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Kurzfassung

Im Kontext der Kommunikationstechnologie werden Signale während der Übertra-
gung verzerrt. Verzerrung bedeutet hierbei ein Absinken der Signalqualität. Bei
der Übertragungstechnologie Near Field Communication (NFC) führt vor allem die
Intersymbolinterferenz (ISI) zu Verzerrungen. Außerdem wird die Phase des Signals
bei der Übertragung verschoben. Bei Datenraten höher als 848kbps wird das Sig-
nal so stark verzerrt, dass keine robuste Übertragung mehr möglich ist. In dieser
Arbeit wurde untersucht, inwieweit ein Equalizer basierend auf dem well-behaved
Normalized Constant Modulus Algorithm (wNCMA) der ISI, als auch der Phasen-
verschiebung, entgegenwirken kann. Zusätzlich wurde der Equalizer in Verilog im-
plementiert.
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Abstract

In the context of communication technology, signals always experience some form of
degradation during transmission. Degradation is the loss of quality of an electronic
signal. Regarding Near Field Communication, the main cause of degradation is
Intersymbol Interference (ISI). The transmitted signal also experiences a phase shift.
For data rate applications greater than 848kbps, ISI becomes severe, preventing
robust communication. For the mitigation of ISI and phase shifts, the use of the
well-behaved Normalized Constant Modulus Algorithm (wNCMA) was investigated
and an equalizer based on this algorithm implemented in Verilog.
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Chapter 1

Motivation and Introduction

The fundamental problem of
communication is that of
reproducing at one point either
exactly or approximately a
message selected at another
point.

Claude E. Shannon
A Mathematical Theory of

Communication

1.1 Motivation

It was 1948 when Claude E. Shannon’s groundbreaking work A Mathematical Theory
of Communication was published in Bell Systems Technical Journal. In that article,
Shannon described the basic elements of a general communication system, depicted
in Figure 1.1. First, the information source forwards a message to the transmitter.
The transmitter then operates on the message to produce a signal suitable for trans-
mission. The signal is then traveling through the communication channel, where it
gets corrupted by noise. Lastly, the receiver is restoring the information from the
received signal and forwards it to the destination.

A specific kind of communication system is the NFC system. Such systems are
explained in detail in Section 2.1. In short, a device called reader is building up a
magnetic field, which has two purposes. First, it powers passive devices that are in
close proximity to the reader. Such a passive device is called card. Secondly, the
field also acts as the communication channel through which both reader and card
can exchange information. Note that also two active devices can communicate with
each other, whereas each active device builds up its own field for sending data.

An important parameter of every communication system is the maximum data
rate. The very nature of a communication system puts constraints on the data rate,

14



CHAPTER 1. MOTIVATION AND INTRODUCTION 15

Figure 1.1: Schematic diagram of a general communication system [1].

in that it allows certain rates to pass through the channel more easily than others.
For NFC, the ISO14443 standard states that the maximum data rate from card
to reader is 6.78Mbit/s [7]. However, already signals carrying data with rates ≥
848kbit/s get heavily degraded. Degradation means that while the signal is passing
through the communication channel, it’s shape is altered, and the information it
carries is more difficult to reconstruct by the receiver. A component trying to
reverse the effects of the communication channel is called equalizer.

In previous work [5], it was suggested that a certain kind of equalization al-
gorithm, called well-behaved Normalized Constant Modulus Algorithm (wNCMA),
shows a significant decrease in the Bit Error Rate (BER) for NFC communication
channels. The number of bit errors is the number of received bits of a data stream
over a communication channel that has been altered due to degradation. The goal of
this thesis is to investigate how wNCMA could be implemented in an NFC receiver
and determine it’s usefulness for real-world applications.

1.2 Channel Equalization

Figure 1.2 illustrates the purpose of an equalizer as part of a communication system.
The basic idea is that some data a[n] is transmitted from one point or device to
another. Thereby, the data needs to travel through a communication channel, which
is modeled by a system with impulse response h[n], as well as additive disturbances,
such as noise or interference. The output of the channel is the received signal x[n].
The equalizer tries to reverse disturbances by filtering x[n]. Finally, a Decision
Device (DD) is converting the equalized signal y[n] to a symbol stream â[n]. Ideally,
the equalizer adjusts its filter coefficients such that

â[n] = a[n−∆], (1.1)

where ∆ is a variable delay. Note that the channel exhibits deterministic and random
disturbances. Typically, the deterministic disturbance is ISI, caused by the channel
being dispersive (temporal spreading of the signal, resulting in an overlap of the
individual symbol pulses).
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h[n] + c[n] DD

Data Symbols
a[n]

Noise,
Multiuser Interference

(random)
v[n]

Intersymbol 
Interference

(deterministic)

Channel

Received Signal
x[n]

Equalizer
Filter

Decided Symbols
â[n]

Equalized Signal
y[n]

Figure 1.2: Block diagram of a baseband communication system, employing an
equalizer to mitigate deterministic and random impairments, caused by the trans-
mission channel.

Based on Equation 1.1, different objectives for equalizer design can be defined.

Minimum Bit Error Rate (MBER): Measure the output of the DD in comparison to
a stored and standardized training sequence.

Minimum Mean-Square Error (MMSE): Measure the output of the equalizer in com-
parison to a training sequence or the DD output. In general, the error
has the form

e[n] = (y[n]− a[n−∆])2 , (1.2)

where a[n−∆] is either a training sample or the DD output.

Zero Forcing (ZF): All random impairments are neglected. Instead, the determinis-
tic part of the channel is inverted such that

H(z) C(z) = z−∆. (1.3)

An equalizer that works without any training sequence is also called a blind
equalizer.

In the case of a highly nonstationary communications environment (e.g.
digital mobile communications), it is impractical to consider the use
of a training sequence. In such a situation, the adaptive filter has to
equalize the communication channel in a self-organized (unsupervised)
manner, and the resulting operation is referred to as blind equalization.
Clearly, the design of a blind equalizer is a more challenging task than
a conventional adaptive equalizer, because it has to make up for the
absence of a training sequence by some practical means. Whereas a
conventional adaptive equalizer relies on second-order statistics of the
input data, a blind equalizer relies on additional information about the
environment [10].
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The wNCMA itself is classified as a blind deconvolution algorithm. In general,
blind deconvolution is used to reverse the effects of convolution performed by a linear
time-invariant system, operating on an input signal, without explicit knowledge of
the impulse response function used in the convolution. Therefore, such algorithms
are “designed such that they do not require the external supply of a desired response
to generate the error signal in the output of the adaptive equalization filter.” [2].
In other words, no DD is needed to form an error signal, resulting into a general
form of a blind deconvolution algorithm, as shown in Figure 1.3, where the error is
calculated by e[n] = T(y[n]) − y[n]. Refer to Section 3.5 for finding out what the
function T is, in case of the wNCMA.

h[n] + c[n]

T[ ]

Data Symbols
a[n]

Noise,
Multiuser Interference

(random)
v[n]

Intersymbol 
Interference

(deterministic)

Channel

Received Signal
x[n]

Equalized Signal
y[n]

+
-

Coefficient 
Update

Next Coefficients
c[n+1]

Error Signal
e[n]

Figure 1.3: Block diagram of a baseband communication system, employing a gen-
eral blind deconvolution algorithm for equalization purposes [2].

1.3 Intersymbol Interference

A channel with frequency response C(f), defined as

C(f) = |C(f)|ejθ(f), (1.4)

is non-distorting if the magnitude response |C(f)| is constant and θ(f) is a linear
function of frequency. On the other hand, if |C(f)| is not constant, the channel
distorts the signal in amplitude, while if θ(f) is not a linear function of frequency,
the channel distorts the signal in phase [3]. A channel with a frequency-dependent
response is also called a dispersive channel.

When transmissions are sent across a dispersive channel, it is possible
for the output of that channel intercepted by the receiver to be dis-
torted via the temporal spreading and resulting overlap of the individual
symbol pulses. One consequence of such temporal spreading is the result-
ing inability of the receiver to accurately distinguish between different
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received pulse shapes. We refer to this phenomenon as intersymbol in-
terference [11].

To get a better understanding of the effect of ISI, consider a transmission channel
with impulse response h = [1 2

3
1
3
]. Furthermore, assume that the sample rate equals

the symbol rate. The following calculation determines if a transmission channel with
impulse response h causes ISI, by checking if the result is 6= 0.

ISI =

∑
n |h[n]| −max|h[n]|

max|h[n]|
=

2
3

+ 1
3

+ 1− 1

1
= 1. (1.5)

Equation 1.5 demonstrates that a system with impulse response h causes ISI, and
that ISI can only be completely eliminated if

∑
n |h[n]| = max|h[n]|. However, this

goal is unnecessarily ambitious. In practice, ISI only needs to be reasonably bounded
for a receiver to be able to decode the data correctly. A visual tool for determining
the severity of ISI is the eye diagram. Hereby, similar to an oscilloscope display, a
signal is applied to the vertical input, with a horizontal sweep rate of 1

M×T , M being
an arbitrary integer number, and T the signal period [3]. As sketched in Figure 1.4,
a signal with only low ISI will show a shape similar to an open eye. Similarly, a
signal with severe ISI will show the shape of a closed eye. Several quantities, such
as the optimum sampling time, peak distortion, and noise margin, can be deduced
from the eye diagram.

Figure 1.4: Effect of ISI on the eye opening [3].

The state of the channel eye (open or closed) can not only be observed visually
from the eye diagram, but also calculated. For the eye to be open, the following
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condition needs to hold.∑
n

|h[n]| −max|h[n]| < max|h[n]|

2

3
+

1

3
+ 1− 1 < 1

1 < 1 ... E

(1.6)

As shown in Equation 1.6, the condition for an open channel eye is not fulfilled, since
the result is contradicting. Thus, the eye for a transmission channel with impulse
response h = [1 2

3
1
3
] is closed. Figure 1.5 shows the eye diagram for the input, as

well as the output signal of a system with impulse response h.
Typically, a transmission channel causes ISI due to being band-limited. In [3],

Proakis and others discuss how to shape a pulse such that during transmission,
the channel introduces less ISI. In a way, such an approach can be seen as pre-
equalization at the transmitter, as opposed to post-equalization after the channel
at the receiver side. Pulse shaping is not further considered, as it goes beyond the
scope of this thesis. Nevertheless, for the sake of completeness, the reader shall be
informed about the existence of this approach, as it resembles the counterpart to
equalization at the receiver side. Refer to [3] for further information regarding pulse
shaping.

(a) Eye diagram of an undistorted binary
signal.

(b) Eye diagram of a binary signal, dis-
torted by a transmission channel.

Figure 1.5: Eye diagrams of a binary signal before and after a transmission channel
with impulse response h = [1 2

3
1
3
]. The output signal is also affected by white noise.

1.4 Structure

Chapter 2 explores the communication technology NFC, while focusing on areas
important for this thesis. Those areas are Load Modulation, as well as the frequency-
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and time response of a typical NFC communication channel. Then, research projects
regarding channel equalization and the implementation of different equalizers are
presented.

Chapter 3 discusses the equalizer design. To begin with, a block-level description
of the equalizer is presented, showing all main components and their interconnec-
tions. After that, the wNCMA equations are stated and explained. Furthermore,
the explanations are supported by visuals, showing the equalization process in the
complex domain, as well as that the equalizer can, when given enough time, re-
construct the transmitted signal with great accuracy. As it turns out, time is the
real issue here, since the equalizer needs to converge during the preamble of a data
frame.

Chapter 4 discusses the biggest topic of this thesis, namely the equalizer imple-
mentation, starting with an analysis of which and how many arithmetic components
are necessary to implement the equalizer. This analysis is important since a com-
plex algorithm needs to be broken down into simple components to make a successful
design possible. Subsequently, a method for approximating multiplications and di-
visions based on [8] is presented. As it turns out in Section 5.3, such simplifications
do not pay off in area in the particular case of the wNCMA equalizer.

The next topic is about numerical aspects of the equalizer. In other words, when
the wNCMA is converted from a floating-point to a fixed-point format, how many
integer and fractional bits should be assigned to each computational result? Also,
what are additional effects that appear when moving to fixed-point format? Finally,
after a short introduction into High-Level Synthesis (HLS), it is discussed how the
correct functionality of the Register Transfer Level (RTL) code was verified.

Chapter 5 presents important results of the floating-point and fixed-point equal-
izer, focusing on parameter values and bitwidths Also, synthesis results are discussed.
Last but not least, Chapter 6 concludes the thesis and gives an outlook on future
improvements and applications.



Chapter 2

State of the Art

2.1 Theory of NFC Systems

2.1.1 Operating Modes and Load Modulation

NFC is a wireless data transfer technology. Powering a high-frequency current
through an antenna induces an alternating magnetic field, which spreads around
the antenna loop. If a substantial part of the magnetic field moves through the
antenna of another NFC device, a detectable voltage is induced in its antenna loop.
Now, the NFC initiator (the device which built up the field) can transfer data to
the NFC target (the device receiving the field) by modulating the amplitude of the
emitted magnetic field. As soon as the NFC target wants to send data back to
the NFC initiator, they can switch roles. It is said that those two NFC devices
communicate in Active Mode [4, 57].

