 

the main control procedure is repeated, this time a product can most likely be placed in this 

buffer. If not, the next buffer BA is set free and the procedure is repeated. This does not 

always guarantee a deadlock recovery since if all buffers are set free and a deadlock is still 

detected no further measures can be taken to resolve the situation.  

For layout 2 an additional step is performed during deadlock detection, where it is checked 

which machines are involved in a deadlock to determine the deadlocked circle. Depending on 

where the deadlock occurred, the corresponding buffers are set free. In case of the layout 2 

deadlock, this would be buffer BD. 



4  Case Study 

 
44 

 

Figure 33: Flowchart of Locked Buffer Strategy 

 

4.6.2  Prediction Simulation 
The underlaying principle of the prediction simulation is to run a copy of the main simulation 

as the first procedure of the main control rules. Through this, decision can be made that 

influence the following steps to avoided deadlocks. Figure34 shows the procedure. Every time 

a main control rules execution is triggered a prediction simulation is started. It is an exact copy 

of the main simulation in its current state. All entities and their properties, scheduled events, 

currently running activities and filed requests are replicated. Special care has to be taken in 

copying currently running activities, since the time they have already been executed must be 

considered. The prediction simulation proceeds in the same way as the main simulation would 

and until a deadlock is detected or it exceeds a simulation time of 80 minutes. The prediction 

simulation will most likely have a different outcome as the main simulation would have. This 

is because the chances are high, that a new or several new products will arrive, which have 

probability involved since the new products are not predetermined but depend on the product 

mix and therefore are not the same as in the main simulation. Due to this it is possible that 

the flow and outcome of the prediction simulation is different from the main simulation. The 

probability, which product will be generated is influenced by the product mix of the prediction 

simulation, that is the same as in the main simulation. If a deadlock happened the time of its 

occurrence is reported back to the main simulation and put into a cluster divided into 2-

minute time steps. A new prediction simulation is then started until 150 reports are made. 

Through this cluster the deadlock probability can be estimated. 



4  Case Study 

 
45 

 

Figure 34: Flowchart of Prediction Simulation Strategy 

Table 3 shows a graphical representation of such a cluster. On the left side, top to bottom is 

the main simulation time and on the top are the 2-minute time intervals. The two highlighted 

cells in red can be interpreted as follows. At 6:00:27, looking 20 minutes into the future a 

deadlock will happen with a likelihood of 6 %. Looking 24 minutes into the future the likelihood 

of a deadlock is 16 %. The explained steps conclude the basic function of the prediction 

simulation strategy on which two deadlock control methods will be build. 

 

2 Minute Interval 

2 4 6 8 10 12 14 16 18 20 22 24 26 28 … 80 

Main Simulation Time 

05:53:28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

… 

0 

05:55:32 0 0 0 0 0 0 0 0 0 0 0 0 1 1 4 

05:58:28 0 0 0 0 0 0 0 0 0 0 0 2 2 2 5 

06:00:27 0 0 0 0 0 0 0 0 0 0 6 6 16 16 26 

06:00:32 0 0 0 0 0 0 0 0 0 0 6 6 12 12 20 

06:00:46 0 0 0 0 0 0 0 0 0 4 4 4 8 8 30 

06:03:28 0 0 0 0 0 0 0 0 11 11 11 11 11 58 58 

06:05:32 0 0 0 0 0 100 100 100 100 100 100 100 100 100 100 

06:07:39 0 0 0 100 100 100 100 100 100 100 100 100 100 100 100 

06:08:28 0 0 0 100 100 100 100 100 100 100 100 100 100 100 100 

06:09:05 0 0 0 100 100 100 100 100 100 100 100 100 100 100 100 

06:10:32 0 0 100 100 100 100 100 100 100 100 100 100 100 100 100 

06:15:32 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

 

Table 3: Deadlock Probability Cluster 

  



4  Case Study 

 
46 

 

4.6.3  Deadlock Prediction Combination with Locked Buffer Method 
The combination of the locked buffer strategy with the deadlock prediction has the advantage 

of not having to lock a buffer all the time but only if a critical state is reached. This critical state 

is detected by a deadlock probability higher than 50 % in the next nine minutes. The deadlock 

probability is the how likely a deadlock occurs at a certain point in time. Until this critical state 

has been reached, the main simulation is executed as if there is no deadlock control method 

implemented. If the critical state is reached it behaves like the locked buffer strategy explained 

above. It is noted that for layout 2, also not just the criticality of the system is reported but 

also where the deadlocks are predicted, this way a buffer in circle one, circle two or in both 

circles is locked. The main intend of this method is, to see if a deadlock prediction can be used 

to improve performance and to make the system more deadlock safe. 

