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Abstract

With increasing developments of modern technologies like artificial intelli-
gence and virtual reality environments, more and more applications make
use of mental state monitoring systems. These systems allow applications
to be adapted based on the user’s mental state and are applied in various
fields like driving or teaching assistance. This thesis aims towards the devel-
opment of a passive Brain-Computer Interface for mental state monitoring.
The goal was to implement an algorithm to detect high mental workload
and fatigue in participants while performing a cognitive demanding task.
As a first step, band power features in the theta and alpha frequency band of
the EEG were inspected. The band power changes over time were analysed
at different task conditions and cortical areas. To support the findings of the
band power changes, subjective ratings (questionnaires concerning fatigue
and workload levels) and behavioural measures (performance accuracies
and response times) were considered. The detection of high mental work-
load and fatigue was implemented by applying the Riemannian geometry
on the band power features of the EEG. Mental workload and fatigue were
considered as too high, when the Riemannian distances of the task-run
EEG reached or surpassed the threshold of the baseline EEG. The results
showed an increase of the band power in the theta and alpha frequency
bands over time, which is associated with increasing mental workload and
fatigue and correlated to the participant’s task performance. In 8 out of the
20 participants, high mental workload and fatigue could be detected, 6 of
them belonged to the group with lower task performance. The Riemannian
distances also showed a steady increase towards the threshold with increas-
ing experiment duration, with the most detections occurring at the last run
of the experiment.

Keywords: EEG, passive BCI, mental workload and fatigue, band power
features, Riemannian geometry
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Kurzfassung

Moderne technologische Anwendungen machen immer mehr Gebrauch von
Systemen zur Überwachung des mentalen Zustands ihrer Benutzer. Solche
Systeme ermöglichen die Adaptierung von Anwendungen basierend auf
den Änderungen des mentalen Zustands, und werden in verschiedenen
Bereichen wie Fahr- oder Lernassistenz eingesetzt. Diese Arbeit zielt auf die
Entwicklung einer passiven Hirn-Computer-Schnittstelle zur Überwachung
des mentalen Zustands ab. Ziel war es, einen Algorithmus zu entwick-
eln, der eine hohe mentale Auslastung und Ermüdung der Benutzer bei
der Ausführung einer kognitiv anspruchsvollen Aufgabe erkennt. Hierzu
wurde die Bandpower der neuronalen Aktivität im Theta- und Alpha-
Frequenzband des EEGs untersucht. Die zeitliche Änderung der Band-
power wurde bei verschiedenen Aufgabenschwierigkeiten und kortikalen
Arealen analysiert. Die Ergebnisse wurden mit Fragebögen und Aufgaben-
erfüllung untermauert. Die Detektion von hoher mentaler Auslastung und
Ermüdung wurde mittels der Riemannschen Geometrie umgesetzt. Men-
tale Auslastung und Ermüdung wurden als zu hoch erkannt, wenn die
Riemannschen Abstände des EEGs während der Aufgabenausführung die
Schwelle des Ruhe-EEGs erreichten oder überstiegen. Die Ergebnisse zeigten
einen Anstieg der Bandpower im Theta- und Alpha-Frequenzband mit
zunehmender Experimentdauer, was mit steigender mentaler Auslastung
und Ermüdung einhergeht. Bei 8 der 20 Teilnehmer konnte eine hohe men-
tale Auslastung und Ermüdung festgestellt werden, 6 von ihnen gehörten
zur Gruppe mit geringerer Aufgabenerfüllung. Die Riemannschen Abstände
zeigten mit zunehmender Experimentdauer eine stetige Zunahme Richtung
Schwellwert, mit den meisten Detektionen im letzten Versuchsdurchlauf.

Schlüsselwörter: EEG, passive Hirn-Computer-Schnittstelle, mentale Aus-
lastung und Ermüdung, Bandpower, Riemannsche Geometrie
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1 Introduction

The first chapter introduces Brain-Computer Interfaces (BCIs) by describ-
ing their different stages and categories, together with their brain signal
acquisition techniques. The basic principles of the electroencephalography
(EEG) and the different brain signal types are explained in more detail.
Furthermore, the terms of mental workload (MWL) and mental fatigue (MF)
are defined, as well as their connections to BCIs and the EEG. At the end of
this chapter, the aim of the thesis and the hypothesis are stated.

1.1 Basic Principles of BCIs

”A brain-computer interface is a device that does not use
the normal neuromuscular output pathways of the brain, but
accepts commands encoded in neuro-physiological signals.”

John Wolpaw, 1991

A BCI is a system, which bypasses the natural output of the central nervous
system (CNS) by translating the user’s intentions into commands for com-
munication or locomotion control [1], [2]. In order to translate the user’s
intentions into commands, this system monitors, processes and decodes
brain signals and converts them into control signals for application inter-
faces [3]. The individual stages of a BCI system are shown in Figure 1.1 and
can be described as follows [4]:

• Signal acquisition: At this stage, the brain signals are monitored, the
analogue signals converted into digital signals and preprocessing is
applied on the data (noise and artefact reduction).

1



1 Introduction

Figure 1.1: Stages of a BCI system: Signal acquisition, feature extraction, feature translation
and application interface (adapted from Wolpaw et al. [4]).

• Feature extraction: Further signal processing methods are applied
to extract representative and discriminable features from the brain
signals (such as signal amplitude or frequency).

• Feature translation: Classification algorithms are used to assign a
certain brain signal feature to a corresponding control signal, or to
find patterns in the brain signals.

• Application interface: At the last stage, output devices are controlled
in order to replace, improve, restore or enhance the natural output of
the CNS [5], or use them for research tools and provide feedback for
the user.

The utilization of BCIs has already been shown in various applications
such as selecting letters from a virtual keyboard [6]–[8], controlling pros-
thetic devices [9], [10] or in a non-clinical context such as education and
entertainment [11]–[13].

2



1 Introduction

1.1.1 BCI Categories

A BCI translates changes of brain signals into commands [7]. These changes
are of physiological origin and can be elicited in three different ways -
actively, passively and reactively [14], [15]:

• Active BCIs: The outputs are derived from brain activity which is
directly and consciously controlled by the user. The user actively con-
trols an application, independent of external events, such as spelling
devices [6]–[8] or prosthetic devices [9], [10].

• Reactive BCIs: The outputs are derived from brain activity which
arises in reaction to external stimulation. The user controls an applica-
tion by indirectly modulating its brain activity.

• Passive BCIs: The outputs are derived from arbitrary brain activity
which arises without the purpose of voluntarily controlling an applica-
tion. The output signals contain implicit information about the user’s
mental state.

In common BCI applications, the user actively or indirectly controls an out-
put device by changes of the brain signals according to a certain task (active
and reactive BCIs). Active and reactive BCIs are mostly used to improve
communication and environmental control for physically handicapped peo-
ple, such as people with amyotrophic lateral sclerosis (ALS) or spinal cord
injury (SCI) [16], [17]. With the utilization of passive BCIs (pBCIs), new
applications emerge which can also be beneficial for healthy users. A pBCI
was used in this thesis for cognitive state monitoring and will be described
in more detail.

Utilization of pBCIs

In contrast to active and reactive BCIs, pBCIs are not used to voluntarily
control an application, but to make use of implicit information of the brain
signals [18]. Recently, pBCI systems have been used for monitoring the
user’s cognitive and mental state and enhancing the human-computer
interaction with this implicit information [15], [19]. These pBCIs can be
applied for mental state monitoring in combination with driving [13], [20],

3



1 Introduction

[21] or teaching assistance [22], as well as adapting features of BCI systems
according to the mental state changes [23], [24].

1.1.2 Brain Signals used for BCIs

BCI systems use various measurement modalities for the acquisition of
brain signals, including both invasive and non-invasive techniques [25].
For invasive techniques, such as electrocorticography (ECoG) or single-
cell recordings, the electrodes are placed on the surface of the cortex or
even within the cortical tissue [26]. Non-invasive techniques on the other
hand, such as EEG or functional near-infrared spectroscopy (fNIRS), use
surface electrodes to record brain signals which are placed on the surface
of the head (scalp) [27], [28]. Further non-invasive brain signal acquisition
techniques are functional magnetic resonance imaging (fMRI) and magne-
toencephalography (MEG). Due to the high costs and their constraint in
mobility, fMRI and MEG systems are more commonly used in the field of
basic brain research than for BCI applications [29]. For this thesis, the EEG
was used as brain signal acquisition method and will therefore be explained
in more detail.

Basic Principles of the EEG

The EEG basically measures electrical brain activity in form of potential
differences caused by excitations of pyramidal nerve cells (Figure 1.2). An
excitation of a nerve cell (neuron) yields a nerve impulse (action poten-
tial) which propagates from the cell body (soma) along the axon to the
axon terminals. At the axon terminals, neurotransmitters are sent through
synapses to the dendrites of another neuron. The neurotransmitters cause
changes in the membrane potential of the post-synaptic neuron, so called
post-synaptic potentials (PSPs). The PSPs create dipoles between the soma
and apical dendrites of the neuron. The summation of the PSPs of many
pyramidal neurons leads to potential differences, which can be measured
with electrodes on the surface of the head (scalp) [30]–[33].