However, there are also two other modes, which make NFC especially interesting
in conjunction with Radio Frequency Identification (RFID). Those two modes are
called Passive Mode Reader Emulation and Passive Mode Card Emulation. As the
naming suggests, an NFC device can emulate a reader, such that it communicates
with a card, and it can emulate a card, such that it communicates with a reader,
see Figure 2.1.

Data transfer in Passive Mode works differently than in Active Mode since the
card does not produce a field for sending data. In fact, the card is supplied by the
reader field for the whole duration of the communication. An important point to
realize about NFC and RFID is the fact that reader and card form a coupled system,
as long as the card is located in the near-field of the reader [4, 43]. From a system
perspective, studying a single NFC or RFID device alone is meaningless. Rather,
one needs to always consider a complete system of reader and card.

The fact that reader and card form a coupled system opens up a new possibility
for data transfer, namely Passive Load Modulation (PLM). A resonant card in the
near-field of the reader draws energy from the magnetic field, causing a transformed
impedance on the reader side [4, 43]. In PLM, a load resistance at the card is

21



CHAPTER 2. STATE OF THE ART 22

switched on and off, which causes a change in impedance and thus a change in
voltage at the reader’s antenna. If the timing with which the load resistance is
switched on and off is controlled by data, this data can be transferred to the reader.

Figure 2.1: NFC distinguishes between three different modes: Active Mode, Passive
Reader Emulation Mode and Passive Card Emulation Mode [4, 58].

2.1.2 Frequency- and Time Response of an NFC Communi-
cation Channel

Figure 2.2 shows a typical NFC circuit, which is also called coupling system, for data
transfer via PLM. The reader in Figure 2.2 consists of four main parts. From left to
right, these are the voltage source (which generates the field, also called carrier, at
fc = 13.56 MHz), voltage divider, matching circuit, and resonant circuit. The card
in Figure 2.2 is represented by a resonant circuit, in parallel with two resistances
RIC and Rmod. RIC represents the constant resistive load of the card, while Rmod is
used for modulation.

By switching Rmod on and off, the reader can detect a change in voltage Vout,
since reader and card are inductively coupled. This mechanism of transmitting
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Figure 2.2: Typical NFC circuit schematic. It is also referred to as coupling system
[5].

information is called load modulation. To improve detection of the change in voltage
Vout on the reader side, Rmod modulates a subcarrier onto the field, instead of the
data stream [Finkenzeller, page 43]. Subsequently, the subcarrier phase is varied over
time to transmit information. More specifically, the digital modulation technique
BPSK is used.

Another important parameter of the coupling system shown in Figure 2.2 is the
coupling factor k. It is calculated by

k =
M√
L1L2

, (2.1)

where M is the mutual inductance, L1 is the inductance of the reader loop and
L2 is the inductance of the card loop. The value of k lies in the range of 0 ≤ k ≤ 1.
If k = 0, reader and card are fully decoupled due to great distance or magnetic
shielding. If k = 1, reader and card are fully coupled, meaning that both coils are
subject to the same magnetic flux. Typical values for k range from 0.6 down to 0.01
or lower.

The coupling factor k is a dynamic factor of the coupling system since it depends
on the distance and orientation of reader and card. Therefore, it deserves special
attention. Figure 2.3 shows the frequency response of the Radio Frequency (RF)
circuit from Figure 2.2 in baseband. The frequency response changes significantly
with the coupling factor. For k < 0.15, the magnitude response is narrowband,
causing ISI. As k increases further, the magnitude response begins to change shape
and becomes broadband. Furthermore, the phase response starts to lose its odd
symmetry, going hand in hand with a phase shift of the signal passing through.
Recall that the Fourier Transform of a real signal x(t) has Hermitian symmetry,
meaning that X(−f) = X∗(f), from which we can conclude that |X(−f)| = |X(f)|
and ∠X(−f) = −∠X(f) [3]. In other words, for a real signal x(t), the magnitude
of X(f) is even, and the phase is odd. For a complex signal, this symmetry does
not hold.
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Figure 2.3: Baseband frequency response of the coupling system presented in Figure
2.2 for different coupling factors.

Figure 2.4 presents the coupling system effects in time domain. The input sig-
nal is a BPSK modulated, rectangular signal. All other shown signals are output
signals of the coupling system for different coupling factors. The blue waveform
represents the real part of the output signal, while the orange waveform represents
the imaginary part.

For a coupling factor of k = 0.01, the output signal (which is the received signal
at the reader side) has such a low amplitude that the receiver cannot detect it. The
corresponding magnitude response for k = 0.01 in Figure 2.3 shows that nearly all
frequencies are blocked. Increasing the coupling factor leads to an increase in signal
strength (until k reaches a value of around 0.25). For low coupling factors, a strong
distortion of the signal shape can be observed (see Figure 2.4 for k = 0.1). This
distortion is caused by the narrowband characteristic of the coupling system for
low coupling factors. More specifically, high-frequency components necessary for a
rectangular-shaped signal are suppressed.

Because the coupling system causes a larger phase shift with k further increasing,
the Q-Channel gains in signal strength compared to the I-Channel. For coupling
factors above 0.5, the phase shift amounts to nearly 90◦. Thus, the Q-Channel carries
most of the information, and the I-Channel becomes negligible. The waveform
strongly resembles the input signal due to the broadband frequency response of the
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coupling system for high k.

Figure 2.4: Coupling system effects in time domain for different coupling factors.
The input signal is a BPSK modulated, rectangular signal. All other shown signals
are output signals of the coupling system for different coupling factors. The blue
waveform represents the real part of the output signal, while the orange waveform
represents the imaginary part.

2.2 Research Projects

2.2.1 Equalization Approaches for NFC

The issue of encountering strong ISI when transmitting data via NFC at high data
rates is widely known in research and industry. [12] tries to mitigate ISI by a pro-
cessor, which extracts certain channel characteristics from the incoming signal at
the receiver side to then choose one of multiple available equalizers. The reason for
this rather complicated approach is the issue of convergence time. A decision for
taking either one or the other equalizer can be taken much more quickly than letting
an equalizer converge into a set of coefficients. [13] deals with ISI by pre-equalizing
data at the transmitter side, where a test sequence is sent and received. Based on
the sent and received test sequence, an inverse estimation can be performed.
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[14] suggests using an LS approach, which the authors argue is better suited for
PLM. The reason is that data transmission via load modulation requires to switch
between two different coupling systems. In one system, the modulation resistance
is switched on, and in the other system, the modulation resistance is switched off.
This switching of the modulation resistance can either be interpreted as linear and
time variant, or as non-linear and time-invariant. Due to this reason, the authors
argue that ZF and MMSE equalization is not a reasonable approach for NFC and
RFID. The suggested LS approach is shown in Figure 2.5. However, also an LS
approach requires a training sequence, and therefore does not fall into the category
of blind equalization.

Figure 2.5: Schematical description of an equalization approach based on LS. The
tag transmits a training sequence dT , as well as a payload dP . The knowledge of dT
at the reader side can be used to determine a set of filter coefficients, which mitigate
ISI for the subsequent reception of the payload dP .

2.2.2 Implementation of Equalization Algorithms

Research regarding wNCMA has been conducted in [5], however, it has never been
implemented. Nevertheless, implementations for other equalizers with a similar
structure have been developed. [15] deals with implementing the Euclidean Direc-
tion Search (EDS) algorithm. The authors reduced the circuit size considerably by
quantizing the filter coefficients to values of power of two. This quantization simpli-
fies the filter, since shifters can be used instead of multipliers. As demonstrated in
Section 5.3, the filter consumes little area compared with the rest of the equalizer.
Thus, the approach of replacing multipliers with shifters to save area is not applied
in this thesis.
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In [16], the authors propose an implementation of the Least Mean Square (LMS)
algorithm. The approach here is that instead of trying to simplify the basic mathe-
matical operations (like multiplications), the LMS algorithm itself is simplified such
that a more efficient implementation can be achieved. Specifically, the authors tar-
geted the update calculation of the LMS, which is

c[n+ 1] = c[n]− µ e[n] x[n], (2.2)

where c is the coefficient vector, µ is the step-size, e the error and x the input signal.
Instead of multiplying µ, e and x, the authors propose to only consider the sign of
the error and the input-signal, leading to the modified update calculation

c[n+ 1] = c[n]− µ sgn(e[n]) sgn(x[n]). (2.3)

No multipliers are needed anymore for calculating the coefficient update. An addi-
tional advantage is the fact that for real numbers, taking the sign also performs an
implicit normalization, since sgn(x) = x

|x| . In the end, Equation 2.3 simplifies to

c[n+ 1] = c[n]± µ, (2.4)

which in terms of complexity is probably optimal. For complex numbers, however,
applying the signum function does not show the same benefits as with real numbers.
The signum of a given complex number z is the point on the unit circle of the
complex plane that is nearest to z. Then, for z 6= 0,

sgn(z) = exp(i arg z). (2.5)

It is also possible to only perform the sign-operation on either the error or the
input signal. [17] demonstrates the implementation of a complex blind adaptive
decision feedback equalizer on an Field Programmable Gate Array (FPGA). For
the coefficient update, only the signum of the error was calculated, not the input.
However, the signum of the error was calculated by

sgn(e[n]) = sgn(Re{e[n]}) + j sgn(Im{e[n]}), (2.6)

which does not correctly normalize the error, but anyhow avoids multipliers. Nev-
ertheless, as discussed in Section 5.3, reducing the error multipliers to signum-
operations does not massively pay off in area, since the input signal multipliers in
the coefficient update are the dominant factor. Simplifying those multipliers could
be a valuable improvement.

According to [18], it is actually more efficient to not use signum-operations, but
rather quantize the input to factors of two, such that multipliers can be reduced to
shifters. The authors state the following argument.

The performance degradation suffered in using sign-bit-only multiplica-
tion is significant. For digital implementations, a correlation multiplier
that multiplies its inputs quantized to the nearest power of two is al-
most as inexpensive to implement as the sign-bit-only multiplier and its
performance is very close to that of a true multiplier [18].
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In [19], effects of limited precision in adaptive systems are studied. The author
derives an expression for the steady-state error of the LMS algorithm due to limited
precision, and subsequently shows that this steady-state error increases with de-
creasing step-size. At first this result might seem unintuitive because in the infinite-
precision case, the steady-state error decreases with step-size (since the equalizer is
“fluctuating less” around the optimum). However, a low step-size in finite-precision
prevents the equalizer from reaching the optimum in the first place. This effect is
discussed in detail in Section 4.2.1.



Chapter 3

Design

For me, creativity includes
problem-solving. That’s the
broad definition of it.

Edwin Catmull

3.1 System Design Flow

Creativity is defined as “the ability to produce original and unusual ideas, or to make
something new or imaginative” [20]. In that sense, technical problem-solving is often
a highly creative process. Nevertheless, engineers also follow already established
work flows, to be efficient in their creative act. Figure 3.1 shows the work flow, or
more specifically the system design flow, followed during the course of this thesis.
It shows great resemblance to already suggested flows in literature such as in [9],
however, it has also unique characteristics.

The first step is to gather and clearly define the requirements. This step requires
special care, as a mistake might need a lot of effort to correct. The requirements for
this thesis are given in Section 3.2. Based on the requirements, the Initial System
Model is developed in floating-point format. This format allows to focus on the
algorithmic correctness instead of implementation details. The model is described
as initial, because the designer can use any kind of functionality he or she consideres
useful to implement the system, without careful thinking of how to realize this
functionality in hardware. For this thesis, the floating-point system was developed
in MATLAB, as it provides a great number of mathematical functions and libraries,
as well as powerful debug capabilities. Section 3.3 describes the design of the Initial
System Model.

29
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Requirements

Initial System 
Model

PER Performance 
Analysis

Stable PER performance
and no clipping detected

Implementation 
to RTL

Decrease in PER performance
or clipping detected

Reduce Bitwidth

Synthesis

Verification

Design

Implementation

Detailed System 
Model

Fixed-
Pointing

Figure 3.1: System design flow, starting from requirements, then designing the com-
plete system, the conversion to fixed-point format, RTL implementation, synthesis
and verification.

Once the Initial System Model fulfills all requirements, the designer needs to find
ways of how to implement this system with a set of simple components available in
hardware. As an example, one can easily use the logarithmic function in MATLAB,
but how exactly is this logarithmic function implemented in hardware? As shown
in Figure 3.1, this new system is called the Detailed System Model. Section 4.1
describes the design of the Detailed System Model.

The next step is to move from floating-point to fixed-point format. To start
this conversion, the designer needs to assign a certain bitwidth to the input signals,
and, if the signal is not a control signal, split this bitwidth between the integer
and fractional part. Then, the bitgrowth throughout the system is analyzed, and
whenever the designer sees the need for a reduction in bitwidth, quantizers and
clippers can be inserted. Now, the bitwidth reduction of the quantizers and clippers
can be tuned in an iterative fashion, while tracking the performance of the equalizer.
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For further details regarding the conversion from floating-point to fixed-point format,
refer to Section 4.2.