 

Figure 35: Flowchart of Deadlock Prediction Combined with Locked Buffer Strategy 

4.6.4  Deadlock Prediction Combination with Policy Change 
This method changes the flow of the main simulation by prioritizing products which are the 

reason for deadlocks to get them out of the circles faster. The prioritization starts as soon as 

the deadlock probability is higher than 50 % in the next 22 minutes. Besides the deadlock time 

the prediction simulations also generate a list, ranking the products that where most often in 

a deadlock. The two highest ranked receive a higher prioritization. As explained in the main 

control rules procedure, the prioritization changes the order of requests to let these products 

move before all others. 



 

 
47 

5  Results 
For each method 200 replications were made, and the average of each key measure has been 

calculated. The measures by with which the methods are compared are the deadlock time, 

the sum of products per deadlock and the average time it takes until a product gets out of the 

system which is a combination of the first two. The latest one will be called system 

throughput* since it is not a standard product throughput and is calculated by dividing the 

deadlock time by the products per deadlock. 

The deadlock time is measured in hours, rounded to the first digit and is the time from the 

start of the simulation until an unrecoverable deadlock. The longer the simulation lasts and 

the higher the deadlock time is, the better.  

But a production system that only lasts long does not have to be the best, since another setup 

that might run faster into a deadlock could still process more products until then. In this case 

the products per deadlock gives information about the performance of the production system 

during its runtime. The products per deadlock is rounded to whole products. The more 

products get out of a system, until a deadlock occurs, the better. 

In some cases, it might be hard to see which of these two values outweighs the other since 

the values are not normalized and therefore not easy to compare directly. This is the reason 

for calculating the system throughput*. This value is presented in minutes and rounded to the 

first digit. If the average time for a product to come out of the system is lower, the better. 

For all 200 replicaitons a random set of products was generated according to the product mix 

beforehand, so that each method gets the same set of products. This has been done to 

eliminate a possible distortion of the results when comparing. 

Deadlock control methods that will be used are: 

• Method 1: locked buffer – deadlock recovery strategy 

• Method 2: deadlock prediction combined with the locked buffer strategy 

• Method 3: deadlock prediction combined with a policy change 

• Method 4: method 2 and method 3 together 

  



5  Results 

 
48 

5.1  Scenario 1 / Layout 1 
The first notable point is that the impact of the product mix is strong and makes it easier to 

get into a deadlock, as was planned. Especially the change from the first to the second product 

mix influences the system a lot. Looking at the simulation, where the product mix favours 

product A, method 1 achieves the highest deadlock time. But as soon as the system gets easier 

into a deadlock, method 2 and 4, which both use the prediction strategy do not fall of as hard 

as method 1. At the equilibrium of the product mix, method 1 is once again better than 

method 4 but in the next product mix, method 4 has a higher deadlock time by around two 

and a half hours. When comparing the methods by the deadlock time, method 2 seems to be 

the best.  

 

 

 

 

 

  

Table 4: S1-L1 Deadlock Time 

 

Figure 36: S1-L1 Deadlock Time 

  

Deadlock Time in h 
  Method 

M1 M2 M3 M4 
Product Mix   

A:50 % B:25 % C:25 %  46,3 45,2 17,8 35,3 

A:40 % B:30 % C:30 %  18,2 22,5 10,3 19,7 

A:33 % B:33 % C:33 %  14,7 17,3 7,2 12,3 

A:24 % B:38 % C:38 % 5,5 9,5 4,6 8,1 



5  Results 

 
49 

The same result can be seen for the products per deadlock. Judging only by the products per 

deadlock measure, method 2 seems overall superior and method 3 way off. In both measures 

method 1 falls off the fastest. 

Products/Deadlock 
  Method 

M1 M2 M3 M4 
Product mix   

A:50 % B:25 % C:25 %  268 263 100 203 

A:40 % B:30 % C:30 %  100 126 54 108 

A:33 % B:33 % C:33 %  78 93 35 65 

A:24 % B:38 % C:38 % 27 48 21 41 
 

Table 5: S1-L1 Products/Deadlock 

 

Figure 37: S1-L1 Products/Deadlock 

  



5  Results 

 
50 

Since the two measured values do show nearly the same results and do not point in opposite 

directions, the calculated value should and does show the same result. Method 3 is worse 

than the others. Method 2 seems overall better than Method 1 and 4, even though they are 

most of the time very close to each other. The difference is below half a minute. Also, of 

interest is that method 2 excels the others at the hardest product mix, where also method 3 

has the worst outcome.   