4



1 Introduction

Figure 1.2: Physiological principle of the EEG: Potential differences generated by excitations
of aligned pyramidal neurons (adapted from Bear et al. [32]).

EEG-based BCIs are also categorized according to the two types of brain
signals: Event-related potentials (ERPs) and brain oscillations.

Event-related potentials (ERPs): An ERP can be seen as a measured brain
response which is time- and phase-locked (evoked) to an external stimulus
[34], [35]:

• Evoked potentials (EPs): An EP is the response of the brain to a
sensory stimulus. The stimulus can be of auditory (AEP), visual (VEP)
or somatosensory (SEP) origin [36], [37].

• Steady-state EPs (SSEPs): SSEPs can be elicited by a long, periodic
presentation of a stimulus at a certain frequency. The frequency of the
stimulation can be seen in the recorded EEG [38].

5
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• Slow cortical potentials (SCPs): SCPs are slow negative or positive
amplitude shifts in the EEG signal after a stimulus onset. Positive
shifts are associated with movement, negative shifts with reduced
cortical activity [29].

Brain Oscillations: Brain oscillations are also time-locked but not phase-
locked (induced) responses, and can be the result of a change in the func-
tional connectivity within neuronal networks [34]. Electrical brain activity
consists of rhythmic components between 0.1 and 200 Hz.

Different mental states and functionalities can be distinguished based on
brain activity at a certain frequency band (at a certain cortical area) [39]:

• Delta band (0.5-4 Hz): Deep sleep, trance and coma.
• Theta band (4-8 Hz): Deep relaxation, meditation and inhibition of

responses [40].
• Mu band (8-12 Hz): Rest-state motor neurons (sensorimotor cortex)

[41].
• Alpha band (8-13 Hz): Relaxation, closed eyes and inhibition of con-

trol.
• Beta band (13-30 Hz): Focused attention, high alert and active move-

ment control (motor cortex).
• Gamma band (>30 Hz): High cognitive processes and cross-modal

sensory processing (interactions between two or more different sensory
modalities, such as vision and hearing) [42], [43].

Increased or decreased activity in a cortical area at a certain frequency band
is known as event-related desynchronization or synchronization (ERD/ERS)
[34], [44]:

• Event-related desynchronization (ERD): Decrease of synchrony within
a neural network (only small groups of neurons work in synchrony),
amplitude (power) decrease of a rhythmic component, activated corti-
cal area and increased excitability.

• Event-related synchronization (ERS): Increase of synchrony within a
neural network (many neurons work in synchrony), amplitude (power)
increase of a rhythmic component, deactivated cortical area and de-
creased excitability.

6



1 Introduction

Brain oscillation patterns in certain frequency bands can be used as indi-
cators for mental state changes [45]–[47]. The following chapter describes
the effects of mental state changes on brain signals and how to categorize
them.

1.2 Introducing MWL and MF

Mental state changes, more precisely increasing MWL and MF, have effects
on the electrophysiological signals (such as brain signals) and the perfor-
mance of a person while executing a cognitive demanding task. MWL and
MF are two important features for the usage of pBCIs, in the form of mental
state monitoring systems [48].

1.2.1 Definition of MWL

Mental workload (MWL) can be defined as the number of tasks to be
performed simultaneously, the load in working memory, or more generally
as a measure of the quantity of mental resources engaged in a task [49], [50].
Therefore, MWL can be seen as a measure of task difficulty, and depends
on each individual’s capabilities and effort [51]. High MWL may affect
people who use technology in their every day’s life, such as interacting with
computers, smartphones and other devices. Mental overload, as a result
of high MWL, can compromise a user’s performance and even safety by
increasing error rates and reaction times [52], [53], and can lead to the
neglection of critical information, known as cognitive tunneling [54]–[56].

1.2.2 Definition of MF

MF can be described as the feeling that may result from prolonged periods
of cognitive activity. It is associated with exhaustion or tiredness, and can
lead to a decrease in task performance and commitment [57], [58]. High
MF may lead to the inability of a user to complete a task that requires
self-motivation, without signs of cognitive failure or motor weakness [59].

7
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It has been shown, that reduced motivation of a user to perform a task
which induces high MF, is associated with increased sympathetic activity
and decreased parasympathetic activity [60]–[62].

1.2.3 Methods for MWL and MF Detection

The methods of detecting MWL and MF can be divided into three main
categories: Self-reporting and subjective ratings, behavioural measures and
physiological measures [63].

Self-Reporting and Subjective Ratings

The subjective level of workload of participants can be determined with
the NASA Task Load Index (TLX) questionnaire [64], the subjective level of
fatigue with the Visual Analogue Scale to Evaluate Fatigue Severity (VAS-F)
questionnaire [65]. Studies of Käthner et al. [48] and Roy et al. [49] have
shown that if there is an increase in MWL and MF, there will be an increase
of the subjective levels of workload and fatigue of the participants.

Behavioural Measures

Another method is to measure primary- and secondary-task performance,
such as accuracy and reaction time [66]. If there is an increase in MWL
and MF, there will be a decrease in the task performance (decrease of the
accuracy and an increase of the reaction time) of the participants [48], [49].
Accuracy and reaction time of the participants can be recorded during the
experiment and evaluated afterwards.

Physiological Measures

MWL and MF can be detected using the heart rate variability, oculomotor
activity (eye movements), pupillometry (measure of pupil size and reflexes),
electromyography (electrical activity produced by skeletal muscles), galvanic

8
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skin responses (changes in sweat gland activity) and brain activity [67]. The
physiological measure for MWL and MF detection used in this thesis is
brain activity, more precisely amplitude power changes in certain frequency
bands of the EEG signal. These changes are referred to as band power (BP)
changes in the following.

1.3 State-of-the-Art pBCI Systems for Mental
State Monitoring

Recently, more and more studies have emerged in the field of mental state
monitoring in combination with pBCI systems. Lotte et al. [68] presented in
2019 state-of-the-art concepts which show that pBCI systems can be used
for both online and offline applications. Offline systems are mainly used
to evaluate the impact of products, performance, work settings or tasks on
the user’s mental state. Online applications however allow the system not
only to detect, but also to be adapted based on the measured user’s mental
state [68]. In order to simulate real-life situations of the impact of the user’s
mental state on the task performance, virtual reality (VR) environments are
more frequently used in combination with pBCI systems [69], [70].

Due to their portability and relatively low cost, most of the currently used
pBCI systems are EEG-based [71]. Babiloni et al. presented in their study,
that the implementation of BP features extracted from the EEG has been
established to successfully detect and distinguish between different mental
states of the user, such as MWL and MF. They reported, that an increase in
MWL leads to a BP increase in the theta frequency band at frontal cortical
areas with a simultaneous BP decrease in the alpha band at parietal areas
[71]. These results corroborate the findings in the studies from Holm et al.
[45], Stipacek et al. [46] and Scerbo et al. [47].

Klimesch et al. reported in their study [72], that increasing MF is associated
with a BP increase in low frequency bands (<12 Hz) and a BP decrease in
higher frequency bands (>12 Hz). The same observations were found in the
study from Boksem et al. [57]. In another study, Käthner et al. [48] found

9



1 Introduction

increasing alpha BP at parietal cortical areas and an increase in the theta BP,
which represented an increase of MF.

The majority of pBCI systems uses classification algorithms based on the
extracted EEG features to detect the different mental states of the user.
Commonly used classifiers are for example the linear discriminant analysis
(LDA) classifier and its variants (shrinkage or stepwise LDA), support vector
machines (SVM) or k-nearest neighbours [68], [73]. Another classification
approach is the so-called ensemble learning. The idea of this concept is to
combine the use of different classifiers such as LDA, SVM and artificial neu-
ral networks (ANNs) [74] or use multiple base classifiers in a convolutional
neural network (CNN) [75]. In order to improve classification accuracies,
spatial filtering techniques like the common spatial pattern (CSP) algorithm
are used in combination with a linear classifier, such as LDA [76]. The CSP
algorithm maximizes the class separability by calculating the eigenvalues
of the covariance matrix of the classes. Another concept which makes use
of the eigenvalues of covariance matrices is the Riemannian geometry. Like
presented from Yger et al. and Appriou et al., the Riemannian geometry
can be used for feature representation and learning, classifier design and
calibration time reduction [77], [78].

1.4 Aim of the Thesis and Hypothesis

The aim of this thesis was to detect high MWL and MF of participants
performing a cognitive demanding task, based on their brain signals. There-
fore, the letter n-back task [79] was used to mentally challenge and tire
the participants. The brain signals were acquired non-invasively, using the
EEG as signal imaging method. For MWL and MF detection, theta and
alpha band power were used for subsequent signal processing and data
analysis methods. The findings of the signal analysis were supported by
self-reporting and subjective ratings, as well as behavioural measures of
the participants. The Riemannian geometry was applied to the detection
algorithm of high MWL and MF. As mentioned in Chapter 1.3, Riemannian
geometry has already been used for classification algorithms. The novel
approach for this thesis was to directly apply the Riemannian geometry on

10



1 Introduction

the band power features of the EEG, to detect high increases in the theta
and alpha frequency bands.

