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Abstract

With the rise of smartphones in the last decade, operating systems of mobile
devices have become increasingly powerful. This includes their capability of
audio processing, which has been continuously improved and expanded.
Many of today’s mobile applications make heavy use of the operating sys-
tem’s audio processing capabilities, one of them being Pocket Code.
Pocket Code is a mobile integrated development environment (IDE) for
teenagers and uses the visual programming language Catrobat. It offers
an easy way to create programs and games and provides an audio engine
that includes various audio playback, processing and recording features.
Unfortunately, the audio engine of Pocket Code’s iOS version has proven to
be erroneous and unreliable, leading to many bugs in the application. The
weaknesses and the planned implementation of additional audio features
therefore raised the need for a complete redesign of the audio engine. This
thesis documents this redesign process. It outlines the original state and
weaknesses of the audio engine, defines the specifications of existing and
new audio features, evaluates various potential audio processing frame-
works on iOS, and describes the architecture of the redesigned engine.
To prevent further bugs in the future, automated tests are implemented for
the audio engine. The thesis therefore explores some general concepts of
automated testing and describes the testing framework provided by Apple.
As automated testing of audio functionality is non-trivial, the thesis also
researches and highlights different testing strategies specifically tailored
to the testing of audio features. It then proceeds by looking at how these
strategies can help the automated testing of Pocket Code’s redesigned audio
engine.
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1 Automated code testing: An
introduction

Code testing is a concept as old as computer programming itself. Every
software developer throughout the history of software development has
written or performed a test case in one or the other way. In the era of
programming with punched cards, testing the algorithms often involved the
use of pen and paper, sketching and outlining the different control flows of
the program to avoid unintended behaviour. An error during the execution
of the program often lead to a major time loss since computational resources
were very limited at that time1. Nowadays, a code test could be as simple
as setting a breakpoint to inspect the state of a running program or creating
a temporary button and output label in the user interface to execute a
specific method and displaying its output. This kind of manual code testing
works pretty well in small and non-commercial projects. However, in the
increasingly large and complex code bases of today’s commercial software
projects, manual testing becomes a time-consuming and error prone task.
Typically, an application changes continually over its lifecycle. It grows as
new features are added, which in turn leads to new tests that need to be
performed. Unfortunately, the new features cannot be viewed in isolation,
they almost always influence and affect previously written code. A 10% code
change might have such widespread impact, that 100% of the application’s
features have to be retested2. At some point, manual testing can no longer
keep up with this increasing workload. Bugs start to get unnoticed by testers
and will be shipped to the customers with the final product. These bugs
can lead to a significant financial loss for the distributor or user of the
application. In 2002, the National Institute of Standards and Technology

1[Osh14], p. xvii.
2[Hay04], p. 5.
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1 Automated code testing: An introduction

estimated the financial losses of the U.S. economy caused by software bugs
at around 60 billion dollars. The study also found that a third of these costs
could have been avoided with an improved testing infrastructure3. With the
increasing digitalization, these figures are likely to be much higher today.
To overcome the difficulties of manual testing, software engineers have
come up with various solutions to automate this process. These solutions,
although different in their implementations, essentially all evolve around the
same definition of automated testing which can be reduced to the following
two (slightly modified) sentences found in [Osh14]:

”An automated test is a piece of code that invokes another piece of code and
checks the correctness of some assumptions afterwards. If the assumptions
turn out to be wrong, the test has failed.”4

One of the most significant contributions to automated testing has been
made by Kent Beck with the creation of a testing framework called ”SUnit”
for the programming language Smalltalk which he described in [Bec99].
The automated testing strategies of SUnit have been adopted by testing
frameworks of many other programming languages and are still widely
used today5. Nonetheless, still today, developers, clients and project man-
agers often struggle with the concept of automated testing. Automated
testing results in additional work for developers, not only in writing the
tests themselves but also in writing the code that has to be tested. To make
code testable, a developer needs to plan ahead and follow some specific
concepts or else ends up with code that is very hard to test. Oftentimes,
developers are not willing or able to put in this extra time for writing test
cases, especially when they are working under time pressure to finish a
certain task. Clients and project managers also often neglect the long-term
benefits of automated tests by only seeing the additional costs caused by
their creation.

3[Nat02].
4[Osh14], p. 4.
5[Fea04], p. 48.
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1 Automated code testing: An introduction

1.1 The different levels of software testing

Since software development is a multi-faceted and complex process, it usu-
ally involves more than just one type of testing. Typically, a software product
will be tested on different levels and with different types of tests and tools.
Each level has its specific testing goals6. Starting with testing small units of
code, each subsequent level tests bigger parts of the system for correct func-
tionality and integration until at last the system gets tested as a whole. This
hierarchical testing structure can be seen in figure 1.1. While the number of
testing levels may vary in literature, the four levels depicted in figure 1.1 are
some of the most commonly found in software projects and will be looked
at in more detail in this chapter.
In the following explanations, the term ”system under test” (SUT) is intro-
duced, which is frequently used throughout this thesis. It always refers to
the code that is being tested in a test case, regardless of whether it is just a
single method or many different classes interacting with each other.

Figure 1.1: The different levels of software testing7

6[Bur03], p. 133.
7[Bur03], p. 134.
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1 Automated code testing: An introduction

1.1.1 Unit testing

The name ”unit test” already says a lot about this level of testing and es-
pecially highlights the subjects of these tests: individual units. The Oxford
Dictionary gives the following definition of a unit:

”An individual thing or person regarded as single and complete but which
can also form an individual component of a larger or more complex whole”8.

The ”larger or more complex whole” can be interpreted as the system
or a subsystem that is developed during a software development process.
The units on the other hand, are tightly interconnected and form the build-
ing blocks of this system. The fact that a unit is regarded as ”single and
complete” implies two things:

1. Although connected with other units, a unit is an independent building
block and can therefore also be tested independently from other units.

2. A unit consists of code, that produces some sort of a meaningful and
testable end result, which in turn contributes to the functioning of the
whole system.

However, the exact definition of a unit in the context of unit testing varies.
Some simply describe it as the smallest testable part of an application, others
define it as a single method or a single class. In reality, it does not make
much sense to work with such a static definition. Even if a test might cover
the smallest testable part of an application, it does not necessarily mean
that it is a meaningful test. A specific method or class might only deliver
a meaningful result in conjunction with another method or class. A good
example of a smallest possible but meaningless test would be the test of a
getter or setter method. While it is possible to test a getter or setter method,
such a test will not add much to the improvement of code quality since
those methods do not contain any logic.
A more pragmatic definition of a unit can be found in [Osh14]. Roy Osherove
defines it as a ”unit of work”, which is the sum of actions that lead to a

8[Oxf].
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single end result after the invocation of a public method. By this definition,
a unit can span a single method or multiple classes9.

Independent from the exact definition of a unit, a unit test’s main goal is to
uncover functional and structural defects of the unit under test10. A test has
to fulfill several properties to be considered a unit test:

1. Isolation: The unit under test should be tested independently and
isolated from other units11. In reality, almost every unit is connected
to other objects and components. To still achieve sufficient isolation
during a test, there are specific techniques to eliminate those depen-
dencies which will be covered in chapter 2. A test that communicates
with a database, makes network calls or reads from the file system
is generally not considered a unit test because it depends on other
components12. The degree of isolation directly impacts the following
properties.

2. Error localization: As previously mentioned, unit tests are designed to
test small units of work. This guarantees that an error can be quickly
localized whenever a test fails13. The more dependencies the code
under test has, the harder it gets to localize the error in case of a failed
test. Tests with many dependencies can also be useful, but usually
fall into the category of integration testing which is discussed in the
next section. To facilitate the localization of errors, automated tests
usually provide a text output that compares the expected with the
actual behaviour at the end of a failed test case.

3. Speed: Unit tests are meant to be executed frequently during develop-
ment to detect possible errors that resulted from recent code changes.
If tests take too long, developers might not run them often enough
or not at all, which in turn negatively affects code quality. Unit tests
should run fast or else cannot be considered to be unit tests. Even
tests that run longer than 100 milliseconds are already considered
to be slow14. Considering that big software projects build up tens of

9[Osh14], p. 4.
10[Bur03], p. 133.
11[Fea04], p. 12.
12[Fea04], p. 14.
13[Fea04], p. 12.
14[Fea04], p. 13.
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thousands of unit tests over time, it becomes clear that running a full
test suite would otherwise become a very time consuming endeavour.
Tests with many dependencies tend to be larger and slower than tests
with isolated units.

1.1.2 Integration testing

As described earlier, units are the building blocks of bigger systems. Units
interact with and depend on each other to provide the system’s intended
functionality. Once all necessary units have been written and tested, they can
be assembled to form a higher-level system. Of course, a system consisting
of units that all passed their corresponding unit tests is not automatically
guaranteed to work. In fact, one little mistake inside or at the interface
of a unit can have a negative impact on the entire system. This is where
integration testing comes into play.
In [Het88], integration testing is defined as ”an orderly progression of
testing in which software and/or hardware elements are combined and
tested until the entire system has been integrated.”15. With this definition,
some properties can be derived that clearly differentiate unit tests from
integration tests16:

1. While unit tests validate the correctness of the structure and internal
logic of a component, integration testing can detect weaknesses at the
interfaces of system components17.

2. Unit tests try to eliminate dependencies to isolate a component from
external influences. For integration testing, units now integrate some
of their real dependencies to form increasingly larger subsystems. If a
test makes use of techniques like threading, accesses the file system or
a real database or uses the system time, it is most likely an integration
test.

3. Using real dependencies increases the risk of creating inconsistent
tests. The content of a real database can change, the timing of threads

15[Het88], p. 15.
16[Osh14], p. 7.
17[Bur03], p. 152.
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can differ slightly, and the system time will be different every time a
test executes.

4. Due to the fact that integration tests comprise multiple interacting
components, they also cover a bigger part of the system’s code base
than a unit test. Additionally, the individual components have to be set
up properly before a test can be executed. Due to these circumstances,
integration tests are usually much slower than unit tests.

5. Unlike unit tests, it might be hard to find the reason for a failed
integration test. When many components of a system work together
and contribute to a final result, the root of an error does not become
apparent immediately.

Most of the above properties are somewhat negative, which could give the
misleading impression that unit testing should be preferred over integration
testing. This, of course, is not the case. Both, unit tests and integration
tests, are equally important for a good testing infrastructure and cannot
replace one another. While unit tests are designed to test small units of
work, other results can only be observed and tested when multiple units are
combined and therefore rely on integration testing. The above-mentioned
disadvantages of integration tests are a direct result of the higher complexity
of the SUT. It is therefore important to clearly separate integration tests
from unit tests18.

1.1.3 System testing

System testing starts once all the different parts of a system are fully inte-
grated. This includes the actual software, the hardware it runs on, and any
external hard or software that a system depends on. Although this level of
testing also intends to uncover possible defects, it is much more focused on
assuring performance, usability and reliability of the system. Depending on
the setup of the system, testing on this level can include the use of special
software and hardware to perform the tests and measure their results19.

18[Osh14], p. 7.
19[Bur03], p. 134.
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Often, system testing is not executed by the software developers themselves,
but by separate testing personnel or team leaders20.

1.1.4 Acceptance testing

Once system testing has been completed, testing can move on to an ad-
ditional level called acceptance testing, which is needed if a software is
custom made for a client21. It is used to verify that all requirements and
specifications are met that were agreed on with the client and that the client
is paying for and that the final product is ready to be used. Acceptance tests
are often a subset of the system tests and verify the correctness of important
business transactions of the system. They are usually performed by the
client itself or by an external company hired by the client22. As acceptance
tests as well as system tests are often not written and performed by soft-
ware developers and follow different procedures than unit and integration
tests, they will not be discussed any further. The term ”automated testing”
therefore only refers to unit and integration tests in all following chapters.

1.2 The benefits of automated testing

Apart from verifying code and detecting errors in software, automated tests
bring additional benefits to software projects. This section gives a quick
overview of those benefits.

Improved documentation and specification Automated tests can be seen
as a living documentation of a software’s intended behaviour and spec-
ifications. They describe the system’s behaviour and results to different
inputs and are continuously updated as the software evolves. If a software
developer is unable to come up with a test for a specific piece of code, it can
mean that the specifications are not clear enough and need some further

20[Het88], p. 11.
21[Bur03], p. 135.
22[Het88], p. 11.
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refinement. A well written test case can give a developer who is unfamiliar
with a particular part of a software much faster insight into the functionality
of the tested code compared to looking at the production code itself23.

Improved design If a test case is hard to write, the cause for this is often
a badly designed SUT with high coupling or low cohesion24. Coupling
and cohesion are two attributes used to determine how simple or complex
code is designed. Cohesion describes to which extent all elements within a
software unit are related together. Elements within a highly cohesive unit
all belong together, serve a single purpose and therefore keep the design
simple. Coupling on the other hand is an attribute that describes the extent
of interaction and interdependence between two software units. Tightly
coupled units are harder to reuse, modify or fix in case of errors. They
are also harder to isolate, which makes automated testing more difficult.
Writing code with a design as simple and clean as possible should be the
goal of every developer, and such code is usually loosely coupled as well as
highly cohesive. As multiple studies have shown, loose coupling and high
cohesion can lower the proneness to error and increase maintainability as
well as testability of software25.
Writing automated tests forces developers to think ahead when writing
production code and makes them factor in coupling and cohesion from
the beginning. This leads to better software design and testable code26.
Automated tests also encourage developers to write interfaces that are easy
to use instead of just easy to implement, especially when tests are written
before writing the production code.

Cost reduction Studies have shown, that errors found during development
or unit and integration testing are a lot cheaper to fix than errors that are
found during system testing or even on a productive system27. Generally,
the earlier a bug is discovered, the lower are the costs it causes. On the other

23[GS17], p. 6.
24[BA05], p. 50.
25[TKB18], p. 175 + 179.
26[Mar08], p. 133.
27[Lin02], p. 305 -307.
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hand, the creation and maintenance of test cases consume a lot of time and
generate additional costs which might seem to exceed the costs of manual
testing at first glance. Considering that test cases, regardless of whether they
are manual or automated, are executed and repeated many times over the
life cycle of a software project, automated test cases soon exceed manual
tests in terms of cost effectiveness as they only require an initial setup and
sporadic maintenance work to be done and operate independently after
that.

Increased confidence and trust in code Having many meaningful auto-
mated tests increases trust in the product for clients, project managers
and developers. From a developer’s point of view, having confidence in a
project’s code base is very important. Automated tests establish trust as they
act as a safety net when code is being changed and inform the developers
when they are introducing bugs. Refactoring code therefore becomes much
easier and effective, as developers no longer have to look at every little
detail of code that might be affected by a change, but can rely on running
automated test cases to tell them whether the refactoring has broken any
existing logic or not. This is especially helpful for developers that are not
fully familiar with the code they are working on. Without having tests,
developers can be reluctant to make changes to code as they might fear to
introduce bugs that stay undetected28. Frequently executed automated tests
not only increase trust in code, but also lead to better code quality and an
increase in development productivity.

1.3 Properties of good automated tests

To use the full potential and benefits of automated testing, test cases should
have certain properties and follow some basic rules29. Some properties
like isolation, error localization and speed have already been discussed in
connection with unit testing. Although these properties are particularly
important for unit tests, they can’t be fully neglected for integration testing.

28[Mar08], p. 124.
29[Mar08], p. 123 - 132.
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The below paragraphs describe a few other properties of automated tests
that are equally important for unit and integration testing. Carelessly de-
signed automated tests which lack these properties could become counter
productive and might increase the cost of maintaining, executing and un-
derstanding a test suite.

Clean tests Having clean tests means, that test code should adhere to the
same high coding standards as production code. Test code that is written
carelessly, is badly designed or muddled, requires a lot more maintenance
when it has to be changed due to evolving production code. Writing clean
tests also means designing them to be readable. Repetitive code or code
that does not contribute to a better understanding of a test case (although
relevant for its correct execution) should be extracted into separate func-
tions with meaningful names30. If possible, test cases should be structured
according to the ”Build-Operate-Check” pattern, which divides a test case
into three distinctive sections: A section where all required setup work is
done (build), a section that performs the operations that the test case has
to verify (operate) and a section that verifies the results of those operations
(check)31.

Single concept Some experts on automated testing recommend to have
only a single assert statement per test case32. This means each test case
should only verify the correctness of a single piece of information. The
advantage of such tests is, that they only come to a single, unambiguous
conclusion which is easy to understand. Sometimes however, the correct
behaviour of the SUT cannot be determined by just one piece of data and
requires the verification of multiple (partial) results. If this is the case, an
automated test can contain more than one assert statement, but it is still
important to limit the number of asserts to a minimum. A better rule might
be, that a test case should only test a single concept33. Test cases that do

30[Mar08], p. 124 - 126.
31[Mar08], p. 127.
32[PLP12], p. 2.
33[Mar08], p. 131.
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not follow this rule and test multiple unrelated concepts simultaneously
quickly get unreadable and complicate the search for the cause of errors.

Independence A test case should not depend on the result or state of any
other test case. Test cases should always be independent such that they can
be executed in arbitrary order. If this is not the case, a failed test could
cause other tests, which depend on it, to also fail. This complicates the error
diagnosis and might obscure some actual bugs in the affected test cases34.

Repeatability Running a test case should require no prior knowledge, and
should be repeatable on all environments the software runs on. Anyone
should be able to run it at the push of a button and verify its result35. Test
cases that require manual setup or only run on specific environments will
lead to developers not running the tests at all.

Consistency Given that no code changes have been made, a test case
should always produce consistent results for different runs36. Tests that
are unreliable and sometimes produce false negative outcomes cause un-
necessary investigations into bugs that don’t exist. Most unreliable tests
fall into the category of integration tests, as they often depend on external
resources or systems. Such resources or systems do not always behave as
expected. Their response time is different with every test execution, they
might be temporarily unavailable or the data they provide might change
unexpectedly. If the creation of test cases which are influenced by factors
beyond the developers control cannot be avoided, such tests should still be
designed to be as consistent as possible. Often, test suites can be configured
to repeat failed tests a certain amount of times, which can eliminate the risk
of producing false negative test results. However, test cases that produce
false negative results on a regular basis and not just sporadically are still
likely to cause more harm than good.

34[Mar08], p. 132.
35[Osh14], p. 6.
36[Osh14], p. 6.
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Self-validation The result of a test case should always be a boolean value
indicating whether the test passed or not. The test case has to be able to
produce this result itself, without any further help of a developer. A test
that requires the developer to look through a log file or manually verify a
certain document will be slow and error prone37.

37[Mar08], p. 132.
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Object oriented code is usually tightly interconnected such that a single class
can be made up of objects of many other classes. Those objects are called
dependencies, as the containing class depends on their functionality to
perform its own task. However, for automated testing, dependencies can be
a problem. Initialising the SUT can become a cumbersome process, as every
dependency has to be initialized with an instance suitable for the test case.
The dependencies in turn contain dependencies themselves which also have
to be initialized, and so on. Often, the correct behaviour of dependencies
is not of interest in a test case and verified in separate tests. However,
the dependencies still need to supply some meaningful input to the SUT1.
Other dependencies might not even be used for the execution of a test
case. Initializing unused or irrelevant dependencies and the dependencies’
dependencies would therefore be a waste of time and resources. Another
problem are dependencies that rely on external systems or functionality, like
databases and APIs (application programming interface). Such dependencies
are not always under control of the developers2 and might be unavailable
in a test environment or supply inconsistent data between test runs.
As mentioned in section 1.1.1, it is therefore important to isolate the SUT
from all the unused, irrelevant, inconsistent and unavailable dependencies
to gain full control over the test environment. This ensures that the test
cases are clean, consistent and as quick as possible. Isolation is achieved by
substituting dependencies with fake implementations called test doubles3.
Test doubles implement an alternative behaviour that differs from the

1[Kac13], p. 75.
2[Osh14], p. 49.
3[Kac13], p. 71.
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original dependency to avoid the testing difficulties mentioned above. This
chapter highlights some of the most common practises and patterns to
create testable code by using test doubles.

2.1 Types of test doubles

Depending on the dependency that needs to be replaced and depending on
a test double’s desired behaviour, test doubles need to be equipped with
different capabilities. There are several types of test doubles, all used for
different purposes. Five of the most commonly used types are explained
below. Despite having four distinct categories, test doubles can often be a
mixture of those types under real conditions4.

2.1.1 Dummy

A dummy is the simplest type of test double and is used to replace depen-
dencies that are not used and irrelevant in a test case. As such, a dummy
does not collaborate with other objects nor is there any verification per-
formed on its state during test execution. It is usually passed as a parameter
of a direct method call and its job is to prepare the environment for testing
and simply exist where it needs to exist5. An example would be a test case
that calls a method with several parameters of which one is never used
during test execution. Nevertheless, an instance of this specific class needs
to be passed to the method. This instance can be substituted by a dummy
object which has the same structure as the original, but does not provide
any functionality. The use of dummies is quiet rare in automated tests as
the effort of creating a dummy object is often higher than just initializing an
instance of the original class.

4[Kac13], p. 72.
5[Kac13], p. 71 - 74.
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2.1.2 Stub

Stubs are similar to dummies. They are also used to substitute dependencies
in test cases and to properly prepare the environment for testing. Just like
dummies, a stub’s state and the return values of its methods are never used
for verification during test execution. What sets a stub apart from a dummy
is the fact, that a stub provides indirect data to the SUT which is needed to
successfully run the test case. The input data is said to be indirect, because it
is not provided to the SUT by the test case itself, but by a collaborating object
of the SUT (the stubbed class). The SUT usually retrieves the indirect input
data by calling certain methods of the stub. The behaviour of the stubbed
class and the input data that it provides to the SUT have to be defined
during test setup. This means that the stub has to be instructed what values
its methods have to return when they are called during test execution. The
stub will then simply return the specified values upon invocation of those
methods instead of executing the method’s original code6. When using a
stub in a test case, the author of the test case has control over the creation of
the stub, the behaviour of its methods and its integration into the SUT, but
cannot directly control the use of and access to the stub by the SUT during
test execution.

2.1.3 Fake

A fake is a test double that provides almost the same functionality as the
real dependency. However, compared to the real implementation a fake is a
simpler and more lightweight version, making it faster to set up and use.
One of the most common examples of a fake is an in-memory database that
is used for testing purposes instead of a real database server. The in-memory
database has exactly the same functionality as the database server, but uses
much less resources, and provides better and more reliable response times
during testing. A fake is similar to a dummy or stub as it is part of the test
setup but no verification is performed on it directly. Fakes are only used in
integration testing7.

6[Kac13], p. 75.
7[Kac13], p. 72.
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2.1.4 Test spy

Determining the success of an automated test often works by verifying the
correctness of a return value of the SUT. However, not all SUTs provide a
return value that clearly indicates success or failure of a test case. Imagine a
method that does not have a return value at all, but processes some data
which it then passed to another collaborator of the SUT. This collaborator
then stores an output file which contains the processed data. Verifying the
success of such a method needs a different approach. This is where test
spies come into play. A test spy is a test double that is used to verify indirect
outputs, or simply put, outgoing communications from the SUT to one of its
dependencies (the test spy object)8. Such indirect outputs or communications
are usually just simple method calls that the SUT invokes on the test spy. A
test spy behaves like the original object, but additionally records all method
calls that have been made to it by the SUT and saves those records for later
verification by the test case. In its verification phase, the test case can then
check whether the SUT has invoked the correct methods with the correct
parameters on the test spy9. In the example made above, the dependency
responsible for storing the output file would be substituted by a test spy and
the test case would simply verify whether the right data has been passed to
the test spy when the relevant method was invoked.

2.1.5 Mock

The term ”mock” is often falsely used as a general term to refer to all types
of test doubles. In reality, a mock is a specific type of test double that is very
similar to a test spy. Just like a test spy, a mock is also used to verify the
indirect outputs of the SUT, but the way those outputs are verified works
in a different way. As described in the previous section, the verification of
method calls on a test spy is done after the SUT has been exercised. However,
mock objects can verify the correctness of method calls while the SUT is
exercised and therefore fail test cases earlier than a test spy would. This is
achieved by delegating the verification of the indirect outputs directly to

8[Kac13], p. 75 - 76.
9[Mes07], p. 538 - 539.
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the mock object, whereas test spies perform the verification within the test
method. The differences in using test spies and mocks becomes apparent
when looking at the structure of a test case. When working with a test spy,
the test case usually performs the test setup first (initializing the SUT and its
dependencies) and exercises the SUT afterwards (executing the functionality
which has to be tested). Finally, after the SUT has been exercised, the test
case verifies the recorded direct outputs of the test spy. A test case with
a mock follows a slightly different flow. After setting up the SUT and its
dependencies, the test case defines the expected behaviour of the mock,
stating which direct outputs are expected to be observed. After that, the
SUT is exercised while verifying the direct outputs at the same time10.