 

System Throughput* in min 
  Method 

M1 M2 M3 M4 
Product Mix   

A:50 % B:25 % C:25 %  10,4 10,3 10,6 10,4 

A:40 % B:30 % C:30 %  10,9 10,7 11,4 11,0 

A:33 % B:33 % C:33 %  11,2 11,1 12,2 11,4 

A:24 % B:38 % C:38 % 12,2 12,0 13,1 11,9 
 

Table 6: S1-L1 System Throughput* 

 

Figure 38: S1-L1 System Throughput* 

Summarizing the first results, it can be said that method 3 is not competing with the others, 

even though the system throughput* in the first product mix is close to the others, looking at 

the other measures this method might not be practically usable. Comparing the other 3 

methods shows that method 1 is best for systems where the system does not get easy into a 

deadlock. Method 2 excels if the system does get easy into deadlocks and therefore seems to 

be the most promising one for this scenario and layout. Method 4 lies in between method 1 

and 2. 

  



5  Results 

 
51 

5.2  Scenario 1 / Layout 2 
In the second layout a circle for possible deadlocks was added. Because of this it has to be 

mentioned that the decrease of product A over the product mixes does not mean a less 

deadlock safe system but rather that a deadlock is more likely to occur at the added circle. 

The values for deadlock time show that method 2 is overall the best. Method 1 is at the first 

product mix the most useful one but gets worse with changing product mixes. For the last two 

mixes method 4 is better than method 1 and close to method 2. Method 3 is again not near 

to the other ones. 

Deadlock Time in h 
  Method 

M1 M2 M3 M4 
Product Mix   

A:50 % B:25 % C:25 %  33,0 31,5 15,5 28,2 

A:40 % B:30 % C:30 %  15,3 18,3 10,2 15,6 

A:33 % B:33 % C:33 %  11,2 13,6 7,6 13,2 

A:24 % B:38 % C:38 % 7,1 9,1 5,2 8,8 
 

Table 7: S1-L2 Deadlock Time 

 

Figure 39: S1-L2 Deadlock Time 

  



5  Results 

 
52 

When comparing the results of the products per deadlock to the deadlock time it gets obvious 

that they are dependent on each other since they are nearly the same. This means that, in this 

layout, the longer a system lasts and does not get into a deadlock the more products get 

through it. Because of this, the same outcome as explained for the deadlock time values are 

valid for the products per deadlock. 

 

Products/Deadlock 
  Method 

M1 M2 M3 M4 
Product Mix   

A:50 % B:25 % C:25 %  183 179 84 159 

A:40 % B:30 % C:30 %  82 100 52 83 

A:33 % B:33 % C:33 %  57 72 37 69 

A:24 % B:38 % C:38 % 33 45 23 43 
 

Table 8: S1-L2 Products/Deadlock 

 

Figure 40: S1-L2 Products/Deadlock 

  



5  Results 

 
53 

As again the two measured values do not point in opposite directions the calculated system 

throughput* follows them and shows method 2 as the best. In the last product mix method 4 

catches up to method 2 and has the same result. 

System Throughput* in min 
  Method 

M1 M2 M3 M4 
Product Mix   

A:50 % B:25 % C:25 %  10,8 10,6 11,1 10,6 

A:40 % B:30 % C:30 %  11,2 11,0 11,8 11,2 

A:33 % B:33 % C:33 %  11,8 11,4 12,4 11,6 

A:24 % B:38 % C:38 % 12,9 12,2 13,5 12,2 
 

Table 9: S1-L2 System Throughput* 

 

Figure 41: S1-L2 System Throughput* 

 

To conclude layout 2 of scenario 1 it can be said that method 2 is again the best option but 

method 4 is coming close for the last two product mixes. Method 3 is also again not competing 

with the others and method 1 gets good results in the at first but falls of as the deadlock 

occurrence shifts closer to the second circle. 

  



5  Results 

 
54 

5.3  Scenario 2 / Layout 1 
In scenario 2 the average arrival time gets set to 15 minutes instead of 10 from scenario 1. 

Through this the system does not get easy in a deadlock and lasts longer. If a test run exceeds 

48 hours, it is marked as no deadlock. Through this a new value for comparison is added which 

is the no deadlock percentage. This value is in close relation with the deadlock time. If for 

example, the no deadlock percentage is 100 %, the deadlock time must be 48-hours. This 

correlation can be used for a detailed analysis to find out if in some cases, deadlocks happen 

unusually early. 

Looking at the deadlock time it can be seen that the system operates longer than the others 

with the use of method 1. Method 2 and 4 are close but this time method 4 is better than 

method 2. When observing the last product mix, which favours deadlock occurrence the most, 

method 1 its deadlock time declines stronger than method 2 or 4, making them equally good 

for this mix. For another perspective, the values can be evaluated by how close they get to the 

48-hour mark. 

