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Abstract

About 5% of all metastatic cancer cases fall into the category of cancer of unknown
primary site (CUP). As the origin of cancer plays a critical role in choosing the
optimal therapy for patients with metastatic cancer, there is an urgent need for a
firm histologic diagnosis. Several studies propose gene expression profiling (GEP)
for facilitating the identification of the site of origin of the primary tumour. Tothill
et al. (Cancer Res. 2005. 65(10):4031—40) developed support vector machine (SVM)
classifiers by using cDNA microarray data. In a previous project, the classifier
was reconstructed in R using the publicly available microarray data. Comparable
accuracy was achieved with the microarray data, but using the classifier on 21
Medical University Graz RNA-seq samples did not yield any meaningful results.
The overall aim of this project was to investigate the classification possibilities
of RNA-seq CUP samples, firstly test how using raw microarray intensity data
influences classification accuracy of SVM and neural network models and whether
it improves the classification accuracy of RNA-seq data. The highest validation
accuracy was achieved with SVMs trained on /0g,-transformed intensity data (84.6%)
and the lowest with raw intesity values (69.2%)

Further three different types of neural networks were realized and trained on
TCGA RNA-seq data (feed forward neural network [FFNN], deep learning FFNN
and a convolutional neural network [CNN]). While adjusting network shapes and
parameter two approaches for classification have shown promising results. A single
hidden layer FFNN and a CNN yielded 97.4% and 98.5% classification accuracy
respectively, while deep learning DLNN yielded 79.7% classification accuracy.

The realized neural network and SVM models were then used to classify 21 CUP
samples provided by the MU Graz. This led to varying results depending on the
methods used (highest accuracy: 52.38%).
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1 Introduction

1.1 Background

Cancer that develops in a single origin may spread in the body (for example gastro-
abdominal cancer may spread to the lung) representing a secondary cancer. If the
source, or primary cancer cannot be determined, this type of cancer is called cancer
of unknown primary (CUP).

The classification of CUP plays a critical role in choosing the optimal therapy for
patients with metastatic cancer [5, 7—9]. Tothill et al. developed a support vector
machine (SVM) classifier using gene expression data measured on cDNA microar-
rays, comprising primary and metastatic tumour samples. They demonstrated 89%
classification accuracy in classifying 13 carcinoma [5]. In a previous project, the
classifier was reconstructed in R [10] using their publicly available microarray data.
Comparable accuracy was achieved with microarray data, but using the classifier on
newly generated RNA-seq samples did not yield any meaningful results.

The phenotypic manifestation of a gene through transcription and translation is
called gene expression [11]. During gene expression analysis procedures mRNA
and other gene products are measured in order to determine the structure of a gene
and how strong it is expressed. A wide range of different experimental techniques
and tools of varying complexity are used for this purpose (e.g. microarrays and
RNA-seq).

Tothill et al. uses microarray data for their classification. These microarrays have
microscopic spots attached on their surface in order to measure gene expressions or
genotypes through hybridization of cRNA and cDNA [12]. A sample of a particular
condition is measured against a reference sample under normal conditions. mRNA
is extracted from cells and reverse transcribed into cDNA; sample of interest and
reference sample are labeled with different flourescent dyes. The labeled cDNA is
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hybridized to the micoarray. The amount of cDNA hybridized is proportional to
the initial number of RNA molecules present for the gene in both samples. The
spots are then excited by a laser and an amount of fluorescence is emitted that
corresponds to the amount of bound nucleic acid. The intensity and the ratio of the
intensity in comparison with the background and the reference is contained in the
raw micrarray data [13].

RNA-seq data determines the nucleotide sequence of RNA based on next generation
sequencing methods (NGS) [14]. It is in comparison less error prone than microarray
processes (noise, skewedness, partial hybridizations) and offers the ability to detect
novel transcripts with a higher specificity and sensitivity [15-17]. RNA-seq is mostly
used for transcriptome profiling, SNP identification, RNA editing and differential
gene expression analysis [18]. Total RNA is extracted and either mRNA enriched
or rRNA depleted [19]. Complemetary DNA (cDNA) is synthesized from single
stranded RNA through the use of the enzyme reverse transcriptase (DNA is more
stable for further sequencing). cDNA is fragmented and a sequencing library is
generated which is then further analyzed through different sequencing methods
(IIlumina, PacBio, ...) in order to determine gene expression profiles [20—22]. With
tools like Bowtie [23] these short sequences are mapped to a reference genome or

transcriptome and read counts for annotated genes are derived from these mappings

[24].

Support Vector Machines (SVM) and Neural Networks (NN) can be used to classify
a given set of samples, like the results of a sequencing pipeline or micoarray analysis.
SVMs are usually supervised learning algorithms analyzing data using classification
and regression analysis [25]. A set of training samples is given with marked cate-
gories (classes). This training set is used to build a model that assigns new samples
to the different classes. The examples represent points in space, mapped so that
the examples of separate classes are divided by a hyperplane with a maximum
distance to any of the samples. New samples are then mapped into the same space
and predicted to belong to a class based on which side of the hyperplane they fall
(Figure 1.1). There are one vs. one and one vs. all approaches.
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Figure 1.1: A diagram representing a SVM classification process between two classes. Hyperplanes
separating two example classes, created and taken from [1]

NN are able to recognize patterns in input data (numerical values contained in
vectors) and assign labels or cluster data into classes. In order to classify data, a
neural network needs labeled input data. This process is called supervised learning.

Further the generated model can be used to predict future events [26].

A NN represents a stacked structure of neural network layers. Each layer con-
sists of neurons representing a series of numerical inputs adjusted in significance by
weights and evaluated by an activation function. The activation function determines
if the signal reaches the next node or not (true or false). In principle, each output
signal is input for every other node in the next layer of the neural network. The
first layer of a neural network is a so called input layer, followed by a number of
hidden layers and by the output layer at the end. The number of nodes in the output
layer is equal to the number of classes. Each layer trains a more sensitive set of
features based on the previous layer’s output. Commonly, if there are more than
three hidden layers, a NN is classified as deep learning neural network (DLNN)
[26].

The created model is trained on a set of training data. Each input is weighted and
evaluated per action function. The whole training data are separated into equal

sized batches, using a single batch each epoch. Through this process the model
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learns the properties and features of each training data batch and uses them to
determine the class of the sample. The idea is to increase the accuracy of the model
with each batch of training data until no further significant increase is recorded
or no more training data is available. Accuracy and loss functions are calculated
to represent numerical values of how well a model fits the training data. Through
optimization the error in predicting new samples can be reduced.

There are different types of neural networks, the ones used in this thesis are most

commonly known as:

¢ Feed Forward Neural Network (FFNN).
¢ Convolutional Neural Networks (CNN).

Input Layer

Hidden Layer

W11§\
w#@—

Qutput Layer

Q10100
\ o/
&

Figure 1.2: Principal structure of a feed forward neural network. Each node is connected to each
node of the next layer adjusted by weights and activation function. Created and taken
from [2]

FFNNs (Figure 1.2) want to minimize the error as fast as possible. After the sample
input, the network simply guesses the significance of each input and adjusts weights
and used features for further batches via the calculated loss function (compared
to the actual classes). This process is then repeated until the increase of accuracy
comes to a halt or no more input data is available.

The CNN consists of convolutional layers, a max pooling layers, a flatten layer, a set
of hidden layers and ends with a output layer (Figure 1.3):
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fc_3 fc_4
Fully-Connected Fully-Connected
Neural Network Neural Network
Conv_1 Conv_2 RelU activation
Convolution Convolution 1 K—M
(5 x5) kernel Max-Pooling (5 x5) kernel Max-Pooling (with
valid padding 2x2) valid padding (2x2) D

\.dropout)

INPUT nl channels nl channels n2 channels \
(28x28x 1) (24 x 24 x n1) (12x12 xn1) (8x8xn2) (4x4xn2) |

OUTPUT

n3 units

Figure 1.3: Principal structure of a convolutional neural networks. A convolutional layer extracts
features through a filter, which is followed by max pooling, a flatten layer and connected
to a conventional NN structure. Created and taken from [3]

CNN s are often used for image classification, clustering by similarity and object
recognition. These types of networks process images as 4D tensors. A filter is convo-
luted with the input signal. Depending on the filter type different image features are
recognized. For example, in terms of a picture’s horizontal or vertical lines can be
recognized for border detection. The CNN creates a map of the place each feature
occurs. Each filter is only able to recognize a single feature, therefore a number of
different filters are applied to the input data. The input is seen as a volume - the
height, width and depth of the picture. The pixel values behind each color channel
are the raw network input [27].

All this is done in square patches of pixels in order to accommodate filter kernels.
These filter kernels represent masks that extract different features from the image
(blurring, sharpening, edge detection, ...) through convolution [28].

The dot product of the image and filter is created. Depending of the matching
pixel pattern of the mask and picture, the dot product can either be high or low
representing the chosen features. The filter starts in the upper left corner, moves to
the right and from the top to the bottom of the input data. The dot products are
written in an activation map, a separate one for each channel and each used filter
kernel. Through max pooling/downsampling the most important features of the

activation map are selected and at the end of the convolutional part of the network
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flattend to accommodate a conventional feed forward network structure [27].

For further studies, data is always very important. The Cancer Genome Atlas
TCGA contains data of collected and characterized high quality tumor and matched
normal samples from over 11,000 patients, molecularly characterized over 20,000
primary cancers and matched normal samples spanning 33 cancer types (comprising
genomic, epigenomic, transcriptomic, and proteomic data) [29]. The project with

their respective samples are available at GDC Genomic Data Commons.

The MU Graz provided 21 different RNA-seq CUP samples, which are classi-
tied by SVMs and NN trained using Tothill microarray and TCGA RNA-seq gene
expression data, to determine a model with high classification accuracy through

comparison.

1.2 Aim of the Thesis

The overall aim of this thesis is to apply support vector machines and neural
networks trained on microarray and RNA-seq data to classify CUP samples of the
Medical University Graz.

Specific aims of this thesis are:

* Create SVM and NN models from raw microarray intensity data and assess
their accuracy.

* Create SVM and NN models from TCGA RNA-seq data and assess their
accuracy.

¢ Compare accuracy and misclassifications based on the machine learning ap-
proach, data used for training and NN structure.

e Apply the above models for the classification of the samples of Medical
University Graz.

* Investigate the influence of unbalanced group size on classification perfor-

mance.



2 Methods

2.1 Datasets

The chosen datasets include:

¢ Tothill et al. microarray data.

12 classes TCGA RNA-seq data.
19 classes TCGA RNA-seq data.
33 classes TCGA RNA-seq data.
MU RNA-seq data.

Microarray data provided by Tothill ef al. serves as a reference for further classifica-
tion with NN trained on RNA-seq data. Further, each RN A-seq dataset was also
classified by an SVM and compared in terms of accuracy with NN results. In the
course of optimizing and testing different neural network models with the aim of
creating a classifier using all 33 available classes on TCGA, subsets of 12 (common
with Tothill et al.) classes and 19 classes (of single primary) were created. These
smaller datasets were used to test (i) and optimize neural networks, (ii) save time
while doing so, (iii) provide a clean differentiation between classes (iv) and a clear
reference to Tothill et al. data (v). The gained knowledge of the neural network
models and the datasets was then applied to create a classifier with the complete
number of classes. This model was then used to classify three different versions of
CUP RNA-seq data provided by the MU Graz. Each dataset name consists out on
data type, data source, number of classes and an indicator which operations were

performed on this data set (Table 2.1).



Table 2.1: Overview of data sets used to train and validate SVM and NN models and each data set of
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MU Graz CUP data for subsequent classification.
Dataset name | Comment

MA _Tothill 13_processed

Processed MA data set provided by Tothill et al.
without CUP samples.

MA _Tothill 13_mapped

Processed MA data set provided by Tothill et al.
with features common to MU samples.

MA Tothill 13_raw

Raw MA intensity data without CUP samples
provided by Tothill et al. .

MA Tothill 13 _raw_log2

logs transformed background corrected MA
intensitiy data without CUP samples.

MA _Tothill _13_raw_range

Range transformed background corrected MA
intensitiy data without CUP samples.

MA _Tothill_13_raw_bg

Background corrected MA intensity data
without CUP samples.

RNAseq - TCGA_33

RNA-seq data downloaded from TCGA, 33 classes.

RNAseq-TCGA_33_mapped

RNA-seq data downloaded from TCGA, 33 classes
with features common to MU samples.

RNAseq TCGA 33 _balanced

RNA-seq data downloaded from TCGA, 33 balanced
classes with features common to MU samples.

RNAseq - TCGA_19

RNA-seq data downloaded from TCGA, 19 classes of
unique primaries.

RNAseq_-TCGA_19_mapped

RNA-seq data downloaded from TCGA, 19 classes of
unique primaries with common MU features.

RNAseq - TCGA_12

RNA-seq data downloaded from TCGA, 12 classes

common with Tothill et al..

MU Graz RNA-seq data, 21 samples of CUP represented
as RPM.

MU Graz RNA-seq data, 21 samples of CUP represented
as voom transformed RPM.

MU Graz RNA-seq data, 21 samples of CUP represented
as ratio transformed RPM. et al..

RNAseq_ MU _RPM

RNAseq-MU_voom

RNAseq-MU _ratio

2.1.1 Microarray data (MA Tothill 13)

The data used in Tothill et al. [5] includes microarray data of 229 primary and
metastatic tumors representing 14 tumor types and further 13 samples of unknown
primary. These were classified using a 13 class model (Table 2.2). This data was
reduced to a dataset without CUP samples for training purposes. The respective
CUP samples were later classified by the generated model and compared with their
true labels.
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Table 2.2: Breakdown of Tothill et al. in tumor type, number of samples and features.

tumor type #samples #features
breast 34 10239
colon 23 10239
gastro-intestinal 15 10239
melanoma 11 10239
mesothelioma 8 10239
ovary 50 10239
pancreas 9 10239
prostate 8 10239
renal 13 10239
testicular 3 10239
SCCo 14 10239
uterus 9 10239
lung 32 10239

This gene expression data is available at Array Express (Accession Number: e-mexp-
113) [30]. It was preprocessed to represent the intensity of the according genes for
each sample. The preprocessed data from Array Express represent the log, fold-
change of the test channel divided by fluorescent intensity from control channel -
MA Tothill 13 _processed.

According to Tothill et al.(Appendix GenePix File Formats), the raw data files were
generated using the GenePix Version 4.1 file format [31]. These files contain among
others raw intensity data of the sample, both for spot foreground and background.
The sample is labeled using a Cyanine-5 Fluorophor (red 650-670 nm peak) while

the reference uses a Cyanine-3 Flurophor (orange 550-570 nm peak):

¢ Foreground Cyanine-5 Flurophor sample (F635).
¢ Background Cyanine-5 Flurophor sample (B635).
¢ Foreground Cyanine-3 Flurophor reference (F532).

¢ Background Cyanine-3 Flurophor reference (B532).

The processed data files from Tothill et al. [5] were used as reference for the adapted
script and the base reference for following neural networks. It contains 242 samples
of CUP and non CUP patients with each 10239 features after preprocessing. Further,
notable Patient IDs and scan names are present as well as gene reporter names,
reporter types, GenBank, RefSeq- and UniGene names are provided. For the adapted
SVM script the raw intensity data of the sample (F635 and B635) were used. For each
sample a separate microarray intensity data file was present. These raw data files
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were combined into a set of 242 samples with 10,944 features for further processing
(Table 2.3) - MA _Tothill 13 _raw.
Both data sets were later divided into 13 CUP and 229 non-CUP samples.

Table 2.3: Structure of imported microarray data from Tothill et al.[5] providing raw intensity values
for each sample.

sample_id | reporter name reporter name reporter name reporter_name
sample_1 raw_data raw_data raw_data raw_data
sample_2 raw_data raw_data raw_data raw_data
sample_3 raw_data raw_data raw_data raw_data
sample_4 raw_data raw_data raw_data raw_data

Tothill et al. raw intensity data files further contain a broad variety of calculated
intensity values. The composition of such files is available in the GenePix Version
4.1 documentation [31].

As described in the Results section, the column headers of the downloaded raw
data do not represent the respective data values. In order to determine the columns
needed to import raw intensities, ratio of means (RoM) value was used. The GenePix
Version 4.1 file format defines the RoM as:

_ mean_F635 — median_B635
"~ mean_F532 — median_B532

RoM (2.1)

In order to determine different possible classification results the following raw and

transformed intensity values were used:

* raw intensities
= mean_F635 (2.2)
* background corrected intensities

I = mean_F635 — median_B635 (2.3)

10
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¢ range transformed background corrected intensities with the array index i

a; = mean_F635 — median_B635 (2.4)
a; — min(a;)
I = : : .
max(a;) — min(a;) (2:5)
* logr-transformed intensities
I; = logy(mean_F635 — median_B635) (2.6)

For log-transformed data the resulting data frame has also been corrected as
various measurements are marked as o (zero). The resulting log>(0) transformation
is negative infinity and cannot be handled by the classifier. Therefore the data
frame was corrected in this case and cells with negative infinity replaced with zero.
Another reasonable approach would be adding a very small value (e.g. 1) before

each log, calculation to counter this behaviour.

2.1.2 TCGA RNA-seq data

RNA-seq data available in TCGA:

TCGA The Cancer Genome Atlas contains data of collected and characterized high
quality tumor and matched normal samples from over 11,000 patients [29]. A set of
the National Cancer Institute (NCI) supported projects with their respective samples
are available at GDC Genomic Data Commons. The NCI provides guidelines for
their own and also non-NCI supported programs:

Clinical information about patients.

Metadata about samples.

Histopathology slide images from sample portions.

Molecular information derived from samples.

RNA-seq TCGA data files available can be divided by project name and cancer type
(Table 2.4). TCGA project names are representative of different cancer types and
used as class names during classification. A project represents mutated cancer genes
and distribution of cases, divided by primary site, program - collecting the data,
disease type, data category and experimental strategy.

11
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Table 2.4: Available RNA-seq projects on TCGA divided into project, primary, the number of cases,

the number of sequence reads and number of files. Table adapted from [6].

project primary cases files

TARGET-NBL Nervous System 1127 2809
TCGA-BRCA Breast 1098 31524
TARGET-AML Blood 988 2459
TARGET-WT Kidney 652 1408
TCGA-GBM Brain 617 11996
TCGA-OV Ovary 608 15166
TCGA-LUAD Bronchus and lung 585 17052
TCGA-UCEC 2 Primary Sites 560 16174
TCGA-KIRC Kidney 537 15091
TCGA-HNSC 13 Primary Sites 528 15289
TCGA-LGG Brain 516 14728
TCGA-THCA Thyroid gland 507 14421
TCGA-LUSC Bronchus and lung 504 15324
TCGA-PRAD Prostate gland 500 14288
TCGA-SKCM Skin 470 12725
TCGA-COAD 2 Primary Sites 461 14279
TCGA-STAD Stomach 443 12846
TCGA-BLCA Bladder 412 11711
TCGA-LIHC Liver and intrahepatic bile ducts 377 10815
TCGA-CESC Cervix uteri 307 8595
TCGA-KIRP Kidney 291 8507
TCGA-SARC 13 Primary Sites 261 7494
TCGA-LAML  Hematopoietic/reticuloendothelial sys. 200 4434
TCGA-ESCA 2 Primary Sites 185 5271

TCGA-PAAD Pancreas 185 5307
TCGA-PCPG 7 Primary Sites 179 5035
TCGA-READ 5 Primary Sites 172 4925
TCGA-TGCT Testis 150 4284
TCGA-THYM 2 Primary Sites 124 3445
TCGA-KICH Kidney 113 2325
TCGA-ACC Adrenal gland 92 2547
TCGA-MESO 2 Primary Sites 87 2339
TCGA-UVM Eye and adnexa 8o 2180
TARGET-RT Kidney 75 381

12
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Table 2.4: (Continued) Available RNA-seq projects on TCGA divided into project, primary, the
number of cases, the number of sequence reads and number of files. Table adapted from

[6].

project primary cases files
TCGA-DLBC 14 Primary Sites 58 1229
TCGA-UCS Uterus, NOS 57 1659
TCGA-CHOL 3 Primary Sites 51 1349

14157 321411

TCGA RNA-seq data were generated as follows: Frozen paraffin slides and scroll-
s/ribbons are used for RNA sequencing. Frozen tissue samples are submitted to the
Biospecimen Core Resource (BCR) for consideration in genomic research projects.
The tissue is subdivided into portions as determined by specific project protocols by
the Logistics department and each is reviewed independently. DNA /RNA /Protein
kits (Qiagen AllPrep) are used to isolate total RNA from small quantities of starting
material (depending on the clinical disease case, mostly tumor tissue and blood
samples). The flow through from AllPrep DNA column is taken and total RNA is
isolated with the mirVana kit from Applied Biosystems (Life Technologies). The
AllPrep kit utilizes the RNeasy prep, which excludes small RNAs. An Agilent
Bioanalyzer is used to determine RNA quantity and integrity via the RNA nano
assay. Melanin associated with RNA isolated from melanoma tumor samples is re-
duced using the mirVana™ miRNA Isolation Kit [32—43]. No information on library
preparation methods was found in the SOPs. The TCGA Molecular Characteriza-
tion Platforms for RNA-seq sequencing using an Illumina HiSeq® 2000 System or
[Nlumina Genome Analyzer IIx depending on the research establishment (BC Cancer
Agency, Harvard Medical School and the University of North Carolina). Details
on the standard operating procedure (SOP) for TCGA data can be found in the
Biospecimen Research Database (BRD) on their website [44].

The GDC reference genome and alignment workflow for RNA-seq data states on
their website: Using a two-pass method with STAR [45]. first each group is aligned sepa-
rately and then merged into one alignment. The first alignment to the reference genome is
done to detect splice junctions, the second uses the gained information to increase the align-
ment quality. This results in a genomic BAM file, an aligned transcriptomic BAM file and
an aligned chimeric BAM file. Quality assessment is performed pre-alignment with FASTQC
[46] and post-alignment with Picard Tools [47]. Read counts are calculated using HT Seq
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and normalized using the Fragments Per Kilobase of transcript per Million mapped reads
(FPKM) and FPKM Upper Quartile (FPKM-UQ) methods [48, 49]. The RNA-seq analysis
pipeline is part of the GDC documentation and can be accessed on their website.
For the download and further work with samples on TCGA, TCGA-Assembler 2
was used [50]. The respective script can be found in the Appendix (Listing 3).

2.1.3 TCGA RNA-seq data set covering 33 classes
(RNAseq_-TCGA_33)

This represents 33 projects with a wide range of samples. After downloading with
TCGA-Assembler 2 [50] this 33 separate files are compacted to one dataset with
10464 samples and 20502 features representing normalized RNA-seq expression
data (Table 2.5).

Table 2.5: Structure of imported TCGA RNA-seq data after downloading and preprocessing with
TCGA Assembler 2.

sample_id gene_id gene_id gene_id gene_id

sample_1 | normalized_data normalized_data normalized_data normalized _data
sample_2 | normalized_data normalized_data normalized data normalized_data
sample_3 | normalized_data normalized_data normalized data normalized _data
sample 4 | normalized_data normalized data normalized_data normalized_data

During the process of modeling different neural network types, this dataset was
separated into smaller subsets in order to test structures and simplify problem
solving. The overall aim was to create neural network models covering all 33 TCGA
classes using RNA-seq data. However, smaller models, with a lower number of
classes using only unique primaries, were used in order to test network structures,
options and served as an optimization tool. The following datasets were used in this

context:
RNAseq_-TCGA_33 - TCGA RNA-seq subset containing 33 projects:

As a final result, after the modeling processes and testing of network structures
were completed, the best performing network structure was trained and evaluated
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with the complete TCGA data set.

RNAseq_-TCGA_19 - TCGA RNA-seq subset containing 19 classes:

In order to determine the best possible training set for the proposed neural network
types only 19 of the original 33 classes from TCGA were used for modeling purposes.
From this data set, all cancer classes assigned to multiple primary cancers were
eliminated. This ensures that each sample should have only a single correct class.

Used project are:

Remaining classes: ACC, BLCA, BRCA, CESC, GBM, KICH, KIRC, KIRP, LAML,
LGG, LIHC, LUAD, LUSC, OV, PAAD, PRAD, SKCM, STAD, TGCT, THCA, UCS
and UVM.

The projects KIRC, KIRP and KICH as well as LUAD and LUSC were combined as

they all stand for renal cell carcinoma and lung cancer respectively.

RNAseq_-TCGA_12 - TCGA RNA-seq subset containing 12 classes:

To compare the classification accuracy of neural networks using TCGA data with
SVMs using Tolhill et al. [5] microarray data, a data set containing the same cancer
classes was created from the complete TCGA data. Only 12 cancer classes from the

original microarray data are present in the TCGA RNA-seq data set:

Tothill et al. [5] classes: brea, colo, gast, mela, meso, ovar, panc, pros, rena, test,
SCCo, uter, lung

Corresponding TCGA classes: BRCA, CHOL, STAD, SKCM, MESO, OV, PAAD,
PRAD, RENA, TGCT, UCS, LUNG

While the projects KIRC, KIRP, KICH as well as LUAD, LUSC and STAD, LIHC were
combined to represent to renal cell carcinoma, lung cancer, and gastro-intestinal
cancer respectively.

RNAseq_-TCGA_33-balanced - TCGA RNA-seq subset containing 33 projects and

equal class sizes:

To investigate how balanced data sets and unequal class sizes influence the final
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model, using 33 classes, a further data set containing an equal number of samples
of each primary was created. Each class was reduced to the smallest occuring class
size (45 samples). In order to prevent a bias, participating samples were chosen
randomly without replacement.

2.1.4 MU Graz CUP RNA-seq data (MU data)

An RNA-seq dataset, containing genes of 21 CUP samples were contributed by the
Medical Univerity Graz (Karl Kashofer).

The following information about wetlab procedures and transcriptome analysis
was obtained from the MU Graz: RNA was extracted from FFPE slides using the
Maxwell 16 FFPE RNA extraction system (Promega) according to manufacturers
instructions, where the necessary tumor area was identified by a board certified
pathologist before microdissection to enrich tumor content. RNA was quantified
using Ribogreen fluorescence and a Qbit instrument (both Thermo Fisher Scientific).
100 ng total RNA were used to prepare transcriptome libraries using the Ion Amliseq
Human Gene Expression Kit (CatNr.: A26325, Thermo Fisher Scientific) following
the manufacturers protocol. Libraries were quantified using the Ion Library Tagman
Quantification Kit (CatNr.: 446802, Thermo Fisher Scientific) and sequenced on
an Ion Proton System using the 200 Bp workflow of the Ion PI Hi-Q Sequencing
Kit and Ion Pi Chip Kit (Thermo Fisher Scientific). Each library was sequenced to
approximately 10 million reads. Bioinformatic analysis was done using Ion Tor-
rent Suite 5.10. Briefly, reads were mapped to the human transcriptome reference
(hg19_AmpliSeq_Transcriptome_21K.v1, Thermo Fisher Scientific), counted and sum-
marized to RPM (reads per million) values to normalize for library sequencing
depth. RPM values for each of the 20812 transcripts annotated in the reference file
were then exported to TSV files [51]. Each of 21 CUP samples comprises 20,812
features. Further gene annotations are given by way of gene_id, contig_id, contig_srt,

contig_end, region_id and attributes.
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Table 2.6: MU Graz samples with corresponding truel labels and respective TCGA RNA-seq labels
and Tothill ef al. labels.

sample | true label TCGA label Tothill et al. label
K1999-6 | colon COAD/READ colo
K2170-6 | melanom SKCM melan
K2953-5 | lung LUSC/LUAD lung
K4824-4 | pancreas PAAD panc
K5108-24 | ovar ov ovar
K5216-6 | breast BRCA breast
K6266-2 | melanom SKCM mela
K6267-2 | lung LUSC/LUAD lung
K6268-2 | pancreas PAAD panc
K6269-2 | stomach STAD/ESCA  gast
K6270-2 | stomach STAD/ESCA  gast
Ké6271-2 | kidney KIRC /KIRP rena
Ké6272-2 | kidney KIRC/KIRP rena
K6365-2 | colon COAD/READ colo
K6366-2 | colon COAD/READ colo
K6367-2 | colon COAD/READ colo
K6368-2 | lung LUSC/LUAD lung
K6369-2 | breast BRCA brea
Ké6370-2 | breast BRCA brea
Ké6371-2 | prostata = PRAD pros
K6372-2 | prostata = PRAD pros

Reads per million (RPM) were used for classification and further ratio and voom

transformed to evaluate eventual impacts on classification performance.