2.2 Creating test doubles

After discussing the different types of test doubles, this section describes
the most common techniques used to create them. To be able to substitute
dependencies of the SUT with test doubles, those dependencies have to be
”broken”, meaning that a pattern has to be implemented that allows the SUT
to easily exchange a specific dependency used in a production environment
with a test double needed for testing purposes. The following sections will
discuss three of the most commonly used techniques. The first two of them
can be implemented manually, while the last one provides an approach to
automate this process.

2.2.1 Extract interface

”Extract interface” is a technique used to separate the specification of a
class (the interface) from its actual implementation. This allows multiple
implementations to exist for the same interface which can replace each
other as needed. An interface is a class that cannot be instantiated and
does not implement any functionality. It simply lists a number of method
declarations without giving any details about their implementations. To

10[Kac13], p. 278 - 279.
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equip an interface with some actual functionality, it has to be implemented
by another class. This implementation class then has to specify the real
implementation details of all the methods that are listed in the interface11.
The great thing about this technique is, that whenever a variable of the
interface type is used in code, this variable is completely agnostic to the
actual implementation class it holds. The interface variable can hold an
object of any class that implements this specific interface, making it possible
to use different implementations for one and the same variable. This is very
helpful for creating test doubles, as a test double is nothing else than an
alternative implementation of an existing class.
Breaking a dependency by extracting an interface works as follows12:

1. Create a new, empty interface for the dependency that has to be
broken.

2. Make the class of the dependency implement the interface. This does
not break anything, since the interface does not yet specify any method
declarations.

3. Substitute all occurrences of the dependency class in the project’s code
with the interface class.

4. Add a method declaration to the interface for each public method
of the original dependency. The method declarations which should
be a part of the interface can also be determined by compiling the
code when the interface is still empty or incomplete. The compiler will
show an error for each missing method declaration in the interface.

5. Create a test double class that implements the interface, providing
alternative or empty method implementations to change or nullify
their original behaviour.

6. Inject the newly created test double into the SUT (see section 2.3) and
assign it to a variable of the interface class which previously contained
the original implementation of the dependency.

11[Low17], p. 302 - 306.
12[Fea04], p. 362 - 369.

19



2 Good practises and patterns for testable code

2.2.2 Subclass and override

”Subclass and override” is one of the most heavily used techniques to break
dependencies. It uses inheritance to get access to behaviour that needs to
be changed and to nullify behaviour that is irrelevant or undesired. The
behaviour is modified by subclassing the dependency’s class and overriding
the methods which need to be changed. Production code will continue using
the original dependency, while the test code will use the subclass with the
modified behaviour to stand in as the test double.
Using subclass and override to break dependencies, requires the following
steps to be performed13:

1. Identify the smallest set of methods that have to be modified in the
dependency’s class, so that it can be used in the test environment.

2. Make those methods overridable in the dependency’s class. This pro-
cess varies between different programming languages, but often in-
cludes setting those methods to a non final state and setting their
access modifiers to protected or public.

3. Create a subclass that applies the necessary modifications to the class
of the dependency by overriding its methods.

4. The newly created subclass can now stand in as a test double. To do so,
exchange the class of the dependency with the newly created subclass
in the SUT.

2.2.3 Using isolation frameworks

Test doubles have become an essential part of software development. They
are often used so extensively by automated tests, that their manual creation
would become a complicated and time consuming process, especially for
large-scale projects. Many programming languages therefore provide built-
in or third party libraries to facilitate and speed up the process of creating
test doubles. Those libraries are often referred to as mocking frameworks
although most of them provide functionality to create all previously men-
tioned test doubles. The term ”isolation framework” is therefore a better

13[Fea04], p. 401 - 404.

20



2 Good practises and patterns for testable code

way to describe them. Isolation frameworks provide an easy way to create
test doubles without writing the entire classes from scratch. Instead, test
doubles are created by the isolation framework during test execution, based
on a few lines of code describing their behaviour. One of the best-known
isolation frameworks is Mockito14, an open source library available for the
Java language which is also used in Pocket Code’s Android version. Without
going into much detail, listing 2.1 shows a simple example of how test
doubles are created with Mockito.

@Test

public void testNeedsFuel_returnsTrue() {

Car myCar = mock(Car.class);

when(myCar.needsFuel()).thenReturn(true);

assertTrue(myCar.needsFuel());

}

Listing 2.1: Creating a mock object with Mockito15

By using Mockito’s mock() method, this unit test creates a test double
which can stand in for objects of type Car. It then specifies that the needs-
Fuel() method always returns true when it is called on this object by
using Mockito’s when() and thenReturn() methods. Although such a
simplified example would not be used in a real automated test, it still il-
lustrates the easy syntax isolation frameworks offer to quickly create test
doubles and specify their behaviour. Creating test doubles and modifying
the return values of their methods are just two of the many features modern
isolation frameworks provide. They can also be used to intentionally throw
exceptions, analyse the outgoing communications of spies and mocks and
provide many different methods to assert the results of automated tests to
just name a few of the other possibilities16.

To dynamically create test doubles during runtime, isolation frameworks
use a concept called reflection, which can be defined as ”the ability of a

14[Moc].
15[Kac13], p. 67.
16[Kac13].
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running program to examine itself and its software environment, and to
change what it does depending on what it finds”17. Reflection lets a program
inspect its own classes and objects, revealing the properties they store and
methods they use. Based on those findings, the running program can then
dynamically alter property values, invoke methods or even create new
objects of the inspected classes18. Many isolation frameworks, including
Mockito, use reflection to create test doubles by implementing a proxy
pattern19. As described in [MW06], the general intent of the proxy pattern
is to ”control access to an object by providing a surrogate, or placeholder,
for it”20. A proxy therefore substitutes another object, forwarding requests
made to the proxy to the underlying, original object. The interfaces of the
original and proxy objects are usually very similar or even identical. The
proxy pattern can be useful when the original object does not live up to a
specific purpose. This could be the case if the original object takes a long
time to load or if messages to the object need to be intercepted or modified.
By using reflection, isolation frameworks are able to dynamically create
proxy objects for the dependencies that need to be exchanged. The proxy
then stands in as a test double in the SUT. Method calls to the test double
are thus handled by the proxy which forwards them to the original object.
The proxy has the ability to pre- or post-process the forwarded calls, altering
the test double’s behaviour as necessary21.

2.3 Dependency injection

Dependency injection is a very simple but also immensely important con-
cept in software development and especially automated testing. It is used
to create seams, which is a term for places in code where different func-
tionality can be plugged in22, and simply describes the process of inserting

17[FF05], p. 3.
18[NK05], p. 200.
19[Ach14], p. 142.
20[MW06], p. 117.
21[FF05], p. 74.
22[Osh14], p. 54.
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a dependency into another object from outside the object23. This is an im-
portant piece of information for working with test doubles as it is not only
important to know how they are created, but also how they can be injected
into the SUT. There are several dependency injection techniques which are
explained below.

2.3.1 Constructor-based dependency injection

One way of injecting a dependency into the SUT is by using the constructor
of the class that requires the dependency. To do so, an additional parameter
of the dependency’s type has to be added to the constructor. Inside the
constructor, the dependency is then assigned to an internal variable of the
SUT for later use. If the test doubles are created by the ”extract interface”
or ”subclass and override” approaches, the new constructor parameter has
to be of the interface or superclass type. When instantiating a new object
of a class that uses constructor based dependency injection, the constructor
parameters must always be provided. This approach is therefore a great
way to signify that a dependency is non-optional and always required by
the SUT. A drawback of constructor-based dependency injection is, that
constructors can quickly become cluttered and less readable if too many
dependencies are injected this way24.

2.3.2 Setter-based dependency injection

When injecting a dependency via setter-based dependency injection, the
class that requires the dependency implements a setter method for each
dependency that has to be injected. This setter can then be called from within
a test case, passing it the test double before the SUT is executed. Similar to
constructor-based dependency injection, the parameter of the setter method
also has to be of the interface or superclass type when using test doubles
created with an ”extract interface” or ”subclass and override” approach. An
advantage of using the setter-based variant is, that the setter only has to be

23[Mis17], p. 279.
24[Osh14], p. 57 - 60.

23



2 Good practises and patterns for testable code

called in situations where the object actually needs the dependency and not
every time a new object is initialized. Setter-based dependency injection is
therefore preferably used for optional dependencies of the SUT or when the
SUT already contains a default instance of a dependency that does not lead
to any problems during test execution25.

2.3.3 Dependency injection with factory classes and
methods

Rather than passing dependencies to the SUT via constructors or setters,
the factory approach retrieves dependencies just before they are used for
operation. Factory classes and methods are design patterns that can be used
to actively request and retrieve instances of dependencies from within a
system instead of passing them to the system from the outside26.

Dependency injection using a factory class With this approach, the SUT
requests a dependency from a factory class. By calling a specific method
of this factory class, the factory will return a fully initialized and working
object of the dependency. For testing, the factory can be instructed to return
a test double instead of a real object. This can be achieved in two ways:27

1. The method of the factory class which is responsible of returning
the dependency is made static. This allows the dependency to be
requested from everywhere in the code without having to instantiate
the factory class itself. To substitute the dependency with a test double,
the factory class contains a static setter method which can be used
to inject the test double into the factory class. An advantage of this
approach is, that the SUT does not have to be changed at all. It always
requests the dependency from the same method of the factory class,
regardless of whether it is running in a production or test environment.
On the other hand, using static methods and variables in the factory

25[Osh14], p. 61 - 63.
26[Osh14], p. 63.
27[Osh14], p. 63 - 66.
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class can cause complications when the static states are not properly
reset after each test.

2. Instead of injecting the test double to the factory class via a static setter
method, it is also possible to create a fake version of the factory for
testing purposes. This fake factory creates and returns a test double
instead of the original object. In this scenario, an instance of the factory
class has to be passed to the SUT. As fake factories which return fake
dependencies can make code confusing, such setups should be avoided
if possible.

Dependency injection using a local factory method When using a local
factory method, the factory method is part of the system or class under test
and not contained in a separate factory class. Instead of privately creating or
accessing a dependency, the SUT implements a public getter method which
executes all the code needed to instantiate or retrieve a dependency. The
SUT then uses its own getter method to access the dependency. To inject a
test double, a subclass of the class under test has to be created. The getter
method used to retrieve the dependency is then overridden in the subclass
so that it returns the test double instead of a real object. Instead of using the
real class under test, the test case has to be executed with the subclass of the
class under test. This approach, which is also called ”extract and override”,
is a great and easy way to simulate fake inputs to the SUT, but less suitable
for verifying interactions between the SUT and its dependencies28.

28[Osh14], p. 66 - 69.
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Xcode first provided functionalities for automated testing in 2005 when
Xcode 2.1 included a framework called OCUnit. OCUnit was an open source
testing framework developed by Swiss company Sen:te1. OCUnit itself was
based on SUnit, a unit testing framework developed by Kent Beck for the
programming language Smalltalk2.
Starting with Xcode 5 in 2013, Apple discontinued the integration of OCUnit
and introduced its own testing framework called XCTest3. XCTest has since
been continually improved and enhanced and provides a large set of tools
to easily write many different kinds of automated tests. This chapter will
highlight the most important parts of XCTest and explain how the tools are
correctly used and set up within a project.

3.1 Creating a test setup for Xcode

Adding support for automated testing in Xcode is very easy to do. All that
has to be done is creating a dedicated test target. This can either be done by
clicking the ”Include Unit Tests” and ”Include UI Tests” checkboxes when
setting up a new project, or by navigating to the File→ New→ Target menu
and choosing the unit testing bundle or UI testing bundle in an existing
project4. Usually, two test targets are created, one for unit/integration testing
and another one for UI testing. Once those targets are set up, the project is
ready to execute test cases. Test classes containing test cases are preferably
stored in separate test folders in Xcode’s project navigator as can be seen

1[Sen05].
2[Bec99], p. 277-287.
3[Appr].
4[Mis17], p. 15-18.

26



3 Xcode testing environment

Figure 3.1: Unit and UI test folders in
Xcode’s project navigator

Figure 3.2: Assigning a test file to a test tar-
get

in figure 3.1. After a test case has been written, the file containing the test
has to be assigned to one (or multiple) of the previously created test targets.
This is done by selecting the file in the project navigator and then clicking
on the according checkboxes in the inspector sidebar (see figure 3.2)

After that, test cases can be executed by opening the test file and clicking on
the play button beneath the name of the test class or test method. Depending
on whether the button beneath the class name or method name has been
pressed, it will either start all test cases within that class or just a single test
case. Alternatively, test cases can also be executed from the test navigator
in the left sidebar. The test navigator hierarchically groups the test cases
by class and target membership, so that it is possible to execute a single
test case or all test cases of a class or a target. Figure 3.3 shows the test
navigator.

3.2 Defining test cases

Writing test cases in Xcode is as simple as creating a test class and adding
one or more test methods (test cases) to this class. Xcode then automatically
identifies the newly created test cases and makes them executable as de-
scribed in the previous section. For this automatic identification process to
work, three conditions have to be met5:

5[Appi].
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Figure 3.3: Test navigator

1. The test class must inherit from XCTestCase.
2. The names of the test methods must begin with the lower case word

test.
3. The test file must be assigned to one of the previously created test

targets.

XCTestCase is the base class for every test class written in Xcode and
contains a lot of useful functionality and tools for writing automated tests.
A test class that fulfills the above prerequisites is shown in listing 3.1. This
listing additionally shows two other frequently used methods of XCTest-
Case: setup() and tearDown(). These methods are called before and
after the execution of every test case and are generally used to bring the test
class back into a desired state for the execution of the next test case.

3.3 Asserts

Assertion is the process of comparing the outcome of a test case with
the expected outcome and failing the test case if the actual outcome does
not match the expected one. Assertion is therefore a fundamental part of
automated testing. It can be performed with various assertion methods that
usually take the result of a test case or the state of the SUT and verify if
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class CalculatorTests: XCTestCase {

var calculator = Calculator()

override func setUp( ) {

super.setUp()

calculator.reset()

}

override func tearDown() {

calculator.clearResultHistory()

super.tearDown()

}

func testTwoPlusTwo() {

let result = calculator.plus(2, 2)

XCTAssertTrue(result , 4)

}

}

Listing 3.1: Basic structure of an Xcode test class

certain criteria are met. If some criteria are not met, the test case fails6. A
test case can contain one or multiple assertion methods and only passes
successfully, if none of the used assertion methods fail. In Xcode almost
every test case contains at least one assertion method. There is one exception
where this rule does not apply which will be discussed in subsection 3.4.1.
XCTest provides 14 different assertion methods which are listed in table 3.1.
All of those methods take an additional three optional parameters which are
not specified in the table. The additional parameters are called message,
file and line and are used to display the failure reason, the file name
and the line number of the failed code in case the assertion fails.

6[Mis17], p. 7.
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Assertion Method Description
XCTAssert(expr, message) Verifies the expression evaluates to

true.
XCTAssertTrue(expr) Same as XCTAssert
XCTAssertFalse(expr) Verifies the expression evaluates to

false.
XCTAssertNil(obj) Verifies the object is nil.
XCTAssertNotNil(obj) Verifies the object is not nil.
XCTEqual(obj1, obj2) Verifies that object 1 is equal to ob-

ject 2.
XCTNotEqual(obj1, obj2) Verifies that object 1 is not equal to

object 2.
XCTAssertGreaterThan(val1, val2) Verifies that value 1 is greater than

value 2.
XCTAssertGreaterThanOrEqual(val1,
val2)

Verifies that value 1 is greater than
or equal to value 2.

XCTAssertLessThan(val1, val2) Verifies that value 1 is less than
value 2.

XCTAssertLessThanOrEqual(val1,
val2)

Verifies that value 1 is less than
or equal to value 2. Fails the test
case and displays an optional fail-
ure message otherwise.

XCTAssertThrowsError(expr) Verifies that the expression (for ex-
ample a function call) does not
throw an error.

XCTAssertNoThrow(expr) Verifies that the expression does
throw an error.

XCTFail() Immediately and unconditionally
fails a test case.

Table 3.1: All available assertion methods in Xcode7.

7[Appr].
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3.4 Asynchronous testing

Usually, the majority of code a developer writes is synchronous. This means
that all the commands run in a defined order where the next command or
task only executes when the previous one has finished. Synchronous code
is deterministic. Once the input parameters for a piece of synchronous code
are known, the sequence of commands is predefined. Although synchronous
code might be easy to write and understand, the simplicity also comes with
some drawbacks. Due to its purely sequential nature, synchronous code can
be slow. If a longer task is executing, it can even leave the program unre-
sponsive for a while8. To overcome these issues, almost all modern software
makes use of asynchronous programming patterns. When programming
asynchronously, multiple tasks can run concurrently in different threads, on
different processors or even on different machines9 and notify one another
of their results if necessary. Asynchronous code on the same system but on
different threads is mostly used in cases where longer running operations
shall not disrupt the computations on the main thread, so that the applica-
tion stays responsive. A common example of asynchronous operations on
different systems are network calls to communicate with certain APIs.
Testing synchronous code doesn’t need any special considerations. The SUT
is simply executed with the desired parameters and the result or state can
then be asserted. Synchronous processes guarantee that all code has run
and all the computations are finished once the outcome of a test is verified
with an assertion method. Running the same test under the same conditions
will therefore always lead to the same outcome (assuming the code under
test has not been changed). Most test cases are synchronous and can be built
with the basic testing tools discussed previously.
Asynchronous testing, on the other hand, is more complicated. Whether
the asynchronous operations run on the same or an external system is
not crucial. Difficulties and challenges remain the same in both cases. The
following explanations are therefore applicable to all asynchronous types of
operations, even if only one is mentioned. The reason asynchronous testing
is harder than synchronous testing is the timing aspect. At some point
during an asynchronous test case, computations in the main thread rely on

8[BC13], p. 1.
9[BC13], p. 2.
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operations that are executed in a different thread. Such operations could be
a callback, a notification to a delegate object or simply some longer running
code that has been outsourced to a different thread10. When writing an
asynchronous test, developers expect these asynchronous operations to be
performed during test execution, but cannot control the exact time they start
or finish executing. When the result of a test case relies on computations
from other threads, it is therefore hard to tell when the test outcome has to
be verified. If assertion is performed just a little too early, the asynchronous
operations might not yet be finished and the assertion would fail. If no
further precautions are taken, the success or failure of a test case would not
only depend on the correctness of the SUT, but also on the timing of its
asynchronous operations which would lead to unstable test results. To deal
with this problem, Apple introduced asynchronous testing functionality to
their XCTest framework starting with Xcode 6

11. This functionality will be
discussed in the following section.

3.4.1 Testing asynchronous code with expectations

The way asynchronous tests are handled in Xcode is by using expectations.
Expectations are a tool to serialize asynchronous operations in a test case by
telling it that a certain asynchronous operation is expected to be performed
at a certain point within the test case12. Whenever a test case expects an
asynchronous operation to occur, the test is halted until this operation has
been completed, whereupon the test case continues executing normally. This
leads to test cases being predictable again as they wait for asynchronous
code to finish which removes the previously mentioned timing problem.
When an expectation cannot be fulfilled, meaning that the asynchronous
operation did not occur as expected, the test case fails. Using expectations
is the only scenario where a test case might not contain an assert statement.
This can be the case when a test validates if an asynchronous operation has
been performed rather than validating the result of an operation. Working
with expectations is a process that can be divided into three steps: Creating

10[Appn].
11[Appq].
12[Appq].
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the expectations, waiting for the expectations to be fulfilled and fulfilling
the expectations.

3.4.1.1 Creating expectations

Creating an expectation is as simple as calling a method of XCTestCase
with the same name13:

func expectation(description: String) -> XCTestExpectation

This method takes a description string describing the purpose of the expec-
tation and returns the expectation object which is of class XCTestExpec-
tation. The value of the description string is used to differentiate between
multiple expectations and has no relevance during execution of test cases.

3.4.1.2 Waiting for expectations

To halt a test case and wait for expectations to be fulfilled, XCTestCase
provides another method called wait()14:

func wait(for expectations: [XCTestExpectation],

timeout seconds: TimeInterval)

This method pauses the execution of a test case and waits until all expec-
tations passed to the expectations array are fulfilled, before resuming
the test execution. The seconds parameter takes the maximum number of
seconds the method waits for the expectations’ fulfillment. If not all expec-
tations are fulfilled after the time has elapsed, the test case fails. Limiting
the amount of time the method waits for the fulfillment of expectations is
important. Otherwise, a test case could get stuck in the wait() method if
one of the passed expectations is never fulfilled. There are two additional
variations of the wait() method that can also be used. The first one checks
whether the specified expectations are fulfilled in the correct order by setting
an additional boolean parameter to true.

13[Apps].
14[Apps].
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func wait(for expectations: [XCTestExpectation],

timeout seconds: TimeInterval,

enforceOrder enforceOrderOfFulfillment: Bool)

The second variation does not need an array of expectations to be passed
since it is automatically checking for the fulfillment of all existing expecta-
tions that were instantiated in the test case. The optional handler parame-
ter takes a completion handler that gets executed once all expectations are
fulfilled.

func waitForExpectations(timeout: TimeInterval,

handler: XCWaitCompletionHandler? = nil)

Choosing the right value for the timeout parameter is of crucial importance.
If the chosen value is too big, test execution is unnecessarily slowed down
if an expectation does not get fulfilled. If the value is chosen too small, the
test might fail by mistake because not enough time was allowed to wait for
the asynchronous operation to complete.

3.4.1.3 Fulfilling expectations

A normal expectation of class XCTestExpectation does not get fulfilled
automatically. The fulfillment needs to be performed by the asynchronous
operation itself once it has finished. To do so, expectations need to be
passed to the objects that execute the asynchronous code. The techniques of
passing the expectations to these objects vary from case to case and can also
involve the creation of test doubles. As soon as the asynchronous operation
is finished, it retrieves the reference of the expectation it was passed and
fulfills it by calling its fulfill() method15.

expectation.fulfill()

An example for this process will be discussed in the next section.

15[Apps].
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3.4.1.4 Asynchronous testing example

Listing 3.2 shows how all of the parts discussed above are brought together
to create an asynchronous test case. This test case simply evaluates whether
a specified document within the project bundle can be opened successfully.
It is structured into four parts:

1. An expectation is created.
2. The document that should be opened is localized in the bundle. A

UIDocument instance is created that represents the document.
3. The document is opened by calling the asynchronous open() method

of the UIDocument object. Additionally, a completion handler is
passed that gets called when the process of opening the document has
finished. The completion handler provides a boolean value that indi-
cates whether the document was opened successfully or not. Within
the completion handler, two tasks are executed. First, an assert method
checks if the document was successfully opened. Then, the expecta-
tion gets fulfilled to tell the test case that the process of opening the
document has finished.

4. The waitForExpectations() method is called. This method sus-
pends the execution of the test case until the expectation is fullfilled
(i.e., the document has been opened) or the timeout is hit. The wait-
ForExpectations() method also takes an optional completion han-
dler which closes the document again in this case.
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func testDocumentOpening() {

// 1. Create an expectation object. This test

// only has one, but it's possible to wait for

// multiple expectations.

let openExpectation = expectation(description: "open doc")

// 2. Retrieve a document to open

let URL = Bundle(for: type(of: self)).url(forResource: "myDoc",

withExtension: "txt")

let doc = UIDocument(fileURL: URL!)