 

Deadlock Time in h 
  Method 

M1 M2 M3 M4 
Product Mix   

A:50 % B:25 % C:25 %  45,4 45,7 31,3 41,4 

A:40 % B:30 % C:30 %  42,7 39,2 26,5 39,6 

A:33 % B:33 % C:33 %  41,0 31,6 25,4 34,2 

A:24 % B:38 % C:38 % 30,2 28,7 17,3 29,9 
 

Table 10: S2-L1 Deadlock Time 

 

 

Figure 42: S2-L1 Deadlock Time 



5  Results 

 
55 

 

The products per deadlock measure delivers a nearly identical comparison of the methods as 

the deadlock time.  

Products/Deadlock 
  Method 

M1 M2 M3 M4 
Product Mix   

A:50 % B:25 % C:25 %  184 185 151 175 

A:40 % B:30 % C:30 %  169 153 101 154 

A:33 % B:33 % C:33 %  164 127 100 138 

A:24 % B:38 % C:38 % 115 109 62 114 
 

Table 11: S2-L1 Products/Deadlock 

 

 

Figure 43: S2-L1 Products/Deadlock 

  



5  Results 

 
56 

In the system throughput* comparison, many changes can be seen. First, method 3 has the 

best result for the easiest product mix, which then gets worse fast. When looking at the values 

of method 1, 2 and 4 it gets clear that there is close to no difference since the difference is 

around 15 seconds to each other. This can be explained through the limited run time and the 

fact that many runs of the simulation end after 48-hours simulated time. 

System Throughput* in min 
  Method 

M1 M2 M3 M4 
Product Mix   

A:50 % B:25 % C:25 %  14,8 14,8 12,4 14,2 

A:40 % B:30 % C:30 %  15,2 15,4 15,7 15,4 

A:33 % B:33 % C:33 %  15,0 14,9 15,3 14,9 

A:24 % B:38 % C:38 % 15,7 15,9 16,6 15,8 
 

Table 12: S2-L1 System Throughput* 

 

Figure 44: S2-L1 System Throughput* 

  



5  Results 

 
57 

The no deadlock values show the same results as the deadlock time, as expected due to the 

correlation of these two values. Simulation runs that do not run into a deadlock during the 48-

hour period of time, decline very drastically. At first, methods 1, 2 and 4 keep the system 

nearly deadlock free at around 90 %. For the most difficult situation, only around 30 % of the 

simulations do not get into a deadlock. 

 

% no Deadlock 
  Method 

M1 M2 M3 M4 
Product Mix   

A:50 % B:25 % C:25 %  94% 95% 64% 86% 

A:40 % B:30 % C:30 %  78% 65% 27% 68% 

A:33 % B:33 % C:33 %  67% 41% 21% 47% 

A:24 % B:38 % C:38 % 34% 30% 8% 34% 
 

Table 13: S2-L1 % no Deadlock 

 

Figure 5.45: S2-L1 % no Deadlock 

 

Summarizing this set up, the overall most useful method might be method 1. Method 2 and 3 

are very close to each other. Method 3 is the most unusable. For the last product mix, which 

favours deadlock occurrence the most, the results of the methods get very close. 

  



5  Results 

 
58 

5.4  Scenario 2 / Layout 2 
In this test run the easier system in relation to deadlock occurrence is paired with the layout 

that has an additional circle added.  

Looking at the measures for the deadlock time, method 2 is overall the best and method 3 the 

worst. For the first product mix the results are close to each other. With advancing product 

mixes the difference gets more significant. The same can be said for the products per deadlock 

measures. 

 

Deadlock Time in h 
  Method 

M1 M2 M3 M4 
Product Mix   

A:50 % B:25 % C:25 %  44,7 45,9 36,7 44,4 

A:40 % B:30 % C:30 %  40,9 42,9 28,2 40,8 

A:33 % B:33 % C:33 %  35,6 40,1 23,8 36,8 

A:24 % B:38 % C:38 % 28,6 34,9 18,1 32,4 
 

Table 14: S2-L2 Deadlock Time 

 

 

Figure 46: S2-L2 Deadlock Time 

  



5  Results 

 
59 

 

Products/Deadlock 
  Method 

M1 M2 M3 M4 
Product Mix   

A:50 % B:25 % C:25 %  177 181 142 174 

A:40 % B:30 % C:30 %  160 167 107 161 

A:33 % B:33 % C:33 %  138 146 88 143 

A:24 % B:38 % C:38 % 109 134 65 122 
 

Table 15: S2-L2 Products/Deadlock 

 

 

Figure 47: S2-L2 Products/Deadlock 

  



5  Results 

 
60 

Method 3 is compared by the system throughput* the worst. The others are very close to each 

other and the difference is below half a minute.  