Based on the literature of state-of-the-art pBCI systems for mental state
monitoring (Chapter 1.3), the following hypotheses can be derived: MWL
and MF are reflected in BP changes of the EEG. An increase in theta BP and
a decrease in alpha BP is expected during high MWL, whereas an increase
in alpha BP is expected during high MF. The outcome of this thesis may
be applied for further pBCI applications, where mental state changes play
an important role. Such applications are for example a driving assistant or
learning assistance system (a so-called Neurotutor).

11



2 Methods

This chapter describes the procedure of the experiment to record the brain
signals from the participants while performing a demanding cognitive task.
Furthermore, the signal processing, data and statistical analysis and data
classification methods of the brain signals are described, as well as the
algorithms for detecting high MWL and MF.

2.1 Experimental Procedure

The experimental design is illustrated in Figure 2.1. At the beginning and at
the end of the experiment, a paradigm to intentionally record eye artefacts
was presented, followed by the VAS-F questionnaire. In Run 0, the baseline
EEG was recorded during a passive screening of the task (resting EEG).
In run 1, 2 and 3, a paradigm was presented where the participants had
to perform the letter n-back task [79]. After each task-run, the NASA-TLX
questionnaire had to be filled in by the participants. The different parts of
the experiment are described in more detail in the following sections.

The paradigms for the eye artefact recording, the passive screening and the
letter n-back task were developed and presented using MATLAB® (Release
2019b, The MathWorks, Inc., Natick, Massachusetts, United States)1 and the
Psychtoolbox (Psychophysics Toolbox Version 3)2. The participants were
seated on a desk chair in front of a monitor, where the paradigms were
presented. A Keyboard was used by the participants to perform the letter
n-back task.

1https://mathworks.com/
2http://psychtoolbox.org/
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2 Methods

Figure 2.1: Experimental design: Paradigm for eye artefact recording at the beginning
and at the end of the experiment, followed by the VAS-F questionnaire; Run
0: passive screening of the task to record the baseline EEG; Run 1, 2 and 3:
performing letter n-back task, followed by NASA-TLX questionnaire.

2.1.1 Eye Artefact Recording

Artefacts due to eye movements, blinks and saccades strongly affect the EEG
signal, and should therefore be corrected [80], [81]. At the beginning and
at the end of the experiment, a paradigm to intentionally record these eye
artefacts was presented. The paradigm used in this thesis for the recording,
as well as the algorithms for detecting and correcting the eye artefacts
were introduced by Kobler et al. [82]. The paradigm included four different
conditions: rest, horizontal, vertical and blink.

1. Rest: A blue circle was presented on a black screen (Figure 2.4). The
participants had to fixate the blue circle without moving or blinking.

2. Horizontal: The blue circle was moving between the left and right
side of the screen. The participants had to follow the blue circle with
their eyes.

3. Vertical: The participants had to follow the blue circle with their eyes
moving up and down on the screen.
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Figure 2.2: Paradigm for eye artefact correction: Condition rest (adapted from Kobler et al.
[82]).

4. Blink: The blue circle was shrinking and enlarging at a certain fre-
quency. The participants had to blink according to that frequency.

2.1.2 Recording Baseline EEG

In Run 0, a passive screening of the task was conducted. The participants
were instructed to calmly look at the screen were the paradigm was pre-
sented, but without performing the task. In this way, the resting EEG of the
participants was recorded, which was used as baseline EEG in the signal
processing and data analysis part. The BP changes for detecting increasing
MWL and MF were calculated with the differences between the baseline
EEG and the task-run EEG. Detailed information about the calculation of
the BP differences can be found in Chapter 2.4 (Signal Processing).

2.1.3 Performing N-Back Task

In run 1, 2 and 3, a paradigm was presented where the participants had to
perform the letter n-back task with varying difficulty. The paradigm of the
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Figure 2.3: Presentation of a letter during the n-back task.

task was designed to exhaust and tire the participants, in order to elicit an
increase in MWL and MF.

Letter N-Back Task

The letter n-back task consisted of a sequence of 20 letters. An example
of the letter presentation is shown in Figure 2.3. The goal of the task was
to identify target letters within the sequence. A target letter was defined
as follows: If the currently presented letter is the same as n letters back,
the current letter is a target letter. In each sequence, five target letters were
included. In order to avoid creating short words, which would facilitate the
task, only consonants were used. During the experiment, three different
n-back tasks were presented: 1-back, 2-back and 3-back.

Paradigm and Trial Structure

The trial structure of the task runs can be seen in Figure 2.4. At the beginning
of the trial, the instruction of the current task was presented for 2 seconds,
in order to inform the participants which n-back task they had to perform.
In the reference phase, a fixation cross was shown, again for 2 seconds. The
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Figure 2.4: Trial structure of the letter n-back task (example 2-back): Instruction (2 s),
reference phase (2 s), task (40 s) and resting phase (6 s).

task itself had a duration of 40 seconds. Each letter was presented for 0.5
seconds, with 1.5 seconds pause between the letters. During the pause, the
fixation cross was shown again, in order to avoid random eye movements
of the participants. If a target letter was identified, the participants had to
press the t key. After the task, there was a 6 seconds break, before the next
trial started.

Each of the three conditions of the task-run (1-back, 2-back and 3-back) was
presented eight times, which led to 24 trials per run. One trial lasted for 50

seconds, resulting in a total duration of 20 minutes per run.

2.1.4 VAS-F and NASA-TLX Questionnaires

The questionnaires were used to support the findings in the brain signals.
Their results should help to evaluate, if the experiment was demanding
enough to elicit high MWL and MF of the participants.

The VAS-F questionnaire had to be filled in by the participants at the
beginning and at the end of the experiment, after the eye artefact correction
paradigm. This questionnaire evaluated the self-reporting and subjective
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rating of MF in the participants and consisted of 18 questions concerning
individual levels of fatigue and energy (ratings from 0 to 10).

The NASA-TLX questionnaire had to be filled in by the participants after
each task-run, in order to evaluate the self-reporting and subjective rating
of MWL. This questionnaire consisted of six questions concerning workload
(ratings from 0 to 20).

2.2 Participants

20 healthy participants were measured (7 female and 13 male). The partici-
pants had normal or corrected to normal vision. Their age ranged from 21

to 31 years, with a mean of 26.15 years and a standard deviation of 2.6 years.
Before the experiment, the participants got all necessary information about
the procedure of the experiment and voluntarily gave their written informed
consent. They were instructed to sit calmly on their chair and avoid (as good
as possible) eye, head and body movements during the experiment.

2.3 Signal Acquisition

This section describes the amplifier, recording software, electrode setup and
further applications used for acquiring the EEG signals.

2.3.1 Electrode Setup

The amplifier used for the recording and amplification of the brain signals
and the eye artefacts was the BrainVision LiveAmp (Brain Products GmbH,
Gilching, Germany). The LiveAmp is a compact wireless EEG amplifier,
especially designed for mobile EEG applications3. The amplifier was con-
nected to the electrodes and placed in a pocket of the cap on the back of
the participant’s head. The amplified signals were preprocessed (50 Hz

3https://www.brainproducts.com/
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notch filter) and sent via blue tooth connection to a personal computer (PC).
As a recording software, the BrainVision Recorder (Brain Products GmbH,
Gilching, Germany) was used. The brain signals and the eye artefacts were
recorded at a sampling rate of 500 Hz.

For the acquisition of the brain signals and the eye artefacts, 32 active
electrodes were used. The layout of the electrodes was modified from the
Standard 32Ch actiCAP snap for LiveAmp (Easycap GmbH, Herrsching,
Germany) and can be seen in Figure 2.5. To acquire the EEG signals, 28

electrodes were used at the following positions: Fp1, Fp2, F7, F3, Fz, F4, F8,
FC5, FC1, FC2, FC6, T7, C3, Cz, C4, T8, CP5, CP1, CP2, CP6, P7, P3, Pz, P4,
P8, O1, Oz and O2. Three electrodes were used for the electrooculography
(EOG), in order to record the eye artefacts. The electrodes were fixed with
adhesive rings on the forehead (EOGM), on the left (EOGL) and on the right
cheek (EOGR) of the participants. The ground electrode (GND) was placed
at position Fpz, the reference electrode (REF) at position FCz. The electrode
used for optional re-referencing (RE-REF) was mounted at the right mastoid
of the participants.

2.4 Signal Processing

This chapter describes the signal processing chain from the raw EEG and
EOG signals to the clean EEG signal. The individual steps of the signal
processing chain are illustrated in Figure 2.6 and can be divided into three
blocks: preprocessing, eye artefact correction (adapted from Kobler et al.
[82]) and muscle artefact correction. The signal processing was implemented
in MATLAB®, supported with adapted functions from the EEGLAB toolbox4

[83].