// 3. Open document, pass expectation to completion handler

doc.open { openSuccess in

XCTAssert(openSuccess);

openExpectation.fulfill()

}

// 4. The test will pause here until the timeout is hit

// or all expectations are fulfilled.

waitForExpectations(timeout: 2) { error in

doc.close(completionHandler: nil)

}

}

Listing 3.2: Example of an asynchronous test case16

3.4.1.5 Expectations with predicates

Calling the fulfill method of an expectation is a very easy and efficient
way to inform the test case that an asynchronous operation has finished.
The downside of this approach is, that the expectation has to be passed to

16[Appq].
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the asynchronous code. It might be simple to insert an expectation into a
callback, a completion handler or a method of a test double because the
developer has full control over this code in test cases. However, sometimes
developers do not have direct control over or access to the asynchronous
code within a test case. They therefore cannot pass the expectation to the
asynchronous operation nor can they fulfill it from there. Even though
asynchronous code might be inaccessible from within a test case, it still
affects the execution of the tested code, for example by modifying the state
of certain objects under test in the background. To wait for the fulfillment
of asynchronous code that developers are not fully in control of, Apple
provides a different kind of expectation that fulfills itself. It does so as soon
as a certain logical condition is met rather than by calling the fulfill()
method. Such conditions are called predicates and either evaluate to true
or false. They are represented by the class NSPredicate in Swift and
Objective-C. Predicate-based expectations are created as follows:

func expectation(for predicate: NSPredicate,

evaluatedWith object: Any?,

handler: XCTNSPredicateExpectation.Handler? = nil)

The predicate parameter takes the predicate that has to be evaluated,
the object parameter takes an additional object that might be needed to
evaluate the predicate and the optional handler parameter takes a block
of additional evaluation code that is performed once the predicate evaluates
to true. A simple example of a predicate based expectation can be seen in
listing 3.3. This test case aims to bill a customer for some kind of service. The
bill is created in a asynchronous background task which is not accessible
from within the test case. To check if the bill creation was successful, an
NSPredicate gets passed to the expectation. The predicate evaluates the
number of bills saved in the customer object. Once the number of bills
rises from zero to one, the bill has been created and the predicate returns
true. The waitForExpectations() method periodically evaluates the
predicate and checks its return value until it evaluates to true (or the
timeout is reached). As soon as the predicate evaluates to true, the associated
expectation is automatically fulfilled.
As the predicate is only evaluated once every second, it is important to
consider this delay when specifying the timeout parameter of the wait()
method.
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func testBilling() {

createBillForCustomer(customer)

let billSuccessPredicate = NSPredicate { _, _ in

customer.getBills().count == 1 }

expectation(for: billSuccessPredicate,

evaluatedWith: nil,

handler: nil)

waitForExpectations(timeout: 5, handler: nil)

}

Listing 3.3: Example of an predicate based asynchronous test case

3.5 Third party testing tools for Xcode

Since the introduction of Apple’s XCTest framework, different open source
projects have emerged that provide additional functionality to enhance and
improve Xcode’s testing capabilities. This section discusses some of the most
popular frameworks.

3.5.1 Isolation frameworks

As described in subsection 2.2.3 isolation frameworks are popular tools
to create test doubles in a fast and easy way. Unfortunately, there is no
widespread isolation framework available for Swift. This is due to the fact,
that Swift only allows (very limited) read but no write reflection. Without
the possibility of using write reflection and with Swift’s additional strict
type safety, the dynamic creation of test doubles at runtime is not possible17.
Nevertheless, developers have come up with solutions to circumvent this
problem. Objective-C on the other hand does provide read-write reflection
and therefore isolation frameworks exist.

17[Oro15].
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OCMock OCMock18 is the most popular open source isolation framework
for Objective-C. It has been first released in 2004 and provides all basic tools
to dynamically create test doubles. It’s syntax and functionality is similar to
Mockito. As Objective-C is no longer the main programming language for
Apple devices, further development work on the framework has drastically
decreased.

Cuckoo Although Swift does not allow write reflection, with a few tricks
it is still possible to create test doubles in the same style as OCMock or
Mockito. One of the few frameworks that does so is Cuckoo19. Instead of
creating the test doubles at runtime, Cuckoo uses a compile-time generator
that creates a file with actual swift code for each defined test double. It does
so by using inheritance and protocols. Once the files for the test doubles are
created, they can be used within test cases. Cuckoo’s runtime engine will
then handle the execution of the test double’s fake behaviour once the tests
are executed.

3.5.2 Other frameworks

Two other very popular open source testing frameworks for Xcode are Quick
and Nimble. Although the frameworks belong to the same project, they
serve two different purposes.

3.5.2.1 Quick

Quick20 is a framework for behaviour driven development. As the title
suggests, behaviour driven development is a process that intends to describe
the behaviour of a system from a customer’s or user’s perspective. In this
process, everyone involved in the development process shares a common
language to talk about the system. The common language is used to specify
all scenarios of how the system or subsystem is supposed to work. These

18[Dör].
19[Bri].
20[Quib].
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scenarios are then turned into behaviour driven tests which are also specified
in the common language. This approach improves the readability of tests
(for engineers as well as for other project members) and lets the tests serve
as a living documentation21. Behaviour driven tests are not much different
from normal tests. The most notable difference is, that behaviour driven tests
substitute the name of test methods with a description of the scenario they
represent. Quick does this by using the Given-When-Then pattern. With this
pattern, tests are specified by their initial state (Given), the action performed
on the initial state (When) and the expected outcome (Then)22. Rewriting
the test case seen in listing 3.3 using Quick, could look like the code seen in
listing 3.4. Note that instead of given, when and then, Quick uses the words
describe, context and it.

describe("Customer has not been billed yet") {

context("A bill is produced for the customer") {

it("The bill should be produced successfully") {

createBillForCustomer(customer)

let billSuccessPredicate = NSPredicate { ... }

expectation(for: billSuccessPredicate, ... )

waitForExpectations(timeout: 5, handler: nil)

}

}

}

Listing 3.4: A behaviour driven test with Quick

3.5.2.2 Nimble

Nimble23 is a matcher framework that extends the assertion functionality of
XCTest. Although XCTest offers various assertion methods, not all scenarios
can be tested in a clean and readable way. XCTest for example does not have
an assertion method to check that a string contains a particular substring.

21[WH12], p. 4.
22[Mis17], p. 319.
23[Quia].
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Nimble on the other hand provides this (and much more) functionality
and helps writing assertions that are not available in XCTest. Additionally,
Nimble improves the readability of tests by changing the assertion syntax.
This includes an easier syntax for writing asynchronous, predicate based
tests. Listing 3.5 compares the assertion process of XCTest and Nimble by
using the substring example mentioned above.

// Asserting that a string contains a substring with XCTest

XCTAssert("Hello World".rangeOfString("Hello") != nil)

// Asserting that a string contains a substring with Nimble

expect("HelloWorld").to(contain("Hello"))

Listing 3.5: Asserting with Nimble and XCTest
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The following chapters describe Pocket Code’s audio features and investi-
gate approaches for their automated testing. To understand the concepts
discussed in these chapters, it is necessary to have some knowledge of the
basic ideas and the terminology of Pocket Code. A short introduction to
Pocket Code is therefore given below.

4.1 What is Pocket Code?

Pocket Code is an open source IDE for smartphones and tablets that enables
its users to create games, animations and interactive stories in the visual
programming language Catrobat1. It is designed to provide a simple and
intuitive user experience, to offer teenagers and young adults an easy entry
into the world of programming2. Pocket Code is inspired by Scratch3, an-
other visual programming language developed by the Lifelong Kindergarten
group of the Michigan Institute of Technology.
Working with a system of interconnectable building blocks, Pocket Code
imitates the principle of Lego bricks to create an intuitive programming
language. Programming commands are visualized by bricks, that can be
stacked on top of each other or nested inside of other bricks (as shown in
figure 4.1). These bricks form the programming code that will be executed
from top to bottom once a program is started.

1[Int].
2[Koi16], p. 4.
3[Masc].
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Figure 4.1: Pocket Code scripts and bricks Figure 4.2: Objects inside of a project
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4.2 Structure of a Pocket Code Project

Programs created with Pocket Code are organized in multiple structural
levels that organize the code and its resources. A short overview of these
levels is provided below.

4.2.1 Project level

A program created with Pocket Code is called a project. Almost every aspect
of a project’s lifecycle is handled within Pocket Code: It is programmed in
Pocket Code, stored in Pocket Code as well as executed in Pocket Code.
Additionally, a finished project can be uploaded to ”Catrobat Share”, a
server used to share projects with other Pocket Code users.
A project serves as as a container that stores all resources needed for its
execution. Inside of a project, the resources are organized into different
groups called objects. These objects are the first things that can be seen
when opening a project. Figure 4.2 shows a project called ”Galaxy War”.
The screen lists all the objects which belong to this project.

4.2.2 Object level

Pocket Code objects represent visible elements of a project, for example a
game character or an animated element that can be seen on screen. Each
object contains executable code and additional resources (images and audio
files) that it needs to fulfil its task in the context of a project. By touching
objects on the screen in a running project, users can interact with them and
start the execution of certain code stored within the object. Additionally,
objects can exchange messages with each other which allows code execution
in one object to be triggered by another object. A project can contain an
arbitrary number of objects.
As visible in figure 4.2, there is one special object that exists in every project:
the background object. Although not explicitly labelled as an object, its
purpose is the same as a regular object. The only difference is, that it defines
the appearance and behaviour of a project’s background. Also, it often
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contains code which is of a more general nature and not related to a specific
object. An object itself consists of the three sections shown in figure 4.3: a
scripts section, a looks section and a sounds section.

• The scripts section contains the executable code of an object.
• The looks section contains a list of images that define how the object

appears on screen. An object can contain multiple looks, but only one
can be active for every object at any given moment. The active look
can be changed during project execution, for example to animate the
movements of a game character or to change its outfit.

• The sounds section stores a number of sound files which can be played
back by the object they reside in.

4.2.3 Script level

The executable code of an object is grouped into different scripts. Each
script in turn consists of an arbitrary number of bricks that execute specific
commands. A script always starts with a script brick, recognizable by the
curved shape in figure 4.1. Script bricks are triggers that listen for certain
events and start the execution of the script once this event occurs. Such
events include the reception of a message from another object, a user
touching an object on the screen or a user starting the execution of the
project. When a script gets triggered, it executes all its associated bricks one
after another.

4.2.4 Brick level

Executed bricks have a direct impact on the state of their associated object
and the project itself. Every brick is assigned to one of five categories:

• Control bricks regulate the control flow of a project (if-else-statements,
loops, etc.)

• Motion bricks influence the position and movement of objects on the
screen.
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Figure 4.3: Scripts, looks, and sounds sec-
tions of an object.

Figure 4.4: A brick selection menu listing
all motion bricks
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• Look bricks change the appearance of objects, by activating another
look or changing the color or transparency of an object, etc.

• Sound bricks control the playback of the audio files mentioned in
section 4.2.2 and perform other audio related tasks.

• Variable bricks maintain and modify variables and arrays that are used
during project execution.

The behaviour of most bricks can be adjusted by a number of parameters.
A motion brick for example might need two parameters to define the new
vertical and horizontal positioning of an object while a variable brick might
need a variable name and a new value to alter the value of the desired
variable. Figure 4.4 shows a brick selection menu (or more specifically, the
brick selection menu for motion bricks) that opens when a user wants to add
a new brick to a script. Most bricks have at least one adjustable parameter,
highlighted by an underscore.

As seen in this chapter, Pocket Code uses the terms project, object, sound and
look to describe parts of its own functionality and structure. These terms are
ambiguous and could also be used in other contexts. To avoid confusion,
these terms are abbreviated in the remainder of this thesis whenever they re-
late to their meaning in the context of Pocket Code and not to an alternative
meaning. The abbreviations are PCProject (Pocket Code Project), PCObject
(Pocket Code Object), PCSound (Pocket Code Sound) and PCLook (Pocket
Code Look). Although the terms script and brick are also ambiguous, they
are only used in the context of Pocket Code in this thesis. Those terms are
therefore not abbreviated.
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The aim of this thesis is to extend, improve and test the audio features of
Pocket Code. The following chapters will therefore describe this process by
analysing Pocket Code’s original audio engine, as well as the redesigned
version. To understand the concepts of these discussions, a short introduc-
tion to the audio processing frameworks of macOS and iOS will be given in
this chapter.

Apple’s operating systems offer multiple audio processing frameworks
and APIs which can be divided into three different groups based on their
functionality and abstraction levels1. The following sections provide an
overview of those three groups and introduce an additional open source
audio processing framework.

5.1 Core Audio

Core Audio is a collection of various frameworks written in the program-
ming language C which, in their entirety, represent the main audio infras-
tructure on iOS and macOS. It is responsible for all sounds played and
recorded on these operating systems2. Core Audio’s features are extensive
and manifold and can be divided into two categories: frameworks that
produce and process audio streams, and frameworks that facilitate the
production or processing of said streams. Figure 5.1 shows the numerous
services Core Audio provides. Included are services to read and write audio

1[App14b].
2[AA12], p. 13.

48



5 Audio processing on macOS and iOS

Figure 5.1: The architecture of Core Audio3

files, convert audio formats, play virtual instruments, spatialize sounds or
interact with the audio hardware of a phone, tablet or computer.
Core Audio provides developers all tools necessary to create complex, low

latency and real-time audio applications. Unfortunately, the Core Audio
APIs are very low-level and do not hide many of the difficult processes
involved in digital audio processing. Therefore, extensive knowledge of
the subject is essential. Additionally, Core Audio’s procedural C code adds
another layer of difficulty. Using Core Audio directly for the development
of audio features is only advisable if the higher level APIs discussed in the
following sections do not meet the requirements.

3[Appp].
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5.2 High-level audio classes

To simplify the development of audio features, Apple added several easy
to use, high-level audio classes to their AVFoundation framework, a frame-
work for handling audiovisual media. The most notable classes are AV-
AudioPlayer, AVAudioRecorder and AVSpeechSynthesizer. AVAu-
dioPlayer and AVAudioRecorder do exactly what their names imply:
playing audio data from a file or memory4, and recording the micro-
phone’s audio input5. AVSpeechSynthesizer is a class that provides
text to speech (TTS) functionality. A TTS system takes an arbitrary string as
input and creates a synthesized speech output of the given text6.
Although still relying on its functionality in the background, all these
classes hide Core Audio’s complex infrastructure from developers. While
this makes it significantly easier to implement basic audio requirements
for an application, the simplicity also has its drawbacks. AVAudioPlayer,
AVAudioRecorder and AVSpeechSynthesizer perform their tasks iso-
lated from other potential audio processing elements in an application
and cannot be integrated into a bigger audio processing context. Further
processing and manipulation of the audio data is therefore not possible.

5.3 AVAudioEngine

To overcome the gap between the simple but limited and the powerful
but complex programming interfaces, Apple introduced a new way of au-
dio processing in a presentation at their 2014 developers conference. The
information given in this section is largely based on the contents of this
presentation available at [App14a] and [App14b]. The core of the newly
introduced features, which are also part of the AVFoundation framework,
is a class called AVAudioEngine. Although AVAudioEngine is only one
of many new classes released as part of a whole toolkit, the toolkit itself

4[Appd].
5[Appf].
6[Apph].
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is commonly referred to as AVAudioEngine. The two meanings are distin-
guished by using the typewriter font (with which all class, method and
variables names are written in this thesis) to refer to the AVAudioEngine
class, and the normal font to refer to the AVAudioEngine toolkit.
Internally, AVAudioEngine makes use of the existing Core Audio APIs and
was designed to be simple but still powerful enough to implement complex
tasks7. The goal of AVAudioEngine was to build a modular audio process-
ing system. Each module fulfills its specific task such as playing an audio
file, recording audio data, or modifying audio data that is currently being
played. The modules are then connected to a bigger structure that processes
the audio data in the desired way. In the context of AVAudioEngine, mod-
ules are called nodes. The structure of connected nodes is represented by
the AVAudioEngine class itself and is also referred to as a graph. [Appa]
describes the AVAudioEngine class as ”a group of connected audio node
objects used to generate and process audio signals and perform audio input
and output”.
Every node is based on the AVAudioNode class and has a number of input
buses supplying audio data to the node, and a number of output buses
sending the generated or processed audio data to the next node in the
graph. Each bus has an audio format assigned to it, which specifies the
number of channels and the sampling rate of this bus (among other format
parameters)8. Pocket Code does not need more than two channels per bus
as it only processes mono or stereo audio data.
There are three different types of nodes that are relevant for building a
graph with AVAudioEngine: source nodes, processing nodes and destina-
tion nodes.

• Source nodes provide new audio data to the audio engine. The most
common source nodes are AVAudioPlayerNode, AVAudioInput-
Node and AVAudioMIDIInstrument. AVAudioPlayerNode feeds
audio buffers from an audio file to the audio engine9, while AVAu-
dioInputNode connects to the system’s audio input (usually the
device’s microphone) and obtains the audio data from there. AVAu-
dioUnitMIDIInstrument is a superclass for software instruments

7[App14b].
8[Appc].
9[Appe].
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Figure 5.2: AVAudioEngine processing chain with source, processing and destination node.

that produce the audio data themselves, like a software synthesizer or
sampler10.

• Processing nodes take the audio data from the source nodes, and
modify it. One of the most frequently used processor nodes is the
AVAudioMixerNode which accepts multiple input buses and mixes
them to a single output bus11 (usually a stereo output bus). Other
examples of processing nodes are audio effects like delay, reverb or
distortion. The nodes responsible of applying these effects all inherit
from AVAudioUnitEffect.

• Finally, a destination node takes the processed audio data and sends
it to a hardware output (speaker). The only available destination node
is AVAudioOutputNode, which sends the audio data to the system’s
default audio output. An AVAudioEngine instance can only have one
single output node which is implicitly created when instantiating the
engine. It can be accessed by the outputNode property of the audio
engine.

Multiple nodes that are linked together are called a processing chain. An
active, functional chain always starts with a source node and ends with a
destination node. In between, there is an arbitrary number of processing
nodes. A processing chain that does not meet this requirement, or a chain
that is not fully connected, is inactive and will not be able to provide any
audio data to the device’s audio output. Figure 5.2 shows a fully connected
chain from a source node to a destination node and lists some of the possible
classes in each category. This chain already represents a full processing
graph ready to be put into operation by the AVAudioEngine. For more
complex audio applications, a processing graph usually consists of more

10[Appg].
11[Appc].
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Figure 5.3: A processing graph consisting of two processing chains.

than just one processing chain. Figure 5.3 shows an example of a more
complex graph. It represents a karaoke application that plays a backing
track, captures the device’s microphone input and sends both signals to the
device’s speakers12. The backing track can be modified by an equalizer, and
the voice can be enhanced with a reverb effect. This graph consists of two
processing chains, one going from the microphone to the speaker, the other
one going from the backing track player to the speaker. The chains meet at
the mixer node.

The process to create and run an audio engine is as follows13:

1. Create an instance of AVAudioEngine.
2. Instantiate as many nodes as needed.
3. Attach all nodes to the audio engine.
4. Connect the nodes as needed to build an audio processing graph.
5. Start the audio engine.

Once the audio engine has been started, an active render thread is created.
In this thread, audio buffers are pushed from the source nodes into their
respective processing chain, processed by all processing nodes in that chain,
and then pulled by the destination node.
A great feature of AVAudioEngine is, that it can be dynamically reconfigured
during runtime. Nodes can be added, removed, adapted or newly connected
and the changes will be audible immediately14. This proves particularly

12[App14a], p. 10.
13[App14a], p. 43 - 50.
14[App14b].
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useful for applications where the audio requirements change in a non-
deterministic fashion based on how users interact with the application.
A multiplayer game for example might have to play movement noises
(footsteps) for every player that is within earshot of one’s own character.
AVAudioEngine can simply do that by dynamically adding or removing
audio players and adapting their volumes based on the number and distance
of other players in the game. The dynamic reconfiguration of the audio
engine is also useful for Pocket Code, where the audio output of a PCProject
can heavily depend on user interaction.

5.4 AudioKit

In addition to the broad choice of audio frameworks and APIs maintained
and developed by Apple, an external framework called AudioKit15 has
gained popularity in recent years. AudioKit is an open source audio frame-
work for iOS, macOS and tvOS which supports many features such as
audio processing, audio synthesis and audio analysis. It was built to be
easy to learn and use while still offering maximum flexibility and pow-
erful tools. At first glance, AudioKit looks like a copy of AVAudioEngine
as it also builds audio processing graphs using a similar syntax. In fact,
AudioKit builds on top of the existing Apple frameworks and uses AVAu-
dioEngine in the background to create its own audio processing graphs. On
closer inspection, it becomes clear that AudioKit provides far more features
than AVAudioEngine. While AVAudioEngine includes about 20 different
source or processing nodes, AudioKit includes more than 150. Many of the
additional nodes are synthesizers and audio effects, using digital signal
processing algorithms from other open source libraries like Soundpipe16 or
Synthesis ToolKit17.
To facilitate the addition of this large range of new nodes, AudioKit has
to interact with Core Audio and use several of its services. Luckily, the
interaction with Core Audio is hidden from AudioKit’s end users (unless
they are implementing their own custom nodes) which makes the creation

15[Proa].
16[Bat].
17[CS].
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of audio processing graphs with AudioKit more powerful but just as easy
as with AVAudioEngine.
Apart from extending the functionality of AVAudioEngine, AudioKit offers
many other features including UI components to visualize audio waveforms
or audio analysis tools performing tasks like pitch analysis, loudness analy-
sis or Fast Fourier Transform (FFT).
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This chapter discusses the initial state of Pocket Code’s audio engine before
its redesign that has been carried out during the course of this thesis. In
combination with the discussion of the redesigned audio engine in chapter 7

and the new testing strategies in chapter 9, detailed insight is given on
how the audio engine and the testing of the audio engine have evolved
and improved. The chapter is divided into four sections which describe the
existing audio features, the audio engine’s architecture, the problems and
limitations of the implementation and the existing automated tests.

6.1 Overview of Pocket Codes’s audio features

A lot of Pocket Code’s functionality is based on the functional principles
of Scratch. It is therefore expected, that Pocket Code matches Scratch’s
behaviour for features that both applications share. This also applies to
Pocket Code’s audio features of which many have been directly adopted
from Scratch and therefore should also have the same behaviour whenever
possible. For features that only exist in Pocket Code but not in Scratch,
Pocket Code’s iOS version should match the behaviour of its Android equiv-
alent. Considering these aspects, the following description of the audio
features in Pocket Code always specifies the desired behaviour. Deviations
from the desired behaviour in the actual implementation are pointed out in
section 6.3.

Before the redesign of the audio engine, Pocket Code’s audio features
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Figure 6.1: Sound bricks in Pocket Code. Figure 6.2: Speech bricks in Pocket Code.

mainly consisted of six different bricks. As shown in figure 6.1 and fig-
ure 6.2 these bricks can be divided into two groups: bricks that control the
playback of PCSounds, and bricks that control the playback of speech. A
short description of these bricks and their desired behaviour is given below.
Note that the numbers in square brackets given in the brick names, are
placeholders for parameters that can be chosen by users for each brick. More
information about the parameters (the parameter name, value range and
value type) is provided in a separate table for each brick.

6.1.1 Sound bricks

Start sound [1] The Start sound brick is used to play an audio file. This file
can either be recorded in advance with the microphone of the mobile device
or downloaded from an external Pocket Code media library. The execution
of the script’s subsequent bricks continues immediately after the playback of
the PCSound has been initiated. If multiple Start sound bricks are executed
at the same time, the triggered PCSounds are played simultaneously, with a
few rules that apply:

• Different PCSounds can always be played simultaneously.
• A PCObject cannot play the same PCSound multiple times simultane-

ously. If a PCObject triggers a currently playing PCSound for a second
time, the playback will stop and restart from the beginning.
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• Simultaneous playback of the same sounds can only be achieved by
adding multiple instances of the same audio file to a PCProject. To
simultaneously play two instances of the same sound, the respective
audio file has to be added to the PCProject twice. Although such
duplicated audio files sound exactly the same, they are still considered
to be two individual PCSounds.

Parameter Range Type
1 Sound Arbitrary PCSound PCSound selection menu

Table 6.1: Parameters of the Start sound brick

Stop all sounds This brick immediately stops the playback of every PC-
Sound currently played by the PCProject.

Set volume to [1] This brick sets the sound volume to a desired value
between 0 and 100 percent. The change is applied at the PCObject level,
which means that the new volume is only valid for PCSounds played by the
same PCObject that executed the Set volume to brick. The volume change
takes immediate effect on currently playing PCSounds as well as PCSounds
being played in the future.

Parameter Range Type
1 Volume 0 to 100 Decimal

Table 6.2: Parameters of the Set volume to brick

Change volume by [1] The Change volume by brick behaves the same as the
Set volume to brick with only one difference: Instead of setting an absolute
volume value, a relative volume change based on the previously defined
volume is performed. In the same manner as for the Set volume to brick, the
change is applied at the PCObject level.
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Parameter Range Type
1 Volume change -100 to 100 Decimal

Table 6.3: Parameters of the Change volume by brick

6.1.2 Speech bricks

Speak [1] The Speak brick provides TTS functionality and takes a string
parameter specifying the text to be spoken. When executed, this text is
sent to a speech synthesizer which then immediately starts speaking the
text. The execution of the script’s subsequent bricks continues directly after
the text has been forwarded to the speech synthesizer. Scratch’s reference
implementation does not restrict the number of texts that can be spoken
simultaneously by a PCObject and sets a fixed volume for the spoken text.
The speech bricks are therefore not affected by Set volume to and Change
volume by bricks.

Parameter Range Type
1 Text Arbitrary text String

Table 6.4: Parameters of the Speak brick

Speak [1] and wait This brick is a variation of the Speak brick. As opposed
to the standard Speak brick, it waits until the speech synthesizer has finished
speaking the text before subsequent bricks are executed. Scratch only has
one brick that provides TTS functionality. It is called Speak but is equivalent
to Pocket Code’s Speak and wait brick.

