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Abstract

Modern systems designed to protect Application Programming Interfaces
(APIs) do not monitor changes in user behavior. As a result, they typically
do not perform well when dealing with attacks related to credential abuse.
Protecting against such attacks requires a fundamentally different approach.
Systems must inspect sequences of HTTP requests, instead of focusing
on individual ones. Additionally, the amount of data processed by APIs
has increased in recent years. As a result, machine learning has gained in
popularity.

In this thesis, we present a novel system that detects anomalies in user
behavior patterns. Our approach relies on a Deep Neural Network (DNN),
set up as an Autoencoder. The proposed system detects anomalies by mea-
suring the reconstruction error of the request sequences. Existing work
typically analyses the full HTTP requests. In contrast, our work solely relies
on log files, which contain only a fraction of the available information. As a
result, our approach does neither depend on information from the client’s
computer, nor does it need a list of possible HTTP requests beforehand.

We evaluate our system based on a log file from an online store. The results
support the claim that the amount of information preserved in log files is
sufficient to learn behavioral patterns. We also verify that the approach of
first compressing the information and then modeling user behavior works
with log entries. Finally, we show that finding a well-performing trade-off
between detection of all attacks (recall) and not raising too many false alarms
(precision) is crucial.
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Kurzfassung

Moderne Systeme zum Schutz von Application Programming Interfaces
(APIs) überwachen Veränderungen im Benutzerverhalten nicht. Daher
schneiden diese Systeme üblicherweise bei Angriffen, die auf Missbrauch
von Zugangsdaten aufbauen, nicht gut ab. Die Abwehr solcher Angriffe
benötigt einen grundlegend anderen Ansatz. Die Systeme müssen Sequen-
zen von HTTP-Anfragen untersuchen, anstatt sich auf einzelne Anfragen
zu fokussieren. Des Weiteren nahm die von APIs verarbeitete Datenmenge
zu, wodurch Machine Learning jüngst an Popularität gewann.

In der vorliegenden Arbeit präsentieren wir ein neuartiges System zur
Erkennung von Anomalien im Benutzerverhalten. Unser Ansatz basiert
auf einem Deep Neural Network (DNN), welches als Autoencoder kon-
struiert wird. Das vorgeschlagene System erkennt Anomalien anhand des
Rekonstruktionsfehlers. Existierende Arbeiten analysieren üblicherweise die
gesamte HTTP-Anfrage. Unser System verwendet hingegen lediglich Logda-
ten, welche nur einen Bruchteil der verfügbaren Informationen beinhalten.
Unser Ansatz benötigt weder Daten vom Computer des Benutzers, noch
benötigt er vorab eine Liste aller möglichen HTTP-Anfragen.

Zur Evaluierung unseres Systems verwenden wir Logdaten eines Online
Stores. Die Ergebnisse untermauern die Annahme, dass die verwendeten
Logdateien ausreichend Informationen über Verhaltensmuster beinhalten.
Außerdem bestätigen wir, dass der Ansatz, Informationen vor der Ver-
haltensmodellierung zu komprimieren, auch mit Logdaten funktioniert.
Abschließend zeigen wir, dass ein Kompromiss zwischen dem Auffinden aller
Angriffe (Recall) und dem Vermeiden zu vieler Fehlalarme (Precision) gefunden
werden muss.
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1. Introduction

Modern software for consumers, businesses, and industrial areas increas-
ingly relies on Application Programming Interfaces (APIs) as a central access
point to data. In practice, the capabilities of APIs vary widely. On the one
hand, basic read-only APIs providing data from sensors or surveillance
cameras exist. On the other hand, there exist APIs that allow controlling
devices such as engines, pumps, or smart home devices.

As APIs can provide access to secure environments, they pose a valuable
target for attackers. For instance, APIs act as a data hub for consumer
devices, server backends, or industrial edge devices. Therefore, attacks
on APIs may cause damage to machinery behind it or theft of sensitive
data, including private customer information or business secrets. In rare
cases, attacks might even concern public safety. In a global context, APIs
typically allow arbitrary connections from the Internet. Publicly exposing
them requires advanced security mechanisms to prevent both external and
internal attacks.

Securely operating an API requires precautions in numerous aspects. One
crucial point is the close monitoring of the state of the API. The main goal is
to block malicious requests that exploit unknown vulnerabilities. Doing so,
can prevent damage caused by adversaries on the one hand, and provide
hints about errors in the code on the other hand. Ideally, rejecting malicious
requests takes place early in the request handling pipeline.

However, correctly classifying requests as benign or malicious is challenging.
Two major factors make anomaly detection difficult. First, anomalies are
sometimes subtle and hard to spot. Second, modern anomaly detection
systems examine enormous amounts of data.

1



1. Introduction

Research concerning the topic was published continuously throughout the
last three decades. Denning [Den87] presented one of the first anomaly-
based approaches towards intrusion detection. In the early days, Intrusion
Detection Systems (IDSs) ran separately from the actual system. The goal
was to identify possible incidents retrospectively. Nowadays, systems are
capable of identifying anomalies in real-time. This way, the systems can
prevent the execution of malicious requests.

Modern state-of-the-art monitoring systems either rely on network packet
information or application data to identify dubious requests. Systems utiliz-
ing network packets can be classified as Intrusion Prevention Systems (IPSs),
systems using application data as Web Application Firewalls (WAFs). De-
pending on the kind of attack, either both, none, or one of the two systems
will alert the Security Operations Center (SOC).

The state-of-the-art systems perform reasonably well in detecting attacks
that need special characters to successfully mount the attack, like Structured
Query Language (SQL) injections or Cross-Site Scripting (XSS) attacks. While
rule-based systems achieve acceptable detection rates, recent research on
the topic has emphasized the benefits of machine learning for detecting
malicious requests. Mac et al. [Mac+18], for example, use a neural network
to classify HTTP requests as benign or malicious.

The real-time requirement of current systems also entails that systems need
to be able to find patterns in large amounts of data quickly. This is why
research increasingly relies on machine learning approaches. Moreover, it
can find relationships in data that humans are not capable of identifying.

1.1. Challenges of API Protection

Machine learning-based systems can detect relations in data that are difficult
to represent with static rules. Even if so, maintaining such complex rules
is not feasible in reality. Furthermore, typical software increased in size so
much that the number of rules needed to secure a system is overwhelming.

2



1. Introduction

Both arguments accelerated the shift towards machine learning-based tech-
niques significantly. However, current systems neglect relationships between
individual requests. They focus on a single request at a time only.

In this thesis, we deal with a new type of attack: Attacks based on credential
or trust abuse. Typically, those attacks do not generate invalid requests and
are thus not detected by conventional systems. Identifying such intrusions
builds on the hypothesis that adversaries abusing credentials expose devi-
ating usage characteristics. Deviations range from (a) sending requests in
a different order, (b) sending requests a benign user does not send at all,
to (c) sending the same requests, but with noticeably different parameter
values. Describing such far-reaching combinatorial possibilities with con-
ventional systems is not possible. Therefore, learning a usage model with
machine learning techniques is a promising way to pursue further. Models
can target the whole system, user groups, or individual users. The narrower
the target, the more instances of the model must be trained, which requires
significantly more resources.

1.2. Detecting Behavior Change with Log Files

We present a system that detects anomalous user behavior based on recorded
user activity. In contrast to existing work, it uses less input information. A
Deep Neural Network (DNN) decides whether a given request is part of the
previously learned usage behavior model. For a solid decision, the network
receives a sequence of recent requests as input. The system outputs the next
request it expects based on the learned model. Whenever the prediction
does not match the actual next request, the system classifies the request as
an anomaly.

Our system uses standard HTTP log files. Log files contain only a fraction of
information of a full HTTP request. Hence, POST bodies and HTTP headers
are not available. Fields we used are the source IP, request DateTime, HTTP
method, full path, referer, and the user agent. We evaluate our model with log
files from an online store recorded by Zaker [Zak19].

3



1. Introduction

We restrict our work to data available before the request handling has started.
As a result, our system relies on significantly less information compared to
other work. For example, Du et al. [Du+17] based their detection system
on execution traces of the request handling pipeline. Execution paths of
software expose more information than the data triggering the execution do.
Hence, the limitation on pre-execution data can impact the detection rate
negatively compared to approaches using an extended set.

The detection rate is the most important metric for evaluating an anomaly
detection system. A good system must achieve low rates for both False Posi-
tives (FPs) and False Negatives (FNs) to gain acceptance. Therefore, anomaly
detection requires a well-balanced trade-off between raising false alarms
and missing an intrusion. We show that smartly selecting the parameters of
the model influences the ratio of wrongly classified samples significantly.

To summarize, this work demonstrates a novel system that mines web
server log files for usage patterns. After training, the system is capable of
identifying divergences from the learned behavior. Our work proves that
web server log files contain sufficient information to learn behavior patterns
of users. By detecting changes in the behavior, it is possible to counteract
emerging types of attacks such as credential abuse and insider threats.

1.3. Outline

This thesis is structured as follows:

In Chapter 2, we give a sound basis of technologies needed for our approach.
We start with event monitoring and anomaly detection tools in general.
Next, we introduce general machine learning concepts. The focus then shifts
towards neural networks and the different architectural types available.

Following that general introduction to the topic, Chapter 3 presents our
developed system. The chapter starts with the overall description of our
system. It then describes the architectural big-picture of the neural network.
Finally, we give the exact specifications of the layers used. We also reason
about the design decisions made during the development phase.

4



1. Introduction

Next, Chapter 4 introduces the dataset used for this work. Before doing so,
the chapter explains the essential decision criteria for a dataset. The final
section of the chapter explains in detail the preprocessing steps performed.

In Chapter 5, we shift the attention towards the performance of our detection
system. First, we discuss the development process and the tools used. Next,
we describe the training environment. We then explain the metrics used to
evaluate the performance. Finally, we present the results delivered by our
user behavior modeling systems.

Following our results, we present work related to anomaly detection in
Chapter 6. The presented papers either use a similar dataset with a dif-
ferent approach or a similar approach but based on different input data.
We emphasize smart design decisions, that are possibly beneficial for our
approach, but also mention limitations if there are any.

Finally, Chapter 7 concludes this thesis. It summarizes the main aspects
of this work and proposes interesting aspects that could be inspected in
further research done in this area.

5



2. Background

This chapter gives an overview of the techniques needed for the presented
approach. First, it introduces concepts used to detect malicious actions
initiated from external locations or from within an organization or company.
Next, we define the basic terms and approaches in the field of machine
learning. Following the general concepts, the focus shifts towards neural
network-specific techniques. The final section of the chapter deals with the
different architecture types and explains their strengths and weaknesses.
Also, it gives reasons why the architecture type might be beneficial for
the presented approach. In the following, we discuss different aspects and
approaches to monitoring events related to security aspects.

2.1. Monitoring Security Relevant Events

Modern organizations need to observe the actions of internal or external
actors thoroughly. There exist a variety of tools to achieve this task. For
instance, companies rely, amongst others, on IDS to prevent external access
to resources. Preventing internal actors like employees from stealing infor-
mation usually focuses on passive actions like strictly configured access
permissions. Nevertheless, active defenses like creating a usage model gain
popularity. This section explains aspects of intrusion detection and insider
threat detection. Since both approaches aim to detect outlying behavior, the
section finally covers the basics of anomaly detection.

6



2. Background

2.1.1. Intrusion Detection and Prevention

Intrusion Detection Systems (IDSs) monitor the events happening on a device
or in a network and identify bad behavior. Intrusion prevention forms an
extension of intrusion detection. Despite detecting the intrusion, Intrusion
Prevention Systems (IPSs) are also capable of stopping the intrusion. Systems
implemented solely in software, as well as systems deployed onto separate
hardware, exist for this task. In the aftermath of an incident, the information
recorded by an IDS is crucial for identifying possible points-of-entry of the
attackers and performing a fast and clean system recovery.

The literature [AH18; Vin+19] distinguishes between Network-Based Intru-
sion Detection Systems (NIDSs) and Host-Based Intrusion Detection Systems
(HIDSs). The TCP/IP layer serves as a source to differentiate between the
two classes. NIDSs use header information of the TCP packets. Systems also
inspecting the payload exist, but the increasing usage of encryption renders
it costly, if possible at all. Furthermore, inspecting the payload of real traffic
raises privacy concerns. HIDSs, in contrast, operate on the application layer.
On the application layer, all the data are available in plaintext and accessible
by the IDS.

Liao et al. [Lia+13] define three major intrusion detection methodologies:
signature scanning, anomaly detection, and stateful protocol analysis. While
signature-based methods are often easier to implement, they cannot detect
previously unseen intrusions. Learning profiles of regular usage is a chal-
lenging task. Early approaches use If-Then-Else rules. Recent approaches
use techniques based on machine learning, such as DNNs [Vin+19], Gra-
dient Boosted Trees (GBTs) [FD19], and Hidden Markov Models (HMMs)
[CQL17].

Khraisat et al. [Khr+19] compare the strengths and weaknesses of anomaly-
based approaches to signature-based ones. They conclude that signature-
based approaches are very effective and produce very few false positives. In
contrast, anomaly-based approaches can be falsely triggered by users with
dynamic activity profiles too frequently. They further distinguish anomaly-
based approaches that try to identify anomalies in individual requests from
approaches that identify anomalies in a stream of requests. The separation
conforms with Kenkre, Pai, and Colaco [KPC15], who named approaches
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targeting individual requests anomaly-based model IDS, and models targeting
request sequences misuse-based model IDS. The work we present is of the
latter type, as we aim to detect changes in the behavior of users.

2.1.2. Insider Threat Detection

Organizations and companies face the risk of information being stolen and
leaked by employees. Tuor et al. [Tuo+17] define the term insider threat as
“any actions taken by an employee which are potentially harmful to the
organization.” Employees enjoy an elevated level of trust within a company.
It is a noteworthy overhead for organizations to track which employees
have access to which resources. However, it reduces the risk of insider
threats significantly. Due to the elevated trust, insiders bypass some layers
of the defense system like intrusion detection, firewalls, and have in-depth
knowledge of the internal structure. Yuan et al. [Yua+18] point out the
variety of attacks an insider might perform, like placing logic bombs or
stealing intellectual property. Furthermore, they argue that insiders can hide
their activity well, as most insider-based attacks happen during working
hours where the majority of events happen.

Recent approaches use machine learning to identify insider threats. Machine
learning performs well in detecting patterns in large amounts of data. Also,
machine learning has advantages for complex decision problems where
the transition from class A to class B is blurry. Events of users serve as a
basis for normal user behavior, and divergences from that expected behavior
raise alarms. The types of events used, as well as the preprocessing steps
performed, vary a lot regarding different approaches.

2.1.3. Anomaly Detection

Anomaly detection describes the problem of finding patterns in a set of data
points and reporting entities not following the identified pattern. These
unexpected points are called anomalies or outliers. The source of the data on
which to perform anomaly detection is not restricted in any kind. Therefore,
Chandola, Banerjee, and Kumar [CBK09] list fraud detection of insurances
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or credit cards, intrusion detection, fault detection of critical systems, and
military use cases as possible fields of application for anomaly detection.
Gao et al. [Gao+18] further define the term anomaly to describe one of three
different kinds of anomalies. The first kind is an unexpected change in a time
series of data. The data often origin from sensors attached to mechanical
devices. While the device is functioning correctly, the difference to the
preceding value, as well as the absolute value, are in well-defined ranges.
Predictive maintenance applications build upon such outliers. Depending
on the data source, the time series might fluctuate due to changes in the
environment - for example, day and night differences, or seasonal changes.

The second kind of anomaly identified by Gao et al. [Gao+18] is the differ-
ence of one entity compared to the other entities. Entities are clustered to
detect anomalies. Entities not belonging to any of the identified clusters are
considered anomalies.

Finally, the authors identify a third kind of anomaly, where the context
influences the anomaly decision as well. The entity itself might be valid, but
when including environment variables as well, the entity might represent
an anomalous instance.

For example, this could mean to mine a behavior invariant of a given user
group. Once the system has learned the invariant, it validates whether new
requests are valid according to the learned model. Events identified as being
anomalous have to be classified whether they are malicious, too. Kreimel,
Eigner, and Tavolato [KET17] use machine learning to classify anomalies
and decide whether it is anomalous.

2.2. Introduction to Machine Learning

Machine learning is a subfield of Artificial Intelligence (AI) that builds on
training data. Chollet [Cho18] defines machine learning as a process of
searching for useful representations in vast amounts of data. The exact
learning technique used depends on the format of the data available for
the training. A crucial aspect of algorithm selection is whether the data are
labeled. Labeled datasets contain the target output value. The performance
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of a machine learning algorithm is strongly related to the quality of the data
used for training. Therefore, to create well-performing models as well as
to speed up the training process, the data are preprocessed. The detailed
steps highly depend on the dataset in use, but Garcı́a, Luengo, and Herrera
[GLH15] list data transformation, data cleaning and noise removal, data
reduction, and data integration from multiple sources as significant aspects
of preprocessing.

2.2.1. Learning Techniques

Goodfellow, Bengio, and Courville [GBC16] divide the learning techniques
into three different categories: supervised learning, unsupervised learning,
and reinforcement learning.

Supervised learning. Supervised learning techniques require target values
in the dataset. The target value can be either a class, in which case
the process is called classification, or it might be a continuous value,
then the process is called regression. Standard algorithms used for
supervised learning are Support Vector Machine (SVM) [CV95], HMM
[RJ86], and naı̈ve Bayes [RN95].

Unsupervised learning. Unsupervised learning can gain information from
datasets without getting feedback on the current performance. Feed-
back is not possible because the target values are unknown. Garcı́a,
Luengo, and Herrera [GLH15] describe unsupervised learning as find-
ing similarities, relationships, and regularities in the input data. The
approaches are often cluster-based. Well-discussed algorithms from
this class are k-means clustering and Principal Component Analysis
(PCA) [GBC16].