In addition to the brain signals and the eye artefacts, the paradigm markers
had to be recorded. The paradigm markers are necessary for the analysis
of the EEG signals, in order to find the exact positions in the EEG signal of
specific trial states (instruction, reference phase, task or resting phase), as
well as to identify the task condition (1-back, 2-back or 3-back) in a trial. The

4http://www.sccn.ucsd.edu/eeglab/
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(a) Modified electrode layout with positions and labels (b) Electrode montage on the participant’s head

Figure 2.5: Electrode setup with 32 electrodes: 28 EEG electrodes (green), 3 EOG electrodes
(white: EOGL, EOGM, EOGR), 1 electrode for optional re-referencing (green:
RE-REF) and ground (black: GND) and reference (blue: REF) electrode.

paradigm markers were generated with MATLAB® during the presentation
of the paradigm. To guarantee an accurate timing, the markers must be
recorded time-synchronized with the EEG and the EOG signals. Therefore,
the signals and the markers were linked via lab streaming layer (LSL) [84]
and recorded with the LabRecorder (default recording program for LSL)5.
With the LabRecorder, the recorded signals were saved to an extensible data
format (XDF) file.

2.4.1 Preprocessing

The first signal processing step was a 50 Hz notch filter, which was applied
during the recording of the signals. A notch filter is a band-stop filter with a
narrow stop band (high quality (Q) factor) and is usually applied to remove
the 50 Hz power line interference [85].

5https://github.com/sccn/lsl archived/wiki/LabRecorder.wiki/
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Figure 2.6: Signal processing chain: The individual steps from the raw EEG and EOG
signal to the clean EEG signal can be divided into three blocks. Preprocessing,
eye artefact correction (adapted from Kobler et al. [82]) and muscle artefact
correction.

The next step was to bandpass-filter the EEG and EOG signals between
0.4 and 40 Hz. In that way, the unwanted direct current component (0 Hz),
the low (< 0.4 Hz) and the high (> 40 Hz) frequency components were
removed. The used filter was a 4

th-order Butterworth filter and implemented
with the MATLAB® function filtfilt (zero-phase bi-directional filter).

2.4.2 Eye Artefact Correction

The eye artefact correction block was adapted from Kobler et al. [82]. The
first step was to calculate the EOG derivatives from the three EOG electrodes
(EOGL, EOGM, EOGR):

1. Horizontal EOG derivate (HEOG): The difference between left and
right eye movements was calculated with Equation 2.1:

HEOG = EOGR − EOGL (2.1)

2. Vertical EOG derivate (VEOG): The VEOG describes the average of

20



2 Methods

the left eye and the right eye movements (Equation 2.2):

VEOG =
EOGM − EOGR

2
+

EOGM − EOGL
2

(2.2)

3. Radial EOG derivate (REOG): The calculation of average of the move-
ments in all EOG channels can be seen in Equation 2.3:

REOG =
EOGM + EOGR + EOGL

3
(2.3)

Next, a lowpass filter was applied on the EOG derivatives, in order to remove
the unwanted higher frequency components. The used filter was a 2

nd-order
Butterworth filter with a cutoff frequency of 5 Hz, also implemented with
the MATLAB® function filtfilt. The lowpass-filtered EOG derivatives
were divided into trials (epochs). Therefore, the EOG paradigm markers
were used to cut the continuous signal into epochs of the same length, as
well as to distinguish between the four conditions (rest, horizontal, vertical
and blink). Noisy trials were then excluded after visual inspection.

With the information about the eye movements from the eye artefact
paradigm and the EOG derivative epochs, a training data set could be
generated. The training data was fitted into the eye artefact correction al-
gorithm and consisted of six different artefact classes: right, left, up, down,
blink and rest. The algorithm used a penalized logistic regression model to
classify the eye artefacts and remove them from the EEG signal. Detailed
information about the eye artefact correction can found at [82].

2.4.3 Muscle Artefact Correction

Besides artefacts from eye movements and blinks, the EEG signal can also
be contaminated with artefacts from muscle contractions. Spatial filtering in
form of the Laplacian filter has been proven to be an effective method to
remove these muscle artefacts [86].

Equation 2.4 shows an example of the application of the Laplacian filter:
the signal at a certain electrode (Cz) is subtracted by the mean of its four
surrounding electrodes (FC1, FC2, CP1, CP2).
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CzLap = Cz − FC1 + FC2 + CP1 + CP2
4

(2.4)

In order to find the four nearest neighbours of each electrode, an electrode
location file was used. The location file was provided by Easycap and
adapted to the electrode layout used in the experiments.

2.5 Data Analysis

After the preprocessing and artefact correction of the signals (Chapter 2.4),
the cleaned EEG signal could be used for further data analysis. This section
describes the steps to get from the cleaned EEG signal to the band power
(BP) differences between the EEG from the task-runs and the baseline EEG
in different frequency bands. Furthermore, the methods to conduct the
statistical analyses and the classification of the dataset are described, as well
as the algorithms to define and detect high MWL and MF.

2.5.1 Calculating BP Differences

The first step was to generate the different frequency bands for the BP dif-
ferences. The frequency bands were generated by applying a 4

th-order But-
terworth bandpass filter, again by using the MATLAB® function filtfilt.
The desired frequency bands were the theta (4-8 Hz) and the alpha band
(8-13 Hz).

After the EEG signals were divided into different frequency bands, the con-
tinuous signals were divided into single trial signals (epochs) and separated
by the three task conditions (1-back, 2-back and 3-back). The calculation of
the band power (BP) of a single trial can be seen in Equation 2.5:

BP = log10

(
N

∑
n=1

signal(n)2

)
(2.5)
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The signal used for the calculation of the BP, was the Fourier-transformed
EEG signal during the task phase (40 s) of a single trial. For the Fourier
transform, the MATLAB® function fft was used (fast Fourier transform,
single-sided). Each time-point of the signal was squared and summed up
over the whole task phase. The decadic logarithm was used to scale the
results of the amplitude power.

The BP calculation according to Equation 2.5 was performed for the task-
run EEG in both frequency bands (theta and alpha), for each trial in each
condition (1-back, 2-back and 3-back). In order to get the BP changes after
each single trial of the experiment, each BP result from the task-run EEG
was subtracted by the mean of the baseline EEG (averaged over all three
trials). The mean of the baseline EEG was used to compare BP results from
signals of equal length.

For the grand average analysis, the participants were divided into two
groups according to their task performance: Group 1 (high performers) and
Group 2 (low performers). The segmentation was done by the median split
of the task performance of the participants.

2.5.2 Statistical Analyses

For the statistical analyses, the BP changes of each condition (1-back, 2-back
and 3-back) for each run (run 1, run 2 and run 3) were inspected. The BP
changes of the individual trials were averaged over a whole run, for each
condition separately. Furthermore, the individual channels were summed
up to four regions of interest (ROIs):

1. Frontal: Fp1, Fp2, F7, F3, Fz, F4 and F8.
2. Central: FC5, FC1, FC2, FC6, C3, Cz and C4.
3. Parietal: CP5, CP1, CP2, CP6, P7, P3, Pz, P4 and P8.
4. Occipital: O1, Oz and O2.

Again, the participants were divided into two groups, according to their task
performance (see Chapter 2.5.1). The statistical analyses were conducted for
both frequency bands (theta and alpha) separately. With the aforementioned
parameters, a 3x3x4 repeated measures analysis of variance (ANOVA) was
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conducted. The within factors included the runs (run 1, 2 and 3), the
conditions (1-back, 2-back and 3-back) and the ROIs (frontal, central, parietal
and occipital). The between factors were generated from the two participant
groups.

For further investigations of the parameters and their influence on the BP
changes, a post hoc analysis was conducted. With this analysis, the BP
changes from each run, condition and ROI were compared, as well as the
influence of the two participant groups (high and low performers). Both the
repeated measures of ANOVA and the post hoc analyses were performed
with the free and open statistical software Jamovi6.

2.5.3 Detection of high MWL and MF

For the detection of high MWL and MF, the Riemannian geometry approach
was implemented. Riemannian geometry has already been introduced to
detect artefacts in an EEG signal, by calculating the Riemannian distance of
a signal to a defined threshold of the reference (baseline) signal [87].

Calculating Threshold with Baseline EEG

As a first step, the covariance matrix of the reference signal (baseline EEG)
was calculated:

Cre f =
1

Nre f − 1
· Xre f XT

re f (2.6)

In Equation 2.6, the covariance matrix (Xre f XT
re f ) is scaled by the number of

samples Nre f of the reference signal.