Parameter Range Type
1 Text Arbitrary text String

Table 6.5: Parameters of the Speak and wait brick
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6.1.3 Other audio features

A number of other small audio features exist within Pocket Code, the
most notable being the loudness sensor. This sensor continuously captures
the microphone input during execution of the program, and evaluates the
loudness of the signal. This loudness value can then be used as a parameter
for any brick that takes a numeric parameter. Other features include the
media library from which a user can download new PCSounds or the
Pocket Code recorder used to record custom PCSounds. All these additional
features operate isolated from each other and are not directly related to the
main audio engine. They are therefore not dealt with any further in the
course of this thesis.

6.2 Audio engine architecture

Pocket Code’s original audio engine consists of a number of different classes,
components and participants which all work together to provide its overall
functionality. This section intends to give insight into the audio engine
from a developer’s point of view, describing the individual components
and explaining how they are orchestrated to perform the engine’s desired
behaviour. A visualization of the engine’s architecture can be seen in fig-
ure 6.3.

6.2.1 Audio engine components

Audio player To play PCSounds triggered by Start sound bricks, Pocket
Code uses objects of type AVAudioPlayer, which offer an easy and high-
level interface for audio playback (as described in section 5.2). Among
others, AVAudioPlayer provides easy to use methods to play, stop, pause
and resume sounds and to set their volume1.

1[Appd].
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Figure 6.3: Visualization of the original audio engine
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Audio player cache Audio data can use quite a lot of memory, which
makes audio players expensive to create. It is therefore advantageous for
the program’s performance to store previously created audio players for
later use instead of newly instantiating them every time a PCSound needs
to be played. For this purpose, the audio engine maintains an audio player
cache where every audio player is stored after its creation. The player cache
is based on Apples NSCache class which is used to temporarily store key-
value pairs. If the device runs out of memory, NSCache applies several
auto-eviction policies which will delete some of the audio players from
the cache. Therefore an NSCache should only contain objects that are not
critical for the correct behaviour of an application2. Since an audio player
can always be instantiated again, the use of NSCache is appropriate in this
case. The keys used to store audio players are the names of the audio files
the players have been initialized with.

Active audio player table The active audio player table is a table main-
tained by the audio engine that stores a reference of all audio players that are
currently playing. Similar to the audio player cache, the table additionally
stores the name of each player’s audio file.

AVSpeechSynthesizer To provide the TTS functionality needed for the
speech bricks, Pocket Code makes use of the AVSpeechSynthesizer class
mentioned in section 5.2. In order for AVSpeechSynthesizer to speak
a text, an object of type AVSpeechUtterance has to be instantiated first.
This object contains a string with the text to be spoken together with various
parameters that control the speech output (voice, pitch, speed, etc.)3. The
AVSpeechUtterance object is then handed over to the speak() method
of the speech synthesizer (arrow 6 in figure 6.3) which finally converts
the text into an audio output. Although multiple speech synthesizers can
be instantiated, AVSpeechSynthesizer does not support simultaneous
playback of multiple utterances. If a speech synthesizer is already speaking,
all attempts from other speech synthesizers to speak at the same time will

2[Appj].
3[Apph].
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be ignored4. On the other hand, if the same speech synthesizer is prompted
to speak another utterance while it is already speaking, the new utterance
will be added to a queue. The utterances in the queue will then be spoken
one after another. Like AVAudioPlayer, AVSpeechSynthesizer also
provides easy to use methods to start, stop, pause and and resume the
playback of spoken text.

6.2.2 Audio manager

The AudioManager class is the central class for sound or speech playback in
Pocket Code’s original audio engine. It manages the lifecycle of objects and
components that are part of the audio engine, orchestrates their interactions,
and is responsible to ensure the audio engine’s correct behaviour according
to the brick’s specifications.
The audio manager’s tasks can be divided into several categories that are
discussed below. Commands to perform those tasks are either given by
sound and speech bricks that are executed by PCObjects or users that are
pausing, stopping or resuming a PCProject and consequently also the audio
engine.

Playing PCSounds The audio manager’s main task is the creation and
maintenance of the structure used to play PCSounds. A PCSound’s playback
is always initiated by a PCObject executing a Start sound brick. Arrow A in
figure 6.3 shows how the command to play a PCSound is given to the audio
manager when executing a Start sound brick.
After a command to play a PCSound was given, the audio manager needs to
retrieve or create an AVAudioPlayer that is responsible to play the desired
PCSound. Audio players are created dynamically as soon as a PCSound
needs to be played and are then stored for later use. They therefore do not
exist immediately after starting a PCProject. The audio manager assigns a
separate audio player to every PCSound that is used within a PCProject.
This player then exclusively controls the playback of its assigned PCSound.

4[Tho18].
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At no time may a PCSound be assigned to multiple players. To create or
retrieve an audio player, the audio manager uses the following process:

• Before instantiating a new audio player, the audio manager first checks
if an audio player has already been created for the desired PCSound. It
does so by querying the active audio player table (arrow 1 in figure 6.3).
If the table contains an entry with the name of the desired PCSound,
the audio manager reads the associated audio player reference and
retrieves the player from its memory location.

• If no audio player with the desired PCSound could be found in the
active audio player table, the audio manager repeats the search in the
audio player cache (arrow 2). However, the active audio player table
from the previous step also points to players stored in the player cache
(arrow 3). This means, that carrying out step one is obsolete, since
both step one and two directly or indirectly query the player cache to
retrieve an audio player.

• If neither the reference table nor the player cache contain an audio
player for the desired PCSound, a new audio player has to be instanti-
ated. The audio file is loaded from the device storage into a new audio
player which is then stored in the audio player cache (arrow 4) and
referenced in the active audio player table (arrow 5).

• Finally, after retrieving or creating an audio player, the audio manager
can carry out the command received by the Start sound brick by calling
the play() method of the audio player.

Setting the audio players’ volume The audio manager also takes care of
adapting the audio players’ volume. A change in volume initiated by a Set
volume to or Change volume by brick (arrow A) has a global effect on all
audio players of every PCObject (visualized by a single volume knob for
all active audio players in figure 6.3). First, the audio manager adapts the
volume of currently playing audio players by looping over the active audio
player table and adjusting the volume property of every AVAudioPlayer
object the table contains. The change in volume is audible immediately.
To ensure that non-active and newly instantiated audio players are also
assigned the correct volume for their next or first use, the volume property
is also updated with every execution of a Start sound brick.
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Speaking text As mentioned in section 6.2.1, AVSpeechSynthesizer
does not allow multiple instances to speak at the same time. Due to this,
the audio manager only uses a single speech synthesizer instance which is
used by all PCObjects. The way the audio manager converts text to speech
is straightforward. During the execution of a speech brick (arrow A), an
utterance with the spoken text is given to the speech synthesizer’s speak()
method. The rest is taken care of directly by the speech synthesizer without
any further involvement of the audio manager. The speech synthesizer
immediately starts speaking the utterance or, if already speaking, places it
in the utterance queue.

Pausing, resuming and stopping the audio engine When a user decides
to pause, resume or stop a PCProject (arrow B), the same action has to be
applied to the audio engine as well. Otherwise, the audio engine would
continue playing sound although the PCProject has been paused or stopped.
As both AVAudioPlayer and AVSpeechSynthesizer provide methods
to pause, resume and stop their playback, Pocket Code simply calls these
methods on the speech synthesizer as well as on every audio player in the
active audio player table. When stopping a PCProject, the audio manager
additionally removes all entries from the active audio player table.

6.3 Problems and limitations

While studying the original audio engine’s behaviour and comparing it to
the specifications, it became evident, that it was affected by many issues
and flaws. Some of these issues were of a permanent, structural nature and
occurred either because the reference behaviour of Scratch or Pocket Code
Android was not studied carefully enough, or because the used iOS frame-
works do not allow the desired behaviour. In other cases, the flaws were
most likely introduced by recent code changes and remained undetected. A
non-exhaustive list of encountered problems is given below.
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Audio manager

• The audio manager is coordinating an accumulation of different indi-
vidual audio processing components which cannot be interconnected
to form a higher-level audio processing structure. The speech syn-
thesizer and all audio players work independently from each other,
directly sending their audio signals to the audio output of the oper-
ating system. The generated audio data cannot be used for further
processing nor can it be accessed, analysed or mixed with other audio
signals. This makes it impossible to extend the audio engine with
features that rely on further processing of generated audio signals.
Furthermore, it is not possible to implement testing strategies that
verify the audio engine’s behaviour based on its audio output if the
audio signals are not accessible.

• When a running PCProject is paused or stopped by a user, the audio
engine keeps playing. Although the audio manager should pause or
stop the audio engine accordingly, the speech synthesizer and audio
players can still be heard after ending or pausing the PCProject’s
execution.

Audio players and sound bricks

• When a PCObject triggers the playback of a PCSound that it is already
playing, the PCSound should stop and restart playing from the be-
ginning again. Instead, the command to start the playback from the
beginning is simply ignored and the PCSound keeps on playing until
it reaches the end.

• All audio players are assigned the same volume. This does not match
the behaviour of Scratch and Pocket Code Android, where the volume
is controlled on the PCObject level.

• The specification limits the volume of audio players to a range of 0%
to 100%. If a user enters a value outside of this range in a Set volume
to brick, or if a Change volume by brick modifies the volume so that it
would fall outside of this range, the volume should be set to the upper
or lower bound instead. However, the bounds are not checked when
setting a new volume so that values over 100% or even negative values
can occur. AVAudioPlayer seems to treat negative values as if they
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were positive. Therefore, an audio player with a volume of -80% is
just as loud as an audio player with a volume of 80%, which leads to
unexpected and faulty audio output.

Speech synthesizer and speech bricks

• Only one speech synthesizer can speak at the same time on iOS. There-
fore, all utterances are placed in a queue of a single speech synthesizer
and are then spoken successively, although they might have been
triggered at almost the same time. As highlighted in section 6.1.2, this
is not in accordance with Scratch and Pocket Code’s Android version,
which allow multiple texts to be spoken simultaneously. The utterance
queue leads to situations where the spoken text is delayed and out of
sync with the current state of the executed PCProject.

• The Speak and wait brick is not working properly. All bricks that are
placed after a Speak and wait brick in a script are completely ignored.

Audio player cache

• Importing the same audio file into different PCObjects creates multiple
PCSounds that sound identical. According to the specifications, it
should be possible to play multiple PCSounds simultaneously, even if
they are identical. However, the audio player cache uses the audio file
name as key. All PCSounds that are loaded from identically named
audio files will therefore all wrongly share a single audio player in the
audio player cache instead of creating an individual audio player for
each PCSound. Therefore, when triggering such duplicated PCSounds
around the same time, only the instance that was triggered by the first
executed Start sound brick is audible. While this instance is playing, all
Start sound bricks that trigger PCSounds stemming from identically
named audio files will be ignored.

• Maintaining the active audio player list is unnecessary since all au-
dio players are already stored in the audio player cache. Using both
the audio player cache and the active audio player table to retrieve
previously created audio players as described in section 6.2.2 leads to
convoluted and error-prone code.
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6.4 Automated testing

Despite the many specifications Pocket Code’s audio engine should adhere
to and the many problems and bugs that repeatedly occurred, only few
audio related unit tests were available in Pocket Code before writing this
thesis. Two of those tests assure that the audio manager successfully ini-
tializes new audio players when prompted to play a specific PCSound. By
checking the boolean return value of AVAudioPlayer’s play() method,
the tests also check if the audio player correctly initiates the playback of the
PCSound.
A second batch of unit tests verifies the behaviour of the loudness sensor.
The tests evaluate if the sensor is able to correctly retrieve and convert the
values from a data source stub. As using real sensor data would significantly
complicate the testing process, working with a test double is a legitimate
and useful alternative.

The small number of implemented tests and the many bugs and weaknesses
found in Pocket Code’s original audio engine shows the need for several
improvements:

• Improving the unit test coverage: Unit tests are a great tool to gain
confidence in code during development and increase product quality.
With an appropriate set of unit tests that validates the internal state and
logic of the audio manager and other participating classes, many of
the encountered bugs could have been detected and fixed immediately.
Instead, many of them remained in Pocket Code over months or even
years.

• Building a living documentation: Some of the audio engine’s bugs
have been introduced because the audio engine’s specifications were
not studied carefully enough during implemention or refactoring. This
shows the importance of building a living documentation in the form
of automated tests. When refactoring some unfamiliar code, it can
be much easier to study its intended behaviour from easily readable
tests than from complex production code. By using behaviour driven
patterns (for example by using the Quick and Nimble frameworks
discussed in section 3.5.2) the readability and information value of test
cases can even be further improved.
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• Including integration tests: The few available automated tests are
simple unit tests and only validate isolated method calls. While unit
testing is an important part of automated testing, some of the dis-
cussed bugs are caused by the way the audio engine’s components
work together and can only be observed when testing bigger parts of
the audio engine’s structure as a whole. As an example, validating if
two PCSounds which were created from the same audio file can be
played simultaneously, is only possible when testing multiple audio
players together in the context of the audio manager. Other bugs only
appear when whole scripts are executed. Test cases validating such
behaviour therefore need additional, non-audio related components
to be included. Testing whether a Speak and wait brick correctly halts
the execution of a script until the text finished speaking for example is
only possible by setting up a real script and incorporating the brick
scheduling logic as well as the audio manager into the test case. Writ-
ing useful integration tests for the audio engine is therefore of vital
importance.

• Direct validation of audio output: Unit and integration tests always
validate a result, inner state or logic of a process or operation. In case
of the previously mentioned unit test that checks if an audio player cor-
rectly initiates the playback of a PCSound, the validated end result is
a boolean value returned by the AVAudioPlayer’s play() method.
This boolean value can be seen as an indicator, telling whether the
audio player is playing a PCSound correctly or not. In many cases,
especially when dealing with unit tests, validating such abstract indi-
cator data is a quick and easy way to presume correct behaviour of the
engine. However, the indicator data cannot guarantee with absolute
certainty that the SUT is working properly, as the actual result that
should be verified is the audio output of the audio engine.
Some of the audio engine’s specifications describe how different PCOb-
jects, audio bricks or audio players interact with and influence each
other. Testing such scenarios with the aid of indicator data increases
the complexity, as the result that has to be verified is a sequence of
events. This means that timing is introduced as an additional com-
ponent that has to be considered during validation. An integration
test for a Speak and wait brick for example, would include at least the
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following checks:

– Checking if the speech synthesizer immediately starts speaking
after execution of the speech brick.

– Checking if the script pauses for the right amount of time until
the text has been spoken completely.

– Checking if the subsequent brick (for example a Start sound brick)
is executed once the speech synthesizer has finished speaking.

Verifying all this behaviour by checking internal states or intermediate
results of the audio engine can be very difficult, as the data that has to
be verified is located in different components of the SUT and needs to
be evaluated at specific times during test execution. To simplify the
test procedure for such scenarios, it would be interesting to evaluate
possible techniques to directly record and validate the engine’s audio
output instead of solely relying on indicator data. Directly validating
the audio output can also be useful when indicator data can be easily
verified but not fully trusted. This might be the case when the under-
lying audio frameworks have known problems or anomalies that have
not yet been fixed.
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The new Pocket Code audio engine must be built to meet a variety of
requirements:

• Existing weaknesses described in section 6.3 have to be remedied.
• The audio engine has to incorporate a set of new features that already

exist in Scratch.
• Future additions of new audio features to Pocket Code should not

require a complete refactoring of the audio engine. Instead, the audio
engine should be modular and easy to expand.

• The audio engine has to be testable in order to immediately detect
problems as soon as they emerge. For the reasons mentioned in sec-
tion 6.4, test cases should also have access to the engine’s audio output.
This ensures that, if necessary, the generated audio data can directly
be validated without solely relying on the audio engine’s inner states
and intermediate results during test execution.

With these requirements in mind, all audio frameworks discussed in chap-
ter 5 need to be evaluated for their suitability. However, to make an informed
decision, the specifications of the audio engine’s new features have to be
analysed first.

7.1 New audio features

The new audio engine was designed to incorporate a total of ten new bricks,
which can be divided into three different categories: sound bricks, effect
bricks and music bricks.
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7.1.1 Sound bricks

Start sound [1] and wait The Start sound and wait brick is very similar to
the Start sound brick. All behaviour discussed in section 6.1.1 also applies
to the Start sound and wait brick. However, when a script executes a Start
sound and wait brick, the script pauses until the playback of the PCSound
has finished. When interrupting and restarting the playback of a PCSound
by playing the same PCSound again, the script which was playing the first
instance of the PCSound immediately resumes its execution.

Parameter Range Type
1 Sound Arbitrary PCSound PCSound selection menu

Table 7.1: Parameters of the Start sound and wait brick

7.1.2 Effect bricks

The effect bricks are a set of three bricks that directly affect PCSounds
played by Start sound and Start sound and wait bricks. An audio effect is a
digital signal processing algorithm that takes the input samples of audio
signals and transforms them into a new series of output samples to modify
their original sound in the desired way.

Set [1] effect to [2] This brick can be adjusted by two different values.
The first one selects the effect that is applied to the PCSounds while the
second one controls an effect specific parameter that usually defines how
strongly the effect modifies the original signal. The value range of this
parameter is effect specific and cannot be generalised. Effects are applied
on the PCObject level, meaning that an effect modifies all PCSounds played
by the PCObject that executed the effect brick. Each PCObject can activate
one instance of every available effect.
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Parameter Values/Range Type
1 Effect [Pan, Pitch] Effect selection menu

2 Effect intensity Pan: -100 to 100

Pitch: -360 to 360
Decimal

Table 7.2: Parameters of the Set effect to brick

Change [1] effect by [2] Instead of setting an absolute value, this brick
changes the effect intensity value by a specified amount. Otherwise, there
are no differences to the Set effect to brick.

Parameter Values/Range Type
1 Effect [Pan, Pitch] Effect selection menu

2 Effect intensity change Pan: -200 to 200

Pitch: -720 to 720
Decimal

Table 7.3: Parameters of the Change effect by brick

Clear sound effects When this brick is executed, all active effects of the ex-
ecuting PCObject are cleared. The effects of other PCObjects are not affected.

Pocket Code’s redesigned audio engine supports two different effects which
are also available in Scratch: Pan left/right and pitch. The creators of Scratch
originally planned to implement more effects but removed them before the
release of Scratch 3.01. It is possible that Scratch and Pocket Code will
support additional effects in the future.

Pan left/right A panorama or pan control is used to modify the apparent
position of an audio signal in a multichannel audio processing environment.
This is done by adjusting the relative amplitudes of the signal’s channels2.

1[Masb].
2[Zöl02], p. 138.
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Pocket Code’s audio engine works with a stereo setup. To shift an incoming
signal to the right, the pan control increases the amplitude of the right
channel and attenuates the amplitude of the left channel. The position shifts
further to the right until the amplitude of the left channel is zero. The pan
effect takes values between -100 and 100. A value of 100 shifts the signal to
the very right, -100 to the very left and 0 to the center.

Pitch The pitch effect adapts the pitch of an incoming sound. This is
done by using a method called ”variable speed replay”, which increases or
decreases the playback speed of audio data3. Doubling the playback speed
will increase the pitch by one octave, halving it will lower the pitch by one
octave. This phenomenon can also be observed when fast forwarding a
cassette in a cassette player or adapting the rotation speed of a turntable.
Changing the pitch effect value by 10 will lead to a pitch increase/decrease of
a semitone. To go up a whole octave, the value therefore has to be increased
by 120. The value has to be between -360 and 360 which is equivalent to a
decrease or increase of three octaves4.

7.1.3 Music bricks

Music bricks are a set of six bricks that give Pocket Code users the oppor-
tunity to arrange and compose their own music with 21 different musical
software instruments and a drum kit. The following music bricks are avail-
able:

Play note [1] for [2] beats When executed, this brick plays a note with
the currently active instrument. Parameter one sets the note that has to be
played. A value of 69 represents the concert pitch A4 (440 Hz). A change
by one integer value is equivalent to a change of one semitone. Parameter
two determines the duration of the played note in beats, which is a relative
measure. The actual length of a beat can be set with the Set tempo to brick.
The subsequent brick gets executed exactly after the defined duration of

3[Zöl02], p. 202.
4[Masb].
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the Play note brick. A script can only play one note at a time. To let a
PCObject play multiple notes simultaneously, notes must be played from
within different scripts. The volume that is set with the Set volume to or
Change volume by bricks for all audio players of a PCObject is also valid for
software instruments of the same PCObject.

Parameter Range Type
1 Note 0 - 130 Integer
2 Duration 0 - ∞ Decimal

Table 7.4: Parameters of the Play note brick

Set instrument to [1] By default, all notes are played by a piano. By
using this brick, the active instrument can be set to any of the available
21 instruments. Once this brick is executed, notes will be played with the
new instrument. This brick works on the PCObject level, meaning that a
PCObject can only play one instrument at a time. Once a PCObject executes
the Set instrument brick, the instrument will change for all notes played by
this PCObject. Notes that started playing before the instrument was changed
will finish playing with the old instrument. The available instruments are:
piano, electric piano, organ, guitar, electric guitar, bass, pizzicato violin,
cello, trombone, clarinet, saxophone, flute, wooden flute, bassoon, choir,
vibraphone, music box, steel drum, marimba, synth lead and synth pad.

Parameter Range Type
1 Instrument 1 - 21 Instrument selection menu

Table 7.5: Parameters of the Set instrument brick

Play drum for [1] beats The Play drum brick is very similar to the Play
note brick. It will always play one element (hi-hat, snare, tom etc.) of a drum
kit and is therefore not affected by the Set instrument brick. Parameter one
chooses the drum element being played and parameter two sets the duration
in the same way as the Play note brick. The drum sounds are always played
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until the end, even if the chosen duration is smaller than the length of the
sound. Nevertheless, the subsequent brick will be executed exactly after
the chosen duration. PCObjects can play the drums simultaneously with a
normal instrument and in the same manner as for normal instruments, the
Set volume to and Change volume by bricks also affect the volume of drums.

Parameter Range Type
1 Drum sound 1 - 18 Drum selection menu

Table 7.6: Parameters of the Play drum brick

Rest for [1] beats This brick pauses a script for a specified amount of
beats and is primarily intended for adding a break between two notes.

Parameter Range Type
1 Duration 0 - ∞ Decimal

Table 7.7: Parameters of the Rest brick

Set tempo to [1] Sets the tempo in beats per minute (BPM). The new
tempo is valid globally for notes and pauses played by all PCObjects.

Parameter Range Type
1 Tempo 20 - 500 Decimal

Table 7.8: Parameters of the Set tempo to brick

Change tempo by [1] Changes the tempo relative to the previously set
BPM. The new tempo is valid globally for notes and pauses played by all
PCObjects.
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Parameter Range Type
1 Tempo -480 - 480 Decimal

Table 7.9: Parameters of the Change tempo by brick

7.2 Choosing the right audio framework

After a precise analysis of the new audio features and the original audio
engine’s weaknesses, the available audio frameworks were evaluated for
their suitability. Reasons for or against the individual frameworks are listed
below.

High-level audio classes The high-level audio classes used to build the
original audio engine do not allow further processing of generated audio
data as it is required for the effect bricks. Additionally, a high-level class
capable of playing musical instruments does not exist. In combination with
the missing capability to access and analyse the generated audio data, a
requirement to directly test the engine’s audio output, these drawbacks
make the high-level audio classes unsuitable for the redesign of Pocket
Code’s audio engine.

Core Audio As Core Audio builds the foundation for all audio processing
on Apple’s operating systems, providing all necessary tools to build any
kind of audio application, it would fulfil all technical requirements for the
redesign of Pocket Code’s audio engine. However, its complexity and the
additional need for a lot of domain specific knowledge make it unsuitable
for a small, community driven open source project like Pocket Code.

AVAudioEngine As discussed in section 5.3, AVAudioEngine provides a
set of nodes which can be divided into source nodes, processing nodes and
destination nodes. Two of the available processing nodes, AVAudioUnit-
Mixer and AVAudioUnitTimePitch could be used to implement Pocket
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Code’s new panorama and pitch effects. Furthermore, AVAudioEngine
offers the capability to create software instruments with its source node
AVAudioUnitSampler which would allow for the realization of all new
music bricks. With AVAudioEngine’s graph structure, Pocket Code’s audio
engine could be easily extended if new features have to be implemented
in the future. Additionally, AVAudioEngine also provides the possibility to
install so called ”audio taps” within graphs. Audio taps can be installed on
arbitrary buses between nodes to record the audio data that is sent from one
node to another. This allows the audio data to be analysed at any location in
a graph, making it possible to verify real audio output in test cases. Another
feature allows audio data to be rendered offline with AVAudioEngine, which
also provides the possibility to test real audio data. Both of those features
are discussed in more detail in section 9.2 and section 9.3. With its simple
interface AVAudioEngine would be an adequate framework for the audio
engine’s redesign.