As soon as a fixed-pointed system model is available, the implementation to RTL
starts. Here, the designer can also rely on High-Level Synthesis tools for accelerating
the process. Finally, the RTL code is synthesized and verified. For reference, High-
Level Synthesis tools are discussed in Section 4.3, while the process of verifying the
equalizer is described in Section 4.4.

3.2 Requirements

The following list describes all requirements the equalizer needs to fulfill.

1. The equalizer must process complex-valued baseband signals. Therefore, also
the filter coefficients are complex-valued.

2. The equalizer must run on a clock of fc = 13.56MHz.

3. The equalizer output must have a bitwidth of 13bit, just like the input.

4. The coefficients must only be updated during a frame.

5. The equalizer must not exceed the area limit of 30k gates.

6. The equalizer must show an improvement of the PER for a data rate of
1.695Mbit/s.

7. The equalizer must show an improvement of the PER for Type-B frames.

8. The equalizer must be based on the wNCMA.

9. The equalizer must be converted from floating-point to fixed-point, such that
a more efficient implementation on an Application Specific Integrated Circuit
(ASIC) can be achieved.

3.3 Initial System Model

A block-level representation of the equalizer is shown in Figure 3.2. The equalizer
consists of an FIR filter, the error calculation and the coefficient update. This filter-
update-error loop is based on the wNCMA, which is explained in Section 3.5. One
input of the filter is denoted with I/Q In, meaning that the input consists of two
separate signals, the I-Channel and Q-Channel. The I-Channel represents the real
part and the Q-Channel the imaginary part of the incoming signal. The other input
of the filter is called Coefficients and determines the value of each filter coefficient.
The filter output is connected to a Multiplexer (MUX), which forwards the filter
output to the equalizer output if and only if the signal Out Mux Sel is 1. The
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error calculation implements Equation 3.2, and the coefficient update implements
Equation 3.3.

For the equalizer being able to process complex-valued baseband signals, the filter
coefficients need to be complex-valued. This fact leads to an increase in complexity
of the implementation, see Section 4.1. Processing baseband signals compared to
passband signals has the advantage that the equalizer can run on a slower clock.

FIR Filter

Error 
Calculation

Coefficient 
Update

wNCMA

Controller

I/Q In

Equalizer Enable

I/Q Out

Signal Detected

Frame 
Synchronizer

Counter

0

1

Step-Size

State

Initial Coefficients

Error

Filter Out

Coeff Update On
Out Mux SelectCoeff Reset

Coefficients

Counter En Counter Limit Reached

Settling Time

Coefficients
. . .

Figure 3.2: Block-level representation of the equalizer. The equalizer consists of
an FIR filter, the error calculation and coefficient update. Additionally, a frame
synchronizer is necessary, which consists of a controller and counter.

A second component, called the Frame Synchronizer (FS), consists of a controller
and counter. The controller has two inputs, Equalizer Enable and Signal Detected.
Depending on the internal FSM state of the controller, the controller activates the
coefficient update (Coeff Update On), resets the coefficients to their initial values
(Coeff Reset), or changes the select-signal of the MUX (Out Mux Sel). The initial
values of the coefficients are given by the input Initial Coefficients. Also, the con-
troller has one output called State, which informs about the internal state of the
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controller FSM. The counter has only one input called Settling Time, which deter-
mines the initialization value of the counter. Section 3.6 explains the purpose and
functionality of the FS.

wNCMA

FrameSynchronizer

+clk_13: in wire
+rst: in wire
+eq_cont_en_reg: in wire
+eq_coeff_update_en_reg: in wire
+fs_counter_limit: in wire [COUNTER_WIDTH]
+is_signal_det: in wire
+coeff_update_on: out wire
+out_mux_sel: out wire

1..1

1

1..1 1

Controller

+clk_13: in wire
+rst: in wire
+eq_cont_en_reg: in wire
+eq_coeff_update_en_reg: in wire
+is_signal_det: in wire
+counter_limit_reached: in wire
+coeff_update_on: out wire
+out_mux_sel: out wire
+counter_en: out wire

1

1

Equalizer

+clk_13: in wire
+rst: in wire
+data_in_real: in wire [DATA_IN_WIDTH]
+data_in_imag: in wire [DATA_IN_WIDTH]
+mu_reg: in wire [MU_FRAC_WIDTH]
+fs_counter_limit_reg: in wire [COUNTER_WIDTH]
+is_signal_det: in wire
+eq_cont_en_reg: in wire
+eq_coeff_update_en_reg: in wire
+eq_coeff_0_init_real_reg: in wire [COEFF_WIDTH]
+eq_coeff_1_init_real_reg: in wire [COEFF_WIDTH]
+eq_coeff_2_init_real_reg: in wire [COEFF_WIDTH]
+eq_coeff_3_init_real_reg: in wire [COEFF_WIDTH]
+eq_coeff_0_init_imag_reg: in wire [COEFF_WIDTH]
+eq_coeff_1_init_imag_reg: in wire [COEFF_WIDTH]
+eq_coeff_2_init_imag_reg: in wire [COEFF_WIDTH]
+eq_coeff_3_init_imag_reg: in wire [COEFF_WIDTH]
+eq_coeff_0_real_reg: out wire [COEFF_WIDTH]
+eq_coeff_1_real_reg: out wire [COEFF_WIDTH]
+eq_coeff_2_real_reg: out wire [COEFF_WIDTH]
+eq_coeff_3_real_reg: out wire [COEFF_WIDTH]
+eq_coeff_0_imag_reg: out wire [COEFF_WIDTH]
+eq_coeff_1_imag_reg: out wire [COEFF_WIDTH]
+eq_coeff_2_imag_reg: out wire [COEFF_WIDTH]
+eq_coeff_3_imag_reg: out wire [COEFF_WIDTH]
+fs_controller_state: out wire
+data_out_real: out wire [DATA_IN_WIDTH]
+data_out_imag: out wire [DATA_IN_WIDTH]

Counter

+clk_13: in wire
+rst: in wire
+counter_en: in wire
+fs_counter_limit: in wire [COUNTER_WIDTH]
+counter_limit_reached: out wire

1

Update

+clk_13: in wire
+rst: in wire
+error_norm_real: in wire [ERROR_WIDTH]
+error_norm_imag: in wire [ERROR_WIDTH]
+mu_reg: in wire [MU_FRAC_WIDTH]
+coeff_update_on: in wire
+coeff_reset: in wire
+data_in_real: in wire [DATA_IN_WIDTH]
+data_in_imag: in wire [DATA_IN_WIDTH]
+eq_coeff_0_init_real_reg: in wire [COEFF_WIDTH]
+eq_coeff_1_init_real_reg: in wire [COEFF_WIDTH]
+eq_coeff_2_init_real_reg: in wire [COEFF_WIDTH]
+eq_coeff_3_init_real_reg: in wire [COEFF_WIDTH]
+eq_coeff_0_init_imag_reg: in wire [COEFF_WIDTH]
+eq_coeff_1_init_imag_reg: in wire [COEFF_WIDTH]
+eq_coeff_2_init_imag_reg: in wire [COEFF_WIDTH]
+eq_coeff_3_init_imag_reg: in wire [COEFF_WIDTH]
+eq_coeff_0_real_reg: out wire [COEFF_WIDTH]
+eq_coeff_1_real_reg: out wire [COEFF_WIDTH]
+eq_coeff_2_real_reg: out wire [COEFF_WIDTH]
+eq_coeff_3_real_reg: out wire [COEFF_WIDTH]
+eq_coeff_0_imag_reg: out wire [COEFF_WIDTH]
+eq_coeff_1_imag_reg: out wire [COEFF_WIDTH]
+eq_coeff_2_imag_reg: out wire [COEFF_WIDTH]
+eq_coeff_3_imag_reg: out wire [COEFF_WIDTH]

1

1

1

1

1

11

Power Normalization

+clk_13: in wire
+rst: in wire
+error_real: in wire [ERROR_WIDTH]
+error_imag: in wire [ERROR_WIDTH]
+data_in_real: in wire [DATA_IN_WIDTH]
+data_in_imag: in wire [DATA_IN_WIDTH]
+error_norm_real: out wire [ERROR_WIDTH]
+error_norm_imag: out wire [ERROR_WIDTH]

1

1 1

+fs_controller_state: out wire

+coeff_reset: out wire

+fs_controller_state: out wire
+coeff_reset: out wire

+clk_13: in wire
+rst: in wire

+data_in_real: in wire [DATA_IN_WIDTH]
+data_in_imag: in wire [DATA_IN_WIDTH]

+mu_reg: in wire [MU_FRAC_WIDTH]
+coeff_update_on: in wire

+coeff_reset: in wire

+eq_coeff_0_init_real_reg: in wire [COEFF_WIDTH]
+eq_coeff_1_init_real_reg: in wire [COEFF_WIDTH]
+eq_coeff_2_init_real_reg: in wire [COEFF_WIDTH]
+eq_coeff_3_init_real_reg: in wire [COEFF_WIDTH]
+eq_coeff_0_init_imag_reg: in wire [COEFF_WIDTH]
+eq_coeff_1_init_imag_reg: in wire [COEFF_WIDTH]
+eq_coeff_2_init_imag_reg: in wire [COEFF_WIDTH]
+eq_coeff_3_init_imag_reg: in wire [COEFF_WIDTH]
+eq_coeff_0_real_reg: out wire [COEFF_WIDTH]
+eq_coeff_1_real_reg: out wire [COEFF_WIDTH]
+eq_coeff_2_real_reg: out wire [COEFF_WIDTH]
+eq_coeff_3_real_reg: out wire [COEFF_WIDTH]
+eq_coeff_0_imag_reg: out wire [COEFF_WIDTH]
+eq_coeff_1_imag_reg: out wire [COEFF_WIDTH]
+eq_coeff_2_imag_reg: out wire [COEFF_WIDTH]
+eq_coeff_3_imag_reg: out wire [COEFF_WIDTH]

+out_mux_sel: in wire

Error

+data_out_real: in wire [DATA_IN_WIDTH]
+data_out_imag: in wire [DATA_IN_WIDTH]
+error_real: out wire [ERROR_WIDTH]
+error_imag: out wire [ERROR_WIDTH]

Filter

+clk_13: in wire
+rst: in wire
+data_in_real: in wire [DATA_IN_WIDTH]
+data_in_imag: in wire [DATA_IN_WIDTH]
+eq_coeff_0_real_reg: in wire [COEFF_WIDTH]
+eq_coeff_1_real_reg: in wire [COEFF_WIDTH]
+eq_coeff_2_real_reg: in wire [COEFF_WIDTH]
+eq_coeff_3_real_reg: in wire [COEFF_WIDTH]
+eq_coeff_0_imag_reg: in wire [COEFF_WIDTH]
+eq_coeff_1_imag_reg: in wire [COEFF_WIDTH]
+eq_coeff_2_imag_reg: in wire [COEFF_WIDTH]
+eq_coeff_3_imag_reg: in wire [COEFF_WIDTH]
+data_out_real: out wire [DATA_IN_WIDTH]
+data_out_imag: out wire [DATA_IN_WIDTH]

Figure 3.3: UML Class Diagram of the wNCMA equalizer. Each class represents a
Verilog module.
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3.4 Use Cases

A UML class diagram of all Verilog modules and their input- and output ports is
shown in Figure 3.3. Some of the signals comprise a postfix r e g . This postfix indi-
cates that the signal is connected to a register, which can be accessed by firmware.
The equalizer supports multiple use cases, which are depicted in Figure 3.4, as well
as explained in the following list.

Write
Initial Coefficients

Read
Coefficients

Enable/Disable
Coefficient Update

Firmware

Read Controller
FSM State

Enable/Disable
Controller FSM

Write
Step-Size

Figure 3.4: UML Use-Case diagram of the equalizer.

Enable/Disable Controller FSM: By setting the signal e q c o n t e n r e g to 1,
the controller of the FS is enabled. If disabled, the controller FSM always
stays in state IDLE. In this state, the equalizer is turned off, meaning that
no coefficient update is performed and the equalizer input is forwarded to its
output (select-signal of Output-MUX is 0).

Enable/Disable Coefficient Update: By setting the signal e q c o e f f u p d a t e e n r e g

to 1, the equalizer updates the filter coefficients, if the state is either SET-
TLING ON or ACTIVE. By setting e q c o e f f u p d a t e e n r e g to 0, firmware
can force static equalization. In other words, the equalizer acts as a static,
complex-valued FIR filter (the coefficients being the initial coefficients).

Write Initial Coefficients: Firmware can specify the initial value of each coeffi-
cient.

Write Step-Size: Firmware can adjust the step-size of the wNCMA, see Equation
3.3.
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Read Coefficients: Firmware can read out the current coefficients of the FIR filter.

Read Controller State: Firmware can read the current state of the controller
FSM.