After that, a window of 500 samples and a step size of 125 samples were
defined to step through the reference signal. For the window, the covariance
matrix Cwin was calculated by using Equation 2.6. The combined eigenvalues

6https://www.jamovi.org/
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of the covariance matrices of the window Cwin and the reference signal Cre f
were calculated with Equation 2.7:

λ = eig
(

C−1/2
win Cre f C−1/2

win

)
(2.7)

The eigenvalues λ were then generated by using the MATLAB® function
eig. The distance of the window to the reference signal was calculated by
summing up the logarithmic power of each eigenvalue and taking its square
root [88]:

DR =

√√√√ N

∑
n=1

log10(λn)2 (2.8)

With Equation 2.8, the distance DR of the window to the reference signal
was calculated for each step through the reference signal. The threshold of
the reference signal THRS resulted from Equation 2.9:

THRS = mean(DR) + 2.5 · std(DR) (2.9)

Calculating Riemannian Distances with Task-Run EEG

For calculating the distances of the task-run EEG, the same procedure as
for calculating the Riemannian distances for threshold was applied. For
that, the distance for each condition in each run for both frequency bands
(theta and alpha) was calculated. Again, a window of 500 samples and a
step size of 125 samples were defined. For each step, the covariance matrix
of the window and its eigenvalues λ were calculated by using Equations
2.6 and 2.7. As Cre f , the covariance matrix of the reference signal (baseline
EEG) was used. The Riemannian distances DR of the eigenvalues were again
computed with Equation 2.8.

In order to detect high MWL and MF, the Riemannian distances of each step
through the task signal (task-run EEG) were averaged over trials and task
conditions, and compared with the threshold of the reference signal THRS
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(baseline EEG). If the average of the Riemannian distance DR reached or
surpassed the threshold, high MWL and MF were detected in the partici-
pants. The distances were calculated for both frequency bands (theta and
alpha).
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3.1 Grand Average BP Changes

In order to obtain the BP changes over time, a grand average analysis
(average over all participants) was conducted for the theta and the alpha
frequency band separately. The BP changes of each trial were averaged over
the task conditions (1-back, 2-back and 3-back) at each run. Additionally,
the BP changes for each frequency band were divided into a high and a low
performance group (PG).

The BP changes of the theta frequency band of the high performers are
illustrated in Figure 3.1, the BP changes of the low performers in Figure 3.2.
For both PGs, there is a slight BP increase in run 1 and run 2. For the high
performers however, the BP slightly decreases again in run 3, whereas the
low performers show a high BP increase. The most significant differences
between high and low performers were found at the 1-back task in run 3.
The BP changes for both PGs are most prominent at the parietal cortex.

The grand average results of the BP changes in the alpha frequency band
show a slightly different behaviour for both the high (Figure 3.3) and the
low performers (Figure 3.4). For both PGs, there is a BP decrease in run 1,
followed by a slight BP increase in run 2. Like the findings in the theta band,
the BP of the high performers slightly decreases again in run 3, whereas the
BP of the low performers shows a high increase. Again, the most significant
differences between high and low performers were found at the 1-back task
in run 3. In Contrast to the theta band, the BP changes for both PGs in the
alpha band are most prominent at the central cortex.
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Figure 3.1: Grand average theta BP changes of the high PG. The task conditions are averaged
over all trials at each run.

Figure 3.2: Grand average theta BP changes of the low PG. The task conditions are averaged
over all trials at each run.
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Figure 3.3: Grand average alpha BP changes of the high PG. The task conditions are
averaged over all trials at each run.

Figure 3.4: Grand average alpha BP changes of the low PG. The task conditions are averaged
over all trials at each run.
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3.1.1 Statistical Analyses

For further investigations of the BP changes, the estimated marginal means
for both frequency bands (theta and alpha) were computed. For that, the
mean and the standard error (SE) of the BP changes were calculated for
each PG (high and low), task (1-back, 2-back and 3-back) and ROI (frontal,
central, parietal and occipital) at each run.

Figure 3.5 shows the mean and the SE of the high (orange line) and the
low (blue line) PG of each run at the theta (a) and the alpha (b) frequency
band. For both frequency bands, the low PG shows a higher BP increase
than the high PG. The differences are most prominent at run 3, where the
BP increase of the high performers goes into saturation, while the BP of the
low performers keeps increasing.

The mean and the SE of the individual tasks at each run are illustrated
in Figure 3.6. For both the theta (a) and the alpha (b) frequency band,
the 1-back task (blue line) and the 2-back task (gray line) show the same
behaviour: A high BP increase from run 1 to run 2, followed by a lower
increase from run 2 to run 3. The BP differences of the 1-back task however
are significantly higher than for the 2-back task. At the theta band, the
3-back task (orange line) has the lowest BP difference at each run, but the
highest BP increase from run 2 to run 3. The BP differences at the alpha
band of the 3-back task are very similar to the 2-back task at run 1 and run
2. From run 2 to run 3 however, the BP increase of the 3-back task is higher
than the increase of the 1-back and 2-back task, similar to the behaviour at
the theta band.

In Figure 3.7 the mean and the SE of the BP changes of the individual ROIs
(frontal, central, parietal and occipital) at each run are displayed. The results
of the theta frequency band (a) differ from the results of the alpha frequency
band (b): The BP at the theta band increases continuously at each ROI, while
the BP at the alpha band increases higher from run 1 to 2 than from run 2

to 3. Furthermore, at the theta band, the central (gray line) and the parietal
cortex (orange line) contain the highest BP differences between the baseline
and the task-runs, whereas the highest BP differences at the alpha band are
found at the frontal (blue line) and the occipital cortex (green line).
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(a) Theta BP changes (b) Alpha BP changes

Figure 3.5: Theta (a) and alpha (b) BP changes of the high and low PG at each run.

(a) Theta BP changes (b) Alpha BP changes

Figure 3.6: Theta (a) and alpha (b) BP changes of the task conditions at each run.

(a) Theta BP changes (b) Alpha BP changes

Figure 3.7: Theta (a) and alpha (b) BP changes of the individual ROIs at each run.
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In addition to the estimated marginal means, the statistical analyses included
a 3x3x4 repeated measures ANOVA and several post-hoc tests. In Table
3.1, the within subjects effects of the 3x3x4 repeated measures ANOVA are
presented for the theta and the alpha frequency bands, in Table 3.2 the
between effects. As within factors the Runs (run 1, run 2 and run 3), the
Tasks (1-back, 2-back and 3-back) and the ROIs (frontal, central, parietal
and occipital) were used, as between factors the PGs (high and low). The
tables include the degrees of freedom (df1 and df2), the F-values and the
Greenhouse-Geisser corrected p-values. The significance level was defined
as α = 0.01. The factor Runs revealed no significance in the theta band
(F(2,36) = 6.23, p = 0.02), but a significant main effect at the alpha band
(F(2,36) = 13.42, p < 0.01). The factor Tasks reached statistical significance
in both the theta (F(2,36) = 16, p < 0.01) and the alpha band (F(2,36) = 23.04,
p < 0.01). For the factor ROIs, a significant main effect was reached in the
theta band (F(3,54) = 7.04, p < 0.01), whereas the alpha band (F(3,54) =
4.07, p = 0.04)revealed no significance. The between subjects effects with the
factor PGs did not reach significance in either of the frequency bands (theta:
p = 0.20, alpha: p = 0.15).

Table 3.1: Within subjects effects of the 3x3x4 repeated measures ANOVA of the theta and
the alpha frequency band.

Measure Theta Band Alpha Band
df1 df2 F pGG df1 df2 F pGG

Runs 2 36 6.23 0.02 2 36 13.42 <0.01
Tasks 2 36 16 <0.01 2 36 23.04 <0.01
ROIs 3 54 7.04 <0.01 3 54 4.07 0.04

RunsxTasks 4 72 0.81 0.48 4 72 1.51 0.23

RunsxROIs 6 108 2.37 0.11 6 108 1.90 0.15

TasksxROIs 6 108 3.63 0.03 6 108 2.23 0.12

RunsxTasksxROIs 12 216 0.64 0.50 12 216 0.92 0.427
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Table 3.2: Between subjects effects of the 3x3x4 repeated measures ANOVA of the theta
and the alpha frequency band.

Measure Theta Band Alpha Band
df1 df2 F pGG df1 df2 F pGG

PG 1 18 7.74 0.20 1 18 2.33 0.15

For the post-hoc tests, the PGs, the tasks and the ROIs were compared with
each other at each run, using the Bonferroni method. The t-values (with its
degree of freedom) and the Bonferroni corrected p-values were calculated
for both frequency bands separately.

Table 3.3 shows the comparisons of the low and high PG. For the low
performers, statistically significant difference was reached between run 1

and run 3 for both the theta band (t(19) = -3.91, p < 0.01) and the alpha
band (t(19) = -4.72, p < 0.01). In the alpha band, the comparison between
run 1 and run 2 also showed a low p-value, but the difference did not reach
statistical significance (t(19) = -3.00, p = 0.07). For the low PG, the lowest
p-values were found between run 1 and run 3 as well, but the comparisons
did not reveal a statistically significant difference in neither the theta (t(19)
= -0.89, p = 0.23) nor the alpha band (t(19) = -2.24, p = 0.47).

In Table 3.4, the comparisons of the task conditions are presented. In the
alpha band, the comparisons reached statistically significant difference in
the 1-back task between run 1 and run 2 (t(19) = -4.13, p < 0.01) and between
run 1 and run 3 (t(19) = -4.66, p < 0.01), as well as in the 3-back task between
run 1 and run 3 (t(19) = -4.57, p < 0.01). In the theta band, no statistically
significant differences were revealed, but the comparisons with the lowest
p-values were also found between run 1 and run 3 in the 1-back (t(19) =
-3.03, p = 0.13) and the 3-back task (t(19) = -3.19, p = 0.08).