AudioKit AudioKit is largely based on AVAudioEngine. With that in mind,
everything that has been said about AVAudioEngine is equally valid for
AudioKit. AudioKit is simple enough to be maintained by developers that
are not familiar with the theory of digital audio processing but still powerful
enough to fulfill all important requirements of Pocket Code’s new audio
engine. However, there are a few points which make AudioKit a more
suitable choice for Pocket Code than AVAudioEngine. First of all, AudioKit
is a widely used, open source project with an active community, which is
continually improving and extending its functionality. Furthermore, thanks
to the integration of other audio processing libraries, AudioKit provides
many additional nodes and features that AVAudioEngine does not offer. The
additional functionality, which includes audio analysis nodes, UI elements
for audio visualization and a wider range of effect nodes, offers more
flexibility for future extensions and improvements of Pocket Code’s own
functionality. Due to these advantages, AudioKit was ultimately chosen as
the preferred tool to build Pocket Code’s new audio engine.
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7.3 Building Pocket Code’s audio graph

This section discusses how AudioKit was used to implement Pocket Code’s
audio requirements, describes the classes and tools used in the redesign
process and finally details the full structure of Pocket Code’s redesigned
audio engine. The following list gives a brief summary about the basic tools
needed to implement the new audio engine with a graph structure:

• Audio players, that play PCSounds when a Start sound or Start sound
and wait brick is executed.

• Speech synthesizers to provide TTS functionality needed by the Speak
and Speak and wait bricks.

• A component for volume control to adapt the volume of all PCSounds,
instruments and drums on the PCObject level.

• Mixer components to mix the audio data of all source nodes (audio
players, software instruments and speech synthesizers) into a single
audio output.

• A pan effect to modify the stereo panorama of PCSounds played by
Start sound and Start sound and wait bricks.

• A pitch effect to modify the pitch of PCSounds played by Start sound
and Start sound and wait bricks.

• A software instrument component that can play a variety of instru-
ments and drums.

The AudioKit classes used to implement these components are explained
below. As AudioKit makes heavy use of AVAudioEngine, some of the used
AudioKit classes rely directly on equivalent AVAudioEngine classes. In those
cases, the description will focus more on the underlying AVAudioEngine
functionality than on the actual AudioKit class.

7.3.1 Audio player

To play audio files in the context of an AudioKit graph, AudioKit offers a
source node called AKPlayer. Internally, AKPlayer makes use of AVAudio-
Engine’s source node AVAudioPlayerNode and extends its functionallity
by offering additional features like fading and looping. As none of the
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Figure 7.1: Visualization of AKPlayer’s/AVAudioPlayerNode’s functionality

additional features are currently relevant for Pocket Code’s audio engine,
this section only describes the functionality of the underlying AVAudio-
PlayerNode.
AVAudioPlayerNode, depicted in figure 7.1, is a node used for audio play-
back and supports various audio formats. Audio data can either originate
from audio files or from an external source which provides audio buffers
for playback. In Pocket Code, the audio data always originates from audio
files directly. Playback of audio data can either be started immediately or
scheduled at a later time.
As discussed in section 5.3, all nodes have a number of input and output
buses with configurable formats which are characterized by parameters like
channel count and sample rate. Source nodes like AVAudioPlayerNode
are special cases as they are always placed at the beginning of a processing
chain and therefore only have output, but no input buses. An AVAudio-
PlayerNode’s output format can be configured differently to the format of
the audio files it is playing. In such cases, the AVAudioPlayerNode will
automatically convert the audio data’s channel count and sample rate to
match the player’s output format. However, it is recommended that the
player’s output format always matches the format of the played audio files.
If format conversions are necessary, Apple recommends doing so with an
AVAudioMixerNode (discussed in section 7.3.3). Last but not least, AV-
AudioPlayerNode also offers the possibility to modify the volume and
panorama of its audio output.
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7.3.2 Speech synthesizer

AVAudioEngine does not provide a class for speech synthesis which could
be integrated into an audio processing graph. AudioKit circumvents this
lack of TTS functionality by creating a speech synthesizer node with speech
synthesis tools from Core Audio. Unfortunately, the resulting AKSpeech-
Synthesizer node is only compatible with macOS and not iOS5. As the
original audio engine’s speech bricks suffer from weaknesses caused by
limitations of the high-level AVSpeechSynthesizer class, several open
source TTS frameworks were evaluated as a replacement, but non of them
offered the necessary functional scope and a satisfactory speech quality.
Due to this, the redesigned audio engine still uses AVSpeechSynthesizer
for its speech bricks. The TTS functionality is therefore decoupled from
the rest of the audio engine, remains very difficult to test and cannot be
integrated into the new graph structure. To prevent the problem of delayed
speech output caused by placing utterances in a queue, the redesigned
audio engine no longer places new utterances in a queue when the speech
synthesizer is already speaking. Instead, if a new utterance is handed to the
speech synthesizer, the currently speaking utterance is stopped and the new
one starts speaking immediately. If the stopped utterance was executed by a
Speak and wait brick, the associated script resumes immediately.
As Apple has been slowly extending AVAudioEngine’s functionality over
the past few years, it is possible that a speech synthesis node will be added
in the future. This node could then serve as the basis for AudioKit’s own
iOS compatible speech synthesis node.

7.3.3 Mixer

AudioKit handles mixing with a class called AKMixer which is a wrap-
per around AVAudioEngine’s AVAudioMixerNode and adds a few conve-
nience methods. As visualized in figure 7.2, AVAudioMixerNode is used to
mix any number of input buses into a single output bus. The inputs can be
of different sample rates and will be automatically converted to the sample
rate of the output bus’ audio format. Additionally AVAudioMixerNode

5[Appm].
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will also upmix or downmix the channels of the input buses to the channel
count of the output bus6. In the same way as for the AVAudioPlayerNode,
the volume and the panorama of the mixer output are adjustable.

Figure 7.2: Visualization of AKMixer’s/AVAudioMixerNode’s functionality

7.3.4 Software instrument

The available musical instruments and drums in Pocket Code should all
emulate their real counterparts. There are two basic ways this can be accom-
plished: with a synthesizer or a sampler. A synthesizer produces different
digital waveforms which can be layered and further processed to create the
desired sound. Unfortunately, emulating a real instrument with a synthe-
sizer will usually lead to artificial sounds because the complex waveforms
of real instruments cannot be recreated with sufficient precision. A sampler
on the other hand plays pre-recorded audio files. To emulate an instrument
with a sampler, one would simply record sounds played by a real instrument,
and play them with the sampler. This assures, that the software instrument
really sounds as close to the original as possible. AudioKit provides a node
called AKSampler for this purpose.

How does a sampler work? Since a sampler simply plays pre-recorded
audio files, the question arises of how a sampler is different from the previ-
ously discussed audio player node. Indeed, a sampler does have similarities
to an audio player and could be described as an audio player with extended
functionality. [Zöl02] defines a sampler as a digital system for recording

6[Appb].
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and playing back short musical sounds in real-time which is controlled by a
MIDI keyboard or controller7. The real-time and MIDI aspects are important
information in this definition.
MIDI (short for Musical Instrument Digital Interface) is a communication
protocol used to transmit information about musical events. In Pocket Code,
there are two different MIDI events that are significant: the Note on and
Note off events. A Note on event is sent to a software instrument (the sam-
pler) whenever the controlling instance (a person playing a keyboard or
in this case, Pocket Code executing a Play note brick) orders the software
instrument to play another note. The Note off event is sent to the software
instrument when a note, which has previously been triggered by a Note
on event, should stop playing. Note on and Note off events always contain
information about the pitch and velocity of the note that should start or
stop playing8. Pocket Code works with a constant velocity for all played
notes, which means that only the pitch information is of interest.
Ideally, a sampler would contain a recoded audio file (called sample) of
every note that can be played on a particular instrument. Whenever a Note
on event reaches the sampler, it would retrieve the sample that corresponds
to the requested pitch and play back this file until a Note off event is reg-
istered or the file has finished playing. Unfortunately, storing a sample of
every possible note for every instrument would take up a lot of memory.
Instead, sample instruments often only contain samples of a few notes, dis-
tributed over the whole pitch range of the instrument. Whenever the sample
instrument does not have a sample of the requested note, the sample of
the closest available note is used for playback. To produce the correct pitch
from this sample, the sampler uses the variable speed approach described
in section 7.1.2. With this approach, the playback of a sample is either sped
up or slowed down in order to generate the requested pitch. Figure 7.3
visualizes this process on a keyboard. The red keys represent the notes for
which a recorded sample is available. Those notes are called root notes and
are evenly distributed over the whole pitch range. If a Note on event for one
of the root notes is received, the corresponding sample is played without
any further modification. If a Note on event for a note in the green, blue
or yellow area is fired, the sample of the root note which lies within the

7[Zöl02], p. 522.
8[MID].
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Figure 7.3: Keyboard layout of a sample instrument

respective area is played, but with a modified speed.

AKSampler AudioKit offers two different sampler classes. The first one is
based on AVAudioEngine’s sampler called AVAudioUnitSampler whereas
the second one, called AKSampler, was developed by the AudioKit team
from scratch. Although AKSampler is nowhere near as powerful as AVAu-
dioUnitSampler, it meets all requirements of Pocket Code’s music bricks
and is very easy to handle and well documented9. For these reasons, AK-
Sampler was finally chosen for the implementation of Pocket Code’s music
bricks. AKSampler offers different mechanisms to load samples. As de-
picted in figure 7.4, they can either be loaded from audio data that is
already in the application’s memory, from individual audio files, or from
SFZ (Sforzando) soundfont files. In Pocket Code, samples are loaded from
SFZ files by calling AKSampler’s method loadSFZ(path: fileName:).
SFZ files are essentially structured text files, describing how a set of samples
is arranged to build a software instrument10. As such, they tell AKSampler
which samples are used for a specific instrument, where the sample files are
located, which root note is associated to each sample, and the range of notes
that is played by each sample (the differently coloured areas in figure 7.3).
Pocket Code uses the same samples as Scratch11 to create its own software
instruments and additionally compresses the samples with WavPack12 to
minimize their memory footprint. Once an SFZ file has been loaded by the
sampler, Note on and Note off events can be fired by calling AKSampler’s
methods play(noteNumber: velocity:) and stop(noteNumber:).
It is also worth mentioning, that AKSampler is a polyphonic sampler, mean-

9[Aud].
10[SFZ].
11[Masa].
12[Bry].
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Figure 7.4: Visualization of AKSampler’s functionality.

ing that it can play multiple notes simultaneously. However, the same note
can only be played once at a time.

7.3.5 Volume

To adapt the volume when executing Set volume to or Change volume by
bricks, Pocket Code does not need separate processing nodes in its audio
graph. As shown above, AKPlayer, AKMixer and AKSampler are already
capable of controlling the volume of their output signals. Since the volume in
Pocket Code is always changed on the PCObject level and not for individual
audio players or software instruments, the audio engine always changes the
volume with AKMixer’s volume control.

7.3.6 Pitch effect

As mentioned in section 7.1.2, the pitch effect uses the variable speed replay
technique to shift the pitch of incoming audio data. AudioKit offers a class
called AKVariSpeed which is based on Apple’s AVAudioUnitVarispeed
node. The only parameter that can be controlled with AKVariSpeed is the
audio playback rate.
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Figure 7.5: Visualization of AKVariSpeed’s/AVAudioUnitVarispeed’s functionality

7.3.7 Pan effect

Although the pan effect could be implemented with AKMixer’s panorama
control, the redesigned audio engine uses a separate node for this purpose.
This decision was made to provide a uniform interface for all effects in
Pocket Code. As the pitch effect uses a separate node and possible future
effects most likely require separate nodes as well, it would add unnecessary
complexity to the audio engine’s code if the pan effect would be an exception
to this rule.
The pan effect is realized with AudioKit’s AKPanner class, visualized
in figure 7.6. To attenuate or boost the left or right channels, AKPanner
multiplies the audio data of both channels with a gain between zero and
one. The gains for the left and right channels are calculated as follows13:

gainl = sin(0.5 ∗ π ∗ pan)
gainr = cos(0.5 ∗ π ∗ pan)

(7.1)

In this formula, the panorama (pan) has to be a value between 0 and 1 where
0 is hard left, 0.5 center position and 1 hard right. This gain calculation
formula ensures that the power of the output signal stays roughly the same
when it is shifted to another position in the stereo panorama.

13[Cre17], p. 125.
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Figure 7.6: Visualization of AKPanner’s functionality

7.3.8 Combining nodes to a PCObject subgraph

Now that all required nodes for the redesigned audio engine are known,
they can be connected to a graph. To make this process easy to understand,
a subgraph of a single PCObject will be derived first. Whenever the term
subgraph is used in the following chapters, it refers to a PCObject subgraph.
The subgraphs of all PCObjects will later be connected to a full graph.
Figure 7.7 shows a functional diagram of the audio flow within a single
subgraph. A PCObject can have an arbitrary number of audio players, but
only one for each distinct PCSound (visualized by the differently coloured
audio players). The figure shows three audio players. Their signals (1, 2

and 3) can be processed with a pan and pitch effect. Since these effects
have to affect all audio players of a PCObject equally, the signals are first
mixed together (4) before the effects are applied (5 and 6). The figure also
shows that there can be exactly one melodic instrument and one drum kit
in each subgraph. Their signals (7 and 8) and signal 6 are mixed together
(9), before the overall volume of all audio players and software instruments
of a PCObject is adjusted (10).
Figure 7.8 shows the same diagram again, but this time not only displaying
the functional features of a subgraph, but also its actual node structure.

To keep the memory footprint as low as possible, the redesigned audio
engine uses lazy instantiation to create its subgraphs. This means, that
subgraphs will not exist until a PCObject executes its first sound, effect or
music brick. The first time such a brick is executed by a PCObject, the audio
engine initializes the subgraph by creating and connecting the two AKMixer

87



7 New Pocket Code audio engine

Figure 7.7: Functional diagram of a subgraph

Figure 7.8: Connected nodes forming a subgraph
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nodes, the AKPanner node and the AKVariSpeed node and connecting
the subgraph’s output to the audio graph’s main mixer node. Depending
on the executed brick, an AKPlayer or AKSampler will also be connected
to the subgraph. For every successive execution of a sound, effect or music
brick by the same PCObject, the subgraph will be supplemented by a new
AKPlayer or AKSampler if necessary, but will not change its structure any
further.

7.3.9 Combining subgraphs to a full graph

Now that the structure of a subgraph is know, combining them to build a full
graph is very easy. As illustrated in figure 7.9, the subgraph’s audio outputs
are connected with another AKMixer node which is the graph’s main mixer
node, responsible to combine all subgraph signals to a single audio signal
that can be sent to the device’s audio output. Note that neither the subgraphs
nor the full graph contain any information about speech synthesizers, as
Pocket Code’s TTS functionality is still handled separately.

Figure 7.9: Connecting subgraphs to a full graph

7.4 Audio engine architecture

After defining and analysing the structure of the audio graph, the most vital
part of Pocket Code’s redesigned audio processing capabilities, it has to be
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embedded into an architecture that maintains the graph and controls its
behaviour to form what will be the finished audio engine. This section gives
a technical overview of the audio engine’s architecture and highlights some
of the used classes and concepts. A visualization of the architecture can be
seen in figure 7.10.

7.4.1 CBAudioEngine

CBAudioEngine (CB stands for Catrobat) is the central class of Pocket
Code’s audio engine, containing the complete audio graph and acting as
the main gateway for every request or command sent to the engine. The
simplest way of explaining CBAudioEngine’s functionality is by looking at
it from three different angles: defining the public interface which is used to
interact with the class, inspecting the data it encapsulates, and analysing the
behaviour or logic that is initiated by calls to the interface and performed
on the data.

Interface CBAudioEngine’s interface consists of a set of method’s that
can be divided into three groups.

• The first group of interface methods is called by executed audio bricks
(arrow A in figure 7.10) and consists of a total of thirteen meth-
ods: playSound(), stopAllAudioPlayers(), setVolumeTo(),
changeVolumeBy(), speak(), setEffectTo(), changeEffect-
By(), clearSoundEffects(), playNote(), playDrum(), set-
TempoTo(), changeTempoBy() and setInstrumentTo(). When
executing one of these bricks, the interface method which matches
the executed brick’s name is called, signalling the audio engine to
perform the desired operation. Although not specified for simplicity,
the methods listed above each take a number of parameters: the actual
parameter values of the executed brick (for example the volume, the
effect value or the sound file) and the name of the PCObject that
executed the brick.
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Figure 7.10: Visualization of the redesigned audio engine
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• The second group of interface methods is called by users changing the
operating state of a PCProject (arrow B), namely starting, stopping,
pausing or resuming it. A change in the operating state of a PCProject
must also be reflected in the operating state of the audio engine.
The corresponding interface method names are start(), stop(),
pause() and, resume().

• The third group of interface methods, consisting of stopNote() and
stopDrum() is called by a different part of Pocket Code. The purpose
of the two methods is discussed in section 7.4.3.

Data CBAudioEngine only encapsulates a small amount of data. The
first object it manages is the graph’s main output mixer node depicted in
figure 7.9. It also maintains a subgraph table, which is a table that con-
tains all subgraphs connected to the the graph’s output mixer node. The
stored objects are of type CBSubgraph (see section 7.4.2) and are stored in
the table as key-value pairs with the key being the name of the PCObject
associated to the subgraph. As the speech synthesizer is still handled sepa-
rately from the AudioKit’s graph structure, CBAudioEngine also holds an
AVSpeechSynthesizer object for Pocket Code’s TTS functionality. The
last important piece of data is the audio engine’s metronome, a numerical
value representing the currently set BPM valid for all music bricks.

Behaviour As CBAudioEngine only encapsulates a small amount of data,
the number of operations that are performed on that data within CBAudio-
Engine are also limited. There are four basic behavioural areas CBAudio-
Engine covers:

• Setup and Teardown: CBAudioEngine is responsible to do some
basic setup and teardown work. First of all, this includes initializing
its own internal data (output mixer node, subgraph table, speech
synthesizer and metronome), but more importantly also managing
the state of AudioKit. CBAudioEngine has to inform AudioKit of the
audio graph’s main output node, so that AudioKit can forward the
audio data to the device’s audio hardware. CBAudioEngine also has
to start the audio processing graph once a PCProject is started. On
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the other hand, when a PCProject is stopped, AudioKit has to be shut
down and disassembled properly.

• Translating interface calls: CBAudioEngine’s main task is translat-
ing and forwarding the interface calls to the corresponding CBSub-
graph objects (arrow D), as most operations are performed on the
PCObject level and therefore handled within CBSubgraph. To do that,
CBAudioEngine searches the subgraph table for the corresponding
subgraph on which the operation has to be performed. It does so
by checking if the name of the PCObject that called the interface
method is available as a key in the subgraph table. If it is, CBAudio-
Engine retrieves the CBSubgraph object and forwards the call to
CBSubgraph’s interface. If not, CBAudioEngine instantiates a new
CBSubgraph object, stores it in the table and forwards the call to the
newly created object (arrow 3).

• Operating global audio engine features: Although most commands
given to the audio engine are only relevant for a specific subgraph as
described above, some apply to the whole audio engine and are there-
fore directly processed within CBAudioEngine. Two of those com-
mands are the calls to the setTempoTo() and changeTempoBy()
interface methods. The tempo of music bricks is a global state valid for
all samplers of the audio engine, which is why said interface methods
directly adapt the tempo without forwarding the calls to a CBSub-
graph object (arrow 1).
As the speech synthesizer resides within CBAudioEngine and not
within CBSubgraph, CBAudioEngine additionally also has to take
care of the correct operation of Pocket Code’s TTS functionality. CBAu-
dioEngine therefore has to ensure that the speech synthesizer starts
speaking when the speak() interface method is called. It also has
to stop the currently speaking utterance before a new utterance can
start speaking (arrow 2). Finally, the CBAudioEngine has to make
sure that scripts which were halted due to a Speak and wait brick are
resumed at the right time. The right time to resume such a script
is either when the current utterance is stopped by a new utterance
or when the utterance finishes speaking and subsequently triggers a
utteranceDidFinish() callback (arrow 4).

• Ensuring thread safety: As CBAudioEngine is accessed by many dif-
ferent scripts from different PCObjects and threads, it has to make sure
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that thread safety is guaranteed. Without paying attention to thread
safety issues, CBAudioEngine could otherwise show unexpected and
unintended behaviour. Specifically, CBAudioEngine ensures that CB-
Subgraph objects can only be created one at a time, which prevents
the creation of multiple subgraphs for the same PCObject. Also, CBAu-
dioEngine serializes much of the speech synthesizer’s behaviour.
This ensures that different threads do not interfere with each other
and actions like starting and stopping the speech synthesizer as well
as resuming paused scripts happen in the correct order.

7.4.2 CBSubgraph

As already mentioned, CBSubgraph is a class that encapsulates the data
and functionality of a whole audio subgraph. Its interface is not publicly
available and is solely accessed by CBAudioEngine. In the same way as for
CBAudioEngine, this section will explore the interface, data and behaviour
of CBSubgraph.

Interface CBSubgraphs’s interface is almost identical to the interface of
CBAudioEngine. This is due to the fact, that CBAudioEngine’s main task
is to maintain the subgraph table and to forward the incoming commands
directly to the correct subgraph. Interface method calls in CBAudioEngine
are therefore delegated to the method of the same name of the according
CBSubgraph object (arrow D). Almost all interface methods found in CBAu-
dioEngine are also available in CBSubgraph with a few differences:

• The speak() method, does not exist in CBSubgraph as the TTS
functionality is directly handled in CBAudioEngine.

• CBSubgraph provides an additional connectSubgraphTo() method.
This method is called by CBAudioEngine to connect a newly created
subgraph to the audio engine’s main output mixer node.

Data CBSubgraph holds all the nodes which form a PCObject subgraph.
This includes two mixer nodes, two sampler nodes, an AKPanner and
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an AKVarispeed node, as well as an indefinite amount of AKPlayer
nodes (see figure 7.8). The player and sampler nodes are not directly held
within CBSubgraph but rather contained inside player and sampler caches
which are maintained by CBSubgraph. The caches are implemented with
NSCache which has been described in section 6.2.1.

Behaviour Similar to CBAudioEngine, CBSubgraph also performs a va-
riety of operations with or on its data. As the data contained in CBSub-
graph differs heavily from the data in CBAudioEngine, the operational
code of those two classes pursues different objectives. Nevertheless, some
of CBSubgraph’s behaviour is quiet similar to CBAudioEngine as shown
below.

• Setup: Similar to CBAudioEngine, CBSubgraph also performs some
basic but important setup tasks. This setup work mainly consists of
initializing the basic (sub)graph structure. This includes the initializa-
tion of the nodes CBSubgraph holds, connecting those nodes to form
a working subgraph and connecting the subgraph to the main output
mixer node (located inside CBAudioEngine). An initialized subgraph
at least holds two mixer nodes (the subgraph output mixer node and
the player mixer node), as well as an AKPanner and AKVariSpeed
node. All other subgraph nodes are created and set up at a later point
as needed.

• Translating interface calls: In contrast to CBAudioEngine which
translates incoming calls to the correct CBSubgraph object, CBSub-
graph translates and forwards its interface calls to the correct nodes.
This process includes the retrieval of the correct player or sampler
nodes from the player and sampler caches on playSound() or play-
Note() calls or the creation of such nodes if they do not exist yet at
that time. Another example would be the retrieval of the correct effect
node when the setEffectTo() interface method is called.

• Operating the subgraph nodes: CBSubgraph is also responsible for
performing the desired actions on the nodes retrieved in the previous
translating interface calls step. This means that the commands given by
executed bricks or user interactions, which subsequently directly or in-
directly invoke interface calls in CBAudioEngine and CBSubgraph,
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are finally executed on their destined subgraph nodes. In most cases,
the most vital part of this process is as simple as calling a method
or setting a variable on the destined nodes. The setVolumeTo() or
stopAllSounds() interface calls for example primarily require the
volume variable to be set on the mixer node or the stop() method to
be called on all player nodes respectively. However, as Pocket Code’s
audio engine has to meet the many requirements and specifications
outlined in previous chapters, the correct operation of all nodes in-
volves additional logic and processes. This includes processes such
as the management of the player and sampler caches, ensuring that
parameters stay within the specified bounds, enabling or disabling
effects based on their usage, pausing and resuming scripts when a
Start sound and wait brick starts or finishes playing (arrow 5) as well as
keeping track of the currently active notes of the samplers.

• Accessing the device storage: In order to fulfill their tasks, audio
players and samplers need some additional external resources when
they are initialized. In case of an audio player this is a simple audio file
whereas a sampler requires an SFZ file (see section 7.3.4). CBSubgraph
interacts between the device storage and the player and sampler nodes,
accessing the resources on the storage and providing them to the nodes
(arrow 6).