¢ ratio: Transform RNA-seq RPM values to log, ratios using the sum of expres-
sion in all samples as the reference.
¢ voom: Transform RNA-seq total counts to logcpy values using the voom()

function in the limma package.

After importing, the used data was combined to represent a specific format (Table

2.7):.
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Table 2.7: The structure of the 21 samples of imported MU RNA-seq data provided by the MU Graz.
sample_id | contig_id contig.id contig.id contig_id
sample_.1 | RPM_data RPM_data RPM._data RPM._data
sample.2 | RPM_data RPM_data RPM._data RPM._data
sample.3 | RPM.data RPM_data RPM._data RPM._data
sample 4 | RPM_data RPM._data RPM_data RPM._data

Through feature selection methods (SNR) and mapping to features common to MU
Graz RNA-seq data the final data sets are reduced in their feature count.

2.1.5 Neural network optimization procedures

In order to compare neural network and SVM classification results, during opti-
mization TCGA RNA-seq data sets were imported in already feature reduced form.
This way time is saved as feature extraction steps do not have to be executed all
over again. Data is split by random sample subsetting and together with a vector
contaning the primaries as factors fed into an SVM for training and validation

purposes.
The used feature reduced data sets are:

* RNAseq-TCGA_33.txt and primary_frame.txt containing all 33 classes of TCGA

data and their primaries.
* RNAseq-TCGA_19.txt and primary_frame_selected.txt containing selected 19 classes

of TCGA data and their primaries.
* RNAseq - TCGA_12.txt and primary_frame_Tothill.txt containing 12 classes of
TCGA data and their primaries common with Tothill et al. data [5].

2.2 Hardware and software environment

2.2.1 Hardware environment and operating system

All analyses were performed on a ThinkPad E480 notebook.

18



2 Methods

¢ Memory 7,6 GiB

Processor Intel® Core™ i5-8250U CPU @ 1.60GHz x 8
Graphics Intel® UHD Graphics 620 (Kabylake GT2)
Ubuntu 18.04.3 LTS

GNOME 3.28.2

OS type 64-bit

2.2.2 R-Project

R is a free software environment for statistical computing and graphics. It compiles
and runs on a wide variety of UNIX platforms [10]. For scripts in this thesis, R
version 3.6.1 (2019-07-05) was used. Used packages for SVMs and neural networks
are the following (Table 2.8):

Table 2.8: Required R packages for creation of the proposed SVMs and neural networks.
R-package Package Vers. Ref. Comment
e1071 1.0.2 [52] Provides functions for SVMs.
Data analysis, linear models and differential expression

limma 3406 [53] for microarray data.

devtools 2.2.1 [54] Tools to make developing R packages easier.

keras 2.2.5 [55] Provides functions for NNs.

kerasR 0.6.1 [56] Provides functions for NNs.

HGNChelper 0.8.1 [571 Identifying and correcting HGNC human gene symbols.

httr 1.4.1 [58] Tools for Working with URLs and HTTP.

RCurl 1.95-4.12 [59] General Network (HTTP/FTP/...) Client Interface for R.
rjson 0.2.20 [60] Converts R object into JSON objects and vice-versa.

stringr 1.4.0 [61] Simple, Consistent Wrappers for Common String Operations.

2.2.3 RStudio

RStudio is an integrated development environment (IDE) for R. It includes a console,
syntax-highlighting editor that supports direct code execution, as well as tools for
plotting, history, debugging and workspace management [62]. In this thesis RStudio

Version 1.1.453 was used.
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2.2.4 Keras

In this thesis different network types are realized through the use of Keras and Keras
in R [63, 64]. The aforementioned APIs allow for modeling, training, testing and
visualization of neural networks as well as needed tools for data processing.

Keras is a high-level neural network API, written in Python and capable of running
on top of TensorFlow, CNTK, or Theano [63]. It can be used directly with Python in
a console environment, IDEs or also with R in RStudio. In this thesis Keras version
2.3.1 / 7 was used.

2.2.5 Keras in R

Keras packages are also available for CRAN and provide an interface to Keras. It
allows code to run on the CPU or on GPU, has build in support for convolutional
neural networks and recurrent neural networks. It also supports arbitrary network
architectures [64].

2.2.6 TCGA-Assembler 2

In order to download data from TCGA, the scripts of TCGA-Assembler 2 (Version:
2.0.6) were used [50]. TCGA-Assembler consists of different modules: Module A
and Module B were used for this thesis. For downloading TCGA data using Module
A functions:

DownloadRNASeqData(cancerType = sCancer,
assayPlatform = "gene.normalized_RNAseq",

inputPatientIDs = NULL, saveFolderName = sPathl)

Further in order to perform basic processing of downloaded data using Module B

functions:

ProcessRNASeqData (inputFilePath = path_geneExp[1],

outputFileName = paste(sCancer, "geneExp", sep = "__"),

dataType = "geneExp", outputFileFolder = sPath2)
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2.3 Data preprocessing and feature selection

The imported data sets have to be usable for later classification processes via SVMs
and neural networks. They are prepared via a number of preprocessing steps and a
feature extraction algorithm adapted from Tothill et al. [5].

2.3.1 Preprocessing of raw intensity microarray data

After importing and extracting the needed columns from the raw data files, a
resulting matrix is structured as follows: Columns represent samples per sample
ID and rows represent different genes. The input matrix is transposed as SVMs
and neural networks need a sample as rows input structure. A sample annotation
provides information about gene names and IDs for future mapping to MU RNA-seq
data and TCGA data. Features in microarray data are labeled with their reporter
name.

Known primaries for samples are provided, thus electing missing primaries or vice
versa allows to separate the data into samples without CUP and CUP samples.
Each respective primary for CUP and non CUP samples is provided by Tothill et al.
[5] and converted into factors. Factors represent categorical data in R and are stored
as integers with associated labels [65]. This is important for later classification as
SVMs and neural networks need to know which class a sample belongs to in order
to train the model. This also remains true for later validation with test or even new
data. For classification with neural networks, each primary is assigned an integer
value as NN only work with numeric values starting at o (zero) in Python based
Keras.

2.3.2 Preprocessing of TCGA RNA-seq data

Downloaded data from TCGA has the following structure: Columns mark different
samples via sample ID and rows represent separate genes. This means the data set
has to be transposed for use in SVMs and neural networks. Features are labeled with
gene IDs and EntrezIDs. Further, a separate data frame is created containing the

primaries of each sample ordered by ID. Primaries are both labeled with a character
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string containing the project name as well as a numeric ID. Numeric IDs for example
span from o to 32 representing 33 cancer classes as neural network only work with
numerics. These primaries are also converted into factors for later classification with
SVMs. All 33/19/12 data sets representing different TCGA projects were combined

in a single dataset for further preprocessing using R functions.

2.3.3 Preprocessing of MU RNA-seq data

The AmpliSeq annotation data and the CUP count data (RPM) were imported
into R. With preexisting functions MU RNA-seq data is further voom- and ratio
transformed.The AmpliSeq annotation data comprises information about gene
names and IDs map features to microarray data and TCGA data. In this script
teatures of MU RNA-seq data are labeled by their contig_id. For feature extraction
purposes, these features have to be mapped to either microarray or TCGA features.
Used MU RNA-seq data:

* RPM data: Reads per million.

e ratio transform: Transforms all RNA-seq values to log, ratios using the sum of
the expression in all samples as reference.

¢ voom transform: Transforms all RNA-seq total counts to logCPM values using
the voom() function of the limma package.

2.3.4 Feature selection

Microarray and RNA-seq data contain a huge amount of features, where many of
these features do not contribute to the classification. In order to reduce the feature
count and only select select potentially important ones for classification a SNR ratio
as described in Tothill et al. [5] is calculated. A data frame of SNR values for all
teatures for each tumor type is created. The top n-features based on their SNR value
are selected. A loop over all tumor types selects these top n-features and a final gene
list is created by merging the individual feature lists. The SNR values for a specific
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feature is calculated as follows:

SNR = ]’l(xin,class) - .u(xout,class)
O'(Xin,class) + U(xout,class))

(2.7)

Where y is the mean of the values, o represents the standard deviation, x;;, cjsss
represents a selected tumor type and x,,; (455 all others.

With the top 50 features as calculated with SNR, a pool of features for further
classification is created. A subset of the original data frame containing only the most

important features is selected with these feature pools.

2.3.5 Feature mapping

For the classification of MU RNA-seq samples the feature set was reduced to the
common ones, both occuring in TCGA/MA data and MU data. To classify samples
it is important to train the model on features that exist within the data set. As
TCGA and MU Graz RNA-seq are produced by different means the feature set
may be different. A common set of features is created for training and validation of
SVMs and NNss. This is done through merging both datasets by their Gene Symbol,

maintaining only common entries.

2.3.6 Determining training- and test data

For training and validation of NN, the data set has to be split into two distinct
training and validation sets, commonly named X_train and y_test. In contrast SVMs
are trained on the whole dataset and validated on a randomly selected subset, in the
scope of the R-code also named X_train and y_test. For LOOCYV, the complete dataset
and the function loocv is used for the given dataset and the specified classes. It
returns a data frame with the probabilities of the class assignments for each sample
and a confusion matrix.

Thus the data set as well as primary set is split into the train and test data by
random sample subsetting. This results in the following data sets for neural network

classification:

¢ X_train: Training set for neural networks.
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e y_train: True labels of trainings samples.
» X_test: Validation set for neural networks.
¢ y_test: True labels of validation samples.

X_train and X_test data sets are matrices containing the respective features of a
sample as columns (with the samples as rows).

The y_data is a character vector with corresponding cancer primary sites (classes).
To prepare this data for training, the vectors are one-hot encoded into binary class
matrices using the Keras to_categorical() function. One-hot encoding is a process
converting categorical variables in a form used in machine learning. This results in
a vector of each possible cancer type for each sample. Each primary is assigned an
integer value from o to the number of primaries -1. One-hot encoding results in a
matrix assigning each sample each possible cancer type with o meaning false and 1
for true.

CNNs need four dimensional tensors as input. The input shape follows the form:
input_shape = (batch_size, height, width, depth), in terms of an image the height and
width in pixels and depth as the number of color channels (e.g. RGB equals a depth
of 3, greyscale equals a depth of 1). This is important as CNNs are mostly used for
image and time series classification. While providing the required 4D tensors is a
simpler task with pictures, gene expression data is provided as a 2D matrix with
columns as features and rows representing samples.

This means we have to provide an input shape in the following form (Figure 2.1):

img_rows = 1

img_cols = number_of_features

X_train_CNN <- array_reshape(X_train_TCGA,c(nrow(X_train_TCGA),img_rows, img_cols,-1))
X_test _CNN <- array_reshape(X_test_TCGA,c(nrow(X_test_TCGA),img_rows, img_cols,-1))

input_shape <- c(img_rows, img_cols, 1)

24




2 Methods

-----

Image
height

Image width

Batch_size Image depth

Figure 2.1: The input shape of convolutional neural networks. The red line represents the gene
expression input after reshaping. Figure generated with and adapted from [4].

In the case of RNA-seq data the number of image rows equals 1, the number of
image columns equals the number of features and the depth equals also 1. The
batch_size in this thesis is dynamic. The array_reshape() function allows to reshape
the output to a certain shape without altering the information contained in the 2D

RNA-seq matrices.

2.4 SVM training and validation

Different SVMs were created during optimization (Table 2.9). These models were
compared to the original Tothill et al. model and NN classification performance to
evaluate different network structures and choose the best possible configurations

going forward.
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Table 2.9: An Overview of SVM models trained using the different datasets during optimization
processes. The model name given is used throughout the document to refer to a specific
model.

Model name ‘ Description

SVM using processed MA data set provided by Tothill
etal.
SVM using processed MA data set provided by Tothill
et al. with features common to MU samples.
SVM using raw intesnsity MA (range normalized
model SVM_MA 13 raw_mapped | background corrected) data sets provided by
Tothill et al. with features common to MU samples.
model SVM_RNAseq_33 | SVM using TCGA RNA-seq data, 33 classes.
model SVM RNAseq 19 SVM using ‘TCGA RNA-seq data, 19 classes

of single primary.
SVM using TCGA RNA-seq data, 12 classes
common with Tothill et al..

model SVM_MA _13_processed

model SVM_MA _13_mapped

model SVM_RNAseq_12

A string of character primaries was created and then converted into factors as
required for SVM input. Leave one out cross-validation (LOOCYV) of the MA datasets
(MA _Tothill_13_processed, MA _Tothill_13_mapped and MA _Tothill_13_raw) provides
a first estimation of the SVM model classification accuracy. LOOCYV is a particular
case of cross-validation calculating a statistic on the left out sample in order to test
all possible ways of dividing the data set in training and validation parts [66]. It is
used to determine how accurate the predictive model will perform in practice and
can serve as a first waypoint in optimizing a model.

Validation method used for SVM classification:

¢ Train the classifiers with the expression of the reporters on the microarray
matching the RNA-seq amplicons.

¢ (Classify a random subset of the microarray samples (non-CUP), the 13 CUP
samples and the full set of MU Graz RNA-seq samples.

The datasets are used to train SVM models using the trainClassifier() function. This
function requires a preprocessed training data set, respective primaries as factors
and a character vector of all possible primaries and returns a model. trainClassifier()
uses the ez071 function sum() with the parameter: kernel = linear, scale = F, cost= 10,
probability = T to train a model [67]. classifySamples() requires the trained model,
validation data set, the number of possible classes for a single sample and respective
primaries as factors and returns a data frame with each sample in the rows, the
actual label (if known) and predicted tumor type, the decision margin level, and the
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classification probabilities for the individual tumor types in columns.

For final classification results of optimized models, confusion tables were created
and are provided in the Appendix (Tables A27-A35). The classification performance
is visualized in matrix form, rows representing the predicted label and columns
the true label of a class. Correct classifications are in the principal diagonal while
misclassifications appear in off-diagonal elements. A perfect model would show all

classifications in the principal diagonal.

2.5 NN validation and training

A series of different NN were created in order to test different models and their
effect on classification accuracy. A comparison with literature and testing procedures
yielded three main network types which were compared. First, it has to be evaluated
if deep learning is the correct approach to classifying gene expression data. The
comparison of the classification performance of DNN with simpler structures,
follows the choice of the ideal type of neural network (Table 2.10):

Table 2.10: Used hyper parameter for neural network classifications using MLPs and CNNs.

parameter settings

L . (relu, elu, selu, hard_sigmoid, linear,sigmoid,
Activation function

softmax, softplus, softsign, tanh, exponential)
Number of hidden layers | 1,2,4

Number of units per layer | [12:700]

overfitting strategy SNR feature selection & dropout strategy
input dropout ratio [0.25:0.6]
hidden dropout ratio [0.2:0.5]

First each neural network model was tested on smaller subsets of the complete
TCGA RNA-seq data to save time modeling and optimizing each model. The gained
knowledge was then applied to create a version of the best performing neural
network classifying all 33 available classes (Table 2.11):
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Table 2.11: An overview of NN models trained using the different datasets during optimization
processes and final training with complete 33 class TCGA data set to classify 21 MU
Graz CUP samples. The model name given is used throughout the document to refer to a
specific model.

Model name | Description

NN using processed MA data set provided
by Tothill et al..

NN using processed MA data set provided
model FFNN_Tothill MA _13_mapped | by Tothill et al. with features common to

MU samples.

model CNN_RNAseq_33 | CNN using TCGA RNA-seq data, 33 classes.
CNN using TCGA RNA-seq data, 33 classes
with features common to MU samples.

CNN using TCGA RNA-seq data, 33 balanced
classes.

FFNN using TCGA RNA-seq data, 19 classes
of unique primaries.

FENN using TCGA RNA-seq data, 19 classes
model FFNN_RNAseq_19_ mapped | of unique primaries with features common to
MU samples.

Deep learning FFNN using TCGA RNA-seq
data, 19 classes of unique primaries.

Deep learning FFNN using TCGA RNA-seq
model DEEP_RNAseq_19_mapped | data, 19 classes of unique primaries with features
common to MU samples.

CNN using TCGA RNA-seq data, 19 classes
of unique primaries.

CNN using TCGA RNA-seq data, 19 classes
model CNN_RNAseq-19_-mapped | of unique primaries with features common to
MU samples.

NN using TCGA RNA-seq data, 12 classes
common with Tothill et al..

model FFNN Tothill MA _13_processed

model CNN_RNAseq-33-mapped

model CNN_RNAseq_33_balanced

model FFNN_RNAseq-19

model DEEP_RNAseq_19

model CNN_RNAseq_19

model FFNN_RNAseq_12

2.5.1 Multilayer neural networks

Depending on the data set and on relevance a varying number of different network
types were introduced. In this neural network models, weights are calculated
automatically based on input and output shape. The input shape depends on the
data set. Using gene expression data with MLPs, an integer providing the number
of features is sufficient, for CNNs an input shape in the form of a 4D tensor is
required. If no batch size is defined, a dynamic size is assumed based on the
received input data. All data sets were trained on a simple MLP with one hidden

layer. For classification of microarray data (MA_Tothill_13) and 12 class RNA-seq
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data (RNAseq_-TCGA_12) the following model was used:

model %>%
layer _dense (units = 256, activation = "relu", input_shape = c(input_nodes)) %>%
layer _dropout (rate = 0.4) %>%
layer _dense (units = 128, activation = "relu") %>%
layer_dropout (rate = 0.3) %>%
layer _dense(units = 13, activation = "softmax")

A sequential model with dense layers used for input, output and hidden layer
was created for FFNNs and DLNN. For training and validation of TCGA data
sets different activation functions were applied in order to observe their effect on
classification accuracy. A dropout strategy was chosen in order to avoid overfitting.
Here, randomly selected neurons are ignored during training. The neural network,
thus becomes less sensitive to specific weights and neurons, is better generalized
and less likely to overfit. The input shape is defined by the number of features.

A similar structure was used for selected TCGA data of 19 cancer classes
(RNAseq-TCGA_19) to study the effect of deep learning (with more than 3 hidden
layers) models on classification accuracy.

A sequential model with dense layers used for input, output and hidden layer was
created and for classification of TCGA data different activation functions were used
in order to observe their effect on classification accuracy. A dropout strategy was
chosen in order to avoid overfitting. The input shape is defined by the number of
features.

model_deep %>%
layer _dense (units=700,activation='softsign',input_shape=c(input_nodes)) %>%
layer _dropout (rate=0.6) %>%
layer _dense (units=350,activation="'softsign') %>%
layer _dropout (rate=0.5) %>%
layer _dense (units=150,activation="'softsign') %>%
layer _dropout (rate=0.3) %>%
layer_dense (units=100,activation="'softsign') %>%
layer _dropout(rate=0.3) %>%
layer _dense (units=50,activation="'softsign') %>%
layer_dropout (rate=0.2) %>%

layer _dense(units = 19, activation = 'softmax')

2.5.2 Convolutional neural networks

As for the CNN model used on selected data with 19 classes (RN Aseq-TCGA_19)
and the complete data set with 33 classes (RNAseq-TCGA_33):
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layer _conv_2d(filters = 32, kernel_size = c(1,71), activation = 'softsign', input_
shape = input_shape) %>%

layer _conv_2d(filters = 64, kernel_size = c(1,71), activation = 'softsign') %>%

layer _max_pooling_2d(pool_size = c(1, 2)) %>%

layer _dropout (rate = 0.25) %>%

layer_flatten() %>%

layer _dense(units = 128, activation = 'softsign') %>%

layer _dropout(rate = 0.5) %>/

layer _dense (units = num_classes, activation = 'softmax')

A sequential model with dense layers used for output and hidden layer was created.
The input layer is a convolutional layer, whose input is RNA-seq data as a 4D
tensor. 32 filters are used on the input data with a kernel size of (1,71) as we
are not confident that there is a correlation between neighboring RNA-seq values.
Therefore a large kernel size is chosen in order to capture only the global features
associated with this kernel [68]. A second convolutional layer follows the first with
64 filters and the same kernel size. A max pooling layer reduces the important
information from the previous layers. A flatten layer flattens the 4 dimensional
tensors to 2 dimensional input values for a further dense hidden layer. This neural
network structure was adapted from Mostavi et al. [68]. For classification of TCGA
data different activation functions were used in order to observe their effect on

classification accuracy. A dropout strategy was chosen in order to avoid overfitting.

2.6 Validation strategy

Keras and KerasR provide visualization methods [69] which were used in order to
assess model accuracy and training progress. The Keras package [64] calculates
accuracy and loss during training and the evaluate() function calculates accuracy and
loss while validating with test data sets. High accuracy lets assume a good model,
tit for classifying new data, e.g. MU RNA-seq data. MU data were then classified
using only common features and compared between different transformations and
neural network models. Loss is calculated per categorical crossentropy:

M N

L(y,9) = —)_ Y (vij* log(¥i)) (2.8)

j=0i=0
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Where 7 is the predicted value. The distribution of the prediction is compared to the
true distribution. The loss is minimized when the NN output is close to the one-hot

encoded vector of true labels [70, 71].

The categorical accuracy is a parameter based on the keras metrics.py file on
GitHub:

def categorical_accuracy(y_true, y_pred):
return K.cast(K.equal(K.argmax(y_true, axis=-1), K.argmax(y_pred, axis=-1)),
K.floatx ())

This function computes how often the predicted label matches the true label. This

frequency is ultimately returned as categorical accuracy [72].

2.7 Analysis of balanced training sets on classification

performance

An SVM treats all classes equally and is therefore not well suited to unbalanced
class sizes [73].

Tuning datasets with unbalanced class size is a difficult task and needs to be done
with great care. What method makes sense in a given circumstance is dependent on
a variety of factors and considerations. In many cases having an unbalanced data set
can even profit the model as it learns the natural number of occurences depending
on each class. If the classification of new samples is not accurate enough, model
tuning can be an approach to correct these failings. The data type and specifics as
false negative rate, accuracy, area under the curve (AUC) and precision can help in
selecting a tuning method. In the case of this thesis, a simple balancing approach
using equal class sizes of random samples was chosen to compare results with the
unbalanced models.

There are different methods trying to adjust to this problem depending on circum-
stances, here is a summary of a few relevant [74-81]:

* Model Tuning

e Alternate Cutoffs

* unequal case weights
¢ Sampling methods
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¢ Cost sensitive training

2.7.1 Model Tuning

Model tuning is a way to produce an analysis that responds exactly to a particular
set of data [80, 81]. This can be done beside other options by over-fitting or under-
fitting the data.

Random under-sampling: Balancing by randomly eliminating majority class sam-
ples until balanced out [74—77].

Random over-sampling: Increases the number of samples in minority class by
randomly replicating them [74-77].

Cluster based over-sampling: A k-means clustering algorithm is independently
applied to majority and minority class instances [74-77].

k-fold cross validation: A data set is split into a k-number of groups and the skill

of a machine learning procedure to predict unseen data is estimated [78, 79, 81].

¢ shuffle data set randomly
¢ split in k-groups
¢ for each group:
1. Take group as hold out or test data set.
2. Take remaining groups as training data set.
3. Fit model on training set and evaluate on test set.

4. Retain evaluated score and discard model.

¢ summarize the skill d the model using the sample of model evaluation scores.

Choose k to be representative. k is often chosen as 10 as it generally results in a
model model skill estimate with a low bias and modest variance. k = n in leave one
out cross validation (LOOCYV).

k-fold cross validation identifies clusters in the data set and each cluster is over-
sampled such that all clusters of the same class have a equal number of instances

and all classes have the same size.

Informed over-sampling: Using e.g. a synthetic minority over-sampling technique

(SMOTE) overfitting can be avoided. A subset of data is taken from a minority class

32



2 Methods

as an example and then new synthetic similar instances are created and added to
the original data set. A standard model tuning approach could be:

* divide data set: 80% training and 20% validation

use k-foold cross validation on training set to tune model [78, 79, 81].

* repeat until optimized.

use model to predict on validation set.

2.7.2 Alternate cut-offs

Can be used for models that have two possible outcomes. Here the definition for
a predicted event is changed. The threshold for choosing between two events can
be adjusted if a smaller confidence level for choosing one event is required. For
this technique the receiver operating characteristic (ROC) curve can be used as it
calculates sensitivity (SN) and specificity (SP) across a continuum of cutoffs in order

to determine an appropriate balance between SN and SP.

2.7.3 Unequal case weights

Many predictive models have the ability to use case weights where each individual

data point can be given more emphasis in the model training phase.

2.7.4 Other sampling methods
Instead of balancing the model, the class frequencies are balanced. This eliminates

the fundamental imbalance issue. There is a huge amount of different possible

methods, completely dependent on personal preference and application.

2.7.5 Cost sensitive training

The cost of misclassification is taken into consideration and then the cost is mini-

mized.
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3.1 Generation and Processing of MA and TCGA
RNA-seq data

A series of processing steps creates MA and TCGA RNA-seq data sets for training
and validation purposes. Each Tothill ef al. sample has its raw microarray information
contained in a single CSV file. Because of corrupted data files, an algorithm was
used on raw intensity MA files to determine the correct intensity columns, which
are then used for further calculations. Other than extraction and correction methods,
preprocessing steps for MA and RNA-seq data are often similar.

Relevant features were extracted from both data sets and then divided into training
and test sets for later classification. The reader is referred to Chapter 2 for the
detailed processes. The following sections summarize these steps in the scope of the
results of this thesis and provide detailed information about specific steps in the

classification processes.

3.1.1 Determination of raw data columns

Investigation of the raw data files revealed that the column headers did not seem to
represent the data in the columns. The raw data files were created with the help of
GenePix Version 4.1 [5]. In order to determine the relevant data from the raw files
[5] a script calculates the correlation between all variables of the raw data while
calculating the RoM (ratio of means) for every column the difference between the
column and the RoM as described in the Gene Pix Version 4.1 file format [31] using
a combination of four other columns.