Reinforcement learning. Reinforcement learning [SB98] focuses on the op-
timization of exploit-or-explore situations. Teaching an AI to play a
game is an exemplary use case. The algorithm has to find a strategy
to decide how much of its capacity it should invest to use existing
knowledge and collect some reward versus how much it should focus
on improving the knowledge.
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In the context of our work, we focused on unsupervised learning approaches.
Log files are a well-established data source for anomaly detection and do
not contain information whether the request was anomalous. Labeling the
datasets by hand is not feasible. Also, it is an error-prone task, as malicious
attacks are often subtle. Using software for this task does not guarantee that
all samples are labeled correctly.

An additional important classification of training algorithms performed in
literature is into online and offline trainable ones. If an algorithm is online
trainable, the learned model can extract information from newly available
data without the need for a full re-training. So these models can react to
changes faster.

2.2.2. Data Preprocessing

The term data preprocessing is generally understood to cover all steps needed
to transform raw data into a format suitable for machine learning techniques.
Garcı́a, Luengo, and Herrera [GLH15] summarize the steps to be performed
as (1) data cleaning, (2) data transformation, (3) data integration, (4) data
normalization, (5) missing data imputation, and (6) noise identification.
Additionally, they argue that data reduction is part of preprocessing, too.
Standard techniques for data reduction are feature selection, instance selec-
tion, and discretization. In the following, we will explain the preprocessing
steps used in our approach in detail.

Discretization describes one possible way of data transformation where
numerical attributes are replaced with nominal attributes. Additionally,
during data transformation, the representation of classes is adjusted to
represent the so-called one-hot encoding. A vector of length N is required
to represent N classes. Each feature in the encoding vector represents one
class, as shown in Table 2.1. For categories with large numbers of possible
values, one-hot encodings waste much memory as it will be filled sparsely
only.

Text-based data require data transformation, too. A common way to repre-
sent textual data is to use an embedding. An embedding is either word-based
or character-based. Embeddings consider the context in which words are
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used and place them into a vector space. The algorithm tries to arrange
the words in a way that words with a similar meaning are neighbors in the
generated vector space. However, creating a well-performing embedding is
a computationally intensive task. Therefore, pre-trained embeddings like
Word2Vec [Mik+13], FastText [Jou+17; Boj+17], and GloVec [PSM14] are
commonly re-used. Popular dimension sizes for embeddings covering a
human language range from 50 to 300.

Preprocessing numerical values increases the performance of the learning
algorithm. Goodfellow, Bengio, and Courville [GBC16] define normaliza-
tion and standardization as common preprocessing steps for continuous
data. Normalizing data means to shift the range of possible values to [0; 1].
Standardization ensures that the mean µ of the data is 0, and the standard
deviation σ is 1. If standardization or normalization should be preferred
cannot be said in general. It depends on the underlying data.

During preprocessing, the dataset is split into three parts. The sets are called
test, train, and validation sets. The training set acts as the actual information
source from which the algorithm learns. The validation set is used during
training to ensure the algorithm learns general and abstract concepts hidden
in the data and not to reconstruct the input data. The test set, finally, is used
once the training is completed to assess the performance of the machine
learning algorithm on new and previously unseen data.

The data used in the individual sets must not overlap. The set size ratio is
not strictly defined and depends on the overall amount of data available for
the learning process. Common split ratios of the test and train set, as well
as the train and validation set, are between 0.25 and 0.33.

In some cases, the dataset is too small for the splitting mentioned above.
The k-fold cross-validation [GLH15] tries to solve this issue by splitting the
data into k batches of equal size. During each iteration, a different batch
takes the role of the validation set.
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color
[red, yellow, blue]

size
[S, M, L]

0 [0, 1, 0] [1, 0, 0]
1 [1, 0, 0] [0, 0, 1]
2 [0, 0, 1] [0, 1, 0]
3 [0, 0, 1] [1, 0, 0]

Table 2.1.: Example of four samples with two features named color and size, both one-hot
encoded.

2.3. General Machine Learning Concepts

The field of machine learning uses a variety of terms and concepts when
talking about a model’s performance and its architecture. Some of the terms
are specific to certain learning algorithms, and others are independent of the
concrete approach selected. In this section, we focus only on general terms,
used throughout the field. This section defines a common terminology that
is used throughout this document.

2.3.1. Overfitting, Underfitting and Model Capacity

When comparing different machine learning models, the performance on
previously unseen data is more significant than the performance on the
training data. Machine learning algorithms define a cost function that is
used to determine the performance. The training error relates to the cost
function being applied to the data known during training. Goodfellow,
Bengio, and Courville [GBC16] define the task of minimizing the training
error as an optimization problem. The challenge in machine learning is
to find abstract features in the training dataset. By using the identified
abstract features, the machine can then handle previously unseen data. We
henceforth refer to the machine learning algorithm’s ability to generalize as
test error. It is a direct indicator of the machine’s performance. Therefore, it
is an important metric when comparing different techniques.

Another metric is the model capacity. It influences the performance of any
machine learning algorithm significantly. Factors that define the model
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Figure 2.1.: Illustration of optimal capacity, overfitting, and underfitting. Adapted from
figure 5.3 by Goodfellow, Bengio, and Courville [GBC16].

capacity depend on the precise algorithm used. For linear regression, in-
creasing the capacity means using a polynomial of higher degree. For neural
networks, it means to use more hidden units or hidden layers. If the selected
capacity is too low for the problem to be solved, the model will underfit. An
underfit model is not able to learn the abstract features in the data because
the underlying cost function is too complex. Underfitted models perform
poorly on the train set as well as on the test set. A model that remembers
the samples it has seen instead of performing a meaningful generalization is
overfitting. When the test error no longer decreases but instead starts to rise
again, this indicates that overfitting starts. Figure 2.1 shows the concepts of
over- and underfitting.

2.3.2. Early Stopping

Early stopping [GD98; SKP97] is one of the first approaches proposed to avoid
overfitting. When the model starts to overfit, the training error continues
to decrease while the test error starts to rise again. At this point, early
stopping suggests not to continue with the training. However, the training
should not be stopped immediately when the error increases. Instead,
early stopping must tolerate occasional spikes in the validation error. The
mechanism should step in action only if the validation error does not
improve for several epochs. The generalization gap is likely to increase
in later epochs as observable in Figure 2.1. A variant of early stopping
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remembers the parameter value of the epoch with the lowest validation
error. The system trains for the predefined number of epochs independent
of how the generalization error evolves. During the training, the system
stores the parameters of the best-performing epoch and uses that parameter
set at the end.

2.3.3. Hyperparameter Search

Hyperparameters and model parameters determine the performance of a
model. In contrast to model parameters, the hyperparameters are not part
of the model but considered external.

Patterson and Gibson [PG17] define hyperparameters as being responsible
for the overall capability of a model to generalize. Additionally, they influ-
ence the time needed for the learning process. The set of hyperparameters
is not exclusive and depends on the specific machine learning algorithm
used. Examples of parameters that apply to a broad set of machine learning
approaches are learning rate and model architecture [PG17; GBC16; Cho18],
regularization [PG17; Cho18], epochs [Cho18], and momentum [PG17]. The
hyperparameters are initialized with values chosen by humans. By adjusting
the hyperparameters during the training, the system can speed up the learn-
ing process or escape a local minimum. However, according to Goodfellow,
Bengio, and Courville [GBC16], hyperparameters that influence the model’s
capacity should not be optimized because this results in overfitting.

To find the optimal set of hyperparameters, one has to test every combi-
nation possible. Iterating all combinations possible is called a grid search.
However, a grid search becomes infeasible quickly as the number of pos-
sible combinations explodes. Several strategies like random search [BB12],
Bayesian optimization [Sha+16], and population-based approaches [Jad+17]
aim to speed up the parameter selection process.

The basic idea behind the random search approach is not to waste too much
time on poorly performing parameter values. Instead of changing only one
parameter value per test run, Bergstra and Bengio [BB12] suggest changing
all parameter values randomly. Doing so increases the chance to find a well
enough performing parameter set, although it might not represent the best
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Figure 2.2.: Comparison of grid search and random search to find hyperparameters.
Adapted from figure 1 by Bergstra and Bengio [BB12].

performing one. Figure 2.2 illustrates the differences between grid search
and random search.

Both grid search and random search do not use information from previous
runs when selecting the next set of parameters to test. Shahriari et al.
[Sha+16] try to tackle the mentioned problem with Bayesian optimization. For
each parameter, they create a model which outputs the next value to try
based on the previous performances.

The strategies mentioned above all either assume sequential training runs
or do not interconnect training runs executed in parallel. Jaderberg et al.
[Jad+17] proposed Population-Based Training (PBT), which was inspired by
the evolution theory. At first, they start several different models concurrently.
The system monitors the performance of the individual instances closely. If
the system detects a poorly performing instance, it aborts the training of this
instance and replaces it with the current weights of a well-performing one.
However, the training continues with the original set of hyperparameters.
If the instance fails repeatedly, the system kills it. A mutant of a well-
performing instance will take the free spot.

Generally speaking, applying PBT is a challenging task as one must have the
resources to run several instances in parallel. Additionally, a framework that
monitors the training progress and takes appropriate actions if needed has
to be developed. Developing the model is an iterative process. A possible ap-
proach one could take is to test parameters at random in the beginning. This
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step aims to define well-performing ranges for the parameters. After that,
the fine-grained parameter search can follow a more structured approach.

2.4. Neural Network Basics

The machine learning concepts presented so far apply to the majority
of techniques available. This section focuses on neural network specifics.
Neural networks can handle many different domains with varying input
formats like image data, audio streams, videos, text, time series, and numeric
data. We use neural networks because they can handle text input as well
as sequential information. Both aspects are essential for log-based anomaly
detection. First, this section explains the core components needed to build a
neural network. Then, we present optimization techniques to improve the
performance and reduce the training time. Techniques suitable to prevent a
model from overfitting conclude the section.

2.4.1. Layers

Neural networks are inspired by the neurons in a humans’ brain. A neural
network consists of at least one input layer and one output layer. In between,
the network can have hidden layers. Literature does not define whether
the output layer counts towards the number of layers of a network. The
input layer, however, never counts towards the total number of layers. Kröse
and Smagt [KS96] defends the convention because the input layer does
not perform any calculations. For clarity, through this thesis, we refer to
a network composed of one input layer, one output layer, and one hidden
layer in between as having one hidden layer.

Each layer consists of perceptrons. Neuron or node are terms often used as an
alternative for perceptron. Each perceptron has connections to the neurons
of the previous and next layer. Equations 2.1 and 2.2 show the computations
performed by each perceptron.

z(l) = W(l−1) ∗ a(l−1) + b(l−1) (2.1)
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a(l) = f (z(l)) (2.2)

Equation 2.1 defines the calculation of the interim value z. Each connection
of a neuron in layer l − 1 to a neuron in layer l has an assigned weight. The
weight matrix W represents those weights. The bias vector b represents the
biases of the neurons. Equation 2.2 shows the calculation of the final value a.
It uses a non-linear activation function f with the result of the first equation
as input. Finding the right values for the weights and the biases is the main
challenge of the training process.

2.4.2. Activation Functions

Activation functions are part of neurons and assigned layer-wise. This assign-
ment ensures that all neurons on the same layer use the same activation
functions. According to Chollet [Cho18], the activation function contributes
a non-linearity to the layer. Without non-linearity, the layer could perform
linear transformations only, and stacking multiple layers would not be
beneficial.

For hidden layers, a commonly chosen activation function is a sigmoid,
like the logistic function f = 1

1+e−x or the hyperbolic tangent f = tanh(x).
LeCun et al. [LeC+98] recommend using tanh, because it centers around the
origin and is symmetric, which results in better performance. Rectified Linear
Units (ReLU) [NH10] is another popular activation function and is defined
as f = max(0, x). The popularity comes from its cheap computational costs
and fast convergence. Figure 2.3 shows the plots of the described activation
functions.

The softmax function is a popular activation function for the output layer and
is usually used for multi-class classification tasks. The softmax transforms
its input to a probability distribution. Its inputs are usually unscaled, which
means they can sum up to any value in the interval [−∞;+∞]. The unscaled
inputs are called logits. Goodfellow, Bengio, and Courville [GBC16] show
details as well as actions necessary for numeric stability.
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Figure 2.3.: Comparison of activation functions: logistic, tanh, and ReLU.

2.4.3. Loss Functions

Loss functions, often also called cost functions or error functions, measure the
differences of the output of a model to the target value. The training aims to
minimize the loss function, which means to reduce the difference between
the output and the target. The choice of the loss function is, therefore,
crucial for a well-performing network. Depending on the task performed,
different options for loss functions are suitable. Rosasco et al. [Ros+04] and
Goodfellow, Bengio, and Courville [GBC16] list and explain several loss
functions like Mean Squared Error (MSE), Mean Absolute Error (MAE) and
Cross-Entropy loss. In summary, MSE and MAE perform well on regression
problems. MAE is more robust against outliers than MSE is. The Cross-
Entropy suits classification problems and exists in binary and multi-class
flavors.

2.4.4. Optimizers

Optimizers define how to reduce the loss of the model, which eventually
improves the quality of the output. Current state-of-the-art optimizers for
neural networks rely on the minimization of the gradient of the loss func-
tion. Ruder [Rud16] gives an overview of popular optimizers and identifies
Stochastic Gradient Descent (SGD), RMSprob, and Adaptive Moment Esti-
mation (Adam) as the essential ones.

The gradient descent computes the gradient based on the whole dataset. For
large datasets, this is not feasible as the time needed for just one parameter
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update is too large. SGD, in contrast, updates the weights after each sample,
which can cause many fluctuations as not all updates tend to decrease the
global error. The mini-batch-based approach splits the dataset into small
batches of 32 to 256 samples each. Values outside the specified range are
possible, but usually do not perform well. The best-performing batch size
depends on the underlying dataset and has to be found during the hyper-
parameter search. The parameter update happens after each mini-batch.
Mini-batch SGD resembles a trade-off between parameter update accuracy
and time needed for each update. Patterson and Gibson [PG17] argue that
the optimal batch size balances memory requirements, computational effi-
ciency, and optimization efficiency. A disadvantage of mini-batch updates
is that it is not guaranteed to find the global minimum. Additionally, they
suggest using batch sizes that are a power of two as these batch sizes utilize
the hardware optimally.

Adam [KB14] is very popular as it tries to solve several drawbacks of SGD.
It uses information from previous parameter updates to avoid oscillations.
Also, it adjusts the learning rate for each parameter to speed up the opti-
mization process. Adam performs better than SGD in many cases, but it is
not guaranteed.

2.4.5. Back-Propagation

Rumelhart, Hinton, and Williams [RHW86] introduced the back-propagation
algorithm. It is an efficient way to compute the gradient ∇ of a function.
The back-propagation algorithm plays a central role during the training
of a neural network. It aims to minimize the error of the loss function by
updating the weights and biases of the neurons. The updates are calculated
by applying the chain rule, which the authors explain in detail in the original
paper. The learning rate ε regulates the update process and prevents the
algorithm from jumping over the minimum. Choosing the right value for
the learning rate is one of the main problems.
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2.4.6. Deep Learning

Neural networks are often put into classes depending on the number of
hidden layers they have. Networks with many hidden layers are called deep
neural networks, networks with a few layers are called shallow. There is
no sharp boundary defined when to consider a network as deep. However,
GoogLeNet [Sze+15], an image classification network, uses 23 layers and is
agreed on to be a deep network.

Despite the architectural differences, deep networks and shallow networks
have different conceptual approaches too. Shallow networks require pre-
processed data with already extracted features. Deep networks usually use
the earlier layers to perform the feature extraction from raw data. The later
layers learn generalized features based on the output of the earlier layers.
Lecun, Bengio, and Hinton [LBH15] claim that the automatic feature ex-
traction is the key advantage of deep learning approaches. However, basic
data preprocessing like normalization or standardization is still advisable
for deep neural networks for faster training.

2.4.7. From Vanishing and Exploding Gradients

During the training of deep networks, the back-propagation algorithm
requires many multiplications due to the chain rule. Multiplications can
cause problems if the values become very large or very low. For instance, if
the values are below zero, the multiplications decrease the value even further.
The literature refers to this problem as the vanishing gradient problem [Hoc91].
Solutions to the mentioned problem suggest architectural changes.

If the data are sequential, Long Short-Term Memory (LSTM) cells [HS97]
provide a possible alternative. Our approach uses such cells for that very
reason. The cells maintain an inner state, which helps to prevent the gradient
from vanishing. He et al. [He+16] presented an architectural change called
Residual Network (ResNet) that is applicable to any kind of input data. They
added shortcut connections from layer N to layer N + 2, which adds the
original weights to the outcome to prevent the gradient from vanishing. The
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two layers connected with the shortcut and the layer in between form a
so-called residual block. Residual blocks can be stacked, too.

The opposite problem of values getting very large is called the exploding gra-
dient problem. Large values often lead to overfitting. Pascanu, Mikolov, and
Bengio [PMB13] suggested gradient clipping to prevent the network from
overfitting. It works by defining a threshold that represents the maximum
value the gradient may have.

2.4.8. Dropout

Dropout [Sri+14] is one of the most common techniques used to avoid
overfitting. For each training run, a preconfigured percentage of neurons gets
deactivated. A deactivated neuron does neither participate in the forward-
passing of activations nor does it back-propagate the error. Without dropout,
a neuron may learn to correct the mistakes of another neuron. If the error
correcting neuron is not present all the time, the original neuron must learn
a better abstraction of the data. Dropout is usually applied layer-wise. Using
dropout introduces an additional hyperparameter called the dropout rate.
According to the original paper, well-performing dropout rates range from
0.5 to 0.8. In literature, the dropout rate sometimes describes the number of
neurons removed, and sometimes the number of neurons remaining. This
thesis follows the scheme presented in the original paper, where a dropout
rate of 1 is equivalent to no dropout at all.

2.4.9. Weight Regularization

Weight regularization is another technique used to avoid overfitting. Chollet
[Cho18] argues that without weight regularization, the weights may become
large and are not well distributed. A network with many large weights tends
to react strongly to input changes. Adding penalties for large weight values
encourages the network to use smaller weights. Goodfellow, Bengio, and
Courville [GBC16] define the L1 and L2 vector norm as standard methods
to determine the required weight penalties. The L1-Norm uses the absolute
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sum of weights, whereas the L2-Norm uses the squared sum. Squaring the
values punishes large values even more.