• Ensuring thread safety: Just like CBAudioEngine, CBSubgraph ob-
jects can also be accessed from many different threads at the same time
and therefore also have to ensure thread safety for some of their pro-
cesses. To avoid the creation of duplicate audio players and samplers,
CBSubgraph serializes their instantiation process. It also serializes
the execution of commands to start and stop the playback of audio
players and samplers to avoid unexpected behaviour.

7.4.3 Other architectural elements

As briefly mentioned at the beginning of this section, there is a third group
of interface methods that is not called by executed bricks or users chang-
ing the operating state of a PCProject. These methods, stopNote() and
stopDrum(), are called by ”note off timers” which are simple timer objects
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(arrow C). Note off timers are used to determine when a note, played by
a sampler, should stop playing. The timers are initialized with the length
of the note they represent and start a countdown as soon as the associated
note starts playing on the sampler. When the countdown is finished, the
timer calls the stopNote() or stopDrum() interface method of CBAu-
dioEngine to make sure that the note stops playing at the scheduled time.
The creation of the timers happens right after the execution of a Play note or
Play drum brick (arrow 7), but before the playNote() or playDrum() in-
terface methods of CBAudioEngine are called. As illustrated in figure 7.10,
note off timers are stored outside of CBAudioEngine and CBSubgraph.
The reason for this is simple: Because other parts of the system also use
timers to schedule certain actions within a running PCProject, it makes
sense to store and handle all those timers in a central place.
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As discussed in previous chapters, software development can greatly benefit
from automated testing. It leads to more reliable code, speeds up the devel-
opment process and increases trust in the project’s code base. Most literature
on the subject advises to cover as much code as possible with automated
tests. The software development methodology ”Extreme Programming” for
example recommends to write automated tests for ”everything that could
possibly break”1. Although software audio features also fall into the cate-
gory of code that could break, they often seem to be left out from testing or
are tested in a very rudimentary way. While resources on the theory of au-
tomated testing and it’s general approaches are widely available today, only
few publications exist on specific testing approaches of audio functionality
in software or hardware projects. The most likely reason for this is, that
audio testing is a much harder task than automated testing of conventional
code and many developers do not want to deal with the challenges that
arise.
This chapter explains the difficulties of audio testing and gives an overview
of the few audio testing approaches that are discussed in literature or
implemented in open source projects.

8.1 The difficulties of audio testing

Every unit or integration test can have exactly two different outcomes:
it either passes or fails. This means, that at the end of every test case, a
decision has to be made: Is the result of this test case consistent with the
expected result? For typical tests, this decision is trivial. The return value of

1[JAH01], p. 234.
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a specific function is either equal to the expected value or not. An entry in a
database was either set correctly or not. There is no grey area and no room
for interpretation.
When it comes to testing audio functionality however, things behave a little
differently. Subject of such tests is usually the audio output at any stage
of the audio processing facilities of the SUT. The test case, therefore, has
to decide if the audio data produced during test execution matches the
expected reference audio output. Unfortunately, tiny irregularities in the
setup and operation of tests can have a big impact on the resulting audio
data, leading to a different audio output than expected. These differences
can rarely be perceived by the human ear, but pose a big problem to the
verification of test results.
Depending on the test setup, there are different reasons that can lead to
irregularities in the captured audio output:

• Noise: Being primarily a problem of test setups containing analog
equipment, this could either be ambient noise that is recorded together
with the relevant signal or any noise added on the analog signal
processing path.

• Time delays: Playback and recording of the test signal have to be
perfectly in sync to match the desired reference signal. This is not only
an issue for analog but also for fully digital setups, where the smallest
timing differences in code execution can lead to time delays in the
audio output.

• Floating point arithmetic: Floating point arithmetic has to deal with
inaccuracies by design. Mapping any real number to a word length
of 32- or 64-bit cannot be done with infinite precision, so rounding
errors naturally occur. Unfortunately, these inaccuracies are not always
consistent across machines and can vary depending on the compiler
or processor architecture used2. A test signal created on one machine
could therefore have a slight mismatch to the reference signal cre-
ated on another machine due to small differences in floating point
arithmetic.

• Audio codecs: Audio data can be encoded into different formats. Many
codecs like MP3 or AAC use lossy compression algorithms to minimize

2[Bol+15], p. 2.
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the size of the encoded audio data. This is done by removing parts of
the audio data that cannot be perceived by the human auditory system.
Although the differences might not be audible for most persons, the
waveform of an MP3 file will be different to the waveform of an AAC
file of the same song which makes a direct comparison of the two
very hard3. Developers need to be aware of this if they are not in full
control of the testing data’s audio format.

• Time variant processing elements: A system is time invariant if the
output of a time-shifted input sequence is equal to the time-shifted
output of the original input sequence4. In other words: A time-shift of
the input sequence leads to the same time-shift of the output sequence
without further affecting it. If a system is time variant, an input signal
can lead to different output signals when fed to the system at different
points in time. If a time variant signal processing element is used,
the recorded audio signal in a test case might be different every time
the test is executed and will therefore not match the reference signal.
A good example of such a processing element is a tremolo effect
which modulates a signal’s volume with a low frequency oscillator5.
Figure 8.1 shows an audio file processed with the same tremolo effect
at two different points in time. The differences in the waveforms are
clearly visible.

In some cases, the above irregularities can be mitigated or completely
removed with a careful test setup, but often the efforts to do so would be
too big or the complete removal of all the disruptive factors is not possible.
In this case, direct comparisons between test signals and reference signals
are no longer possible. The question asked in such test cases can no longer
be ”Is the test result (the obtained audio signal during the test) equal to the
expected result (the reference signal)?” but rather ”Is the test result similar
enough to the expected result?” or ”Does the test result share common
properties with the expected result?”.

3[HK02], p. 4.
4[OSB99], p. 2.
5[JM14], p. 127.
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Figure 8.1: A audio signal processed with the same tremolo effect at two different points in
time

8.2 Audio testing strategies in literature

Earliest references of automated audio test systems go back to the 1960s6.
Digital audio equipment was not available to a wide audience at that time, so
those early test systems targeted analog audio equipment like loudspeakers
or amplifiers. In his 1968 paper ”High Speed Automated Test Set”7, Roberts
described an automated test system for a variety of analog audio products,
that could be operated by untrained personnel, responded with a simple
”pass” or ”fail” and drastically reduced testing times compared to manual
testing. The system measured the audio output of the device under test
and extracted several parameters like frequency response, distortion or
maximum gain. The parameters were then verified to be within the allowed
limits.

A similar approach was chosen by Richard Cabot, who developed automated
systems to test loudspeakers8 as well as analog expanders and limiters9

(signal processing devices that modify the gain of their input signals). To

6[Tak05], p. 29.
7[Rob68].
8[Cab86].
9[Cab87].
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facilitate and speed up the previously manual testing procedures, automated
test setups were created that produced an input signal for the device under
test and analyzed their audio output. From the audio output, relevant
parameters were extracted and then verified for correctness.

A more recent publication deals with the ”Entertainment Audio Platform”,
a ”system master mixer” developed for Nokia’s operating systems in 2005

10.
Studying the many possibilities of next generation smartphones at that time,
Nokia recognized the need for a powerful audio platform, capable of man-
aging and mixing audio streams of multiple apps. The Entertainment Audio
Platform was capable of performing sample rate conversions, controlling
the dynamic range as well as adjusting the volume and stereo panorama
of multiple audio channels. Additionally, various audio effects were also
supported. [Tak05] describes the development of methods required to test
all of these functionalities.

Audio testing is also an issue in the computer music community. Computer
musicians use computer technology to create compositions or audio installa-
tions. They often make use of visual programming languages and real-time
media processing environments like Max11 or Pure Data12 to write their
programs and compositions (called patches). The 2012 publication ”An Au-
tomated Testing Suite for Computer Music Environments”13 highlights the
problems arising if such programs are not properly tested. Changes to com-
plex compositions, the target environment or the operating system can lead
to unforeseen problems which makes users of such environments hesitant
to change their performances or setups. With this in mind, the publication
presents an approach to audio testing in computer music environments.

[Tak05] and [PLP12] share significant similarities in their approaches to
audio testing, both mentioning two possible approaches to audio testing:
Bit-exact testing and parametric testing. The parametric approach can also
be found in [Rob68], [Cab86] and [Cab87].

A further approach of automated audio testing can be found in [SSR08]
where an existing test system, developed to test Nokia devices, was en-

10[Tak05].
11[Cyc].
12[Puc].
13[PLP12].
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hanced with the method of audio fingerprinting. Audio fingerprinting was
implemented to identify the audio output of the device under test, open-
ing up new opportunities to automate the testing of voice control and
multimedia functionalities. The tool was developed to clearly identify and
distinguish between different audio outputs. To achieve this, unique iden-
tifiers called fingerprints were generated for various reference audio files
based on their parameters. They were then compared to the fingerprint of
the recorded test signal. If the similarity between the test signal’s fingerprint
and one of the reference fingerprints was large enough, the test signal was
identified as the signal of the matching reference fingerprint.

The methods of bit-exact and parametric testing as well as audio fingerprint-
ing, will be described in more detail on the following pages.

8.3 Bit-exact testing

In bit-exact testing, audio data recorded during execution of a test case
is compared with a reference audio file that was created earlier. The com-
parison between the two signals is done bit by bit and will only yield a
positive result (a passing test case) if both signals are exactly the same. The
reference signal must therefore be created with a system that is considered
to be correct (a reference system or reference implementation)14.
Due to the difficulties described in section 8.1, this approach is often not fea-
sible. In certain cases, when all the factors like timing, noise, time-variance
or floating point calculations are guaranteed not to impact or influence the
test results, bit-exact testing can still be a useful tool for audio testing.
Bit-exact testing can be found in some open source audio libraries like
AudioKit15 and Soundpipe16.

14[Tak05], p. 26.
15[Proa].
16[Bat].
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8.3.1 Bit-exact testing with hashes

To simplify bit-exact testing, hash functions can be applied to the audio data.
This practise can also be found in [Proa] and [Bat]. A hash function takes
input data of arbitrary length, processes the data with one of many available
hashing algorithms, and returns a fixed-size bit-string called a hash. Hash
values can be seen as fingerprints or unique identifiers of their input data
and are usually much shorter than their corresponding inputs. They are
widely used in modern cryptography, for example for digital signature
schemes or the secure storage of passwords17. An ideal hash function has
the following properties18:

• It computes the hash value quickly with any type of input data.
• It is deterministic. The same input data always leads to the same hash

value.
• It is pseudo random. A small change in the input data leads to big

changes in the output data, so that the new output data seems uncor-
related to the output data of the unchanged input.

• It should be collision resistant. This means, that it’s computationally
infeasible to find two values with the same hash value.

• It should be computationally infeasible to calculate the corresponding
input message from its hash.

In audio testing, hashing is primarily used as a convenient way to compare
test signals with reference signals. The procedure can be described in six
steps.

1. A reference audio signal is recorded from a reference system.
2. A hash value is calculated from the reference signal. Depending on

the hashing algorithm and the security needs of the application, the
hash value usually is between 128 and 512 bits in size. Since audio
testing normally is not used in security critical contexts, a hash size
of 128 should be enough in most cases. As mentioned before, this is
much smaller than the size of the original audio data.

3. The hash value of the reference signal is stored as a reference hash in
the associated test case.

17[PP10], p. 293.
18[Dre17], p. 72.
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4. The test case gets executed and records a test audio signal from the
SUT.

5. The test signal is fed to the hashing algorith to calulate it’s hash value.
6. The hash values of the test signal and the reference signal are com-

pared. If they are equal, the test and the reference signal are identical
as well and the test passes. If the two hashes are different, the test
signal differs from the reference signal and the test fails.

The fact that only the hashes of audio signals and not the signals them-
selves are compared makes it unnecessary to store the original reference
audio files. Instead, small reference fingerprints can be stored directly in
the source code of the test cases. When working with a big number of test
cases, this can have a big impact on the amount of memory used to store
the reference data and also simplifies the handling and structure of the test
cases. However, it can be harder to find the cause of a failed test case when
the original reference audio file is not available.
For audio testing, only the determinism and speed properties of an ideal
hash function are truly important. The other three properties can be ne-
glected to a certain extent, but should not be completely ignored. This can
also be seen in [Proa] and [Bat] where the MD5 hashing algorithm is used
which is quick and deterministic, but is considered to be cryptographically
broken and therefore should not be used in security related applications.

8.4 Parametric testing

When bit-exact testing is not possible, parametric audio testing has to be per-
formed. As previously mentioned, parametric testing has been successfully
introduced for analog setups in [Rob68] and [Cab87] many years ago and
was later adopted for digital setups by [Tak05] and [PLP12] amongst others.
In contrast to bit-exact testing, parametric testing does not compare all
samples of a test signal to a reference signal. It only extracts certain features
of the test signal which characterize the tested audio processing facilities
and compares the extracted parameters with known reference parameters or
the parameters from a reference audio signal. To successfully pass a test, the
extracted parameters have to be equal to the reference parameters within
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a certain tolerance range19. Parametric automated audio testing is usually
performed in three steps: parameter selection, parameter extraction, and
parameter verification20.

1. Parameter selection: Parameter selection is the process of correctly
setting up the SUT such that its audio output shows the behaviour
which is subject of the test. This process can vary from test to test. In
the simplest case, this just involves setting a parameter of an audio
processing component to a specific value. When testing a panorama
effect, this step would simply set the panorama control of a panorama
node to the desired position. In more complex test scenarios this
could involve setting multiple parameters of different audio processing
components, which might change their values during the course of
a test case. This step can also include parameter variation between
different test runs to ensure that the audio processing components are
tested with a broad range of possible parameter values.

2. Parameter extraction: Parameter extraction is performed once a test
case has been executed and the recorded audio output is available.
In this step, the samples of the test signal are analysed with suitable
audio signal analysis algorithms to calculate the parameters which
are later verified for correctness. The type of analysis that can be
performed on audio signals is extremely wide-ranging. The ultimate
choice of used analysis algorithms heavily depends on the SUT and
the parameters that have to be extracted and cannot be generalised.

3. Parameter verification: Once the extracted parameters from the previ-
ous step are available, they can be verified for correctness by comparing
them to the reference parameters. As previously mentioned this verifi-
cation is often performed with a certain tolerance range to account for
slight inconsistencies between test runs. More complex test cases can
also include the verification of parameters that change over time or the
verification of specific observed parameter sequences. In such cases,
the test case also has to verify that the extracted parameters have the
right values at the right time.

The type of parameters that can be extracted from a test signal are as numer-

19[PLP12], p. 3.
20[Tak05], p. 30.
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ous as the available extraction algorithms. [PLP12] for example describes
approaches to extract the pitch and panorama parameters from test signals.
[Tak05] on the other hand shows how parameters like amplitude, signal
energy, frequency spectrum or distortion are calculated.

It should be noted, that parametric tests cannot always be performed with
arbitrary input signals but often need specific input signals for correct op-
eration. Extracting the frequency response of an audio filter for example
requires an input signal which contains the frequencies affected by the
filter and verifying the correct behaviour of a pitch shifter is easier with a
sinusoidal input signal than with white noise.

8.5 Audio fingerprinting

The concept of fingerprinting is very old and can be traced back thousands
of years. Fingerprints can be found on many historical items, proving that
their individuality was no secret to people throughout time. From the
late 16th century onward, fingerprinting increasingly became a subject of
scientific research. In 1880, Scottish surgeon Henry Fauld was the first
to scientifically demonstrate the individuality of fingerprints based on
empirical observations. He therefore suggested to use them for identification
purposes. Continued interest in the topic and further scientific advancements
ultimately lead to fingerprint recognition being formally accepted as a valid
personal identification method. Over all these years, fingerprinting has also
become an essential tool in forensics and criminal investigations. Many
fingerprint identification agencies have been set up and criminal offenders
are registered in fingerprint databases all over the world21.
Conceptually, a fingerprint is nothing else than a drastically reduced set of a
person’s properties or parameters that still uniquely describes and identifies
that person22.

Fingerprinting of course cannot only be used for the identification of persons.
Parameter extraction for unique identification can also be applied to other

21[Mal+09], p. 31-33.
22[HK02], p. 1.
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areas. Around the turn of the millennium, when digital audio players
and formats became popular, researchers began to experiment with audio
fingerprinting, a transfer of the fingerprinting concept to the field of digital
audio. The areas for application of this research are manifold:

• Name that tune: One of the most popular uses are ”name that tune”-
services. If an unknown song is playing on the radio, users can record
a few seconds of it with their mobile phone and send the data to the
service. The service then calculates and matches the fingerprint and
finally returns the name of the song23.

• Broadcast monitoring: Radio stations have to pay royalties to artists
and labels for every song they play. Audio fingerprinting can help to
automatically keep track of all the played songs, which may greatly
reduce the administrative work.

• Detecting copyright violations: Audio fingerprinting algorithms can
help detecting music that is used illegally on file- and video-sharing
platforms.

• Music library organisation: With audio fingerprinting, duplicates can
be efficiently removed from music libraries.

• Automated testing: Although not many references exist, audio finger-
printing is also used for automated testing of audio software function-
alities according to [SSR08].

One of the first and best known companies to develop and operate an audio
fingerprinting service is Shazam24. Their audio search engine that identifies
songs for its users is still widely popular after many years of existence.
There are several parameters that influence the quality of an audio finger-
printing algorithm25.

• Robustness: The most important parameter is robustness. Due to the
reasons explained in section 8.1, a song that is recorded for identifica-
tion will most likely be different from the original. Loud voices might
be audible when trying to identify a song with Shazam in a pub, and
a broadband monitoring algorithm might be confronted with the same

23[BKe+13], p. 2.
24[Sha].
25[HK02], p. 2.
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song in many different file formats. A good fingerprinting algorithm
should still be able to clearly identify the corresponding song.

• Speed: An efficient search strategy is also of great importance. Popular
audio fingerprinting services maintain databases with millions of fin-
gerprints. Nevertheless, finding a match in the database for a queried
song should be fast to guarantee the best possible user experience.

• Granularity: A user looking to identify a song will most certainly
not be able to record it completely the moment he hears it playing
on the radio. Also, a radio station might decide to only play twenty
seconds of a song. An audio fingerprinting algorithm should still be
able to identify the song in order to provide an answer to its users or
to calculate the royalties that have to be paid. Granularity describes
how much audio data is necessary to successfully perform a query on
the database.

• Reliabillity: Reliability describes how often a song is mistaken for
another song in the database.

8.5.1 General audio fingerprinting framework

Since the development and release of the first audio fingerprinting services,
many others have followed. Although they use different techniques to create
and match fingerprints, their general framework and processes are very
similar.
Figure 8.2 shows the general audio fingerprinting workflow. Audio files
that should be identifiable (the reference files) are processed by the audio
fingerprinting algorithm. The resulting fingerprints are then stored in a
database together with additional meta information about the audio file
(song title, artist, etc.). To identify an unlabelled, unknown audio file, the
fingerprinting algorithm calculates the fingerprint of the unlabelled material
and then queries the database to match the unknown fingerprint with
the fingerprints in the database. If a fingerprint in the database and the
unlabelled fingerprint fulfill a certain similarity criteria, the unlabelled file
is identified as the audio file associated with the found database entry. The
meta data of this entry is then returned as the result.
In summary, there are two relevant processes to every audio fingerprinting
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Figure 8.2: General audio fingerprinting processes26

service: the fingerprint extraction and the fingerprint matching. Those two
processes can be further divided into sub-processes.

8.5.2 Audio fingerprinting framework for automated testing

When using audio fingerprinting for automated testing, some changes to
the general framework are necessary. In the previous, general scenario, an
unlabelled song has to be compared with potentially millions of fingerprints
in the fingerprint database to identify the correct song. For the purpose
of automated testing, the task is not to identify an unlabelled input file,
but to compare an input file with exactly one reference file to determine
whether they are the same or not. Therefore the fingerprinting process can
be changed according to figure 8.3. First, a reference file is stored, that
represents the correct, expected output of a test case. Every time the test
case is executed, a test file is recorded. Then, fingerprints of both test and
reference files are calculated. Those fingerprints are then compared with a
similarity measure. If the similarity measure exceeds a previously defined

26[BKe+13], p. 3.
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Figure 8.3: Audio fingerprinting process for automated testing

threshold, the files are considered to be the same. If not, the test case fails.
The following sections describe the sub-processes of the fingerprint extrac-
tion and similarity measures that can be applied to the fingerprints. Since a
fingerprint database and matching algorithm are not needed for automated
audio testing, these components will not be discussed any further.

In the context of automated testing, audio fingerprinting can be seen as a
form of parametric testing. As audio fingerprinting is a very distinct form of
parametric analysis used to identify arbitrary audio files and because audio
fingerprints consist of a very large number of different parameters, it is
reasonable to discuss this topic separate from the parametric test approach
discussed before.

8.5.3 Fingerprint extraction

Preprocessing In order to be able to compare and match fingerprints with
one another, the audio data has to be converted to a common format before
fingerprinting starts. Therefore, in the first preprocessing step, the audio
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material is converted into a previously defined digital audio format. Usually,
this is a raw, uncompressed format, for example Pulse Code Modulation
(PCM) with 16 bits, one channel (mono) and a sample rate between 5000 and
44’100 Hz. After this, further preprocessing steps like filtering or amplitude
normalization can be applied27.

Framing and overlap Although audio signals are non-static signals, they
can be considered as static over a short timespan. With this assumption,
several consecutive samples are grouped into a frame. To minimize discon-
tinuities at the beginning and end of every frame, a window function is
applied. Consecutive frames are usually strongly overlapping which makes
the resulting fingerprint robust to shifts or slight misalignments of the input
data28.

Linear transformation In a next step, a linear transformation is applied.
In this process, feature vectors (the frames obtained in the previous step)
are mapped to a new set of feature vectors. This process intends to remove
redundancy and to represent the data in a form that brings to light important
perceptual audio features29. Since the most important perceptual audio
features can be found in the frequency domain, a spectral transform from
time to frequency domain is usually chosen30. An often used transform for
this purpose is the FFT.

Feature extraction The objective of this step is to gain some final acoustic
vectors from the previously obtained time-frequency representation. In this
process, the dimensionality of the feature vectors is further reduced. For
an algorithm to be robust, the final acoustic vectors should diminish the
distorting factors described in section 8.1 as much as possible and highlight
the most distinct characteristics of the processed signal (the audio file or
song that should be identified). A variety of different algorithms have been

27[Can+02a], p. 2.
28[Kha+14], p. 2.
29[Can+02a], p. 3.
30[HK02], p. 4.
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implemented to solve this task. Many of them try to emulate the human
auditory system. The human auditory system processes audio signals on
their path from the ears to the brain in a way that makes them robust to
noise and distortions31 which makes those processing steps well suited
for audio fingerprinting. Often, such processing measures start with the
division of the FFT frames into a series of spectral bands that are linked to
inner processes of the human auditory system, like the Bark or Mel scale.
After that, certain features are extracted from each band. Such features
include the signal energy of the bands, location of energy peaks inside
bands, energy differences across bands or other power or energy measures
like the spectral flatness measure32.

Post-processing Finally, the postprocessing step converts the extracted
features of every frame into a bit sequence. The bit sequence of one frame
is called a sub-fingerprint. All sub-fingerprints combined form the final
fingerprint which can then be stored in a fingerprint database33.

8.5.4 Similarity measures

To identify an unlabelled file within a database of millions of songs, fin-
gerprinting algorithms have to use highly efficient search strategies. If only
the comparison of two fingerprints is required, as is the case for automated
audio testing, the required algorithms are simpler. Two such similarity mea-
sures are implemented in [Lalb] and [KS] and are described in the following
sections.

8.5.4.1 Bit error rate

[HK02] suggests to measure the similarity between two fingerprints by calu-
lating the bit error rate (BER). The lower the BER between two fingerprints,
the more similar they are. If the BER for two fingerprints is below a defined

31[Can+02b], p. 4.
32[Can+02a], p. 3.
33[Kha+14], p. 2.
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threshold, they are considered to originate from the same audio material.
The BER is typically used to measure the quality of a communication chan-
nel. It is calculated by the number of erroneous bits Be divided by the
number of total bits Bt received in a certain time frame34.

BER =
Be

Bt

This measure can be applied to audio fingerprints by counting all erroneous
bits between the test and reference fingerprint and dividing it by the total
number of bits.