System Throughput* in min 
  Method 

M1 M2 M3 M4 
Product Mix   

A:50 % B:25 % C:25 %  15,2 15,2 15,4 15,3 

A:40 % B:30 % C:30 %  15,3 15,4 15,8 15,2 

A:33 % B:33 % C:33 %  15,5 15,4 16,3 15,5 

A:24 % B:38 % C:38 % 15,7 15,6 16,8 16,0 
 

Table 16: S2-L2 System Throughput* 

 

 

 

Figure 48: S2-L2 System Throughput* 

 

  



5  Results 

 
61 

The no deadlock percentage starts again with close to 90 %. But do not decline as much for 

layout 2 as in layout 1. Method 2 is the best in avoiding deadlocks of the methods and exceeds 

the 48-hour mark nearly 50 % of them for the worst product mix. 

% no Deadlock 
  Method 

M1 M2 M3 M4 
Product Mix   

A:50 % B:25 % C:25 %  85% 91 % 56% 85% 

A:40 % B:30 % C:30 %  70% 81% 30% 71% 

A:33 % B:33 % C:33 %  51% 65% 17% 55% 

A:24 % B:38 % C:38 % 31% 49% 10% 39% 
 

Table 17: S2-L2 % no Deadlock 

 

Figure 49: S2-L2 % no Deadlock 

5.5  Summary of the Results 
In general, it can be said that the measured values get worse with the decline of product A 

and the rise of product B and C. Through this behaviour it can be seen how the deadlock 

control methods develop in a system in which the deadlock probability is rising step wise. 

Method 1 has the best outcome when evaluating the deadlock time and the products per 

deadlock for the first product mix. Even though the system throughput* is not the best at this 

mix, it is very close. This suggests that in a system where the deadlock occurrence is low, 

method 1 that does not intervene much, seem to be superior. By intervening it is meant that 

method 1 only releases locked buffers and until then the system stays the same, in comparison 

to method 2 and 4 where buffers get locked before deadlocks are detected and change the 

flow. But soon as the deadlock occurrence gets higher method 1 falls of rapidly, meaning that 

for a more critical system with a higher probability for deadlock to occur, this method might 

not be the most suitable. 



5  Results 

 
62 

Method 2 seem to be overall the best. It achieves good results for the for the first product mix 

and falls of the least when the deadlock occurrence rises. Also, the system throughput* is 

most of the time the best, even though the difference to the others is marginal.  

Method 4, which is the combination of method 2 and 3 is also close, which leads to the 

suggestion that the locked buffer strategy, which all of them have in common, has a big impact 

on the deadlock avoidance. It can also be seen that methods 4 is slightly worse for the first 

product mix than the others with the locked buffer strategy but gets close to method 2 for 

more difficult systems. This corroborates the suggestion that more system intervention 

worsens the outcome for systems with lower deadlock occurrence, since method 4 changes 

the flow of the system through prioritization and the locked buffer strategy. On the other 

hand, the values for method 4, same as method 2, do not fall of as much as method 1 when 

deadlock occurrence rises. This suggests that the implementation of a simulation prediction is 

beneficial for more critical systems. 

Method 3 is in no scenario as useful as the others. In some cases, this method does also not 

decrease in performance as much as method 1 does, like the other prediction methods, and 

in some cases its behaviour is similar to method 1. It seems to be likely that this happens since 

the method is not targeted in the right direction. It is intervening in the system to not have 

good results when the deadlock occurrence is low but also intervening to little when possible 

deadlocks get detected. 

5.6  Control Method vs. No Method 
In this section the deadlock method 2, which is the overall best, is compared to running the 

system with no deadlock control methods. 

Figure 50 shows the deadlock time and the products per deadlock results for all combinations 

of scenarios and layouts. In scenario 1 the results with no methods stay nearly the same, since 

it can most likely not get much worse and this time is needed to fill the system and the circles 

with products. In other words, the system runs into a deadlock shortly after enough products 

got into the systems. Method 2 achieves way better results for the first, easy product mix and 

is still around twice as good as no methods for the last and most difficult product mix. 

Scenario 2 is easier and does not get into a deadlock as quickly as scenario 1. Due to this the 

results with no method show a decline over the more difficult product mixes. This means that 

with no method applied in scenario 2, it is not as close to its worst state as in scenario 1. But 

still method 2 is overall around twice as good. Especially for the more difficult product mixes 

method 2 shows its adventages. 