The ratio of means equals the ratio of the arithmetic median intensities for each
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feature and each wavelength, with the median background subtracted [31]. Each
possible 4 column combination of the raw data is once used to calculate a respective
RoM. This is repeated for each row and for each file. Through comparison of the
result with every possible column the ones most likely to contain the desired data
are determined (with a difference smaller than 0.001). The RoM itself is not actually
needed, but the single variables that calculate the ratio. Under the assumption that
the columns themselves are still in order and only the column headers are at the
wrong positions, a combination of four columns used for the calculation must equal
the unknown columns for the RoM. In order to salvage the data the following steps

were applied:

1. Select the first four columns as A, B, C, and D, respectively.

2. Calculate the RoM for columns A, B, C, and D.

3. If the result equals (maximal difference of 0.001) another column in the raw
data file it is most likely the RoM.

4. If the result does not equal any other column in the raw data file:

e If there are still columns to choose left set A to the next column and start
again at 2).

e If all possibilities for A are exausted and there are still new values left for
B chose a new Column for B and start again at 2) and reset the counter
for A.

e If all possibilities for A,B are exausted and there are still new values left
for C chose a new Column for C and start again at 2) and reset the counter
for A,B.

e If all possibilities for A,B,C are exausted and there are still new values
left for D chose a new Column for D and start again at 2) and reset the

counter for A,B,C.

Write out the most likely combination for the RoM.
Repeat for each row of the raw data set.

Repeat for each raw data file.

N oW

Choose the combination that leads to the RoM the highest number of times.

The respective script can be reviewed in the Appendix (Listing 1). The GenePix raw
data file contains 42 relevant columns with MA data. This results in 42* = 3,111,696
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RoM calculations and comparisons. From the analysis above, the following column

assignment was determined:

¢ mean _F635 = median _B635
¢ median_B635 = mean.of.ratios
¢ mean_F532 = sum.of. means

¢ median_B532 = F.Pixels

3.1.2 Data import and export

For the adaption and extension of the existing script the raw data files had to be
imported. The raw data is distributed in 242 files. Each file corresponds to a specific
patient. Different calculation executed with Gene Pix Version 4.1 [5] are ordered in
columns while each row represents a reporter identifier (Table 3.1).

Table 3.1: An example of one of the raw intensity data files as provided by Tothill et al, generated by
GenePix Version 4.1.

Reporter identifier Composite Sequence identifier RoM mean F635 median_B635

ID seq data data data
ID seq data data data
ID seq data data data
ID seq data data data

The relevant data column is extracted and added to a data frame in R. Each extracted
column can be transformed as seen in the next chapter. The function read AlIRawData()
returns a data frame with samples and their respective data. Each file is connected to
the respective sample name via the table “E-MEXP-113.sdrf.txt” to obtain the same
structure as used in RNA-seq data (Table 3.2). While importing and determining
useful columns in the raw intensity data files each dataframe is transposed to
accommodate SVM and NN classification requirements.
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data frame for further use in the R workflow.

sample name

sample name

sample name

sample name

sample name

transformed _data
transformed_data
transformed data
transformed _data

transformed data
transformed_data
transformed _data
transformed _data

transformed_data
transformed_data
transformed_data
transformed data

transformed_data
transformed_data
transformed _data
transformed_data

transformed _data
transformed_data
transformed data
transformed _data

Raw microarray data are imported through the following functions: read RawData()
reads a single raw microarray data file.

The function read AlIRawData() repeats this process for all raw microarray data files.
The return values are formatted as needed for further training and classification
processes. The structure of this function can be seen in the Appendix (Listing 2).
Each raw data file is imported, the relevant columns extracted and assigned to a

data frame for further calculations.

In the script fcga.R RNA-seq data were downloaded from TCGA with TCGA-
Assembler 2 (using functions from Modules A and B) combined into a single data
set consisting of 33, 19 and 12 cancer classes, respectively. A separate data set con-
taining primaries as numeric IDs and a character string for each sample was created

and imported for further preprocessing.

* RNAseq-TCGA_33.txt and primary_frame.txt containing all 33 classes of TCGA
data and their primaries.

* RNAseq-TCGA_33_balanced.txt and primary_frame_balanced.txt containing all 33
balanced classes of TCGA data and their primaries (45 samples each).

* RNAseq TCGA_19.txt and primary_frame_selected.txt containing all 19 classes of
TCGA data and their primaries.

* RNAseq - TCGA_12.txt and primary_frame_Tothill.txt containing 12 classes of
TCGA data and their primaries common with Tothill et al. data [5].

® Processed data from Tothill et al. containing all 13 classes of microarray data
and their primaries [5].
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3.1.3 TCGA-Assembler 2 Problems

TCGA-Assembler 2 provides modules to download data from TCGA [50]. Download
was performed using the Module A function Download RNASeqData() and Module B
- function ProcessRNASeqData() to execute some processing steps.

The downloading of all 33 data sets went without problems. However, the datasets
for TGCT and BRCA were not processed correctly. The processing step did finish
correctly when selecting a random subset of samples from the two data files.
It is possible that corrupted data is contained within these files, which lead to
errors when using the TCGA functions. Further investigation showed that per
default a boxplot of the said data was created and the function was not able to
do so. In order to correctly process and use the data for this thesis the responsible
functions CombineRedundantFeature(), CheckGeneSymbol() and ProcessRNASeqData()
from the TCGA-Assembler Module B were altered and corrected in the script fcga.R.
ProcessRNASeqData() is responsible for processing downloaded data files and uses
CombineRedundantFeature() and CheckGeneSymbol() to do so. Some parts of these

functions, used to create and access boxplots of the data, were disabled.

3.1.4 Feature extraction

The resulting data sets were imported and transposed for compability. Feature
extraction was done via the SNR algorithm proposed by Tothill et al. [5] resulting in
data sets with the following characteristics for microarray data:

¢ exp_total_ woCUP_genes_selected with 229 samples of 607 features without CUP
samples.

o exp_total CUP_genes_selected with 13 samples of 607 features of only CUP sam-
ples.

o exp_total_ woCUP_genes_rnaseq with 229 samples of 541 (common with MU Graz
RNA-seq data) features without CUP samples.

o exp_total CUP_genes_rnaseq with 13 samples of 541 (common with MU Graz
RNA-seq data) features of only CUP samples.

Names of datasets were kept as proposed in the original script to provide a common

naming convention. Feature extraction results in the following data sets for TCGA
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RNA-seq data:

exp_total TCGA_12 with 5673 samples of 521 features of TCGA RNA-seq data
with common Tothill et al. features in 12 classes.

exp_total TCGA_19 with 8314 samples of go2 features of TCGA RNA-seq data
in 19 classes.

exp_total_ TCGA_33 with 10464 samples of 1444 features of TCGA RNA-seq data
in 33 classes.

exp_total TCGA_19_mapped with 8314 samples of 835 common features between
MU and TCGA RNA-seq data in 19 classes.

exp_total TCGA_33_-mapped with 10464 samples of 1342 common features be-
tween MU and TCGA RNA-seq data in 33 classes.

exp_total TCGA_33_balanced with 1485 samples of 1369 common features be-
tween MU and TCGA RNA-seq data in 33 balanced classes.

Feature extraction results in the following data sets for MU Graz RNA-seq data:

rpm_RNAseq_Tothill with 21 samples of 541 features of MU Graz CUP samples
for the use with Tothill et al. microarray data.

rpm_RNAseq_19 with 21 samples of 834 features of MU Graz CUP samples for
the use with TCGA RNA-seq data of 19 classes.

rpm_RNAseq_33 with 21 samples of 1341 features of MU Graz CUP samples for
the use with TCGA RNA-seq data of 33 classes.

MU Graz RNA-seq data is further voom and ratio transformed. For details of these

data transformations, see Section 2.1.4.

3.1.5 Training & test data

Training and test sets were created via random sample subsetting (X_train, y_train,

X_text and y_test) and primary vectors, one-hot encoded into binary class matrices
for FFNN. For CNN, 4D tensors were created and fed into the network.
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3.2 Neural network realization

Training and test data sets were used to train neural networks. This was a stepwise
process, as there is no definitive neural network structure, but rather each problem
is in need of individual optimization. The first step was the creation of a data
set using the same cancer classes as the original Tothill et al. data MA Tothill 13
(created dataset: RNAseq-TCGA_12). This makes the results directly comparable
to the microarray classification, results in a small number of classes and in a quick
training time of the network.

After optimizing this first prototype, the next step was to create a larger pool of
classes, excluding TCGA classes with more than one primary in order to ensure
there is no overlap between classes (RNAseq-TCGA_19).

After satisfactory results were achieved, a neural network model using all 33 TCGA
RNA-seq classes was created in order to provide a high accuracy, high classification
and precision (RNAseq_-TCGA_33). Further different network types were compared
to maximize classification accuracy (FFNN, deep learning FFNN and CNN). These
33 class models are presented as the finalized results of this thesis. The following
chapter explains the modeling of these networks.

3.2.1 Modeling of neural networks

A number of sequential neural network models, representing a linear stack of layers,
were created. Input shape is defined in Chapter 2. Batch size was chosen as dynamic.
The input layer of CNNs represents a convolutional layer, followed by a max pooling
and flatten layers. A range of one to four hidden layers was chosen to represent
simple and deep learning structures. Different types of activation functions were
chosen and their influence on accuracy can be seen in Section 3.3. For this thesis,
MLPs and CNNs were compared as recurrent neural networks (RNNs) are not
really suited for tabular data and lead to a bad performance [82]. The following loss
functions, metrics and optimizer were used for the NN:

¢ loss function: categorical crossentropy
¢ metric: For multy-class classification categorical accuracy has to be chosen.
¢ optimizer: The rmsprop optimizer was chosen for FFNNSs as it divides the

gradient by a running average of its recent magnitude.
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¢ optimizer: The adam optimizer was chosen for deep FFNNSs.
* optimizer: The robust Adadelta optimizer was chosen for CNNs as it adapts

learning rates based on a moving window of gradient updates.

The output layer has nodes equal to the number of classes and always uses a softmax
activation function to guarantee an output between o and 1 representing the class
membership. This is the (from a NN model) calculated probability that a sample
belongs to a class in the scope of this classification independent from any other
classes.

Classifications were realized in the following scripts:

¢ NN_CUP_TCGA _33.R: Classification of 33 TCGA cancer classes.

¢ NN_CUP_TCGA_19.R: Classification of selected 19 TCGA cancer classes of
single primaries.

¢ NN_CUP_TCGA _12.R: Classification of 12 TCGA cancer classes common with
Tothill et al. classes.

* NN_CUPTothill_13.R: Classification of 13 cancer classes using Tothill et al.
microarray data [5].

e SVM _Tothill CUP_III v.q.5.R: Classification of TCGA and Tothill et al. cancer
classes with SVMs.

3.2.2 Neural network overview

Different models of neural networks were used to classify MU Graz RNA-seq data
(Table 3.3). For all proposed neural network models categorical crossentropy was
chosen as loss function, accuracy as training metric, a 0.2 validation split and a
softmax output activation function. All neural networks in this thesis are sequential
models.
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Table 3.3: Overview of each neural network, used to classify MU Graz RNA-seq data during the
different prototype phases and with the finalized neural network model. Interim stages of
models used for optimization purposes are not included.

NN name NN type layer type #hidden layer act_fct optimizer # epochs batch size units/layer dropout L;
model FFNN_MA _13_processed ~ FFNN dense 1 relu rmsprop 10 20 256/128/13 0.4/0.3
model FFNN_RNAseq_12 FFNN dense 1 relu rmsprop 46 100 256/128/13 0.4/0.3
model FFNN_RNAseq_19 FFNN dense 1 softsign  rmsprop 67 100 256/128/13 0.4/0.3
model DEEP_RNAseq-19 FFNN dense 4 softsign adam 67 100 700/350/150/100/50 0.6/0.5/0.3/0.3/0.2
model CNN_RNAseq_19 CNN  conv./dense 2 softsign  adadelta 67 67 128 0.25/0.5
model FFNN_RNAseq_33 CNN  conv./dense 1 softsign  adadelta 70 100 128 0.25/0.5

Table 3.4: Summary of neural network layer structure. The name and type of a layer are represented,
output shape (dynamic batch size marked as None with a static number of output nodes)
and trainable params.

network name || NN type # hidden layer output shape/layer* #params/layer total params
model RNAseq_ MA _13_processed | FFNN 1 dense None/256/128/13 155648/32896/1677 190221
model FFNN_RNAseq.12 | FFNN 1 dense None/265/128/13 133632/32896/1677 168205
model FFNN_RNAseq_19 FENN 1 dense None/265/128/13 213760/32896/2451 249107
model DEEP RNAseq_19 | FFNN 4 dense None/700/350/150/100/50/19 584500/245350/52650/15100/5050/969 903619

(None, 1, 764, 32)/
(None, 1, 694, 64)/
model CNN_RNAseq_19 CNN 1 conv./ 1 dense (1\2;12;’233271;8(;})/ 2304/ 145472/2842752/2451 2092979
(None, 128)/
(None, 19)
(None, 1, 1271, 32)/
(None, 1, 1201, 64)/
(None, 1, 600, 64)/
(None, 38400)/
(None, 128)/
(None, 33)

model FFNN_RNAseq_33 CNN  1conv./ 1 dense 2304/145472/ 4915328/ 4257 5067361

Output shapes of CNNs represent a series of 4D tensors of the form output_shape = (batch_size, height, width, depth),
batch_size = None represents a dynamic batch size.

The summary(model) function provided by Keras compiles a structural overview of
the neural network layer (Table 3.4). The total parameter amount of each neural
network is trainable with no untrainable parameter (cannot be optimized with
training data) as stated by the summary function. Dropout layer do not add to
the total number of trainable parameters. A detailed representation of each NN

summary output can be viewed in the Appendix (Listings 4-9).

3.3 Training and validation classification results

After modeling, the different network types and prototypes were evaluated in order
to determine which model structures result in the highest classification accuracy
during validation. An overview of the classification results of SVMs and NN is

provided in the following subsections.

42



3 Results

3.3.1 SVM Classification results

Table 3.5: Overview of the highest reached SVM classification results of Tothill et al. [5, 7, 8] data
and TCGA RNA-seq data as a comparison of neural network results. Divided into data
type, number of samples and classes, features per total feature count, accuracy of the
model (accyy), validation accuracy (acc,,), Tothill et al. CUP sample classification accuracy
(acccyp) and training time.

data #samples #classes #features accy, acc,;  acccyp tlsl]

D1 229 13 607 96.6%  100%  84.6% 1
Dz 229 13 541 95.00%  100% 84.60% 1
D3 229 13 504 94.8%  100%  84.6% 1
Dg 229 13 536 85.6%  100% 76.9% 1
D5 229 13 540 85.2%  100% 69.2% 1
D6 229 13 541 85.2%  100% 69.2% 1
D7 5674 12 521 - 98.10% - 66
D8 10464 33 1444 - 93.30% - 245
D9 8314 19 902 - 97.80% - 1231

D1 MA _Tothill 13 _processed without CUP samples.

Dz MA_Tothill 13 _mapped.

D3 MA _Tothill 13 _raw_logz without CUP samples.

D4 MA _Tothill 13 _raw_range without CUP samples.

D5 MA _Tothill 13 _raw without CUP samples.

D6 MA _Tothill 13 -raw_bg without CUP samples.

D7 RNAseq-TCGA_12 with common TCGA and Tothill classes.
D8 RNAseq-TCGA_19 with selected 19 classes of single primaries
D9 RNAseq TCGA_33 with 33 classes of TCGA data set.

Classification results of different raw intensity data transformations (transformations:
raw intensity data, background corrected intensities, range transformed background
corrected intensities and log>-transformed intensities) using SVMs are compared
to SVM classification of TCGA RNA-seq data (Table 3.5). Other transformations of
raw intensity data do not yield an improvement of classification accuracy. A more
detailed representation of the classification results is part of the Appendix (Tables
A1-A1s).

Newly generated models trained on TCGA RNA-seq data are compared with the
original Tothill et al. processed microarray data. The number of samples and possible
cancer classes is much higher when using variations of TCGA RNA-seq data. Train-
ing and validation with SVMs shows that classification accuracy is still comparable
to the original, the process however takes significantly longer. These results also

serve as a point of comparison for the following classification with neural networks.
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3.3.2 NN Classification results

Classification results with different neural network models depend heavily on the
chosen hyper parameters, ranging between various settings (Table 3.6). A strong
dependency of classification accuracy on the used activation function can be ob-
served. The activation functions softsign and softplus show the highest increase in
accuracy. The use of CNN results in the highest accuracy, followed by FFNN and
with the lowest classification accuracy DLNN. After a training time of 7700 seconds,
an accuracy of 93.88% with a calculated loss of 0.43 was reached for the finalized
NN version - model CNN_RNAseq-33-mapped using CNN and 33 TCGA classes.

The classification of Tothill et al. microarray data yielded comparable results when
using neural networks for classification (Tables 3.5 and 3.6). The SVM model yielded
a 89% classification accuracy while the neural network provides approximately
87% accuracy. When classifying Tothill et al. CUP samples, SVM yielded 84.6%
classification accuracy (69.2% when using raw microarray data). Neural networks
performed better with 92.3% (85% when using common MU Graz features) accuracy
when classifying CUP samples.

The classification of TCGA RNA-seq data of 19 classes yielded an accuracy of 97.4%
classification accuracy for simple neural networks with one hidden layer. Using
common MU Graz features 96.9% accuracy was achieved. Further 79.7% (81.8%
when using common MU Graz features) accuracy when training with deep learning
models and 98.5% accuracy when training CNN models with common MU Graz
features.

Further the training and validation process of the complete 33 classes of TCGA
RNA-seq data yielded an accuracy of 98.3% and 93.9% when using common MU
Graz features. A more detailed depiction of single classification results can be found
in the Appendix (Figures A1-A3 and Tables A27-A35).

Neural network models achieved a higher accuracy than SVMs, especially CNN.
The rather small increase in accuracy comes with a high increase in time needed
for training. Classification accuracy of Tothill et al. CUP samples was higher with

neural networks.
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3.3.3 Misclassifications

Misclassifications can give indicators about NN behaviour, issues with the train-
ing data set and help to better understand the classification results. Properties
of the used dataset, classes with a low sample count, uneven class size, NN
type, chosen hyperparameter and many more circumstances can lead to mis-
classification of samples. Misclassifications of SVM model SVM_RNAseq_33, NN
model CNN_RNAseq_33_-mapped and NN model CNN_RNAseq_33_balanced using bal-

anced data sets were compared (Figure 3.1).

model SVM_RNAseq_33 misclassifications: There were 160 misclassification across
all 33 classes (Figure 3.1. A random subset (2093 samples) of the dataset RNAseq
_TCGA_33 was used to validate the created SVM model model SVM_RNAseq_33. The
percentage of misclassifications was higher than with comparable NN models like
model CNN_RNAseq_33_-mapped reaching up to 17.02% in classes like Cholangiocarci-
noma CHOL, which had also shown the highest misclassification percentage when
working with NN models mode] CNN_RNAseq_33_mapped. In general, it seems the
amount of samples per class is even more important when using SVM classification
as most classes with a low sample count exhibit a higher misclassification rate in

this case.

model CNN_RNAseq_33-mapped misclassifications: There were 123 misclassifica-
tions rather unevenly spread over the classes. The highest amount of misclassifica-
tions, a rate of 10.64% occured in the class (CHOL) with a total of 47 samples used for
training. However, no definitive decision can be made about the influence of small
class sizes on the misclassification rate of all classes, as it ranges between no misclas-
sifiactions (e.g. Adrenocortical Carcinoma [ACC] and Lymphoid Neoplasm Diffuse
Large B-cell Lymphoma [DLBC]) and 10.64% for CHOL. Some cancer classes could
need a higher amount of features to be classified correctly while others are able to
be classified with a low sample count in comparison. Classes with significantly more
samples (176 and 330 respectively for training) like Esophageal Carcinoma (ESCA)
or Colon Adenocarcinoma (COAD) have also shown a misclassification rate of 7.58%
and 5.76%. The rate of misclassifications seems to generally lower the higher the
amount of samples per class is as seen with Bladder Urothelial Carcinoma (BLCA),
Kidney Chromophobe (KIRC), Head and Neck Squamous Cell Carcinoma (HNSC),
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LGG, Lung Adenocarcinoma (LUAD), Lung Squamous Cell Carcinoma (LUSC) and
Prostate Adenocarcinoma (PRAD), which all consist out of more than 500 samples
per class. In this case a trend can be observed that using more samples per class
to train neural networks results in less misclassifiactions per class. The amount of
misclassifications per class of TCGA RNA-seq data varies between classes (Figure
3.1). Classes with more than a single primary do not seem to result in significantly
higher rate of misclassifications. Classes with a low amount of samples often show
no higher rate of misclassifications than BRCA with the highest amount of samples.
CHOL, ESCA and KICH show the highest rate of misclassifications. In the Appendix
a misclassification overview of a finalized neural network version using TCGA
RNA-seq data with 33 cancer classes using the dataset exp_total TCGA_33_mapped
is provided (Table A36). Features are all common with MU Graz RNA-seq data.
The full list of features and classification probabilities are contained in the files
misclassifications_33_CNN_MUG.txt and misclassifications_33 CNN_MUG _prob.txt.

model CNN_RNAseq_33_balanced misclassifications: The misclassification per bal-
anced class differ from models without balancing procedure (Figure 3.1). While the
number of total misclassifications is higher than without balanced data sets, the
number of total samples used for training is much smaller too. Misclassifications
are unevenly spread over all possible classes indicating little improvement over the
unbalanced CNN model. Using unbalanced data did show little improvement on
classes like CHOL which had shown the highest rate of misclassifications. There
were also instances of classes, recording misclassification which did not show any
before and vice versa. This could be due to NN needing more samples to properly
discern between some classes or be the product of white noise. The class Lym-
phoid Neoplasm Diffuse Large B-cell Lymphoma DLBC shows an huge increase in
misclassifications.
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of 2093 samples) and model CNN_RNAseq_33_balanced (subset of 297 samples). The total

model_SVM_RNAseq_33 (subset of 2093 samples), model _CNN_RNAseq_33_mapped (subset
number of samples in each class is mggtioned beside the class name.

Figure 3.1: Misclassifications as percentage in each TCGA RNA-seq data class of in order of occurence:
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3.3.4 Influence of hyper parameter settings on classification

performance of NN

A range of different hyperparameters was used to test models and improve classifi-
cation performance. The neural network was trained in batches of 100 samples for
TCGA RNA-seq data and batches of 10 for microarray data. The number of nodes
per layer was chosen corresponding to the respective network structure. The metric
function used to judge the performance of the different models was accuracy. The
optimizer was chosen as already stated in Chapter 3.2.1 . The number of hidden
layers ranged between 1 and 4, while in general neural networks with a lower
hidden layer count seemed to have a higher accuracy when trained on RNA-seq
data. The time spent training a network was much smaller when using simple
NNs with a single hidden layer and peaked when training a CNN. The choice of
activation function had an impact on classification performance (Table 3.6). While
relu worked fine with microarray data (accuracy of approximately 87% accuracy),
the same set of parameters did not yield any meaningful results with the TCGA data
set containing Tothill et al. classes - RNAseq . TCGA_12 (approximately 26% accuracy
using 12 classes in common with microarray data). The accuracy was also low for
other neural networks trained on RNA-seq data (approximately between 4%-21%
accuracy).

For deep learning neural networks, activation functions like sigmoid, tanh yielded a
far higher accuracy, peaking when using softsign with approximately 79% accuracy.
For simple FFNN activation functions sigmoid, hard_sigmaid, tanh, linear, elu, and soft-
plus yieldeld a far higher accuracy peaking when using sigmoid with approximately
97% accuracy. For CNNs sigmoid provided an accuracy of 98.5% for selected (19
classes) TCGA RNA-seq data and 93.9% for the complete TCGA RNA-seq data set
using common features with MU Graz RNA-seq data.

3.4 Classification of MU Graz cancer samples

In order to increase the classification accuracy for RNA-seq data provided by the
Medical University Graz, which did not yield any meaningful results with the

normalized MA data from Tothill ef al., raw microarray intensity data were used for
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training and validation of the classifier. Additional to the raw data, log, and range
transformed data and the sample intensity was used to train and validate.

The existing R script was adapted and extended to classify CUP samples of RNA-seq
data with a classifier of the publicly available raw microarray data contained in the
MA Tothill_13_raw data set.

Table 3.7: Table with classification results of RPM MU Graz data with range normalized back-
ground corrected MA data generated model model_SVM_MA_13_raw_mapped classified
RNAseq-MU_RPM data.

Sample | Actual Pred DM brea colo gast mela meso ovar panc pros rena test SCCo uter lung Total
K1999-6 colo colo,gast,ovar L o 1 1 o o 1 o o o o o o o 3
K2170-6 | melan  colo,mela,rena L o 1 0 1 0 0 ) [ 1 o) 1 ) 0 4
K2953-5 | lung colo,gast,ovar L o 1 1 o o 1 o o o o o o o 3
K4824-4 | panc  brea,colo,meso L 1 1 o o 1 1 o o o o 1 o o 5

Ks5108-24 | ovar  breacolomeso L 1 1 0 0 1 1 0 0 0 0 1 0 0 5
K5216-6 | breast brea,ovar L 1 o 0 0 0 1 0 0 0 0 0 0 0 2
K6266-2 mela brea,colo,meso L 1 1 [ o) 1 1 o) [ o o) o 0 o) 4
K6267-2 lung colo,mela L o 1 [ 1 [ o) o [ o [ o [ ) 2
K6268-2 panc  colo,meso,SCCo L o 1 [¢) o) 1 o) o) [¢) o ) 1 o) ) 3
K6269-2 | gast colo,gast,ovar L o 1 1 0 0 1 0 0 0 0 1 0 0 4
K6270-2 | gast  gastmelapanc L o o 1 1 ¢ o 1 [ 0 1 1 0 0 5
Ké6271-2 rena brea,colo,meso L 1 1 o o 1 1 o o o o 1 o o 5
K6272-2 | rena brea,colo,ovar L 1 1 0 0 0 1 0 0 1 0 0 0 0 4
K6365-2 | colo colo,pros L o 1 0 0 0 0 0 1 0 0 0 0 0 2
K6366-2 colo colo H o 1 o o o o o o o o o o o 1
K6367-2 | colo colo H o 1 o o o o o o o o o o o 1
K6368-2 | lung  breacolomeso L 1 1 0 0 1 1 0 0 0 0 1 0 0 5
K6369-2 | brea brea,colo,gast L 1 1 1 o o 1 o o o o o o o 4
K6370-2 | brea brea,colo,ovar L 1 1 o o o 1 o o o o o o o 3
K6371-2 | pros  colomeso,pros L o 1 o o 1 o o 1 o o 1 o o 4
K6372-2 | pros colo,pros,test L o 1 0 0 0 o 0 1 0 1 0 0 0 3
acc. [%] 4.76

In the course of a Master’s project the classification accuracy of SVMs using raw
microarray intensity data provided by Tothill et al. was investigated. The MU Graz
RNA-seq samples were separated in a dataset containing RPM, voomTransformed
[83], and ratioTransformed data:

¢ Results generated using the untransformed RPM data format.

* Results generated using the function ratioTransform(); transform RNA-seq RPM
values to log, ratios using the sum of expression in all samples as the reference.