Figure 3.5 demonstrates one possible sequence of interactions between firmware
and equalizer via registers. Before the reception of a frame, firmware would typically
configure the desired step-size and initial coefficients first. After that, firmware
enables the controller of the equalizer. As soon as the controller transitions from
IDLE to SETTLING ON and further to ACTIVE, the firmware knows (by reading
the controller state register) that a frame is being received. After reception, the
controller transitions to SETTLING OFF. At this point, firmware can read and store
the current filter coefficients of the equalizer. It makes sense to use those coefficients
for subsequent frames as initial coefficients, since stationarity can be assumed. In
other words, the transfer function typically does not change significantly between
subsequent frames.

FirmwareFirmwarewNCMAwNCMA
Frame 

Synchronizer
Frame 

Synchronizer

Write Step-Size

Write Initial Coefficients

Write Enable

.

.

.

EQ is 
active, 
Frame is 
received

State transition to SETTLING_OFF 

.

.

.

Read Coefficients

Figure 3.5: UML Sequence diagram, demonstrating a typical sequence of interactions
between firmware and equalizer.
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3.5 The wNCMA Algorithm

The equalizer implemented in the course of this thesis is based on the wNCMA
devised in [5]. In [5], the author demonstrates that the wNCMA improves the BER
of a signal corrupted by a typical NFC channel shown in Figure 2.2. However, what
finally matters is if the equalizer can significantly reduce the PER in a real system.
The number of packet errors is the number of faulty data frames received over a
communication channel. In chapter 5, simulation results of the PER are shown.

The wNCMA consists of three steps: Filtering, error calculation and coefficient
update. The filter output is calculated by

y[n] = cH [n]r[n], (3.1)

where c ∈ C is the coefficient vector and r ∈ C is the input vector. Equation 3.1
indicates that an FIR filter implementation is required, which can handle a complex-
valued input signal and complex-valued coefficients. Next, the error is calculated
by

e[n] = Re{y[n]}3 + j Im{y[n]}3 − Re{y[n]}, (3.2)

where e ∈ C is the error and y ∈ C the output of the FIR filter. Calculating the
error for y = ±1 results to zero, showing that a BPSK-signal is the optimal case,
which the equalizer tries to reach. Refer to Figure 3.7 for a complex-valued plot,
which shows that the equalizer over time adjusts its coefficients such that the output
reaches ±1 as close as possible. Finally, the coefficient update is determined by

c[n+ 1] = c[n]− µ

α + ||r[n]||2
r[n] e∗[n], (3.3)

where c is the coefficient vector, µ the step-size, α a constant to avoid division by
zero, r the input vector and e∗ the complex conjugate of the error. The division
of the coefficient update term by the power of the input signal is called power
normalization. It is useful for potentially increasing the convergence time by making
the coefficient update independent of the input power. For more details regarding
the wNCMA refer to [5].

Subsection 2.1.2 explores how a typical NFC coupling system behaves in frequency-
and time domain. For a low coupling factor k, the coupling system is narrowband
and causes strong ISI. In contrast, the coupling system is broadband for high cou-
pling factors but also causes a larger phase shift. Furthermore, Figure 2.4 shows the
effects of the coupling system in time domain. The question now is if the wNCMA
algorithm can significantly improve the signal, such that it more closely resembles
the input. Figure 3.6 demonstrates this improvement.

The left-hand side of Figure 3.6 shows the equalizer output from the first sample
onwards for around two-hundred samples. Clearly, the output does not resemble the
input. However, the equalizer did not have enough time to learn. In other words, the
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Figure 3.6: Equalization in time domain for different coupling factors. The input
signal of the coupling system is a BPSK modulated, rectangular signal. All other
shown signals are output signals of the equalizer for different coupling factors. The
blue waveform represents the real part of the output signal, while the orange wave-
form represents the imaginary part. On the left-hand side, the very beginning of the
frame is shown, whereas on the right-hand side, a later part of the frame is shown.

equalizer could not yet adjust its coefficient such that the error becomes minimal.
The right-hand side of Figure 3.6 shows the equalizer output much later in time when
the equalizer has already long settled. The similarity of the output compared to the
input is clear, leading to a significantly easier retrieval of information. How fast an
equalizer, and more generally any adaptive system, settles, is a major parameter of
such a system and is formally known as the convergence behavior. Chapter 5 will
demonstrate convergence behavior to be highly critical for NFC application.

Regarding Figure 3.6, another observation can be made, namely that for the
highest coupling factor k = 0.55, the output approximates the inverse of the input.
The equalizer might run into the inverse solution because both minimize the error.
Thus, it does not make a difference to the equalizer if the output is inverted or not.

Lastly, refer to Figure 3.8 for a demonstration of multiple eye-diagrams, which
show that the wNCMA can successfully reverse channel effects and create an open-
eye pattern in the I-Channel. Clearly, the channel at low-coupling of k = 0.1 causes
strong ISI, and the eye in both channels is closed. For high coupling of kk = 0.55,
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the channel is broadband and hence does not cause ISI, but a phase shift of nearly
90◦.

Figure 3.7: Complex-valued plot, which shows for different coupling factors that the
equalizer over time adjusts its coefficients such that the output reaches ±1 as close
as possible. The green circles represent a perfect BPSK input signal, the blue stars
represent the channel output, the red crosses represent samples of the equalizer
output and finally the pink stars represent the equalizer output after it settled.
The coupling model shown in Figure 2.2 was used for this simulation. Additional
parameters are: fsampling = 13.56MHz, data rate = 1.695Mbit/s.
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(a) Received signal at k = 0.1. (b) Equalized signal at k = 0.1.

(c) Received signal at k = 0.55. (d) Equalized signal at k = 0.55.

Figure 3.8: Eye diagrams at coupling k = 0.1 (above) and k = 0.55 (below), as
well as before (left) and after (right) the equalizer. Note the different scaling of the
signals before and after the equalizer.
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3.5.1 Initial Coefficients

For any adaptive system, an initial state needs to be configured. Equation 3.3
shows that to determine new coefficients, old coefficients are required. Choosing
initial coefficients has a significant impact on the equalization performance. In
general, the closer the initial coefficients are to the optimal coefficients, the faster
the equalizer converges [5]. However, to make a close-to-optimal choice for the initial
coefficients, detailed knowledge about the channel is necessary.

Choosing close-to-optimal initial coefficients can be an issue when the equalizer
needs to work for multiple different channels. Furthermore, the quality of the incom-
ing signal is not extremely low. Rather, the signal quality is just not good enough
to robustly receive incoming frames (at higher data rates), see Figure 3.9. This fact
suggests that a set of initial coefficients that simply pass through the incoming sig-
nal to the output is a reasonable and sufficient starting point (which is also flexible
across different channels). The coefficients

cinit = [1; zeros(N− 1, 1)] (3.4)

realize the mentioned effect of passing through the incoming signal, where N is the
filter order.

Baudrate

Signal 
quality

Threshold

Successfull 
Transmission

Failed
Transmission

106k 212k 424k 848k 1.695M 3.39M

Equalization

Figure 3.9: Moving to higher baudrates gradually reduces the quality of the in-
coming signal, which is disturbed by the channel. If the signal quality crosses a
certain threshold, the receiver cannot completely restore the transmitted informa-
tion anymore, leading to a failed transmission. The purpose of the equalizer is to
raise the signal quality such that the receiver can completely restore the transmitted
information.
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3.5.2 Error and Coefficient Development over Time

It is insightful to study the error and coefficient development over time for different
coupling factors. Figure 3.10 shows the error over time on the left-hand side, as well
as the output signal of the equalizer over time. Seeing the output signal right next
to the error is helpful since the error is calculated solely on the basis of the output
signal, as shown in Equation 3.2.

For a low coupling factor such as k = 0.01, the card is so far away that the
transmitted frame is not detectable. In that case, the equalizer output is zero and
the error is zero as well. For a coupling factor of k = 0.1, a frame can already be
clearly detected, but due to the strong narrowband channel at that coupling, ISI is
strong and the error is large. However, the error is not large immediately. Since the
output of the equalizer is low in amplitude at the beginning of the frame, the error
is automatically low as well, although ISI is strong. Only when the equalizer starts
to scale up the coefficients, the error actually increases. Over a significant timespan
of a few milliseconds, the equalizer manages to minimize the error and the resulting
output signal at the end of the frame can be seen in Figure 3.6. Similar effects can
be observed for higher coupling factors, although the error does not become as high
due to less ISI (the channel for higher coupling is more broadband).

Figure 3.10: The wNCMA error over time for different coupling factors on the left-
hand side, compared to the respective wNCMA output on the right-hand side.

Figure 3.11 shows the filter coefficients over time for different coupling factors.
Since the error is zero throughout the whole frame for a coupling factor of k = 0.01,
the coefficients are not updated. Therefore, the coefficients stay at their initial value.
For k = 0.1, the real parts of all coefficients are heavily adjusted, to both scale up
the input and decrease ISI. However, the imaginary parts stay basically zero, since
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no rotation is required. As can be seen in Figure 3.7, the channel does not cause
a significant phase shift at low coupling. Going further up in coupling, the phase
shift becomes stronger and the equalizer adjusts also the imaginary parts of the
coefficients. For a coupling of k = 0.55, the channel is broadband, but causes a
phase shift of around 90 degrees (see Figure 3.7). Therefore, only the imaginary
parts of the coefficients are adjusted to counteract the phase shift, but the real parts
stay more or less at their initial value.

Figure 3.11: The filter coefficients over time for different coupling factors. The real
part is shown on the left-hand side and the imaginary part on the right-hand side.
The blue curve shows the first coefficient, orange the second, yellow the third and
purple shows the fourth coefficient.

3.6 Frame Synchronizer

In practice, the equalizer is not supposed to update the filter coefficients the entire
time. If no data is received, the equalizer would otherwise scale up noise at the
input, which might lead to detect a non-existent data transmission by the subsequent
components in the signal processing chain. Also, if after a period of silence (noise
only) a data transmission starts, the equalizer might be unable to propagate into
an optimal set of coefficients. For this reason, the coefficient update needs to be
disabled until an incoming signal is detected. In the course of this thesis, it was
decided that the equalizer can rely on an external component of the existing signal
processing chain to detect an incoming signal.

However, it turns out there is an issue in that approach. Figure 3.12 shows that
in the signal processing chain, the equalizer is part of a module called Preprocessor,
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which itself is placed before another module called Receiver. Amongst other things,
the receiver is providing the information of a signal being detected. At the moment
a signal is detected, the coefficient update is turned on, with the coefficients being
initialized to their initial values. It is possible that right after the coefficient update
has been turned on, the output of the equalizer does not resemble what the external
detector classifies as an active signal (since the initial coefficients can be arbitrarily
configured by firmware). In this case, the coefficient update is turned off, since the
external detector does not indicate an active signal anymore. However, not only
is the coefficient update turned off, but also the coefficients themselves are reset
to their initial values. During frame reception, this behavior continues in a loop,
resulting in the frame itself being lost.

ADC
Preprocessor 

+ Equalizer
Receiver Decoder...

Analog Digital

is_signal_detected

Figure 3.12: High-Level depiction of the receiving signal processing chain. The
equalizer is part of the Preprocessor and is turned on by the Receiver, which is
placed after the Preprocessor.
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Figure 3.13: A UML State Machine Diagram of the controller FSM, which is a
Moore machine, consisting of four states. The logical conditions in blue determine
when transitions to other states happen, while the assignments in green show the
value of each output wire for every state.

The controller in Figure 3.2 is enabling and disabling the coefficient update,
as well as switching the output of the equalizer between pass-through and the filter
output. The controller itself is an FSM, which is shown in Figure 3.13. The controller
FSM has four states, which are IDLE, SETTLING ON, ACTIVE and SETTLING
OFF. In IDLE, the output is directly connected to the input (pass-through) and
the equalizer is keeping the filter coefficients at their initial value. As soon as the
external detector in the receiver detects a signal, the controller changes its state to
SETTLING ON. Hereby, a counter is decreasing its internal value by one in each
cycle until the value reaches zero. If a signal is detected when the counter reaches
zero, the controller changes its state to ACTIVE. Only in the ACTIVE state, the
output of the equalizer is switched to the filter output. As soon as IS signal detected
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goes back to zero (in other words, the frame is over), the controller changes its
state to SETTLING OFF. Again, the counter (initialized to the same value as in
SETTLING ON) is decrementing its value by one per cycle until the value reaches
zero. Then, the controller ends up again in the IDLE state. The described FSM
makes sure that the coefficient update is only enabled if a frame is being received.
Furthermore, the equalizer in SETTLING ON has time to settle to an approximate
optimum before the filter output is forwarded to the receiver. Also, see Figure 3.14
for a depiction of how the FSM states change during a frame.

Figure 3.14: Depiction of controller signals during a frame. The frame starts at
sample 5674 and ends at sample 7628. States: IDLE = 0, SETTLING ON = 1,
ACTIVE = 4, SETTLING OFF = 5.

3.7 Issues Arising From the Type-B Frame For-

mat

Section 2.1.2 demonstrates what effects a simplified NFC channel has on the trans-
mitted BPSK signal. As it turns out in Section 3.5.1, the equalizer is capable of
restoring the BPSK signal no matter the coupling (as long as the coupling is high
enough that a signal can be detected). However, Section 3.5.2 demonstrates that the
equalizer needs a significant time to converge. Therefore, it is of high importance
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to understand how an actual data frame looks like and in what timespan and under
which conditions the equalizer needs to converge (not necessarily to the optimum,
but to a set of coefficients which allows for correct bit detection).