  



5  Results 

 
63 

  

  

  

  
 

Figure 50: Method 2 vs. No Method 

 



 

 
64 

6  Outlook 
This case study shows that deadlock prediction gets better results for system with higher 

deadlock occurrence. The difference can be seen even with simple and known methods like 

the locked buffer strategy. It also gets clear that it is difficult to apply a beneficial policy change 

and that it is important to adjust it to the system. The results of this case study have to be 

proven on a model of a real manufacturing system to get better sight on what can be achieved 

with this method, especially when correctly adjusted and the practically of it. Another point 

that has yet to be proven feasible is the processing time for bigger systems and the ability to 

get real-time results. More work has to be done especially on policy changes to influence the 

system more targeted in the right direction. In this area also the combinations of policy 

changes and the interaction of their characteristics has to be observed. Another point of 

interest is what results could be achieved with the use of machine learning. A successful 

implementation of prediction simulation with adjusted deadlock control strategies is able to 

make deadlocks controllable with only little lowering of the performance of the production 

system. 



 

 
65 

List of Figures 

Figure 1: Flexibility Dimensions (Sethi and Sethi 1990: 297) ..................................................... 3 

Figure 2 Part of a Flexible Machining System (Unisig 2018) ...................................................... 4 

Figure 3: Categorization of Manufacturing Systems (Hu 2005) ................................................. 5 

Figure 4: Crossroad Deadlock Example (Coffman et al. 1971: 69) ............................................. 7 

Figure 5: Simple Deadlock Scenarios .......................................................................................... 8 

Figure 6:  Automata Example ..................................................................................................... 9 

Figure 7: Petri-Net Example ..................................................................................................... 10 

Figure 8: Loop-Conveyor System (Kim 1997: 1548) ................................................................. 11 

Figure 9: Simple Manufacturing System, AGV and NC Machine (Viswanadham et al. 1990: 

713) ........................................................................................................................................... 13 

Figure 10: Petri-Net Model and Reachability Graph of Simple Manufacturing System 

(Viswanadham et al. 1990: 718) ............................................................................................... 13 

Figure 11: Classifications of Simulation .................................................................................... 16 

Figure 12: The Three-Phase Simulation Approach (Robinson 2004: 19) ................................. 18 

Figure 13: Concept of Hierarchical Control World View (Furian et al. 2014: 210) .................. 20 

Figure 14: Time Management Algorithm (Furian et al. 2014: 210) ......................................... 21 

Figure 15: Structure of the HCCM Framework (Furian et al. 2015: 89) ................................... 22 

Figure 16: Elements of the Production System ........................................................................ 24 

Figure 17: Flowchart Simulation Procedure ............................................................................. 25 

Figure 18: Blocked and Blocking Machines in a Production System ........................................ 26 

Figure 19: Deadlock Prediction Heatmap ................................................................................ 28 

Figure 20: Deadlock Prediction Heatmap, Combined with Locked-Buffer Strategy ................ 29 

Figure 21: Deadlock Prediction Heatmap, Combined with Policy Change Strategy ................ 30 

Figure 22: Deadlock Prediction Heatmap, Alert States ............................................................ 31 

Figure 23: Case Study Scenarios ............................................................................................... 32 

Figure 24: Entities and their Attributes .................................................................................... 33 

Figure 25: Route of the Products for Layout 1 ......................................................................... 34 

Figure 26: Route of Product A for Layout 2 .............................................................................. 34 

Figure 27: Hierarchical Control Structure ................................................................................ 37 

Figure 28: Flowchart of Requests and Activities ...................................................................... 38 

Figure 29: Initialization and Start Procedure ........................................................................... 39 

file:///C:/Users/Marco/Dropbox/Master/Research/Master%20Thesis%20part_Gesamt_formal.docx%23_Toc41298782
file:///C:/Users/Marco/Dropbox/Master/Research/Master%20Thesis%20part_Gesamt_formal.docx%23_Toc41298798


List of Figures 

 
66 

Figure 30: Main Control Procedure .......................................................................................... 40 

Figure 31: Handling of Machining and Buffering Requests ...................................................... 41 

Figure 32: Locking of Buffers .................................................................................................... 43 

Figure 33: Flowchart of Locked Buffer Strategy ....................................................................... 44 

Figure 34: Flowchart of Prediction Simulation Strategy .......................................................... 45 

Figure 35: Flowchart of Deadlock Prediction Combined with Locked Buffer Strategy ............ 46 

Figure 36: S1-L1 Deadlock Time ............................................................................................... 48 

Figure 37: S1-L1 Products/Deadlock ........................................................................................ 49 

Figure 38: S1-L1 System Throughput* ..................................................................................... 50 

Figure 39: S1-L2 Deadlock Time ............................................................................................... 51 

Figure 40: S1-L2 Products/Deadlock ........................................................................................ 52 

Figure 41: S1-L2 System Throughput* ..................................................................................... 53 

Figure 42: S2-L1 Deadlock Time ............................................................................................... 54 

Figure 43: S2-L1 Products/Deadlock ........................................................................................ 55 

Figure 44: S2-L1 System Throughput* ..................................................................................... 56 