* Results generated using the class voomTransform(); Transform count data to
logr-counts per million (logCPM), estimate the mean-variance relationship and
use this to compute appropriate observational-level weights. The data are then
ready for linear modelling [83].
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Further, as with the Tothill et al. 5, 7, 8] datasets, the classification was done, using
raw, background corrected intensities, range transformed background corrected and
logr-transformed datasets. This generates 15 separate classification results:

The classification of MU Graz RNA-seq data did not yield any meaningful results.
Each sample was assigned multiple cancer types, which generates more than 100%
assignments per sample. Respective tables containing the results for MU Graz
samples are part of the Appendix (Tables A16-A26). A with range normalized
background corrected MA data generated model model SVM_MA_13_raw_mapped
classified RN Aseq-MU_RPM data with an accuracy of 4.76% (Table 3.7). All other
models did not reach a classification accuracy above 0%. No confusion matrix was
generated from this data sets because of the poor classification performance of the
models.

Different neural network models were used to classify MU Graz CUP data with an
emphasis on the performance of model mode] CNN_RNAseq_33_mapped and other
models for comparison. An increase in classification accuracy by the neural network
models in comparison to the SVMs performance was achieved (Table 3.8). Model
model CNN_RNAseq_33_mapped, which is the result of NN optimization processes
while training and validation different prototypes reached the highest accuracy of
52.38%. In general the classification results do not seem to agree with each other.
While some samples are classified the same across all models, others differ strongly.
The ratio transformed data seems to disagree the most, while RPM and voom
transformed data are closer. The model model CNN_RNAseq_19 seems to result in
similar predictions for ratio and voom transformed data. Other models disagree in

most cases, while LGG seems to have been classified correctly by most models.
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3 Results

In general, the classification with a CNN trained on 33 classes yielded the high-
est classification results of up to 52.38%. NN models with a reduced number of
classes did not perform well (14.29%). Especially the DLNN model disapointed
with only 09.52% classification accuracy of MU Graz CUP samples. ratio and voom
transformations did not increase classification accuracy. A detailed depiction of
the classification probabilities for each class per sample can be found in the files
rpm_MUG _classification.txt, ratio MUG _classification.txt and voom_MUG _classification.txt
for RPM, ratio- and voom-transformed MU RNA-seq CUP data respectively.

3.4.1 MU RNA-seq data classification results with balanced classes

As seen in chapter 3.3 Classification results, with an accuracy of 89.90% and loss
of 0.43 the CNN model using balanced classes did not yield a higher classification
accuracy during training and validation (Table 3.6).

A NN model model FFNN_RNAseq_33_balanced based on the RNAseq_ TCGA_33 data
set, as it achieved the highest accuracy when using unbalanced data sets, was gener-
ated. The model uses balanced TCGA RNA-seq training as shown in data to classify
MU Graz CUP samples as RPM, ratio- and voom transformed data. The resulting
classifications were compared to the original classifications of model_FFNN_RNAseq
_33_mapped (Table 3.8). The classifications of MU RNA-seq data transformations
do not agree with each other. Further, the balancing of data sets did not increase
classification accuracy (47.62% opposed to 52.38% accuracy). A detailed depiction of
the classification probabilities for each MU RNA-seq class per sample can be found
in the files rpm_MUG _classification_balanced.txt, ratio MUG _classification_balanced.txt
and voom_MUG _classification_balanced.txt for RPM, ratio- and voom-transformed MU
RNA-seq CUP data respectively.
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4 Discussion

With the aim to investigate the applicability of different SVMs and neural networks
on MU Graz RNA-seq CUP data, NNs trained on TCGA RNA-seq data were
generated as well as SVM models using raw intensity MA data and TCGA RNA-seq
data for comparison. Testing and optimization of various NN models has led to a
CNN classifying 21 MU Graz CUP RNA-seq samples into possible 33 classes.

In order to compare SVM and neural network classification accuracy of microarray
and RNA-seq data we had to adapt and extend the existing script for the analysis
using the raw fluorescence intensity data values from the microarrays. This contained
the development of an algorithm to identify the required columns from the corrupted
microarray data files.

33 TCGA RNA-seq projects were downloaded and in over the course of this thesis
combined to three different datasets (with 12, 19 and 33 classes). Smaller data
sets allowed for shorter training durations, which allowed a more streamlined
optimization process. In order to prevent misclassifications, only classes with unique
primaries were used during testing. These prototypes lead to the final neural network
models using the whole TCGA-RNA-seq data set of 33 classes.

Microarray and RNA-seq datasets were used to train and validate SVM and neural
network models followed by an assessment of the performance of the SVMs and
NN in the classification of RNA-seq CUP samples provided by the MU Graz.
Further the impact of neural network structure and deep learning, as well as the
influence of hyper parameter on classification accuracy were studied. A comparison
between results provides information about the applicability of different neural
networks on RNA-seq data and misclassifications.

A literature search on the influence on unbalanced group size in the training set was
performed as well as a respective analysis of the influence of balancing the training

set using a specific balancing approach.
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4.1 Feature selection and mapping

Feature extraction or reduction methods reduce the dataset to a more manageable
size, omitting features which do not contribute to the quality of a model. This for
example, reduces training time or reduces the risk of over-fitting the model. As
they often improve performance, these methods have become cornerstones of SVM
generation and one of the first important steps while developing a model [84]. NN
do not require feature reduction methods. Depending on the application, it may be
desirable to use the whole data set for training. It does, however reduce training
time and if features do not contribute to the final model, reduction methods may
present handy. The number of parameters calculated by a NN is directly dependend
on the number of features used to train it. A higher amount of features means more
calculated parameters and a higher training time of a model.

In order to reduce the number of features in the data sets, an approach based on
a signal to noise ratio (SNR) was used [5]. There are other approaches of feature
selection for this application, but the SNR feature extraction method was used to
provide a comparable classification workflow to Tothill et al. [5].

Other methods to avoid overfitting could be cross-validation or stepwise regression
for data sets with a low number of features, which is not applicable for TCGA
RNA-seq data with 20502 features. Other regularization and overfitting methods
are applied to reduce the number for applications with a huge amount of features.
Urda et al. used regularization methods L1 (Least Absolute Shrinkage and Selection
Operator - LASSO) and Lz (RIDGE) to distill the dataset to the most important
features [85]. LASSO and RIDGE shrink the less important feature coefficients to
zero, removing some features altogether. Penalty terms are the absolute value of the
magnitude of coefficients and the squared magnitude of coefficients respectively. Urda
et al. used regularization in a LASSO model and compared it to deep learning
models in classifying data of three different TCGA RNA-seq classes to study their
suitability for analysis of high-throughput sequencing data. They indicate an appli-
cation of deep learning may not outperform simpler LASSO models [85]. L1 and
L2 regularization performs well for feature selection in case of a huge number of
features like RNA-seq data [86]. In general neural networks have to use regular-
ization and overfitting methods like L1/L2 regularization, feature reduction or a
dropout strategy. When using a dropout strategy randomly selected neurons are

ignored during training effectively reducing the total number of features used and

55



4 Discussion

can result in multiple independent internal representations being learned by the
network, preventing overfitting and the slow nature of such networks [87].

With 33 classes, over 20000 features and a different scope in this thesis, we chose an
approach similar to Tothill et al. who showed that a calculation of the absolute value
of signal to noise ratio (SNR) selects features which can result in high accuracies
in training SVM models, on data sets with a high amount of different unbalanced
classes [5].

Another level of feature selection is the mapping of features between datasets is
needed to ensure data integrity as different sources are used. During mapping,
features are lost because not all features are present in the MU Graz RNA-seq data
files. This means every time a model is trained to classify MU Graz CUP samples,
a part of potentially representative features are lost which could result in reduced
classification accuracy.

Each data set (microarray data, TCGA RNA-seq data and MU Graz CUP samples)
uses a different gene annotation standard. As these standards tend to vary and
change over time when new discoveries are made, the mapping of genes for classi-
fication purposes could have led to some errors and excluded genes. The impact
of mapping features on classification accuracy were minimal during training and
validation: A model trained on RNAseq_ TCGA_19 data reached 96.75% accuracy and
a respective mapped model using RNAseq_ TCGA_19_mapped data reached 96.93% ac-
curacy. A small increase in accuracy through mapping was reached during this NN
training cicle. However, this was not always the case when repeating the training and
validation process. The mapping of features seems to have little impact on training
and validation of NN. A total of 68 features were lost during the mapping process
resulting in a 0.49% loss in validation accuracy. NN trained on TCGA RNA-seq data
using 33 classes, were only trained on mapped data sets due to the small impact of

feature mapping on validation accuracy.

4.2 Influence of network structure

Research about this topic has shown that for gene expression data a single hidden
layer may produce more accurate results than a full fledged deep learning model
[68, 85]. Most neural networks are quite flexible and can reach a prediction even

when using the wrong network type for the data [82].
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Not every neural network model can be used to classify any data set. When to use
MLPs, CNNs or RNNs depends on the respective use. While most neural networks
are flexible enough to make a prediction even under not ideal circumstances, the
optimal performance is reached when choosing the right model for a task.

MLPs are most of all comparable to SVMs where labels are assigned to a set of
input data. They are suitable for regression and prediction problems and best used
on tabular data. That is why the first prototypes for classification on RNA-seq data
was done with a simple FFNN [82]. The size of the used datasets was increased
from 12 to using 19 unique primaries and finally all 33 available classes from TCGA.
Not every project on TCGA is assigned a single primary. This has a negative, if
small, impact on classification accuracy and it was tried to counter this effect while
using data set with 19 unambiguous primary classes.After generating a functioning
model model CNN_RNAseq_33, different NN structures were tested to optimize
classification accuracy.

A CNN is mostly used on pictures and time series data but also gene expression
data [88]. The CNN learns about the input structure and applies this information in
the classification process. This is not intuitively applicable for the classification based
on gene expression data, but nevertheless has led to good classification performance
not only in this thesis, but also in other cases where tabular data was reshaped in a
four dimensional tensor format [27, 68].

RNNs were not tested as they are not really used on tabular data nor image data
and result in a bad performance for the both of them [82].

In this thesis, the use of CNNs has shown an improvement over the other used types
of neural network and SVMs and resulted in a very high classification accuracy
of 98.50%, which is higher than the accuracy of FFNN model FFNN_RNAseq_19
(97.42%), SVM model SVM_RNAseq-33 (97.80%) and Tothill et al. SVM version
model SVM_MA_13 _processed (84.60%).

4.3 Classification of TCGA RNA-seq data using SVMs
and NNs

The classification of TCGA RNA-seq data with SVM models resulted in quite a
satisfactory accuracy. The training and validation of SVMs with both data types
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provided similar accuracies during validation using randomly subsetted validation
sets. The training with RNA-seq data took longer because up to 50 times more
samples were used. While training a SVMs with microarray data took about a
second, using TCGA RNA-seq sample training times span between 66 to 1231
seconds (Table 3.5). Training of neural networks took between 10 and 7700 seconds.
Using raw intensity data does not significantly improve or worsen classification
accuracy of SVMs. It could be concluded preprocessed Tothill et al. data was logs-
transformed, as the accuracy seems to be nearly identical.

4.4 Assessment of NN classification performance

The classification of microarray data yielded comparable results to Tothill et al.
(between 86.97% to 93.49%) but with a higher accuracy in the classification of
their microarray CUP samples. Tothill et al. states a classification accuracy of 84.6%
[5] which was exactly recreated with models based on MA _Tothill_13_processed,
MA _Tothill_13_mapped and MA _Tothill_13_raw_log2 datasets for SVM classification
(Table 3.5) while using NNs to classify MA_Tothill_13_processed data 92.31% accuracy
was reached (Table 3.6). M A _Tothill_13_processed data provides 229 samples with 607
features, MA _Tothill_13_mapped data provides 229 samples with 541 features and
the data set MA_Tothill_13_raw_log2 data provides 229 samples with 504 features
produced through SNR feature selection which are classified by an SVM and a
FFNN using a single hidden layer, the following output shape (None/256/128/139)
and a total of 190221 trainable parameters.

The classification of RNA-seq data yielded also comparable results between the
two methods while CNN classification provided the highest validation classification
accuracy at the cost of a higher training time (FFNN: 97.42% in 33 seconds and
CNN: 98.50% in 4020 seconds).

A number of misclassifications occured. Misclassifications were rather unevenly
spread over all classes, not suggesting a specific cause. This suggests maybe some of
the representative genetic features are not occuring enough to allow a strict differen-
tiation between classes or are representated in both. Further, not all TCGA-RNA-seq
projects are assigned a unique primary which could also be the cause of misclas-
sifications. The NN model model CNN_RNAseq_19 and model CNN_RNAseq_33 did
present a classification accuracy of 98.32% and 93.88% respectively (Table 3.6. Model
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model CNN_RNAseq_19 represents a CNN consisting of 2 hidden layers (one convo-
lutional and one dense layer), classifying datasets RNAseq_ TCGA_19_mapped with
8314 samples of 834 features and model CNN_RNAseq_33 with 10464 samples of 1341
features provided through SNR feature selection. This suggests that unambiguous
classes may further decrease the number of misclassifications. However, NN may
also learn valuable properties of the training data set through overlapping classes.
Further, if a model is used to classify new data, a sample could belong to more than
one class. Smaller data sets combining less different class possibilities result in a
higher classification accuracy. This behaviour can be seen when comparing the 3
different RNA-seq data sets.

Transformation of the MU RNA-seq data did not improve accuracy (classification
accuracy 14.29%). Deep learning did not seem to have any effect on classification
accuracy of MU Graz CUP RNA-seq samples (accuracy 9.52%). SVMs trained on
Tothill MA data achieved a MU CUP classification accuracy of 4.76%. The highest
accuracy was reached when using a large amount of classes with unbalanced sizes
(52.38% accuracy) using model model CNN_RNAseq_33_mapped. CNN do seem to
yield the best results in comparison to FFNN and DLNN. Classification accuracy
could be further improved when using classes with more samples in general. Bal-
ancing the data set did not to improve results (Table 3.8).

While Tothill et al. describes a validation accuracy of 89%, a CNN outperforms
this clearly with an reached accuracy of 98.5%.

Literature on the topic of classifying RNA-seq data with the help of NN is rare
at the moment of writing. Mostavi et al. which documents 93.9% - 95.0% accuracy
using 1D-CNN, 2D-Vanilla-CNN and 2D-Hybrid-CNN models with similar number
of neurons and layers as CNN models proposed in this thesis, while taking into
account the effect of the tissue of origin to reduce potential bias in the identification
of cancer markers. To take into account the impact of tissue of origin a new label
consisting of samples without cancer, regardless of their original tissue type desig-
nation is created [68]. Their data sets consists of 10,340 samples and 34 classes (33
TCGA classes and tissue of origin) using TCGA RNA-seq data.

Urda et al. studied the influence of different network structures on small TCGA
RNA-seq data sets with 1 to 3 classes. While the area under the curve (AUC) does
not measure accuracy, it measures how well a model performs. The receiver oper-
ating characteristic is a probability curve (plotting true positive rate (TPR) on the

59



4 Discussion

y-axis and false positive rate (FPR) on the x-axis) with its AUC being an indicator
how well the model can distinguish between classes. As it measures probability
the AUC ranges between o and 1, while 1 is the maximum [89]. They report an
AUC between between 0.57 AUC - 0.77 AUC while testing on different activation
functions, number of hidden layers and strategies to avoid overfitting [85].

Zhang et al. used RNA-seq data from the UCSC Xena data portal and created a
neural network classifier reaching 97.49% validation accuracy with the data set con-
sisting of 11,538 samples and 450,804 molecular features, which were preprocessed
and then used to train their OmiVAE model. They used principal component analy-
sis (PCA) and sparse autoencoder to select used features for training (35,877 selected
multi-omics molecular features). This model is a deep machine learning model with
a training procedure divided in an unsupervised phase, where a hierachical cluster
of samples can be formed without the need of labels and a supervised phase whith
10-fold cross validation among 33 TCGA RNA-seq tumor classes [90].

4.5 Influence of hyper parameter settings on

classification performance of NN

The selection of different hyper-parameters has shown a huge influence on neural
network performance. As stated in literature, a deep learning approach did not
yield a satisfactory accuracy for classification of RNA-seq data [68, 85]. Rather
FFNNs with a single hidden layer and CNNs provided high accuracies. While
CNNss provided the highest accuracy and smallest loss, they did take a lot more
time to train. Simple FFNN were rather quick to train and even outperformed SVMs
in accuracy and in needed training time.

The activation function relu performed well with microarray data, but when training
models on RNA-seq data only accuracies of 4.30% to 26.30% could be reached. Other
activation functions performed better with softsign being the clear favourite for this
application.

A dropout strategy after each layer of the neural network was used in order to
prevent overfitting. Further measures to handle uneven class sizes were not applied

60



4 Discussion

up until the writing of this thesis, but matter for correct classification and prediction
of new data as discussed later in this chapter.

4.6 Classification of MU Graz samples

When applying a 33 class CNN model (model CNN_RNAseq_33_mapped) on CUP
samples provided by the MU Graz, no definitive classification results were achieved.
This could be due to class sizes as samples belonging to large classes were classified
correctly more often. Necessary class sizes could also be dependend on the cancer
type as training and validation across models has shown no misclassifications in
small classes like ACC and UVM using CNN.

TCGA RNA-seq data and MU Graz CUP RNA-seq data was generated through
completely different wetlab procedures. While no information about TCGA library
preparation methods was found, their sequencing pipelines differ. MU Graz RNA-
seq data does not contain all exons after mRNA sequencing. These differences
during data generation could also have implications and effects on classification
performance.

In order to improve the low classification accuracy of MU Graz RNA-seq data when
using SVMs the raw mircoarray intensity data provided by Tothill et al. [5] was
downloaded. Problems with the initial classification process might occur because
microarray data represent ratios of two dyes (for a sample and a reference) present
on each position of DNA sequence on the MA. MA data MA Tothill 13 represents
log, fold-change of the test channel divided by fluorescent intensity from control
channel. RNA-seq data is represented as count data like reads per million mapped
reads (RPM) or fragments per kilobase million (FPKM) and others:

number of reads mapped to gene * 10°

RPM =
M total number of mapped reads

(4.1)

3 6
FPKM — number of reads mapped to gene * 10° * 10

total number of mapped reads * gene length in bp (4-2)

Microarray data and RNA-seq data do not provide the same range of possible
values which could lead to complications. The range of genes detected by MAs is
dependend on the chip used while whith this procedure even small amounts of
genes can be detected. RNA-seq can detect a wider range of features depending on
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the sequencing processes involved.

However, the provided raw data files were seemingly corrupted. The column names
did not match the content at all. In order to still extract the required information to
create an SVM using raw fluorescence intensity data an approach for aligning the
column names with their respective data had to be created.

To compare different classification performances, various transformations of the raw
intensities were performed. MA data in the form of raw intensities, background
corrected intensities, range transformed background corrected intensities and log»-
transformed intensities were used. The classification performance did not improve
by using raw fluorescence intensity data instead of preprocessed data [5]. The same
accuracy as preprocessed data files was reached when using log-transformed data
probably because the preprocessed samples were prepared in the same way. Other
approaches all yielded worse classification performances with the worst in using
raw intensities. Classification accuracy of Tothill et al. CUP samples did worsen
significantly, while log,-transformed raw intensities resulted in a model with the
same accuracy as Tothill ef al. (Table 3.5). None of the MA SVM models were able to
classifty MU Graz CUP samples in a meaningful way as the highest accuracy was
4.76% (Table 3.7).

In general, the use of CNN seems to be the most promising for classifying CUP
samples. While the accuracy of NN, when classifying data used during training and
validation, is high and slightly outperforms comparable SVMs, the classification
results of new data are not convincing. The accuracy of a NN model is increased
with the amount of training data available. The proposed CNNs might perform bet-
ter with more samples to substitude smaller TCGA classes. Different model tuning
procedures and other choices for hyper parameters could also increase classification
accuracy. In future, with more experiments, the ever increasing range of applications
for NN and more comprehensive RNA-seq data libraries for training, generally
applicable NN for CUP classification may be possible yet.
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R-script - correlation of variables in order to calculate RoM:

// /

library (e1071)

library (limma)

setwd ("H:/Master Project/CUP III")
rm(list = 1s())

writeLog <- function(textstr)

{
if (class(textstr) == "character") {
output_string <- textstr
cat (paste (output_string, "\n", sep=""))
} else {
output_string <- print(textstr)
}
flush.console ()
return (output_string)
}

readRawData <- function(fname)

{

scan.names <- read.table(fname, header=TRUE,

row.names=NULL)

return(scan.names)

}

sep="\t”,

readAllRawData <- function(adir, fpattern, file_nr)

{

afiles <- dir(adir, pattern=fpattern, full.names=TRUE)

nfiles <- length(afiles)

stringsAsFactors=FALSE,

writeLog(sprintf ("Reading processed data from Jd microarray data files",

nfiles))
array_data <- readRawData(afiles[file_nr])

return(array_data)

for (w in 3:10) {
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102
103
104

105

sample_raw_data <- readAllRawData(adir="data/Tothill/Raw_Data/",
fpattern="E-MEXP-113-raw-data-.*.txt",w)

ratio = as.numeric(sample_raw_data$Software.Unknown.Normalize);

rownames (sample_raw_data) = as.character(gsub('R:A-MEXP-28:"',"'",
sample_raw_data$Reporter.identifier));

sample_calc_data = sample_raw_datal[,-(1:6)];

sample_calc_datal[,(1:2)]= NULL;

sample_calc_data[,10]= NULL;

sample_calc_data[,18:20]= NULL;

sample_calc_data[,27]= NULL;

sample_calc_data[,35]= NULL;

results <- data.frame(matrix(ncol = length(sample_calc_datal[1,]), nrow =
length(sample_calc_datal[,1]1)));
rownames (results) = as.character(gsub('R:A-MEXP-28:"',"'",

sample_raw_data$Reporter.identifier));

colnames (results) = colnames(sample_calc_data);

for (i in 1:1000) {

current _ratio = 2~ (as.numeric(ratiol[i]));

sample_calc_data_vec = as.numeric(sample_calc_datali,])
if (!is.na(current_ratio)) {
for (j in 1:length(sample_calc_data_vec)) {

median_B635 = as.numeric(sample_calc_data_vec[jl);

for (k in 1l:length(sample_calc_data_vec)) {

mean_Fb532 = as.numeric(sample_calc_data_vecl[k]);

for (1 in 1:length(sample_calc_data_vec)) {

median_B532 = as.numeric(sample_calc_data_vec[1l]);

for (h in 1:length(sample_calc_data_vec)) {
mean_F635 = as.numeric(sample_calc_data_vec[h]);
ROM = ((mean_F635-median_B635)/(mean_F532 - median_B532));

if ((current _ratio-ROM) <= 0.001 & (current_ratio-ROM) >=
(-0.001) & !'is.na(current_ratio-ROM)) {
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results[i,j] = "median_B635";
results[i,k] = "mean_F532";
results[i,1l] = "median_B532";
results[i,h] = "mean_F635";

}
print (i)

result_ending =pasteO(w,".txt");
path_result = pasteO("H:/Master Project/Other/RoM_calc_", result_ending);
write.table(results, path_result, sep="\t")

<- / - -
evaluation <- data.frame(matrix(ncol = length(sample_calc_datal[1,]), nrow = 4));
rownames (evaluation) = c("mean_F635","median_B635","mean_F532","median_B532");
colnames (evaluation) = colnames(sample_calc_data);

for (m in 1:length(sample_calc_datal[1,1)) {
current_col = results[,m]
possibilities = c("mean_F635","median_B635","mean_F532","median_B532");
for (n in 1:length(possibilities)) {
index = which(current_col == possibilities[n])
nr_found = length(index)

evaluation[n,m]=nr_found

eval _ending =pasteO(w,".txt");
path_eval = pasteO("H:/Master Project/Other/RoM_calc_eval", eval_ending);
write.table (evaluation, path_eval, sep="\t")
/ / / - - -
sep="\t")
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for (u in 1:4) {
index = which(evaluation[u,]==max(evaluation[u,]))

x = colnames (evaluation) [index]

print (sprintf (" %s = %s",rownames (evaluation) [ul,x))

}

Listing 1: Script calculating and determining columns for RoM calculation using the formula
provided by the GenePix Version 4.1 documentation.
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R-script - Importing raw intensity data files:

readRawData <- function(fname)

{

scan.names <- read.table(fname, header=TRUE, sep="\t", stringsAsFactors=FALSE)

mean_FG_sample = as.numeric(scan.names$Software.Unknown.B635.Median)

median_BG_sample = as.numeric(scan.names$Software.Unknown.Mean.of.Ratios..635.532.)

mean_FG_ref = as.numeric(scan.names$Software.Unknown.Sum.of.Means)

median_BG_ref = as.numeric(scan.names$Software.Unknown.F.Pixels)

results <- data.frame(matrix(ncol = length(scan.names[,1])))

normalized_values = mean_FG_sample-median_BG_sample;

results[1,] = normalized_values;
colnames (results) = gsub(substring(scan.names$Reporter.identifier[1],
first = 1, last = 12L),'"',

scan.names$Reporter.identifier)

return(results)

readAllRawData <- function(adir, fpattern)

{

afiles <- dir(adir, pattern=fpattern, full.names=TRUE)
nfiles <- length(afiles)

writeLog(sprintf ("Reading raw microarray data from %d raw microarray
data files", nfiles))

aframe <- readRawData(afiles[1])

raw_scan_names<- read.table("data/Tothill/E-MEXP-113.sdrf.txt", header=TRUE,

sep="\t", stringsAsFactors=FALSE, colClasses
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c(rep("NULL", 37), "character", "character",
rep ("NULL", 7)))

raw_scan_names = raw_scan_names[!duplicated(raw_scan_names),]

for (i in 1:(nfiles-1)) {
array_data <- readRawData(afiles[i+1])
TF .names <- which(names (array_data) %in% names (aframe))
subset = array_data[TF.names]
aframe <- rbind(aframe, subset)
print (i)
}
for (i in 1:nfiles){
array_data_file = basename (afiles[i])
index_scan_name <- which(raw_scan_names$Array.Data.File == array_data_file)
current_scan_name <- gsub('MBA:MEXP:677:','',raw_scan_names[index_scan_name,])
print (array_data_file)
print (current_scan_name [[1]])
rownames (aframe) [i]<-paste (current_scan_name [1])
aframe [1:10,1:10]
}
writeLog(sprintf ("Read %d samples with %d reporters", nrow(aframe), ncol(aframe)))
return (aframe)

}

Listing 2: Functions used for importing raw intensity data which also apply first data processing
steps.
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TCGA-Assembler sript:

#installed packages

#$ sudo apt-get install libssl-dev

#and then back to R
#install.packages ("openssl")
#which was successful

#then

#install.packages ("httr")

#packages <- c("HGNChelper", "httr", "RCurl", "rjson", "stringr")
#install.packages (packages, dependencies = T)

#install.packages ("httr")

#install.packages ("openssl")

#libraries

library (HGNChelper)
library (httr)
library (RCurl)
library (rjson)

library(stringr)

setwd ("/home/julian/Documents/Master Project/TCGA/TCGA-Assembler")
#' Load functions

source ("Module_A.R")

source ("Module_B.R")

#' set data saving path

sPathl <- "./QuickStartExample/Partl_DownloadedData"
sPath2 <- "./QuickStartExample/Part2_BasicDataProcessingResult"
sPath3 <- "./QuickStartExample/Part3_AdvancedDataProcessingResult"

#' choose a cancer type
sCancer <- "BRCA"

#' choose some patients

vPatientID <- c("TCGA-A7-A13F", "TCGA-AO-A12B", "TCGA-AR-A1AP", "TCGA-AR-A1AQ",
"TCGA-AR-A1AS", "TCGA-AR-A1AV", "TCGA-AR-A1AW", "TCGA-BH-AOBZ",
"TCGA-BH-AODD", "TCGA-BH-AODG")

#' Part 1: Downloading Data of 7 different platforms using Module A functions

#' Download somatic mutation data
path_somaticMutation <-
DownloadSomaticMutationData(cancerType = sCancer,
assayPlatform = "somaticMutation_DNAseq",
inputPatientIDs = vPatientID,

saveFolderName = sPathl)
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path_copyNumber <-
DownloadCNAData(cancerType = sCancer,
assayPlatform = "cna_cnv.hgl9",
inputPatientIDs = vPatientID,

saveFolderName = sPathil)

path_methylation_450 <-
DownloadMethylationData(cancerType = sCancer,
assayPlatform = "methylation_450",
inputPatientIDs = vPatientID,

saveFolderName = sPathil)

path_miRNAExp <-
DownloadmiRNASeqData(cancerType = sCancer,
assayPlatform = "mir_HiSeq.hgl9.mirbase20",
inputPatientIDs = vPatientID,

saveFolderName = sPathil)

path_geneExp <-
DownloadRNASeqData(cancerType = sCancer,
assayPlatform = "gene.normalized_RNAseq",
inputPatientIDs = vPatientID,

saveFolderName = sPathl)

path_protein_RPPA <-

DownloadRPPAData(cancerType = sCancer,
assayPlatform = "protein_RPPA",
inputPatientIDs = vPatientID,
saveFolderName = sPathil)

path_protein_iTRAQ <-
DownloadCPTACData(cancerType = sCancer,
assayPlatform = "proteome_iTRAQ",
inputPatientIDs = vPatientID,

saveFolderName = sPathl)

Listing 3: Functions used downloading and processing TCGA RNA-seq data adapted from TCGA
Assembler 2.
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Neural network overview:

Layer (type) Output Shape Param

donse2s (Demse)  Giome, 25 issews
dropout_20 (Dropout)  (loms, 2856) o
dense_26 (Dense)  (Noms, 128) 32896
dropout_21 (Dropout) ~  (oms, 128) o
dense_27 (Dense)  (Nome, 13 iet7

Total params: 190,221
Trainable params: 190,221

Non-trainable params: O

Listing 4: Summary represents the neural network model RNAseq_-MA_13_processed used to classify
Tothill et al. microarray data.