2.5. Neural Network Architectures

There exist different neural network architectures for different tasks. Re-
quirements to the neural network can be divergent, depending on the
problem to be solved. For example, object detection in images should work
independently of the location of the object within the picture. In contrast,
the location of elements in a sequence is particularly important if the neural
network should predict the succeeding value. In this section, we discuss
the advantages of the different neural network architectures. Furthermore,
we show how our approach can benefit from using the presented network
architectures.

2.5.1. Multilayer Perceptron

The purest form of neural network found in literature is known as Multilayer
Perceptron (MLP) [GD98; Hay05; Naz+08]. If no specialized network type
is defined, the MLP is the default type. The network consists of an input,
an output, and one or more hidden layers. Since one layer is connected to
the previous and following layer only, a linear architecture without loops
is defined. These networks are called feed-forward networks for that reason.
Gardner and Dorling [GD98] define that each layer must have a non-linear
activation function to be able to learn non-linear dependencies in the data.
This kind of network is called fully connected because each node of layer N
is connected to each node of layer N + 1. MLPs deliver satisfactory results
for classification as well as regression problems. Turning to user behavior
learning, we will use a more advanced base structure than an MLP. However,
those advanced structures often include fully connected layers.
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2.5.2. Convolutional Neural Network

Convolutional Neural Networks (CNNs) [LeC89] became popular with com-
puter vision-related challenges. Khan et al. [Kha+19] refer to this field of
research as machine vision. However, the concepts used by CNNs can be ap-
plied to one-dimensional data as well. The strength of CNNs lies in finding
abstract features within the data. In computer vision terms, this means the
network can detect features independent of the exact location within an
image, its size, or its rotation. Liu et al. [Liu+17] define two types of layers
called convolution layers and subsampling layers. The two types of layers
form the heart of CNNs.

Convolution layers apply a kernel to the data. Typically kernel sizes range
from [2, 2] to [5, 5]. The kernel is applied in a sliding window approach
with shared weights. It can detect features independent of their location in
the data. Depending on the dataset, they can also detect rotated or resized
features. Furthermore, sharing the parameters reduces the computational
complexity. Chollet [Cho18] lists max-sampling and average-sampling as
methods available for the subsampling layers. The subsampling layers again
require a filter size, which defines the number of neighboring elements taken
into consideration for the maximum or average computation. Convolutional
and subsampling layers may be stacked multiple times. Subsequent layers
then try to extract high-level features based on the outcome of earlier layers.
Figure 2.4 illustrates an exemplary structure of a CNN

By default, both the convolutional and the subsampling layer, reduce the
dimensionality of the data. Patterson and Gibson [PG17] show how to use
padding to avoid the dimensionality reduction. The padding ensures that
each of the original data cells resides in the middle of the kernel once.
The padded values are either zeros or based on the neighborhood, like the
average or the median.

Turning to our architecture, HTTP requests accept GET parameters in no par-
ticular order. The client implementation defines the order of the parameters.
Applying CNNs on the query string can, in some instances, result in better
performance. CNNs can identify two requests with the same parameter
values passed but in a different order as being equal.
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Figure 2.4.: Combination of convolution and subsampling layers as they are usually used
in CNNs. The image is adapted from figure 5 by Liu et al. [Liu+17].

2.5.3. Sequence-Aware Architectures

Sequence-aware architectures perform well on tasks where the sequential in-
formation is essential. To remember long-term dependencies, they maintain
an internal state depending on the elements seen earlier in the sequence.
It is, therefore, popular for tasks, where the sequential information is of
importance. Pouyanfar et al. [Pou+18] list Natural Language Processing
(NLP) and speech processing as exemplary use cases for such architectures.
During the computation, however, the network has to be unrolled, which
makes it computationally expensive. The most basic architecture uses a
forward computation only. This way, the context of the current sequence
item depends on previous items, but not on the following ones. However,
the following items might influence the context of a sequence item, like the
meaning of a word, too. Schuster and Paliwal [SP97] suggested a bidirec-
tional approach to tackle this problem. The bidirectional approach unrolls
the network from the beginning and the end simultaneously. This way,
information from the end of the sequence can contribute better to the model.
In the following, we define three types of architectures that perform well
regarding sequence modeling. Sequential features play a crucial role in our
architecture as they act as a basis to learn user behavior.
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Recurrent Neural Networks

Recurrent Neural Networks (RNNs) [RHW86] remember information over
time by having a hidden state. They, however, perform better at modeling
short-term dependencies than long-term dependencies. During training, the
RNN is unrolled and the parameters shared across time. Despite reducing
the number of parameters and subsequently reducing the total training
complexity, the shared parameters strengthen the network’s capability to
deal with sequences of different lengths. Additionally, the shared parameters
strengthen the network’s robustness against minor variations in a sequence.
An adaptation of the backpropagation algorithm called Backpropagation
Through Time (BPTT) calculates the updates of the weights during training.
When unrolling the network, it can become deep quickly. Deepness can
cause problems like exploding and vanishing gradients.

Long Short-Term Memory Cells

Hochreiter and Schmidhuber [HS97] introduced Long Short-Term Memory
(LSTM) cells to improve the models’ capability to learn long-term depen-
dencies in sequences. LSTM cells have an inner state and gates to modify
that state. The gates are called Input, Output, and Modify. In Figure 2.5, we
illustrated the gates of an LSTM cell and how they are connected to produce
the output value. Over time, variants of LSTMs have been proposed that
change the layout slightly. A noteworthy change suggested by Gers and
Schmidhuber [GS00] is to use the cell state as input to the gate functions,
too.

Gated Recurrent Units

Based on the great performance of LSTMs, Cho et al. [Cho+14] presented
an improvement called Gated Recurrent Unit (GRU). The authors merged the
Input and Modify gates into a single gate called Update. By merging two gates,
they reduced the number of parameters in the model. A smaller model size
results in faster training and query times for the network. However, its
learning performance sometimes cannot reach the performance of an LSTM.
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Figure 2.5.: Comparison of RNN, LSTM, and GRU cells. The image is based on illustrations
of Olah [Ola15].

In their thorough survey, Alom et al. [Alo+19] concluded that neither LSTMs
nor GRUs are universally superior over each other. GRUs are cheaper and
train faster, LSTMs deliver better results if an extensive training set and
computational power are available. Figure 2.5 compares the different types
of nodes. Namely, the illustration contains regular recurrent nodes, LSTM
cells, and GRU cells.

Focusing on HTTP requests, the API path often follows some design princi-
ples like Representational State Transfer (REST) [FT00]. GRUs and LSTMs
can interpret the path information as a sequence of words or characters. If
word-based or character-based approaches perform better cannot be said in
general. Additionally, we use a sequence-aware structure to mine the user
behavior. User behavior is composed of a sequence of events. In concrete
terms, sequences of HTTP requests define the user behavior.

2.5.4. Encoder-Decoder Architectures

An encoder-decoder architecture describes a framework to construct a network
that learns features of a dataset by itself. The encoding part of the network
tries to extract useful features out of the input data. Following that, the
decoder uses the extracted features and tries to map them into the desired
output vector space. In many cases, the outcome of the encoder is of lower
dimensionality than the original input. The compressed representation is
often referred to as latent space. The dimension reduction forces the encoder
to lean abstract features. Encoder-decoder architectures can be seen as a
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non-linear extension to Principal Component Analysis (PCA). Baldi and
Hornik [BH89] show that, when using a linear encoder-decoder architecture,
the learned weight matrix spans the same subspace than the results from
a PCA. For non-linear encoder-decoder architectures, the output is only
conceptually comparable to PCAs. The weights learned are not statistically
independent components and not sorted by variability. Recent research
[LNP19] tries to address this by starting with a small latent space and
increasing it iteratively. Whenever the latent space increases, the model can
learn a new dimension.

Reducing the input to a compressed set of abstract features decouples the
information from the current form of representation. This way, encoder-
decoder architectures can transform information from one form of represen-
tation into another like audio to text. Additionally, some encoder-decoder
architectures can generate new instances not seen by the system before. Yan
et al. [Yan+16a] combined those two properties and proposed an approach
that generates images based on visual attributes. Exemplary attributes they
defined for human face generation are gender, eyes open, teeth visible, and
pointy nose.

General Encoder-Decoder

In general, encoder-decoder architectures do not require matching dimen-
sions for input and output data. It is possible to use, for example, video
or audio data as input and output text. Wu, Dinkel, and Yu [WDY19] use
an audio stream as input and generate captions describing the contents of
the stream. The different dimensions of the data usually lead to different
architectures for the encoder and the decoder. Encoders and decoders can
use concepts presented earlier, like CNNs and RNNs. The general encoder-
decoder architecture requires a labeled dataset since the input and output
vector spaces are different.
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Autoencoder

Autoencoders are especially useful if no target data are available. The Autoen-
coder uses each sample as input and reference output. This implies that, in
contrast to the general encoder-decoder architecture, the input and output
vector space is the same. The reconstruction error measures the performance
of an Autoencoder. A standard metric used to measure the reconstruction
error is the MSE. The architecture incorporates a bottleneck that forces the
network to learn abstract features. Also, it prevents the model from simply
copying the input nodes. Goodfellow, Bengio, and Courville [GBC16] show a
straightforward way to accomplish a bottleneck by using an undercomplete
Autoencoder. An undercomplete Autoencoder has a latent space with fewer
dimensions than the input layer. Alternative methods to force the network
to learn abstract representations are called Contractive Autoencoder (CAE)
[Rif+11], Sparse Autoencoder (SAE) [GBC16], and Denoising Autoencoder
(DAE) [Ben+13]. The following paragraphs explain the methods and their
characteristics.

Sparse Autoencoder. Sparse Autoencoders (SAEs) are overcomplete, mean-
ing that they use a latent space larger than the input layer. A large
number of features present in the data requires a larger latent space
of the Autoencoder. Otherwise, it cannot focus on all features present.
The system randomly deactivates some nodes in each run to prevent
simple copying behavior. The disabled nodes force the network to use
all the remaining nodes. SAEs can improve the performance of our
model if the users expose many different behavioral features.

Denoising Autoencoder. Denoising Autoencoders (DAEs) learn to recon-
struct the original data sample from slightly distorted samples. When
using images as data samples, this means that a Gaussian noise is
applied to the input images. The network again cannot simply copy
the source data but has to extract useful features.

Contractive Autoencoder. Contractive Autoencoders (CAEs) aim to be less
sensitive to small variations in the input data. In contrast to DAEs,
which try to make the reconstruction function resistant against noise
in the training data, the CAE makes the feature extraction function
resistant against noise. For this reason, CAEs are popular as a feature
extraction method for deeper layers. For outlier detection based on
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Figure 2.6.: Abstract structure of a VAE. The illustration is based on figure 9 of Weng
[Wen18].

HTTP requests, CAEs can contribute by improving the quality of
features extracted by the upper layers.

Variational Autoencoder

Variational Autoencoders (VAEs) [KW13; RMW14] not only learn abstract
features but can produce entirely new samples. Standard Autoencoders
are not enforcing any structure on the latent space, so taking a random
vector and feeding it into the decoder can result in meaningless output. The
VAE aims to learn µ and σ of a Gaussian distribution to avoid meaningless
output. Figure 2.6 shows the layout of the architecture. The decoder accepts
a sample from the learned distribution and bases its reconstruction process
on that.

VAEs can be combined with Generative Adversarial Networks (GANs), which
are another type of sample-generating network. Larsen et al. [Lar+16] intro-
duced the combination and called it VAE/GAN.

Without further enhancements of VAEs, it is impossible to control the char-
acteristics of the generated samples. Li et al. [Li+19] presented Disentangled
Variational Autoencoders (DVAEs), where they ensure that each vector passed
to the distribution is associated with one feature only. This way, more con-
trol of the sampled data point is possible. Applying this to our architecture
would force the network to clearly separate features like date, HTTP method,
and path information in the latent space.
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2.5.5. Networks with Attention

Attention allows a neural network to decide which data points influence the
current one. The attention mechanism originated from text translation tasks,
where information located at the beginning of a sentence may influence the
meaning of a word at the end of the sentence. Bahdanau, Cho, and Bengio
[BCB15] proposed the attention mechanism to counter-fight the problem of
long-term dependencies. The attention mechanism determines the influence
of the other items in a sequence to the current one. Masking can hide
elements at specific steps from the algorithm. Doing so forces the algorithm
to focus on elements located before the current one only, for example. The
excellent performance of the attention mechanism led to its application in
other problem domains, too. For example, Xu et al. [Xu+15] showed that
attention mechanisms could be used for image caption generation as well. A
subfield that emerged from attention is attention visualization. By visualizing
the area the neural network gives attention to, it is easier for humans to
understand why a neural network gives some specific output.

Shifting the focus towards behavior detection, attention can support the
encoding layers to find an improved compressed representation of the
requests. The network can then decide which areas of a sequence are of
importance and which are not.

2.5.6. Transformer

Transformers were proposed by Vaswani et al. [Vas+17] and represent an
evolution of attention-based RNNs. A transformer is a combination of Au-
toencoders and attention mechanisms. It performs sequence-to-sequence
modeling tasks. The original problem domain transformers tried to tackle
was text translation. In contrast to the attention-based architecture proposed
by Bahdanau, Cho, and Bengio [BCB15], the transformer does not need
recurrent elements while still performing well at remembering long-term
dependencies in sequences. Transformers also make use of positional encod-
ing. The positional encoding ensures that the position of the word makes a
difference. In contrast to RNN-based architectures, transformers are well-
suited for parallel processing. Parallel processing reduces the time needed
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for training significantly. However, in contrast to other recurrent-based ar-
chitectures like RNNs, LSTMs, or GRUs, the transformer is based on a fixed
sequence length, which requires padding or truncating of sequences.

The main advantage of transformers is its suitability for parallel processing.
Parallel processing reduces the training duration significantly. However, our
work does not focus on improving the training performance but on the
outlier detection quality. Therefore, we plan to use transformers only if they
improve the overall detection performance.

2.5.7. Temporal Convolutional Networks

Temporal Convolutional Networks (TCNs) [BKK18] aim to replace the unfolding-
over-time aspect, like transformers, too. TCNs are inspired by the human
brain. The human brain remembers long sequences by splitting them into
shorter sequences. Likewise, the brain does not process text word-by-word.
TCNs adapt this mechanism. They use hierarchical attention-based encoding
to learn a representation of a sequence. TCNs use the same convolution lay-
ers as CNNs. When combining them with an encoder-decoder architecture,
the TCN acts as the encoder. Thus, the outcome represents the latent space.
The TCNs utilizes the hardware much better. It accesses the data at once
and not in sequential order

In theory, TCNs can improve the feature extraction of HTTP requests. As the
order of GET parameters is interchangeable, the convolution layers have the
potential to identify those requests as semantically equivalent correctly.

2.6. Summary

In this chapter, we presented techniques for monitoring security-relevant
events. While IDSs can detect intrusions, IPSs can additionally prevent them.
Liao et al. [Lia+13] define anomaly detection as one viable method used
by such systems. Khraisat et al. [Khr+19] conclude that systems based on
anomaly detection, such as ours, are likely to produce false positives. In
return, they can detect previously unknown attacks. Insider threat detection
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monitors the activities of persons within the organization, preventing them
from abusing their elevated trust level.

Next, we introduced fundamental machine learning concepts. Machine
learning allows computers to find relationships in large amounts of data.
Supervised learning, unsupervised learning, and reinforcement learning
are techniques applicable depending on the dataset. Our system uses unsu-
pervised learning because entries in log files do not have labels identifying
them as benign or malicious.

Following that, we explained the fundamentals of data preprocessing. Im-
portant techniques available are discretization, standardization, and normal-
ization. Which technique to choose depends on the feature. Additionally, we
discussed common representations, namely one-hot encodings, text-based
embeddings, and char-based embeddings.

We then established a common terminology to compare machine learn-
ing models. First, we explained overfitting and underfitting. Both indicate
a model that did not generalize well. Viable countermeasures are early
stopping [GD98; SKP97], dropout [Sri+14], and weight regularization. Addi-
tionally, we gave a comprehensive introduction to loss functions, optimizers,
and hyperparameter search.

The final section of the chapter presented different architecture types. CNNs
[LeC89] are very popular for computer vision problems. However, they
can also handle one-dimensional data. CNNs suit problems that require
detecting features independent of their geometric translation. TCNs [BKK18]
use elements of CNNs and model sequential information.

GRUs [Cho+14], LSTMs [HS97], and RNNs [RHW86] are capable of mod-
eling sequential data. LSTMs handle long sequences better than RNNs
because they use an internal state as memory. GRUs enhance LSTMs by
exposing a lower memory footprint. Combining them with attention mecha-
nisms [BCB15] allows the network to decide which areas in a sequence are
important.

Finally, we turned to encoder-decoder structures. An Autoencoder learns a
compressed representation and uses that to reconstruct the input sample.
Autoencoders reconstruct samples seen during the training well while
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reconstructing unseen samples badly. Hence, the reconstruction error serves
as a measure for classifying outliers.

The next chapter explains our anomaly detection system. After giving a
big-picture overview of the developed system, we explain in detail the layers
and architecture elements used for our architecture. Whenever there are
multiple viable options, we will explain our decision.
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In this chapter, we focus on the developed behavior anomaly detection sys-
tem. We start by showing the general approach to anomalous user behavior
mining in request logs. We also derive the requirements for feeding the
requests into the detection system. The requirements impact the prepro-
cessing pipeline significantly. We decided to use a DNN for our anomaly
detection system based on a claim of Chalapathy and Chawla [CC19]. The
authors argue that DNNs are superior to simpler neural networks when the
amount of training data increases.

Next, we focus on the architecture of the neural network. We describe our
two-stepped approach: First, we perform a dimensionality reduction of the
requests. Next, we learn user behavior based on that representation.

Following the high-level overview, we deep-dive into the specific layers of
the individual components of the Autoencoders. We explain the technical
details like the activation function, number of nodes, and dropout rates. Not
only do we present the final architecture, but we also discuss the reasons
for our selection if there are feasible alternatives available.

Finally, the chapter focuses on the hyperparameters defining the model. We
list the individual parameters, discuss the tested ranges, and also specify
the best-performing value.