Figure 5.45: S2-L1 % no Deadlock ............................................................................................ 57 

Figure 46: S2-L2 Deadlock Time ............................................................................................... 58 

Figure 47: S2-L2 Products/Deadlock ........................................................................................ 59 

Figure 48: S2-L2 System Throughput* ..................................................................................... 60 

Figure 49: S2-L2 % no Deadlock ............................................................................................... 61 

Figure 50: Method 2 vs. No Method ........................................................................................ 63 



 

 
67 

List of Tables 

Table 1: Description of Petri-Net Model .................................................................................. 14 

Table 2: Simple Telephone Call Centre Simulation (Robinson 2004: 16) ................................. 16 

Table 3: Deadlock Probability Cluster ...................................................................................... 45 

Table 4: S1-L1 Deadlock Time .................................................................................................. 48 

Table 5: S1-L1 Products/Deadlock............................................................................................ 49 

Table 6: S1-L1 System Throughput* ......................................................................................... 50 

Table 7: S1-L2 Deadlock Time .................................................................................................. 51 

Table 8: S1-L2 Products/Deadlock............................................................................................ 52 

Table 9: S1-L2 System Throughput* ......................................................................................... 53 

Table 10: S2-L1 Deadlock Time ................................................................................................ 54 

Table 11: S2-L1 Products/Deadlock ......................................................................................... 55 

Table 12: S2-L1 System Throughput* ....................................................................................... 56 

Table 13: S2-L1 % no Deadlock................................................................................................. 57 

Table 14: S2-L2 Deadlock Time ................................................................................................ 58 

Table 15: S2-L2 Products/Deadlock ......................................................................................... 59 

Table 16: S2-L2 System Throughput* ....................................................................................... 60 

Table 17: S2-L2 % no Deadlock................................................................................................. 61 



 

 
68 

Bibliography 
Baruwa, O., Piera, M.A. and Guasch, A. (2014) 'Baruwa, Olatunde T., Miquel Angel Piera, and 

Antoni Guasch. "Deadlock-free scheduling method for flexible manufacturing systems based 

on timed colored Petri nets and anytime heuristic search', IEEE Transactions on Systems, Man, 

and Cybernetics: Systems, pp. 831-846. 

Bonney, M.C., Zhang, Z., Head, M.A., Tien, C.C. and Barson, R.J. (1999) 'Are push and pull 

systems really so different?', International journal of production economics, pp. 53-64. 

Browne, J. (1984) 'Classification of flexible manufacturing systems', The FMS magazine 2.2, 

pp. 114-117. 

Cardoso, J. and Heloisa, C. (1998) Fuzziness in Petri, 22nd edition, Heidelberg: Physica-Verlag. 

Coffman, E.G., Elphick, M. and Shoshani, A. (1971) 'System deadlock', ACM Computing Surveys 

(CSUR) 3.2, pp. 67-78. 

Cox Jr, T. (1989) 'Toward the measurement of manufacturing flexibility', Production and 

Inventory Management Journal 30.1, p. 68. 

ElMaraghy, H.A. (2005) 'Flexible and reconfigurable manufacturing systems paradigms', 

International journal of flexible manufacturing systems 17.4, pp. 261-276. 

Fanti, M.P., Giua, A. and Seatzu, C. (2006) 'Monitor design for colored Petri nets: An 

application to deadlock prevention in railway networks', Control Engineering Practice, pp. 

1231-1247. 

Fanti, M., Maione, G. and Turchiano, B. (1996) 'Fanti, M. P., Maione, G., & Turchiano, B. (1996, 

May). Deadlock detection and recovery in flexible production systems with multiple capacity 

resources', In Proceedings of 8th Mediterranean Electrotechnical Conference on Industrial 

Applications in Power Systems, Computer Science and Telecommunications , pp. 237-241. 

Furian, N., O'Sullivan, M.J., Voesnner, S. and Walker, C. (2014) 'HCCM-A Control World View 

For Health Care Discrete Event Simulation', In ECMS, pp. 206-213. 

Furian, N., O'Sullivan, M., Walker, C., Vössner, S. and Neubacher , D. (2015) 'A conceptual 

modeling framework for discrete event simulation using hierarchical control structures', 

Simulation modelling practice and theory 56, pp. 82-96. 

Garrett, S.E. (1986) 'Strategy first: A case in FMS justification', Proceedings of the Second 

ORSA/TIMS Conference on Flexible Manufacturing Systems. Elsevier, Amsterdam, The 

Netherlands, pp. 17-29. 

Gu, C., Li, Z., Wu, N., Khalgui, M., Qu, T. and Al-Ahmari, A. (2018) 'Improved multi-step look-

ahead control policies for automated manufacturing systems', IEEE Access 6, pp. 68824-68838. 