To begin with, Figure 3.15 shows the format of a Type-B frame, as given by
the ISO14443-3:2011 standard [6]. There are also other protocols, such as Type-A.
However, the equalizer is only active when a Type-B format is used, as given by
project requirements. As shown in Figure 3.15, a Type-B frame consists of a Start
of Frame (SOF), the characters (data), and an End of Frame (EOF).

Figure 3.15: Type-B frame format [6].

Figure 3.16 shows the character format of a Type-B frame. It consists of a start
bit, eight-bit of data (Least Significant Bit (LSB) first) and a stop bit. The start
bit is equivalent to a logical 0, while the stop bit is equivalent to a logical 1. What
represents a logical 0 and logical 1, as well as how the SOF looks like, is given by
the Bit Coding and Representation section in [7]:

• After any command from the Proximity Coupling Device (PCD), a
guard time TR0 shall apply in which the Proximity Card or Object
(PICC) shall not generate a subcarrier. TR0 shall be greater than
1024/fc ( 75,5 µs).

• The PICC shall then generate a subcarrier with no phase transi-
tion for a synchronization time TR1. This establishes an initial
subcarrier phase reference Ø0. TR1 shall be greater than 80/fs.

• This initial phase state Ø0 of the subcarrier shall be defined as logic
“1” so that the first phase transition represents a change from logic
“1” to logic “0”.

• Subsequently, the logic level is defined according to the initial phase
of the subcarrier.

Ø0 Represents logic “1”

Ø0 + 180◦ Represents logic “0”

Note that the standard uses the abbreviation PCD for referring to a reader,
and PICC for referring to a card. Especially important for equalization is the SOF
(the EOF is less important - the interested reader can refer to [7] and [6]). During
the SOF, the equalizer needs to converge to coefficients which allow for correct bit
detection, because right after the SOF, the data bits are transmitted.
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Figure 3.16: Type-B character format [6].

There are two problems arising from the presented frame format regarding equal-
ization. First, the time during which the equalizer needs to converge is only 80

fs
long.

For a subcarrier frequency fs = 1.695 MHz, we get 80
1.695 MHz

≈ 47.2 µs. From a

different perspective, the equalizer has only 80 × fc
fs

= 80 × 13.56 MHz
1.695 MHz

= 640 sam-
ples to converge, since the clock frequency according to project requirements is
fc = 13.56 MHz. Secondly, the convergence to a suitable set of coefficients during
TR1 is impacted by the fact that during TR1, the transmitted subcarrier does not
contain phase changes. Since bits are transmitted by phase changes of the subcarrier,
the signal during TR1 and after TR1 looks very different.

For the sake of completeness, [7] defines the relationship between high bit rates
and subcarrier frequency as shown in Figure 3.17. For bit rates below what is shown
in Figure 3.17, the subcarrier frequency is always fc

16
≈ 848 kHz.

Figure 3.17: Relationship between high bit rates and subcarrier frequency as defined
in [7].
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Implementation

Theory is the first term in the
Taylor series expansion of
practice.

Thomas M. Cover

4.1 Detailed System Model

It is one thing to understand theoretical concepts, but applying them in practice
is another. In a similar way, this principle also applies when developing a digital
system. It is one thing to design a digital system, but implementing it is another
since the implementation gives rise to a whole new set of challenges. The first
challenge is that, in hardware, only a limited set of simple components is available.
For this reason, Table 4.1 breaks down the wNCMA algorithm in terms of arithmetic
components.

Step Equation # ADD # MULT # DIV

Filter y[n] = cH [n]r[n] 4N-2 4N 0
Error e[n] = Re{y[n]}3 + jIm{y[n]}3 − Re{y[n]} 1 4 0
Update c[n+ 1] = c[n] + µr[n]e∗[n] 4N 4N+2 0
Normalization 1

α+||r[n]||2 2 3 1

8N+1 8N+9 1

Table 4.1: Required arithmetic components necessary for each step of the wNCMA
algorithm, where N is the filter order.

Table 4.1 demonstrates a general principle of the implementation of any adaptive
system: Making a given system adaptive increases the required number of compo-
nents approximately by a factor of two. The first step of the wNCMA algorithm

48
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is filtering. If c and r were real-valued, N-1 adders and N multipliers would be
necessary. However, since c and r are complex-valued, the number of multipliers
and adders increases. The addition of two complex-valued numbers is calculated by

(a+ jb) + (c+ jd) = a+ c+ j(b+ d). (4.1)

Figure 4.1 shows how Equation 4.1 can be realized in hardware. In the implemen-
tation shown in Figure 4.1, two adders are needed to perform the addition of two
complex numbers. The multiplication of two complex numbers is calculated by

(a+ jb)(c+ jd) = ac+ bd+ j(bc− ad). (4.2)

Figure 4.2 shows how Equation 4.2 can be realized in hardware. In the implemen-
tation shown in Figure 4.2, four multipliers and two adders are needed to perform
the multiplication of two complex numbers. [21] demonstrates that there are in total
sixteen different ways how this multiplication can be implemented, some of them
being able to eliminate a multiplier for the cost of increasing the number of adders.

a
c

d
b

+

+

real

imag

Figure 4.1: Addition of two complex-valued numbers (a+ jb)+(c+ jd) in hardware.

Back to the filter step in Table 4.1, it is now evident that for each multiplication
of the FIR filter, four multipliers and two adders are needed. Scaling this up by the
filter order N, 4N multipliers and 2N adders are needed. Last but not least, the real
and imaginary result of each multiplication needs to be summed up to produce the
final filter output. For this summation, 2(N− 1) additional adders are needed.

The next step in Table 4.1 is the error calculation. The analysis of the error
calculation in terms of its operational count is simple, since it does not scale with the
filter order. Two multipliers each are needed for calculating the real- and imaginary
part to the power of three. Also, one adder is needed for calculating Re{y[n]}3 −
Re{y[n]}. In total, this results in four multipliers and one adder for the error
calculation.

The update step is again more complex to analyze since it depends on the filter
order. First of all, two multipliers are needed to compute µe∗[n]. The result then
needs to be multiplied by r[n], which requires 4N multipliers and 2N adders. Finally,
2N adders are needed to add the result of µr[n]e∗[n] with c[n].
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Figure 4.2: Multiplication of two complex-valued numbers (a+ jb)(c+ jd) in hard-
ware.

For the filter, error and update step, 8N-1 adders and 8N+6 multipliers are
needed. However, the normalization has not yet been taken into account. The
normalization is defined as 1

α+||r[n]||2 . It scales the coefficient update as a function of
the input power. In other words, it makes the coefficient update independent of the
input power. The input power itself is defined as

||r[n]||2 =
(√

r∗r
)2

= r∗r = |r[n]|2 + |r[n− 1]|2 + . . .+ |r[n−N − 1]|2. (4.3)

=
N−1∑
k=0

|r[n− k]|2 (4.4)

When implementing Equation 4.3 in hardware, only the power of the newest input
sample needs to be calculated in one cycle. The other values have been calculated
in the past and can be reused. This fact becomes evident when rewriting Equation
4.4 as

N−1∑
k=0

|r[n− k]|2 = |r[n]|2 +
N∑
k=1

|r[n− k]|2 − |r[n−N ]|2. (4.5)

In Equation 4.5, only |r[n]|2 needs to be calculated. The other values are available
from previous calculations. Figure 4.3 shows how Equation 4.5 can be implemented
in hardware. First, the real and imaginary part of the input sample are squared
each and then added together. Note that the squared absolute value of a complex

number is calculated as |x|2 =
(√

Re(x)2 + Im(x)2
)2

= Re(x)2 + Im(x)2. Next, the
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calculated power of the new input sample is added with the past sum (calculated
in the previous cycle), as indicated by Equation 4.5. Finally, |r[n − N ]|2 needs to
be subtracted to get the correct result and prevent overflow. For this calculation, a
buffer for storing N power values is needed.

 

Re{r[n]}

 

Im{r[n]}

+
+

|r[n]|2

+

z-1

-|r[n-N]|2

Σ|r[n-k]|2

Figure 4.3: The implementation of Equation 4.5 in hardware.

4.1.1 Simplifying Multiplications and Divisions

The previous Section discusses the number of basic arithmetic components needed
for implementing the wNCMA. It was assumed that those arithmetic operations can
be implemented in hardware. While this is true, in fact, both multiplication and
division are problematic in hardware design, especially in a low-power application.
Low-power goes hand-in-hand with low-area consumption. That is why a digital
designer typically tries to avoid or simplify multiplications and divisions since they
consume much more area than, for example, additions. A popular way of simplifying
multiplications and divisions is to determine the logarithm of the input values, then
either add or subtract the logarithms and finally calculate the antilogarithm again.

a× b = 2log2 a+log2 b (4.6)
a

b
= 2log2 a−log2 b (4.7)

A simple method for calculating the logarithm and antilogarithm of a number
was developed by John N. Mitchell [8]. The basic idea is that the leading 1 of an
unsigned number gives the correct integer part of the logarithm of that number.
For example, consider the number x = 16. In binary, this number is expressed as
b10000. The leading 1 is placed at the bit location 5. If 1 is subtracted from this bit
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location (5− 1 = 4), the result is the logarithm. Indeed, log2 x = log2 16 = 4. If x is
a number with not only a single 1 in its binary representation, Mitchell suggests an
approximation: Simply copy all bits after the leading 1 into the fractional part of the
logarithm, leading to a straight-line approximation. Figure 4.4 demonstrates this
method visually. The antilogarithm can be calculated in the reverse order. Namely,
the integer part of the logarithm determines the location of the leading 1. Right
after the leading 1, the fractional part of the logarithm is copied in. [22] suggests
that in order to improve the accuracy of the approximation, an additional error-term
can be added to the logarithm. However, for the purpose of this thesis, the accuracy
of Mitchell’s method is sufficient.

Figure 4.4: Approximation of binary logarithm according to Mitchell [8].

However, there is a crucial aspect that the method by Mitchell does not consider:
Fractional numbers at the input and hence the possibility of negative results of the
logarithm calculation for inputs between zero and one. As an example, consider
the number x = 0.375, which in binary is represented as b0.011 (x = 0.375 =
0.25 + 0.125). For calculating the logarithm of x similar to the method of Mitchell,
again the position of the leading 1 needs to be determined. However, since the
leading 1 is in the fractional part of x, the leading 1 position is negative. Specifically,
the position of the leading 1 in the example is −2 = b1110. Finally, the remaining
bits of x, which are located on the right of the leading 1, are copied into the fractional
part. Assuming a fractional length of the logarithm of 3, the fractional part becomes
b100. The final result is then log2 x = log2 0.375 ≈ b1110.100 = −1.5.

Figure 4.5 shows how a logarithmic multiplier or divider can be implemented.
First, the absolute values of both inputs are determined, since a logarithm does not
produce a real-numbered output for negative inputs. Subsequently, the logarithm
is calculated. The logarithms are added or subtracted, depending if multiplication
or division shall be performed. Then, the antilogarithm of the multiplication or
division is calculated. Special care is necessary for input values that are zero. The
Zero-Correction block in Figure 4.5 sets its output to zero if at least one of the
inputs A and B is zero. Otherwise, the Zero-Correction block is simply passing-
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through its input. Finally, the Sign-Conversion block is performing unsigned-to-
signed conversion, based on the signs of both inputs A and B. To be specific, if
A and B have opposite signs, the output of the Sign-Conversion block is negative.
Otherwise, it is positive.

Abs Abs

Log2 Log2

A B

A_Abs B_Abs

B_Abs_LogA_Abs_Log

Signum Signum

Add/Subtract

Zero Correction

AB_Abs_Log

Sign 
Conversion

AB_Signed

Exp2

AB_Abs

AB_Abs_Corr

Figure 4.5: Implementation of a logarithmic multiplier or divider in hardware.

4.1.2 High-Level wNCMA Implementation

Section 4.1 demonstrated what and how many arithmetic components are necessary
to implement each step of the wNCMA. Subsequently, Section 4.1.1 explained how
multiplications and divisions can be simplified, such that area is saved when imple-
menting those operations in hardware. Based on this previous analysis, the current
Section examines the wNCMA implementation as a whole. Figure 4.6 shows the
high-level implementation of the wNCMA. In this high-level implementation, the
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input signal x[n], the error signal e[n], as well as the output signal y[n] are complex
signals. Performing mathematical operations on them requires arithmetic compo-
nents that are able to handle complex numbers. For addition and multiplication, the
high-level implementation relies on the components shown in Figure 4.1 (addition)
and 4.2 (multiplication). The exception is the error calculation shown in the bottom
of Figure 4.6. The error calculation specifically uses the real and imaginary part
of the output signal y[n] separately, making it possible to use standard adders and
multipliers. See Equation 3.2 for how the error is calculated.
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Figure 4.6: A high-level implementation of the wNCMA algorithm. Four different
types of arithmetic components are used: Standard real multipliers, standard real
adders, complex multipliers as shown in Figure 4.2 and complex adders as shown in
Figure 4.1.