3.1. System Overview

The developed system learns user behavior based on logs from HTTP
requests. The more requests the system inspects at once, the more details and
interconnections it can detect. However, the longer the request sequences,
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Figure 3.1.: High-level view of the developed system. It takes a sequence of samples as
input, predicts the next expected sample, and compares it to the actual next
request. The next request is anomalous if it does not match the predicted one.

the larger the computational power needed during the training of the neural
network. Preprocessing ensures that the requests are in the correct order,
split by user session. From the session request stream, a predefined number
of requests serves as the initial input to the network. The input starts at the
beginning of the event stream. Step by step, the window then slides over
the remaining requests until it reaches the end of the request stream. We
chose the sliding window approach because a deviation of behavior might
happen at arbitrary points during a user session.

For each input request sequence, the model predicts the next expected
request. If the current request does not match the predicted one, the system
classifies it as an anomaly. Figure 3.1 illustrates the workflow. Our detection
system uses a neural network based on Autoencoders to model this behavior.
Autoencoders can cope with large amounts of unlabeled data, such as log
files. As a result, we avoid using or generating a dataset with labels.

Neural networks, like most machine learning algorithms, require a numeric
representation for text. Standard techniques are word-based and character-
based tokenization. We chose the latter for our system. Character-based
tokenization assigns an integer to each character. We ordered the characters
by frequency. So the lower the integer, the more frequently the character ap-
pears in the data. The mapping of integers to characters is called vocabulary.
The vocabulary size is smaller when using character-based tokenization
compared to word-based tokenization. A smaller vocabulary increases the
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number of computationally feasible options available for our architecture.
Additionally, character-based tokenization can represent words not seen
during training. This is beneficial for parameter values where users can
enter arbitrary text.

3.2. Neural Network Architecture

We start by describing the architecture on a conceptual level. We then con-
tinue with precise explanations of the Autoencoder structure, which consists
of two distinct instances. In contrast to the big picture, these explanations
include the layer details used for each Autoencoder. Layer details are, for
example, the input and output dimensions, layer type, activation function,
and connected previous and following layers.

3.2.1. Architectural Big Picture

At the heart of the developed architecture lies a two-stepped Autoencoder
structure. The first Autoencoder, to which we refer as request Autoencoder,
produces a reduced representation of the requests. It compresses each
request of the sequence separately, not considering any information of
neighboring requests. The sequence of reduced requests serves as input for
the second Autoencoder, which we call behavior Autoencoder. In contrast to
the request Autoencoder, it focuses on behavioral aspects. Figure 3.2 gives a
high-level overview of the architecture.

The objective of the request Autoencoder is to find a compressed representa-
tion of the requests. Compressing the requests reduces the complexity of the
behavior learning components building upon this representation. The Au-
toencoder must compress a request to the same latent space representation
independent of its position within the sliding window. Hence, the Autoen-
coder compresses each request on its own to ensure location independence.
Additionally, the request separation at this step prevents the encoding of any
behavior information. However, decoupling the request compression layers
contradicts the location independence criteria. To counteract that problem,
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Figure 3.2.: Conceptual big picture of the developed architecture. The request encoder first
reduces each request to a latent representation. The behavior encoder builds
upon that compressed representation. Finally, the behavior decoder tries to
predict the next sample. The request decoder is used during training to speed
up the training.

we use separate instances for each request. The individual instances share
their weights and biases of the layers. Sharing the parameters also keeps the
model size small, which reduces the overall training time needed.

The sequence of compressed requests serves as input for the behavior
Autoencoder. The behavior decoder does not reconstruct the exact input
sequence. Instead, it reconstructs a sequence shifted by one request to the
future. Shifting the output sequence implies that the Autoencoder will
truncate the request farthest in the past. Additionally, the newest request is
not part of the input sequence. The lack of presence forces the network to
focus on behavior patterns in order to predict the new request successfully.

During the development of the architecture, we also tested an alternative
behavior decoder. The alternative version reconstructed the next expected
request only, which Figure 3.2 illustrates as the rectangle labeled with num-
ber eight. However, reconstructing the full sequence showed an improved
detection performance.

Using the described two-step approach seems intuitive for humans, but
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it is hard to learn for a neural network without further modifications.
Therefore, we added a request decoder that reconstructs the initial input
sequence. Similarly to the request encoder, the decoder also uses a shared
layer approach to ensure location independence within the sequence. The
decoder improves the quality of the latent space representation early in
the training process. Having good compressed representations early on
makes the first training epochs of the behavior Autoencoder more valuable.
Eventually, this improves the overall quality of the training result. The
request decoder contributes to the training only and is of no purpose in
prediction mode. Thus, removing the request decoder layers speeds up the
prediction performance of our architecture.

3.2.2. General Architectural Details

Our detection system expects the input features grouped into two categories:
text input and meta input. Text input consists of the path, query, and referer,
so all features that build on text-based input. It has a total length of 620

tokens per request. Meta input, in turn, uses the categorical features HTTP
verb, day-of-week, time-of-day, request-time-delta, browser, and operating system.
The features sum up to a total length of 30 input nodes. Splitting the
features into the two categories takes place in the input pipeline. Despite its
name, the pipeline does not only provide the input data for the network.
It also provides the target output data. The decoders use the same feature
categories as the encoders. To sum up, the model expects two inputs (text
input, meta input) and provides four outputs. We refer to the outputs as
request text output, request meta output, behavior text output, and behavior meta
output.

Dividing the features into text-based features and meta features is due to
the different nature of the features. Meta features are categorical features
represented in a one-hot encoding. The individual features do not contain
any sequential information. Text-based features, in contrast, are a sequence
of characters where the order does matter. Handling the features differently,
therefore, potentially increases the Autoencoder’s overall performance.

The output format of text features differs from its input format. The input
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layer accepts the tokens as integers, while the output layer generates one-hot
encoded tokens. For meta features, both the input and output are one-hot
encoded. The encoding of text features is necessary because tokens with
close numbers are not necessarily related to each other, which would be
the case when using embeddings. For example, if the target token has the
value 222, it is not possible to tell in general if a prediction of 221 or 42 is
closer to the target. However, changing a prediction from 222 to 42 would
require bigger weight changes compared to a transition from 222 to 221.
The one-hot encoding ensures that the transitions are equally expensive. We
avoided the one-hot encoding of the input layer because this would result
in a significantly larger network.

While developing the architecture, we found out that bidirectional GRUs
are superior to unidirectional GRUs concerning reconstruction quality. A
bidirectional setup processes the sequence twice. One GRU processes the
sequence in a forward pass, the second GRU processes it in reversed order.
Addition, multiplication, average, and concatenation are the standard techniques
available to combine the results of the two passes. In our final architecture, all
bidirectional GRUs concatenate the outcome of the forward and backward
pass.

Throughout the following architecture description sections, we adopt the
layer names used by Keras. We use Keras to implement the proposed
architecture. While the majority of names are self-explanatory, we note that
Dense layers describe a fully-connected layer. The AttentionWithContext layer
used in the behavior Autoencoder is a custom layer not deployed with Keras.
It implements the attention mechanism Yang et al. [Yan+16b] defined. For
implementation details, we refer to Listing B.1 in Appendix B.

3.2.3. Request Autoencoder Details

Finding a good compression for the individual requests is the assigned
task of the request Autoencoder. Figure 3.3 shows the Autoencoder we
designed to accomplish this task. For the sake of illustration, we attach the
transformation layers to the corresponding main layers. Listing A.1 and
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Listing A.2 in Appendix A give detailed layer descriptions as generated by
Keras.

The Autoencoder expects a sequence of requests as input. First, it splits
the sequence into its individual requests. Then, it applies the encoder and
decoder to each of the requests. Finally, the reconstructed requests form a
sequence again. Ideally, the output sequence matches the input sequence
exactly.

The request Autoencoder can only take information about the current
request and none of the neighboring ones into account. At the same time,
the request compression must work independently of the location. Location
independence means compressing a request equally on any given sequence
position. We prevent the mixing of information from individual requests by
using a separate Autoencoder instance for each item of the sequence. The
instances share their weights and biases to keep the location independence
property intact. Additionally, sharing the parameters keeps the size of the
model small.

The encoder first uses a Dense layer to reduce the sequence length for
the following bidirectional GRU layer. The number of nodes the Dense
layer uses is half the size of the input layer. Reducing the sequence length
speeds up the training. Another Dense layer then combines the two input
branches.

As far as possible and useful, the decoder is symmetric to the encoder.
Therefore, the decoder also uses Dense and bidirectional GRU layers. We
highlight two interesting aspects of the decoder. First, the last Dense layer of
the text branch has the sole task of transforming the tokens of the generated
sequence into a one-hot encoded representation. Second, the first Dense
layer of the meta branch is overcomplete. It has 200 nodes, whereas the final
output layer requires only 30 nodes. However, the Dropout layer following
that large Dense layer has an untypical dropout rate of 0.2. SAEs inspired
this structure, which allows individual nodes to focus on different features.
The network can learn a large number of different data relations this way.
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Figure 3.3.: Architecture of the request Autoencoder. WS stands for the selected window
size.
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3.2.4. Behavior Autoencoder Details

The task of the behavior Autoencoder is mining user behavior based on a
sequence of compressed requests. We require the behavior Autoencoder to
reconstruct the input sequence shifted by one request. This implies that the
newest request to reconstruct is not part of the input. The shift prevents
any memorization effects for input data and forces the Autoencoder to
learn behavior. Figure 3.4 shows the layers used for the behavior Autoen-
coder. Listing A.3 and Listing A.4 in Appendix A give the layer description
generated by Keras.

The behavior encoder expects the sequence of compressed requests as input.
Therefore, a transformation layer combines the latent spaces of the individ-
ual request Autoencoders to a sequence. The bidirectional GRU returns not
only the state after the last sequence item but all interim steps as well. An
AttentionWithContext layer uses the interim steps and reduces them to a
128-dimensional latent space representation. AttentionWithContext is a cus-
tom layer not shipped with Keras. It implements the attention mechanism
Yang et al. [Yan+16b] proposed. With this mechanism, the network learns on
which areas of the sequence it must focus. The attention mechanism works
context-aware. We refer to Listing B.1 in Appendix B for implementation
details.

The decoder then reconstructs the full requests from that one-dimensional
latent space. The branch of the decoder creating the text-based features and
the branch creating the meta-features are not sharing any layers. They work
independently of each other. The branch responsible for the text output
first uses a GRU layer to create a sequence of requests. Next, a Dense layer
transforms each of these requests, which are in no meaningful representation
at this moment, into the correct one-hot encoded representation. The branch
creating the meta-features consists of two Dense layers and a Dropout
layer in between them. This Dropout layer’s sole purpose is to prevent
overfitting.

The performance of a model also requires a set of hyperparameters aligned
with the architecture. The next section explains the model’s hyperparameters.
It gives details about the inspected ranges, as well as the finally chosen
value for each of the discussed parameters.
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Figure 3.4.: Architecture of the behavior Autoencoder. WS stands for the selected window
size.
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3.3. Hyperparameter Search

Hyperparameters are crucial for a well-performing neural network. Finding
a good set is challenging, as the number of hyperparameters explodes
when increasing the complexity of the architecture. By using a random
search-based approach, the chances of finding a well-performing set of
hyperparameters increase. Random search does not guarantee to find the
best set of parameters, but it usually finds a good one early in the process.
The following paragraphs describe the tested hyperparameters and list the
corresponding value ranges we inspected.

Batch size. The batch size strongly influences the time needed for training.
We tested batch sizes of 32, 64, 128, and 256 samples. The batches
are multiples of two, so the Graphical Processing Unit (GPU) can
process them optimally. In terms of epochs, small batch sizes boost the
decrease of the loss compared to large batch sizes. However, the total
number of calculations per epoch increases with small batch sizes.
More operations then increase the needed training time per epoch. A
batch size of 64 delivered the best trade-off between the total number
of operations and loss optimization speed.

Window size. The window size affects the model’s ability to learn behav-
ior. The longer the sequence, the more information about the usage
behavior the model can extract. However, increasing the window size
also increases the computational costs of the training. Window sizes
tested during the architecture development process ranged from five
to 20 requests. Using large window sizes caused memory exceptions
for some of the more complex architecture candidates. Therefore, we
use the final window size of five.

Activation function. Fully connected layers require a non-linear activation
function. Figure 3.3 and Figure 3.4 show the activation functions
for the individual layers. The output layer of the text-based features
uses the softmax function. We chose the softmax because it favors
single activations along a given axis, which fits the requirement of
one-hot encoded data perfectly. The meta output layer represents a
concatenation of several class-based features. Each class requires the
activation of one node. Therefore, we use the logistic function. Its
output is in the range x ∈ [0, 1], which fits the requirements better
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than other activation functions. For interim layers, a combination of
tanh and ReLU showed the best performance.

Loss function. A combination of loss functions quantifies the model’s per-
formance. For the two text output branches, we use the categorical
cross-entropy. The loss of the two meta feature branches is calculated
with the binary cross-entropy.

Optimizer. We use the optimizer Adam [KB14] for the parameter updates.
Although it is computationally more expensive than SGD, it usually
outperforms SGD and the other optimizers. As the initial learning rate,
we use the one the paper suggests, which is 0.001.
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The quality of the dataset used for any machine learning-based project
influences the prediction performance significantly. Therefore, this chapter
describes the origin of the data and the preprocessing steps performed. The
chapter starts with the general aspects of datasets. They are different regard-
ing scope, availability, and level of detail. It then describes the characteristics
of the selected dataset. Additionally, it gives some general statistics about
the set. Finally, the chapter explains the preprocessing steps required for
each feature.

4.1. Dataset Selection Process

Selecting a dataset is one of the earliest tasks in any data-driven project.
Notwithstanding, it is a very crucial task. The selected dataset significantly
impacts the chosen preprocessing steps, algorithms, and corresponding
hyperparameters. Therefore, we explain the key aspects of datasets in the
following. We start by discussing general aspects. Then, we shift the focus
towards log file-based datasets and their characteristics.

4.1.1. General Categorization of Datasets

Target knowledge, origin, and availability are three important properties of
datasets. The properties apply to datasets in general and are not specific to
our domain. The following section discusses the properties and essential
aspects.
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Labeled or Unlabeled. Labeled datasets contain a target output value for
each sample. Assigning labels to the samples is work-intensive and
sometimes even infeasible. Therefore, they are usually harder to ob-
tain. Whether a dataset is labeled or unlabeled influences the set of
algorithms available to choose from substantially.
Depending on the dataset, the correct label for a sample might not be
evident. Thus, labeling is an error-prone task. Showing the sample to
multiple persons and performing a majority voting reduces the number
of wrongly labeled samples. Systems like reCAPTCHA [Von+08] force
users to label new samples while still offering a benefit to them.

Real or Simulated. Generating a dataset that represents real data is chal-
lenging, independent of the specific domain. Additionally, simulated
data might not represent real-world data. Generating the data is so
complex that it is sometimes published separately from the work
building on the data. The uncertainty about applying the results to
real-world data encourages authors to commit to the dataset details
early on. This way, they can rule out any dataset changes for a better
performance of their model.

Public or Private. Sets are either available publicly or kept private. While
most generated datasets are released to the public, real-world datasets
are typically kept private. Typical reasons to keep the datasets private
are privacy concerns and the fear of exposing sensitive data. How-
ever, properly anonymizing a dataset is challenging. Every change
in the raw data could impact the performance of the model on non-
anonymized data. Tuor et al. [Tuo+17] also argue that anonymizing
data can alter relevant relations in the dataset. When the anonymiza-
tion strategy contains flaws, an attacker can undo the process. For
instance, Narayanan and Shmatikov [NS08] deanonymized users in
a dataset of movie ratings released by the online movie streaming
service Netflix1.

1https://netflix.com
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4.1.2. Characteristics of Cybersecurity Datasets

Numerous studies [YA17; SLG18; Rin+19] have evaluated the strengths
and weaknesses of publicly available datasets. The authors focused on
datasets intended for intrusion detection and cybersecurity-related tasks.
To summarize their findings, one can claim that the quality, as well as the
structure of the individual datasets, varies widely. This section highlights
the most noteworthy differences between the datasets.

Dataset format. Different formats to store datasets are available. The best-
suited format depends on the structure of the data. A frequently used
format for network captures is the so-called PCAP2 format. Most traffic
recording tools available for Windows or Linux support the binary
file format. In general, dumps of the raw network packets prefer
the binary format. The structure of the packets is strictly defined,
and numerous tools for reading and writing the packets exist. In
contrast, application data like log files and processed data network
flow summaries usually use a text-based format. Their structure varies
widely between applications. Text-based formats are more convenient
to work with for humans.

Scope. The scope of a dataset defines which data are included. Some
datasets contain all network devices of an organization, others focus
on subsets of clients, and others only contain information of a single
client. Additionally, datasets can be limited to a single application.
Often the datasets streamline the requests of multiple clients and bots
into a single dataset. This work requires several requests per user to be
present in the set. Otherwise, it is not possible to extract user behavior.

Level of detail. Datasets expose a significant variation in their level of detail.
While some network-based datasets contain the full network traffic,
others contain header information only. Yet other datasets alter the
header information, too, during anonymization. In contrast, appli-
cation log data contain no network header information whatsoever.
Instead, they contain the application data missed in most network
traffic-based sets. Therefore, which dataset suits best depends on the
attack to be detected.

2https://www.tcpdump.org/pcap/pcap.html
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Based on the presented characteristics, we selected a dataset for this the-
sis. The following section presents the dataset and provides some general
statistics about the set.

4.2. Selected Dataset

Zaker [Zak19] recorded the dataset we selected for our work. We require
a dataset containing valid traces of multiple users. It should not contain
parameter brute-force attacks or comparable attacks. The dataset is publicly
available and composed of log entries of an online store. The recording
began on 22/Jan/2019 at 00:00 UTC and ended on 26/Jan/2019 at 17:00 UTC.
The set was captured on an Nginx3 web server and resulted in 10,365,152

records in total. Each line of the dataset file represents an HTTP request
logged by the server in the Combined Log Format. The fields actually filled
with values are source IP, timestamp, HTTP verb, path, HTTP version, response
status code, response size, referer, and user agent. Table 4.1 shows one record
present in the dataset as an example. The dataset contains 36,044 different
source IPs that issued 40 requests on average. The source with the most
entries counts 353,483 requests. The requests use the HTTP methods GET
and POST only. Since the store was hosted on the Iranian top-level domain
.ir, the log file contains Arabic characters in an HTML-encoded format.