Layer (type) Output Shape Param

dense_22 (Demss)  Clome, 258 1sm;2
dropout_18 (Dropout) (Neme, 256) o
demse_23 (Demse)  (Neme, 128) 32896
dropout_19 (Dropout) (Neme, 1280 o
demse_24 (Dense)  (Neme, 1)  1er7

Total params: 168,205
Trainable params: 168,205

Non-trainable params: O

Listing 5: Summary of neural network model FFNN_RNAseq_12 used to classify 12 selected TCGA
RNA-seq classes common with Tothill ef al. microarray data.

Layer (type) Output Shape Param

dense_tt (Demse)  Queme, 28 o1meo
dropout_9 (Dropout)  (Nome, 286) o
demse_12 (Dense)  (Neme, 128) 32896
aropout_10 (Dropout)  (Nome, 128) o
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Total params: 249,107
Trainable params: 249,107

Non-trainable params: O

Listing 6: Summary of neural network model FFNN_RNAseq_19 used to classify 19 selected TCGA
RNA-seq classes with single primaries.

Layer (type) OQutput Shape Param

sense_i6 (Demse)  (home, 700)  beasoo
dropout_13 (Dropout) (Neme, 7000 o
demse_17 (Demse)  (Nome, 350) 245350
dropout_1a (Dropout) (Nome, 350) o
demse_18 (Demse) ~ (Nome, 150) 52650
aropout_15 (Dropout)  (Neme, 150) o
dense_19 (Demse)  (Neme, 1000 1st00
dropout_16 (Dropout)  (Neme, 1000 o
demse_20 (Demse)  (Neme, 50)  soso
dropout_17 (Dropout) (Nome, 500 o
demse_21 (Demse)  (Nome, 19 60

Total params: 903,619
Trainable params: 903,619

Non-trainable params: O

Listing 7: Summary of neural network model_deep_RNAseq_-19 used to classify 19 selected TCGA
RNA-seq classes with single primaries.

Layer (type) Output Shape Param

com2az (GomezD)  Crome, 1, T4, 3 osa
conv2d_3 (ConvaD)  (lome, 1, 694, 64) 145412
max_pooling2d_i (MaxPooling2D) (Nome, 1, 347, 64) o
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dropout_11 (Dropout) (None, 1, 347, 64) 0

flatten_1 (Flatten) (None, 22208) 0

dense 14 (Demse)  (Nome, 128) 2842752
dropout_12 (Dropout) (Nome, 128) o
demse_15 (Demse)  (Nome, 19 o2as1

Total params: 2,992,979
Trainable params: 2,992,979
Non-trainable params: O

Listing 8: summary of neural network model CNN_RNAseq_19 used to classify 19 selected TCGA
RNA-seq classes with single primaries.

Layer (type) Output Shape Param

convad (Comva)  Qeme, 1, 1271, 32 2308
comv2d_1 (Comv2D)  (Neme, 1, 1201, 64) 145472
max_pooling2d (MaxPooling2D)  (Nome, 1, 600, 64) o
aropout_2 (Dropout)  (loms, 1, 600, 64) o
flatten (Flatten)  (loms, 38200) o
demse_3 (Demse)  (Neme, 128)  aois3zs
dropout_3 (Dropout)  (Nome, 1280 o
demse_a (Demse)  (Neme, 3 a2s7

Total params: 5,067,361
Trainable params: 5,067,361

Non-trainable params: O

Listing 9: Summary of neural network model CNN_RNAseq_33 used to classify 33 classes of TCGA
RNA-seq data.
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Classification results of Tothill et al. [5, 7, 8] RNA-seq data:

Classification results of preprocessed data:

In confusion tables the classification performance is visualized in matrix form, rows
representing the predicted label and columns the true label of a class. Correct classi-
fications are in the principal diagonal while misclassifications are not contained. A

perfect model would show all classifications in the principal diagonal.

Table A1: Confusion table of the loocv results of preprocessed data samples based on 229 samples
based on 13 tumor types and 607 genes resulting in a classification accuracy: 222/229 (

96.9%)

Actual_Prediction brea colo gast mela meso ovar panc pros rena test SCCo uter lung
brea (34) 34[32,0,2] o o o o o o o o o o o o
colo (23) o 22[21,0,1] o o o o 1[0,0,1] o o o o o o
gast (15) o 1[o,1,0]  14[13,0,1] o ) o o o o o o o o
mela (11) o o o 11[10,0,1] o o o o o o o o o
meso ( 8) o o ) o 8[8,0,0] ) o o o o ) o o
ovar (50) o o o o o 50[48,2,0] o o o o o o o
panc (9) o 1[1,0,0] o o ) o 8[6,1,1] o ) o ) o o
pros (8) o o o o o o o 8[7,1,0] o o o o o
rena (13) o o o [ ) o o [ 13[11,0,2] o ) 0 o
test ( 3) o o o o o o o o o 3[3,0,0] o o o
SCCo (14) o o o o 0 o o [ o o 12[7,3,2] o 2[1,0,1]
uter (9) o o o o [ 1[o0,0,1] o o o o o 8[8,0,0] o
lung (32) o o o o o o o o o o 1[1,0,0] o 31[29,2,0]
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Table A2: Confusion table of the classification results of preprocessed samples without CUP based
on 21 samples based on 13 tumor types and 541 genes resulting in a classification accuracy:
21/21 ( 100.0%).

Actual Prediction | brea colo gast mela meso ovar panc  pros rena test SCCo uter lung
brea (4) 4[4,0,0] o 0 0 o o o [ o 0 o o o
colo ( 2) 0 2[2,0,0] o o) ) ) 0 o o) o 0 o [
gast (1) o o) 1[1,0,0] o o [ 0 0 ) o 0 o [)
mela ( 0) o o o o o o o o o o o o o
meso (1) o [ o o 1[1,0,0] [ 0 0 o o [ o o)
ovar ( 4) o o 0 0 o 4l4,00] o 0 o 0 o o o
panc (o) o o 0 0 o o o o o 0 o o o
pros (1) ) 0 o) o) o ) 0 1[1,0,0] o) 0 0 o [
rena ( 1) o o o o o o o ) 1[1,00] o o o o
test (o) o o o o o o o o o o o o o
SCCo ( 2) o o) o o) o [ [ 0 [ o 2[2,0,0] ) [
uter (1) o) 0 0 o) 0 ) 0 o o) o) 0 1[1,0,0] [
lung (4) o o 0 0 o o o o o 0 o o 4[4,0,0]

Table A3: Confusion table of the classification results of preprocessed data and CUP samples based
on 13 samples based on 13 tumor types and 541 genes resulting in a classification accuracy:
11/ 13 ( 84.6%).

Actual Prediction | brea colo gast mela meso ovar panc pros rena test SCCo wuter Ilung
brea ( 3) 3[3,0,0] o o o o o o o o o o o o
colo (1) 0 1[1,00] o o o) ) o) o) o) o o o o
gast (0) 0 0 0 0 0 ¢} 0 0 0 0 0 0 0
mela ( o) o o o o o o o o o o o o o
meso ( 0) o o o o o o o o o o o o o
ovar (1) 0 o) o) o o) 1[1,0,0] o) o) o) o o o o
panc (0) o o o o o o o o o o o o
pros (o) o o o o o o o o o o o o o
rena ( 2) o o) o) o 0 ) o) o) 2[2,00] o o o o
test (0) 0 o o o o o o o 0 0 0 0 0
SCCo ( 2) 1[0,0,1] o] 0 o o) o) o) o) 0 o o o 1[0,0,1]
uter ( 0) o o o o o o o o o o o o o
lung ( 4) o o o o o o o o o o o 4[3,1,0]
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Classification results of log, transformed data:

Table A4: Confusion table of the loocv results of log, transformed data samples based on 229 samples
based on 13 tumor types and 591 genes resulting in a classification accuracy: 217/229 (

94.8%).

Actual Prediction brea colo gast mela meso ovar panc pros rena test SCCo uter lung
brea (34) 33[31,2,0] o o 1[0,1,0] o o o o ) o o o o
colo (23) o 22[21,1,0] o o o o o o o o o o 1[o0,0,1]
gast (15) o o 14[12,2,0] o o 1[o0,1,0] o o o o o o o
mela (11) o o o 10[8,2,0] o o o o o o o o 1[o0,1,0]
meso ( 8) o o ) o 7[7,0,0] o ) o o o 1[0,0,1] o o
ovar (50) o o o o o 50[44,4,2] o o o o o o o
panc (9) o 1[0,1,0] o 0 o 0 8[7,0,1] o o o 0 0 o
pros (8) o 0 o o o o o 8[7,1,0] 0 o o o o
rena (13) ) o ) o ) o ) o 12[11,1,0] o o o 1[1,0,0]
test (3) o o o o o o o o o 3[2,0,1] o o o
SCCo (14) o o o o o o o o o o 11[6,2,3] o 3[0,2,1]
uter (9) o o o o o o o o o o o 9[8,0,1] o
lung (32) o o o o o o o o o o 2[1,0,1] o 30[23,6,1]

Table As: Confusion table of the classification results of log, transformed samples without CUP
based on 21 samples based on 13 tumor types and 504 genes resulting in a classification
accuracy: 21/ 21 (100.0%).

Actual Prediction | brea colo gast mela meso ovar panc pros rena test SCCo uter lung
brea ( 4) 4[4,0,0] 0 o o o o o o 0 0 o o o
colo (1) 0 1[1,0,0] o o) [ [ [ ) o ) o o o
gast (1) 0 o) 1[1,0,0] o) o) o) o) o) 0 o o o o
mela ( 0) o o o o o o o o o o o o o
meso (1) 0 o) o) [ 1[1,0,0] [ [ ) o o o o o
ovar ( 4) o o o o o 4[4,0,0] o o o o o o o
panc (1) 0 o) ) [ [ [ 1[1,0,0] ) o o) [ ) [
pros (o) 0 0 o o o o o 0 0 o o o
rena ( 1) o o o [ o [ o) [ 1[1,0,0] o o [ [
test (1) 0 o) ) [ ) ) [ ) o) 1[1,0,0] ) ) )
SCCo (1) o 0 o) o) ) [ [ o o] o 1[1,0,0] ) o
uter ( 2) o) o) 0 o) o) o) o) o) 0 o) o) 2[2,0,0] o)
lung (4) 0 0 o o o o o o 0 0 o o 4[4,0,0]
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Table A6: Confusion table of the classification results of [0g, transformed data and CUP samples
based on 13 samples based on 13 tumor types and 504 genes resulting in a classification
accuracy: 11/ 13 ( 84.6%).

Actual_Prediction | brea colo gast mela meso ovar panc pros rena test SCCo wuter lung
brea ( 3) 3[2,1,0] 0 0 o o) o o o o) 0 o) o) o
colo (1) o) 1[o,1,0] o o [ o) o) o) [ o) o) ) o
gast (0) 0 0 0 o o o 0 o o o o o 0
mela ( 0) 0 o o o o 0 o o o o 0 o o
meso ( 0) o) o] o) o o) o) o o) o) o) o) o) o
ovar (1) o) o o) o ) 1[0,1,0] o) ) ) o) ) ) o
panc (o) 0 0 0 0 o 0 0 o o 0 o o 0
pros ( 0) o o o o o o o o o o o o o
rena ( 2) 0 o 0 o o) 0 0 o 2[1,10] o o) 0 o
test (0) o o o o o o o o o o o o
SCCo ( 2) 1[1,0,0] o o) o ) 0 o) o) ) 0 o) o) 1[1,0,0]
uter ( 0) o) o o) o] o) o) o] o) o) o) o) o) o]
lung (4) o] o o] o o) o) o) o) o) o) o) o 4[z2,1,1]

Classification results of range normalized background corrected data:

Table A7: Confusion table of loocv results of range normalized background corrected data based on
229 samples based on 13 tumor types and 631 genes resulting in a classification accuracy:
196/229 ( 85.6%).

Actual_Prediction brea colo gast mela  meso ovar panc pros rena test SCCo uter lung
brea (34) 32[30,1,1] 0 o 1[o0,1,0] o o 0 [ o [ o o 1[0,0,1]
colo (23) o 21[18,2,1] o o o 1[1,0,0] o o 1[0,0,1] [ [ [ o
gast (15) o 2[0,0,2] 12[10,2,0] 1[0,0,1] o o o o o o ) o 0
mela (11) [ ) 1[o,0,1]  8[7,0,1] o 1[0,0,1] o o o [ 1[0,0,1] [ [¢)
meso (8) o 0 o o 8[5,2,1] o [ o o o o o 0
ovar (50) o o o o o 46[36,7,3] 2[0,0,2] o o [ 1[0,0,1] [ 1[o0,1,0]
panc (9) o o 1[0,0,1] o o 2[0,1,1]  4[2,0,2] o o o 1[0,0,1] o 1[0,0,1]
pros (8) o 0 o o o [ 0 8[6,2,0] o ) o o o
rena (13) o o o o o 1[0,0,1] o o 11[8,2,1] [ o o 1[0,0,1]
test ( 3) o o o o o o o o o 3[2,1,0] o o o
SCCo (14) [ o o o o 1[0,0,1]  1[0,0,1] [ o [ 7[2,2,3] o 5[1,1,3]
uter (9) o o o o o o o o o o o 9[6,3,0] o
lung (32) o 1[0,0,1] o o o o 1[0,0,1] o o o 4[2,1,1] o 26[17,7,2]
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Table A8: Confusion table of the classification results of range normalized background corrected
data without CUP samples based on 21 samples based on 13 tumor types and 536 genes
resulting in a classification accuracy: 21/ 21 ( 100.0%).

Actual_Prediction | brea colo gast mela  meso ovar panc pros rena test SCCo uter lung
brea ( 6) 6[6,0,0] o) o) o o o) o) o) 0 ) o [ 0
colo ( 2) 0 2[2,0,0] o o 0 o) ) o 0 o ) [ [
gast ( 2) ) 0 2[2,0,0] o o [ ) 0 [ ) ) [ [
mela (1) o) [¢) 0 1[1,0,0] o o) o) o 0 o) o) ) [
meso (1) o o o o 1[1,0,0] o o o o o o o o
ovar ( 4) o o 0 0 o 4[4,0,0] o o o o o o o
panc ( 2) 0 0 o 0 0 ) 2[2,0,0] o 0 ) ) [ 0
pros (o) o o o 0 o o o o o o o o o
rena ( 0) o o o o o o o o o o o o o
test (1) o o o o o o o [ o 1[1,0,0] o o o
SCCo (1) o) o) o o o) o) o) o) o) [ 1[0,1,0] [ 0
uter (1) 0 0 o o o ) ) o 0 ) 1[1,0,0] 0
lung (o) o o o 0 o o o o o o o o

Table Ag: Confusion table of the classification results of range normalized background corrected and
CUP samples’based on 13 samples based on 13 tumor types and 536 genes resulting in a
classification accuracy: 10/ 13 ( 76.9%).

Actual Prediction | brea colo gast mela meso ovar panc pros rena test SCCo uter lung
brea ( 3) 3[3,00] o o o o o o [ o o o o o
colo (1) o o) o o o] o] o) ) o] o o o] 1[0,0,1]
gast (o) 0 0 0 0 0 0 0 0 0 0 0 0 0
mela ( 0) o o o o o o o o o o o o o
meso ( 0) o o o o o o o o o o o o o
ovar (1) 0 ) 0 0 0 1[0,1,0] 0 0 o) 0 o) o) o
panc ( 0) o o o o o o o o o o o o o
pros (o) o o o o o o o o o o o o o
rena ( 2) o ) o) o o) o) o) o) 2[1,0,1] o o) o) o
test (o) o o o o o o o o o o o o o
SCCo (2) 0 0 o) o o) o) 0 0 o) o 1[o,0,1] 1[0,0,1] o
uter ( 0) o [ o o o o o o o o o o o
lung (4) o o) o) o 0 1[0,0,1] o) o) o] 0 o) 0 3[0,1,2]

86



Classification results of raw intensity data:

Table A10: Confusion table of loocv results of raw intensity data based on 229 samples based on 13
tumor types and 632 genes reulting in a classification accuracy: 195/229 ( 85.2%).

Actual_Prediction brea colo gast mela  meso ovar panc pros rena test SCCo uter lung
brea (34) 32[29,2,1] o o 1[1,0,0] o o o o o o o o 1[0,0,1]
colo (23) o 21[18,1,2] o o o 1[1,0,0] o o 1[0,0,1] o o o o
gast (15) o 1[0,0,1]  13[10,2,1] 1[0,0,1] o o o o o o o o [
mela (11) o o 1[o,0,1]  8[6,2,0] o 2[0,0,2] o o o o o o o
meso ( 8) o 0 o o 8[5,2,1] o 0 o o o o ) o
ovar (50) o o o o o 46[36,7,3] 2[0,0,2] o o [ 1[0,0,1] o 1[o0,1,0]
panc (9) o o) 1[0,0,1] o o 2[0,2,0]  4[2,0,2] ) o o 1[o0,1,0] o 1[0,0,1]
pros (8) o o o o o o o 8[8,0,0] o o o o o
rena (13) o o o o 1[0,1,0] o o 11[8,2,1] o o o 1[0,0,1]
test ( 3) o 0 o o o [ 0 0 o 3[1,2,0] [ 0 0
SCCo (14) o o o o o 1[o,0,1]  1[o0,1,0] o o [ 7[3,1,3] [ 5[2,1,2]
uter (9) o o o o o 1[o0,1,0] ) ) o o o 8[5,2,1] o
lung (32) o 1[0,0,1] o o o 1[0,0,1] o o o [ 4[2,1,1] [ 26[18,6,2]

Table A11: Confusion table of the classification results of raw intensity data without CUP samples
based on 21 samples based on 13 tumor types and 540 genes resulting in a classification
accuracy: 21/ 21 ( 100.0%).

Actual Prediction | brea colo gast mela meso ovar panc pros rena test SCCo wuter lung
brea (1) 1[1,0,0] o) 0 o ) ) [ o o o o o o
colo ( 6) o 6[6,0,0] o o o [ o o [ o o o o
gast (1) [ o) 1[1,0,0] o 0 [ [ ) o o o o o
mela ( 0) o o o o o o o o o 0 0 0 0
meso ( 2) ) ) o) o 2[2,0,0] 0 0 [ o) o o o o
ovar ( 3) o o o o o 3[3,0,0] o o o o o o o
panc ( 2) [ ) o o [ ) 2[2,0,0] ) 0 o o o o
pros (1) ) o) o) o [ [ [ 1[1,0,0] o o o o o
rena (1) o o o o o o o o 1[1,0,0] o o o o
test (1) o o o o [¢) [¢) [¢) o o 1[1,0,0] o o o
SCCo (1) o o) o o ) o) o) o) o) 0 1[0,1,0] o o)
uter ( 0) o o o o [¢) o o o o o o o o
lung ( 2) ) o) 0 o [ ) [ ) o) 0 o o 2[2,0,0]
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Table A12: Confusion table of the classification results of raw intensity data with CUP samples
based on 13 samples based on 13 tumor types and 540 genes resulting in a classification
accuracy: 9/ 13 ( 69.2%).

Actual Prediction | brea colo gast mela meso ovar panc pros rena test SCCo wuter lung
brea ( 3) 3[3,00] o o o o o o o o o o o o
colo (1) o] o) o o o o 1[0,0,1] o) o o) o) o o)
gast (0) 0 0 0 0 0 0 0 0 0 0 0 0 0
mela ( 0) o] 0 o o o o o] o) o o) o) o 0
meso ( 0) o o o o o o o o o o o o o
ovar (1) o] o) o o o 1[o,1,0] o] 0 o o) 0 o 0
panc (0) o o o o o o o o o o o o o
pros ( 0) o o o o o o o o o o o o o
rena ( 2) 1[0,0,1] o) o o o o o) o) 1[1,0,0] o o) o o)
test (0) o] o) o o o o o] o) o o) o) o o
SCCo (2) 1[0,0,1] o) o o o o o) o) o o 1[0,0,1] o o)
uter ( 0) o] o) o o o o o] o) o o) o) o o)
lung (4) o] 0 o o o 1[0,0,1] o) o) o o) o) o 3[o,2,1]

Classification results of background corrected intensitiy data:

Table A13: Confusion table of loocv results of background corrected intensitiy data based on 229
samples based on 13 tumor types and 631 genes resulting in a classification accuracy:
195/229 ( 85.2%).

Actual Prediction brea colo gast mela  meso ovar panc pros rena test SCCo uter lung
brea (34) 32[28,3,1] o o 1[o,1,0] o o o o o o o o 1[o,0,1]
colo (23) o 21[17,1,3] o o o 1[1,0,0] o o 1[o,0,1] o o o o
gast (15) o 1[o,0,1]  13[9,2,2] 1[0,0,1] o o o o o o o o o
mela (11) 0 0 1[o,0,1] 8[6,2,0] 0 2[0,0,2] o 0 o o 0 o o
meso ( 8) [ [ [ o 8[6,1,1] [ o [ o o [ o o
ovar (50) o o o o o 46[36,6,4] 2[0,0,2] o o o 1[0,0,1] o 1[0,1,0]
panc (9) [ [ 1[0,0,1] o o) 2[0,1,1]  4[2,0,2] [¢) o o 1[o0,1,0] o 1[0,0,1]
pros (8) o o o o o o o 8[7,1,0] o o o o o
rena (13) o o o o o 1[0,1,0] o o 11[8,1,2] o o o 1[o,0,1]
test (3) o o o o o o o o o 3[2,1,0] o o o
SCCo (14) o) 0 0 o 0 1[o0,0,1]  1[0,1,0] 0 o o 7[3,1,3] o 5[2,1,2]
uter (9) o 0 [¢) o 0 1[0,1,0] o 0 o o ) 8[4,2,2] o
lung (32) o 1[0,0,1] o o o 1[0,0,1] o o o o 4[2,1,1] o 26[17,5,4]
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Table A14: Confusion table of the classification results of background corrected intensitiy data
without CUP samples based on 13 samples based on 13 tumor types and 541 genes
resulting in a classification accuracy: 9/ 13 ( 100.0%).

Actual Prediction

brea

colo

gast

mela meso

ovar

panc

pro

S ren.

a

test

SCCo

uter

lung

brea ( 2)
colo (6)
gast ( 2)
mela ( 0)
meso ( 0)
ovar ( 4)
panc ( 2)
pros (1)
rena ( 1)
test (o)
SCCo (1)
uter (1)

lung (1)

2[2,0,0]

o

© © 0O O © © O O © © O

0
6[6,0,0]
0

© © © O © © O O O ©

2[2,0,0]

[}
o

[¢]

© O © O © 0o O o ©o

[}

© O © O 0O 0O O 0 0o o O ©°

o

© O © O 0 0O O 0o 0o o o ©°

o

n
=
5 © © o 0o o o

o O © o ©

=3
o © O O © O O ©

=

—
iy
°

o o o ©o

°

[}

© O 0O O 0 0O 0O 0 0 0o O ©°

1[1

o

(o]
(o]
o]
o
o
o
o
(o]
o
/0,
o
o

o]

(=}

© © © © © © © O © ©

1[1,0,0]
0

[}
o
[}
[}
o
(o)
[}
o
[}
[}
o
o

1[1,0,0]

Table A15: Confusion table of the classification results of background corrected intensitiy data with
CUP samples based on 13 samples based on 13 tumor types and 541 genes resulting in a
classification accuracy: 9/ 13 ( 69.2%).

Actual Prediction
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SCCo ( 2)
uter ( 0)
lung (4)

Classification results of MU Graz RNA-seq data:
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Results generated using the function ratioTransform(); transform RNA-seq RPM

values to log, ratios using the sum of expression in all samples as the reference.

Results generated using the class voomTransform(); Transform count data to logs-

counts per million (logCPM), estimate the mean-variance relationship and use this

to compute appropriate observational-level weights. The data are then ready for

linear modelling [83].
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Table A16: Classification results of RNAseq_-MU_ratio data and a SVM model trained on raw intensity
data.