Hu, S.J. (2005) 'Paradigms of manufacturing—a panel discussion', 3rd Conference on 

Reconfigurable Manufacturing. 

Jain, A. (2013) 'A review on manufacturing flexibility', International Journal of Production 

Research 51.19, pp. 5946-5970. 



Bibliography 

 
69 

Kim, -O. (1997) 'An efficient real-time deadlock-free control algorithm for automated 

manufacturing systems', International journal of production research, pp. 1545-1560. 

Koren, Y. (2006) 'General RMS characteristics. Comparison with dedicated and flexible 

systems', Reconfigurable manufacturing systems and transformable factories, pp. 27-45. 

Lawley, M. and Sulistyono, W. (2002) 'Robust supervisory control policies for manufacturing 

systems with unreliable resources', IEEE Transactions on Robotics and Automation 18.3, pp. 

346-359. 

Lenz, J.E. (1992) 'The need for both labor and machine flexibility in manufacturing', Industrial 

Engineering 24.10, pp. 22-23. 

Li, Z. (2011) 'Deadlock Control of Automated Manufacturing Systems Based on Petri Nets—A 

Literature Review', IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications 

and Reviews), pp. 437-462. 

Narain, R., Yadav, R.C., Sarkis, J. and Cordeiro, J.J. (2000) 'The strategic implications of 

flexibility in manufacturing systems', International Journal of Agile Management Systems, pp. 

202-213. 

Robinson, S. (2004) 'Simulation: the practice of model development and use', in Robinson, S. 

(ed.) Simulation: the practice of model development and use, 50th edition, West Sussex PO19 

8SQ, England: John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester. 

Ropohl, G. (1967) 'Zum Begriff der Flexibilität', Werkstattstechnik Vol. 57, p. 644. 

Seidl, M. and Günther, S. (2000) Avoiding deadlocks in flexible manufacturing systems, 569th 

edition, Boston, MA: Springer. 

Sethi, A.K. and Sethi, S.P. (1990) 'Flexibility in manufacturing: a survey.', International journal 

of flexible manufacturing systems 2.4, pp. 289-328. 

Stecke, K.E. (1983) 'Formulation and solution of nonlinear integer production planning 

problems for flexible manufacturing systems', Management science 29.3, pp. 273-288. 

Unisig (2018) www.unisig.com, Sep, [Online], Available: https://www.unisig.com/wp-

content/uploads/2018/09/rifle-barrel-manufacturing-production-cell.jpg [May 2020]. 

Upton, D.M. (1994) '72-89', California management review 36.2, pp. 72-89. 

Upton, D.M. (1995) 'What really makes factories flexible', Harvard business review 73.4, pp. 

74-84. 

Viswanadham, N., Narahari, Y. and Johnson, (1990) 'Deadlock prevention and deadlock 

avoidance in flexible manufacturing systems using Petri net models', IEEE Transactions on 

Robotics and Automation 6.6, pp. 713-723. 

Wainer, G.A. (2009) 'Computer simulation', in Group, T.&.F. (ed.) Discrete-event modeling and 

simulation: a practitioner's approach, Baco Raton, FL: CRC press. 

https://www.unisig.com/wp-content/uploads/2018/09/rifle-barrel-manufacturing-production-cell.jpg
https://www.unisig.com/wp-content/uploads/2018/09/rifle-barrel-manufacturing-production-cell.jpg


Bibliography 

 
70 

Wysk, R.A., Joshi, S. and Yang, N.-S. (1991) 'Detection of deadlocks in flexible manufacturing 

cells', IEEE Transactions on robotics and automation, pp. 853-859. 

Xing, K., Han, L., Zhou, M. and Wanf, F. (2011) 'Deadlock-free genetic scheduling algorithm for 

automated manufacturing systems based on deadlock control policy', IEEE Transactions on 

Systems, Man, and Cybernetics, Part B (Cybernetics), pp. 603-615. 

Xing, K., Han, L., Zhou, M. and Wang, F. (2011) 'Deadlock-free genetic scheduling algorithm for 

automated manufacturing systems based on deadlock control policy', IEEE Transactions on 

Systems, Man, and Cybernetics, Part B (Cybernetics), pp. 603-615. 

Zajac, J. (2004) 'A deadlock handling method for automated manufacturing systems', CIRP 

Annals-Manufacturing Technology 53.1, pp. 367-370. 

Zhu, Q., Wu, N., Qiao, Y. and Zhou, M. (2014) ' Scheduling of single-arm multi-cluster tools 

with wafer residency time constraints in semiconductor manufacturing', IEEE Transactions on 

Semiconductor Manufacturing, pp. 117-125. 

 