4.3. Data Preprocessing

Preprocessing describes the process of transforming the raw base data
into a format that suits a neural network. We start by splitting the log
lines into individual features. The individual features undergo additional
preprocessing steps based on their metric. During the next step, we group
the requests: Requests from a single user within a defined period form a
session. Finally, the sessions are split into a training, validation, and testing
set. The following sections explain the process applied to the raw text-based

3https://www.nginx.com/
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5.160.157.20 - - [22/Jan/2019:03:56:49 +0330] ”GET /browse/blu-
ray HTTP/1.1” 301 178 ”-” ”Mozilla/5.0 (Windows NT 5.1; rv:8.0)
Gecko/20100101 Firefox/8.0” ”-”
Source IP 5.160.157.20

Date 22/Jan/2019:03:56:49 +0330

HTTP Method GET
Path /browse/blu-ray
Protocol Version HTTP/1.1
HTTP Response Status Code 301

Response Size 178

HTTP Referer -
User Agent Mozilla/5.0 (Windows NT 5.1; rv:8.0)

Gecko/20100101 Firefox/8.0

Table 4.1.: Example entry from the log file used as dataset [Zak19] for this work. It lists
essential fields and provides the value of one entry as an example.

log lines. They also cover the preprocessing steps required for the individual
features.

4.3.1. User Session Extraction

We start with an ordered log file, containing all requests to extract user
sessions. The first step splits this stream of requests into user sessions. We
identify users based on their IP address. A filter removes sessions that
origin from bots. Another filter removes requests that do not contain a
substantial number of requests. Short sequences do not expose learnable
usage behavior. Request parsing and filtering reduce the total number of
requests to 1,869,536. The following paragraphs explain the individual steps
in more detail.

Line Parsing

The log file contains one request per line. We rely on regular expressions
to extract the individual fields from each request line. Table 4.2 shows
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Source IP / Hostname [0-9a-zA-Z.\-_]+

Date \[([0-9:/A-Za-z]+ (-|\+)[0-9]+)\]

HTTP Method (GET|POST|PUT|DELETE|PATCH)

Path ([0-9a-zA-Z/_\-.%|,]+)

Query String (\??[0-9a-zA-Z/_\-.=?&^*%@\\|,+:()

\[\]{}’! ;~$§"<>#]+)?
Protocol Version HTTP/([0-9\.]+)

HTTP Status Code ([0-9]{3})

Response Size ([0-9]+|-)

HTTP Referer "([^"]+)"

User Agent "([^"]+)"

Table 4.2.: Regular expressions used for the individual fields during feature extraction.

the regular expressions. They do not match 36,044 records. Non-matching
records either use an unsupported HTTP method or are not valid HTTP
requests at all. Supported HTTP methods are GET, POST, PUT, PATCH,
and DELETE. HEAD and OPTIONS requests are present in the dataset but
not matched by the parser because they represent preliminary requests.
Requests with one of the supported verbs follow such requests. The fields
extracted from each log line are the HTTP method, path, query-string, user
agent, timestamp, referer, and time of the request.

Session Extraction

In the next step, we extract sessions from the streamline of requests. IP
addresses serve as an identifier to distinguish between different users and
devices. Unfortunately, IP addresses alone do not provide sufficient informa-
tion to identify users uniquely. For example, networking techniques such as
Network Address Translation (NAT) hide numerous users behind a single
public IP address. However, IP addresses are the best-suited criteria present
in the dataset. In the selected dataset, it is not possible to track users across
different IP addresses due to the lack of a user identifier token. Users may
end up using different IP addresses when they switch from their mobile
data connection to Wi-Fi, for example.
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A period of 30 minutes without any request from the user closes a session.
Requests received after an idle time open a new session. Compared to the
approach presented by Jiang et al. [Jia+16], splitting the sessions of the same
source based on the idle time only is a somewhat naı̈ve approach. Jiang et al.
use additional information like an empty referer to detect the starting point
of new sessions. However, the dataset does not contain a ground truth for
user sessions. This way, it is not possible to tell whether a more sophisticated
approach delivers better-divided sessions at all. We decided to stick to the
basic approach for this reason. The user session splitting leads to 337,874

identified sessions with an average length of 31 requests per session.

Session Filtering

A session has to contain a minimum number of requests so our system can
learn usage behavior characteristics. Therefore, a filter excludes all sessions
containing less than 20 individual requests. Another filter drops sessions
exceeding a total of 100,000 requests. The filter found two sources where the
number of requests is that large. Additionally, the filter drops sessions with
no idle time for several hours. We consider this as an indicator for multiple
users sharing an IP address. As this distorts the user behavior, we decided to
exclude these users. A third filter removes all sessions caused by bots or web
crawlers. The filter relies on the user agent field, as crawlers usually identify
themselves with a custom user agent. In contrast to humans, crawlers aim
to visit all subpages of a homepage. Their browsing patterns differ from
the patterns humans expose. Attackers could try to bypass the protection
system by faking a crawler’s user agent. Because critical data require prior
authentication, crawlers should not be able to access such data. Thus, an
attacker would learn only about information already available publicly. It is
crucial to filter the requests before splitting the data into training, validation,
and testing sets in order to keep the size ratio of the sets intact. Table 4.5 lists
the number of requests for each identified bot. The filtering left 1,869,536

requests separated into 50,690 sessions.
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4.3.2. Set Splitting

After extracting the user sessions, we partition the sessions into a training,
validation, and testing set. The first fifth of the whole dataset represents
the testing set. The remaining larger part serves as the source for the other
two sets. One fifth represents the validation set, and the other four fifths
represent the training set. We apply the ratio to the sum of requests, and
not to the number of sources. As a result, the training set ends up being the
largest set with 64.95% of data from the filtered dataset. It contains 32,938

sources and 1,214,280 requests. The validation set contains 15.87% of the
filtered dataset. It consists of 8,045 sources, with a total of 296,434 requests.
The testing set contains 9,707 sources and 358,822 requests.

4.3.3. Feature Preprocessing

An important subtask of preprocessing is transforming the features into
the target format. One field present in the log file can serve as a source for
more than one feature used as input to the neural network. For example, we
extract features like the weekday, day-of-year, or week-of-year from the request
timestamp.

Common other tasks include transforming text into a numeric representa-
tion, as well as standardizing or normalizing data. When standardizing data,
they are transformed to expose a standard deviation σ of 1 and a mean µ of
0. In contrast, when normalizing data, the value range is changed to be in
the interval [0; 1]. Possible value ranges are only selected from the training
and validation set. The final model evaluation is the only phase that can use
the test set. Any selected hyperparameters rely on the other two sets only.

In the following, we describe the extracted features. We also explain the
applied preprocessing techniques. First, we handle all features transformed
into a categorical representation. Afterward, we give details about the text-
based features.
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Figure 4.1.: Distribution of requests over weekdays. The dataset recording started on Tues-
day and lasted for four more days. For this reason, the chart does not contain
all weekdays.

Categorical Features

The first extracted feature is the HTTP request method. Initially, the data
extraction logic supported GET, POST, PUT, PATCH, and DELETE verbs.
However, as the dataset only uses GET and POST, we considered only those
two in the subsequent steps. This decision keeps the network size smaller.

The timestamps of the HTTP requests serve as the data source for three
different features. First, we put requests into classes based on the day of the
week they were sent. While the behavior of users is likely the same during
working days, it might be different on weekends or holidays. Figure 4.1
shows the distribution of requests over weekdays. As the request collection
period lasted for five days only, the dataset does not contain requests for
every day of the week.

Another extracted feature is the request timestamp. It describes the time a
user issued a request. We decided to use four classes. Each class contains
requests of six hours. The borders that separate the classes are at 06:00 AM,
12:00 AM, 06:00 PM, and 12:00 PM.
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Delta Range Test Valid Train Total
0 ≤ ∆t < 10 339,997 279,139 1,145,372 1,764,508

10 ≤ ∆t < 120 16,237 15,003 59,241 592,417

120 ≤ ∆t < 660 2,019 1,759 7,253 42,271

660 ≤ ∆t < 960 249 224 1,008 1,481

960 ≤ ∆t ≤ 1800 320 309 1,405 2,034

Table 4.3.: Classes of idle time between two subsequent requests of a user, including the
number of assigned requests. The maximum value possible is 1,800 seconds (30

minutes). Idle times exceeding that limit trigger the creation of a new session.

Class Name Test Valid Train Total
Unknown / Other 8,605 7,994 31,555 48,154

Firefox 35,172 28,279 122,726 186,177

Chrome 260,594 215,322 875,728 1,351,644

Edge - - - -
Internet Explorer 805 788 3,652 5,245

Safari 53,646 44,051 180,619 278,316

Table 4.4.: Number of requests issued by the given browser on a per-set basis. Browsers
identified based on the user agent.

Finally, we use the time difference between the current and previous request
as a feature. Although the time difference could be represented as a number,
too, we decided to use classes of deltas. The classes reduce the effects of
timing differences caused by the network or devices between client and
server. Table 4.3 shows the defined classes and gives the number of samples
per class. It also shows the idle time ranges used to classify the requests.

The last two features rely on the user agent field. The first describes the
device of the user. The second the used browser. Detecting the users’ browser
and device relies on a straightforward approach. Our system checks the
presence of terms associated with a given browser or operating system. It
extracts browser and device information separately. Table 4.4 lists the classes
available for browsers and also shows how many entries belong to a given
class per set. Similarly, Table 4.5 shows the classes per device. Table 4.5
includes bots as well that we filtered earlier in the preprocessing pipeline.
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Class Name Test Valid Train Total
Unknown / Other 3,078 4,175 18,011 25,264

Windows NT 65,246 51,252 214,519 331,017

Macintosh 793 696 3,057 4,546

Linux 736 755 2,856 4,347

Android 251,420 209,088 850,188 1,310,696

iPhone, iPad 37,549 30,468 125,649 193,666

Googlebot - - - 801,797

Bingbot - - - 197,769

AhrefsBot - - - 57,178

Table 4.5.: Number of requests originating from the given device or system. System detec-
tion is based on the user agent. No numbers per set are available for bots and
crawlers because these requests were excluded before the splitting took place.

Text-Based Features

In general, neural networks need numeric input. However, path, query,
and referer features are text-based. Hence, they need to be transformed
first. A standard approach to transform text-based features into a neural
network-friendly format is to tokenize the text. Embeddings can enhance
the representation of these tokens. Tokenization supports word-based and
character-based approaches. For word-based tokenization, advanced tech-
niques can detect names of institutions, places, and objects. However, the
simple variant is sufficient for URL tokenization.

We refer to the set of words known by the tokenizer as vocabulary. To prevent
it from becoming exorbitantly large, we introduce thresholds. They ensure
that the vocabulary consists only of words that occur more than a specified
number of times. Limiting the vocabulary size is more critical for word-based
tokenization. Nevertheless, Table 4.6 shows vocabulary sizes for different
thresholds for both approaches. We order the tokens by occurrence so that
less frequent ones can be removed later in the process if needed. Tokenizers
should access only the training set and validation set to build the vocabulary.
The lowest indices typically represent special tokens like UNKNOWN or
PADDED. We performed both word-based and character-based tokenization
to keep flexibility during architecture development.
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≥ 1 ≥ 2 ≥ 3 ≥ 4
Character-based 234 232 215 211

Word-based 310,654 71,682 58,750 53,054

Table 4.6.: Vocabulary sizes for different minimum numbers of occurrence of tokens. Shows
numbers for character-based and word-based tokenization.

Total Lengths Chosen Percent not Truncated
Test Train Valid Length Test Train Valid

Path (char) 163 397 160 140 99.99% 99.99% 99.99%
Query (char) 5,401 5,394 5,206 160 98.62% 97.12% 99.16%

Referer (char) 1,229 1,414 1,329 320 99.99% 99.99% 99.99%
Path (word) 31 78 33 32 100.00% 99.99% 99.99%

Query (word) 561 569 559 128 99.88% 99.87% 99.92%
Referer (word) 146 230 118 96 99.99% 99.99% 99.99%

Table 4.7.: Comparison of tokenized sequence lengths for the features path, query, and
referer. It shows the maximum length, our chosen length, and the percentage of
requests entirely representable with the chosen length per set.

We determined the maximum length of the path, query, and referer fea-
tures to account for varying lengths of URL sequences. This is needed for
designing a network capable of handling the request sequences. Sequences
tokenized with a character-based approach tend to be longer than sequences
tokenized in a word-based manner. Table 4.7 shows the maximum value
found in the corresponding set. The table also shows the length we chose for
our architecture and for which percentage of requests this is still sufficiently
long for full representation.

In the next step, we evaluate the performance of our proposed system.
We use the dataset discussed in detail in this chapter. The model first
goes through a training phase. Following the training phase, we evaluate
the detection performance. The next chapter explains in detail the steps
performed, as well as the metrics used.
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In this chapter, we focus on the outlier detection performance of the de-
veloped system. The chapter first explains how we trained the model and
which technologies we used. In addition, we list the hardware details of the
system in charge of the training. We then discuss the methodology used for
assessing the performance. The evaluation is based on two capabilities. First,
we require a low reconstruction error for valid sequences. Second, the model
must detect anomalous behavior. Following that, we introduce the metrics
required for assessing the model’s performance. The final section shows
plots of the model’s performance and interprets them. We also discuss some
architecture candidates we tested that did not perform as expected.

5.1. Neural Network Training

Improving the performance of a neural network needs many epochs. The
network processes the full training set once per epoch. Furthermore, it
improves its generalization capabilities during each run. The sum of all
epochs is called the training phase. The following section first focuses on
the tools used for implementing the training framework. It then describes
the hardware setup. Finally, it shows how the reconstruction loss and the
reconstruction accuracy developed over the epochs.

5.1.1. Development Tools

We developed a framework based on TensorFlow and Keras. The frame-
work loads a model definition, performs the training, and logs valuable
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information. Valuable information includes (1) training progress concern-
ing loss and accuracy, (2) epoch durations, (3) run configuration details
for reproducibility, (4) model architecture details as an image as well as
in the machine-readable JSON format, and (5) checkpoints of the model
created during training. It further supports exchangeable loss functions and
early stopping. The framework accepts parameters via the Command Line
Interface (CLI) to change the default values.

TensorFlow1 serves as a foundation for creating and training the neural
network. It is developed by Google and is a dataflow graph-based library
for numerical computations. TensorFlow is popular for machine learning-
related tasks. Although funded and developed by Google, its code is avail-
able publicly. For many operations, TensorFlow includes kernels targeting
Computer Processing Units (CPUs), Graphical Processing Units (GPUs), or
Tensor Processing Units (TPUs). During execution, the library dynamically
chooses the correct kernel depending on which device it schedules the oper-
ation. TensorFlow also provides an input pipeline in the tf.data namespace.
It represents a fast way of loading the data and transforming them into a
format accepted by the model.

TensorFlow supports distributed training on multiple servers. As models
independent of the problem domain tend to increase in size, distributed
training became a key advantage of TensorFlow. Therefore, updates of the
library optimize its distribution strategy. Raschka and Mirjalili [RM19] list
major changes between TensorFlow 1.X and TensorFlow 2. The most severe
change targets the computation graph creation. The library determines the
best order of execution for the operations based on the computation graph.
It also tries to distribute the operations across the available devices ideally.
With TensorFlow 2, the maintainers enhanced the auto-generation of the
graph. This allows developers to define models in a way more native to
python compared to the old version.

Besides TensorFlow, which provides access to the low-level operations, we
also use Keras2 for implementation. Keras is a neural network abstraction
framework that provides common layer types ready to use. Custom lay-
ers integrate into the library seamlessly. Initially, Keras supported other

1https://www.tensorflow.org/
2https://keras.io/
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backends beside TensorFlow, too. However, TensorFlow 2 fully integrates
Keras and should be favored over the multi-backend version. Géron [Gér19]
defines Keras as being a Deep Learning API that eases the development
and execution of models. The literature refers to the TensorFlow specific
version as tf.keras.

5.1.2. Hardware Setup

Training large amounts of data requires a reliable hardware setup for optimal
performance. Initial tests for a new architecture are feasible with a notebook.
However, training the full dataset is not. A single epoch can last for several
hours, and training lasts for several epochs. Hence, training a model on a
consumer device may entail interruptions of the training process. Server-
side training is prevalent in avoiding the mentioned problem. Besides that,
dedicated GPUs for datacenters exist that speed up the training.

For our work, we had access to two server clusters to train our neural
network. First, the institute runs a cluster on which we trained the early
architecture models. Later, we used servers running on the Google Cloud
Platform (GCP). Table 5.1 shows the specifications of the hardware. We also
list the CUDA Compute Capability. It tries to make GPUs easily compara-
ble with a single metric. The higher the value, the more instructions the
GPU supports. More instructions available usually leads to better training
performance.

The GCP supports different graphics cards depending on the region [Goo20].
We chose the listed GPU because it provides the best price-performance
ratio. Which card performs best strongly depends on the type of layers used
by the model to be trained. Dettmers [Det19] defines the following order of
precedence for convolutional and recurrent networks, respectively:

Convolutional networks and Transformers:
Tensor Cores > FLOPs > Memory Bandwidth > 16-bit capability

Recurrent networks:
Memory Bandwidth > 16-bit capability > Tensor Cores > FLOPs
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Notebook IAIK Cluster GCP
CPU Model i7-7820HQ i9-9900K var.
(v)CPUs 4 16 6

Clock Speed [GHz] 2.9 3.6 2.0 - 2.6
RAM [GB] 32 64 44

Graphics Card GeForce Quadro M2200 GeForce RTX 2070 Tesla T4

CUDA Capability 5.2 7.5 7.5
VRAM [GB] 4 8 16

VRAM Type GDDR5 GDDR6 GDDR6

Clock Speed [MHz] 1036 1620 1590

Memory Bus [bits] 128 256 256

Bandwidth [GB/s] 88 448 320

FP16 [TFLOPS] - 14.93 65.13

FP32 [TFLOPS] 2.122 7.465 8.141

FP64 [GFLOPS] 66.3 233.3 254.4
CUDA Cores 1024 2304 2560

Tensors - 288 320

Table 5.1.: Hardware specifications of used training platforms. Google automatically
chooses the CPU model for instances running on the Google Cloud Platform
(GCP). It runs on the Intel Skylake CPU platform or one of its predecessors.
GPU specifications compiled from TechPowerUp [Tec17; Tec18a; Tec18b].
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Figure 5.1.: Loss and accuracy development of the request Autoencoder.