Sample Actual Pred DM brea colo gast mela meso ovar panc pros rena test SCCo wuter lung Total

K1999-6 colo  panc,lung,mela 0.012 0.013 0.064 0.15 0.008 0.108 0.727 0.014 0.14 0.011 0.029 0.018 0.616 1.91

K2170-6 melan panclungmela 0.012 0.012 0.064 0.151 0.008 0.108 0.727 0.014 0.141 0.011 0.029 0.018 0.616 1.911
K2953-5 lung  panclungmela 0.012 0.013 0.064 0.15 0.008 0.108 0.727 0.014 0.14 0.011 0.029 0.018 0.617 1.911
K4824-4 panc  panclungmela 0.012 0.013 0.064 0.15 0.008 0.108 0.727 0.014 0.14 0.011 0.029 0.018 0.615 1.909
K5108-24 ovar panclungmela 0.012 0.012 0.064 0.15 0.008 0.108 0.727 0.014 0.14 0.011 0.029 0.018 0.615 1.908
K5216-6  breast panclungmela 0.012 0.012 0.064 0.15 0.008 0.108 0.727 0.014 0.14 0.011 0.029 0.018 0.615 1.908
K6266-2 mela panclungmela 0.012 0.012 0.064 0.15 0.008 0.108 0.727 0.014 0.14 0.011 0.029 0.018 0.616 1.909
K6267-2  lung  panclungmela 0.012 0.013 0.064 0.15 0.008 0.108 0.727 0.014 0.14 0.011 0.029 0.018 0.616 1.91
K6268-2  panc  panclungmela 0.012 0.013 0.064 0.15 0.008 0.108 0.727 0.014 0.14 0.011 0.029 0.018 0.615 1.909
K6269-2 gast  panclung,mela 0.012 0.013 0.064 0.15 0.008 0.108 0.727 0.014 0.14 0.011 0.029 0.018 0.615 1.909
K6270-2 gast  panclungmela 0.012 0.013 0.064 0.15 0.008 0.108 0.727 0.014 0.14 0.011 0.029 0.018 0.616 1.91
K6271-2 rena  panclungmela 0.012 0.012 0.064 0.15 0.008 0.108 0.727 0.014 0.141 0.011 0.029 0.018 0.616 1.91
Ké6272-2 rena  panc,lungmela 0.012 0.012 0.064 0.15 0.008 0.108 0.727 0.014 0.141 0.011 0.029 0.018 0.616 1.91
K6365-2  colo  panclungmela 0.012 0.013 0.064 0.15 0.008 0.108 0.727 0.014 0.14 0.011 0.029 0.018 0.616 1.91
K6366-2 colo  panc,lung,mela 0.012 0.013 0.064 0.15 0.008 0.108 0.727 0.014 0.14 0.011 0.029 0.018 0.615 1.909
K6367-2  colo  panclungmela 0.012 0.013 0.064 0.15 0.008 0.108 0.727 0.014 0.14 0.011 0.029 0.018 0.615 1.909
K6368-2  lung  panclungmela 0.012 0.012 0.064 0.15 0.008 0.108 0.727 0.014 0.141 0.011 0.029 0.018 0.617 1.911
K6369-2  brea  panclungmela 0.012 0.012 0.064 0.15 0.008 0.108 0.727 0.014 0.14 0.011 0.029 0.018 0.616 1.909
K6370-2  brea  panclungmela 0.012 0.012 0.064 0.15 0.008 0.108 0.727 0.014 0.14 0.011 0.029 0.018 0.616 1.909

Ké6371-2  pros  panclungmela 0.012 0.012 0.064 0.15 0.008 0.108 0.727 0.014 0.14 0.011 0.029 0.018 0.616 1.909

[l o e o o o o o o o o o O o o o o o o o o

K6372-2  pros  panclungmela 0.012 0.012 0.064 0.15 0.008 0.108 0.727 0.014 0.14 0.011 0.029 0.018 0.616 1.909

Table A17: Classification results of RNAseq_ MU _ratio data with a SVM model trained on background
corrected intensity data.

Sample Actual Pred DM brea colo gast mela meso ovar panc pros rena test SCCo uter lung Total

K1999-6  colo  panclung 0.015 0.017 0.035 0.082 0.008 0.097 0.634 0.013 0.098 0.011 0.016 0.023 0.456 1.505

K2170-6  melan panclung 0.015 0.017 0.035 0.082 0.008 0.097 0.634 0.013 0.098 0.011 0.016 0.023 0.455 1.504
K2953-5 lung panclung
K4824-4 panc  panclung
K5108-24 ovar panclung

0.015 0.017 0.035 0.082 0.008 0.097 0.634 0.013 0.098 0.011 0.016 0.023 0.456 1.505
0.015 0.017 0.035 0.082 0.008 0.097 0.634 0.013 0.098 0.011 0.016 0.023 0.455 1.504
0.015 0.017 0.035 0.082 0.008 0.097 0.634 0.013 0.098 0.011 0.016 0.023 0.455 1.504
K5216-6  breast panclung 0.015 0.017 0.035 0.082 0.008 0.097 0.634 0.013 0.098 0.011 0.016 0.023 0.455 1.504
K6266-2 mela panclung 0.015 0.017 0.035 0.082 0.008 0.097 0.633 0.013 0.098 0.011 0.016 0.023 0.455 1.503
K6267-2  lung  panclung 0.015 0.017 0.035 0.082 0.008 0.097 0.634 0.013 0.098 0.011 0.016 0.023 0.456 1.505
K6268-2  panc  panclung 0.015 0.017 0.035 0.082 0.008 0.097 0.634 0.013 0.098 0.011 0.016 0.023 0.455 1.504
K6269-2 gast  panc,lung 0.015 0.017 0.035 0.082 0.008 0.097 0.634 0.013 0.098 0.011 0.016 0.023 0.454 1.503
Ké6270-2 gast  panc,lung 0.015 0.017 0.035 0.082 0.008 0.097 0.634 0.013 0.098 0.011 0.016 0.023 0.455 1.504
K6271-2  rena  panclung 0.015 0.017 0.035 0.082 0.008 0.097 0.634 0.013 0.098 0.011 0.016 0.023 0.455 1.504
K6272-2  rena  panclung 0.015 0.017 0.035 0.082 0.008 0.097 0.634 0.013 0.098 0.011 0.016 0.023 0.455 1.504
K6365-2  colo  panclung 0.015 0.017 0.035 0.082 0.008 0.097 0.634 0.013 0.098 0.011 0.016 0.023 0.456 1.505
K6366-2 colo  panclung 0.015 0.017 0.035 0.082 0.008 0.097 0.634 0.013 0.098 0.011 0.016 0.023 0.455 1.504
Ké6367-2 colo  panclung 0.015 0.017 0.035 0.082 0.008 0.097 0.634 0.013 0.098 0.011 0.016 0.023 0.455 1.504
K6368-2  lung  panclung 0.015 0.017 0.035 0.082 0.008 0.097 0.634 0.013 0.098 0.011 0.016 0.023 0.456 1.505
K6369-2  brea  panclung 0.015 0.017 0.035 0.082 0.008 0.097 0.634 0.013 0.098 0.011 0.016 0.023 0.455 1.504
K6370-2  brea  panclung 0.015 0.017 0.035 0.082 0.008 0.097 0.634 0.013 0.098 0.011 0.016 0.023 0.455 1.504

K6371-2  pros  panclung 0.015 0.017 0.035 0.082 0.008 0.097 0.634 0.013 0.098 0.011 0.016 0.023 0.455 1.504

| o o e o o e o o o o o o o o o o o o o o

K6372-2  pros  panclung 0.015 0.017 0.035 0.082 0.008 0.097 0.634 0.013 0.098 0.011 0.016 0.023 0.455 1.504
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Table A18: Classification results of RNAseq-MU_ratio data with a SVM model trained on range
normalized background corrected intensity data.

Sample Actual Pred DM brea colo gast mela meso ovar panc pros rena test SCCo wuter lung Total
K1999-6  colo brea,colo,ovar L 1 1 o o o 1 1 o o 1 o 1 1 7
K2170-6 melan brea,mela,meso L 1 o o 1 1 1 1 o 1 1 1 0.595 1 9.595
K2953-5  lung  brea,mesoovar L 1 o o o 1 1 1 o 1 1 0.001 1 1 8.001
K4824-4 panc  breacolomeso L 1 1 o o 1 1 1 o o o o 1 1 7
K5108-24 ovar  breameso,ovar L 1 o o o 1 1 1 o 1 1 1 1 1 9
K5216-6  breast brea,ovar,panc L 1 o o o o 1 1 o  0.653 1 0.022 o 1 5.675
K6266-2 mela breamesoovar L 1 o o o 1 1 0.43 o 1 1 1 1 1 8.43
K6267-2  lung  brea,colo,ovar L 1 1 o o 0.512 1 1 o 0.927 1 o 0.844 1 8.283
K6268-2  panc  brea,ovar,panc L 1 o o o 0.997 1 1 o 1 0.005 1 1 0.604 7.606
K6269-2 gast gast,ovar,panc L o 0997 1 o o 1 1 o 1 0.995 o 1 o 6.992
K6270-2 gast brea,colo,ovar L 1 o o 0.1 1 1 o o 1 o 0.959 1 7.059
K6271-2 rena  breameso,ovar L 1 o o o 1 1 1 o 1 1 1 1 1 9
K6272-2 rena  brea,meso,ovar L 1 o [} o 1 1 1 o 1 1 0 o 1 7
K6365-2  colo brea,colo,ovar L 1 1 o 0996 0183 1 1 o o 1 o 1 1 8.179
K6366-2  colo brea,colo,ovar L 1 1 o o 0.21 1 1 o o o o 1 1 6.21
K6367-2  colo  breacoloovar L 1 1 o o o 1 1 o o 0.999 o 1 o 5.999
K6368-2  lung  brea,meso,ovar L 1 o o 0632 1 1 1 o 1 1 1 0515 1 9.147
K6369-2  brea  breamelaovar L 1 o o 1 0.122 1 1 o 1 1 o 1 1 8.122
K6370-2  brea  brea,meso,ovar L 1 o o o 1 1 1 o 1 1 1 0.948 1 8.948
K6371-2  pros  breamelameso L 1 o o 1 1 1 1 1 1 1 0.998 1 1 10.998
K6372-2  pros  breameso,ovar L 1 o o  0.008 1 1 1 1 1 1 0.999 1 1 10.007

Table A19: Classification results of RNAseq-MU_ratio data with a SVM model trained on l0g>-
transformed intensity data.

Sample Actual Pred DM brea colo gast mela meso ovar panc pros rena test SCCo uter lung Total
K1999-6 colo panc,lung,gast L o 0 0.947 0.003 0.017 0.005 1 o 0924 O o o 1 3.896
K2170-6 melan mela,panclung L o 0 0.149 1 0.053 o 1 o 0899 o o o 1 4.101
K2953-5 lung panclungrena L 0 0 0.393 0.005 0.052 o 1 o 0993 o o 0.002 1 3.445
K4824-4 panc ovarpanclung L o 0 0017 0.003 0.134 1 1 o 0031 O o o 1 3.185
K5108-24 ovar  ovarpanclung L o o  0.106 o 0.527 1 1 o 0488 o o0.001 o 1 4.122
K5216-6  breast breapanclung L 1 0 0098 0.012 0.007 0.264 1 o 0525 O o o 1 3.906
K6266-2 mela ovarpanclung L o 0  0.042 0.002 0.399 1 1 o 0133 O o 0.003 1 3.579
K6267-2  lung  panclungovar L o 0 0016 0.029 0.007 0.994 1 o 0882 o o o 1 3.928
K6268-2  panc  ovarpanclung L o o 0896 0.002 0.05 1 1 o 0526 0  0.003 o 1 4.477
K6269-2  gast  gast,ovar,panc L o o 1 0.004 0.012 1 1 0.001 0.931 O [¢] o 1 4.948
K6270-2 gast  ovarpanclung L o o 0899 0.025 0.009 1 1 o 0325 O o o 1 4.258
K6271-2  rena  renalungovar L o 0 0.007 0.014 0.047 0.999 0.999 o 1 o o o 1 4.066
K6272-2  rena  ovarpancrena L o 0 0.003 0.003 0.082 1 1 o 1 o o o 1 4.088
K6365-2 colo  panclung,gast L o 0 0542 0.033 0.018 0.024 1 o 0.31 o o o 1 2.927
K6366-2 colo  panclungovar L o o 0008 0.005 0.03 0.999 1 o 0786 o o 0.001 1 3.829
K6367-2  colo  ovarpanclung L o 0  0.006 0.009 0.02 1 1 o 029 0  0.007 o 0998 3.33
K6368-2  lung  ovarpanclung L o 0 0005 0.131 0.356 1 1 0.004 0.939 O o o 1 4.435
K6369-2  brea  panclungovar L 0.07 0 0059 0.15 0.074 0.666 1 o 0451 O o o 1 3.47
K6370-2  brea  ovarpanclung L 0663 o0 0.011 0.006 0.125 1 1 o 0.93 0 0.003 o 1 4.738
K6371-2  pros  panclung,pros L o o o 0.652 0.149 0.819 1 0.995 0.668 o0 o o 1 5.283
K6372-2  pros  panclung,pros L o o 0.02 0.122 0.15 0.293 1 0.997 0482 o0 o 0.001 1 4.065
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Table Azo: Classification results of RNAseq-MU _voom data with a SVM model trained on raw intensity
data.

=]
<

Sample Actual Pred brea colo gast mela meso ovar panc pros rena test SCCo uter lung Total

K1999-6  colo  panclung,mela 0.012 0.013 0.064 0.15 0.008 0.108 0.726 0.014 0.14 0.011 0.029 0.018 0.614 1.907

K2170-6  melan panclung,mela 0.012 0.013 0.064 0.151 0.008 0.108 0.726 0.014 0.14 0.011 0.029 0.018 0.614 1.908
K2953-5 lung  panclung,mela 0.012 0.013 0.064 0.15 0.008 0.108 0.726 0.014 0.14 0.011 0.029 0.018 0.614 1.907
K4824-4 panc  panclungmela 0.012 0.013 0.064 0.15 0.008 0.108 0.726 0.014 0.14 0.011 0.029 0.018 0.613 1.906
K5108-24 ovar  panclungmela 0.012 0.013 0.064 0.15 0.008 0.108 0.726 0.014 0.14 0.011 0.029 0.018 0.613 1.906
K5216-6  breast panclung,mela 0.012 0.013 0.064 0.15 0.008 0.108 0.726 0.014 0.14 0.011 0.029 0.018 0.613 1.906
K6266-2 mela panclung,mela 0.012 0.013 0.064 0.15 0.008 0.108 0.726 0.014 0.14 0.011 0.029 0.018 0.613 1.906
K6267-2  lung  panclung,mela 0.012 0.013 0.064 0.15 0.008 0.107 0.726 0.014 0.14 0.011 0.029 0.018 0.613 1.905
K6268-2  panc  panclung,mela 0.012 0.013 0.064 0.15 0.008 0.108 0.726 0.014 0.14 0.011 0.029 0.018 0.613 1.906
K6269-2 gast  panclung,mela 0.012 0.013 0.064 0.15 0.008 0.108 0.726 0.014 0.14 0.011 0.029 0.018 0.613 1.906
K6270-2 gast  panclung,mela 0.012 0.013 0.064 0.15 0.008 0.108 0.726 0.014 0.14 0.011 0.029 0.018 0.613 1.906
K6271-2  rena  panclung,mela 0.012 0.013 0.064 0.15 0.008 0.108 0.726 0.014 0.14 0.011 0.029 0.018 0.613 1.906
K6272-2  rena  panclung,mela 0.012 0.013 0.064 0.15 0.008 0.108 0.726 0.014 0.14 0.011 0.029 0.018 0.614 1.907
K6365-2  colo  panclungmela 0.012 0.013 0.064 0.15 0.008 0.108 0.726 0.014 0.14 0.011 0.029 0.018 0.613 1.906
K6366-2  colo  panclung,mela 0.012 0.013 0.064 0.15 0.008 0.108 0.726 0.014 0.14 0.011 0.029 0.018 0.613 1.906
K6367-2  colo  panclung,mela 0.012 0.013 0.064 0.15 0.008 0.108 0.726 0.014 0.14 0.011 0.029 0.018 0.613 1.906
K6368-2  lung  panclungmela 0.012 0.013 0.064 0.15 0.008 0.108 0.726 0.014 0.14 0.011 0.029 0.018 0.614 1.907
K6369-2  brea  panclungmela 0.012 0.013 0.064 0.15 0.008 0.108 0.726 0.014 0.14 0.011 0.029 0.018 0.613 1.906
K6370-2  brea  panclung,mela 0.012 0.013 0.064 0.15 0.008 0.108 0.726 0.014 0.14 0.011 0.029 0.018 0.613 1.906

Ké6371-2  pros  panclung,mela 0.012 0.013 0.064 0.15 0.008 0.108 0.726 0.014 0.14 0.011 0.029 0.018 0.613 1.906

|l ol e o o o o o o o o o

K6372-2  pros  panclung,mela 0.012 0.013 0.064 0.15 0.008 0.107 0.726 0.014 0.14 0.011 0.029 0.018 0.613 1.905

Table A21: Classification results of RNAseq MU _voom data with a SVM model trained on background
corrected intensity data.

Sample Actual Pred DM brea colo gast mela meso ovar panc pros rena test SCCo wuter lung Total

K1999-6 colo  panclung 0.015 0.017 0.035 0.082 0.008 0.096 0.632 0.013 0.098 0.011 0.016 0.023 0.453 1.499

K2170-6 melan panclung 0.015 0.017 0.035 0.082 0.008 0.096 0.632 0.013 0.098 0.011 0.016 0.023 0.453 1.499
K2953-5 lung panclung
K4824-4 panc panclung
K5108-24 ovar  panclung

0.015 0.017 0.035 0.082 0.008 0.096 0.632 0.013 0.098 0.011 0.016 0.023 0.453 1.499
0.015 0.017 0.035 0.082 0.008 0.097 0.632 0.013 0.098 0.011 0.016 0.023 0.452 1.499
0.015 0.017 0.035 0.082 0.008 0.097 0.632 0.013 0.098 0.011 0.016 0.023 0.453 1.5

K5216-6  breast panc,lung 0.015 0.017 0.035 0.082 0.008 0.096 0.632 0.013 0.098 0.011 0.016 0.023 0.452 1.498
K6266-2 mela panclung 0.015 0.017 0.035 0.082 0.008 0.097 0.632 0.013 0.098 0.011 0.016 0.023 0.453 1.5
K6267-2  lung  panclung 0.015 0.017 0.035 0.082 0.008 0.096 0.632 0.013 0.098 0.011 0.016 0.023 0.453 1.499
K6268-2  panc  panclung 0.015 0.017 0.035 0.082 0.008 0.097 0.632 0.013 0.098 0.011 0.016 0.023 0.453 1.5
K6269-2  gast  panclung 0.015 0.017 0.035 0.082 0.008 0.096 0.632 0.013 0.098 0.011 0.016 0.023 0.452 1.498
K6270-2  gast panclung 0.015 0.017 0.035 0.082 0.008 0.096 0.632 0.013 0.098 0.011 0.016 0.023 0.453 1.499
K6271-2  rena  panclung 0.015 0.017 0.035 0.082 0.008 0.096 0.632 0.013 0.098 0.011 0.016 0.023 0.453 1.499
K6272-2  rena  panclung 0.015 0.017 0.035 0.082 0.008 0.097 0.632 0.013 0.098 0.011 0.016 0.023 0.453 1.5
K6365-2 colo  panclung 0.015 0.017 0.035 0.082 0.008 0.096 0.632 0.013 0.098 0.011 0.016 0.023 0.453 1.499
K6366-2  colo  panclung 0.015 0.017 0.035 0.082 0.008 0.096 0.632 0.013 0.098 0.011 0.016 0.023 0.452 1.498
K6367-2  colo  panclung 0.015 0.017 0.035 0.082 0.008 0.097 0.632 0.013 0.098 0.011 0.016 0.023 0.452 1.499
K6368-2  lung  panclung 0.015 0.017 0.035 0.082 0.008 0.096 0.632 0.013 0.098 0.011 0.016 0.023 0.453 1.499
K6369-2  brea  panclung 0.015 0.017 0.035 0.082 0.008 0.097 0.632 0.013 0.098 0.011 0.016 0.023 0.453 1.5
K6370-2  brea  panclung 0.015 0.017 0.035 0.082 0.008 0.096 0.632 0.013 0.098 0.011 0.016 0.023 0.453 1.499

Ké6371-2  pros  panclung 0.015 0.017 0.035 0.082 0.008 0.096 0.632 0.013 0.098 0.011 0.016 0.023 0.453 1.499

el ol e o o o o o o o o o o o o o o o o

K6372-2  pros  panclung 0.015 0.017 0.035 0.082 0.008 0.096 0.632 0.013 0.098 0.011 0.016 0.023 0.453 1.499
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Table A22: Classification results of RNAseq_MU_voom data with a SVM model trained on range
normalized background corrected intensity data.

Sample Actual Pred DM brea colo gast mela meso ovar panc pros rena test SCCo wuter lung Total
K1999-6 colo  breacoloovar L 1 1 o o o 1 o o o 1 o 1 o 5
K2170-6 melan brea,colomela L 1 1 o 1 o 1 o o 1 1 1 0.002 o 7.002
K2953-5 lung  brea,coloovar L 1 1 o o o 1 o o o 1 o 1 o 5
K4824-4 panc  breacoloovar L 1 1 o o o 1 o o o o o o o 3
Ks5108-24  ovar brea,ovar L 1 o o o o 1 o o o 0.06 o 0.003 o 2.063
K5216-6  breast brea,colo,ovar L 1 1 o [ [ 1 0 o [ 0.011 [ 0 o 3.011
K6266-2 mela brea,coloovar L 1 1 o o o 1 o o o 0.988 o o o 3.988
K6267-2  lung  brea,coloovar L 1 1 o o o 0.998 o o [ 0.098 o o o 3.096
K6268-2  panc  brea,coloovar L 1 1 o o o 1 o o o o 0.015 0.008 o  3.023
K6269-2  gast  colo,ovaruter L o 1 0729 0 o 1 o o o o o 0782 0o  3.511
K6270-2 gast  brea,colo,ovar L 1 1 o o o 1 o o o 0.995 o o 0 3.995
K6271-2  rena  breacoloovar L 1 1 o o o 1 o  0.013 1 0.999 o o 0  5.012
Ké6272-2  rena  brea,coloovar L 1 1 o o o 1 o o 1 0.995 o o 0 4995
K6365-2 colo  brea,colo,ovar L 1 1 o o o 1 o o o 0.963 o o o 3.963
K6366-2  colo  breacoloovar L 1 1 o o o 1 o 0 o o o 0.006 0  3.006
K6367-2  colo  breacoloovar L 1 1 o o o 1 o o o o o o o 3
K6368-2  lung  brea,coloovar L 1 1 o o o 1 o 0.999 0.014 1 0.001 o 0 5014
K6369-2  brea  brea,colo,ovar L 1 o o o 1 o o o 0.998 o 0626 0  4.624
K6370-2  brea  breaovartest L 1 0999 O o o 1 o o o 1 o o 0 3.999
K6371-2  pros  breacoloovar L 1 1 o o o 1 o 1 o 1 o o o 5
K6372-2  pros  breacolopros L 1 1 o o o 0766 o 1 o 1 [ o 0 4.766

Table A23: Classification results of RNAseq-MU_voom data with a SVM model trained on /og>-
transformed intensity data.

Sample Actual Pred DM brea colo gast mela meso ovar panc pros rena test SCCo wuter lung Total
K1999-6  colo lungpanc,gast L 0 0 0.971 0.003 0.005 0.059 0.999 O 0279 O o 0.001 1 3.317
K2170-6 melan melalung,panc L o o 0364 1 0.01 0.011 0.985 o 0.695 o0 o o 1 4.065
K2953-5 lung lungpancrena L o 0 0567 0.026 0.008 0.124 0.996 o 082 o o 0.001 1 3.542
K4824-4 panc  ovarpanclung L o 0 0219 0.006 0.025 1 1 o 0.014 O o o 0.991 3.255
K5108-24 ovar  ovarlungpanc L o o 0288 0.001 0.068 1 0.987 o 0.045 O o o 1 3.389
K5216-6  breast lungbreapanc L 0995 o0 0.245 001 0.004 0.718 0.975 o 0035 O o o 1 3.982
K6266-2 mela  ovarlung,panc L o o 0.14 0.002 0.048 1 0.945 0o 0056 O o 0.001 1 3.192
K6267-2  lung  lungovarpanc L o 0 0547 0.006 0.003 0.993 0.981 0.001 0.151 O o o 1 3.682
K6268-2  panc  ovarpanclung L o 0 0799 0.003 0.008 1 1 o 0.18 0  0.003 0.001 1 3.994
K6269-2 gast gast,ovar,panc L o o 1 0.004 0.003 0.999 0.999 0.001 0.271 O o o 0.998 4.275
K6270-2 gast  lungpancovar L o 0 0914 0.01 0.004 0.997 0.999 o 0.018 o0 o o 1 3.942
K6271-2  rena  renalung,ovar L 0 0 0.061 0.009 0.007 0.982 0.911 0.001 1 [¢] o [¢] 1 3.971
K6272-2  rena  ovarlungrena L o 0o 0101 0.01 0.018 1 0.965 o 0999 O [¢] o 1 4.093
K6365-2 colo  lungpancgast L o 0 0791 0.006 0.006 0.282 0.996 o 0.055 O o o 0.999 3.135
K6366-2 colo  ovarpanclung L o o 0.42 0.004 0.006 0.996 0.995 o 0.11 o o 0.001 0.975 3.507
K6367-2  colo  ovarpanclung L o 0 0347 0.008 0.007 1 0996 0 0.014 O  0.001 o 0.94 3.313
K6368-2  lung  lungovarppanc L o 0 0082 0.047 0.042 0.999 0.906 0.007 0.679 0 o o 1 3.762
K6369-2  brea lungovarpanc L 0092 o 0.4 0.087 0.007 0.938 0.931 o 0.059 O o o 1 3.514
Ké6370-2  brea  lungovarpanc L 0107 o0 0256 0021 0.025 0.999 0.979 O 0212 0 o o 1 3.599
K6371-2  pros  lungpanc,pros L o o 0.02 0.039 0.016 0895 0.977 0.97 0212 O o o 1 4.129
K6372-2  pros  lungpros,panc L o 0 0111 0.026 0.015 0.806 0.904 0.993 0.207 O o 0.001 1 4.063
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Table A24: Classification results of RNAseq_MU_RPM data with a SVM model trained on raw intensity
data.