8.5.4.2 SimHash

SimHash is an algorithm used for similarity estimation of two different
sets. It is used by Google to find duplicate or near duplicate web pages and
was first described by Moses Charikar in [Cha02]. As the name suggests,
SimHash creates similar hashes for similar input values, whereas a standard
hash function creates a completely different hash for little changes in the
input data. The following steps describe the process to derive a 32-bit
SimHash35:

1. Initialize an integer array V of size 32 to zero. V[m] = 0, ∀i
2. Split the input data into features. In case of text input, a feature could

be an individual word or a part of a word.
3. Use a standard hash function with a hash size of 32 bits to hash every

single feature.
4. Repeat for every feature hash: If bit i is equal to 1, add 1 to V[m]. If

bit i is equal to 0, subtract 1 from V[m].

5. Calculate the SimHash as follows: SimHashm =

{
1, if V[m] > 0
0, if V[m] ≤ 0

where m denotes the m-th bit of the SimHash.

The similarity of two input sets can then be judged by the Hamming distance
of their SimHash, the number of positions at which two bit-sequences differ.

34[IT ].
35[Kel].
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The smaller the Hamming distance, the bigger the similarity of two sets. Of
course, the size of a SimHash can be freely chosen based on the used hash
function and is not limited to 32 bits.
When calculating the SimHash of an audio fingerprint, every sub-fingerprint
can be seen as a hashed feature. Performing step 3 is therefore not necessary.
This means that step 4 is performed on and repeated for every available
sub-fingerprint. To determine whether a test fingerprint matches a reference
fingerprint or not, a Hamming distance threshold has to be defined.

8.6 Open source audio fingerpinting libraries

To make use of audio fingerprinting for automated audio testing in a project,
an audio fingerprinting library or a remote audio fingerprinting API have
to be integrated. Since the correct operation and connection to a remote
service is beyond the control of the project’s developers, this would add
an additional factor of uncertainty. For this reason, only libraries that can
be executed directly on the test device were considered for use in Pocket
Code. Additionally, since Pocket Code is an open source project, the audio
fingerprinting library of choice has to be an open source library as well.
Over the years, three open source audio fingerprinting libraries have emerged:
Chromaprint [Lalb], pHash [KS] and Echoprint [The]. Because Echoprint
does not seem to be maintained anymore, and only very little informa-
tion about the theoretical background of the algorithm is available, only
Chromaprint and pHash will be described in more detail in the following
sections.

8.6.1 Chromaprint

Chromaprint is a audio fingerprinting library that is part of a complete open
source audio fingerprinting service called AcousticID36. Besides Chromaprint,
AcousticID also includes a crowd-sourced database of audio fingerprints
and a web-service to easily search for matching fingerprints in the database.

36[Lala].
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For the purpose of automated audio testing, only Chromaprint itself is of
further interest. The following sections will give a short overview of the
internal procedures of Chromaprint.

8.6.1.1 Preprocessing

In the preprocessing step, the incoming audio data has to be provided as
16-bit integer linear PCM. Chromaprint will not handle the conversion of
other formats to PCM. The data can have any number of channels, as long as
they are interleaved. This means that in the audio buffer, sample 1 of channel
1 is followed by sample 1 of channel 2 followed by sample 1 of channel 3 an
so on. This pattern is then repeated for all the following samples. Once a
correctly formatted audio buffer is provided to Chromaprint, the signal is
converted to mono by taking the average value over all channels for every
sample. Finally, the sample rate is converted to 11025 Hz37.

8.6.1.2 Framing and overlap

Chromaprint uses a frame size of 4096 samples. With a sampling frequency
of 11025 Hz, a frame therefore has a duration of 0.372 seconds. Consecutive
frames are overlapping by two thirds, which means that every 0.124 seconds,
a new frame begins.

8.6.1.3 Linear transformation

Chromaprint transforms each frame by applying a fast Fourier transform.
The frame size N = 4096 and the sampling frequency fs = 11025Hz lead to
a frequency resolution of d f = fs/N = 2.69Hz and a maximum frequency
of fmax = fs/2 = 5512.5Hz. The FFT therefore spans a frequency spectrum
of 0 - 5512.5 Hz.

37[Lal11].
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Figure 8.4: Chroma feature timeline of a song38

8.6.1.4 Feature extraction

Although Chromaprint computes a 4096-point FFT representing frequencies
between 0 and 5512.5 Hz, only frequencies between 28 and 3520 Hz are
used for the feature extraction. In a first step, the energy of every frequency
sample of the FFT in this range is added to one of twelve bins. These bins,
called ”chroma features”, represent the notes of a chromatic scale. In the
simplest version, the energy of every FFT sample is added to the bin of
the closest note. The energy of an FFT sample representing 450 Hz would
be added to the bin of note A (440 Hz) as would an FFT sample of 900

Hz (which is one octave higher). In a more sophisticated version of the
feature extraction, the energy of an FFT sample gets added to two bins.
The energy of the 450 Hz FFT sample mentioned before would be divided
and partially added to the bins of note A and A] because it lies between
those frequencies. The bin of note A would be assigned a bigger share of
the energy because 450 Hz lies closer to an A (440 Hz) than to an A] (466

Hz). With this process, a feature vector (the chroma features) is extracted
for every FFT frame. Finally, some additional filtering and normalizing is
applied to every feature vector. A visualization of this process can be seen in
figure 8.4. It shows how the 12 bins of the chroma features evolve over the
span of a whole song. The color gives an indication of the energy content in
the individual bins of the chroma features (with white indicating high and
black indicating low energy content).

8.6.1.5 Post-processing

The chroma feature representation is already pretty robust against distorted
audio data and can highlight important similarities and differences between

38[Lal11].
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Figure 8.5: Basic patterns used in the filter window42

audio files. However, simply comparing these representations to determine
the similarity between songs (for example by measuring correlation) might
still be too inaccurate and slow. [KHS05] therefore recommends to process
the chroma feature timeline with a set of filters whose responses are robust
to distortions and preserve the important information of the processed audio
data39. Chromaprint does this by moving a window of size 12 x 16 over the
chroma feature timeline from left to right. The window therefore always
includes 16 consecutive chroma feature vectors. At each position of the
window in the timeline, a set of 16 predefined filters is applied. Every filter
consists of the six basic patterns shown in figure 8.540, which can be arranged
at any positions and in any size within the 12 x 16 sized filter window. The
arrangement of the patterns in Chromaprint was done by a machine learning
process. These six patterns were chosen to capture important characteristics
of the chroma feature timeline, like energy differences in neighbouring
chroma feature bins or energy differences across time within a particular
chroma feature bin41. For each of the 16 filters, the energy contents inside
the black and white areas are subtracted from each other and the result is
mapped to a two bit number. The resulting bit sequence of length 32 (2 bits
for each of the 16 filters) represents a sub-fingerprint. After this, the window
is moved one step further to the right to create the next sub-fingerprint. The
collection of all sub-fingerprints finally represents the complete fingerprint.

39[KHS05], p. 2.
40[Lal11].
41[KHS05], p. 2.
42[Lal11].
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8.6.1.6 Similarity measure

Chromaprint supports the SimHash algorithm with 32-bit length to de-
termine the similarity of two fingerprints. The Hamming distance of two
fingerprints can be in the range of 0 - 32 and is small for similar fingerprints
and big for different fingerprints. If the Hamming distance is bigger than 15,
the corresponding audio files are considered to be completely different.

8.6.2 pHash

pHash stands for perceptual hash and is another fingerprinting library. A
perceptual hash is defined as ”a fingerprint of a multimedia file derived
from various features from its content”43. Like audio fingerprints, percep-
tual hashes of multimedia files with similar features should be close to
one another. pHash was mainly developed for the fingerprinting of visual
content like images or videos, but does also contain fingerprinting services
for audio and text. It can be used for the purpose of copyright protection,
similarity search or digital forensics. In this case, only the audio finger-
printing service of pHash is of further interest. When analysing the audio
fingerprinting algorithm of pHash, it becomes apparent that it is a slightly
adapted implementation of the Philips Robust Hashing (PRH) algorithm44,
an algorithm developed by Dutch technology company Philips.

8.6.2.1 Preprocessing

pHash can handle multiple audio input formats. The audio data can either be
provided in an uncompressed PCM format or as MP3. The input data is then
converted to 32-bit floating point linear PCM. Additionally, a conversion
to mono is performed in the same way as in Chromaprint. The sampling
rate can be chosen freely. Of course, it is important to always use the same
sampling rate to get comparable results. The original PRH algorithm works
with a sampling rate of 5000 Hz45.

43[KS].
44[HK02].
45[HK02], p. 4.
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8.6.2.2 Framing and overlap

Like Chromaprint, pHash uses a frame size of 4096 samples. With its big
overlap of 31/32 (almost 97%), the algorithm is very robust against timing
differences.

8.6.2.3 Linear transformation

Before the transformation, each frame is weighted with a hamming window
(a bell shaped curve). Then, a 4096-point FFT is performed. The frequency
resolution and the maximum sampling frequency depend on the chosen
sampling rate and can be calculated as shown for Chromaprint. In contrast
to pHash, PRH uses a 2048-point FFT.

8.6.2.4 Feature extraction

pHash creates a 32-bit sub-fingerprint for every frame. First, the FFT of
every frame is divided into 33 non-overlapping frequency bands. Then,
the energies of all FFT samples in a particular band are added up. PRH
operates with 33 bands between 300 and 2000 Hz and a logarithmic spacing.
The logarithmic spacing is chosen because the human auditory system
also operates on logarithmic bands called the ”Bark scale”46. Again, pHash
makes some changes to the original PRH algorithm. Instead of 300 - 2000

Hz, the 33 bands lie between 300 and 3000 Hz and instead of a logarithmic
function an inverse hyperbolic sine is used for the spacing of the bands
(which behaves very similar to a logarithm).

8.6.2.5 Post-processing

Tests have shown, that the sign of energy differences along the time and
frequency axis is very robust against distorting factors. Due to this, all bits

46[HK02], p. 4.
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Figure 8.6: Flowchart of the pHash and PRH fingerprinting process47

of the final sub-fingerprints are calculated using these differences with the
following formula:

Fn,m =

{
1, if En,m − En,m+1 − (En−1,m − En−1,m+1) > 0
0, if En,m − En,m+1 − (En−1,m − En−1,m+1) ≤ 0

Fn,m denotes the m-th bit of of the n-th sub-fingerprint, while En,m stands
for the energy in the m-th band of the n-th frame.
The whole process from audio data to sub-fingerprint is depicted in fig-
ure 8.6. T represents a delay element.

8.6.2.6 Similarity measure

pHash calculates the similarity of two files by measuring the BER which is
then transformed to a confidence score with the following process:

1. Initialize the confidence score with a value of p = 0.5.
2. Divide the fingerprints into a series of blocks (a block size of 256 sub-

fingerprints is recommended) and calculate the BER for each aligned
pair of blocks.

47[HK02], p. 4.
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3. For every calculated BER that is smaller than or equal to a pre-defined
threshold calculate: p = p + (1− BER)/M where M is the total num-
ber of block pairs. In this case the confidence score increases.

4. For every calcluated BER that is bigger than a pre-defined threshold
calculate: p = p− (1− BER)/M. The confidence score decreases.

The final confidence score is a value between zero and one with 0.5 being the
threshold. Audio files with a confidence score above 0.5 are considered to
be perceptually equal. pHash repeats the above procedure for different time
offsets between the two fingerprints. The results is a vector of confidence
scores, each entry representing the confidence score of a specific time offset.
The highest value in the array is then taken to determine the perceptual
equality of the two audio signals. This is done to account for possible time
shifts between the signals or for the case, that the unknown signal is only a
small excerpt of the reference signal.
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Pocket Code on iOS

To properly test the functionality of the new audio engine, many new
automated tests have been added during the redesign process. All tests
were written with Xcode’s test framework in combination with Nimble (see
chapter 3). Tests were written with the good test properties in mind, making
frequent use of test doubles and the techniques for their manual creation
and maintenance. To cover as many of Pocket Code’s audio specifications as
possible with automated tests, three types of tests have been implemented:
conventional unit tests, bit-exact tests and fingerprinting tests.
The fingerprinting tests clearly fall into the domain of integration testing, as
they execute many units in combination, make use off external resources
and take a long time to run. Bit-exact tests however, are somewhere between
unit and integration tests. Although they also test the collaboration of a
(much smaller) set of units, they execute much faster and in a more isolated
environment. Fingerprinting tests, a distinct and complex form of parametric
tests, were chosen over conventional parametric tests because they allow the
use of arbitrary input signals. Because of that, they can theoretically be used
for a much broader spectrum of test cases. However, as became apparent
during test development, the complexity also comes with some drawbacks.
The following sections will discuss how unit, bit-exact, and fingerprinting
tests have been implemented in Pocket Code.

9.1 Unit testing

As described in section 1.1, unit tests intend to verify the logic, functionality
and structure of isolated and small units of code. As such, the setup and
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content of unit tests varies from case to case and depends heavily on the SUT.
Generalising the functionality of Pocket Code’s unit tests, or highlighting
individual unit tests is therefore not possible or reasonable. However, some
of the unit tests written for Pocket Code’s audio engine follow a specific
pattern and can therefore be divided into several categories. They have
proven to increase the reliability of the audio engine’s code without having
to directly verify the audio output of the engine. The different types of
implemented unit tests are discussed below.

Testing the values of node parameters Some of CBAudioEngine’s inter-
face methods, like changeVolumeBy() or setEffectTo(), modify the
values of certain node parameters. The verification of correct behaviour for
those methods is done by checking the values of node parameters after exe-
cution of the respective interface methods. To verify the correct functionality
of changeVolumeBy() for example, the unit test sets an initial value for
the volume parameter of a subgraph output mixer, calls the changeVol-
umeBy() method for the according PCObject, and finally checks whether
the volume of the mixer has been set to the correct value. To ensure correct
behaviour over all possible input values, such tests are usually partitioned
into different equivalence classes. Equivalence classes are ranges of input
values that are expected to be processed in the same way by the SUT. Each
equivalence class usually has at least one associated test case1. For the above
example, there would be three equivalence classes. One class represents the
inputs that set the volume to a value within the allowed volume range, and
the other two classes represent the inputs that set the volume to a value
above or below the allowed range.

Testing the transmission of interface calls In contrast to interface methods
whose functionality can be verified by a return value or change in state, other
interface methods simply delegate a piece of work to a target node. Unit
testing such interface methods is not as easy. An example for this scenario
is the playSound() interface method, which forwards the command to
the appropriate audio player of a specific PCObject. Verifying that this call
starts the audio playback of the correct audio player without having access

1[Bur03], p. 67.
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to the audio output is nearly impossible. It is possible to verify however,
that such interface calls lead to the right method calls on the target node,
or in other words: It is possible to test the transmission of an interface
call to the target node. This principle is essentially the spying principle
discussed in section 2.1.4, where test spies verify the invocation of certain
methods with defined parameters. In Xcode, this can be done by injecting
XCTestExpectations into the class of the target node. Once the expected
method has been called on that node, a fake implementation of this method
fulfills the expectation and thereby informs the test case that the interface
call was successfully transmitted to the target node. An example of this
approach is given in [Mis17]2.

Testing the graph structure A number of unit tests verify the correct
structure of the audio graph after the audio engine has been initialized
or certain interface methods have been called. This is simply done by
checking whether the correct objects are present in the CBAudioEngine
or CBSubgraph classes. A structural unit test could for example check if
the correct subgraph object exists in the CBAudioEngine subgraph table
after calling the playSound() interface method for a certain PCObject. It
could also test if a CBSubgraph object contains an instance of a sampler
after invoking the playNote() interface method. Structural unit tests can
also include checks that verify whether the nodes of a graph are connected
properly to each other.

Verifying behaviour using indicator data When the correct behaviour of
the audio engine cannot be verified with first-hand data, some unit tests
use data that provides an indirect indication of the engine’s behaviour. Test
cases that do so, are the unit tests for the speech synthesizer. These tests
verify whether the speech synthesizer is correctly speaking after calling
the according interface method by checking a boolean isSpeaking flag
on the synthesizer object. The isPaused flag on the other hand indicates,
whether the speech synthesizer was successfully paused or resumed when
calling the engine’s pause() or resume() interface methods. The same

2[Mis17], p. 86.
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principle can be used for player or effect nodes, which have the isPlaying
or isStarted flags respectively.

9.2 Bit-exact testing

Although bit-exact testing of audio data is often unfeasible due to small
irregularities introduced to the audio signal (see section 8.1), there is still
a way to make bit-exact testing work in Pocket Code for a certain type of
audio tests. The reason for this is a feature called ”offline manual rendering”
which is part of the AVAudioEngine framework and was introduced by
Apple with iOS 11

3. This chapter will introduce the offline manual rendering
functionality first, then outline the test scenarios where it can be applied,
and finally describe how bit-exact testing has been implemented in Pocket
Code.

9.2.1 Offline manual rendering

Offline manual rendering is an approach of operating an audio graph out-
side of a real-time context, making it possible to eliminate some of the
difficulties and limitations of real time audio processing. When operating an
audio graph in offline rendering mode, it is completely disconnected from
the device’s audio input or output hardware. This means that the graph’s
input and output nodes are not connected to any hardware device (micro-
phone, speakers etc.). Audio data is therefore not rendered to the device’s
audio output but to the application which is operating the audio graph. The
application is not only responsible of pulling the rendered audio data from
the graph’s destination node, but is also responsible of supplying the input
data to the graph’s source nodes. It is therefore driving all input and output
operations of the audio graph. The retrieved and processed output audio
data can then be saved to an audio file in the application’s memory or on the
device storage, from where it is accessible for further use4. The fact that the

3[Appk].
4[Appl].
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audio engine is not operating under any real-time constraints has several
advantages. First of all, as the audio engine is not dependent on any input
or output devices, the audio data can usually be rendered and saved to an
audio file much faster than real-time. Additionally, the rendered audio data
gets predictable and deterministic. In a real-time context, the input audio
data of a source node might not always be instantly available. The loading
times of audio files from the storage can sometimes take a little longer or
the audio graph might even be dependent on receiving the audio data from
another system. In a real-time context, processing the same audio data there-
fore always leads to slightly different results. In an offline context, nodes
can block the render thread and wait until all necessary data is available
before they continue processing because the audio data does not have to be
played back immediately. This approach always leads to identical output
audio data as long as the graph is not using any time variant processing
nodes. Apart from time varying processing nodes, the only factor that might
still lead to unpredictable results is inconsistent floating point arithmetic as
mentioned in section 8.1. However, as this version of Pocket Code is natively
developed for iOS, it is safe to assume that all developers are using the same
64-bit processor architecture and the same compiler on their development
machines. Floating point inconsistencies are therefore not an issue in this
case. Apple itself only mentions floating point inconsistencies between their
current Intel and former PowerPC computers, whose production has been
discontinued in 2006

5.
Offline rendering can be used in different scenarios, such as the post pro-
cessing and mixing of audio files or to use higher quality, resource intensive
algorithms that would not be feasible to use in real-time. Apple also specif-
ically mentions the debugging and testing of audio engine setups as a
possible use case6.

Using the offline manual rendering functionality of AVAudioEngine is
relatively easy. First, the offline manual rendering mode has to be activated.
While an audio engine is in the offline mode, its graph cannot be used
to produce real time audio data. After that, the audio data that has to be
processed must be scheduled for playback on the responsible source nodes.

5[Fie10].
6[App17].
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Usually this involves scheduling the playback of audio files on audio player
nodes at a certain time. Once this is done, rendering can begin. In this pro-
cess, the application is continuously and repeatedly pulling a configurable
amount of rendered audio data from the audio graph’s output node into a
buffer until all data has been rendered. The audio data that is rendered into
the buffer is then usually passed to an audio file for temporary storage, but
the application could also use it in other ways.
AudioKit also offers an offline rendering feature which makes use of AVAu-
dioEngine’s offline rendering implementation. Once more, AudioKit makes
its usage even simpler as it takes care of activating the offline rendering
mode, pulling the data from the graph’s output, buffering the audio data and
storing it in an audio file in one simple method call shown in listing 9.1.

func renderToFile(audioFile: AVAudioFile,

duration: Double,

prerender: (() -> Void)? = nil,

progress: ((Double) -> Void)? = nil)

Listing 9.1: Offline rendering with AudioKit

This method takes several parameters: An audio file where the rendered
data is written to, the duration of the rendered audio data, a pre-render
closure as well as a progress closure. The pre-render closure is called before
rendering starts and is mainly used to start or schedule the playback of
audio players or set some node parameters to the desired values. The
progress closure on the other hand is called while rendering and can be
used to report and display render progress7.

9.2.2 Using offline manual rendering in Pocket Code

As described in the previous section, Apple specifically mentions testing and
debugging as a possible area of application for offline rendering. Indeed,
with it’s predictable and stable audio output, offline rendering allows to
perform a certain type of audio tests: tests that verify static setups of an

7[Prob].
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audio engine, or more specifically static setups of an audio graph. This
verification is done by comparing the rendered audio file to a reference file
that has been created earlier. If both files are identical the audio graph has
been set up correctly and is generating and processing data as planned. As
the audio graph is completely isolated from all audio hardware as well as
external commands and instructions during offline rendering, changes to
the configuration of the audio graph have to be made prior to rendering and
cannot be done during rendering. The output volume parameter of a mixer
node for example cannot change in an audio file that has been rendered
offline, but can be changed at any time when rendering in real-time. The
only action that can be scheduled for execution during offline rendering
is the playback of audio player nodes. This means, that audio players do
not have to start playing at the very beginning of the rendered audio data.
If desired, they can be scheduled to start playback at a later time during
the rendering process. Offline rendering currently only works with audio
player nodes and not with source nodes that are controlled by MIDI signals.
An automated, bit-exact test with offline manual rendering can be performed
in three steps with AudioKit:

1. First, the audio graph that has to be tested is built and configured and
audio players are initialized. This can either be done by separately
connecting and configuring all nodes inside the test case or by calling
the code responsible of building and initializing the graph structure
in the SUT.

2. AudioKit’s renderToFile() method is called and a closure is pro-
vided that starts or schedules the playback of all involved audio
players.

3. The rendered audio file is compared with a previously generated
reference audio file. If the two are identical, the audio graph has been
setup correctly and processing worked as intended. If not, the graph
is not configured as it should be.

This test procedure can be directly applied to Pocket Code. The following
description will give a quick overview of how the procedure has been
implemented in Pocket Code by explaining the example in listing 9.2.
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public func testSetVolumeToExpectOnlyPlayerOfObject1ToChangeVolume() {

// Calling interface methods to set up the audio graph's structure

audioEngine.playSound(fileName: "sound1.mp3", key: "Background",

filePath: nil, expectation: nil)

audioEngine.playSound(fileName: "sound2.mp3", key: "Object1",

filePath: nil, expectation: nil)

audioEngine.setVolumeTo(percent: 40.0, key: "Object1")

// Retrieving the audio players and render audio data to an audio file

let player1 = self.audioEngine.subgraphs["Background"]!.audioPlayerCache

.object(forKey: "sound1.mp3")!.akPlayer

let player2 = self.audioEngine.subgraphs["Object1"]!.audioPlayerCache

.object(forKey: "sound2.mp3")!.akPlayer

let renderDuration = 2.0

audioEngine.renderToFile(tape, duration: renderDuration) {

player1.play()

player2.play()

}

playRenderedTape(tape: tape, duration: renderDuration)

// Calculating hash and comparing with reference hash

let tapeHash = getTapeHash()

expect(tapeHash) == "2895a0f3f1e84f972852a146eaad3cf4"

}

Listing 9.2: Bit-exact test case in Pocket Code

Setting up the graph structure A bit-exact test in Pocket Code always
begins by setting up the audio graph structure which has to be tested.
Although this could be done by separately instantiating and connecting all
nodes in the test method, this would not make much sense. The objective
of a bit-exact test in Pocket Code is to verify whether CBAudioEngine’s
interface methods construct the audio graph in the correct way when called.
The audio graph in bit-exact Pocket Code tests is therefore built by calling
all necessary interface methods of CBAudioEngine. In listing 9.2, this can
be seen at very beginning of the test method where the playSound()
method is called for two different PCObjects and with two different audio
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files. Additionally, the volume for one of the PCObjects is set. This test
case therefore verifies that a change in volume only affects players of the
PCObject that executed the Set volume to brick and not players from other
PCObjects as well. In other words, it verifies that the audio graph has the
correct setup after multiple PCObjects have executed Start sound bricks and
one PCObject executed a Set volume to brick. The playSound() method
is not called to actually play back the audio file, but to instantiate a new
audio player and connect it to the audio graph. For this reason, although
not visible in the code example, playSound() has been substituted by a
fake implementation in Pocket Code’s bit-exact tests, so that it does not start
the playback of the audio file and only integrates the audio player into the
audio graph.