Each individual building block of the architecture requires different hard-
ware capabilities. Hence, cloud platforms are especially valuable in the
initial architecture development phase. The testing of numerous different
architectures is unavoidable in the initial phase. The option to change the
underlying hardware easily supports the training process ideally.

5.1.3. Training Phase

We started the training process with a defined target of 20 epochs. This
number of epochs was sufficient in preliminary runs on a subset of the data.
However, the development of the loss indicated that the optimal capacity
was still not reached after the 20 epochs. The model resided in the region
of underfitting. Therefore, we resumed the training for another 20 epochs.
When resuming the training, the random initialization values are replaced
with the last model state. At the end of the resumed training, the model
showed the first indices of overfitting. The generalization gap started to
increase. Figure 5.1 shows the development of the loss and accuracy of the
request Autoencoder. Similarly, Figure 5.2 plots the loss and accuracy of the
behavior Autoencoder. In total, the full training with 40 epochs needed 6d
4h 32m on the GCP. Consequently, one epoch took approximately 3h 42m.
The evaluation script ran for additional 21h 15m on the GCP.
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Figure 5.2.: Loss and accuracy development of the behavior Autoencoder.

Before starting the training, we configured a checkpoint callback provided
by Keras. The callback creates a copy of the current state of the model after
each epoch. Alternatively, it can create copies only if the loss improved. We
decided to store copies after each epoch based on an observation: In some
cases, the accuracy increases while the loss stays the same or is negligibly
worse. However, the model with a slightly worse loss but significantly better
accuracy likely performs better in detecting anomalies.

Based on the performance of the two Autoencoders, the models after 22 and
36 epochs were the final candidates. We finally selected the model after 36

epochs. We prioritized the performance of the behavior Autoencoder over
the performance of the request Autoencoder. The selected model performs
better on the validation set than the other model. This indicates that the
model generalized better due to the additional epochs.

The metrics continuously improved with only a few minor exceptions for
the first 20 epochs. This changes for the remaining 20 epochs. A likely
reason for this behavior is the resuming of the training. The optimizer state
was lost during this step. This means the learning rate for the individual
parameters was reset to the initial value. Nevertheless, the trend of the loss
and accuracy indicates that a new training run without interruption would
not lead to better results. However, we note that the curves would have
developed smoother if we had saved the optimizer state as well.
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5.2. Evaluation Methodology

The following section explains the method used to evaluate the performance
of the detection system. Since Autoencoders try to reconstruct the input, the
reconstruction error is the key metric used for classifying outliers. However,
the absolute value of the reconstruction error relates to the architecture of
the model and is not informative on its own. Despite the architecture, the
cost function also influences the absolute error. Percentages of anomalous
classified samples fit the needs better than absolute error values when
comparing different models.

The evaluation approach is split into two subareas. First, we show that the
detection system is capable of learning behavior and applying the learned
information to previously unseen data: the test set. Following that, we use a
set of anomalous behavior traces and show that the average reconstruction
error is larger compared to the test set. The larger reconstruction error
indicates that the detection system can detect anomalous traces as such. We
also explain how we generated the anomalous traces.

5.2.1. Generalization Capability

The first evaluation criterion shows the model’s capability to generalize
based on the training set and the test set. Therefore, we start with querying
the model with a set of samples it has already seen during the training.
We select a threshold based on the reconstruction errors measured at this
step. The threshold defines the maximal reconstruction error allowed for
a benign sequence of requests. Samples with higher reconstruction errors
are classified as anomalous request traces. We select a threshold so that
99.9% of the request sequences seen during the training produce a lower
reconstruction error. We chose such a high percentage because we expect the
input dataset not to contain any invalid sequences. However, the network
might struggle to reconstruct individual request traces for undefined reasons.
Allowing a low number of such requests minimizes the overall impact of
this issue.
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Following that, we feed the test set into the model. It classifies the samples
as malicious or benign based on the threshold determined earlier. A slightly
higher number of anomalous samples is expected due to the generalization
gap. However, the better the model generalized, the lower the difference
between the training set and test set gets.

Although the presented evaluation approach shows the model’s ability to
reconstruct the input sequence, it does not guarantee a well-functioning
anomaly detection system. If the model did not generalize well, it might
simply reconstruct known samples as bad as unknown ones. Therefore, we
show that the system can detect anomalies with the next set.

5.2.2. Outlier Detection Capability

The second criterion evaluates the model’s ability to detect outliers. However,
the original dataset contains only valid sequences of requests. Therefore, we
generated an anomalous set of user traces. We obtained a labeled dataset by
combining the anomaly set and the training set. Based on the labeled dataset,
we can determine how many samples our system classifies correctly.

Generating anomalous traces is challenging. We decided against generating
anomalous traces from scratch. Instead, we take valid traces and change
parameters. Anomaly detection rates based on a generated dataset must be
taken with caution for two reasons. First, making only minor changes to
the requests might keep them too similar to valid ones. Second, changing
the requests too much might result in requests no longer representing real-
world ones. We decided to include this metric to show the detection of
anomalies, and also decided not to change requests too drastically.

The test set serves as ground truth for valid user sessions. After applying
filters, the total number of sessions remaining was 9,707. Session candidates
must have at least 20 requests and at most 60. Next, we randomly select one
sequence of requests for each session. Henceforth, we refer to this selection
of requests as a trace. The length of each trace equals the window size. We
then apply the changes explained in the following scenarios. The scenarios
result in a total of 94,340 traces. In contrast, the test set consists of 1,082,528

traces. Thus, the combined dataset contains 8,02% of anomalous requests.
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Scenario 1: Change Browser and Device Class

The first scenario focuses on credential abuse attacks. An attacker abusing
credentials is likely to use a different browser or operating system. This
scenario enforces an additional constraint on the set of session candidates.
The traces must use the same browser class and device class throughout
the whole session. Enforcing this requirement reduces the set to 9,252 valid
sessions. In total, this scenario contributes 55,512 anomalous traces to the
outlier set. We apply four different substitutions to the trace candidates.

First, we replace the browser value with a randomly selected other browser.
We do not incorporate any heuristics or restrictions to the browser selection.
We substitute the browser value on all requests of the selected trace.

Second, we apply the same substitution just explained with the browser
category to the device category. The restrictions described earlier also apply
to the used devices.

Third, we combine the first two variants. Using a different browser when
using a different device is realistic. One might use Chrome on the mobile
device, and Firefox on the computer.

Finally, we again change the browser and the device category. However, in
contrast to the first three variants, we alter only the last request of the trace
this time.

Scenario 2: Move Requests to Weekends and Vice Versa

The second scenario builds on the hypothesis that users behave differently
on weekends compared to weekdays. Users cannot use the online shop
while at work, for example. Therefore, we change the date of requests issued
on a day during the week to weekend days and vice versa. Since we change
only the day of the requests, other information like the time difference
between two requests stays intact. This scenario adds additional 9,707 traces
to the set of generated requests.
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Scenario 3: Change Time Delta Between Requests

In the third outlier scenario, we alter the time deltas between the requests of
a trace. We use two different variants. First, we randomly select a different
time delta class for each request. Second, we select a different delta for the
first request and apply this class to the remaining requests. The scenario
builds on the hypothesis that an attacker misusing someone’s credentials
exposes a different behavior when issuing requests. The attacker might
not be familiar with the user interface, for example. Hence, the attacker
has to search the correct menu items to click on. Alternatively, the attacker
might have automated certain actions. This scenario adds 19,414 traces to
the generated set.

Scenario 4: Change Request Trace

The final scenario alters the request trace. For each trace, we randomly
remove one request. Removing one request from the observed behavior
likely indicates deviating behavior. However, this is not guaranteed as the
randomly selected request could represent an optional step the user does
not always perform. This scenario adds 9,707 samples to the set of generated
requests.

5.2.3. Common Performance Metrics

By combining the training set with the anomaly set, we obtain a labeled
dataset. In the following, we describe the metrics typically used to assess a
model’s performance on a labeled dataset. The metrics typically originate
from statistics. Vinayakumar et al. [Vin+19] give a comprehensive summary
of the most common metrics. Different fields of research developed the
metrics independently of each other. Hence, many metrics have more than
one valid name.

The metrics use a confusion matrix of a binary classification problem as their
data source. Our approach also produces a binary output: The system should
classify samples of the test set as benign and samples of the generated set as
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Figure 5.3.: Overview of different metrics and how to calculate them.

outliers. In a confusion matrix, one axis represents the actual labels, whereas
the second axis represents the labels predicted by the system. Hence, four
metrics build directly on that property:

• True Positives (TPs): Samples correctly classified as outliers
• False Positives (FPs): Samples erroneously classified as outliers. In

statistical contexts known as TYPE I error.
• True Negatives (TNs): Samples correctly classified as benign
• False Negatives (FNs): Samples erroneously classified as benign. In

statistical contexts known as TYPE II error.

The following metrics use the four classes of entries of the confusion matrix
and express relations between the class sizes. The range of valid values for
the metrics is defined as x ∈ [0, 1]. If not stated otherwise, higher values
indicate a model performing better than models with lower values. For a
better understanding of the relation of the metrics to each other, Figure 5.3
illustrates the most important ones.

Accuracy describes the ratio of correctly classified samples to the total
number of samples. If one class is overrepresented, the accuracy is not an
optimal metric choice. The accuracy of unbalanced classes is skewed, as a
learning algorithm could decide to classify all samples as belonging to the
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larger class simply. In such cases, precision and recall give a more accurate
picture of the model’s performance.

accuracy =
TP + TN

TP + TN + FP + FN
(5.1)

Precision or Positive Predictive Value (PPV) measures the portion of correctly
identified outliers from the total number of samples classified as being
outliers. The higher the precision, the more elements reported as outliers
are actually outliers.

precision =
TP

TP + FP
= PPV (5.2)

Recall, Sensitivity, or True Positive Rate (TPR) describes the ratio of correctly
identified outliers to the total number of outliers present in the set. The
higher the recall, the more anomalous samples the classifier is capable of
detecting correctly.

recall =
TP

TP + FN
= TPR (5.3)

Specificity or True Negative Rate (TNR) specifies the ratio of how many
negative samples are actually classified as such.

TNR =
TN

TN + FP
(5.4)

The F1 score measures the precision and recall of a classifier. A good per-
forming classifier achieves good rates in both metrics. The F1 score combines
the two metrics and is the harmonic mean.

F1 = 2 · precision · recall
precision + recall

(5.5)

The False Positive Rate (FPR) acts as a counterpart of the TNR. The better the
classifier works, the lower this metric gets. It describes the proportion of
incorrectly identified positives to all actually negative samples.

FPR =
FP

FP + TN
(5.6)
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The False Negative Rate (FNR) acts as a counterpart of the TPR. Again, a low
value for this metric indicates a well-performing classifier. It describes the
proportion of incorrectly identified negatives to all samples that are actually
positive.

FNR =
FN

FN + TP
(5.7)

The Receiver Operating Characteristic (ROC) curve is a plot of the TPR and
FPR for different thresholds. The x-axis shows the values for the FPR; the
y-axis shows the values for the TPR. Comparing models is possible by
calculating the Area Under Curve (AUC) of the ROC curve.

5.3. Results

In this section, we discuss the performance of our outlier detection system.
We use the two capabilities explained earlier in this chapter. We first show
plots of reconstruction errors for different input sets. These plots confirm
the system’s capability of reconstructing behavioral patterns. Following
this confirmation, we evaluate the anomaly detection capability. We rely on
precision, recall, F1 score, and the ROC curve for this task. Based on the F1

score, we select the threshold used for the scenario evaluation. The detailed
scenario evaluation shows that the model cannot detect all scenarios equally
well.

5.3.1. Generalization Capability

First, we show that the model has generalized successfully. We feed all train-
ing data into the model and record the reconstruction errors. We then define
a threshold above 99.9% of the samples. For our evaluation environment,
we define a threshold of 0.0676. Figure 5.4 shows the reconstruction errors
for samples of the training set. We use such a high percentage because the
training dataset contains valid traces only. Accepting a few outliers at this
step reduces the number of false positives. It is still possible that individuals
performed some unexpected tasks.
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Figure 5.4.: Reconstruction error for training samples.

Figure 5.5.: Reconstruction error for previously unseen samples.
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Figure 5.6.: Precision-recall curve.

Next, we query the model with the test set. The test set is unused up to
this point. Thus, the model must predict behavior for previously unseen
samples. Figure 5.5 shows the reconstruction errors. Based on the threshold
defined earlier, the system classifies the traces as benign or outlying. Since
only 0.06% of the samples are outliers, we conclude that the model has
successfully generalized. It was able to learn user behavior. The model
performed better on the unseen samples than on the training data.

5.3.2. Outlier Detection Capability

We feed valid and anomalous traces into our model to evaluate its outlier
detection capabilities. The combination of the two sets forms a labeled
dataset. All samples from the training set belong to the benign class. The
samples from the generated set are anomalous. This way, we can use the
metrics precision, recall, F1 score, and ROC curve. Based on the F1 score, we
define the threshold for evaluating the individual scenarios. The F1 score
ensures a good trade-off between precision and recall.
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Figure 5.7.: Comparison of precision, recall, and F1 score.

First, Figure 5.6 shows the achieved precision and recall of the fully trained
model after 36 epochs. Furthermore, it includes the models after 20 and 22

epochs. Improving one of the two metrics causes worse results in the other
category. The graph shows that the additional training epochs improved the
overall detection performance. Additionally, we see that the results initially
became worse when the optimizer state was lost. The checkpoints created
by Keras do not include the optimizer state. However, it recovered as the
training continued.

Next, Figure 5.7 compares the precision, recall, and associated F1 score.
Furthermore, it plots all three metrics against the corresponding thresholds.
The best F1 score achieved by the model is 0.5409. It achieves this result
when using a threshold of 0.0263. This threshold optimizes the ratio between
correctly detected anomalies and false positives generated.

Figure 5.8 shows the ROC curve of the three models. It includes the AUC,
which the literature typically uses to compare models. The ROC curves
support the conclusions drawn from Figure 5.6. The additional epochs
improved the model’s detection performance.
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Figure 5.8.: ROC curve and AUC of the model.

Figure 5.9.: Detection performance per scenario.
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Finally, we show the model’s performance on the four defined scenarios.
We use the best-performing threshold identified in Figure 5.7. The used
threshold is 0.0263. Figure 5.9 shows the results for each scenario. The
model performs best in detecting anomalies of the fourth scenario. In the
fourth scenario, we randomly removed requests from the trace. Our system
classifies 86.48% of traces correctly as anomalous. In contrast, it only detects
25.80% of traces from scenario two as anomalies. Scenario two assumes
different behavior on weekdays and weekends. For the scenario based on
browser and device class changes, the model correctly detects 45.31% of
samples. Changing the time difference between requests caused anomalous
behavior in 55.34% of the cases.

5.3.3. Discussion

The results show that the system successfully learned to predict user be-
havior. If actions do not match the learned model, the system is capable of
detecting these divergences.

Determining the optimal threshold depends on the acceptable number of
false positives. Any anomaly detection system loses acceptance rapidly
when raising too many false positives. Hence, we must accept to miss
some attacks. Nevertheless, any prevented attack is valuable. Which ratio of
false positives is too high cannot be defined in general. It depends on the
organization running the anomaly detection system.

One common practice for threshold selection is to base it on the F1 score.
The F1 score is the harmonic mean of precision and recall. For our work,
we manually selected the F1 score and the corresponding threshold. We
selected the highest F1 score. There was no other combination of precision
and recall that performed comparably well. However, other case studies
may encounter a situation where different configurations achieve similar F1

scores. We leave the issue of automated threshold selection open for further
research.

The breakdown of the detection performance for each scenario showed
different detection rates. The system missed many anomalies from the
second scenario. In this scenario, we swapped working day and weekend
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requests. We note that we suspect this scenario to depend heavily on the
origin of the data. Applications used in business contexts may expose higher
differences between working days and weekends.

The extend of the performance difference of the models after epoch 22 and 36

was unexpected. The loss and accuracy reported during training suggested
a smaller divergence between the two. This behavior was likely caused by
the loss of the optimizer state when restarting the training. Nevertheless, the
unexpected difference shows a common pitfall in machine learning projects.
It is often hard for humans to interpret the numbers correctly. This highlights
the need for further research in the area of explainable AI. Explainable AI
tries to reason about decisions of machine learning algorithms.

When working on the best-performing architecture, we encountered promis-
ing architecture building blocks. Some of them did not deliver the expected
results. In the next section, we will discuss some noteworthy observations
of elements that did not work in the context of this work.

5.4. Underperforming Architecture Variants

We evaluated a variety of promising structural elements while developing
our architecture. Not all of them performed well enough to be included in
the final version. In this section, we highlight some of the lessons learned
during this process.

First, we evaluated 16, 20, and 50-dimensional embeddings inspired by
architectures related to our work [LZY17; Tuo+17; Yua+18]. However, their
architectures do not follow the Autoencoder pattern. We applied the em-
bedding to the text-based features only. We evaluated character-based and
word-based embeddings. It turned out that training them from scratch is
too costly.

Khazan [Kha16] gives the following definition for embeddings: “Like an
[A]utoencoder, this type of model learns a vector space embedding for
some data.” Hence, we tested a combination by adding pre-trained word
embeddings like Word2Vec [Mik+13], FastText [Jou+17; Boj+17], and GloVec
[PSM14] to our architecture. In theory, re-using embeddings reduces the
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amount of training required. The pre-trained embeddings we tested con-
struct the word contexts from news articles. However, this did not improve
the model’s performance. We concluded that word contexts in news articles
are too different from word contexts in URLs.