Visualizing a high-level implementation of the wNCMA algorithm as in Figure
4.6 helps to understand how different parts of the algorithm work together. The
high-level implementation shows that there is a feedback-loop in the system (as
expected from an adaptive system), which is formed by the error calculation and
coefficient update, as already seen in Figure 3.2. However, the feedback-loop in Fig-
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ure 4.6 additionally reveals interdependencies of components. The most prominent
dependency is that the correlation multipliers need to wait for the filter multipliers
to finish. This means that the filter and correlation multipliers are never active at
the same time. Thus, parallel filter and correlation multipliers cannot be fully uti-
lized, while the critical path of the equalizer is increased. This issue can be avoided
by inserting delay elements between x[n] and the correlation multipliers, as well
as before the step-size multiplier. In Chapter 6, the delayed wNCMA is noted as
potential further improvement, in case a shorter critical path is required.

4.2 Floating-Point to Fixed-Point Conversion

The most convenient way of implementing a Digital Signal Processing (DSP) system
is by using a floating-point number format. A floating-point number consists of a
sign, mantissa and exponent. The resulting value is calculated by xfloat = sign ×
mantissa×baseexponent. Typically, a floating-point number either consumes 32 bits or
64 bits. Figure 4.7 shows how many bit each part of a 32 bit floating-point number
consumes.

Figure 4.7: IEEE format for single-precision 32bit floating point number [9].

As Khan writes in his book Digital Design of Signal Processing Systems:

Floating point representation works well where variables and results of
computation may vary over a large dynamic range. In signal processing,
this usually is not the case. In the initial phase of algorithm devel-
opment, though, before the ranges are conceived, floating point format
gives comfort to the developer as one can concentrate more on the algo-
rithmic correctness and less on implementation details. If there are no
strict requirements on numerical accuracy of the computation, perform-
ing floating point arithmetic in HW is an expensive preposition in terms
of power, area and performance, so is normally avoided [9, p. 94-95].

An alternative to floating-point format is the Qn.m fixed-point format. In this
format, n bits are used for the integer part (left-hand side of the binary point) and
m bits are used for the fractional part (right-hand side of the binary point). As an
example, the bit fields and their weights of a signed Q2.7 fixed-point number are
shown in Figure 4.8.
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Figure 4.8: Bit fields and their weights of a signed Q2.7 fixed-point number [9].

There are multiple ways of how a floating-point algorithm in MATLAB can be
converted to fixed-point. One possibility is to rely on the Fixed-Point Designer from
MathWorks.

Fixed-Point DesignerTM provides data types and tools for developing
fixed-point and single-precision algorithms to optimize performance on
embedded hardware. Fixed-Point Designer analyzes your design and
proposes data types and attributes such as word length and scaling. You
can specify detailed data attributes such as rounding mode and overflow
action, and mix single-precision and fixed-point data. You can perform
bit-true simulations to observe the impact of limited range and precision
without implementing the design on hardware [23].

Another way is to manually convert the value of each variable in MATLAB to
its fixed-point representation. A floating-point value is transformed to fixed-point
format by

xfx = round (xfl × 2m) , (4.8)

where xfl is the floating-point value, m the number of fractional bits of the chosen
Qn.m fixed-point format and xfx the fixed-point value. In other words, m bits of
the number are brought to the integer part and the rest of the fractional bits are
dropped with rounding. Additionally, the result of Equation 4.8 might be saturated,
meaning that the result is higher or lower than the number of integer bits allow.
Therefore, the result also needs to be clipped.

I chose the second method for fixed-point conversion for multiple reasons:

• The educational benefit is higher when using the second method, instead of
letting a tool do the job.

• Relying on the Fixed-Point Designer by MATLAB slows down simulation per-
formance.

• It is not transparent what exactly the Fixed-Point Designer is doing in the
background.
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4.2.1 Numerical Aspects

Bitgrowth is one of the most serious issues when implementing algorithms in fixed-
point format, especially if the algorithm contains feedback loops. If two fixed-point
numbers are multiplied, the resulting bitwidth is given by

Qn.m = Q(n1 + n2).(m1 +m2), (4.9)

where n1 and n2 are integer widths and m1 and m2 fractional widths of the numbers
that are multiplied. If two fixed-point numbers are added, the resulting bitwidth is
given by

Qn.m = Qmax(n1, n2).max(m1,m2). (4.10)

Furthermore, overflow needs to be considered. Overflow occurs if two positive or
negative numbers are added and the sum requires more than the available number of
bits. Figure 4.9 shows the effect of overflow. If overflow occurs, an error equal to the
dynamic range of the number is introduced. To avoid this effect, the bitwidth needs
to be increased by 1 or overflow needs to be detected and the number saturated.
Saturation means that the number is clamped to the maximum or minimum value.

Figure 4.9: The error introduced by overflow for a 3-bit signed number on the left-
hand side. Saturating a 3-bit signed number to avoid overflow on the right-hand
side [9].

Not controlling the bitgrowth of fixed-point numbers can have catastrophic con-
sequences in adaptive systems, since they typically contain feedback loops. In feed-
back loops, fixed-point numbers keep growing in every cycle, if the designer is not
taking the right measures. For dealing with bitgrowth, the designer can apply clip-
ping and quantization, which are shown in Figure 4.10. Clipping reduces bitwidth
from the MSB (Most Significant Bit) side by saturating a number to a given max-
imum or minimum value. However, in the allowed range, the accuracy stays the
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Figure 4.10: The top figure shows clipping, where a signed number can grow only un-
til a certain maximum and minimum value. The bottom figure shows quantization,
where the accuracy of a signed number is reduced.

same. Quantization reduces bitwidth from the LSB side, by either truncation or
rounding. While quantization does not limit range, it affects accuracy.

The measures taken to control bitgrowth in the equalizer are demonstrated in
Figure 4.11. In the top left corner, the FIR filter calculates the dot-product of the
input signal and the filter coefficients. For this operation, the results of several mul-
tipliers in parallel are added together to produce the filter output. Thinking about
bitgrowth, the result of each multiplier has a bitwidth of Q(3+6).(10+10) = Q9.20,
as indicated by Equation 4.9. Furthermore, the result of the addition is increased
in bits to avoid overflow. Assuming a filter order of four, four multiplication re-
sults need to be added in every cycle. However, that does not mean that the
bitwidth of the result of the addition needs to be increased by four bits. In gen-
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eral, if N numbers with bitwidth M are added, the bitwidth of the resulting num-
ber needs to be ceil(log2((2M − 1) × N)). Thus, the filter output needs to have
ceil(log2((229 − 1) × 4)) = 31 bit. Therefore, the integer part increases by 2bit,
resulting into a Q11.20 format.

FIR Filter C1
x[n] y[n]
Q3.10 Q11.20 Q3.10

E
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µ x[n]
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Figure 4.11: Quantizers and clippers are used to control bitgrowth in the wNCMA
equalizer.

A project requirement was that the output of the equalizer has the same format
as the input. Therefore, the output of the filter is quantized and clipped to a Q3.10
format. Next, the error is calculated. The bitgrowth due to the error calculation can
be analyzed in a similar fashion as the filter. Squaring the equalizer output results in
a Q(3+3).(10+10) = Q6.20 format. Multiplyng that result again with the equalizer
output results in a Q(6 + 3).(20 + 10) = Q9.30. ceil(log2((213− 1)3 + (213− 1)) = 39
confirms that the whole bitwidth of 39 bits is needed.

To normalize the coefficient update term, a division by the input power is re-
quired. The input power has a Q9.20 format and can be implemented as shown in
Figure 4.3. The division itself is implemented as a simple shift operation. Consid-
ering the Q9.20 format of the input power, the error can experience at maximum a
shift of 9 bits to the left and 20 bits to the right. Therefore, the result of the division
has a format of Q(9 + 9).(30 + 20) = Q18.50. At this point, the number of bits has
increased drastically. To save area in the subsequent multiplier, the normalized error
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is clipped and quantized.
After the multiplication of the error with the step-size and the input signal, the

coefficient update term is complete. The fractional part of the coefficient update
term now is brought down to the desired fractional coefficient width. The quantizer
performing this reduction of the fractional coefficient width takes on a special role,
as it is the last quantization taking place in the signal chain. To understand its
importance, it is necessary to first understand the changing convergence behavior
of the equalizer due to fixed-pointing. This effect is demonstrated in Figure 4.12.
What happens is that due to the quantization in the feedback path of the equalizer,
the coefficient update becomes zero before the optimum is reached. Because the
coefficient update term becomes smaller and smaller over time, at some point it is
simply quantized to zero, since its low value is below resolution. Formally it can be
said that loss of convergence is possible if

|µe[n]xk[n]| < 1

2
LSB, (4.11)

leading to c[n] = c[n − 1], also called stalling. Stalling can be interpreted as an
asymptotic bias.

n

c[n]

cref

Infinite
precision

Finite
precision

Bias

Figure 4.12: Reducing the feedback precision of an adaptive system leads to intro-
ducing an asymptotic bias.

There are at least two possible workarounds to deal with this problem. First,
the step-size can be increased, which directly increases the coefficient update. This
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solution requires a lot of care by the designer. By how much must the step-size be
increased? Is the system still converging at all? A second solution is to use a non-
zero quantizer (also called mid-rise quantizer) for Q3 in Figure 4.11. As the name
suggests, a non-zero quantizer never outputs the value 0. Therefore, the coefficients
are always updated, no matter how small the coefficient update term is and no
matter if the optimal coefficients are already reached. This effect leads to a greater
variance of the final coefficients, but in the end the final coefficients are closer to the
optimal coefficients than without a non-zero quantizer.

Another potential issue is the undamped loop in the feedback of the equalizer
(after Q3). In a typical scenario with proper signal excitation, the quantization
noise introduced by Q3 can be viewed as white-noise. However, this representation
might not always be true, and in such a case would lead to the accumulation of
quantization noise. To prevent the uncontrolled numerical growth in the coefficient
loop, a damping factor can be introduced such that

c[n] = λc[n− 1] + µe[n]x[n]. (4.12)

λ gradually pulls the coefficients towards zero, working against the accumulation of
deterministic noise. However, λ also introduces a bias in steady-state (pull towards
zero). For the wNCMA equalizer, this effect is not expected to cause problems.
Because the equalizer is only active during a frame (proper signal excitation can be
assumed) and the coefficients are reset after a frame, the accumulation of determin-
istic quantization noise is not a relevant issue.

4.3 High-Level Synthesis

A recent trend, which now also the semiconductor industry seems to catch on to,
is HLS. The idea is that RTL code is not written by hand, but generated by a
tool on the basis of high-level language code. For implementing DSP algorithms
in hardware, it is common to first do the whole design in MATLAB, move from
floating-point to fixed-point format and finally write the RTL code. In a way, the
same algorithm needs to be written in two different languages. Since only the high-
level language code is necessary when relying on an HLS tool, the designer needs
less time and thus time-to-market is reduced. Furthermore, since the RTL code is
automatically generated, the pure translation task is not prone to human error.

MathWorks offers multiple tools regarding HLS and highlights additional benefits
on their website:

Working at a high level of abstraction lets hardware designers focus
on developing the functionality in the context of a hardware architecture
that meets their project requirements. Since many ASIC and FPGA
designs start as algorithms in MATLAB R© and Simulink R©, these are
natural environments to perform this design and verification.
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With high-level synthesis, hardware designers can focus at a high
level without implementation detail enables easy adjustment to changes,
reuse across projects, and more productive functional verification.

High-level synthesis does require some amount of hardware architec-
ture detail, such as parallelism, some notion of timing where appropriate,
and hardware data types, which are usually fixed point. Most high-level
synthesis users rely on graphical environments such as Simulink to visu-
alize the architecture and data flow. Some high-level synthesis offerings
such as HDL CoderTM offer automatic fixed-point conversion or even
RTL implementation of native floating-point operations [24].

In the course of this thesis, the HDL Coder by MathWorks was used to auto-
matically generate RTL code for the FS. MathWorks offers a detailed description
of how workflow for HDL Coder [25]. The basic approach is to use the p e r s i s t a n t

keyword to model registers. Any other variable is interpreted as a wire. However,
the designer needs to be aware that the resulting RTL code is not easily readable
by a human being. Consequently, the resulting RTL modules need to be viewed as
blackbox.

4.4 Verification

Verification of a hardware design is not just “nice-to-have”, but absolutely necessary.
Nowadays, verification engineers in the semiconductor industry go to great lengths
to make sure the design works as expected, since the consequences of an error can be
so costly. Depending on the size, verification is performed on different levels, going
from the lowest component-level up to system-level. Some advanced testing methods
are exhaustive testvector-generation, random testing and model-based testing. For
the verification of this equalizer however, the simplest method of all is used, which
is blackbox-testing, as shown in Figure 4.13.

In blackbox-testing, the internals of the Device under Test (DUT) are invisible
to the tester. Therefore, the tester can only set the input signals of the DUT and
compare the output signals against their expected values. If no unexpected output
is observed, the DUT conforms to the model available to the tester (in the input-
output conformance sense). Clearly, blackbox-testing does not reveal any errors of
internal states, which simply by luck produce the expected output.