Rendering audio data to a file Now that the audio graph setup has been
completed, audio data can be rendered to an audio file. To do so, an audio
file, called ”tape” in listing 9.2, is passed to AudioKits renderToFile()
method together with the render duration and a pre-render closure. The
pre-render closure starts both previously created audio players right before
rendering begins. Before calling renderToFile(), the audio players have
to be retrieved from the audio engine’s subgraphs. The tape variable is
a global variable, which is why its instantiation is not visible in the test
method. As offline rendering is not supported for source nodes controlled
by MIDI signals, Pocket Code’s drum and instrument samplers cannot be
tested with offline rendering. The pre-render closures of Pocket Code’s
bit-exact tests can therefore only ever start audio players and not any other
source nodes.

Comparing the rendered audio file with a reference file The rendered
audio file can now be compared with a previously generated reference file.
To simplify this process and avoid storing the complete reference audio
file, this is done by hashing the contents of the rendered audio file and
the reference audio file (see section 8.3.1). The hashes are then compared
in the very last line of the test method. The hash generation has been
extracted into the getTapeHash() method which is not shown in further
detail. This method retrieves two UInt8 arrays from the rendered audio file,
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which represent the audio data from the left and right channels. They are
then fed to an MD5 algorithm to calculate the final hash value. Hashing
is performed by a library called CryptoSwift8, which provides a collection
of many different cryptographic algorithms and an intuitive, easy to use
interface. Determining the reference hash can be done when running the
test case for the first time. The calculated hash of the rendered audio file
is printed to the console and can be copied to the test case from there.
The correctness of the reference hash and the rendered audio file can be
verified by listening to the audio file which is played back within the
playRenderedTape() method. This method is also helpful in case a test
case fails, as the audio output might give an indication about the cause of
the failure. If the playback of the rendered audio file during test execution
is not desired, playRenderedTape() can also be removed or commented
out.

9.3 Integration tests with audio fingerprinting

The bit-exact testing approach explained in the previous section has proven
to be an effective, fast and reliable way to test the real audio output of
Pocket Code’s audio engine. Unfortunately, this approach can only be used
to test a limited set of scenarios dealing with statically configured audio
graphs.
However, many of the audio engine’s specifications describe a sequence
of events and how these events influence the audio output. The events
are either triggered by executed bricks or users interacting with a running
PCProject. Such scenarios are no longer dealing with static configurations,
but with dynamic processes. To test whether these processes affect the audio
output in the desired way, the audio output has to be analysed over the
whole timespan of the process.
A simple example of a sequence of events that has been defined as the
desired behaviour of Pocket Code in section 6.1.1 is the following:

1. A PCObject executes a Start sound brick.

8[Krz].
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2. An audio player starts playing the desired PCSound and keeps on
playing for a few seconds without interruption.

3. The same PCObject executes another Start sound brick with the same
PCSound after a few seconds.

4. The audio player stops playing the previously started PCSound and
starts playing it from the beginning again.

Testing this dynamic process with offline manual rendering is impossible.
The renderer only knows the structure of the audio graph but is completely
unaware of the external logic, events and commands that operate it. The
only way to test the audio output of such a scenario is by actually running
the sequence of events in real time, recording the audio output and verifying
its correctness.
A real-time test scenario as the above no longer examines a single isolated
unit under test, but rather tests the integration of the audio engine as a
whole. As mentioned in section 1.1.2, integration tests come with a few
difficulties as they often make use of operations like threading or file system
access. The exact timing of such operations varies each time, as it depends
on external factors like CPU load or the type of hardware used.
Unfortunately, time delay is one of the factors discussed in section 8.1 that
makes bit-exact testing of audio material very difficult. In order to still allow
the verification of audio output of dynamic processes, a test architecture
based on audio fingerprinting was set up and evaluated. The architecture of
this setup and the findings of the evaluation are discussed below.

9.3.1 Capturing the audio output of test scenarios with
audio taps

A prerequisit for being able to analyse the real-time audio output of Pocket
Code is the ability to capture the generated audio data. The AVAudioEngine
framework provides a technique called ”audio tapping” to do just that. An
audio tap is an object which can be installed on the output buses of arbitrary
nodes within the audio processing graph. Once the graph starts processing
audio data, the audio tap pulls this data from the buses where it is installed,
copies the data into a buffer and finally returns the buffer to the application
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Figure 9.1: A node recorder installed at the output bus of the graph’s main output mixer

within a callback block9. This callback is called repeatedly whenever the
buffer is full and allows developers to use the captured audio data for their
specific purposes.
AudioKit uses AVAudioEngine’s audio taps to build its own implementation
of the same functionality called AKNodeRecorder. Just like audio taps,
AKNodeRecorders can be installed at the output buses of nodes, but come
with a simpler interface. AKNodeRecorder does not expose the callbacks
that contain the captured audio buffers. Instead, it aggregates the data of
these callbacks internally and saves it to an audio file10. Developers simply
have to pass a reference of an empty audio file of type AKAudioFile to the
node recorder, start the node recorder and stop it again when the desired
amount of data has been captured. Once finished, all the captured audio
data is contained within the audio file. This procedure spares developers
from manually handling and assembling small chunks of audio data in
many consecutive callbacks.

To create audio fingerprinting tests in Pocket Code, an AKNodeRecorder is
installed at the output bus of the graph’s main output mixer (see figure 9.1)
which ensures that the audio data from the entire graph is captured. The
node recorder could theoretically be installed at any other location in the
graph if a specific test scenario would require to do so.

9[App14b].
10[Proa].
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9.3.2 Choice of the audio fingerprinting framework

To create an audio fingerprinting test architecture for Pocket Code, the two
frameworks pHash an Chromaprint, both discussed in section 8.6, were
originally considered. The final choice was made in favour of Chromaprint
and was not based on the specific implementation details of the two algo-
rithms but on a more practical reason: As both frameworks are written in
C++, integrating those frameworks into an iOS or macOS application from
scratch would have taken a considerable amount of time. Additionally, for
the fingerprinting tests to run properly, both frameworks need additional
configuration and setup code, which would have required even more ef-
forts. However, the heavy lifting for a Swift integration of Chromaprint
has already been done by another open source project11. This project takes
care of integrating the Chromaprint library into an Xcode project, loading,
decoding and reading audio files, feeding the audio data to the chromaprint
algorithm, and coordinating all chromaprint method calls needed to retrieve
the final fingerprint. The code of this project was used as a template for
Pocket Code’s own integration of Chromaprint with a few changes and
amendments.

9.3.3 Creating and running audio fingerprinting tests in
Pocket Code

With the help of Audio Kit’s node recorder and the implementation of
Chromaprint into the Pocket Code test environment, all preconditions to
create audio fingerprinting tests in Pocket Code are met. To simplify the
process of writing new fingerprinting tests, a small test framework was
written that minimizes boilerplate code, and standardizes the creation and
execution of new test cases. The following discussion explains all the steps
involved in this standardized test execution procedure.

11[Dia16].
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9.3.3.1 Audio fingerprinting test procedure

The procedure of running an audio fingerprinting test case in Pocket Code
can be divided into several different steps which are always executed in the
following order:

1. Initialising the audio engine: First, an object of type CBAudioEngine
is initialized, which contains the audio graph’s main output mixer
node. An AKNodeRecorder is then added at the output bus of the
main output mixer node to record all the audio data that is produced
by the audio engine.

2. Loading a PCProject XML file: In a second step, the test case loads
the test scenario, which is contained in an XML file and stored on
the test device. Every PCProject is saved in an XML format which
describes the structure of the PCProject (PCObjects, scripts and bricks
defined within the PCProject) and the resources that are used (audio
files and images). The test scenario should define a sequence of bricks
that are executed during the test and trigger the audio output that has
to be verified with the fingerprinting algorithm.

3. Creating an executable PCProject: Before being able to run a PCPro-
ject, the information found in the XML file has to be extracted and
transformed into an executable PCProject. To represent a PCProject
in the running Pocket Code application, Pocket Code uses a a class
called CBScene, which is a class that contains all the instructions,
resources and the runtime needed to run a PCProject. In this step,
the information found in the XML file is parsed and used to build an
executable CBScene object containing all the relevant data and logic.

4. Starting the PCProject and the node recorder: Now that the CBScene
object is initialized, the PCProject can be executed. This is simply done
by calling the startProject() method of CBScene. Before starting
the PCProject, the node recorder has to be activated by calling its
record() method.

5. Waiting for a specified amount of time: As the execution of a PCPro-
ject inside a test case is an asynchronous process, the test case has to
wait until the PCProject has executed all bricks that are relevant for the
test scenario. To do so, the test case is paused for a specified amount
of time, waiting for the PCProject to execute its scripts while the node
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recorder is recording the audio output. The test case is paused by
running the main thread’s run loop. A run loop is an event processing
loop that exists for every thread. It is an infinite loop that is waiting
for certain events and then processes and evaluates these events by ex-
ecuting event handlers12. The test procedure for audio fingerprinting
tests doesn’t require event processing but uses a run loop due to its
capability to pause the test case for a desired amount of time without
blocking the thread it is running on. This is important because some
of the operations that are performed during the PCProject execution
run on the same thread as the test case itself and would therefore be
blocked if the test case’s thread was suspended completely.

6. Stopping the PCProject and the node recorder: After the run loop
has been running for the specified amount of time, it automatically
stops running and the execution of the test case therefore continues.
The test case has to do two things once it continues executing: stopping
the PCProject and stopping the node recorder. This is done by calling
the stop() method of the node recorder and the stopProject()
method of CBScene.

7. Calculating a SimHash: Now that the PCProject has finished execut-
ing and the node recorder has stopped recording, the recorded audio
data can be fed to the fingerprinting algorithm of Chromaprint. The
result is a 32 bit SimHash, which is Chromaprint’s default similarity
measure (see section 8.5.4.2).

8. Comparing the calulated SimHash with the reference SimHash: Fi-
nally, the resulting SimHash is compared with a reference SimHash
whose value was determined when creating the test case. If the Ham-
ming distance of the two SimHashes is below a certain threshold, the
test case fails.

9.3.3.2 Creating a new audio fingerprinting test

Audio fingerprinting tests are always implemented in a similar manner. An
example for a test case in Pocket Code can be seen in listing 9.3. At first,
the binary reference SimHash is defined. In a next step, the test case loads

12[Appo].
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an XML file which contains a PCProject structure and builds a CBScene
object with the information from the file. All this happens inside the cre-
ateScene() method of the small audio fingerprinting test framework that
was created for Pocket Code. In the next line, the test case calls the runAn-
dRecord() method, which is also part of the audio fingerprinting test
framework. It is responsible of starting the node recorder and the PCProject,
pausing the test case by activating the run loop, and stopping the node
recorder and the PCProject once the run loop has finished running. This
method also returns the recorded audio data to the recordedTape variable.
Once the recorded audio data is available, the test case calls the calcu-
lateSimilarity() method, which feeds the audio data to Chromaprint
and calculates the similarity between the calculated SimHash and the ref-
erence SimHash. The similarity is calculated by dividing the number of
matching bits between the two SimHashes by 32, the total number of bits.
The last line of code then asserts that the calculated similarity is greater
than a defined threshold. A reasonable initial similarity threshold could be
between 85% and 90%. If this proves to be too high, it can then be lowered
accordingly.

Apart from writing the test method’s code, two other things have to be done
to finish the creation of a test case: creating an XML file which describes the
PCProject that has to be executed and determining the reference SimHash.
The easiest way to create the XML file is by running Pocket Code in the
Xcode simulator and creating a PCProject with the desired structure, just
like a normal user of the app would do on a real device. When interacting
with Pocket Code in debug mode, the XML structure gets printed to the
console with every change that is made to a PCProject. It can then be stored
in an XML file within Pocket Code’s test target. The only thing that might
have to be changed in the final XML file is the path to the audio files that are
used by the PCProject. Those files also have to be present in Pocket Code’s
test target.
To determine the reference SimHash, the test case has to be executed once.
After execution, the calculated SimHash will be printed to the console and
can be copied to the variable which holds the reference SimHash in the
first line of the test case. To make sure that the audio output used to create
the reference SimHash is correct, the muted flag of the runAndRecord()
method has to be set to false. This way, the sound will be played during the
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func testSomePocketCodeAudioScenario() {

// Test setup

let referenceSimHash = "01100100000011101001101010100100"

let scene = self.createScene(xmlFile: "FileNameOfTestProject")

// Run the program and record the audio output

let recordedTape = self.runAndRecord(duration: 3,

scene: scene,

muted: true)

// Calculate and verify the similarity

let similarity = calculateSimilarity(tape: recordedTape,

referenceHash: referenceSimHash)

expect(similarity) >= 0.85

}

Listing 9.3: Audio fingerprinting test case in Pocket Code

test execution and can be verified for correctness by listening to it. This flag
is also helpful to find the cause of failure when a test case fails.

9.3.4 Findings from using audio fingerprinting in Pocket
Code

After applying audio fingerprinting tests to Pocket Code and testing several
features of Pocket Code’s audio engine with Chromaprint, a few advan-
tages, drawbacks and things to consider became apparent that are worth
mentioning and keeping in mind.

Advantages The small audio fingerprinting framework that was built
around Chromaprint can be used to test a very broad range of scenarios
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with a consistent test procedure. Most audio scenarios that can be created
by using Pocket Code are theoretically testable with Pocket Code’s audio
fingerprinting framework. The only exceptions are PCProjects that make use
of TTS functionality or involve user interactions (When tapped or When screen
is touched bricks) as the speech synthesizer output cannot (yet) be recorded
and user interactions cannot be simulated during test execution. Another
advantage is the simplicity of writing new tests. Creating a new audio
fingerprinting test requires no more than five lines of code, the creation of
an XML file and the determination of a reference SimHash. It is easy enough
to be done by people that are not that skilled in software development or
automated testing.

Limitations Audio fingerprinting tests also comes with a few difficulties
and drawbacks. As the recorded audio data varies a little in each test run
for the same test case, the calculated SimHash can vary too. This is why
each test case checks whether the similarity between the calculated and
the reference SimHash is bigger than a predefined threshold rather than
checking whether the two SimHashes are exactly the same. Defining the
appropriate similarity threshold for each test case can be a little difficult as
the threshold depends on the setup of the PCProject, the audio data used
within these PCProjects and the hardware used to run the tests. While the
calculated similarities of audio fingerprinting tests with a correct audio
output might never fall below 90% on the machine where the tests were
created, the similarity can be lower on other machines, as the timing for
executing a PCProject can be slightly slower or different.
Another disadvantage is, that it is impossible to draw any conclusions from
a SimHash about the nature of the recorded audio data and vice versa.
Chromaprint’s post processing step and the SimHash algorithm alter the
audio data in a way that is very intransparent for people not highly familiar
with these processes. Due to this, it can be hard to choose the ideal audio
files that make the test cases and similarity thresholds as robust as possible.
A test case is robust if the SimHashes of failed and successful test outcomes
are as different as possible. This makes it easy to set a suitable similarity
threshold. If the SimHashes of failed and successful test outcomes are too
close together, false positive or false negative test results will occur more
often.
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A better approach than comparing SimHashes might be to stop the fin-
gerprinting process after the feature extraction step (see section 8.6.1) and
to evaluate the similarity by calculating the BER on the chroma features
extracted in this step. Making a connection between the chroma features
and the original audio data is easier, as the chroma features are a frequency
representation of the original audio data over its whole duration. Choosing
suitable audio files to create a robust test scenario would be easier this way.
Last but not least, a general drawback of real time audio tests is the duration
of such tests as they take several seconds each to run. They should therefore
be used sparingly and only in situations where no other equivalent testing
options exist.

Considerations There are a few things to consider to make audio finger-
printing test cases as robust as possible. First of all, audio fingerprinting tests
should only be applied to test cases that have exactly one successful scenario
and a very small number of clearly defined failure scenarios. Writing an
audio fingerprinting test with many or even an unknown number of failure
scenarios makes it very hard or even impossible to find an appropriate
similarity threshold. The test would have to be designed in a way such that
the similarity of every single failure scenario is lower than the threshold
to prevent false positive test outcomes. Having a look at the test scenario
outlined at the very beginning of section 9.3, there would be three realistic
outcome scenarios:

1. The test is successful, as outlined in the example.
2. The test fails because the audio player keeps playing the audio file in

step 4 as if the second Start sound brick was never executed in step 3

(which is what happened in the original version of the audio engine).
3. The test fails because the second Start sound brick executed in step

3 does not stop and restart the existing player, but instantiates and
starts a new one instead. This leads to the PCSound being played
simultaneously by two players.

Another important strategy to increase the robustness of test cases is to
introduce potential points of failure as early as possible when executing a
PCProject for a fingerprinting test. This guarantees that the difference in
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the recorded audio data is as big as possible between the successful and
failed scenarios. Having a look at the same example as mentioned above,
this would mean, that the second Start sound brick in step 3 should be
executed very early during test execution. If this would not be the case
and the second Start sound brick would be executed 6 seconds into a test
with a total duration of 7 seconds, there would be only 1 second of audio
data where the difference between a successful test and a failed test could
be audible. The SimHashes of the failed and successful outcomes would
therefore be very similar as the recorded audio material of those outcomes
is also mainly the same (apart from the last second).
However, introducing the potential point of failure as early as possible
during test execution is not enough. Even if this rule is followed, the audio
data of the successful and failed outcomes might still be very similar if the
audio files used in a test case are not selected carefully enough. The audio
files have to be selected such that the recorded audio data of successful and
failed test outcomes differ as much as possible. Imagine if the audio file
used in the above example would be a simple sine frequency playing for the
whole duration of the audio file. It would be very hard to detect whether
the audio player started playing from the beginning again or just kept
on playing, as both scenarios would produce almost the same audio data
(a continuously playing sine wave). A general guidance as to how audio
files should be selected is not possible as this depends on the specific test
scenario. The fact that it is rather difficult to understand how Chromaprint
processes audio data in its post processing and SimHash steps, adds an
additional level of difficulty to the proper selection of audio files. Trial and
error, which means comparing the SimHashes for successful and failed
outcomes of a test case for different sets of audio files, is therefore a valid
approach.
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This thesis has studied the creation and automated testing of an audio engine
on iOS and in particular for Pocket Code, a mobile programming application
for children and teenagers. In this context, the different frameworks for
audio playback and processing available on iOS were introduced which
reach from high-level frameworks with limited functionality, to complex low-
level frameworks with a vast range of tools. To choose the appropriate audio
framework for the iOS version of Pocket Code, the specifications of Pocket
Code’s existing and future audio features have been gathered. This was
done by analysing the behaviour of Scratch, a popular visual programming
language whose functionality serves as a template for many of Pocket
Code’s own features. A comparison between the required specifications and
Pocket Code’s existing audio functionalities have shown many discrepancies
between the intended and actual behaviour and uncovered many bugs.
Additionally, this research has shown, that Pocket Code’s original audio
architecture was not capable to meet the needs of new audio features,
leaving the audio engine in a non-expandable and bug-ridden state. These
findings have shown the need for a complete redesign of the audio engine.

In a second step, the above findings were used to create a new and improved
audio engine architecture. To do so, a range of audio frameworks were
assessed for their suitability in the redesign process. AudioKit was ultimately
chosen as the most suitable framework for the redesign. Its modular, graph-
based approach provides maximum flexibility and expandability as well as
real-time graph configuration while still offering an easy to use interface.
With the exception of Pocket Code’s TTS functionality, AudioKit allowed
for the implementation of all existing and new audio features in accordance
with the required specifications.

The analysis of the original audio engine not only uncovered many bugs
and weaknesses, but also an insufficient test coverage. This thesis therefore
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also contained research and implementation of different automated testing
strategies specifically tailored to testing audio functionality. The automated
test setup for the redesigned audio engine was then developed based on
these findings. Developing such a test setup requires an understanding of
the fundamental principles of automated testing, which was provided by
highlighting the different testing levels, isolation strategies, and core princi-
ples for writing good automated tests. The thesis then further discussed how
automated tests are implemented within Xcode’s own testing framework
and introduced a number of third party tools for automated testing on iOS.
Automated testing of audio functionalities and audio data turned out to
be a difficult task due to factors like time delays, time variant processing
elements, floating point arithmetic and noise. From the little literature avail-
able on the topic, three audio testing strategies were identified: bit-exact
audio testing, parametric audio testing and audio fingerprinting. Two of
those strategies, bit-exact testing and audio fingerprinting, were finally used
to test Pocket Code’s redesigned audio engine. This was achieved by using
AudioKit’s offline manual rendering mode for bit-exact tests, and AudioKit’s
AKNodeRecorder in conjunction with the open source audio fingerprint-
ing library Chromaprint for audio fingerprinting tests. Additionally, the
audio engine was also tested with unit tests that test the graph structure,
the transmission of interface calls and verify the audio engine’s behaviour
by using indicator data.
All of these test strategies turned out to be vital for testing the redesigned
audio engine, as each strategy was used to test a specific set of specifications.
Normal unit tests were used to test the internal structure and processes of
the audio engine but are unable to verify the direct audio output of the
engine. Bit-exact tests were therefore introduced to test the real audio output
of the audio engine and proved to be a reliable and fast testing strategy.
However, this strategy is restricted to testing static configurations of the
audio graph only and does not work with any other source nodes apart
from audio player nodes. Finally, audio fingerprinting was used to test the
real audio output of specifications that deal with dynamically changing
configurations of the audio graph. While the unit and bit-exact tests have
proven to be very reliable in their specific test areas, audio fingerprinting
tests yielded mixed results. Although very easy to implement and theoreti-
cally suitable for a broad range of test scenarios, audio fingerprinting tests
led to inconsistent test results, especially when executed across different
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hardware. The audio fingerprinting tests were meant to work with arbitrary
audio input data, but it became apparent, that not all audio data is equally
suited to produce stable and meaningful fingerprints. The high complexity
of Chromaprint’s fingerprinting algorithm made it hard to foresee the im-
pact of the input audio data on the resulting fingerprints and therefore made
it hard to find the best suited audio input data for specific test scenarios.

To remedy the discovered weaknesses of the audio fingerprinting implemen-
tation in Pocket Code, certain measures could be evaluated. To lower the
complexity and increase the transparency of the fingerprinting algorithm,
the approach discussed in section 9.3.4 could be tested which would stop
the fingerprinting process after the chroma feature extraction and evalu-
ate the similarity by calculating the BER rather than using the SimHash
approach. This might produce more stable and predictable test outcomes,
but would also lead to bigger fingerprints that have to be compared, as the
sub-fingerprint timeline is no longer reduced to a 32-bit sequence.
Another interesting measure would be to implement pHash into Pocket
Code’s audio testing setup and comparing it with the current Chromaprint
setup. pHash operates with a significantly different algorithm, especially
in the feature extraction phase where the energy of the FFT samples is
calculated in 33 different bands compared to the 12 chroma features in
Chromaprint. Also, pHash uses a significantly larger overlap in the framing
and overlap phase which should lead to higher resistance against timing
differences. Finally, pHash’s similarity measure is a confidence score based
on the BER of all calculated sub-fingerprints. This confidence score is calcu-
lated for different offsets of the compared fingerprints, taking into account
and eliminating possible time shifts between the two.
The small test framework which was created for audio fingerprinting tests
also provides opportunities to create a vast number of other parametric au-
dio tests. The audio data recorded by AudioKit’s audio tapping architecture
does not necessarily have to be processed by a fingerprinting algorithm.
Instead, it can be analysed with arbitrary methods that extract other desired
parameters from the recorded audio files. By only extracting the pitch of the
recorded data at certain points of the audio file for example, the complexity
of the analysis can be severely reduced. However, such an approach needs
careful selection of the used input audio files, as the audio data needs to
contain the distinctive information which the analysis algorithm extracts. A
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parametric test that extracts the pitch would therefore best be conducted
with sinusoidal input signals rather than complex sounds or noise.

Apart from further improving Pocket Code’s audio testing setup, there is
also additional functionality that could be integrated into the application.
Scratch contains a number of audio features that are not yet available in
Pocket Code. On the one hand, it contains additional speech bricks that let
users change the language and the voice of spoken text. On the other hand,
it also provides an audio editor that lets Scratch users edit the waveforms of
audio files by cutting them or applying certain audio effects. The edited au-
dio files can be saved as Scratch sounds (the equivalent of PCSounds) which
can then be used in Scratch projects (the equivalent of PCProjects). AudioKit
provides all necessary tools to implement a similar audio editor in Pocket
Code as it contains offline manual rendering capabilities, all necessary audio
effects, and classes to visualize waveforms. The additional speech bricks
could simply be implemented by doing some further configuration on the
speech utterance objects which are handed to the speech synthesizer.

To further improve Pocket Code’s audio engine, it is recommended to regu-
larly keep an eye out for updates of AVAudioEngine and AudioKit. Future
updates of these libraries could contain valuable new features and improve-
ments which could be relevant for Pocket Code. One feature especially
worth looking out for is a speech synthesizer node that can be integrated
into an audio graph structure.
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url: https://acoustid.org/
(visited on 01/29/2019).
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