Next, we evaluated several additional layer types during architecture de-
velopment. However, none of them caught up with the final architecture’s
performance. For example, we tried CNN and TCN layers. He and Zhao
[HZ19] show that TCNs can detect anomalies in time series. After combin-
ing the TCN layers with Autoencoders, we could not observe a satisfying
performance anymore. In theory, CNNs should be capable of learning to
reduce requests that are semantically equivalent but use different orders
of GET parameters to the same compressed representation. However, the
overall performance of the system did not support that assumption.

Another architecture variant we tested was one where we substituted all
GRU cells with LSTM cells. LSTMs need more resources for training but
provide slightly preciser outputs than GRUs. For our architecture, using
LSTMs led to computation errors due to vanishing or exploding gradients.
The errors happened during the training and can be observed when Tensor-
Flow reports the loss with the special value Not a Number. Therefore, the
final architecture favors GRUs over LSTMs.

Additionally, we tried to chain GRU layers in the encoder and decoder,
respectively. Each GRU down the chain then learns features more abstract
than the previous one. The training effort increases with each GRU layer.
However, the performance did not improve in a comparable significance.
For that reason, we decided not to use chained recurrent layers in our final
architecture.

Finally, we tried a decoder structure in the behavior Autoencoder that
creates a sequence of interim representations, each similar to the latent
space of the request Autoencoder. We then could have used the same layout
for the request decoder and the deeper layers of the behavior decoder. By
sharing the layer weights and biases, this could have cheapened the training
further. However, this did not work as expected, and we had to discard this
kind of architecture.
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The list of research areas that interconnect with our work is extensive. In this
chapter, we focus on work closely related to the presented approach. For
each presented work, we give a summary of the taken approach and discuss
strengths and possible opportunities for improvements. We also compare
their performance to the performance of our system as far as possible. The
criteria for comparability forced us to include work that applies machine
learning techniques to log data only.

For the interested reader, who wants a sound context for anomaly de-
tection first, we refer to Chandola, Banerjee, and Kumar [CBK09]. They
discuss numerous possible domains of application and include standard
techniques established in the respective domain. Chalapathy and Chawla
[CC19] provide a comprehensive survey for deep learning-based approaches
to anomaly detection.

We organized the chapter into two sections. First, we focus on approaches
that work on a per-request basis. These approaches serve as a reference to
quantify the performance of the request Autoencoder. Second, we show ap-
proaches trying to mine user behavior. We compare those to the performance
of the behavior Autoencoder.

6.1. Request-Based Anomaly Detection

This section focuses on work that identifies single outlying requests. The
approaches do not target behavioral outliers but focus on single, invalid
requests. We, in contrast, detect requests that can be valid, but simply are
not expected from the given user at that moment. At first sight, the two
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kinds of anomaly seem different, but many concepts used in the presented
papers in this section are applicable to the request Autoencoder.

Cao, Qiao, and Lyu [CQL17] developed an anomaly detection system build-
ing upon HMMs. The HMM learns transitions between individual tokens of
the HTTP request and not transitions between requests. They use a private
dataset containing 4,690,000 HTTP requests stored in a standard log format.
The system achieves an accuracy of 93.54%, a precision of 92.07%, a TPR
of 89.90%, and an FPR of 4.09%. However, to scale to larger applications,
the system needs significant amounts of resources. It has to train a separate
model for each parameter of each request. This implies that the system must
know all requests in advance. In contrast, our model does not expose this
requirement in general.

Liang, Zhao, and Ye [LZY17] model the sequential information present in
HTTP requests. Their approach is similar to the approach presented by
Cao, Qiao, and Lyu [CQL17]. They use word-based tokenization. Based on
the sequence of tokens, they train several sequence-aware neural networks
consisting of LSTM and GRU cells. Their system achieves an accuracy
between 85.15% and 98.56%, depending on the architecture details. Our
request Autoencoder delivers results in the upper third of that region,
too. However, we prioritize the behavior Autoencoder over the request
Autoencoder. Hence, our approach does not perform as well in the specific
domain as theirs does.

Zolotukhin et al. [Zol+14] use a two-stepped approach for the data pre-
processing to extract information from HTTP log files. First, they extract
per-request information of each line comparable to our approach. Then,
they cluster requests into time-based bins. They extract additional features
like the number of requests per time interval from these bins. Based on
the feature under investigation, they apply different machine learning algo-
rithms depending on which performs best. The developed model achieves
an accuracy between 98.29% and 99.24%, depending on the active set of
hyperparameters. Finding the best machine learning algorithm on a for each
feature is computationally expensive. With our approach, it is not necessary
to train multiple classifiers. Despite computational power, the approach
presented by Zolotukhin et al. requires expert knowledge of several different
machine learning approaches, too.
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Dong et al. [Don+18] built a system that is capable of adapting to changing
data more quickly than comparable work. The authors trained the system
on 112,397 HTTP request logs. Based on these log entries, they trained
twelve individual base classifiers. As a final step, they searched the best-
performing combination of three out of the twelve base classifiers. The
proposed approach works well. The authors report an F1 score of 94.79%.
However, similar to the approach presented by Zolotukhin et al. [Zol+14],
training twelve classifiers requires an extensive amount of resources. Our
approach avoids training multiple classifiers. As a result, it is easier to train
because different classifiers require different preprocessing steps. Addition-
ally, the hardware requirements for the techniques are different. Adapting
to changing data is an interesting aspect. In the future, it might be worth-
while investigating whether such an approach can also be applied to our
solution.

6.2. Behavior-Based Anomaly Detection

Detecting change in user behavior attracted attention recently. Therefore,
this section discusses work related to that topic. We discuss some well-
performing approaches and compare their performance to ours.

DeepLog [Du+17] calculates the likelihood of all actions. Therefore, it needs
to know all possible actions in advance. The system accepts a set of recent
actions of the user as input. The authors train an LSTM-based neural
network for each parameter of each log line to detect time series-based
divergences. As the number of parameters is large for complex systems,
their approach increases the required resources for training significantly.
DeepLog performs well and achieves a precision rate of 95%, a recall rate
of 96%, and an F1 score of 96%. Our system differs from DeepLog, as we
only decide if the next request is normal or anomalous. This way, we do not
need to know all the log entries in advance. Additionally, we do not train
separate models for different parameters.

Yuan et al. [Yua+18] use an HMM-based approach to model user behavior.
They partition the log file by user and week. The authors do not base their
system on HTTP logs. Instead, they use five classes of activities performed
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on a computer. Email, HTTP, logon/logoff , file, and device are the categories
that describe the generic structure of the dataset. The developed system
performs reasonably well. The authors report that they achieved 94.49% for
the AUC of the ROC curve. Since the activity on weekends is significantly
different from the activity during weekdays in working environments, the
authors decided to exclude weekends from their model. The approach
presented by Yuan et al. shows that user behavior models based on log files
can be learned reasonably well. We built on this approach, and show that
HTTP log files are also suitable for learning user behavior.

Lu and Wong [LW19] not only detect anomalies but try to classify the
kind of insider threat, too. The authors used the same dataset as Yuan
et al. [Yua+18] did. The dataset consists of general events performed on
a computer and not HTTP requests only. They also use a sliding window
approach, where the system considers the past 20 requests. They train an
LSTM-based neural network, which is similar in structure to the one used
by Du et al. [Du+17]. The results achieved with the system are good. The
authors report a precision rate of 73%, a recall rate of 91%, and an F1

score of 81%. The dataset used by Lu and Wong is significantly different
from the one we used. They collect the data they need locally on the
users’ computers. In contrast, our approach collects the log entries server-
side. First, this avoids administrative overhead. Second, malicious users
could intercept the data they transmit for analysis and hide their activities.
With our setup, users cannot influence the data recorded for the anomaly
detection system. However, their work emphasizes that neural networks are
capable of learning user behavior.

The abstract structure Brown et al. [Bro+18] use for their anomaly detection
system is similar to ours. However, they use LSTM-based networks, whereas
we use Autoencoders that include recurrent elements. Brown et al. first
transform the input sequence into a compressed representation. It is then
passed to a context LSTM to model user behavior. Their work does not use
HTTP request logs but instead uses network connection data consisting of
eight features. They also compared char-based and word-based tokenization.
The developed system achieves an AUC ratio for the ROC curve between
96.3% and 99.2%, depending on the configuration used. While the dataset
they used is not comparable to ours, the work shows that the approach to
first compress requests and then extract user behavior works.
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Tuor et al. [Tuo+17] created a system that learns user behavior and adapts
to changes over time. The authors selected a more recent version of the
dataset used by works presented earlier in this chapter [Yua+18; LW19].
Tuor et al. included additional meta-information provided by the dataset
like role, department, and supervisor. Like our system, their system outputs
anomalies. Experts must decide if the anomalies are malicious. They base
their system on a daily budget that defines how many requests the experts
can investigate. Additionally, they assume that the experts always decide
correctly whether an anomaly is malicious. The budget size influences the
recall rate significantly. Since we are not using a budget-based approach,
the systems are hardly comparable. Nevertheless, they used architectural
styles that influenced our architecture-related decisions.
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Modern software relies on Application Programming Interfaces (APIs) as
a central access point to data. The global interconnection in private and
industrial contexts requires exposing APIs to the Internet. Therefore, APIs
need robust protection mechanisms. Existing techniques perform well in
protecting against attacks with anomalous payloads. However, they can not
detect whether the current behavioral pattern is atypical for a given user.

Describing behavioral patterns with traditional approaches is cumbersome
and difficult. For this reason, machine learning became popular to tackle
the problem. Additionally, modern systems handle large amounts of traffic.
Machine learning is designed to work with large amounts of data, which
makes it perfectly suitable.

In this thesis, we presented a novel approach to detect divergences from
behavioral patterns. The system first learns the patterns typical for users
of an API. It uses HTTP log files from web servers as the data source.
Comparable other work uses full HTTP requests. Log files do not include
most headers and the body of HTTP requests. Hence, our system has
less information available to extract behavioral patterns. One of the major
contributions of this thesis, therefore, was evaluating whether a log entry
contains sufficient information.

The proposed system uses a Deep Neural Network (DNN) operating in
two logical steps. First, an Autoencoder compresses the requests to a latent
space. Then, a second Autoencoder models the behavior of users based
on that compressed representation. Related work suggested this approach
for differently structured datasets. Compressing the input first widens
the options for layers learning behavioral patterns. With this thesis, we
contribute a verification that the two-stepped approach works for log file
entries.
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We evaluate the performance using two metrics. First, we show the model’s
generalization capability. We define a threshold being above 99.90% of the
reconstruction errors from the training samples. Applied to previously
unseen data, 99.94% of the samples were below that threshold. Second, we
use a set of generated anomalies to verify the model’s detection capability.
We showed that the defined threshold for anomalies plays a crucial role. The
highest F1 score our system achieves is 0.5409. It achieves an Area Under
Curve (AUC) ratio for the Receiver Operating Characteristic (ROC) curve of
84.35%.

Our thorough evaluation shows that Convolutional Neural Networks (CNNs)
and Temporal Convolutional Networks (TCNs) are not suitable for our task.
The initial hypothesis that they improve the quality of the compressed
request representations could not be confirmed. Instead, we used Gated
Recurrent Units (GRUs) cells in combination with attention mechanisms.

To summarize, we showed that an Autoencoder-based architecture in com-
bination with GRUs and attention mechanisms are capable of learning user
behavior. While it can detect behavior changes, a configuration that allows
the system to detect all deviating patterns produces too many false positives.
Hence, a trade-off between precision and recall is necessary. We defined the
threshold manually based on the F1 score.

Future work could relate the performance of behavioral outlier detection
systems to the number of users. As the number of users increases, a system
might perform better if grouping similar users. Another aspect worth in-
specting is the handling of benign behavior change over extended periods.
Neural networks support online training. Hence, they can adapt in theory.
We think it is worthwhile verifying this claim.
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Keras Model Summary

� �
1 Layer ( type ) Output Shape Param # Connected to

2 ==================================================================================================
3 Input - Embedding - Features ( Input [ ( None , 5 , 6 2 0 ) ] 0

4

5 EB - InputChannel0 (Lambda) ( None , 620 ) 0 Input - Embedding - Features [ 0 ] [ 0 ]
6

7 EB - InputChannel1 (Lambda) ( None , 620 ) 0 Input - Embedding - Features [ 0 ] [ 0 ]
8

9 EB - InputChannel2 (Lambda) ( None , 620 ) 0 Input - Embedding - Features [ 0 ] [ 0 ]
10

11 EB - InputChannel3 (Lambda) ( None , 620 ) 0 Input - Embedding - Features [ 0 ] [ 0 ]
12

13 EB - InputChannel4 (Lambda) ( None , 620 ) 0 Input - Embedding - Features [ 0 ] [ 0 ]
14

15 dense ( Dense ) ( None , 310 ) 192510 EB - InputChannel0 [ 0 ] [ 0 ]
16 EB - InputChannel1 [ 0 ] [ 0 ]
17 EB - InputChannel2 [ 0 ] [ 0 ]
18 EB - InputChannel3 [ 0 ] [ 0 ]
19 EB - InputChannel4 [ 0 ] [ 0 ]
20

21 reshape ( Reshape ) ( None , 310 , 1 ) 0 dense [ 0 ] [ 0 ]
22 dense [ 1 ] [ 0 ]
23 dense [ 2 ] [ 0 ]
24 dense [ 3 ] [ 0 ]
25 dense [ 4 ] [ 0 ]
26

27 Input - Meta - Features ( InputLayer [ ( None , 5 , 3 0 ) ] 0

28

29 b i d i r e c t i o n a l ( B i d i r e c t i o n a l ) ( None , 128 ) 25728 reshape [ 0 ] [ 0 ]
30 reshape [ 1 ] [ 0 ]
31 reshape [ 2 ] [ 0 ]
32 reshape [ 3 ] [ 0 ]
33 reshape [ 4 ] [ 0 ]
34

35 MF- InputChannel0 (Lambda) ( None , 30 ) 0 Input - Meta - Features [ 0 ] [ 0 ]
36

37 MF- InputChannel1 (Lambda) ( None , 30 ) 0 Input - Meta - Features [ 0 ] [ 0 ]
38

39 MF- InputChannel2 (Lambda) ( None , 30 ) 0 Input - Meta - Features [ 0 ] [ 0 ]
40

41 MF- InputChannel3 (Lambda) ( None , 30 ) 0 Input - Meta - Features [ 0 ] [ 0 ]
42

43 MF- InputChannel4 (Lambda) ( None , 30 ) 0 Input - Meta - Features [ 0 ] [ 0 ]
44

45 Compact - Request -w- MetaInfo (Con ( None , 158 ) 0 b i d i r e c t i o n a l [ 0 ] [ 0 ]
46 MF- InputChannel0 [ 0 ] [ 0 ]
47 b i d i r e c t i o n a l [ 1 ] [ 0 ]
48 MF- InputChannel1 [ 0 ] [ 0 ]
49 b i d i r e c t i o n a l [ 2 ] [ 0 ]
50 MF- InputChannel2 [ 0 ] [ 0 ]
51 b i d i r e c t i o n a l [ 3 ] [ 0 ]
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52 MF- InputChannel3 [ 0 ] [ 0 ]
53 b i d i r e c t i o n a l [ 4 ] [ 0 ]
54 MF- InputChannel4 [ 0 ] [ 0 ]
55

56 Latent - Space - Request -AE ( Dense ) ( None , 96 ) 15264 Compact - Request -w- MetaInfo [ 0 ] [ 0 ]
57 Compact - Request -w- MetaInfo [ 1 ] [ 0 ]
58 Compact - Request -w- MetaInfo [ 2 ] [ 0 ]
59 Compact - Request -w- MetaInfo [ 3 ] [ 0 ]
60 Compact - Request -w- MetaInfo [ 4 ] [ 0 ]
61� �

Listing A.1: Keras model summary of the request encoder.� �
1 Layer ( type ) Output Shape Param # Connected to

2 ==================================================================================================
3 dense 2 ( Dense ) ( None , 126 ) 12222 Latent - Space - Request -AE[ 0 ] [ 0 ]
4 Latent - Space - Request -AE[ 1 ] [ 0 ]
5 Latent - Space - Request -AE[ 2 ] [ 0 ]
6 Latent - Space - Request -AE[ 3 ] [ 0 ]
7 Latent - Space - Request -AE[ 4 ] [ 0 ]
8

9 dense 3 ( Dense ) ( None , 620 ) 78740 dense 2 [ 0 ] [ 0 ]
10 dense 2 [ 1 ] [ 0 ]
11 dense 2 [ 2 ] [ 0 ]
12 dense 2 [ 3 ] [ 0 ]
13 dense 2 [ 4 ] [ 0 ]
14

15 reshape 2 ( Reshape ) ( None , 620 , 1 ) 0 dense 3 [ 0 ] [ 0 ]
16 dense 3 [ 1 ] [ 0 ]
17 dense 3 [ 2 ] [ 0 ]
18 dense 3 [ 3 ] [ 0 ]
19 dense 3 [ 4 ] [ 0 ]
20

21 dense 5 ( Dense ) ( None , 200 ) 25400 dense 2 [ 0 ] [ 0 ]
22 dense 2 [ 1 ] [ 0 ]
23 dense 2 [ 2 ] [ 0 ]
24 dense 2 [ 3 ] [ 0 ]
25 dense 2 [ 4 ] [ 0 ]
26

27 b i d i r e c t i o n a l 3 ( B i d i r e c t i o n a l ) ( None , 620 , 64 ) 6720 reshape 2 [ 0 ] [ 0 ]
28 reshape 2 [ 1 ] [ 0 ]
29 reshape 2 [ 2 ] [ 0 ]
30 reshape 2 [ 3 ] [ 0 ]
31 reshape 2 [ 4 ] [ 0 ]
32

33 dropout 3 ( Dropout ) ( None , 200 ) 0 dense 5 [ 0 ] [ 0 ]
34 dense 5 [ 1 ] [ 0 ]
35 dense 5 [ 2 ] [ 0 ]
36 dense 5 [ 3 ] [ 0 ]
37 dense 5 [ 4 ] [ 0 ]
38