The comparisons of the individual ROIs are presented at Table 3.5. Statis-
tically significant difference in the alpha band was found between run 1

and run 3 at each ROI: at the frontal (t(19) = -4.36, p < 0.01), the central
(t(19) = -5.46, p < 0.01), the parietal (t(19) = -4.86, p < 0.01) and the occipital
cortex (t(19) = -4.68, p < 0.01). Additionally, the comparison between run
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1 and run 2 showed statistical significance at the central cortex (t(19) =
-4.19, p < 0.01). In the theta band, no comparison reached a statistically
significant difference, but the lowest p-values could be found at each ROI
as well between run 1 and run 3, with the lowest at the central cortex (t(19)
= -4.01, p = 0.02).

Table 3.3: Post-hoc test comparisons of the low and high PG at different runs.

Comparisons Theta Band Alpha Band
t(19) pBon f t(19) pBon f

Low PG
Run 1 Run 2 -2.32 0.40 -3.00 0.07

Run 1 Run 3 -3.91 < 0.01 -4.72 < 0.01
Run 2 Run 3 -1.59 1.00 -1.72 1.00

High PG
Run 1 Run 2 -0.68 1.00 -2.16 0.56

Run 1 Run 3 -0.89 0.23 -2.24 0.47

Run 2 Run 3 -0.21 1.00 -0.08 1.00

Table 3.4: Post-hoc test comparisons of the 1-back, 2-back and 3-back task at different runs.

Comparisons Theta Band Alpha Band
t(19) pBon f t(19) pBon f

1-Back
Run 1 Run 2 -2.35 0.79 -4.13 < 0.01
Run 1 Run 3 -3.03 0.13 -4.66 < 0.01
Run 2 Run 3 -0.68 1.00 -0.53 1.00

2-Back
Run 1 Run 2 -2.07 1.00 -2.90 0.19

Run 1 Run 3 -2.83 0.23 -3.68 0.02

Run 2 Run 3 -0.76 1.00 -0.78 1.00

3-Back
Run 1 Run 2 -1.20 1.00 -2.46 0.60

Run 1 Run 3 -3.19 0.08 -4.57 < 0.01
Run 2 Run 3 -1.99 1.00 -2.11 1.00
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Table 3.5: Post-hoc test comparisons of the individual ROIs at different runs.

Comparisons Theta Band Alpha Band
t(19) pBon f t(19) pBon f

Frontal
Run 1 Run 2 -1.70 1.00 -3.03 0.28

Run 1 Run 3 -2.82 0.50 -4.36 < 0.01
Run 2 Run 3 -1.12 1.00 -1.34 1.00

Central
Run 1 Run 2 -2.64 0.78 -4.19 < 0.01
Run 1 Run 3 -4.01 0.02 -5.46 < 0.01
Run 2 Run 3 -1.37 1.00 -1.26 1.00

Parietal
Run 1 Run 2 -2.30 1.00 -3.71 0.04

Run 1 Run 3 -3.56 0.07 -4.86 < 0.01
Run 2 Run 3 -1.26 1.00 -1.15 1.00

Occipital
Run 1 Run 2 -1.84 1.00 -3.30 0.13

Run 1 Run 3 -3.27 0.15 -4.68 < 0.01
Run 2 Run 3 -1.43 1.00 -1.38 1.00

35



3 Results

3.2 Subjective Ratings and Behavioural Measures

In addition to the BP changes of the EEG, subjective ratings and behavioural
measures can be used to determine increasing MWL and MF. For the
subjective ratings, VAS-F and NASA-TLX questionnaires were conducted
before, during and after the experiments. As behavioural measures, the task
performance accuracies and the response times were used.

3.2.1 Subjective Ratings

In Figure 3.8, the single subject and grand average ratings according to
the VAS-F questionnaires are illustrated. The questionnaires were taken
before (blue bars) and after the experiments (orange bars) and divided into
two categories, the fatigue level (A) and the energy level (B). The highest
possible score of both rating categories was scaled to 100%, in order to make
them more comparable. For all subjects, the fatigue level increased during
the experiment and the energy level decreased. The grand average rating
of the fatigue level increased from 24% to 54%, the energy level decreased
from 65% to 46%.

The single subject and grand average ratings of the NASA-TLX question-
naires are shown in Figure 3.9. The questionnaires were conducted after run
1 (blue bars), run 2 (orange bars) and run 3 (yellow bars). Again, the highest
possible rating score was scaled to 100 %. The results of the individual
subjects show a diverging behaviour: For some, the task load increased
during the experiment, for others the task load stayed the same or even
decreased. However, the grand average ratings of the task load increased
continuously after each run (56%, 63% and 68%).
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Figure 3.8: Single subject and grand average ratings according to the VAS-F questionnaires,
before and after the experiment. (A): Fatigue level, (B): Energy level.

Figure 3.9: Single subject and grand average ratings according to the NASA-TLX question-
naires after runs 1, 2 and 3.

37



3 Results

3.2.2 Behavioural Measures

The performance accuracies were calculated by the number of correctly
detected target and non-target letters during a task. An accuracy of 100%
means that all 5 target letters were detected correctly (by pressing the t
key) and none of the 15 non-target letters identified as a target letter. The
accuracies of each task condition were averaged over all trials at each run.
The single subject and grand average performance accuracies are presented
at Table 3.6. The performance accuracies decreased with increasing task
difficulty (increasing n), which means the 1-back task yielded the highest
performance accuracies (99%, 99.13% and 98.88%) and the 3-back task the
lowest (88.03%, 90.84% and 89.94%). By comparing the performance accu-
racies between the runs however, the results show only small changes. For
each task condition, there is a small increase of the performance accuracies
from run 1 to run 2 and a small decrease from run 2 to run 3.

As a second performance measure, the response times of the subjects during
the task execution were considered. The response time is the time difference
between the letter onset and pressing the t key. The response times of each
task condition were averaged over all trials at each run. The single subject
and grand average response times are displayed at Table 3.7. The response
times increased with increasing task difficulty (increasing n), which means
that the lowest response times resulted from the 1-back task (0.53 s, 0.54 s
and 0.54 s) and the highest response times from the 3-back task (0.83 s, 0.83

s and 0.76 s). Like the findings in the performance accuracies, only small
changes occurred between the runs. At the 1-back task, there was a small
increase from run 1 to run 3 (0.01 s), at the 2-back and 3-back task even a
small decrease from run 1 to run 3 (0.06 s and 0.07 s).
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Table 3.6: Single subject and grand average performance accuracies. The task conditions
are averaged over all trials at each run.

Sub. Performance Accuracy (%)
Task 1-Back 2-Back 3-Back
Run 1 2 3 1 2 3 1 2 3

EB1 100 96.25 99.38 95.63 96.88 95.63 85.63 88.13 90.63

EI5 95.63 98.75 94.38 97.50 98.13 94.38 80.63 87.50 82.50

EK2 100 100 100 98.75 98.75 100 95.00 96.88 96.88

EQ1 96.88 98.75 96.88 85.00 86.88 84.38 78.75 82.50 83.75

EQ9 99.38 99.38 99.38 96.88 95.00 95.63 87.50 91.25 90.00

ES8 96.88 96.88 95.63 96.88 91.88 98.13 81.88 83.13 81.88

EU6 99.38 98.75 99.38 96.88 98.75 96.25 90.00 90.00 90.00

EV2 100 100 100 98.13 99.38 98.75 93.13 96.88 93.75

EV4 99.38 100 100 93.75 95.00 96.88 87.50 94.38 93.13

EV6 100 100 100 97.50 97.50 100 90.00 93.13 87.50

EW1 100 100 100 100 98.75 100 95.63 94.38 97.50

EW2 100 99.38 98.75 96.25 99.38 100 93.75 92.50 92.50

EW3 98.75 100 100 98.75 98.75 98.13 8.75 91.25 92.50

EW4 100 97.50 100 99.38 97.50 97.50 88.75 90.63 91.25

EW5 100 100 99.38 96.88 96.88 96.25 85.63 88.75 92.50

EW6 97.50 99.38 99.38 98.13 100 97.50 91.25 96.25 90.63

EW7 100 100 100 93.75 96.25 96.88 85.00 87.50 83.13

EW8 98.13 98.13 96.25 96.88 98.75 98.75 95.63 100 93.75

EW9 98.75 99.38 98.75 98.13 98.75 99.38 83.13 85.00 86.88

EX2 99.38 100 100 96.88 97.50 96.88 83.13 86.88 88.13

AVG 99.00 99.13 98.88 96.59 97.03 97.06 88.03 90.84 89.94
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Table 3.7: Single subject and grand average response times. The task conditions are averaged
over all trials at each run.