The activity diagram of the equalizer testbench is shown in Figure 4.14. A
demonstration of such an executed blackbox-test in SimVision is shown in Figure
4.15. The signals e q i n i and e q i n q are the real and imaginary part of the
input signal, e q o u t c o r r e c t i and e q o u t c o r r e c t q the expected output and
e q o u t i and eq ou t q the actual output. As soon as there is a mismatch between
the expected and actual output, the test stops immediately. The input signals
driving the DUT are stimuli exported from MATLAB. The commands used for the
MATLAB stimuli export are shown in Listing 4.1.
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Figure 4.13: Concept of blackbox-testing [9].

1 f i l e ID = fopen ( ’ e q i n I . dat ’ , ’w ’ ) ; f p r i n t f ( f i l e ID , ’%. f \n ’ , [ r e a l (EQ. debug . eq in ( : ) ) ] ) ;
2 f i l e ID = fopen ( ’ eq in Q . dat ’ , ’w ’ ) ; f p r i n t f ( f i l e ID , ’%. f \n ’ , [ imag (EQ. debug . eq in ( : ) ) ] ) ;
3 f i l e ID = fopen ( ’ e q ou t I . dat ’ , ’w ’ ) ; f p r i n t f ( f i l e ID , ’%. f \n ’ , [ r e a l (EQ. debug . eq out ( : ) ) ] ) ;
4 f i l e ID = fopen ( ’ eq out Q . dat ’ , ’w ’ ) ; f p r i n t f ( f i l e ID , ’%. f \n ’ , [ imag (EQ. debug . eq out ( : ) ) ] ) ;
5 f i l e ID = fopen ( ’ i s s i g n a l d e t e c t e d . dat ’ , ’w ’ ) ; f p r i n t f ( f i l e ID , ’%. f \n ’ , [ EQ. debug .

I S s i g n a l d e t e c t e d ( : ) ] ) ;

Listing 4.1: MATLAB commands used for RTL stimuli export.
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Open stimuli files

Read next input and 
output values from 

stimuli files

print "TEST 
PASSED"

[End of file reached]

Apply next input 
values to input 
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Wait #1

Wait @posedge clk

[New input and output values available]

Compare values 
from output wires 
of the module to 
the output values 
from stimuli files

print "TEST 
FAILED"[Values do not match][Values match]

Figure 4.14: UML activity diagram of the equalizer testbench.
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Figure 4.15: Screenshot from SimVision, showing an executed blackbox-test for
verifying the equalizer implementation.
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4.5 Development Environment

Table 4.2 presents the operating system and tools used in the course of this the-
sis. Because this thesis was performed in cooperation with the company NXP in
Gratkorn, Austria, I had access to industry-level tools for RTL development from
Cadence (Incisive and SimVision). To perform simulations with Incisive, I used the
command irun.

1 i run <tes tbench f i l e > <RTL f i l e 1> <RTL f i l e 2> +gui −acc e s s rw

Listing 4.2: Irun command used for RTL simulations.

Name Version

Operating System Red Hat Enterprise Linux Server 64-bit Release 6.7 (Santiago)
Concept Development Tool MATLAB R2019b
Verilog Editor VIM 7.4
RTL Simulator Cadence Incisive 15.20 Build 229
Waveform Analyzer SimVision 15.20-s047

Table 4.2: Description of the development environment.



Chapter 5

Results

5.1 MATLAB Simulations

5.1.1 Floating-Point

This chapter explores the optimal configuration and behaviour of the equalizer for
one specific channel model. This channel model is not the same as the one presented
in Section 2.1.2, but rather a real-world channel from an NFC product developed
by NXP. Instead of evaluating the equalizer performance on a simplified model, it
is more interesting to see how the equalizer performs on the mentioned real-world
channel.

Figure 5.1: Input and output of the equalizer, when receiving a frame with twelve
bytes at a coupling of k = 0.08.

Input and output of the equalizer, when receiving a frame with twelve bytes at

67
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a coupling of k = 0.08, are shown in Figure 5.1. In fact, there are two plots each
for the input and output. The upper two plots show the amplitude of the input and
output as fixed-point values (see Equation 4.8), whereas the lower two plots show
the input and output as floating-point values. Be reminded that ten bits are used
for the fractional part, so for example a floating-point number xfl = 1.0 in fixed-
point format is xfx = round (1.0× 210) = 1024. Therefore, the equalizer is massivly
scaling up the output, since the wNCMA error is only reduced if the output gets
closer to ±1. An additional effect can be observed in Figure 5.1, namely that the
channel causes a sudden increase in amplitude whenever there is a phase change.
This effect is removed by the equalizer.

Figure 5.2: Packet Error Rate over coupling with (red curve) and without (blue
curve) equalization.

Figure 5.2 shows the PER over coupling with the real-world channel for a data
rate of 1.695 Mbit/s. The blue curve shows the PER without equalization, which
serves as a baseline for comparison. The red curve shows the PER with equalization,
demonstrating a huge increase in performance thanks to the wNCMA. For every dot
in this plot, one-hundred frames with four bytes of data each are sent from card to
receiver (in simulation). The receiver then tries to decode the information sent by
the card. As soon as a single bit detected by the receiver is wrong, the whole frame
counts as failed. Such a simulation gives an in-depth view of how well the receiver
performs overall. Figure 5.2 shows that only in the coupling range from 0.27 to
0.44, frames can be received with approximately no errors without equalization.
Subsequent paragraphs explain how the equalizer parameters are chosen, such that
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a result as the red curve in Figure 5.2 can be achieved.

Figure 5.3: Effects of filter order variation on the PER over coupling.

The first parameter to investigate is the filter order. For the step-size, a value of
0.01 is proposed by [5], whereas the nearest factor of two is 1

64
. By using factor of two

only, we can replace the step-size multiplier with a shifter and thus save additional
area. Figure 5.3 shows the PER over coupling when varying the filter order. It turns
out that a filter order of 4 seems to be the best choice since a robust communication
is already possible at a coupling value as low as 0.07. In other words, the receiver
is most sensitive with a filter order of 4. Also, the PER stays zero until a coupling
value of 0.41.

Figure 5.4 shows the effects of step-size variation on the PER. Decreasing the
step-size from 1

64
to 1

128
clearly worsens equalization performance. However, increas-

ing it to 1
32

improves the performance. Further increase does not have any benefit,
therefore the optimal step-size is µ = 1

32
.
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Figure 5.4: Effect of step-size variation on the PER over coupling.

5.1.2 Fixed-Point Simulations

For an efficient implementation of the equalizer on an ASIC, it was necessary to
convert the equalizer to fixed-point format. Amongst others, a lower area is an
advantage compared to a floating-point implementation. Section 4.2 presents how
the floating to fixed-point conversion was done, while Section 4.11 explains the effects
of a fixed-point format in an adaptive system. This chapter explores the optimal
configuration of each clipper and quantizer presented in Figure 4.11.

The most straightforward components for bitwidth reduction to analyze are the
quantizer and clipper after the filter, namely Q1 and C1 (see Figure 4.11). Because
the required bitwidth for the equalizer is already given by project requirements, no
analysis of different bitwidths needs to be done. Project requirements state that
the output of the equalizer needs to have the same bitwidth as the input, which is
thirteen bits. These thirteen bits are split into three bits for the integer part, and
ten for the fractional part (Q3.10). Ideally, the output of the equalizer is ±1, which
requires two bits in the integer part. However, as a safety margin, an additional bit
in the integer part makes sense. Three bits result into an output range of -4 to 3.
Consequently, the other ten bits can be used for the fractional part, resulting into a
final output range of -4 to 3.999. Figure 5.5 shows that fixed-pointing the forward
path (Q1 and C1 only) does not impact the overall performance.
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Figure 5.5: Effect of fixed-pointing the forward path (Q1 and C1 only) on the PER
over coupling.

Figure 5.6 shows the effects of clipping and quantizing the error signal after
normalization (Q2 and C2 in Figure 4.11). A fixed-point format of Q18.50 guar-
antees no information loss. In other words, with a Q18.50 format, no clipping and
quantization is necessary. Figure 5.6 shows that greatly reducing the integer width
(from 18 to 5) negatively impacts sensitivity. Furthermore, completely neglecting
the fractional part of the error signal increases PER for high coupling scenarios
(above k = 0.42). A Q10.5 fixed-point format seems the most reasonable choice,
as it delivers similar performance to the full resolution format of Q18.50, as well as
greatly reduces bitwidth and therefore saves area in the subsequent multipliers (see
Figure 4.11).

The effect due to fixed-pointing the error shown in Figure 5.6 is clearly a coarse
analysis. Only nine samples of the whole set of possible bitwidth configurations have
been simulated. Therefore, the PER over coupling for a few more configurations is
shown in Figure 5.7. As discussed in the previous paragraph, the performance for a
Q18.50 and Q10.5 fixed-point format is nearly the same. Therefore, it makes sense
to analyze more closely the performance for an integer bitwidth slightly below 10
and a fractional bitwidth slightly below 5. As can be seen in Figure 5.7, the PER
already slightly worsens when using a Q8.3 format for the error. For that reason, it
makes sense to stick with a Q10.5 format.
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Figure 5.6: Effect of partly fixed-pointing the backward path (Q2 and C2) on the
PER over coupling (coarse).

Figure 5.7: Effect of partly fixed-pointing the backward path (Q2 and C2) on the
PER over coupling (fine).
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Figure 5.8: Effect of fixed-pointing the backward path (Q3 and C3) on the PER
over coupling (coarse).

Figure 5.8 shows the effect of fixed-pointing the coefficients on the PER. A
bitwidth of 5bit for the fractional part causes a sudden increase of the PER in
the mid-coupling range. Surprisingly, even a bitwidth of 3bit for the integer part
is sufficient for proper performance. Figure 5.9 demonstrates that for a coupling
k = 0.08, the coefficients actually grow much higher than 3bit in the integer part
would allow. Therefore, the coefficients experience clipping throughout the majority
of the frame. Thus, although the performance does not seem to suffer from heavy
clipping of the coefficients in low-coupling range, it is a better choice to increase the
integer width until 6bit.
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Figure 5.9: Coefficient development over time for a twelve-byte frame at a coupling
of k = 0.08. In low-coupling range, the equalizer needs to scale heavily, therefore
enough bits need to be available in the integer part. The coefficient with the high-
est value is c1, where the real part reaches a value close to 30 during the frame.
Therefore, a integer bitwidth of 6 bit is recommended.

Also for the coefficients fixed-point format, a fine analysis makes sense. In this
case, the 6bit for the integer part are not changed, however the fractional bitwidth
can be tuned. Figure 5.10 shows the PER for four different fractional bitwidths.
From that result we can conclude that decreasing the fractional bitwidth further
than 10bit results in an increase of the PER in the high-coupling range. Therefore,
the final fixed-point format for the coefficients is Q6.10.

Lastly, Figure 5.11 compares PER when using a mid-rise (non-zero) quantizer
compared to a standard quantizer. There is a slight advantage when using the mid-
rise quantizer, however not very significant. Nevertheless, it is suggested to use a
mid-rise quantizer for quantizing the coefficient update, since it does not cost more
area and delivers better convergence properties (see Section 4.2.1), also if, with the
particular channel model, the performance does not get significantly better.
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Figure 5.10: Effect of fixed-pointing the backward path (Q3 and C3) on the PER
over coupling (fine).

Figure 5.11: Effect of using a mid-rise (non-zero) quantizer for Q3 on the PER.
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5.2 RTL Simulations

Figure 5.12 shows RTL simulation results of a low-coupling scenario (k=0.08) in
SimVision. Because the simulated coupling is low, only the real part of the equalizer
input e q i n i f l o a t and equalizer output e q o u t i f l o a t are shown. The signal
i s s i g n a l d e t originates from an external signal detector, and therefore is not
generated by the equalizer itself. The clock c l k runs at a frequency of 13.56MHz.

Before a signal is detected, the controller state s f s c o n t r o l l e r is IDLE. During
this state, e q i n i f l o a t is simply forwarded to e q o u t i f l o a t . In other words,
the equalizer is configured for pass-through. Also, the filter coefficients are kept
at their initial setting, which is a 1 for the first coefficient, and 0 for the others.
Figure 5.12 shows the real part of each coefficient ( e q c o e f f <n> r e a l i f l o a t ).
Finally, the filter input and all delayed filter inputs are kept at 0. Therefore, the
filter outputs e q f i l t e r o u t r e a l o and e q f i l t e r o u t i m a g o are 0 as well.