39 dense 4 ( Dense ) ( None , 620 , 235 ) 15275 b i d i r e c t i o n a l 3 [ 0 ] [ 0 ]
40 b i d i r e c t i o n a l 3 [ 1 ] [ 0 ]
41 b i d i r e c t i o n a l 3 [ 2 ] [ 0 ]
42 b i d i r e c t i o n a l 3 [ 3 ] [ 0 ]
43 b i d i r e c t i o n a l 3 [ 4 ] [ 0 ]
44

45 dense 6 ( Dense ) ( None , 30 ) 6030 dropout 3 [ 0 ] [ 0 ]
46 dropout 3 [ 1 ] [ 0 ]
47 dropout 3 [ 2 ] [ 0 ]
48 dropout 3 [ 3 ] [ 0 ]
49 dropout 3 [ 4 ] [ 0 ]
50

51 conca tenate 1 ( Concatenate ) ( None , 3100 , 235 ) 0 dense 4 [ 0 ] [ 0 ]
52 dense 4 [ 1 ] [ 0 ]
53 dense 4 [ 2 ] [ 0 ]
54 dense 4 [ 3 ] [ 0 ]
55 dense 4 [ 4 ] [ 0 ]
56

57 conca tenate 2 ( Concatenate ) ( None , 150 ) 0 dense 6 [ 0 ] [ 0 ]
58 dense 6 [ 1 ] [ 0 ]
59 dense 6 [ 2 ] [ 0 ]
60 dense 6 [ 3 ] [ 0 ]
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61 dense 6 [ 4 ] [ 0 ]
62

63 O- Requests - Decoder ( Reshape ) ( None , 5 , 620 , 235 ) 0 conca tenate 1 [ 0 ] [ 0 ]
64

65 O- Requests - Decoder - Meta ( Reshap ( None , 5 , 30 ) 0 conca tenate 2 [ 0 ] [ 0 ]
66� �

Listing A.2: Keras model summary of the request decoder.� �
1 Layer ( type ) Output Shape Param # Connected to

2 ==================================================================================================
3 Latent - Space - Request -AE ( Dense ) ( None , 96 ) 15264 Compact - Request -w- MetaInfo [ 0 ] [ 0 ]
4 Compact - Request -w- MetaInfo [ 1 ] [ 0 ]
5 Compact - Request -w- MetaInfo [ 2 ] [ 0 ]
6 Compact - Request -w- MetaInfo [ 3 ] [ 0 ]
7 Compact - Request -w- MetaInfo [ 4 ] [ 0 ]
8

9 concatenate ( Concatenate ) ( None , 480 ) 0 Latent - Space - Request -AE[ 0 ] [ 0 ]
10 Latent - Space - Request -AE[ 1 ] [ 0 ]
11 Latent - Space - Request -AE[ 2 ] [ 0 ]
12 Latent - Space - Request -AE[ 3 ] [ 0 ]
13 Latent - Space - Request -AE[ 4 ] [ 0 ]
14

15 reshape 1 ( Reshape ) ( None , 5 , 96 ) 0 concatenate [ 0 ] [ 0 ]
16

17 b i d i r e c t i o n a l 2 ( B i d i r e c t i o n a l ) ( None , 5 , 128 ) 62208 reshape 1 [ 0 ] [ 0 ]
18

19 Latent - Space - Behavior - Autoencod ( None , 128 ) 16640 b i d i r e c t i o n a l 2 [ 0 ] [ 0 ]
20� �

Listing A.3: Keras model summary of the behavior encoder.� �
1 Layer ( type ) Output Shape Param # Connected to

2 ==================================================================================================
3 r e p e a t v e c t o r ( RepeatVector ) ( None , 5 , 128 ) 0 Latent - Space - Behavior - Autoencoder
4

5 gru 3 (GRU) ( None , 5 , 620 ) 1395000 r e p e a t v e c t o r [ 0 ] [ 0 ]
6

7 dense 1 ( Dense ) ( None , 60 ) 7740 Latent - Space - Behavior - Autoencoder
8

9 t i m e d i s t r i b u t e d ( TimeDistr ibut ( None , 5 , 235 , 620 ) 0 gru 3 [ 0 ] [ 0 ]
10

11 dropout 1 ( Dropout ) ( None , 60 ) 0 dense 1 [ 0 ] [ 0 ]
12

13 permute ( Permute ) ( None , 5 , 620 , 235 ) 0 t i m e d i s t r i b u t e d [ 0 ] [ 0 ]
14

15 r e p e a t v e c t o r 2 ( RepeatVector ) ( None , 5 , 60 ) 0 dropout 1 [ 0 ] [ 0 ]
16

17 O- Behavior - Decoder ( Dense ) ( None , 5 , 620 , 235 ) 55460 permute [ 0 ] [ 0 ]
18

19 O- Behavior - Decoder - Meta ( Dense ) ( None , 5 , 30 ) 1830 r e p e a t v e c t o r 2 [ 0 ] [ 0 ]
20� �

Listing A.4: Keras model summary of the behavior decoder.
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Custom Keras Layer:
AttentionWithContext

� �
1 from tensorflow.keras import backend as K

2 from tensorflow.keras import initializers , regularizers , constraints

3 from tensorflow.keras.layers import Layer

4

5 def dot_product(x, kernel ):

6 return K.squeeze(K.dot(x, K.expand_dims(kernel)), axis=-1)

7

8 class AttentionWithContext(Layer):

9 """

10 Attention operation , with a context/query vector , for temporal data.

11 Supports Masking.

12 Follows the work of Yang et al. [Yan +16b]

13 by using a context vector to assist the attention

14 # Input shape

15 3D tensor with shape: ‘(samples , steps , features)‘.

16 # Output shape

17 2D tensor with shape: ‘(samples , features)‘.

18 How to use:

19 Just put it on top of an RNN Layer (GRU/LSTM/SimpleRNN)

20 Set return_sequences=True.

21 The dimensions are inferred based on the output shape of the RNN.

22 Note: The layer has been tested with Keras 2.0.6

23 Example:

24 model.add(LSTM(64, return_sequences=True))

25 model.add(AttentionWithContext ())

26 # next add a Dense layer (for classification/regression) or whatever ...

27 """

28

29 def __init__(self ,

30 W_regularizer=None , u_regularizer=None , b_regularizer=None ,

31 W_constraint=None , u_constraint=None , b_constraint=None ,

32 bias=True , ∗ ∗ kwargs ):
33

34 self.init = initializers.get(’glorot_uniform ’)

35
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36 self.W_regularizer = regularizers.get(W_regularizer)

37 self.u_regularizer = regularizers.get(u_regularizer)

38 self.b_regularizer = regularizers.get(b_regularizer)

39

40 self.W_constraint = constraints.get(W_constraint)

41 self.u_constraint = constraints.get(u_constraint)

42 self.b_constraint = constraints.get(b_constraint)

43

44 self.bias = bias

45 super(AttentionWithContext , self). __init__( ∗ ∗ kwargs)
46

47 def build(self , input_shape ):

48 assert len(input_shape) == 3

49

50 self.W = self.add_weight(shape =( input_shape[-1], input_shape[-1],),

51 initializer=self.init ,

52 name=’{}_W’.format(self.name),

53 regularizer=self.W_regularizer ,

54 constraint=self.W_constraint)

55 if self.bias:

56 self.b = self.add_weight(shape=( input_shape[-1],),

57 initializer=’zero’,

58 name=’{}_b’.format(self.name),

59 regularizer=self.b_regularizer ,

60 constraint=self.b_constraint)

61

62 self.u = self.add_weight(shape =( input_shape[-1],),

63 initializer=self.init ,

64 name=’{}_u’.format(self.name),

65 regularizer=self.u_regularizer ,

66 constraint=self.u_constraint)

67

68 super(AttentionWithContext , self). build(input_shape)

69

70 def compute_mask(self , input , input_mask=None):

71 # do not pass the mask to the next layers

72 return None

73

74 def call(self , x, mask=None):

75 uit = dot_product(x, self.W)

76

77 if self.bias:

78 uit += self.b

79

80 uit = K.tanh(uit)

81 ait = dot_product(uit , self.u)

82

83 a = K.exp(ait)

84

85 # apply mask after the exp. will be re-normalized next

86 if mask is not None:

87 # Cast the mask to floatX to avoid float64 upcasting in theano

88 a ∗= K.cast(mask , K.floatx ())

89

90 # in some cases especially in the early stages of training
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91 # the sum may be almost zero and this results in NaN’s.

92 # A workaround is to add a very small positive number eps to the sum.

93 a /= K.cast(K.sum(a, axis=1, keepdims=True) + K.epsilon(), K.floatx ())

94

95 a = K.expand_dims(a)

96 weighted_input = x ∗ a

97 return K.sum(weighted_input , axis =1)

98

99 def compute_output_shape(self , input_shape ):

100 return input_shape [0], input_shape[-1]

101

102 def get_config(self):

103 config = super (). get_config (). copy()

104 config.update ({

105 ’bias’: self.bias ,

106 ’b_constraint ’: self.b_constraint ,

107 ’u_constraint ’: self.u_constraint ,

108 ’W_constraint ’: self.W_constraint ,

109 ’b_regularizer ’: self.b_regularizer ,

110 ’u_regularizer ’: self.u_regularizer ,

111 ’W_regularizer ’: self.W_regularizer ,

112 })

113 return config� �
Listing B.1: Implementation of the attention mechanism Yang et al. [Yan+16b] proposed.

Code initially released under Apache 2.0 license by User Kepler456b [Use19].
Minor modifications applied.
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[LeC89] Yann André LeCun. “Generalization and network design strate-
gies.” In: Connectionism in perspective 19 (1989), pp. 143–155 (cit.
on pp. 24, 33).

[Li+19] Yang Li et al. “Disentangled Variational Auto-Encoder for semi-
supervised learning.” In: Information Sciences 482 (2019), pp. 73–
85. issn: 00200255. doi: 10.1016/j.ins.2018.12.057. arXiv:
1709.05047 (cit. on p. 30).

[Lia+13] Hung Jen Liao et al. “Intrusion detection system: A compre-
hensive review.” In: Journal of Network and Computer Applications
36.1 (2013), pp. 16–24. issn: 1084-8045. doi: 10.1016/j.jnca.
2012.09.004 (cit. on pp. 7, 32).

98

https://doi.org/10.1007/978-3-319-11933-5
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1512.09300
https://doi.org/10.1038/nature14539
https://doi.org/10.1016/j.ins.2018.12.057
https://arxiv.org/abs/1709.05047
https://doi.org/10.1016/j.jnca.2012.09.004
https://doi.org/10.1016/j.jnca.2012.09.004


Bibliography

[Liu+17] Weibo Liu et al. “A survey of deep neural network architectures
and their applications.” In: Neurocomputing 234 (2017), pp. 11–
26. issn: 18728286. doi: 10.1016/j.neucom.2016.12.038 (cit.
on pp. 24, 25).

[LNP19] Saı̈d Ladjal, Alasdair Newson, and Chi-Hieu Pham. “A PCA-
like Autoencoder.” In: arXiv preprint (2019). arXiv: 1904.01277
(cit. on p. 28).

[LW19] Jiuming Lu and Raymond K. Wong. “Insider Threat Detection
with Long Short-Term Memory.” In: ACM International Confer-
ence Proceeding Series (2019). doi: 10.1145/3290688.3290692
(cit. on pp. 82, 83).

[LZY17] Jingxi Liang, Wen Zhao, and Wei Ye. “Anomaly-Based Web
Attack Detection: A Deep Learning Approach.” In: Proceedings
of the 2017 VI International Conference on Network, Communication
and Computing. ICNCC 2017 (2017), pp. 80–85. doi: 10.1145/
3171592.3171594 (cit. on pp. 77, 80).

[Mac+18] Hieu Mac et al. “Detecting Attacks on Web Applications Using
Autoencoder.” In: Proceedings of the Ninth International Sympo-
sium on Information and Communication Technology (2018), pp. 416–
421. doi: 10.1145/3287921.3287946 (cit. on p. 2).

[Mik+13] Tomas Mikolov et al. “Efficient estimation of word representa-
tions in vector space.” In: 1st International Conference on Learning
Representations, ICLR 2013 - Workshop Track Proceedings (2013),
pp. 1–12. arXiv: 1301.3781 (cit. on pp. 12, 77).

[Naz+08] Jamal M Nazzal et al. “Multilayer Perceptron Neural Network
(MLPs) For Analyzing the Propoerties of Jordan Oil Shale.”
In: World Applied Sciences Journal 5.5 (2008), pp. 546–552. issn:
1818-4952 (cit. on p. 23).

[NH10] Vinod Nair and Geoffrey E Hinton. “Rectified linear units im-
prove restricted boltzmann machines.” In: Proceedings of the
27th international conference on machine learning (ICML-10). 2010,
pp. 807–814. isbn: 9781605589077 (cit. on p. 18).

99

https://doi.org/10.1016/j.neucom.2016.12.038
https://arxiv.org/abs/1904.01277
https://doi.org/10.1145/3290688.3290692
https://doi.org/10.1145/3171592.3171594
https://doi.org/10.1145/3171592.3171594
https://doi.org/10.1145/3287921.3287946
https://arxiv.org/abs/1301.3781


Bibliography

[NS08] Arvind Narayanan and Vitaly Shmatikov. “Robust de-anonymization
of large sparse datasets.” In: Proceedings - IEEE Symposium on
Security and Privacy (2008), pp. 111–125. issn: 10816011. doi:
10.1109/SP.2008.33 (cit. on p. 48).

[Ola15] Christopher Olah. Understanding LSTM Networks. Aug. 2015.
url: http://colah.github.io/posts/2015-08-Understanding-
LSTMs/ (visited on 02/10/2020) (cit. on p. 27).

[PG17] Josh Patterson and Adam Gibson. Deep Learning: A Practi-
tioner’s Approach. O’Reilly Media, Inc., 2017, p. 532. isbn: 978-
1491914250 (cit. on pp. 15, 20, 24).

[PMB13] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. “On
the difficulty of training Recurrent Neural Networks.” In: Pro-
ceedings of the 30th International Conference on Machine Learn-
ing. Atlanta, GA, USA: JMLR.org, 2013, pp. 1310–1318. arXiv:
1211.5063 (cit. on p. 22).

[Pou+18] Samira Pouyanfar et al. “A survey on deep learning: Algorithms,
techniques, and applications.” In: ACM Computing Surveys 51.5
(2018). issn: 15577341. doi: 10.1145/3234150 (cit. on p. 25).

[PSM14] Jeffrey Pennington, Richard Socher, and Christopher D. Man-
ning. “GloVe: Global Vectors for Word Representation.” In:
Proceedings of the 2014 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP). Doha, Qatar: Association for
Computational Linguistics, 2014, pp. 1532–1543. doi: 10.3115/
v1/D14-1162 (cit. on pp. 12, 77).

[RHW86] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams.
“Learning representations by back-propagating errors.” In: Na-
ture 323.6088 (1986), pp. 533–536. issn: 00280836. doi: 10.1038/
323533a0 (cit. on pp. 20, 26, 33).

[Rif+11] Salah Rifai et al. “Contractive auto-encoders: Explicit invariance
during feature extraction.” In: Proceedings of the 28th International
Conference on Machine Learning, ICML 2011 1 (2011), pp. 833–840

(cit. on p. 29).

100

https://doi.org/10.1109/SP.2008.33
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://arxiv.org/abs/1211.5063
https://doi.org/10.1145/3234150
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0


Bibliography

[Rin+19] Markus Ring et al. “A survey of network-based intrusion detec-
tion data sets.” In: Computers and Security 86 (2019), pp. 147–167.
issn: 01674048. doi: 10.1016/j.cose.2019.06.005. arXiv:
1903.02460 (cit. on p. 49).

[RJ86] L. Rabiner and B. Juang. “An introduction to hidden Markov
models.” In: IEEE ASSP Magazine 3.1 (1986), pp. 4–16. doi:
10.1109/MASSP.1986.1165342 (cit. on p. 10).

[RM19] S. Raschka and V. Mirjalili. Python Machine Learning: Machine
Learning and Deep Learning with Python, Scikit-Learn, and Ten-
sorFlow 2. Packt Publishing, 2019. isbn: 9781789955750 (cit. on
p. 60).

[RMW14] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra.
“Stochastic backpropagation and approximate inference in deep
generative models.” In: 31st International Conference on Machine
Learning, ICML 2014. Vol. 32. JMLR.org, 2014, pp. 1278–1286.
isbn: 9781634393973. arXiv: 1401.4082 (cit. on p. 30).

[RN95] Stuart J Russell and Peter Norvig. Artificial Intelligence: A Modern
Approach. Prentice-Hall, 1995 (cit. on p. 10).

[Ros+04] Lorenzo Rosasco et al. “Are Loss Functions All the Same?” In:
Neural Computation 16.5 (2004), pp. 1063–1076. issn: 08997667.
doi: 10.1162/089976604773135104 (cit. on p. 19).

[Rud16] Sebastian Ruder. “An overview of gradient descent optimiza-
tion.” In: (2016), pp. 1–14. arXiv: arXiv:1609.04747v2 (cit. on
p. 19).

[SB98] Richard Sutton and Andrew Barto. Reinforcement Learning: An In-
troduction. 1st. The MIT Press, 1998, p. 322. isbn: 9780262193986

(cit. on p. 10).

[Sha+16] Bobak Shahriari et al. “Taking the human out of the loop: A
review of Bayesian optimization.” In: Proceedings of the IEEE
104.1 (2016), pp. 148–175. issn: 00189219. doi: 10.1109/JPROC.
2015.2494218 (cit. on pp. 15, 16).

101

https://doi.org/10.1016/j.cose.2019.06.005
https://arxiv.org/abs/1903.02460
https://doi.org/10.1109/MASSP.1986.1165342
https://arxiv.org/abs/1401.4082
https://doi.org/10.1162/089976604773135104
https://arxiv.org/abs/arXiv:1609.04747v2
https://doi.org/10.1109/JPROC.2015.2494218
https://doi.org/10.1109/JPROC.2015.2494218


Bibliography

[SKP97] Daniel Svozil, Vladimir Kvasnicka, and Jiřı́ Pospı́chal. “Introduc-
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