Sub. Response Time (s)
Task 1-Back 2-Back 3-Back
Run 1 2 3 1 2 3 1 2 3

EB1 0.64 0.58 0.61 0.67 0.66 0.61 0.87 0.82 0.66

EI5 0.62 0.64 0.64 0.76 0.90 0.90 0.89 0.92 0.91

EK2 0.53 0.46 0.45 0.56 0.53 0.52 0.66 0.67 0.58

EQ1 0.53 0.44 0.47 0.83 0.38 0.38 0.54 0.56 0.35

EQ9 0.64 0.87 1.00 0.79 0.97 1.04 1.08 1.11 1.11

ES8 0.52 0.51 0.55 0.75 0.67 0.57 0.88 0.81 0.66

EU6 0.56 0.59 0.57 0.70 0.66 0.63 0.87 0.81 0.70

EV2 0.63 0.74 0.64 0.68 0.73 0.69 0.80 0.93 0.73

EV4 0.38 0.33 0.36 0.47 0.42 0.48 0.55 0.48 0.54

EV6 0.50 0.55 0.68 0.76 0.68 0.73 0.97 0.90 0.90

EW1 0.45 0.48 0.43 0.66 0.63 0.61 0.91 0.97 0.79

EW2 0.53 0.53 0.55 0.62 0.46 0.49 0.76 0.74 0.66

EW3 0.67 0.73 0.69 0.94 0.88 0.84 0.97 1.12 1.08

EW4 0.66 0.63 0.48 0.73 0.60 0.63 0.93 0.79 0.67

EW5 0.45 0.51 0.48 0.66 0.72 0.63 0.98 0.90 0.88

EW6 0.44 0.46 0.48 0.52 0.51 0.50 0.60 0.65 0.65

EW7 0.41 0.40 0.39 0.61 0.58 0.60 0.69 0.70 0.67

EW8 0.47 0.59 0.55 0.78 0.77 0.72 0.78 0.76 0.81

EW9 0.43 0.40 0.45 0.59 0.57 0.45 1.09 1.13 1.14

EX2 0.48 0.45 0.41 0.63 0.62 0.60 0.72 0.82 0.73

AVG 0.53 0.54 0.54 0.69 0.65 0.63 0.83 0.83 0.76
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3.3 MWL and MF Detection

As described in Chapter 2.5.3, the detection of MWL and MF was imple-
mented by using the Riemannian geometry. MWL and MF were defined
as too high, when the Riemannian distances of a task-run EEG reached
or surpassed the threshold of the baseline EEG. The differences between
the threshold and the Riemanian distances are presented at Table 3.8. The
distances of each window were averaged over all trials per task condition
at each run. The Riemannian distances reached or surpassed the threshold
(illustrated as 0 or negative difference respectively) for 8 subjects (gray high-
lighted rows). 6 out of the 8 subjects belonged to the low PG, 2 to the high
PG. The number of high MWL and MF detections increased with increasing
experiment duration (increasing run number). 4 detections occurred at run
1, 6 at run 2 and 12 at run 3. The grand average differences of all subjects
were decreasing with increasing run number (0.17, 0.13 and 0.13).

Table 3.9 shows the grand average differences for each PG separately. The
differences between the threshold and the Riemanian distances of the low
performers (0.15, 0.11 and 0.09) are lower than the differences of the high
performers (0.18, 0.16 and 0.16). Furthermore, the differences of the low PG
decreased continuously over time, whereas the differences of the high PG
stayed the same during the experiment.
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Table 3.8: Differences between the threshold of the baseline EEG and the Riemannian
distances of the task-run EEG.

Sub. Difference between THRS and DR (dB)
Run 1 2 3 PGTask 1 2 3 1 2 3 1 2 3

EB1 0.38 0.40 0.27 0.23 0.29 0.18 0.24 0.24 0.20 Low
EI5 0.03 0.06 0.04 0.01 0.00 0.03 0.00 0.01 0.00 Low
EK2 0.01 0.01 0.11 0.01 0.11 0.01 0.07 0.1 0.09 High
EQ1 0.06 0.09 0.13 -0.04 -0.05 0.08 -0.04 -0.01 0.01 Low
EQ9 0.26 0.24 0.21 0.24 0.24 0.21 0.21 0.21 0.17 Low
ES8 0.25 0.27 0.27 0.09 0.26 0.23 0.19 0.27 0.25 Low
EU6 0.41 0.40 0.35 0.37 0.34 0.28 0.32 0.38 0.34 High
EV2 0.16 0.21 0.22 0.04 0.13 0.19 0.10 0.09 0.15 High
EV4 0.21 0.20 0.20 0.21 0.20 0.22 0.21 0.22 0.22 High
EV6 -0.02 -0.03 -0.01 0.00 0.04 0.01 -0.02 0.00 -0.02 Low
EW1 0.22 0.21 0.22 0.16 0.19 0.19 0.14 0.13 0.12 High
EW2 0.12 0.15 0.16 0.11 0.16 0.13 0.13 0.14 0.15 High
EW3 0.13 0.16 0.13 0.01 0.04 0.01 0.01 0.00 -0.03 Low
EW4 0.09 0.09 0.10 0.10 0.10 0.09 0.08 0.08 0.08 High
EW5 0.03 0.17 0.15 0.03 0.17 0.17 -0.01 0.14 0.15 Low
EW6 0.04 0.03 0.05 -0.02 0.01 0.02 0.03 0.05 0.05 High
EW7 0.27 0.39 0.18 0.22 0.29 0.26 0.24 0.29 0.26 High
EW8 0.31 0.30 0.30 0.30 0.29 0.29 0.32 0.32 0.31 High
EW9 0.14 0.15 0.16 0.13 0.14 0.12 0.13 0.05 0.00 Low
EX2 -0.02 0.05 0.03 -0.05 0.04 0.02 -0.02 0.03 0.01 High

AVG 0.16 0.18 0.16 0.11 0.15 0.14 0.12 0.14 0.13

0.17 0.13 0.13
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Table 3.9: Difference between the threshold of the baseline EEG and the Riemannian dis-
tances of the task-run EEG, averaged over each PG.

AVG differences between THRS and DR (dB)

PG Run 1 2 3

Task 1 2 3 1 2 3 1 2 3

Low AVG 0.14 0.17 0.15 0.08 0.12 0.12 0.08 0.10 0.08

0.15 0.11 0.09

High AVG 0.17 0.20 0.18 0.14 0.17 0.16 0.15 0.17 0.16

0.18 0.16 0.16
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In order to detect increasing MWL and MF, the BP changes over time were
analysed at the individual task conditions (1-back, 2-back and 3-back), ROIs
(frontal, central, parietal and occipital) and PGs (high and low performers).
To corroborate the findings of the BP changes, the behavioural measures
(performance accuracy and response time) and subjective ratings (VAS-F and
NASA-TLX questionnaires) were inspected. Furthermore, the Riemannian
geometry was applied to define when the threshold of high MWL and MF
was reached.

4.1 Differences between PGs and Task Conditions

The results presented in Chapter 3.1 show, that there are differences in the
BP changes between the low and the high PG for both frequency bands.
While for the low performers a high BP increase was elicited over time, the
high performers showed only small BP increases and even BP decreases
between runs. The results are supported with the estimated marginal means
in Figure 3.5, where a clear separation between the two PGs can be seen
with the same temporal progress as mentioned above. Furthermore, the
post-hoc tests in Table 3.3 showed only a statistically significant difference
at the low PG between run 1 and run 3. These findings lead to the expected
assumption, that the MWL and the MF of the participants are in correlation
to their task performance. Like stated from Käthner et al. [48] and Roy et al.
[49], the results show that the task performance decreases with increasing
MWL and MF.

Concerning the task-conditions, MWL and MF were expected to increase
with increasing task difficulty. It was expected that the BP increases with
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increasing n of the letter n-back task. The results in the Figures 3.1-3.4
however show, that the highest BP increase in both frequency bands was
elicited at the 1-back task. A possible explanation of this outcome is, that
the 1-back task was very easy to perform in relation to the other tasks,
and the participants lost concentration and focus on the task. This theory
can be corroborated with the BP increase at multiple, widespread cortical
sites, which indicates that more cortical areas were activated during the
1-back task. Looking at Figure 3.6, it can be seen that the mean BP increase
between run 2 and run 3 of the 3-back task is higher than the mean BP
increase of the 1-back and 2-back task. With a longer experimental duration
(additional runs) it might be possible, that the BP increase of the 3-back
task surpasses the 1-back and 2-back task. The post-hoc tests in Table 3.4
revealed statistical significance for the 1-back task when comparing run 1

with run 2 and run 1 with run 3, which confirms that the 1-back task elicited
the highest BP changes during the experiment. The results of the 3x3x4

repeated measures ANOVA in Table 3.1 show, that the factor Tasks is the
only factor that showed significance in both frequency bands. The factor
ROIs reached significance only in the theta band and the factor Runs only
in the alpha band.