Sample Actual Pred DM brea colo gast mela meso ovar panc pros rena test SCCo wuter lung Total

K1999-6 colo  panc,lung,mela 0.012 0.014 0.065 0.145 0.008 0.117 0.713 0.014 0.127 0.011 0.026 0.017 0.582 1.851

K2170-6 melan panclungmela 0.012 0.013 0.062 0.176 0.008 0.102 0.698 0.013 0.142 0.011 0.028 0.016 0.577 1.858
K2953-5 lung  panclungmela 0.013 0.013 0.069 0.138 0.007 0.11 0.67 0.014 0.123 0.011 0.028 0.017 0.566 1.779
K4824-4 panc  panclungmela 0.015 0.018 0.055 0.123 0.009 0.099 0.674 0.011 0.081 0.008 0.033 0.013 0.548 1.687
K5108-24 ovar  panclung,ovar 0.015 0.017 0.049 0.105 0.009 0.116 0.663 0.012 0.093 0.009 0.033 0.015 0.601 1.737
K5216-6  breast panclungmela 0.016 0.011 0.06 0.13 0.007 0.122 0.685 0.014 0.113 0.011 0.027 0.016 0.608 1.82
K6266-2  mela panclungmela 0.013 0.014 0.058 0.123 0.008 0.123 0.681 0.014 0.12 0.011 0.029 0.016 0.591 1.801
K6267-2  lung  panclungmela 0.011 0.017 0.062 0.151 0.007 0.09 0.689 0.013 0.116 0.011 0.026 0.015 0.561 1.769
K6268-2  panc  panclungmela 0.013 0.013 0.061 0.128 0.008 0.094 0.685 0.013 0.12 0.01 0.036 0.016 0.495 1.692
K6269-2  gast  panclungmela 0.012 0.013 0.071 0.142 0.008 0.097 0.708 0.013 0.102 0.01 0.029 0.015 0.54 1.76
K6270-2 gast  panc,mela,lung 0.009 0.007 0.13 0.406 0.005 0.075 0.75 0.01 0.044 0.014 0.026 0.007 0.378 1.861
K6271-2  rena  panclungmela 0.014 0.014 0.057 0.132 0.008 0.107 0.702 0.013 0.131 0.01 0.03 0.016 0.583 1.817
Ké6272-2 rena  panc,lungmela 0.013 0.013 0.062 0.142 0.008 0.106 0.699 0.013 0.14 0.011 0.028 0.015 0.581 1.831
K6365-2  colo  panclungmela 0.012 0.016 0.063 0.142 0.008 0.101 0.705 0.014 0.13 0.011 0.027 0.017 0.584 1.83
K6366-2  colo  panclungmela 0.011 0.021 0.058 0.133 0.008 0.079 0.702 0.013 0.108 0.009 0.026 0.016 0.536 1.72
K6367-2  colo  panclungmela 0.012 0.015 0.06 0.133 0.008 0.093 0.711 0.013 0.113 0.01 0.028 0.017 0.567 1.78
K6368-2  lung  panclungmela 0.013 0.013 0.059 0.141 0.008 0.109 0.695 0.013 0.132 0.011 0.029 0.016 0.589 1.828
K6369-2  brea  panclungmela 0.014 0.012 0.066 0.149 0.008 0.109 0.709 0.014 0.129 0.011 0.028 0.017 0.587 1.853
K6370-2  brea  panclungmela 0.014 0.013 0.063 0.141 0.008 0.108 0.69 0.013 0.118 0.011 0.028 0.015 0.609 1.831

Ké6371-2  pros  panclungmela 0.012 0.013 0.058 0.134 0.008 0.1 0.693 0.017 0.123 0.01 0.029 0.016 0.585 1.798

| o o e N o o o Y <G e N o o o Y Y o o

K6372-2  pros  panclungmela 0.01 0.012 0.061 0.141 0.008 0.099 0.699 0.021 0.125 0.011 0.027 0.017 0.57 1.801

Table A25: Classification results of RNAseq_MU_RPM data with a SVM model trained on background
corrected intensities intensity data.

Sample Actual Pred DM brea colo gast mela meso ovar panc pros rena test SCCo uter lung Total

K1999-6  colo  panclung,ovar 0.015 0.018 0.037 0.079 0.007 0.104 0.614 0.013 0.088 0.011 0.015 0.023 0.42 1.444

K2170-6 melan panclung,rena 0.016 0.018 0.033 0.092 0.007 0.096 0.597 0.013 0.1 0.011 0.016 0.022 0.415 1.436
K2953-5 lung panc,lung 0.015 0.018 0.036 0.08 0.007 0.097 0.565 0.013 0.088 0.011 0.016 0.023 042 1.389
K4824-4  panc panc,lung

K5108-24 ovar  panclung,ovar

0.018 0.024 0.026 0.084 0.008 0.098 0.597 0.011 0.067 0.008 0.02 0.017 0.378 1.356
0.019 0.022 0.024 0.072 0.009 0.105 0.578 0.012 0.075 0.009 0.019 0.019 0.437 1.4

K5216-6  breast panclung,ovar 0.02 0.016 0.033 0.076 0.007 0.I11 0.592 0.013 0.082 0.011 0.015 0.021 0.443 1.439
K6266-2 mela panclung,ovar 0.017 0.019 0.03 0.072 0.008 0.11 0.584 0.013 0.087 0.011 0.016 0.021 0.431 1.419
K6267-2  lung panc,lung 0.013 0.022 0.034 0.083 0.007 0.087 0.588 0.013 0.081 0.011 0.014 0.02 0.403 1.376
K6268-2  panc panc,lung 0.016 0.018 0.032 0.074 0.008 0.088 0.591 0.012 0.087 0.01 0.02 0.021 0.351 1.328
K6269-2 gast panc,lung 0.015 0.017 0.038 0.086 0.008 0.094 0.625 0.012 0.077 0.01 0.017 0.02 0.374 1.393
K6270-2  gast  panc,melalung 0.01  0.01 0.067 0.221 0.005 0.087 0.726 0.011 0.034 0.014 0.015 0.01 0.194 1.404
K6271-2 rena panc,lung 0.017 0.018 0.03 0.077 0.008 0.097 0.611 0.013 0.096 0.01 0.017 0.021 0.419 1.434
K6272-2  rena  panclungrena 0.016 0.017 0.033 0.082 0.007 0.096 0.609 0.013 0.1 0.011 0.016 0.02 0.419 1.439
K6365-2  colo panc,lung 0.015 0.021 0.034 0.079 0.007 0.091 0.606 0.013 0.091 0.011 0.015 0.022 0.426 1.431
K6366-2 colo panc,lung 0.013 0.026 0.031 0.078 0.008 0.077 0.607 0.013 0.08 0.01 0.015 0.021 0.385 1.364
K6367-2  colo panc,lung 0.015 0.02 0.032 0.077 0.008 0.09 0.619 0.013 0.083 0.01 0.016 0.022 0.412 1.417
K6368-2  lung panc,lung 0.016 0.018 0.031 0.08 0.008 0.099 0.599 0.013 0.094 0.011 0.017 0.022 0.422 1.43

K6369-2  brea panc,lung 0.017 0.016 0.036 0.082 0.007 0.097 0.617 0.013 0.091 0.012 0.015 0.022 0.424 1.449

o B B Y Y o o O o Y o e <Y Y N o o O o B o B o B o

K6370-2  brea panc,lung 0.017 0.017 0.033 0.081 0.008 0.097 0.601 0.013 0.085 0.011 0.016 0.02 0.443 1.442
K6371-2  pros panc,lung 0.014 0.018 0.031 0.077 0.008 0.093 0.598 0.016 0.089 0.011 0.016 0.021 0.421 1.413
K6372-2  pros panc,lung 0.012 0.016 0.034 0.077 0.007 0.092 0.598 0.019 0.088 0.011 0.015 0.022 0.41 1.401
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Table A26: Classification results of RNAseg MU_RPM data with a SVM model trained on
transformed intensity data.

logs-

Sample Actual Pred DM brea colo gast mela meso ovar panc pros rena test SCCo wuter lung Total
K1999-6 colo  panclungovar L  0.015 0.018 0.037 0.079 0.007 0.104 0.614 0.013 0.088 0.011 0.015 0.023 0.42 1.444
K2170-6 melan panclungrena L  0.016 0.018 0.033 0.092 0.007 0.096 0.597 0.013 0.1 0.011 0.016 0.022 0.415 1.436
K2953-5  lung panc,lung L o0.015 0.018 0.036 0.08 0.007 0.097 0.565 0.013 0.088 0.011 0.016 0.023 042 1389
K4824-4  panc panc,lung L  0.018 0.024 0.026 0084 0.008 0098 0.597 0.011 0.067 0.008 0.02 0.017 0378 1.356
K5108-24 ovar panclungovar L  0.019 0.022 0.024 0.072 0.009 0.105 0.578 0.012 0.075 0.009 0.019 0.019 0.437 1.4
K5216-6  breast panclungovar L 0.02 0.016 0.033 0.076 0.007 0.I11 0.592 0.013 0.082 0.011 0.015 0.021 0.443 1.439
K6266-2 mela panclungovar L  o0.017 0.019 003 0.072 0008 0.11 0584 0013 0087 0011 0.016 0.021 0431 1.419
K6267-2  lung panc,lung L o0.013 0.022 0034 0083 0.007 0087 0.588 0.013 0.081 0.011 0.014 0.02 0.403 1.376
K6268-2  panc panclung L  0.016 0.018 0.032 0.074 0.008 0.088 0.591 0.012 0.087 0.01 0.02 0.021 0351 1.328
K6269-2 gast panc,lung M  0.015 0.017 0.038 0.086 0.008 0.094 0.625 0.012 0.077 0.01 0.017 0.02 0.374 1.393
K6270-2 gast pancmelalung H  o0.01 0.1 0067 0.221 0.005 0087 0726 0011 0.034 0.014 0.015 0.01 0.194 1.404
K6271-2  rena panc,lung L o0.017 0.018 003 0.077 0008 0.097 0.611 0.013 0.096 0.01 0.017 0.021 0.419 1.434
Ké6272-2 rena  panclungrena L 0016 0.017 0.033 0.082 0.007 0.096 0.609 0.013 0.1 0.011 0.016 0.02 0.419 1.439
K6365-2  colo panc,lung L 0.015 0.021 0.034 0.079 0.007 0.091 0.606 0.013 0.091 0.011 0.015 0.022 0.426 1.431
K6366-2  colo panc,lung L 0.013 0.026 0.031 0078 0.008 o0.077 0.607 0.013 0.08 0.01 0.015 0.021 0385 1.364
K6367-2  colo panc,lung L o0.015 002 0032 0077 0008 0.09 0619 0.013 0.083 0.01 0.016 0.022 0.412 1.417
K6368-2  lung panc,lung L 0016 0.018 0.031 0.08 0.008 0.099 0.599 0.013 0.094 0.011 0.017 0.022 0.422 1.43
K6369-2  brea panc,lung L o0.017 0.016 0.036 0.082 0.007 0.097 0.617 0.013 0.091 0.012 0.015 0.022 0.424 1.449
K6370-2  brea panc,lung L o0.017 o0.017 0.033 0.081 0.008 0.097 0.601 0.013 0.085 0.011 0.016 0.02 0.443 1.442
K6371-2  pros panc,lung L o0.014 0.018 0.031 0.077 0.008 0.093 0.598 0.016 0.089 0.011 0.016 0.021 0.421 1.413
K6372-2  pros panclung L o0.012 0.016 0.034 0.077 0.007 0.092 0.598 0.019 0.088 0.011 0.015 0.022 0.41 1.401
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Training performance of neural networks:

The following figures show the classification performance of a neural network

in terms of accuray and loss per completed epoch. Red represents the training data

set and green the respective validation data. Generally loss should be minimized

while accuracy should be maximized.

loss.

oo
°
%':—1-

00805ty data

== training

=&~ validation

categorical_accuracy

o
0 20 40 50
epoch

(a) Trainig of model_CNN_RNAseq_19 with
TCGA data RNAseq_TCGA_19 (19 classes)
using a CNN.
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(b) Trainig of model_CNN_RNAseq_33_balanc
ed with TCGA data RNAseq_TCGA_19_ba
lanced (33 balanced classes) using a CNN.

Figure A1: Training and validation processes of of model_CNN_RNAseq_19 and model_CNN_RNAseq

_33_balanced.
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(a) Trainig of model_FNNN_Tothill_MA_13_ma(b) Trainig of model FFNN_RNAseq_12 with

pped with microarray data MA_Tothill_
13_mapped.
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(c) Trainig of model_FFNN_RNAseq_19 with(d) Trainig of model_DEEP_RNAseq_19 with

TCGA data RNAseq_TCGA_19 (19 classes)
using a simple NN.

TCGA data RNAseq_TCGA_19 (19 classes)
using a deep learning NN.

Figure A2: Training and validation processes of of model_FNNN_Tothill_MA_1_mapped, model_FFNN_
RNAseq_12, model _FFNN_RNAseq_19 and model_DEEP_RNAseq_19.
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(c) Trainig of model_DEEP_RNAseq_19_mapped(d) Trainig of model_CNN_RNAseq_19_mapped
with TCGA data RNAseq_TCGA_19_mapped  with TCGA data RNAseq_TCGA_19_mapped
(19 classes) using a deep learning NN. (19 classes) using a CNN.

Figure A3: Training and validation processes of of model_CNN_RNAseq_33_mapped, model_FFNN_RNAs
eq_19_mapped, model_DEEP_RNAseq_19_mapped and model_CNN_RNAseq_19_mapped.
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Confusion tables of neural network classifications:

In confusion tables the classification performance is visualized in matrix form,
rows representing the predicted label and columns the true label of a class. Correct
classifications are in the principal diagonal while misclassifications are not contained.
A perfect model would show all classifications in the principal diagonal.

Table A27: Confusion table of the classification results of model_FFNN_Tothill_MA_13_processed
using MA data MA_Tothill_13_processed resulting in a classification accuracy of 86.97%.

classes brea colo gast mela meso ovar panc pros rena test SCCo uter lung
brea (7) | 7[1.00] o o o o 0 o 0 0 o) 0 0 0
colo (6) o 5[0.83] 0 o o 0 1 o 0 o o 0 o
gast (2) o o 2[1.00] o o o o o o o 0 o o
mela (6) o 0 0 6[1.00] 0 0 o 0 0 0 0 0 o
meso (1) o o] 0 o] 1[1.00] 0 o] o] 0 o] o) 0 o
ovar (5) o o 0 o o 5[1.00] o o 0 o o 0 o
panc (3) o o 0 o o 0 4[1.00] o 0 o o 0 o
pros (3) o o 0 o o 0 o 3[1.00] 0 o o 0 o
rena (2) 1 0 0 o) 0 0 o] 0 1[0.50] o] 0 0 o
test (1) o o o o o o o o o 1[1.00] o o o
SCCo (1) o o 0 o 0 0 o 0 0 o) 1[1.00] 0 0
uter (1) o o 0 o o] 0 o] o] 0 o] 0 1[1.00] o]
lung (7) o o o o o 1 o o o o o o 6[0.86]

Table A28: Confusion table of the classification results of model FFNN_RNAseq_19 using data
RNAseq-TCGA_19 resulting in a classification accuracy of 97.42%.

classes ACC BLCA BRCA CESC GBM RENA LAML LGG LIHC LUNG ov PAAD PRAD SKCM STAD TGCT THCA ucs UuvM
ACC (29) 24[1.00] o o o o o o o o o o o o o o o o o o
BLCA (96) o 86[0.90] 1 5 o o o o o o o o o o 2 1 o 1 o
BLCA (229) o 2 226[0.99] 1 o o o o o o o o o o o o o o o
CESC (68) o 2 o 66[0.97] o o o o o o o o o o o o o o o
GBM (31) o o o o 27[0.87] o o 3 o o o o o o o o o 1 o
RENA (194) 1 1 o 0 0 192[0.99] 0 o o o o 0 o o o 0 o o o
LAML (38) o o o o o o 38[1.00] o o o o o o o o o o o o
LGG (107) o o o o 3 o o 104[0,97] o o o o o o o o o o o
LIHC (79) o o o o o o o o 79[1.00] o o o o o o o o o o
LUNG (227) o 4 o 3 o o o o 1 216[0.95] 1 1 o o o 1 o o o
OV (61) o o o o o o o o o o 61[1.00] o o o o o o o o
PAAD (37) o o o o o o o o o o o 36[0.97] o o 1 o o o o
PRAD (115) 0 o o o o o o o 0 0 0 o 115[1.00] 0 o 0 o o o
SKCM (104) o 1 o o o o o 1 o o o o o 100[0.96] o o o o 2
STAD (87) o o o o o o o o o o o o o o 87[1.00] o o o o
TGCT (32) o o o o o o o o o o o o o o o 32 o o o
THCA (106) o o o o o o o o o 1 o o o 0 0 o 10500.99] o 0
UCS (11) o o 1 o o o o o o 1 1 o o o o o o 8[0.73] o
UVM (17) o o o o o o o o o o o o o o o o o o 17[1.00]

Table A29: Confusion table of the classification results of model DEEP_RNAseq_-19 using data
RNAseq-TCGA_19 resulting in a classification accuracy of 79.74%.

classes ACC BLCA BRCA CESC GBM RENA LAML LGG LIHC LUNG ov PAAD PRAD SKCM STAD TGCT THCA Ucs UVM
ACC (249) 24[1.00] o o o o o o o o o o o o o o o o o o
BLCA (96) o 66[0.69] o o o 1 o o o 7 o o o o 22 o o o o
BRCA (223) o 6 187[0.84] o o 3 o o o 17 2 o o o 14 o o o o
CESC (68) o 29 o o[o.00] o o o o o 4 o o o o 35 o o o o
GBM (31) o o o o o[o.00] 1 o 28 o o 1 o o o 1 o o o o
RENA (194) o 1 o o o 191[0.98] o o o 1 o o o o 1 o o o o
LAML (38) o o o o o o 38[1.00] o o o o o o o o o o o o
LGG (107) o o o o o o o 106[0.99] o o o o o o 1 o o o o
LIHC (79) o o o o o 1 o o 72[0.91] o o o o o 6 o o o o
LUNG (227) o 17 o o o 1 o o o 188[0.83] o o o o 21 o o o o
OV (61) o 2 o o o 2 o o o 2 30[0.49] o o o 25 o o o o
PAAD (37) o 13 o o o 5 o o o o o o[o.00] o o 19 o o o o
PRAD (115) o o 4 o o o o o o o o o 111[0.97] o o o o o o
SKCM (104) o o o o o o o o o o 2 o o 96[0.92] 2 o o o
STAD (87) o 8 o o o 1 o o o o 1 o o o 77[0.89] o o o o
TGCT (32) 0 0 0 0 o 0 o 0 o 16 4 o o 1 11[0.34] o 0 o
THCA (106) o o o o o 1 o o o 1 o o o o o o 104[0.98] o o
UCS (11) o o o o o o o o o 10 o o o o 1 0 o ofo.00] o
UVM (17) o o o o o o o o [ o [ o o 17 o o o o o[o.00]
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Table A3o: Confusion table of the classification results of model CNN_RNAseq_19 using data
RNAseq_TCGA_19 resulting in a classification accuracy of 98.50%.

classes ACC BLCA BRCA CESC GBM RENA LAML LGG LIHC LUNG ov PAAD PRAD SKCM STAD TGCT THCA Uucs UVM
ACC (11) 11[1.00] o o o o o o o o o o o o o o o o o o
BLCA (81) o 750003 o 2 o o o o o 2 o o o 2 0 0 0 0 0
BRCA (238) o o 238[1.00] o o o o o o o o o o o o o o o o
CESC (61) o 1 o 58[0.95] o o o o o 1 o o o o o o o 1 o
GBM (37) o o 1 o 34[0.92] o o 2 o o o o o o o o o o o
RENA (206) o o o 1 o 5(0.99] o o o o o o o o o o o o o
LAML (36) o o o o o o 36[1.00] o o o o o o o o o o o o
LGG (119) o o o o 1 o o 112[0.98] o o o o o o o o o 1 o
LIHC (90) o o o o o o o o 90[1.00] o o o o o o o o o o
LUNG (208) o o o 1 o o o o o 206[0.99] o 1 o o o o o o o
OV (59) o o o o o o o o o o 59[1.00] o o o o o o o o
PAAD (47) 0 1 o o 0 o o o o o o 45[0.96] o 1 o o o 0 o
PRAD (117) o o o o o o o o o o o o 117[1.00] o o o o o o
SKCM (102) 1 o o o o o o o o 2 o o o 98[0.96] o o o 1 o
STAD (92) o o o o o o o o o o o o o o 92[1.00] o o o o
TGCT (23) o o o o o o o o o o o o o 0 o 23100 0 0 0
THCA (113) o o o o o o o o o o o o o o o o 113[1.00] o o
UCS 8) o o o 1 o o o o o 1 o o o o o o o 6[0.75] o
UVM (20) o o o 0 o o o o 0 o 0 o o 0 o o o o 20[1.00]

Table A31: Confusion table of the classification results of model FFFN_RNAseq_19_mapped using data
RNAseq-TCGA_19_mapped resulting in a classification accuracy of 96.93%.

classes ACC BLCA  BRCA CESC  GBM RENA LAML LGG LIHC LUNG ov PAAD PRAD SKCM STAD TGCT THCA ucs UvM
ACC (29 | 24[100] o o o o o o o o o o ) ° o o ° ° ° o
BLCA (96) o 78[0.81] o 2 o o o o o 11 o 1 o o 2 2 o o o
BRCA (229) o 1 227[0.99] 1 o o o 0 0 0 o o o o o o o 0 o
CESC (68) o o o 62[1.00] o o o o o 3 2 o o o o o o 1 o
GBM (31) o o o o 27[0.91] o o 4 o o o o o o o o o o o
RENA (194) o 1 1 o o 192[0.99] o o o o o o o o o o o o o
LAML (38) o o o o o o 38[1.00] o o o o o o o o o o o o
LGG (107) o o o o 1 o o 106f099] © o o o 0 0 0 0 0 0 0
LIHC (79) o o o o o o o o 79[1.00] o o o o o o o o o o
LUNG (227) o 2 o o o o o o 1 221[0.97] 1 2 o o o o o o o
OV (61) o o o o o o o o 0 o 61[1.00] o o o o o o o o
PAAD (37) o o o o o o o o o o o 37[1.00] o o o o o o o
PRAD (115) o o o o o o o o o o o o 115[1.00] o o o o 0 0
SKCM (104) o o o o o o o 1 o 1 o o o 100[0.96] o o o o 2
STAD (87) o o o o o o o o o o o o o o 87[1.00] o o o o
TGCT (32) o o o o o o 0 o o o o o o o o 32[1.00] o o o
THCA (106) o o o o o o 0 0 0 1 o o o o 0 0 105[0.99] o o
UCS (11) o o o o o o o o o 2 o o o o 0 0 o ol082] o
UVM (17) o o o o o o o o o o o o o o o o o o 17[1.00]

Table A32: Confusion table of the classification results of model DEEP_RNAseq-19_mapped using data
RNAseq-TCGA_19_mapped resulting in a classification accuracy of 81.84%.

classes ACC BLCA BRCA CESC GBM RENA LAML LGG LIHC LUNG ov PAAD PRAD SKCM STAD TGCT THCA Uucs UVM
ACC (29 24[1.00] o o o o o o o o o o o o o o o o o o
BLCA (96) o 71l0.74] 2 2 o o o o o 6 7 o o 1 5 2 o o o
BRCA (228) o 2 208[0.92] o o o o o o 7 11 o o o o 1 o o o
CESC (68) o 33 2 7[o.10] o o o o o 15 5 o o o 6 o o o o
GBM (31) o o o o o[o.00] o o 29 o o o o o 2 o o o o o
RENA (194) 0 1 0 o o 189[0.97] o o o o 2 0 0 0 2 o o o o
LAML (38) o o o o o o 38[1.00] o o o o o o o o o o o o
LGG (107) o o o o o o o 106[0.99] o o o o o 1 o o o o o
LIHC (79) o o o o o 4 o o 73[0.92] o o o o o 2 o o o o
LUNG (227) o 13 o 2 o o o o 1 187[0.82] 12 o o o 11 1 o o o
OV (61) o o o o o 1 o o o o 47lo.771 o o o 13 o o o o
PAAD (37) o 1 o o o 2 o o o o 4 o[o.00] o o 30 o o o o
PRAD (115) o o o o o o o o o o 0 0 111[0.97] 0 4 0 0 o o
SKCM (104) o o o o o o o o [ 2 o o o 102[0.98] o o o o o
STAD (87) o 2 o o o o o o o o 17 o o o 68[0.78] o o o o
TGCT (32) o o 1 o o o o o o 1 13 o o 5 o 12[0.38] o o o
THCA (106) o o o o o o o o o 1 o o o o 1 o 104[0.98] o o
UCS (11) o o o o o o o o o o 5 o o 2 o 4 o o[o.00] o
UVM (17) o o o o o o o o o o o o o 17 o o o o olo.00]

Table A33: Confusion table of the classification results of model CNN_RNAseq_19_mapped using data
RNAseq_-TCGA_19_mapped resulting in a classification accuracy of 98.32%.

classes ACC BLCA  BRCA CESC  GBM RENA LAML LGG LIHC LUNG ov PAAD PRAD SKCM STAD TGCT THCA UCS UvM
ACC (1) |11[1oo] o ) o ° o o o o o o o ° ° o ° ° ° °
BLCA (81) o 73[0.90] 1 2 o o o o o 3 o o o 1 o o o 1 o
BRCA (238) o o 238[1.00] o o o o o o o o o o o o o o o o
CESC (61) o 1 o 570093 o o o o o 1 o o 0 0 1 0 0 1 0
GBM (37) 0 o 1 0 35[0.95] o 0 1 o 0 0 0 0 o o 0 o o o
RENA (206) o o o 1 o 205[0.99] o o o o o o o o o o o o o
LAML (36) o o o o o o 36[1.00] o o o o o 0 0 0 0 0 0 0
LGG (114) o o o o 2 o o 111[0.97] o o o o o o o o o 1 o
LIHC (90) o o o o o o o o 9o[1.00] o o o o o o o o o o
LUNG (208) o o o o o o o o o 207[0.99] o 1 o o o o o o o
OV (59) o o o o o o o o o o 58[0.98] o o o 1 o o o o
PAAD (47) o o o o o 1 o o o o o 45[0..96] o 1 o o o o o
PRAD (117) o o o o o o o o o o o o 117[1.00] o o o o o o
SKCM (102) 1 o o o o o o o o 2 o o o 98[0.96] o o o 1 o
STAD (92) o o o o o o o o o o o o o o 92[1.00] o o o o
TGCT (23) o o o o o o o o o o o o o o o 23[1.00] o o o
THCA (113) o o o o o o o o o o o o o o o o 113[1.00] o o
ucs ) o o 1 o o o o o o o 1 o o 0 0 0 o 60751 o
UVM (20) o o o o o o o o o o o o o o o o o o 20[1.00]
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ing in a

fication results of model CNN_RNAseq_33_-mapped using data RNAseq-TCGA_33-mapped result

classification accuracy of 93.88%.

BLCA

i

: Confusion table of the class

Table A34

UvM

STAD TGCTT THCA THYM UCEC ucs

SKCM

ov PAAD PCPG PRAD READ SARC

LUSC  MESO

GBM HNSC  KICH KIRC KIRP  LAML LGG LIHC LUAD

CESC  CHOL COAD DLBC ESCA

BRCA

ACC

86[0.91]

o

255[0.98]

55[0.86]

o

o

°

6300.86]

o

10[1.00]

2700.73]

o

o

106[0.98]

o

10071]

o
o
o
96[0.97]

wfogr] 5
3 70[0.95]
o o
o o

4
1
o
o

11
97[0.88]

106[0.89]

°

17[0.89]

o

63[0.98]

32[1.00]

o

31(1.00]

99[1.00]

1200.67]

o

45[0.98]

o
85[0.96]

101[0.96]

27[1.00]

98[1.00]

°

28[1.00]

°

o
18[1.00]

11{0.69]

4

o

classes

COAD (72)

ESCA (37)

HNSC (108)
KICH (14)
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LIHC (95)

MESO (19)

PAAD (32)

STAD (89)

TGCTT (27)

UVM (18)



ingin a

fication results of mode] CNN_RNAseq_33_balanced using data RNAseq-TCGA_33_balanced result

classification accuracy of 89.90%.