As soon as a signal is detected, the controller transitions from IDLE to SET-
TLING ON. In the simulation example shown in Figure 5.12, the settling time is
set to 100. During this state, the filter is receiving the equalizer input, the equal-
izer output is switched to the filter output and the coefficients are updating, even
when i s s i g n a l d e t temporarily goes down to 0. After 100 cycles have passed, the
controller transitions to the ACTIVE state, because i s s i g n a l d e t is still 1. Oth-
erwise, the controller would transition back to IDLE. The ACTIVE state is similar
to SETTLING ON, just that as soon as i s s i g n a l d e t goes to zero, the controller
transitions to SETTLING OFF. In the simulation example shown in Figure 5.12,
this transition from ACTIVE to SETTLING OFF happens as soon as the frame is
over. During SETTLING OFF, the filter input, as well as the delayed inputs, are set
to 0, the equalizer input is forwarded to the output, the coefficients are set to their
initial values and the coefficient update is stopped, even when i s s i g n a l d e t tem-
porarily goes to 1. After 100 cycles of settling wait time, the controller transitions
back to IDLE.

In the simulation example shown in Figure 5.12, the scaling effect of wNCMA
can clearly be seen. The coefficients are scaled up, such that the output signal
reaches a certain amplitude, which the wNCMA interprets as ±1. The potential
issues arising from this scaling effect and possibilities for avoiding it are discussed
in Section 6.1.
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Figure 5.12: RTL simulation results of a low-coupling scenario (k=0.08).

5.3 Synthesis Results

Table 5.1 presents the final synthesis results of the equalizer, based on the fixed-
pointing formats discussed in Section 5.1.2. Project requirements stated that the
equalizer should have at maximum 30k gates, which was easily achieved with 22k
gates. The biggest contributor to the total area is the coefficient update module,
which amounts to around 11k gates. This block is the biggest contributor because
it contains the largest multipliers, which are the correlation multipliers (input signal
times scaled error). Since the filter order is N = 4, four correlation multipliers are
necessary, which already require 4 × 2111 = 8444 gates. The FIR filter requires
around 6.7k gates, significantly less than the coefficient update. Although also the
filter needs N complex multipliers, their bitwidths are lower (Q3.10 x Q6.10 for the
filter, Q3.10 x Q10.11 for the coefficient update).
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A surprising result was that the logarithmic multiplier turned out to consume
more area than a standard multiplier (2406 gates compared to 1560 gates of a
standard multiplier), as shown in Figure 5.2. Possibly, the logarithmic optimization
only pays off for higher bitwidths, due to a weaker area growth when increasing
bitwidth. However, this was not confirmed in the course of this thesis. There was
also no incentive to do so, since the goal in terms of area consumption has already
been reached with standard multipliers.

Component Cell Count Cell Area [µm2] Net Area [µm2] Total Area [µm2]
Equalizer 21846 23315 10739 34054
Update 10849 11526 5116 16642

Update Mult 2111 2312 931 3243
Update Quant 106 68 32 100
Update Clip 22 14 5 19

Filter 6653 7671 3211 10882
Filter Mult 1560 1749 660 2409

Filter Quant 32 29 9 38
Filter Clip 29 18 7 25

Normalization 2481 2154 1028 3182
Error 1646 1788 713 2501

Counter 56 48 20 68
Controller 12 9 3 12

Table 5.1: Final synthesis results of the equalizer.

Component Cell Count Cell Area [µm2] Net Area [µm2] Total Area [µm2]
Filter Mitchell Mult 2406 1300 968 2268

Exp2 306 126 100 226
Log2 139 78 53 131

Quantizer 36 38 9 47

Table 5.2: Synthesis results of a logarithmic filter multiplier.
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Conclusion and Future Works

This thesis suggests an area efficient and robust implementation of the wNCMA,
taking into account the effects that occur in adaptive systems when moving from a
floating-point to a fixed-point format. An introduction into the fundamental topics
of Channel Equalization and NFC can be found in Chapter 1. Chapter 3, after
explaining every step of the wNCMA, clearly shows that the algorithm works and
can successfully equalize the effects of a simplified NFC channel over a wide coupling
range. As discussed in Section 3.7 however, the Type-B frame format does not allow
for long convergence times. Also, the SOF, during which the equalizer is supposed
to converge, actually looks different than the data part of the frame. Nevertheless,
Chapter 5 demonstrates that the equalizer improves PER significantly in the low to
mid-coupling range.

I suggest the following improvements for future work.

• Section 3.7 describes the Type-B frame format, which is the only format sup-
ported by the equalizer. This format imposes heavy constraints on the conver-
gence time and behaviour of the equalizer. Nevertheless, information about
the structure of a frame is known. This information can be used to create a
training sequence for faster convergence, or perform an inverse estimation of
the channel for initializing the equalizer.

• The fixed-pointing approach applied in this thesis is rudimentary. PER sim-
ulations were performed for a few different fixed-point formats of the error
and coefficients. There exist far better approaches for fixed-pointing, such as
an iterative Signal to Quantization Noise Ratio (SQNR) analysis (how much
quantization noise does a certain fixed-point format induce in the system) [9].
In a way, fixed-pointing also represents a discrete optimization-problem. Thus,
approaches from the mathematical field of optimization could be applied here
as well.

• To further reduce area consumption, the correlation multipliers could be re-
placed by shifters. The effect of this simplification on the PER needs to be
studied.
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• The error calculation of the wNCMA can be adjusted such that the scaling of
the output signal is avoided, see Section 6.1.

• Timing analysis was not done in the course of this thesis. Because the clock
frequency of fc = 13.56 MHz is quite slow, timing analysis was considered less
important. Nevertheless, if timing does become an issue in the future, the
delayed version of the wNCMA can be implemented, as described in Section
4.1.2. The delayed version should decrease the critical path by roughly a factor
of two.

If the equalizer is used together with firmware, more possibilities open up. For
example, the equalizer does not always need to start from the initial coefficients
cinit = [1; zeros(N − 1, 1)]. After the first successful frame, the coefficients can be
stored and reused for the next frame, since during card-reader communication, mul-
tiple frames are exchanged. The assumption that the coupling does not significantly
change during those frames seems reasonable.

The final parameter configuration (mainly filter order and step-size) and fixed-
point formats (for the error and coefficients) suggested in Chapter 5 make the equal-
izer tailor-made to the specific coupling system used in this thesis. For using the
equalizer in conjunction with another coupling system, parameter and fixed-point
formats need to be evaluated again, to guarantee optimal performance.

6.1 Avoid Scaling Effect of the wNCMA

The wNCMA adjusts the filter coefficients over time such that the output signal
becomes closer to ±1. Consequently, if the input is significantly lower in amplitude
than ±1, the coefficients of the filter will be scaled up to increase the amplitude of
the output. For a fixed-point format of Q3.10, as used for the input and output of
the equalizer, the floating-point value +1 becomes xfx = round (1.0× 210) = 1024.
The described scaling effect, as shown in Figure 5.1, is an unnecessary and undesired
effect. The wNCMA is supposed to mitigate ISI and phase distortion, but not scale
the signal.

One way to avoid the scaling effect is by adjusting the error calculation of the
wNCMA such that

e[n] =
Re{y[n]}3

E{Re{x[n]}2}
+ j Im{y[n]}3 − Re{y[n]}, (6.1)

where E{Re{x[n]}2} is the expected value of the real part of the input signal power.
In that way, the term Re{y[n]}3 is scaled up if the real part of the input signal power
is low, acting against an otherwise large error term, which would lead to scaling up
the coefficients and subsequently the output signal. This change is inspired by the
original Wnew algorithm [2], which the wNCMA is a derivative from.
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Figure 6.1 shows the equalizer input and output when receiving a frame with
twelve-bit data at a coupling of 0.08. The error is calculated according to Equation
6.1. Clearly, the equalizer output is not scaled up anymore as it was in Figure 5.1.
However, there is some variability in the amplitude of the output, since E{Re{x[n]}2}
can only be calculated over a limited number of samples. For the simulation results
shown in Figure 6.1, a sample vector of length 32 was used.

Out of time constraints, the potential improvement of avoiding the scaling effect
of the wNCMA could not be investigated further. It needs to be demonstrated that
the wNCMA with modified error has finally a better performance than the original
wNCMA, since an implementation of the modified error requires additional logic.

Figure 6.1: Input and output of the equalizer, when receiving a frame with twelve
bytes at a coupling of k = 0.08 and a data rate of 1.695 Mbit/s. The wNCMA error
is calculated according to Equation 6.1.
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MATLAB Code

A.0.1 NFC Communication Channel

Table A.1 shows the numerator and denominator polynomial of the coupling model
for different coupling values. Note that this coupling model is a simplified baseband
model of the coupling system shown in Figure 2.2. By stating the coefficients of the
polynomials, the curious reader can easily generate a random BPSK sequence, send
this sequence through the coupling model for a number of different coupling values,
and apply the wNCMA. The wNCMA itself consists only of three simple equations,
as explained in Section 3.5. Therefore, the interested reader can easily reproduce
the results presented in Chapter 3.

Coupling Factor Numerator Polynomial Denominator Polynomial
k B A

0.01
-0.0000 - 0.0002i
-0.0013 + 0.0002i
0.0003 + 0.0002i

1.0000 + 0.0000i
-1.1855 - 0.1158i
0.2567 + 0.1026i

0.05
-0.0001 - 0.0057i
-0.0279 + 0.0031i
0.0067 + 0.0045i

1.0000 + 0.0000i
-1.2176 - 0.1386i
0.2918 + 0.1194i

0.1
-0.0001 - 0.0192i
-0.0840 + 0.0059i
0.0322 + 0.0142i

1.0000 + 0.0000i
-1.3457 - 0.1577i
0.4215 + 0.1261i

0.15
-0.0002 - 0.0328i
-0.1260 + 0.0009i
0.0631 + 0.0154i

1.0000 + 0.0000i
-1.4309 - 0.1006i
0.5156 + 0.0682i

0.2
-0.0004 - 0.0435i
-0.1452 - 0.0126i
0.0818 + 0.0107i

1.0000 + 0.0000i
-1.3867 - 0.0389i
0.5102 + 0.0130i
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0.25
0.0003 - 0.0510i
-0.1493 - 0.0327i
0.0866 + 0.0040i

1.0000 + 0.0000i
-1.2752 + 0.0058i
0.4692 - 0.0235i

0.3
0.0009 - 0.0556i
-0.1436 - 0.0575i
0.0820 - 0.0039i

1.0000 + 0.0000i
-1.1092 + 0.0269i
0.4055 - 0.0374i

0.35
0.0004 - 0.0592i
-0.1302 - 0.0848i
0.0732 - 0.0123i

1.0000 + 0.0000i
-0.8851 + 0.0362i
0.3256 - 0.0423i

0.4
0.0004 - 0.0620i
-0.1110 - 0.1118i
0.0621 - 0.0217i

1.0000 + 0.0000i
-0.5999 + 0.0348i
0.2392 - 0.0475i

0.45
0.0008 - 0.0635i
-0.0871 - 0.1390i
0.0441 - 0.0387i

1.0000 + 0.0000i
-0.2430 + 0.0226i
0.1568 - 0.0633i

0.5
0.0006 - 0.0647i
-0.0506 - 0.1470i
0.0648 - 0.0383i

1.0000 + 0.0000i
-0.0468 + 0.1415i
0.1620 - 0.0357i

0.55
0.0007 - 0.0654i
-0.0082 - 0.1207i
0.1004 + 0.0148i

1.0000 + 0.0000i
-0.1869 + 0.3163i
0.1259 + 0.1310i

Table A.1: Discrete-time transfer function coefficients, where B is the numerator
polynomial and A the denominator polynomial. The coefficients are given for mul-
tiple coupling values, ranging from 0.01 to 0.55.
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Abbreviations

ASIC Application Specific Integrated Circuit. 31, 70

BER Bit Error Rate. 15, 36

BPSK Binary Phase Shift Keying. 9, 10, 23–25, 36–38, 45

DD Decision Device. 15–17

DSP Digital Signal Processing. 55, 61

DUT Device under Test. 62

EDS Euclidean Direction Search. 26

EOF End of Frame. 46

FIR Finite Impulse Response. 10, 31, 32, 36, 49, 58, 77

FPGA Field Programmable Gate Array. 27

FS Frame Synchronizer. 32–34, 62

FSM Finite State Machine. 11, 32–35, 44, 45

HLS High-Level Synthesis. 20, 61

ISI Intersymbol Interference. 9, 15, 18, 19, 23, 26, 36–38, 41, 80

LMS Least Mean Square. 27, 28

LS Least-Squares. 9, 26

LSB Least Significant Bit. 46, 58
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MBER Minimum Bit Error Rate. 16

MMSE Minimum Mean-Square Error. 16, 26

MUX Multiplexer. 31, 32, 34

NFC Near Field Communication. 9, 14, 15, 19–23, 26, 36, 37, 45, 79

PCD Proximity Coupling Device. 46

PER Packet Error Rate. 12, 31, 36, 68–75, 79

PICC Proximity Card or Object. 46

PLM Passive Load Modulation. 21, 22, 26

RF Radio Frequency. 23

RFID Radio Frequency Identification. 21, 26

RTL Register Transfer Level. 20, 31, 61, 62

SOF Start of Frame. 46, 79

SQNR Signal to Quantization Noise Ratio. 79

wNCMA well-behaved Normalized Constant Modulus Algorithm. 10–13, 15, 17,
20, 26, 31, 33, 34, 36, 37, 41, 48, 51, 53–55, 59, 61, 76, 79–82

ZF Zero Forcing. 16, 26
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