4.2 Influence of MWL and MF at the
investigated ROIs

The topographical plots in the Figures 3.1 and 3.2 show that the theta BP
increased at the frontal cortex for both PGs like suggested from the presented
studies [45]–[47], [71]. The strongest BP increase however occurred at the
parietal cortex, which does not confirm the findings of MWL increase in
the presented literature. This can be explained with the overlapping BP
increase towards the end of the experiment, caused by increasing MF as
suggested from Boksem et al. [57] and Klimesch et al. [72]. Since the exact
cortical region influenced by increasing MF is not specified in the literature,
this outcome leads to the assumption that increasing MF induces a higher
BP increase at the parietal cortex than at other cortical areas. The post-hoc
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test comparisons at Table 3.5 revealed no statistical significance in the theta
band.

The results of the BP changes in the alpha band can be observed in Figures
3.3 and 3.4. The BP decrease at the parietal sites for both PGs at run 1

supports the findings in the literature concerning MWL increase [45]–[47],
[71], but there was also a BP decrease observed at frontal and central sites. In
run 2, the alpha BP starts increasing at various cortical areas, which can be
an indicator of increasing MF [57], [72]. This theory is confirmed by looking
at the differences between the PGs in run 3: While the high performers
show only small increases and even decreases in their BP, there are high BP
increases in the low PG. It appears that the lower task performance of the
low PG was caused by a higher MF, which is expressed by a higher alpha
BP increase, especially in the fronto-central cortical areas. In contrast to the
theta band, the post-hoc test comparisons in Table 3.5 revealed statistically
significant differences between run 1 and run 3 for each ROI. These results
show, that the influence of increasing MWL and MF is higher in the alpha
band than in the theta band, which can also be seen in the topographical
plots of the BP changes.

4.3 Subjective Ratings and Behavioural Measures

The outcome of the VAS-F and NASA-TLX questionnaires, illustrated in the
Figures 3.8 and 3.9, states that the participants experienced an increase in
their subjective workload and fatigue level and a decrease in their energy
level during the experiment. Although these results indicate the influence
of a cognitive demanding task on the mental state of the participants as
suggested from Käthner et al. [48] and Roy et al. [49], the increases of the
fatigue and workload level (and the decrease of the energy level) were
expected to be higher. This can be confirmed by looking at the performance
accuracies in Table 3.6: The results at a certain task condition were very
similar in all 3 runs. The small increases from run 1 to run 2 can be attributed
to the learning effect of the task performance, especially at the 3-back task.
From run 2 to run 3, a drop in the performance accuracy was expected,
but did not occur. It must be mentioned that the high task performance

46



4 Discussion

accuracies resulted due to the fact, that there were only 5 targets opposed to
15 non-targets during a trial sequence. This means that detecting no target
at all still leads to a performance accuracy of 75%. The same behaviour can
be seen at the response times in Table 3.7: The response times for each task
condition stayed the same during the experiment or even decreased, instead
of increasing.

Over all, the participants experienced an increase of their fatigue and work-
load level, but not as high as expected. Together with the results of the
behavioural measures (low increase or no increase at all), it can be said
that the experiment was not demanding enough to elicit high MWL and
MF in all participants. An improvement for further studies is to prolong
the duration of the experiment (for example by adding another run). Since
the 3-back task is already quite demanding, adding a higher n-back task to
increase the difficulty of the experiment is not recommended.

4.4 MWL and MF Detection

As mentioned in Chapter 1.3, most of the pBCI systems for mental state
monitoring uses various classification algorithms in order to detect high
MWL or MF. The classification approach was considered for this thesis as
well, in form of an LDA classifier in combination with a CSP filter based on
the BP features. Due to the lack of validity and significance however, this
approach was rejected.

The detection of high MWL and MF was implemented by using the Rie-
mannian geometry. If the Riemannian distance of a task-run EEG reached
or surpassed the threshold defined by the baseline EEG (expressed by 0

or negative difference values respectively), the level of MWL and MF was
defined as too high. The Detection was conducted at the alpha band, be-
cause the influences of MWL and MF on the BP changes were revealed to
be higher than at the theta band. The results illustrated in Table 3.8 show,
that high MWL and MF was detected in 8 out of 20 participants, 6 of them
belonged to the low PG. Even though the detection rate is only 40%, this
outcome is quite promising. The results confirm the assumptions, that the
experiment was not demanding enough for most of the participants and
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that the task performance is in correlation with the MWL and MF level.
Furthermore, most of the detections occurred at run 3, which approves the
increase of the fatigue and workload level over time. This trend becomes
even clearer when looking at the results at Table 3.9: The differences between
the Riemannian distance of the task-run and the threshold are averaged
over each run and divided into the two PGs. For the high PG, there is a
small decrease from run 1 to run 2, from run 2 to run 3 the difference stays
the same. The difference of the low PG on the contrary shows a continuous
decrease during the experiment. This trend suggests, that the whole low PG
would have reached their MWL and MF limit, if the experiment duration
was longer.

It must be mentioned that the Riemannian distances were averaged over all
trials per task condition. For an online pBCI for mental state monitoring, a
single trial detection of MWL and MF is desired. A potential error source of
the Riemannian geometry approach is the influence of artefacts, since the
distance of an artefact influenced EEG signal also surpasses the threshold of
the baseline EEG. To avoid these false positive detections, a comprehensive
artefact correction must be implemented for the online pBCI system.
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The aim of this thesis was to detect high MWL and MF in participants
performing a cognitive demanding task in form of the letter n-back task.
For the detection, the Riemannian geometry was applied on BP features
of the EEG. The results of the BP changes over time partly agreed with
the findings in the presented literature. For increasing MWL, the theta BP
continuously increased as expected at the frontal cortex, but showed even
higher increases at the parietal cortex. The alpha BP initially decreased
according to the literature at the parietal cortex but also at the frontal and
central areas. At run 2, the BP started to increase at multiple, widespread
cortical areas. The theta and alpha BP increase towards the end of the
experiment indicates increasing MF. It appears that the initial influence of
increasing MWL on the BP changes gets overlapped by the influence of
increasing MF. Although this behaviour was expected, it shows one of the
main limitations in the thesis: A clear distinction between MWL and MF is
not possible with BP features.

The results of the subjective ratings and the behavioural measures revealed
another limitation of this thesis: The experiment was not cognitive demand-
ing enough, to elicit high MWL and MF in all of the participants. This
outcome was confirmed by showing high BP differences between the low
and high PG. A suggested improvement for further studies is to prolong
the duration of the experiment, for example by adding an additional run.

The detection of high MWL and MF by using the Riemannian distances
of the task run EEG showed promising results. High MWL and MF were
detected at 8 participants, 6 of them belonged to the low PG. These findings
are consistent with the BP changes at both the theta and the alpha frequency
band, where increasing MWL and MF was only elicited for the low PG.
Additionally, the averaged differences between the Riemannian distance of
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the task-run and the threshold of the low PG are continuously decreasing
with increasing experiment duration.

Overall, the MWL and MF detection with the Riemannian geometry ap-
proach seems to be working. To improve this detection algorithm, future
studies must be conducted with a longer experiment duration. Using this
approach for an online pBCI for mental state monitoring, the next steps will
be to implement a trial-wise detection algorithm and to apply an online
artefact correction procedure.
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[73] Ç. İ. Acı, M. Kaya, and Y. Mishchenko, “Distinguishing mental atten-
tion states of humans via an EEG-based passive BCI using machine
learning methods,” Expert Systems with Applications, vol. 134, pp. 153–
166, 2019.

[74] S. L. Klosterman and J. R. Eepp, “Investigating Ensemble Learning
and Classifier Generalization in a Hybrid, Passive Brain-Computer
Interface for Assessing Cognitive Workload,” Proceedings of the Annual
International Conference of the IEEE Engineering in Medicine and Biology
Society, EMBS, pp. 3543–3546, 2019.

[75] N. Salimi, M. Barlow, and E. Lakshika, “Mental Workload Classifica-
tion Using Short Duration EEG Data: An Ensemble Approach Based
on Individual Channels,” 2019 IEEE Symposium Series on Computational
Intelligence, SSCI 2019, pp. 393–398, 2019.

[76] A. Barachant, M. Congedo, C. Jutten, and C. J. M. Brain-, “Multiclass
Brain-Computer Interface Classification by Riemannian Geometry To
cite this version : Multi-class Brain Computer Interface Classification
by Riemannian Geometry,” vol. 59, no. 4, pp. 920–928, 2012.

[77] F. Yger, M. Berar, and F. Lotte, “Riemannian Approaches in Brain-
Computer Interfaces: A Review,” IEEE Transactions on Neural Systems
and Rehabilitation Engineering, vol. 25, no. 10, pp. 1753–1762, 2017.

58



Bibliography

[78] A. Appriou, A. Cichocki, and F. Lotte, “Towards robust neuroadaptive
hci: Exploring modern machine learning methods to estimate mental
workload from eeg signals,” in Extended Abstracts of the 2018 CHI
Conference on Human Factors in Computing Systems, 2018, pp. 1–6.

[79] W. K. Kirchner, “Age differences in short-term retention of rapidly
changing information,” Journal of Experimental Psychology, vol. 55, no. 4,
pp. 352–358, 1958.
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