Confusion table of the classi

Table A3s

UVM

ucs

SARC SKCM STAD TGCTT THCA THYM UCEC

LUSC MESO oV PAAD PCPG PRAD READ

LGG LIHC LUAD

LAML

BLCA BRCA CESC CHOL COAD DLBC ESCA GBM HNSC KICH KIRC KIRP

ACC

°

13[0.93]

o

o

9[1.00]

o

o

8[1.00]

°

ol1.00]

°

o

o
11[0.92]

12[0.92]

o

o

o
o
o
o

7lo.78]

5[0.83]
o
o
o

700.88]

o

11[0.92]

o

o
5[1.00]

6[0.67]

1

°

o

o

o
4[1.00]

13[0.93]

o

8[1.00]

°

11[0.67]

o

10[0.83]

o

10[0.83]

o

8[0.88]

4[1.00]

7l1.00]

3[1.00]

o

14[0.93]

1

8[1.00]

o

classes

BLCA (14)
BRCA (9)

HNSC (13)

102

MESO (5)

PAAD (g)

TGCTT ()
THCA ()

THYM (3)

UCEC (5)

UCS (15)

UVM (8)



Table A36: Overview of misclassifications of a neural network classifying TCGA RNA-seq data with
common MU Graz features.

sample | predicted_labels true_labels
TCGA.BT.A20V.01A.11R.A14Y.07 CESC BLCA
TCGA.C4.A0F7.01A.11R.A084.07 LUSC BLCA
TCGA.GD.A306S5.01A.12R.A220.07 ucs BLCA
TCGA.K4.A5RH.01A.11R.A30C.07 SARC BLCA
TCGAXF.AAMH.o1A.11R.A42T.07 CESC BLCA
TCGA.AC.A2QH.o1A.11R.A18M.07 ucs BRCA
TCGA.AC.A7VC.01A.11R.A352.07 SARC BRCA
TCGA.EA.A556.01A.11R.A26T.07 UCEC CESC
TCGA.MA.AA3Y.01A.11R.A38B.07 BLCA CESC
TCGA.R2.A69V.01A.11R.A32P.07 BLCA CESC
TCGA.VS.A8QH.01A.11R.A370.07 READ CESC
TCGA.VS.AgVo.01A.11R.A42T.07 LUAD CESC
TCGA.W5.AA2G.01A.11R. Ag1l.07 LIHC CHOL
TCGA.Ws5.AA2U.11A.11R. Ag1l.07 LIHC CHOL
TCGA.W5.AA2X.11A.11R. Ag1l.07 LIHC CHOL
TCGA.Ws5.AA30.11A.11R. Ag1l.07 LIHC CHOL
TCGA.Ws5.AA36.01A.11R. Ag1l.07 LIHC CHOL
TCGA.A6.5662.01A.01R.1653.07 READ COAD
TCGA.A6.A565.01A.31R.A28H.07 READ COAD
TCGA.AA.3660.01A.01R.1723.07 READ COAD
TCGA.AY.5543.01A.01R.1653.07 READ COAD
TCGA.AZ.4682.01B.01R.A32Z.07 READ COAD
TCGA.AZ.6603.01A.11R.1839.07 READ COAD
TCGA.CK.4952.01A.01R.1723.07 READ COAD
TCGA.CM.5349.01A.21R.1723.07 READ COAD
TCGA.CM.5864.01A.01R.1653.07 READ COAD
TCGA.CM.5868.01A.01R.1653.07 READ COAD
TCGA.CM.6163.01A.11R.1653.07 READ COAD
TCGA.CM.6172.01A.11R.1653.07 READ COAD
TCGA.DM.A1Do.o1A.11R.A155.07 READ COAD
TCGA.DM.A1D7.01A.11R.A155.07 READ COAD
TCGA.DM.A1Dg.01A.11R.A155.07 READ COAD
TCGA.DM.A285.01A.11R.A16W.07 READ COAD
TCGA F4.6704.11A.01R.1839.07 READ COAD
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Table A36: Overview of misclassifications of a neural network classifying TCGA RNA-seq data with
common MU Graz features.

sample | predicted_labels true_labels
TCGA.G4.6311.01A.11R.1723.07 READ COAD
TCGA.QL.AgyD.o1A.12R.A41B.07 READ COAD
TCGA.2H.A9Gl.o1A.11R.A371.31 STAD ESCA
TCGA.JY.Ag38.01A.11R. A371.31 STAD ESCA
TCGA.JY.Ag39.01A.12R. A371.31 STAD ESCA
TCGA.KH.A6WC.01A.11R.A336.31 STAD ESCA
TCGA.L5.A40F.01A.11R.A260.31 STAD ESCA
TCGA.L5.A40P.01A.11R.A260.31 STAD ESCA
TCGA.L5.A8NE.01A.11R.A371.31 STAD ESCA
TCGA.L5.A8NG.01A.11R.A371.31 STAD ESCA
TCGA.L5.A8NR.01A.11R.A371.31 STAD ESCA
TCGA.L5.A8NU.01A.11R.A36D.31 STAD ESCA
TCGA.R6.A6KZ.01A.11R.A31P.31 STAD ESCA
TCGA.R6.A6Y2.01B.11R.A336.31 STAD ESCA
TCGA.V5.AASX.01A.11R.A38D.31 STAD ESCA
TCGA.VR.AA4D.01A.11R. A371.31 STAD ESCA
TCGA.ZR.A9(CJ.01B.11R.A38D.31 STAD ESCA
TCGA.06.AABW.11A.31R.A36H.07 LGG GBM
TCGA.BA.7269.01A.11R.2016.07 LUSC HNSC
TCGA.KL.8329.11A.01R.2315.07 KIRP KICH
TCGA.KN.8427.01A.11R.2315.07 SKCM KICH
TCGA.KN.8430.11A.01R.2315.07 KIRP KICH
TCGA.KN.8433.11A.01R.2315.07 KIRP KICH
TCGA.KN.8435.11A.01R.2315.07 KIRP KICH
TCGA.KO.8403.01A.11R.2315.07 KIRC KICH
TCGA.6D.AA2E.01A.11R.A370.07 KIRP KIRC
TCGA.A3.3363.01A.01R.0864.07 KIRP KIRC
TCGA.AK.3433.01A.02R.1277.07 KICH KIRC
TCGA.AK.3440.01A.02R.1277.07 KICH KIRC
TCGA.AK.3453.01A.02R.1277.07 KIRP KIRC
TCGA.Bo.5107.01A.01R.1420.07 KIRP KIRC
TCGA.Bo.5707.01A.11R.1541.07 KIRP KIRC
TCGA.B8.A54E.01A.11R.A266.07 KIRP KIRC
TCGA.5P.AgKH.01A.11R.A42S.07 KICH KIRP
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Table A36: Overview of misclassifications of a neural network classifying TCGA RNA-seq data with
common MU Graz features.

sample | predicted_labels true_labels
TCGA.AL.3466.01A.02R.1351.07 KIRC KIRP
TCGA.BQ.5887.11A.01R.1965.07 KICH KIRP
TCGA.HE.7130.01A.11R.1965.07 BLCA KIRP
TCGA.MH.A857.01A.11R.A355.07 KICH KIRP
TCGA.CC.AgFV.01A.11R.A37K.07 SARC LIHC
TCGA.FV.A3lo.01A.11R.A22L..07 CHOL LIHC
TCGA.05.4415.01A.22R.1858.07 LUSC LUAD
TCGA.05.5420.01A.01R.1628.07 LUSC LUAD
TCGA.38.4627.11A.01R.1758.07 LUSC LUAD
TCGA.38.4631.01A.01R.1755.07 LUSC LUAD
TCGA.44.7670.01A.11R.2066.07 LUSC LUAD
TCGA.49.4490.11A.01R.1858.07 LUSC LUAD
TCGA.55.6968.01A.11R.1949.07 LUSC LUAD
TCGA.21.1078.01A.01R.0692.07 BLCA LUSC
TCGA.22.4596.01A.01R.1201.07 LUAD LUSC
TCGA.22.4609.11A.01R.2125.07 LUAD LUSC
TCGA.22.5489.11A.01R.1635.07 LUAD LUSC
TCGA.33.4566.01A.01R.1443.07 LUAD LUSC
TCGA.33.4587.01A.11R.2125.07 CESC LUSC
TCGA.33.AASB.0o1A.11R.A405.07 LUAD LUSC
TCGA.39.5034.01A.01R.1443.07 LUAD LUSC
TCGA.43.5670.11A.01R.2125.07 LUAD LUSC
TCGA.56.7730.11A.01R.2125.07 LUAD LUSC
TCGA.56.8201.11A.01R.2247.07 LUAD LUSC
TCGA.56.8309.11A.01R.2296.07 LUAD LUSC
TCGA.77.7338.11A.01R.2045.07 LUAD LUSC
TCGA.77.8007.01A.11R.2187.07 LUAD LUSC
TCGA.77.8007.11A.01R.2187.07 LUAD LUSC
TCGA.90.7964.01A.21R.2187.07 LUAD LUSC
TCGA.96.A4JL.01A.11R.A24Z.07 THYM LUSC
TCGA.O2.A51B.o1A.11R. A27Q.07 BRCA LUSC
TCGA.H6.A45N.11A.12R.A26U.07 SKCM PAAD
TCGA.L1.A7W4.01A.12R.A36G.07 BLCA PAAD
TCGA.HC.7740.11A.01R.2118.07 THCA PRAD
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Table A36: Overview of misclassifications of a neural network classifying TCGA RNA-seq data with
common MU Graz features.

sample | predicted_labels true_labels
TCGA.AF.5654.11A.11R.1660.07 COAD READ
TCGA.EL.6883.01A.31R.1928.07 COAD READ
TCGA.F5.6465.01A.11R.1736.07 COAD READ
TCGA.F5.6861.01A.11R.1928.07 COAD READ
TCGA.DX.AB2J.01A.11R.A38C.07 TGCTT SARC
TCGA.FX.A2QS.11A.11R. A21T.07 KIRP SARC
TCGA.IW.A3M5.01A.22R.A21T.07 UCS SARC
TCGA.D3.A8GE.06A.11R.A37K.07 SARC SKCM
TCGA.ER.A2NF.06A.11R.A18T.07 UvM SKCM
TCGA.ER.A42L.06A.11R.A24X.07 ACC SKCM
TCGA.W3.A828.06A.11R.A352.07 LUAD SKCM
TCGA.YD.A9TA.06A.11R.A39D.oy LUSC SKCM
TCGA.CD.8531.01A.11R.2343.13 DLBC STAD
TCGA.IN.AB1X.01A.11R.A39E.31 ESCA STAD
TCGA.A5.A10H.01A.21R.A22K.07 UCs UCEC
TCGA.AJ.A3NG.o1A.11R.A22K.07 UCSs UCEC
TCGA.AX.A3FS.01A.11R.A22K.07 UCs UCEC
TCGA.AX.A3FT.01A.11R.A22K.07 CESC UCEC
TCGA.D1.A3JP.01A.31R. A22K.07 PAAD UCEC
TCGA.N7.A59B.01A.11R.A28V.07 UCEC UVvM
TCGA.N8.A4PM.01A.11R.A28V.07 UCEC UVvM
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ATF - Axon Text File format (*.atf)

ATF is a tab-delimited text file format that can be read by typical spreadsheet programs
such as Microsoft Excel. It is used for GenePix Array List (GAL) files, and GenePix
Results (GPR) files.

An ATF text file consists of records. Each line in the text file is a record. Each record
may consist of several fields, separated by a field separator (column delimiter). The
tab and comma characters are field separators. Space characters around a tab or
comma are ignored and considered part of the field separator. Text strings are
enclosed in quotation marks to ensure that any embedded spaces, commas and tabs
are not mistaken for field separators.

The group of records at the beginning of the file is called the file header. The file
header describes the file structure and includes column titles, units, and comments.

ATF File Structure

First header record Format: ATF (all caps), Version number

Second header record Number of optional header records n,
Number of data columns (fields) m

1st optional record

2nd optional record

nth optional record

(n+3)th record Required record containing m fields.
Each field contains a column title.
DATA RECORDS Arranged in m columns (fields) of data.

See below under GenePix Array List format for an example of an ATF file.

GAL - GenePix Array List format (*.gal)

Introduction

Example GAL file

Description of header records
Description of data records

A minimal GAL file header
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Introduction

Download a sample GAL file.
See also:
Making_GenePix Array List Files Application Note. [PDF] 281 KB
GAL File Examples specifically for array and arrayer manufacturers.

GenePix Array List files describe the size and position of blocks, the layout of feature-
indicators in them, and the names and identifiers of the printed substances associated
with each feature-indicator.

GenePix Pro includes an integrated Array List Generator which generates GAL files
from plain text files; see the GenePix Pro online Help for details.

GAL files conform to the Axon Text File (ATF) format described above. As such, they
can be created in Microsoft Excel by saving an Excel spreadsheet as Text (Tab
delimited).

To create a GAL file that describes block and feature-indicator positions and geometry,
but without substance IDs or names, save a settings file using the Save Settings As
command in GenePix Pro (select *.gal as the output file type).

GAL files consist of two sections: the header, and data records. The header contains
all the structural and positional information about the blocks; the data records contain
all the name and identifier information for each spot.

GenePix Pro assigns block numbers such that the top leftmost block on the image is
block #1, and the block numbers increase from left to right and then from top to
bottom:

L1 2] 3] 4]
(5 )efl7] 8]
[ 9 Jlo]ua2]
|

13 || 14 |[ 15 || 16 |

The order in which a block was created does not matter; GenePix Pro automatically
renumbers all blocks to follow this rule.

Example GenePix Array List (GAL) file

The following very simple array list file describes four blocks ("BlockCount=4"), each
with 24 columns and 5 rows. For simplicity, we have included the data record
information (name, 1D, etc) only for the first two features:

ATF 1.0

8 5

"Type=GenePix ArraylList vi.0"

"BlockCount=4"

"BlockType=0"
"URL=http://genome-www.stanford.edu/cgi-bin/dbrun/SacchDB?find+Locus+%22[ID]%22"
"Blockl= 400, 400, 100, 24, 175, 5, 175"

"Block2= 4896, 400, 100, 24, 175, 5, 175"

"Block3= 400, 4896, 100, 24, 175, 5, 175"

"Block4= 4896, 4896, 100, 24, 175, 5, 175"

||Block|| "COlUmn" "ROW" IlNamell IIIDII
1 1 1 VPS8 YALOO2W
1 2 1 NTG1 YALO15C

Description of header records

The header section describes basic file information and all block properties apart from
names and IDs (which are in the data records section). Each record is explained
below:

ATF 1.0 (Required) First line of an ATF file; the same in
all GAL files:
File format (ATF) and version (1.0).
8 5 (Required) Second line of an ATF file:

8 (number of optional header records).
5 (number of data columns).
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"Type=GenePix Array List v1.0" (Required) Type of file; the same in all GAL files.

"BlockCount=4" (Optional) Number of blocks described in the
file.

"BlockType=0" (Optional) Type of block described:

0 = rectangular.
1 = orange-packing #1.
2 = orange-packing #2.

"URL=..." (Optional) The URL for the Go To Web
command.
"Supplier=CompanyXYZ" (Optional) The manufacturer that supplied the

array or arrayer.

"ArrayerSoftwareName=Printer Robot (Optional) The name of the arrayer software.
User Interface"

"ArrayerSoftwareVersion=1.1" (Optional) The version number of the arrayer
software.

"ArrayName=MouseApoptosisProteins (Optional) The name of an array as supplied by

4000" an array manufacturer.

"ArrayRevision=2.7" (Optional) The version of an array as supplied by
an array manufacturer.

"SlideBarcode=abc0011, abc0012, (Optional) Barcodes supported by the GAL file,

abc0013" used for barcode-driven automation.

"Blockn=" (Optional) The position and dimensions of each

block. There is one record for each block, and
each record contains 7 fields. Each field is
separated by a comma followed by a space.

XOrigin X position of center of top
leftmost feature of current block
(in pm).

yOrigin Y position of center of top
leftmost feature of current block
(in pm).

FeatureDiameter Diameter of features within the
current block (in pm).

XFeatures Number of columns of features
in current block.

XxSpacing Column spacing of current
block (in um).

yFeatures Number of rows of features in
current block.

ySpacing Row spacing of current block
(in pm).

Note: Positions on arrays are measured in
microns with respect to the origin, which is the top
left corner of the array.

"User Defined" (Optional) You may include any number of
correctly formatted extra lines in the header.
When the GAL file is read as input by GenePix
Pro 4.1, these will be passed to the output
Results (GPR) file.

"Block" "Column" "Row" "Name" "ID" (Required) Last line of the header, containing
column titles for the data records. The quotation
marks are advised, but not necessary.

Description of data records

The Data Record section contains records which describe each feature in detail. It
includes the block, column, and row numbers for features, as well as descriptive name
and identifier information. The GAL Data Record may also optionally contain user-
defined fields (column titles) for extra annotation information that you may wish to
include.

In GenePix Pro 4.1, any user-defined GAL file data columns are read and output to the
Results (GPR) file; in earlier versions they are ignored. Also new in GenePix Pro 4.1 is

web.archive.org/web/20040604080449/http:/www.axon.com/gn_GenePix_File_Formats.html
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that there is no longer a 40-character limit on the Name and ID fields; entries longer
than 40 characters are truncated when read by earlier versions.

There is one record for each feature, containing a field for each of the descriptive
columns:

Block (Required) The block number for the feature (required).

Column (Required) The column location within the block (required).

Row (Required) The row location within the block (required).

Name (Optional) Name to be displayed for the given feature (optional; limited to 40
characters in GenePix Pro 4.0 and earlier, no limitin 4.1).

ID (Required) Identifier for each feature (required; limited to 40 characters in
GenePix Pro 4.0 and earlier, no limit in 4.1).

"User (Optional) Annotation information (optional).

Defined"

Block, Column, Row and ID are required fields. The column titles can be in any order.

Note: If you have empty features, use 'empty"' as the feature ID, and the feature is
flagged absent when the GAL file is opened by GenePix.

A minimal GAL file header

Because most of the GAL file header records are optional, it is relatively simple to
construct a GAL file with a very minimal header. The following example also leaves out
the Name column, which is also optional:

ATF 1.0
1 4
"Type=GenePix ArraylList vi.0"
"Block" "Column" "Row" "ID"
1 1 1 YALOO2W
1 2 1 YALO15C
When you open this GAL file in GenePix, you will be prompted with the New Blocks dialog box
to enter block properties. You may find this method of configuring blocks via the New Blocks
dialog box more convenient than working out block arrangements by hand.

GPR - GenePix Results format (*.gpr)

GenePix Results data are saved as GPR files, which are in Axon Text File (ATF)
format. A Results file contains general information about image acquisition and
analysis, as well as the data extracted from each individual feature. Any user-defined
feature data contained in a GAL file read by GenePix Pro 4.1 will be included in the
output GPR file. As of GenePix Pro version 4.0.1.4, the GPR version number is 3.0.

Read a history of the changes to the GPR file format since GenePix Pro 3, including
example GPR files in all the various formats.

GPR Header

A sample GPR file header and a description of each entry are shown below:

Entry Description

ATF 1.0 File type and version nhumber.

29 48 Number of optional header records and
number of data fields (columns).

"Type=GenePix Results 3" Type of ATF file.

"DateTime=2002/02/09 17:15:48" Date and time when the image was acquired.

"Settings=C:\Genepix\Genepix.gps" The name of the settings file that was used for
analysis.

"GalFile=C:\Genepix\Demo.gal" The GenePix Array List file used to associate

web.archive.org/web/20040604080449/http:/www.axon.com/gn_GenePix_File_Formats.html
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"PixelSize=10"
"Wavelengths=635 532"

"ImageFiles=C:\Genepix\demo.tif 0

C:\Genepix\Genepix.tif 1"
"NormalizationMethod=None"

"NormalizationFactors=1 1"

"Jpeglmage=C:\Genepix\demo.jpg"

"StdDev=Type 1"

"RatioFormulation=W1/W2 (635/532)"

"Barcode=00331"

"BackgroundSubtraction=LocalFeature"

"ImageOrigin=0, 0"
"JpegOrigin=390, 4320"
"Creator=GenePix 4.1.1.4"
"Scanner=GenePix 4000B [serial
number]"

"FocusPosition=0"

"Temperature=19.6127"
"LinesAveraged=1"

"Comment=hyb 2673"
"PMTGain=500 600"
"ScanPower=100 100"

"LaserPower=1 1"
"LaserOnTime=5 5"

"Filters=<Empty> <Empty>"
"ScanRegion=100,100,2000,2000"

"Supplier="
Data record column headings

Data Records

GPR Data

Names and IDs to each entry.

Resolution of each pixel in um.

Installed laser excitation sources in nm.

The name and path of the associated TIF file(s).

The type of normalization method used, if
applicable.

The normalization factor applied to each
channel.

The name and path of the associated Jpeg
image files.

The type of standard deviation calculation
selected in the Options settings.

The ratio formulation of the ratio image, showing
which image is numerator and which is
denominator.

The barcode symbols read from the image.

The background subtraction method selected in
the Options settings.

The origin of the image relative to the scan area.

The origin of the Results JPEG image (the
bounding box of the analysis Blocks) relative to
the scan area origin.

The version of the GenePix Pro software used
to create the Results file.

Type and serial number of scanner used to
acquire the image.

The focus position setting used to acquire the
image, in microns.

The temperature of the scanner, in degrees C.

The line average setting used to acquire the
image.

User-entered file comment.
The PMT settings during acquisition.

The amount of laser transmission during
acquisition.

The power of each laser, in volts.
The laser on-time for each laser, in minutes.

Emission filters used during acquisition
(GenePix 4100 and 4200 only.)

The coordinate values of the scan region used
during acquisition, in pixels.

Header field supplied in GAL file.

Column titles for each measurement (see
below).

Extracted data.

The list below describes each column of data in the Results file.

Column Title = Description

Block the block number of the feature.

Column the column number of the feature.

Row the row number of the feature.

Name the name of the feature derived from the Array List (up to 40 characters
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Dia.

F635 Median
F635 Mean
F635 SD

B635 Median
B635 Mean
B635 SD

% > B635 + 1 SD

% > B635 + 2 SD

F635 % Sat.
F532 Median
F532 Mean
F532 SD
B532 Median
B532 Mean
B532 SD

% >B532+1SD

% >B532+2 SD

F532 % Sat.

Ratio of
Medians

Ratio of Means

Median of
Ratios

Mean of Ratios

Ratios SD
Rgn Ratio

Rgn R?

F Pixels

B Pixels

Sum of Medians

Sum of Means

Log Ratio
Flags
Normalize
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long, contained in quotation marks).

the unique identifier of the feature derived from the Array List (up to 40
characters long, contained in quotation marks).

the X-coordinate in um of the center of the feature-indicator associated
with the feature, where (0,0) is the top left of the image.

the Y-coordinate in pum of the center of the feature-indicator associated
with the feature, where (0,0) is the top left of the image.

the diameter in um of the feature-indicator.
median feature pixel intensity at wavelength #1 (635 nm).
mean feature pixel intensity at wavelength #1 (635 nm).

the standard deviation of the feature pixel intensity at wavelength #1 (635
nm).

the median feature background intensity at wavelength #1 (635 nm).
the mean feature background intensity at wavelength #1 (635 nm).

the standard deviation of the feature background intensity at wavelength
#1 (635 nm).

the percentage of feature pixels with intensities more than one standard
deviation above the background pixel intensity, at wavelength #1 (635
nm).

the percentage of feature pixels with intensities more than two standard
deviations above the background pixel intensity, at wavelength #1 (635
nm).

the percentage of feature pixels at wavelength #1 that are saturated.
median feature pixel intensity at wavelength #2 (532 nm).

mean feature pixel intensity at wavelength #2 (532 nm).

the standard deviation of the feature intensity at wavelength #2 (532 nm).
the median feature background intensity at wavelength #2 (532 nm).

the mean feature background intensity at wavelength #2 (532 nm).

the standard deviation of the feature background intensity at wavelength
#2 (532 nm).

the percentage of feature pixels with intensities more than one standard
deviation above the background pixel intensity, at wavelength #2 (532
nm).

the percentage of feature pixels with intensities more than two standard
deviations above the background pixel intensity, at wavelength #2 (532
nm).

the percentage of feature pixels at wavelength #2 that are saturated.

the ratio of the median intensities of each feature for each wavelength,
with the median background subtracted.

the ratio of the arithmetic mean intensities of each feature for each
wavelength, with the median background subtracted.

the median of pixel-by-pixel ratios of pixel intensities, with the median
background subtracted.

the geometric mean of the pixel-by-pixel ratios of pixel intensities, with the
median background subtracted.

the geometric standard deviation of the pixel intensity ratios.

the regression ratio of every pixel in a 2-feature-diameter circle around the
center of the feature.

the coefficient of determination for the current regression value.
the total number of feature pixels.
the total number of background pixels.

the sum of the median intensities for each wavelength, with the median
background subtracted.

the sum of the arithmetic mean intensities for each wavelength, with the
median background subtracted.

log (base 2) transform of the ratio of the medians.
the type of flag associated with a feature.
the normalization status of the feature (included/not included).
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F1 Median - B1 the median feature pixel intensity at wavelength #1 with the median
background subtracted.

F2 Median - B2 the median feature pixel intensity at wavelength #2 with the median
background subtracted.

F1 Mean - B1 the mean feature pixel intensity at wavelength #1 with the median
background subtracted.

F2 Mean - B2 the mean feature pixel intensity at wavelength #2 with the median
background subtracted.

SNR 1 the signal-to-noise ratio at wavelength #1, defined by (Mean Foreground
1- Mean Background 1) / (Standard deviation of Background 1)

F1 Total the sum of feature pixel intensities at wavelength #1

Intensity

Index the number of the feature as it occurs on the array.

"User Defined" user-defined feature data read from the GAL file (GenePix Pro 4.1).

GPL - GenePix Lab Book format (*.gpl)

The GenePix Lab Book is a binary file that contains a fixed-size structure for each line
in the Lab Book.

GPS - GenePix Settings format (*.gps)

GenePix acquisition, analysis and display settings are saved as binary GenePix
Settings Files. Settings are organized into a number of different categories (acquisition,
analysis and display) all of which are saved together in the GPS file. However, when
opening a settings file you can choose which subset of the settings you wish to open.

Acquisition settings include which laser was enabled during the acquisition, the PMT
voltages, the lines averaged, and the scan area. Analysis settings include the location
and identification of blocks and feature-indicators that were defined on the image.
Display settings include brightness and contrast settings, and the color mapping.

JPEG - Joint Photographic Experts Group (*.jpg)

Images can be saved in the JPEG format, which is a lossy compressed image file
format. GenePix implements minimal JPEG compression, which is enough to reduce
image file size significantly, but which removes only a small amount of data from the
image. However, we recommend that you do not use the JPEG format to archive
images that are to be analyzed later. Rather, use the JPEG format to store images that
are to be used in presentations.

TIFF - Tagged Image File Format (*.tif)

Images acquired in GenePix are by default saved as 16-bit unsigned TIFF images.
This is a standard, uncompressed graphic file format that can be read by many
graphics and imaging programs. The primary data acquired by GenePix are the single-
wavelength images, and by default these are saved as 16-bit grayscale TIFFs in a
single multi-image TIFF file. Not all graphics applications can read multi-image TIFF
files. You may wish to try opening a multi-image file with your preferred graphics
application to see if they are supported. If not, save the single-wavelength images as
separate single-image files.

GenePix exports its preview and pseudocolor ratio images as 24-bit color TIFFs, but it
does not read them, as data are not extracted from them.

Copyright © 1995-2004 Axon Instruments, Inc. Privacy & Legal | Glossary
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